WO2019054489A1 - Sputtering target - Google Patents

Sputtering target Download PDF

Info

Publication number
WO2019054489A1
WO2019054489A1 PCT/JP2018/034211 JP2018034211W WO2019054489A1 WO 2019054489 A1 WO2019054489 A1 WO 2019054489A1 JP 2018034211 W JP2018034211 W JP 2018034211W WO 2019054489 A1 WO2019054489 A1 WO 2019054489A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
phase
tin
sputtering target
oxide
Prior art date
Application number
PCT/JP2018/034211
Other languages
French (fr)
Japanese (ja)
Inventor
香歩 木内
雄也 陸田
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to KR1020207003567A priority Critical patent/KR20200053469A/en
Publication of WO2019054489A1 publication Critical patent/WO2019054489A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof

Definitions

  • the present invention relates to a sputtering target used when forming an oxide film containing Zn, Sn and O as main components.
  • a sputtering target used when forming an oxide film containing Zn, Sn and O as main components.
  • the oxide film mainly composed of Zn, Sn, and O described above is excellent in the transmittance in the visible light region and excellent in the infrared reflection characteristic, so a heat shielding film such as window glass, an infrared filter, etc.
  • a heat shielding film such as window glass, an infrared filter, etc.
  • the above-described oxide film is formed, for example, by performing sputtering using a sputtering target made of an oxide, as shown in the following Patent Documents 1-5.
  • a sputtering target made of an oxide, as shown in the following Patent Documents 1-5.
  • sputtering target what makes flat form or cylindrical shape, for example is provided.
  • Patent Document 1 proposes a sputtering target consisting of an oxide sintered body mainly composed of a tin-zinc complex oxide phase and a metal tin phase. Moreover, the sputtering target which consists of an oxide sinter of Zn and Sn is proposed by patent documents 2 and 3.
  • FIG. Further, Patent Document 4 proposes a sputtering target which is an oxide sintered body substantially consisting of tin, zinc and oxygen, and is mainly composed of a tin-zinc complex oxide phase and a tin oxide phase.
  • Patent Document 5 proposes a sputtering target in which a metal oxide of at least one of zinc oxide and tin oxide and a metal powder are sintered.
  • Japan JP 2013-177260 A JP JP 2010-037161 A
  • Japan JP 2010-031364 Japanese Patent Application Laid-Open No. 2007-314364
  • Japanese Patent Application Laid-Open No. 2014-167162 A
  • stannous oxide (SnO) is used as a raw material, and a metallic tin phase is formed by reducing the stannous oxide (SnO).
  • the relative density is about 91.1 to 93.6%, and a sufficiently high density has not been obtained.
  • the tin-zinc complex oxide phase and the metal tin phase are the main phases, and in the target sputtering surface, the specific resistance value is largely different between the area of the tin-zinc complex oxide phase and the area of the metal tin phase. There was a risk that the number of occurrences of abnormal discharge at the time would increase.
  • the metal phase is constituted by the metal powder used at the time of sintering
  • the size of the metal phase depends on the particle size of the metal powder, so that the fine metal phase is not segregated and It was difficult to disperse uniformly.
  • many voids exist and the metal phase is nonuniformly present, which may increase the number of occurrences of abnormal discharge at the time of sputtering.
  • cracking may occur during sputtering, which may make it impossible to stably perform sputtering.
  • the present invention has been made in view of the above-described circumstances, and it is possible to provide a sputtering target which can suppress the occurrence of abnormal discharge and can stably perform DC sputtering with a sufficiently low specific resistance value. With the goal.
  • a sputtering target of one embodiment of the present invention (hereinafter referred to as “the sputtering target of the present invention”) is mainly composed of Zn, Sn and O and Zn / Sn in atomic ratio Zn / Sn.
  • (Zn + Sn) is contained in a range of 0.1 or more and 0.6 or less, and the tin oxide phase and the tin-zinc complex oxide phase are main phases, and a metal tin phase is included,
  • the amount of Sn present as a metal tin phase is in the range of 1.0 mol% or more and 8.0 mol% or less, the average equivalent circle diameter of the metal tin phase is 1 ⁇ m or less, and the relative density is 95% or more It is characterized by being.
  • the sputtering target of the present invention while having a tin oxide phase and a tin-zinc complex oxide phase as main phases, it has a metal tin phase, and the average equivalent circle diameter of the metal tin phase in the cross section of the sputtering target Since the value is 1 ⁇ m or less, the metal tin phase is uniformly present without segregation, and the occurrence of abnormal discharge at the time of sputtering can be suppressed. In addition, the relative density can be improved by finely depositing the metal Sn so as to fill the particles of the oxide phase that is to be the parent phase.
  • the tin oxide phase and the tin-zinc complex oxide phase are the main phases” means that the respective proportions (mol%) of the tin oxide phase and the tin-zinc complex oxide phase in the phase constituting the sputtering target Means more than the other phases.
  • "being mainly composed of Zn, Sn, and O” means that the atomic ratio (at%) of each of Zn, Sn, and O in the sputtering target composition is 10 at% or more.
  • the sputtering target of the present invention since the relative density is 95% or more, the number of voids is small, and the occurrence of abnormal discharge at the time of sputtering can be suppressed. In addition, the occurrence of cracking at the time of sputtering can be suppressed. Further, in the sputtering target of the present invention, Zn and Sn are contained so that Zn / (Zn + Sn) is in the range of 0.1 or more and 0.6 or less in atomic ratio, so that the transparency and infrared reflection characteristics are obtained. Can form an excellent oxide film.
  • the sputtering target of the present invention since the amount of Sn present as the metal tin phase is 1.0 mol% or more, the specific resistance value is sufficiently low, and an oxide film is stably formed by DC sputtering. It becomes possible to make a film.
  • the amount of Sn present as the metal tin phase is 8.0 mol% or less, the metal tin phase is not present more than necessary, and it is possible to suppress melting of the metal when heated in the manufacturing process, A sputtering target can be manufactured stably. In addition, even when the temperature rises during sputtering, the occurrence of cracks on the surface of the target due to thermal expansion can be suppressed.
  • the sputtering target of the present invention may further contain an oxide of one or two or more metal elements M selected from Cr, V, Si, Ti, Al, and Zr.
  • tin oxide can be reduced by one or more metal elements M selected from Cr, V, Si, Ti, Al, and Zr, and a metal tin phase can be formed in the sputtering target.
  • the specific resistance value is sufficiently lowered, and the oxide film can be stably formed by DC sputtering.
  • the metal element M be contained so that M / (Zn + Sn + M) is in the range of 0.001 or more and 0.05 or less in atomic ratio.
  • tin oxide can be reliably reduced by the metal element M to form a metal tin phase. Accordingly, the specific resistance value is sufficiently lowered, and the oxide film can be stably formed by DC sputtering. Furthermore, various characteristics of the formed oxide film can be maintained.
  • the sputtering target according to this embodiment contains Zn, Sn, and O as main components, and Zn and Sn in an atomic ratio such that Zn / (Zn + Sn) is in the range of 0.1 or more and 0.6 or less. There is.
  • the sputtering target which is this embodiment while having a tin oxide phase and a tin zinc complex oxide phase as a main phase, it has a metal tin phase.
  • the tin oxide phase is a stannic oxide phase (SnO 2 phase) and the tin-zinc complex oxide phase is a Zn 2 SnO 4 phase.
  • the average value of the circle equivalent diameter of the observed metal tin phase is made into 1 micrometer or less, and the above-mentioned metal tin phase does not have segregation, and is uniformly distributed. .
  • the sputtering target which is this embodiment, it is set as the structure which the metal tin phase disperse
  • this metal tin phase is formed by reduction of tin oxide.
  • the amount of Sn present as the above-mentioned metal tin phase is in the range of 1.0 mol% or more and 8.0 mol% or less.
  • relative density is made into 95% or more.
  • the specific resistance value is set to 1 ⁇ ⁇ cm or less.
  • the sputtering target according to the present embodiment may further contain an oxide of one or more metal elements M selected from Cr, V, Si, Ti, Al, and Zr.
  • content of metallic element M is 0.001 / 0.05 or less in atomic ratio M / (Zn + Sn + M). It is preferable to set so as to be within the range. That is, in the sputtering target according to the present embodiment, the composition contains Zn, Sn, O, and as necessary, the metal element M, and the other components are inevitable impurities.
  • the atomic ratio in the sputtering target according to the present embodiment the average value of the equivalent circle diameters of observed metal tin, the amount of Sn contained as a metal tin phase, the relative density, the specific resistance value, and the metal element M , The reasons defined as above will be described.
  • an oxide film to be a heat shielding film is formed, and it is necessary to satisfy the transmittance in the visible light region and the infrared reflection characteristic.
  • an oxide film satisfying the various characteristics described above is formed by containing Zn and Sn in an atomic ratio such that Zn / (Zn + Sn) is in the range of 0.1 or more and 0.6 or less. be able to.
  • the lower limit of the atomic ratio Zn / (Zn + Sn) is preferably 0.2 or more, and more preferably 0.25 or more in order to reliably form an oxide film excellent in various characteristics.
  • the upper limit of the atomic ratio Zn / (Zn + Sn) is preferably 0.5 or less, and more preferably 0.4 or less.
  • the average equivalent circle diameter of the metal tin phase is 1 ⁇ m or less
  • the average equivalent circle diameter of the observed metal tin phase exceeds 1 ⁇ m, the number of occurrences of abnormal discharge increases, and it may not be possible to stably form a sputter film.
  • the equivalent circle diameter of the metal tin phase is large, the precipitated metal tin phase can not fill the particles between the oxide phases, which may lower the relative density.
  • the average value of the observed metal-tin phase equivalent circle diameters is limited to 1 ⁇ m or less.
  • the average equivalent circle diameter of the observed metal tin phase should be 0.65 ⁇ m or less. Is more preferable, and it is more preferable to set it to 0.60 ⁇ m or less.
  • the average of the circle equivalent diameter of the observed metal tin phase is the circle equivalent diameter Is the average value of the circle equivalent diameter of the metal tin phase of 0.1 ⁇ m or more.
  • the above-described oxide film is formed by DC sputtering.
  • the amount of Sn present as a metal tin phase is less than 1.0 mol%, the specific resistance value becomes high, and there is a possibility that DC sputtering can not be stably performed. Moreover, there existed a possibility that density could not be improved enough.
  • the amount of Sn present as a metal tin phase exceeds 8.0 mol%, melting of metal occurs during sintering, which may make it impossible to stably manufacture a sputtering target.
  • a large amount of metal tin phase having a thermal expansion coefficient largely different from that of the matrix phase is present, and when the temperature rises during sputtering, there is a possibility that the surface of the target may be cracked due to thermal expansion.
  • the amount of Sn present as the metal tin phase is set in the range of 1.0 mol% or more and 8.0 mol% or less.
  • the lower limit of the amount of Sn present as a metal tin phase in order to lower the specific resistance value and carry out DC sputtering more stably, it is preferable to set the lower limit of the amount of Sn present as a metal tin phase to 3.0 mol% or more, and 4.5 mol% or more It is further preferred that
  • it is preferable to set the upper limit of the amount of Sn present as a metal tin phase to 7.5 mol% or less; It is more preferable to set it as 0 mol% or less.
  • collected from a sputtering target is crushed and it is set as powder, It measures by powder X-ray-diffraction method using this powder, Rietvelt It can be calculated by analyzing by the method.
  • the relative density is the measured density divided by the theoretical density.
  • the theoretical density is calculated by the following equation, assuming that the amount of Sn present as a metal tin phase is calculated by the Rietveld method, and the remaining Sn and Zn are respectively SnO 2 and ZnO. did.
  • Theoretical density 100 / ⁇ (Wa / Da) + (Wb / Db) + (Wc / Dc) ⁇ Wa: SnO 2 content (mass%) Da: Theoretical density of SnO 2 (6.95 g / cm 3 ) Wb: ZnO content (mass%) Db: theoretical density of ZnO (5.61 g / cm 3 ) Wc: Content of metal Sn (mass%) Dc: Theoretical density of metal Sn (7.30 g / cm 3 )
  • relative density of the sputtering target calculated by the above formula is less than 95%, a large number of voids will be present, and there is a possibility that abnormal discharge may easily occur at the time of sputtering. Moreover, there is a possibility that a crack may occur in the sputtering target after sputtering. So, in this embodiment, relative density is specified as 95% or more.
  • the density of the sputtering target may exceed the theoretical density calculated by the above equation due to the reaction of the raw material powder, etc., in which case the relative density will exceed 100%.
  • the relative density of the sputtering target is preferably 96% or more, more preferably 98% or more.
  • the upper limit of the relative density is not particularly limited, but it is, for example, less than 105% because it is difficult to prepare a sintered body having a relative density of 105% or more.
  • the specific resistance value is preferably 1 ⁇ ⁇ cm or less, and more preferably 0.1 ⁇ ⁇ cm or less.
  • the lower limit of the specific resistance value is not particularly limited, and is, for example, 0.001 ⁇ ⁇ cm or more.
  • Metal element M Since one or two or more metal elements M selected from Cr, V, Si, Ti, Al, and Zr are elements capable of reducing tin oxide to form a metal tin phase, these metal elements M may be contained. Since the metal element M reduces tin oxide as described above at the time of sintering, it is present as an oxide phase (MOX) in the sputtering target.
  • MOX oxide phase
  • tin oxide in the case where the sputtering target according to the present embodiment contains the metal element M, tin oxide can be obtained by setting M / (Zn + Sn + M) at an atomic ratio of 0.001 or more as the content of the metal element M. It can be reduced to form a metal tin phase sufficiently.
  • M / (Zn + Sn + M) at 0.05 or less in atomic ratio, the influence on the characteristics of the film to be formed can be suppressed.
  • M / (Zn + Sn + M) is preferably in the range of 0.001 or more and 0.05 or less in atomic ratio.
  • the lower limit of M / (Zn + Sn + M) is preferably 0.0015 or more, and more preferably 0.002 or more.
  • the upper limit of M / (Zn + Sn + M) is preferably 0.01 or less, and more preferably 0.008 or less.
  • raw material powder containing zinc oxide powder and tin oxide powder is prepared (raw material powder preparation step S01).
  • stannic oxide (SnO 2 ) powder is used as the tin oxide powder.
  • metal zinc powder or powder of metal element M is included to reduce tin oxide to form a metal tin phase.
  • raw material powder (1) zinc oxide powder + tin oxide powder + metallic zinc powder, (2) zinc oxide powder + tin oxide powder + powder of metal element M, (3) zinc oxide powder + tin oxide powder + It can be mixed in the pattern of metallic zinc powder + metallic element M powder. Then, the weighed raw material powders are mixed using a ball mill or the like.
  • the mixed raw material powder is filled in a forming die, heated while being pressurized to sinter and obtain a sintered body (sintering step S02).
  • the sintering temperature at this time is within the range of 950 ° C. to 1200 ° C.
  • the holding time at the sintering temperature is within the range of 180 min to 300 min
  • the pressurizing pressure is within the range of 20 MPa to 40 MPa.
  • the atmosphere is preferably a vacuum atmosphere (20 Pa or less).
  • the metallic tin reduces tin oxide, whereby the metallic tin phase is uniformly formed without segregation. That is, in the present embodiment, the metal tin phase is formed by reactive sintering. By reactive sintering in this manner, the average equivalent circle diameter of the observed metal tin phase becomes 1 ⁇ m or less. In addition, the relative density is improved by filling the metal tin phase between the oxide phases.
  • the sintering temperature is set to a temperature exceeding the melting point (419.5 ° C.) of zinc metal. However, zinc metal becomes zinc oxide in the process of sintering, so melting out of zinc metal is suppressed.
  • the sintering temperature is set to a temperature exceeding the melting point (231.9 ° C.) of metal tin, the melting of metal tin is suppressed because the metal tin phase is finely formed in the process of sintering. Be done.
  • the obtained sintered body is machined (machining step S03). Thereby, the sputtering target which is this embodiment is manufactured.
  • the main phase is a tin oxide phase and a tin-zinc complex oxide phase, and the metal tin phase is observed, which is observed. Since the average value of the equivalent circle diameter of the phase is 1 ⁇ m or less, the metal tin phase is uniformly present without segregation, and the occurrence of abnormal discharge at the time of sputtering can be suppressed. In addition, the metal tin phase is sufficiently filled between the oxide phases to be the matrix phase, and the relative density can be improved. Furthermore, even when the temperature rises at the time of sputtering, it is possible to suppress the occurrence of cracking of the target surface due to thermal expansion.
  • the relative density is set to 95% or more, so that the number of voids is small, and the occurrence of abnormal discharge at the time of sputtering can be suppressed. In addition, the occurrence of cracking at the time of sputtering can be suppressed.
  • Zn and Sn are contained so that Zn / (Zn + Sn) in the atomic ratio is in the range of 0.1 or more and 0.6 or less. An oxide film excellent in reflection characteristics can be formed.
  • the sputtering target according to the present embodiment since the amount of Sn present as the metal tin phase is 1.0 mol% or more, the specific resistance value is sufficiently low, and the oxide film is stabilized by DC sputtering. It becomes possible to form a film.
  • the amount of Sn present as the metal tin phase is 8.0 mol% or less, the metal tin phase does not exist more than necessary, and it is possible to suppress melting of the metal when heated in the manufacturing process, which is stable The sputtering target can be manufactured. In addition, even when the temperature rises during sputtering, the occurrence of cracks on the surface of the target due to thermal expansion can be suppressed.
  • the sputtering target according to the present embodiment further includes an oxide of one or more metal elements M selected from Cr, V, Si, Ti, Al, and Zr
  • the metal element M The metal tin phase described above can be formed by reducing tin oxide by Therefore, the specific resistance value is sufficiently low, and the oxide film can be stably formed by DC sputtering.
  • the metal element M is oxidized by the metal element M by containing the metal element M so that M / (Zn + Sn + M) is in the range of 0.001 or more and 0.05 or less.
  • Tin can be reliably reduced to form a metal tin phase, the specific resistance value is sufficiently low, an oxide film can be stably formed by DC sputtering, and the formed oxide is formed. It becomes possible to maintain various characteristics in the object film.
  • the raw material powder zinc oxide powder and tin oxide powder (SnO 2 powder) and / or metal zinc powder or metal element M powder are included, and in the sintering step S02 Since reaction sintering is performed to reduce tin oxide with metal zinc or metal element M to form a metal tin phase, the metal tin phase can be uniformly formed without segregation, and the sintering temperature Even if it is set high, melting of metal can be suppressed.
  • the sintering temperature in the sintering step S02 can be set to a relatively high temperature condition within the range of 950 ° C. or more and 1200 ° C. or less. This makes it possible to obtain a sputtering target with a high relative density.
  • the metal element M when the metal element M further includes one or two or more metal elements selected from Cr, V, Si, Ti, Al, and Zr, the content of the metal element M can be M / A in atomic ratio.
  • (Zn + Sn + M) is described to be in the range of 0.001 or more and 0.05 or less, it is not limited to this, and in the case where the metal tin phase is sufficiently formed by metal zinc, the atomic ratio And M / (Zn + Sn + M) may be contained at a level of less than 0.001.
  • M / (Zn + Sn + M) may exceed 0.05 in atomic ratio depending on the characteristics required for the film formed.
  • metal tin powder purity of 99 mass% or more, average particle diameter 15.0 ⁇ m
  • tin oxide powder purity of 99 mass% or more, average particle diameter 25 ⁇ m
  • composition of sputtering target Composition of sputtering target
  • D8 ADVANCE powder X-ray diffractometer
  • Rietveld method analysis software: TOPAS (version 5) manufactured by Bruker AXS
  • the measurement results are shown in Tables 2 and 3.
  • the measurement conditions were as follows. Source: Cu Tube voltage: 40kV Tube current: 40 mA Scanning range: 15 to 128 deg Step width: 0.01 deg
  • the sputtering target of the present invention since the gray part and the black part occupy the main part, in the sputtering target of the present invention, the tin oxide phase and the tin-zinc complex oxide phase exist as the main phase. I understand that Further, since the minute white parts smaller than the gray part and the black part are scattered and present, the sputtering target of the present invention has a metal tin phase, and the average equivalent circle diameter of the metal tin phase is 1 ⁇ m or less It turns out that it is an extent.
  • the resistivity value of the sputtering target was measured by a resistance measuring device. It measured by the four-point probe method using the low resistivity meter (Loresta-GP) made from Mitsubishi Chemical Co., Ltd. as a resistance measurement apparatus. The temperature at the time of measurement was 23 ⁇ 5 ° C., and the humidity was 50 ⁇ 20%. The measurement results are shown in Table 3.
  • Comparative Example 1 In Comparative Example 1 in which the amount of Sn contained as the metal tin phase was 0.83 mol%, the specific resistance value was high and DC sputtering could not be performed. Also, the relative density was less than 95%. In Comparative Example 2 in which the amount of Sn contained as the metal tin phase was 11.75 mol%, melting of the metal was observed at the time of sintering. For this reason, the sputter test was not performed. Also, the relative density was less than 95%. In Comparative Example 3 containing no tin oxide phase and containing a large amount of metallic zinc phase, dissolution of metal was observed at the time of sintering. For this reason, the sputter test was not performed. Also, the relative density was less than 95%.
  • Comparative Example 4 in which metal tin powder is used as a raw material and the amount of Sn contained as a metal tin phase is set to 10.58 mol%, the average equivalent circle diameter of the metal tin phase exceeds 1.32 ⁇ m and 1 ⁇ m. It was In addition, melting of metal was observed at the time of sintering. For this reason, the sputter test was not performed. Furthermore, the relative density was less than 95%. In Comparative Example 5 in which metal tin powder is used as the raw material and the amount of Sn contained as the metal tin phase is 0.54 mol%, the average equivalent circle diameter of the metal tin phase exceeds 1.29 ⁇ m and 1 ⁇ m. It was In addition, the specific resistance value was high, and DC sputtering could not be performed. Furthermore, the relative density was less than 95%.
  • metal tin powder was not used as a raw material in the invention examples 1-10, a metal tin phase was formed in the structure after sintering. It is presumed that a metal tin phase is formed by reduction of part of tin oxide by the metal zinc powder used as a raw material and the metal powder of element M. For this reason, even if the sintering temperature is set high, melting out of the metal was not confirmed at the time of sintering. Further, in the examples 1-10 of the invention, since the sintering temperature is sufficiently high, the relative density is also as high as 95% or more.
  • the average equivalent circle diameter of metal tin in the target is 1 ⁇ m or less, and the metal tin phase is uniformly dispersed without segregation, and the specific resistance value is Was low enough.
  • the number of occurrences of abnormal discharge at the time of sputtering is also suppressed, and DC sputtering can be stably performed.
  • the relative density also increased to 95% or more.
  • Zr is added as the metal element M, but the average value of the circle equivalent diameter of metal tin in the target is 1 ⁇ m or less, and the metal tin phase is not segregated and It was dispersed uniformly, and the specific resistance value was sufficiently low. Furthermore, the relative density also increased to 95% or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

This sputtering target is characterized by: being mainly composed of Zn, Sn and O, and containing Zn and Sn in amounts such that the Zn/(Zn + Sn) atomic ratio is within the range of from 0.1 to 0.6 (inclusive); and comprising tin oxide phases and tin zinc complex oxide phases as main phases, while also comprising tin metal phases. This sputtering target is also characterized in that: the amount of Sn present as the tin metal phases is within the range of from 1.0 mol% to 8.0 mol% (inclusive); the average of the circle-equivalent diameters of the tin metal phases is 1 μm or less; and the relative density is 95% or more.

Description

スパッタリングターゲットSputtering target
 本発明は、ZnとSnとOを主成分とする酸化物膜を成膜する際に用いられるスパッタリングターゲットに関するものである。
 本願は、2017年9月14日に日本に出願された特願2017-176800号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a sputtering target used when forming an oxide film containing Zn, Sn and O as main components.
Priority is claimed on Japanese Patent Application No. 2017-176800, filed on Sep. 14, 2017, the content of which is incorporated herein by reference.
 上述のZnとSnとOを主成分とする酸化物膜は、可視光領域での透過率に優れ、かつ、赤外線反射特性に優れていることから、窓ガラス等の遮熱膜や赤外線フィルター等に使用されている。
 ここで、上述の酸化物膜は、例えば、下記の特許文献1-5に示すように、酸化物からなるスパッタリングターゲットを用いてスパッタリングを行うことにより成膜される。なお、上述のスパッタリングターゲットとしては、例えば平板形状又は円筒形状をなすものが提供されている。
The oxide film mainly composed of Zn, Sn, and O described above is excellent in the transmittance in the visible light region and excellent in the infrared reflection characteristic, so a heat shielding film such as window glass, an infrared filter, etc. Is used for
Here, the above-described oxide film is formed, for example, by performing sputtering using a sputtering target made of an oxide, as shown in the following Patent Documents 1-5. In addition, as above-mentioned sputtering target, what makes flat form or cylindrical shape, for example is provided.
 特許文献1には、主として錫亜鉛複合酸化物相と金属錫相とで構成された酸化物焼結体からなるスパッタリングターゲットが提案されている。
 また、特許文献2、3には、ZnとSnの酸化物焼結体からなるスパッタリングターゲットが提案されている。
 さらに、特許文献4には、実質的に錫、亜鉛および酸素からなる酸化物焼結体であって、主として錫亜鉛複合酸化物相と酸化錫相とから構成されているスパッタリングターゲットが提案されている。
 また、特許文献5には、酸化亜鉛と酸化錫のうち少なくとも一方の金属酸化物と、金属粉末とが焼結されたスパッタリングターゲットが提案されている。
Patent Document 1 proposes a sputtering target consisting of an oxide sintered body mainly composed of a tin-zinc complex oxide phase and a metal tin phase.
Moreover, the sputtering target which consists of an oxide sinter of Zn and Sn is proposed by patent documents 2 and 3. FIG.
Further, Patent Document 4 proposes a sputtering target which is an oxide sintered body substantially consisting of tin, zinc and oxygen, and is mainly composed of a tin-zinc complex oxide phase and a tin oxide phase. There is.
Further, Patent Document 5 proposes a sputtering target in which a metal oxide of at least one of zinc oxide and tin oxide and a metal powder are sintered.
日本国特開2013-177260号公報(A)Japan JP 2013-177260 A (A) 日本国特開2010-037161号公報(A)JP JP 2010-037161 A (A) 日本国特開2010-031364号公報(A)Japan JP 2010-031364 (A) 日本国特開2007-314364号公報(A)Japanese Patent Application Laid-Open No. 2007-314364 (A) 日本国特開2014-167162号公報(A)Japanese Patent Application Laid-Open No. 2014-167162 (A)
 ところで、特許文献1に記載されたスパッタリングターゲットにおいては、酸化第一錫(SnO)を原料として使用し、この酸化第一錫(SnO)を還元することで金属錫相を形成しているが、相対密度は91.1~93.6%程度であって、密度が十分に高いものは得られていない。
 また、錫亜鉛複合酸化物相と金属錫相が主相とされており、ターゲットスパッタ面において、錫亜鉛複合酸化物相の領域と金属錫相の領域とで比抵抗値が大きく異なるため、スパッタ時における異常放電の発生回数が多くなるおそれがあった。さらに、錫亜鉛複合酸化物相と金属錫相との熱膨張係数が大きく異なることから、スパッタ時に温度が上昇した際に、熱膨張によってターゲット表面に割れが生じてしまい、安定してスパッタを行うことができないおそれがあった。
By the way, in the sputtering target described in Patent Document 1, stannous oxide (SnO) is used as a raw material, and a metallic tin phase is formed by reducing the stannous oxide (SnO). The relative density is about 91.1 to 93.6%, and a sufficiently high density has not been obtained.
In addition, since the tin-zinc complex oxide phase and the metal tin phase are the main phases, and in the target sputtering surface, the specific resistance value is largely different between the area of the tin-zinc complex oxide phase and the area of the metal tin phase. There was a risk that the number of occurrences of abnormal discharge at the time would increase. Furthermore, since the thermal expansion coefficients of the tin-zinc complex oxide phase and the metal tin phase are largely different, when the temperature rises during sputtering, the target surface is cracked due to thermal expansion, and sputtering is stably performed. I could not do that.
 また、特許文献2、3に記載されたスパッタリングターゲットにおいては、ターゲット自体の抵抗が非常に高く、DC(直流)スパッタが困難であることから、RF(高周波)スパッタを行うことを前提としている。このRF(高周波)スパッタにおいては、成膜速度が遅く、生産性が低下するといった問題があった。
 さらに、特許文献4に記載されたスパッタリングターゲットにおいては、DCスパッタが可能であると記載されているが、その比抵抗値が例えば数10Ω・cmと比較的高いため、DC(直流)スパッタを安定して実施することが困難であった。
In the sputtering targets described in Patent Documents 2 and 3, it is premised that RF (high frequency) sputtering is performed because the resistance of the target itself is very high and DC (direct current) sputtering is difficult. In this RF (high frequency) sputtering, there is a problem that the film forming speed is low and the productivity is lowered.
Furthermore, in the sputtering target described in Patent Document 4, although it is described that DC sputtering is possible, since the specific resistance value is relatively high, for example, several tens Ω · cm, DC (direct current) sputtering is stable. Was difficult to implement.
 また、特許文献5に記載されたスパッタリングターゲットにおいては、金属粉末と酸化物とを焼結していることから、金属粉末が分散して金属相として存在することでターゲットの導電性が向上し、DCスパッタ可能であると記載されている。しかしながら、特許文献5においては、金属粉末と酸化物とを単に焼結していることから、焼結温度を金属粉末の融点以上に設定すると金属粉末が溶け出してしまうため、焼結温度を高く設定することができず、密度を十分に向上することが困難であった。さらに、焼結時に用いた金属粉末によって金属相が構成されていることから、金属相の大きさは金属粉末の粒径に依存することになるため、微細な金属相を、偏析なく、且つ、均一に分散させることは困難であった。
 以上のように、特許文献5に記載されたスパッタリングターゲットにおいては、空隙が多く存在し、かつ、金属相が不均一に存在することから、スパッタ時における異常放電の発生回数が多くなるおそれがあった。また、スパッタ時に割れが生じてしまい、安定してスパッタを行うことができないおそれがあった。
Further, in the sputtering target described in Patent Document 5, since the metal powder and the oxide are sintered, the conductivity of the target is improved by the metal powder being dispersed and being present as a metal phase, It is stated that DC sputtering is possible. However, in Patent Document 5, since the metal powder and the oxide are simply sintered, if the sintering temperature is set to the melting point or more of the metal powder, the metal powder is melted out, so the sintering temperature is high. It was difficult to set, and it was difficult to sufficiently improve the density. Furthermore, since the metal phase is constituted by the metal powder used at the time of sintering, the size of the metal phase depends on the particle size of the metal powder, so that the fine metal phase is not segregated and It was difficult to disperse uniformly.
As described above, in the sputtering target described in Patent Document 5, many voids exist and the metal phase is nonuniformly present, which may increase the number of occurrences of abnormal discharge at the time of sputtering. The In addition, cracking may occur during sputtering, which may make it impossible to stably perform sputtering.
 この発明は、前述した事情に鑑みてなされたものであって、異常放電の発生を抑制することができるとともに、比抵抗値が十分に低く安定してDCスパッタが可能なスパッタリングターゲットを提供することを目的とする。 The present invention has been made in view of the above-described circumstances, and it is possible to provide a sputtering target which can suppress the occurrence of abnormal discharge and can stably perform DC sputtering with a sufficiently low specific resistance value. With the goal.
 上記課題を解決するために、本発明の一態様のスパッタリングターゲット(以下、「本発明のスパッタリングターゲット」と称する)は、ZnとSnとOを主成分とし、ZnとSnを原子比でZn/(Zn+Sn)が0.1以上0.6以下の範囲内となるように含有し、酸化錫相と錫亜鉛複合酸化物相とを主相とするとともに、金属錫相を有しており、前記金属錫相として存在するSn量が1.0mol%以上8.0mol%以下の範囲内とされており、前記金属錫相の円相当径の平均値が1μm以下とされ、相対密度が95%以上とされていることを特徴としている。 In order to solve the above problems, a sputtering target of one embodiment of the present invention (hereinafter referred to as “the sputtering target of the present invention”) is mainly composed of Zn, Sn and O and Zn / Sn in atomic ratio Zn / Sn. (Zn + Sn) is contained in a range of 0.1 or more and 0.6 or less, and the tin oxide phase and the tin-zinc complex oxide phase are main phases, and a metal tin phase is included, The amount of Sn present as a metal tin phase is in the range of 1.0 mol% or more and 8.0 mol% or less, the average equivalent circle diameter of the metal tin phase is 1 μm or less, and the relative density is 95% or more It is characterized by being.
 本発明のスパッタリングターゲットによれば、酸化錫相と錫亜鉛複合酸化物相とを主相とするとともに、金属錫相を有しており、スパッタリングターゲットの断面における金属錫相の円相当径の平均値が1μm以下とされているので、金属錫相が偏析なく均一に存在しており、スパッタ時における異常放電の発生を抑制することができる。また、母相となる酸化物相同士の粒子間を埋めるように金属Snが微細に析出することにより、相対密度を向上させることができる。さらに、スパッタ時に温度が上昇した場合であっても、熱膨張によるターゲット表面の割れの発生を抑制することができる。
 なお、「酸化錫相と錫亜鉛複合酸化物相とを主相とする」とは、スパッタリングターゲットを構成する相のうち、酸化錫相と錫亜鉛複合酸化物相のそれぞれの割合(mol%)が、他の相よりも多いことを意味する。
 また、「ZnとSnとOを主成分とし」とは、スパッタリングターゲット組成中のZn、Sn及びOのそれぞれの原子比(at%)が10at%以上であることを意味する。
According to the sputtering target of the present invention, while having a tin oxide phase and a tin-zinc complex oxide phase as main phases, it has a metal tin phase, and the average equivalent circle diameter of the metal tin phase in the cross section of the sputtering target Since the value is 1 μm or less, the metal tin phase is uniformly present without segregation, and the occurrence of abnormal discharge at the time of sputtering can be suppressed. In addition, the relative density can be improved by finely depositing the metal Sn so as to fill the particles of the oxide phase that is to be the parent phase. Furthermore, even when the temperature rises at the time of sputtering, it is possible to suppress the occurrence of cracking of the target surface due to thermal expansion.
In addition, “the tin oxide phase and the tin-zinc complex oxide phase are the main phases” means that the respective proportions (mol%) of the tin oxide phase and the tin-zinc complex oxide phase in the phase constituting the sputtering target Means more than the other phases.
Moreover, "being mainly composed of Zn, Sn, and O" means that the atomic ratio (at%) of each of Zn, Sn, and O in the sputtering target composition is 10 at% or more.
 さらに、本発明のスパッタリングターゲットにおいては、相対密度が95%以上とされているので、空隙が少なく、スパッタ時の異常放電の発生を抑制することができる。また、スパッタ時における割れの発生を抑制することができる。
 また、本発明のスパッタリングターゲットにおいては、ZnとSnを原子比でZn/(Zn+Sn)が0.1以上0.6以下の範囲内となるように含有しているので、透過性、赤外線反射特性に優れた酸化物膜を成膜することができる。
Furthermore, in the sputtering target of the present invention, since the relative density is 95% or more, the number of voids is small, and the occurrence of abnormal discharge at the time of sputtering can be suppressed. In addition, the occurrence of cracking at the time of sputtering can be suppressed.
Further, in the sputtering target of the present invention, Zn and Sn are contained so that Zn / (Zn + Sn) is in the range of 0.1 or more and 0.6 or less in atomic ratio, so that the transparency and infrared reflection characteristics are obtained. Can form an excellent oxide film.
 また、本発明のスパッタリングターゲットにおいては、前記金属錫相として存在するSn量が1.0mol%以上とされているので、比抵抗値が十分に低く、DCスパッタによって安定して酸化物膜を成膜することが可能となる。
 一方、前記金属錫相として存在するSn量が8.0mol%以下とされているので、金属錫相が必要以上に存在せず、製造過程で加熱した際に金属が溶け出すことを抑制でき、安定してスパッタリングターゲットを製造することができる。また、スパッタ時に温度が上昇した場合であっても、熱膨張によるターゲット表面の割れの発生を抑制することができる。
Further, in the sputtering target of the present invention, since the amount of Sn present as the metal tin phase is 1.0 mol% or more, the specific resistance value is sufficiently low, and an oxide film is stably formed by DC sputtering. It becomes possible to make a film.
On the other hand, since the amount of Sn present as the metal tin phase is 8.0 mol% or less, the metal tin phase is not present more than necessary, and it is possible to suppress melting of the metal when heated in the manufacturing process, A sputtering target can be manufactured stably. In addition, even when the temperature rises during sputtering, the occurrence of cracks on the surface of the target due to thermal expansion can be suppressed.
 ここで、本発明のスパッタリングターゲットにおいては、さらに、Cr,V,Si,Ti,Al,Zrから選択される一種又は二種以上の金属元素Mの酸化物を含んでいてもよい。
 この場合、Cr,V,Si,Ti,Al,Zrから選択される一種又は二種以上の金属元素Mによって酸化錫を還元することができ、スパッタリングターゲット中に金属錫相を形成することができる。よって、比抵抗値が十分に低くなり、DCスパッタによって安定して酸化物膜を成膜することが可能となる。
Here, the sputtering target of the present invention may further contain an oxide of one or two or more metal elements M selected from Cr, V, Si, Ti, Al, and Zr.
In this case, tin oxide can be reduced by one or more metal elements M selected from Cr, V, Si, Ti, Al, and Zr, and a metal tin phase can be formed in the sputtering target. . Accordingly, the specific resistance value is sufficiently lowered, and the oxide film can be stably formed by DC sputtering.
 また、本発明のスパッタリングターゲットにおいては、前記金属元素Mを、原子比でM/(Zn+Sn+M)が0.001以上0.05以下の範囲内となるように含有していることが好ましい。
 この場合、前記金属元素Mによって酸化錫を確実に還元して金属錫相を形成することができる。よって、比抵抗値が十分に低くなり、DCスパッタによって安定して酸化物膜を成膜することが可能となる。さらに、成膜された酸化物膜における各種特性を維持することが可能となる。
Further, in the sputtering target of the present invention, it is preferable that the metal element M be contained so that M / (Zn + Sn + M) is in the range of 0.001 or more and 0.05 or less in atomic ratio.
In this case, tin oxide can be reliably reduced by the metal element M to form a metal tin phase. Accordingly, the specific resistance value is sufficiently lowered, and the oxide film can be stably formed by DC sputtering. Furthermore, various characteristics of the formed oxide film can be maintained.
 本発明によれば、異常放電の発生を抑制することができるとともに、比抵抗値が十分に低く安定してDCスパッタが可能なスパッタリングターゲットを提供することが可能となる。 ADVANTAGE OF THE INVENTION According to this invention, while being able to suppress generation | occurrence | production of abnormal discharge, it becomes possible to provide the sputtering target in which a specific resistance value is low enough and can perform DC sputtering stably.
本発明の実施形態であるスパッタリングターゲットにおける組織観察写真(EPMA像)である。It is a structure observation photograph (EPMA image) in the sputtering target which is embodiment of this invention. 本発明の実施形態であるスパッタリングターゲットの製造方法の一例を示すフロー図である。It is a flowchart which shows an example of the manufacturing method of the sputtering target which is embodiment of this invention.
 以下に、本発明の一実施形態であるスパッタリングターゲットについて、添付した図面を参照して説明する。
 本実施形態であるスパッタリングターゲットは、ZnとSnとOを主成分とし、ZnとSnを原子比でZn/(Zn+Sn)が0.1以上0.6以下の範囲内となるように含有している。
Hereinafter, a sputtering target according to an embodiment of the present invention will be described with reference to the attached drawings.
The sputtering target according to this embodiment contains Zn, Sn, and O as main components, and Zn and Sn in an atomic ratio such that Zn / (Zn + Sn) is in the range of 0.1 or more and 0.6 or less. There is.
 また、本実施形態であるスパッタリングターゲットにおいては、酸化錫相と錫亜鉛複合酸化物相を主相とするとともに、金属錫相を有している。なお、本実施形態においては、X線回折分析の結果、酸化錫相が酸化第二錫相(SnO相)であり、錫亜鉛複合酸化物相がZnSnO相であることが確認されている。
 そして、本実施形態であるスパッタリングターゲットにおいては、観察された金属錫相の円相当径の平均値が1μm以下とされており、上述の金属錫相が偏析なく、かつ、均一に分散している。
 すなわち、本実施形態であるスパッタリングターゲットにおいては、母相となる酸化物相(酸化錫相及び錫亜鉛複合酸化物相)中に金属錫相が分散した組織とされている。なお、後述するように、この金属錫相は、酸化錫が還元されることによって形成されたものである。
Moreover, in the sputtering target which is this embodiment, while having a tin oxide phase and a tin zinc complex oxide phase as a main phase, it has a metal tin phase. In the present embodiment, as a result of X-ray diffraction analysis, it is confirmed that the tin oxide phase is a stannic oxide phase (SnO 2 phase) and the tin-zinc complex oxide phase is a Zn 2 SnO 4 phase. ing.
And in the sputtering target which is this embodiment, the average value of the circle equivalent diameter of the observed metal tin phase is made into 1 micrometer or less, and the above-mentioned metal tin phase does not have segregation, and is uniformly distributed. .
That is, in the sputtering target which is this embodiment, it is set as the structure which the metal tin phase disperse | distributed in the oxide phase (a tin oxide phase and a tin zinc complex oxide phase) used as a mother phase. As described later, this metal tin phase is formed by reduction of tin oxide.
 ここで、上述の金属錫相として存在するSn量は、1.0mol%以上8.0mol%以下の範囲内とされている。
 また、本実施形態であるスパッタリングターゲットにおいては、相対密度が95%以上とされている。
 さらに、本実施形態であるスパッタリングターゲットにおいては、その比抵抗値が1Ω・cm以下とされている。
Here, the amount of Sn present as the above-mentioned metal tin phase is in the range of 1.0 mol% or more and 8.0 mol% or less.
Moreover, in the sputtering target which is this embodiment, relative density is made into 95% or more.
Furthermore, in the sputtering target according to the present embodiment, the specific resistance value is set to 1 Ω · cm or less.
 ここで、本実施形態であるスパッタリングターゲットにおいては、さらに、Cr,V,Si,Ti,Al,Zrから選択される一種又は二種以上の金属元素Mの酸化物を含有していてもよい。
 なお、本実施形態であるスパッタリングターゲットにおいて、金属元素Mの酸化物相を有する場合には、金属元素Mの含有量は、原子比でM/(Zn+Sn+M)が0.001以上0.05以下の範囲内となるように設定されていることが好ましい。
 すなわち、本実施形態であるスパッタリングターゲットにおいては、ZnとSnとOと、必要に応じて金属元素Mとを含有し、その他は不可避不純物とされた組成とされているのである。
Here, the sputtering target according to the present embodiment may further contain an oxide of one or more metal elements M selected from Cr, V, Si, Ti, Al, and Zr.
In addition, in the sputtering target which is this embodiment, when it has an oxide phase of metallic element M, content of metallic element M is 0.001 / 0.05 or less in atomic ratio M / (Zn + Sn + M). It is preferable to set so as to be within the range.
That is, in the sputtering target according to the present embodiment, the composition contains Zn, Sn, O, and as necessary, the metal element M, and the other components are inevitable impurities.
 以下に、本実施形態であるスパッタリングターゲットにおける原子比、観察された金属錫の円相当径の平均値、金属錫相として含有されるSn量、相対密度、比抵抗値、及び、金属元素Mについて、上述のように規定した理由について説明する。 Hereinafter, the atomic ratio in the sputtering target according to the present embodiment, the average value of the equivalent circle diameters of observed metal tin, the amount of Sn contained as a metal tin phase, the relative density, the specific resistance value, and the metal element M , The reasons defined as above will be described.
(原子比Zn/(Zn+Sn):0.1以上0.6以下)
 本実施形態であるスパッタリングターゲットにおいては、遮熱膜となる酸化物膜を成膜するものであり、可視光領域における透過率、赤外線反射特性を満足する必要がある。
 ここで、ZnとSnを原子比でZn/(Zn+Sn)が0.1以上0.6以下の範囲内となるように含有することにより、上述した各種特性を満足する酸化物膜を成膜することができる。
 なお、各種特性に優れた酸化物膜を確実に成膜するためには、原子比Zn/(Zn+Sn)の下限を0.2以上とすることが好ましく、0.25以上とすることがさらに好ましい。また、原子比Zn/(Zn+Sn)の上限を0.5以下とすることが好ましく、0.4以下とすることがさらに好ましい。
(Atom ratio Zn / (Zn + Sn): 0.1 or more and 0.6 or less)
In the sputtering target according to this embodiment, an oxide film to be a heat shielding film is formed, and it is necessary to satisfy the transmittance in the visible light region and the infrared reflection characteristic.
Here, an oxide film satisfying the various characteristics described above is formed by containing Zn and Sn in an atomic ratio such that Zn / (Zn + Sn) is in the range of 0.1 or more and 0.6 or less. be able to.
The lower limit of the atomic ratio Zn / (Zn + Sn) is preferably 0.2 or more, and more preferably 0.25 or more in order to reliably form an oxide film excellent in various characteristics. . Further, the upper limit of the atomic ratio Zn / (Zn + Sn) is preferably 0.5 or less, and more preferably 0.4 or less.
(金属錫相の円相当径の平均が1μm以下)
 スパッタリングターゲットの組織において、観察される金属錫相の円相当径の平均が1μmを超えている場合には、異常放電の発生回数が多くなり、安定してスパッタ成膜することができないおそれがある。また、金属錫相の円相当径が大きいと、析出する金属錫相が酸化物相同士の粒子間を埋めることができず、相対密度が低下するおそれがある。さらに、金属錫相と母相となる酸化物相との熱膨張係数の差が大きいため、スパッタ時に温度が上昇した際に、金属錫相と酸化物相との熱膨張係数の差に起因してターゲット表面に割れが生じるおそれがある。
 以上のことから、本実施形態では、観察された金属錫相円相当径の平均値を1μm以下に制限している。
(The average equivalent circle diameter of the metal tin phase is 1 μm or less)
In the structure of the sputtering target, when the average equivalent circle diameter of the observed metal tin phase exceeds 1 μm, the number of occurrences of abnormal discharge increases, and it may not be possible to stably form a sputter film. . In addition, when the equivalent circle diameter of the metal tin phase is large, the precipitated metal tin phase can not fill the particles between the oxide phases, which may lower the relative density. Furthermore, due to the large difference between the thermal expansion coefficients of the metal tin phase and the oxide phase to be the matrix phase, when the temperature rises during sputtering, the difference is due to the difference between the thermal expansion coefficients of the metal tin phase and the oxide phase. Cracking may occur on the target surface.
From the above, in the present embodiment, the average value of the observed metal-tin phase equivalent circle diameters is limited to 1 μm or less.
 なお、異常放電の発生及びスパッタ時の割れの発生をさらに抑制するとともに相対密度を十分に向上させるためには、観察された前記金属錫相の円相当径の平均を0.65μm以下とすることがさらに好ましく、0.60μm以下とすることがよりさらに好ましい。
 ここで、本実施形態においては、円相当径が0.1μm未満の金属錫相を観察することが困難なことから、「観察された金属錫相の円相当径の平均」は、円相当径が0.1μm以上の金属錫相の円相当径の平均値としている。
In order to further suppress the occurrence of abnormal discharge and the occurrence of cracking at the time of sputtering and to sufficiently improve the relative density, the average equivalent circle diameter of the observed metal tin phase should be 0.65 μm or less. Is more preferable, and it is more preferable to set it to 0.60 μm or less.
Here, in the present embodiment, it is difficult to observe a metal tin phase having a circle equivalent diameter of less than 0.1 μm, so “the average of the circle equivalent diameter of the observed metal tin phase” is the circle equivalent diameter Is the average value of the circle equivalent diameter of the metal tin phase of 0.1 μm or more.
(金属錫相としてのSn量:1.0mol%以上8.0mol%以下)
 本実施形態であるスパッタリングターゲットにおいては、上述の酸化物膜をDCスパッタにより成膜するものである。
 ここで、金属錫相として存在するSn量が1.0mol%未満の場合には、比抵抗値が高くなり、DCスパッタを安定して実施することができないおそれがあった。また、密度を十分に向上させることができないおそれがあった。
 一方、金属錫相として存在するSn量が8.0mol%を超える場合には、焼結時に金属の溶け出しが生じ、スパッタリングターゲットを安定して製造することができないおそれがあった。また、母相となる酸化物相と熱膨張係数が大きく異なる金属錫相が多く存在することになり、スパッタ時に温度上昇した際に、熱膨張によってターゲットの表面に割れが生じるおそれがあった。
(The amount of Sn as a metal tin phase: 1.0 mol% or more and 8.0 mol% or less)
In the sputtering target according to the present embodiment, the above-described oxide film is formed by DC sputtering.
Here, when the amount of Sn present as a metal tin phase is less than 1.0 mol%, the specific resistance value becomes high, and there is a possibility that DC sputtering can not be stably performed. Moreover, there existed a possibility that density could not be improved enough.
On the other hand, when the amount of Sn present as a metal tin phase exceeds 8.0 mol%, melting of metal occurs during sintering, which may make it impossible to stably manufacture a sputtering target. In addition, a large amount of metal tin phase having a thermal expansion coefficient largely different from that of the matrix phase is present, and when the temperature rises during sputtering, there is a possibility that the surface of the target may be cracked due to thermal expansion.
 このため、本実施形態では、金属錫相として存在するSn量を1.0mol%以上8.0mol%以下の範囲内に設定している。
 ここで、比抵抗値を低くしてDCスパッタをさらに安定して実施するためには、金属錫相として存在するSn量の下限を3.0mol%以上とすることが好ましく、4.5mol%以上とすることがさらに好ましい。また、焼結時における金属の溶け出しを抑制し、安定してスパッタリングターゲットを製造するためには、金属錫相として存在するSn量の上限を7.5mol%以下とすることが好ましく、7.0mol%以下とすることがさらに好ましい。
 なお、本実施形態であるスパッタリングターゲットにおいて金属錫相として存在するSn量については、スパッタリングターゲットから採取した試料を砕いて粉末とし、この粉末を用いて粉末X線回折法で測定を行い、リートベルト法により解析を行うことで、算出することができる。
For this reason, in the present embodiment, the amount of Sn present as the metal tin phase is set in the range of 1.0 mol% or more and 8.0 mol% or less.
Here, in order to lower the specific resistance value and carry out DC sputtering more stably, it is preferable to set the lower limit of the amount of Sn present as a metal tin phase to 3.0 mol% or more, and 4.5 mol% or more It is further preferred that In addition, in order to suppress dissolution of metal during sintering and stably manufacture a sputtering target, it is preferable to set the upper limit of the amount of Sn present as a metal tin phase to 7.5 mol% or less; It is more preferable to set it as 0 mol% or less.
In addition, about the amount of Sn which exists as a metal tin phase in the sputtering target which is this embodiment, a sample extract | collected from a sputtering target is crushed and it is set as powder, It measures by powder X-ray-diffraction method using this powder, Rietvelt It can be calculated by analyzing by the method.
(相対密度:95%以上)
 相対密度は、測定密度を理論密度で除したものである。本実施形態においては、理論密度は、リートベルト法によって金属錫相として存在するSn量を算出し、残りのSn及びZnが、それぞれSnO、ZnOであると仮定して、以下の式で算出した。
 理論密度=100/{(Wa/Da)+(Wb/Db)+(Wc/Dc)}
  Wa:SnOの含有量(質量%)
  Da:SnOの理論密度(6.95g/cm
  Wb:ZnOの含有量(質量%)
  Db:ZnOの理論密度(5.61g/cm
  Wc:金属Snの含有量(質量%)
  Dc:金属Snの理論密度(7.30g/cm
(Relative density: 95% or more)
The relative density is the measured density divided by the theoretical density. In the present embodiment, the theoretical density is calculated by the following equation, assuming that the amount of Sn present as a metal tin phase is calculated by the Rietveld method, and the remaining Sn and Zn are respectively SnO 2 and ZnO. did.
Theoretical density = 100 / {(Wa / Da) + (Wb / Db) + (Wc / Dc)}
Wa: SnO 2 content (mass%)
Da: Theoretical density of SnO 2 (6.95 g / cm 3 )
Wb: ZnO content (mass%)
Db: theoretical density of ZnO (5.61 g / cm 3 )
Wc: Content of metal Sn (mass%)
Dc: Theoretical density of metal Sn (7.30 g / cm 3 )
 上記式で算出されるスパッタリングターゲットの相対密度が95%未満であると、空隙が多く存在することになり、スパッタ時に異常放電が発生しやすくなるおそれがある。また、スパッタ後に、スパッタリングターゲットに割れが生じるおそれがある。そこで、本実施形態においては、相対密度を95%以上に規定している。ここで、スパッタリングターゲットの密度が、原料粉の反応等によって上記式により算出する理論密度を超える場合があり、そのときは相対密度が100%を超えることになる。
 なお、異常放電の発生やスパッタ時の割れの発生をさらに抑制するためには、スパッタリングターゲットの相対密度を96%以上とすることが好ましく、98%以上とすることがさらに好ましい。また、相対密度の上限に特に制限はないが、相対密度105%以上の焼結体については作製が困難であるため、例えば、105%未満である。
If the relative density of the sputtering target calculated by the above formula is less than 95%, a large number of voids will be present, and there is a possibility that abnormal discharge may easily occur at the time of sputtering. Moreover, there is a possibility that a crack may occur in the sputtering target after sputtering. So, in this embodiment, relative density is specified as 95% or more. Here, the density of the sputtering target may exceed the theoretical density calculated by the above equation due to the reaction of the raw material powder, etc., in which case the relative density will exceed 100%.
In order to further suppress the occurrence of abnormal discharge and the occurrence of cracking at the time of sputtering, the relative density of the sputtering target is preferably 96% or more, more preferably 98% or more. Further, the upper limit of the relative density is not particularly limited, but it is, for example, less than 105% because it is difficult to prepare a sintered body having a relative density of 105% or more.
(比抵抗値:1Ω・cm以下)
 DCスパッタを安定して行うために、本実施形態であるスパッタリングターゲットにおいては、比抵抗値を1Ω・cm以下とすることが好ましく、0.1Ω・cm以下とすることがさらに好ましい。なお、比抵抗値の下限は特に制限されないが、例えば0.001Ω・cm以上である。
(Specific resistance: 1 Ω · cm or less)
In order to stably perform DC sputtering, in the sputtering target according to the present embodiment, the specific resistance value is preferably 1 Ω · cm or less, and more preferably 0.1 Ω · cm or less. The lower limit of the specific resistance value is not particularly limited, and is, for example, 0.001 Ω · cm or more.
(金属元素M)
 Cr,V,Si,Ti,Al,Zrから選択される一種又は二種以上の金属元素Mは、酸化錫を還元して金属錫相を形成することができる元素であることから、これら金属元素Mを含有してもよい。なお、金属元素Mは、焼結時において、上述のように酸化錫を還元することから、スパッタリングターゲット中においては、酸化物相(MOX)として存在することになる。
(Metal element M)
Since one or two or more metal elements M selected from Cr, V, Si, Ti, Al, and Zr are elements capable of reducing tin oxide to form a metal tin phase, these metal elements M may be contained. Since the metal element M reduces tin oxide as described above at the time of sintering, it is present as an oxide phase (MOX) in the sputtering target.
 ここで、本実施形態であるスパッタリングターゲットにおいて金属元素Mを含有する場合には、金属元素Mの含有量として、原子比でM/(Zn+Sn+M)を0.001以上とすることで、酸化錫を還元して金属錫相を十分に形成することができる。一方、原子比でM/(Zn+Sn+M)を0.05以下とすることで、成膜される膜の特性に対する影響を抑えることができる。
 以上のことから、本実施形態において金属元素Mを含有する場合には、原子比でM/(Zn+Sn+M)が0.001以上0.05以下の範囲内とすることが好ましい。
 なお、M/(Zn+Sn+M)の下限は0.0015以上とすることが好ましく、0.002以上とすることがさらに好ましい。一方、M/(Zn+Sn+M)の上限は0.01以下とすることが好ましく、0.008以下とすることがさらに好ましい。
Here, in the case where the sputtering target according to the present embodiment contains the metal element M, tin oxide can be obtained by setting M / (Zn + Sn + M) at an atomic ratio of 0.001 or more as the content of the metal element M. It can be reduced to form a metal tin phase sufficiently. On the other hand, by setting M / (Zn + Sn + M) at 0.05 or less in atomic ratio, the influence on the characteristics of the film to be formed can be suppressed.
From the above, when the metal element M is contained in the present embodiment, M / (Zn + Sn + M) is preferably in the range of 0.001 or more and 0.05 or less in atomic ratio.
The lower limit of M / (Zn + Sn + M) is preferably 0.0015 or more, and more preferably 0.002 or more. On the other hand, the upper limit of M / (Zn + Sn + M) is preferably 0.01 or less, and more preferably 0.008 or less.
(スパッタリングターゲットの製造方法)
 次に、本実施形態であるスパッタリングターゲットの製造方法について、図2のフロー図を参照して説明する。
 まず、酸化亜鉛粉と酸化錫粉を含む原料粉を準備する(原料粉準備工程S01)。なお、本実施形態では、酸化錫粉として酸化第二錫(SnO)の粉を用いている。
 ここで、原料粉としては、酸化錫を還元して金属錫相を形成するために、金属亜鉛粉、あるいは、金属元素Mの粉を含む。すなわち、原料粉としては、(1)酸化亜鉛粉+酸化錫粉+金属亜鉛粉、(2)酸化亜鉛粉+酸化錫粉+金属元素Mの粉、(3)酸化亜鉛粉+酸化錫粉+金属亜鉛粉+金属元素Mの粉、のパターンで混合することができる。そして、秤量した原料粉を、ボールミル等を用いて混合する。
(Method of manufacturing sputtering target)
Next, a method of manufacturing the sputtering target according to the present embodiment will be described with reference to the flow chart of FIG.
First, raw material powder containing zinc oxide powder and tin oxide powder is prepared (raw material powder preparation step S01). In the present embodiment, stannic oxide (SnO 2 ) powder is used as the tin oxide powder.
Here, as raw material powder, metal zinc powder or powder of metal element M is included to reduce tin oxide to form a metal tin phase. That is, as raw material powder, (1) zinc oxide powder + tin oxide powder + metallic zinc powder, (2) zinc oxide powder + tin oxide powder + powder of metal element M, (3) zinc oxide powder + tin oxide powder + It can be mixed in the pattern of metallic zinc powder + metallic element M powder. Then, the weighed raw material powders are mixed using a ball mill or the like.
 混合された原料粉を成形型に充填し、加圧しながら加熱して焼結し、焼結体を得る(焼結工程S02)。
 なお、このときの焼結温度は950℃以上1200℃以下の範囲内、焼結温度での保持時間は180min以上300min以下の範囲内、加圧圧力は20MPa以上40MPa以下の範囲内とすることが好ましい。また、雰囲気は真空雰囲気(20Pa以下)とすることが好ましい。
The mixed raw material powder is filled in a forming die, heated while being pressurized to sinter and obtain a sintered body (sintering step S02).
The sintering temperature at this time is within the range of 950 ° C. to 1200 ° C., the holding time at the sintering temperature is within the range of 180 min to 300 min, and the pressurizing pressure is within the range of 20 MPa to 40 MPa. preferable. Further, the atmosphere is preferably a vacuum atmosphere (20 Pa or less).
 この焼結工程S02においては、金属亜鉛(又は金属元素M)が酸化錫を還元することにより、金属錫相が、偏析なく、且つ、均一に形成される。すなわち、本実施形態では、反応焼結することで金属錫相を形成しているのである。
 このように反応焼結することによって、観察される金属錫相の円相当径の平均値が1μm以下となる。また、金属錫相が酸化物相同士の間に充填されることで、相対密度が向上することになる。
 なお、焼結温度は、金属亜鉛の融点(419.5℃)を超える温度とされているが、焼結の過程において金属亜鉛は酸化亜鉛となるため、金属亜鉛の溶け出しは抑制される。また、焼結温度は、金属錫の融点(231.9℃)を超える温度とされているが、焼結の過程において金属錫相が微細に形成されることから、金属錫の溶け出しは抑制される。
In the sintering step S02, the metallic tin (or metallic element M) reduces tin oxide, whereby the metallic tin phase is uniformly formed without segregation. That is, in the present embodiment, the metal tin phase is formed by reactive sintering.
By reactive sintering in this manner, the average equivalent circle diameter of the observed metal tin phase becomes 1 μm or less. In addition, the relative density is improved by filling the metal tin phase between the oxide phases.
The sintering temperature is set to a temperature exceeding the melting point (419.5 ° C.) of zinc metal. However, zinc metal becomes zinc oxide in the process of sintering, so melting out of zinc metal is suppressed. In addition, although the sintering temperature is set to a temperature exceeding the melting point (231.9 ° C.) of metal tin, the melting of metal tin is suppressed because the metal tin phase is finely formed in the process of sintering. Be done.
 次に、得られた焼結体を機械加工する(機械加工工程S03)。これにより、本実施形態であるスパッタリングターゲットが製造される。 Next, the obtained sintered body is machined (machining step S03). Thereby, the sputtering target which is this embodiment is manufactured.
 以上のような構成とされた本実施形態であるスパッタリングターゲットにおいては、酸化錫相と錫亜鉛複合酸化物相とを主相とするとともに、金属錫相を有しており、観察された金属錫相の円相当径の平均値が1μm以下とされているので、金属錫相が偏析なく均一に存在しており、スパッタ時における異常放電の発生を抑制することができる。また、母相となる酸化物相同士の間に金属錫相が十分に充填されることになり、相対密度を向上させることができる。さらに、スパッタ時に温度が上昇した場合であっても、熱膨張によるターゲット表面の割れの発生を抑制することができる。 In the sputtering target according to the present embodiment configured as described above, the main phase is a tin oxide phase and a tin-zinc complex oxide phase, and the metal tin phase is observed, which is observed. Since the average value of the equivalent circle diameter of the phase is 1 μm or less, the metal tin phase is uniformly present without segregation, and the occurrence of abnormal discharge at the time of sputtering can be suppressed. In addition, the metal tin phase is sufficiently filled between the oxide phases to be the matrix phase, and the relative density can be improved. Furthermore, even when the temperature rises at the time of sputtering, it is possible to suppress the occurrence of cracking of the target surface due to thermal expansion.
 また、本実施形態であるスパッタリングターゲットにおいては、さらに、相対密度が95%以上とされているので、空隙が少なく、スパッタ時の異常放電の発生を抑制することができる。また、スパッタ時における割れの発生を抑制することができる。
 さらに、本実施形態であるスパッタリングターゲットにおいては、ZnとSnを原子比でZn/(Zn+Sn)が0.1以上0.6以下の範囲内となるように含有しているので、透過性、赤外線反射特性に優れた酸化物膜を成膜することができる。
Further, in the sputtering target according to the present embodiment, the relative density is set to 95% or more, so that the number of voids is small, and the occurrence of abnormal discharge at the time of sputtering can be suppressed. In addition, the occurrence of cracking at the time of sputtering can be suppressed.
Furthermore, in the sputtering target according to the present embodiment, Zn and Sn are contained so that Zn / (Zn + Sn) in the atomic ratio is in the range of 0.1 or more and 0.6 or less. An oxide film excellent in reflection characteristics can be formed.
 また、本実施形態であるスパッタリングターゲットにおいては、金属錫相として存在するSn量が1.0mol%以上とされているので、比抵抗値が十分に低く、DCスパッタによって安定して酸化物膜を成膜することが可能となる。
 一方、金属錫相として存在するSn量が8.0mol%以下とされているので、金属錫相が必要以上に存在せず、製造過程で加熱した際に金属が溶け出すことを抑制でき、安定してスパッタリングターゲットを製造することができる。また、スパッタ時に温度が上昇した場合であっても、熱膨張によるターゲット表面の割れの発生を抑制することができる。
Further, in the sputtering target according to the present embodiment, since the amount of Sn present as the metal tin phase is 1.0 mol% or more, the specific resistance value is sufficiently low, and the oxide film is stabilized by DC sputtering. It becomes possible to form a film.
On the other hand, since the amount of Sn present as the metal tin phase is 8.0 mol% or less, the metal tin phase does not exist more than necessary, and it is possible to suppress melting of the metal when heated in the manufacturing process, which is stable The sputtering target can be manufactured. In addition, even when the temperature rises during sputtering, the occurrence of cracks on the surface of the target due to thermal expansion can be suppressed.
 さらに、本実施形態であるスパッタリングターゲットにおいて、さらにCr,V,Si,Ti,Al,Zrから選択される一種又は二種以上の金属元素Mの酸化物を含んでいる場合には、金属元素Mによって酸化錫を還元することにより、上述の金属錫相を形成することができる。よって、比抵抗値が十分に低く、DCスパッタによって安定して酸化物膜を成膜することが可能となる。 Further, in the case where the sputtering target according to the present embodiment further includes an oxide of one or more metal elements M selected from Cr, V, Si, Ti, Al, and Zr, the metal element M The metal tin phase described above can be formed by reducing tin oxide by Therefore, the specific resistance value is sufficiently low, and the oxide film can be stably formed by DC sputtering.
 また、本実施形態であるスパッタリングターゲットにおいて、金属元素Mを、原子比でM/(Zn+Sn+M)が0.001以上0.05以下の範囲内となるように含有することにより、金属元素Mによって酸化錫を確実に還元して金属錫相を形成することができ、比抵抗値が十分に低く、DCスパッタによって安定して酸化物膜を成膜することが可能となるとともに、成膜された酸化物膜における各種特性を維持することが可能となる。 Further, in the sputtering target according to the present embodiment, the metal element M is oxidized by the metal element M by containing the metal element M so that M / (Zn + Sn + M) is in the range of 0.001 or more and 0.05 or less. Tin can be reliably reduced to form a metal tin phase, the specific resistance value is sufficiently low, an oxide film can be stably formed by DC sputtering, and the formed oxide is formed. It becomes possible to maintain various characteristics in the object film.
 また、本実施形態では、原料粉として、酸化亜鉛粉及び酸化錫粉(SnO粉)と、金属亜鉛粉又は金属元素Mの粉のいずれか一方又は両方を含んでおり、焼結工程S02において、金属亜鉛または金属元素Mによって酸化錫を還元して金属錫相を形成する反応焼結を行っているので、金属錫相を偏析なく、且つ、均一に形成することができ、焼結温度を高く設定しても金属の溶け出しを抑制することができる。具体的には、焼結工程S02における焼結温度を950℃以上1200℃以下の範囲内と比較的高温条件とすることができる。これにより、相対密度が高いスパッタリングターゲットを得ることが可能となる。 Further, in the present embodiment, as the raw material powder, zinc oxide powder and tin oxide powder (SnO 2 powder) and / or metal zinc powder or metal element M powder are included, and in the sintering step S02 Since reaction sintering is performed to reduce tin oxide with metal zinc or metal element M to form a metal tin phase, the metal tin phase can be uniformly formed without segregation, and the sintering temperature Even if it is set high, melting of metal can be suppressed. Specifically, the sintering temperature in the sintering step S02 can be set to a relatively high temperature condition within the range of 950 ° C. or more and 1200 ° C. or less. This makes it possible to obtain a sputtering target with a high relative density.
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 例えば、本実施形態では、さらにCr,V,Si,Ti,Al,Zrから選択される一種又は二種以上の金属元素Mを含む場合に、金属元素Mの含有量を、原子比でM/(Zn+Sn+M)が0.001以上0.05以下の範囲内となるように記載したが、これに限定されることはなく、金属亜鉛によって金属錫相が十分に形成される場合には、原子比でM/(Zn+Sn+M)が0.001未満のレベルで含有していてもよい。また、成膜された膜に要求される特性によっては、原子比でM/(Zn+Sn+M)が0.05を超えてもよい。
As mentioned above, although embodiment of this invention was described, this invention is not limited to this, It can change suitably in the range which does not deviate from the technical idea of the invention.
For example, in the present embodiment, when the metal element M further includes one or two or more metal elements selected from Cr, V, Si, Ti, Al, and Zr, the content of the metal element M can be M / A in atomic ratio. Although (Zn + Sn + M) is described to be in the range of 0.001 or more and 0.05 or less, it is not limited to this, and in the case where the metal tin phase is sufficiently formed by metal zinc, the atomic ratio And M / (Zn + Sn + M) may be contained at a level of less than 0.001. In addition, M / (Zn + Sn + M) may exceed 0.05 in atomic ratio depending on the characteristics required for the film formed.
 以下に、本発明の有効性を確認するために行った確認実験の結果について説明する。 Below, the result of the confirmation experiment performed in order to confirm the effectiveness of this invention is demonstrated.
(スパッタリングターゲット)
 原料粉として、酸化亜鉛粉(ZnO粉:純度99.9mass%以上、平均粒径10.0μm)、酸化第二錫粉(SnO粉:純度99.99mass%以上、平均粒径25μm)、金属亜鉛粉(金属Zn粉:純度99mass%以上,平均粒径4.0μm)を準備した。また、金属元素Mとして、金属アルミニウム粉(金属Al粉:純度99.9mass%以上、平均粒径46.0μm)、及び、金属ジルコニウム粉(金属Zr粉:純度98mass%以上、平均粒径10μm)を準備した。さらに、比較例に使用する金属錫粉(金属Sn粉:純度99mass%以上、平均粒径15.0μm)、および、酸化第一錫粉(SnO粉:純度99mass%以上、平均粒径25μm)を準備した。
(Sputtering target)
As raw material powder, zinc oxide powder (ZnO powder: purity 99.9 mass% or more, average particle diameter 10.0 μm), tin oxide powder (SnO 2 powder: purity 99.99 mass% or more, average particle diameter 25 μm), metal Zinc powder (metal Zn powder: purity of at least 99 mass%, average particle diameter 4.0 μm) was prepared. In addition, as metal element M, metal aluminum powder (metal Al powder: purity 99.9 mass% or more, average particle diameter 46.0 μm), and metal zirconium powder (metal Zr powder: purity 98 mass% or more, average particle diameter 10 μm) Prepared. Furthermore, metal tin powder (metal Sn powder: purity of 99 mass% or more, average particle diameter 15.0 μm) and tin oxide powder (SnO powder: purity of 99 mass% or more, average particle diameter 25 μm) used in the comparative example Got ready.
 これらの原料を、表1に記載のmol比となるように秤量し、Arガス雰囲気とされたポリエチレン製のポット内に、秤量した原料と、この原料の3倍の重量のジルコニアボール(直径:5mm)を投入し、ボールミル装置によって8時間乾式混合した。混合後に篩分けしてジルコニアボールと混合粉とを分離した。
 得られた混合粉を、カーボン製の成形型に装入し、真空雰囲気で、表1に示す焼結温度、焼結温度での保持時間が4時間、加圧圧力が35MPaの条件で、加圧焼結を実施し、焼結体を得た。
 得られた焼結体を機械加工し、評価用のスパッタリングターゲット(126mm×178mm×6mm)を製造した。そして、以下の項目について評価した。
These raw materials were weighed so as to obtain the molar ratio described in Table 1, and the weighed raw materials and a zirconia ball (diameter: 3 times the weight of the raw materials were put into a polyethylene pot under an Ar gas atmosphere. 5 mm) was charged and dry mixed for 8 hours by a ball mill. After mixing, the mixture was sieved to separate zirconia balls and mixed powder.
The obtained mixed powder is charged into a mold made of carbon, and applied under the conditions of sintering temperature shown in Table 1, holding time at sintering temperature of 4 hours, and pressure of 35 MPa in a vacuum atmosphere. The pressure sintering was performed to obtain a sintered body.
The obtained sintered body was machined to produce a sputtering target (126 mm × 178 mm × 6 mm) for evaluation. And it evaluated about the following items.
(金属の溶け出し)
 焼結時の金属(Sn又はZn)の溶け出しの有無を、焼結後のスパッタリングターゲットの目視で観察することで確認した。評価結果を表1に示す。なお、金属の溶け出しが認められた場合には、後述するスパッタ試験を実施しなかった。
(Melting of metal)
The presence or absence of dissolution of the metal (Sn or Zn) during sintering was confirmed by visual observation of the sputtering target after sintering. The evaluation results are shown in Table 1. In addition, when the melting out of metal was recognized, the sputter | spatter test mentioned later was not implemented.
(スパッタリングターゲットの組成)
 得られたスパッタリングターゲットから測定試料を採取し、採取した測定試料を砕いて測定用粉末とした。この測定用粉末を用いて、粉末X線回折装置(ブルカー・エイエックスエス社製D8 ADVANCE)によって測定を行い、リートベルト法(解析ソフト:ブルカー・エイエックスエス社製TOPAS(version5))により解析を行うことで、スパッタリングターゲットの組成を算出した。測定結果を表2、3に示す。なお、測定条件は以下のとおりとした。
 線源:Cu
 管電圧:40kV
 管電流:40mA
 走査範囲:15~128deg
 ステップ幅:0.01deg
(Composition of sputtering target)
A measurement sample was collected from the obtained sputtering target, and the collected measurement sample was crushed to obtain a powder for measurement. This powder for measurement is measured by a powder X-ray diffractometer (D8 ADVANCE manufactured by Bruker AXS) and analyzed by Rietveld method (analysis software: TOPAS (version 5) manufactured by Bruker AXS) The composition of the sputtering target was calculated. The measurement results are shown in Tables 2 and 3. The measurement conditions were as follows.
Source: Cu
Tube voltage: 40kV
Tube current: 40 mA
Scanning range: 15 to 128 deg
Step width: 0.01 deg
(金属錫相の円相当径の平均値)
 スパッタリングターゲットから観察試料を採取し、断面を研磨後にEPMA観察(倍率1000倍)し、元素マッピングから金属錫相を特定した。そして、観察された金属錫相の円相当径を、画像解析ソフト:Winroofを用いて求め、円相当径の平均値を算出した。
 測定結果を表3に示す。
 ここで、EPMA像の一例を図1に示す。図1のEPMA像において、白色部が金属錫相、灰色部が酸化錫相(SnO)、黒色部が錫亜鉛複合酸化物相(ZnSnO)である。
 図1に示すEPMA像において、灰色部と黒色部とが主要な部分を占めていることから、本発明のスパッタリングターゲットにおいて、酸化錫相と錫亜鉛複合酸化物相とが主相として存在していることが分かる。また、灰色部及び黒色部より小さな微小な白色部が散らばって存在していることから、本発明のスパッタリングターゲットが金属錫相を有し、この金属錫相の円相当径の平均値が1μm以下程度であることが分かる。
(Average value of equivalent circle diameter of metal tin phase)
An observation sample was taken from the sputtering target, and after cross-section polishing, EPMA observation (magnification: 1000) was performed to identify the metal tin phase from elemental mapping. And the equivalent circle diameter of the observed metal tin phase was calculated | required using image analysis software: Winroof, and the average value of the equivalent circle diameter was computed.
The measurement results are shown in Table 3.
Here, an example of the EPMA image is shown in FIG. In the EPMA image of FIG. 1, the white part is the metal tin phase, the gray part is the tin oxide phase (SnO 2 ), and the black part is the tin-zinc complex oxide phase (Zn 2 SnO 4 ).
In the EPMA image shown in FIG. 1, since the gray part and the black part occupy the main part, in the sputtering target of the present invention, the tin oxide phase and the tin-zinc complex oxide phase exist as the main phase. I understand that Further, since the minute white parts smaller than the gray part and the black part are scattered and present, the sputtering target of the present invention has a metal tin phase, and the average equivalent circle diameter of the metal tin phase is 1 μm or less It turns out that it is an extent.
(相対密度)
 実施形態の欄に記載した方法で「理論密度」を算出した。また、得られたスパッタリングターゲットの重量を寸法から得られた体積で割った値を「測定密度」とした。
 この理論密度と、得られたスパッタリングターゲットの測定密度とを用いて、理論密度比を下記の式により算出した。測定結果を表3に示す。
  相対密度(%)=(測定密度)/(理論密度)×100
(Relative density)
"Theoretical density" was calculated by the method described in the column of the embodiment. Moreover, the value which divided the weight of the obtained sputtering target by the volume obtained from the dimension was made into "measurement density."
The theoretical density ratio was calculated by the following equation using this theoretical density and the measured density of the obtained sputtering target. The measurement results are shown in Table 3.
Relative density (%) = (measured density) / (theoretical density) x 100
(比抵抗値)
 スパッタリングターゲットについて、抵抗測定装置により、比抵抗値を測定した。抵抗測定装置として、三菱化学株式会社製の低抵抗率計(Loresta-GP)を用い、四探針法で測定した。測定時の温度は23±5℃、湿度は50±20%にて測定した。測定結果を表3に示す。
(Resistance value)
The resistivity value of the sputtering target was measured by a resistance measuring device. It measured by the four-point probe method using the low resistivity meter (Loresta-GP) made from Mitsubishi Chemical Co., Ltd. as a resistance measurement apparatus. The temperature at the time of measurement was 23 ± 5 ° C., and the humidity was 50 ± 20%. The measurement results are shown in Table 3.
(異常放電回数)
 準備したスパッタリングターゲットをバッキングプレートにボンディングした後、そのスパッタリングターゲットを用いて、以下のような条件でスパッタによる成膜を行い、DC電源装置(京三製作所社製HPK06Z-SW6)に備えられているアークカウント機能により、異常放電の回数をカウントした。測定結果を表3に示す。
 電源:DC
 電力:4.08W/cm
 全圧:0.67Pa
 ガス雰囲気:Ar90%+O210%
 到達真空度:7.0×10-4Pa
 基板間距離:60mm
 時間:20分
(Number of abnormal discharges)
After bonding the prepared sputtering target to a backing plate, film formation by sputtering is performed under the following conditions using the sputtering target, and the film is provided in a DC power supply (HPK06Z-SW6 manufactured by Kyosan Sangyo Co., Ltd.) The number of abnormal discharges was counted by the arc count function. The measurement results are shown in Table 3.
Power supply: DC
Power: 4.08 W / cm 2
Total pressure: 0.67 Pa
Gas atmosphere: Ar 90% + O 210%
Achieved vacuum degree: 7.0 × 10-4 Pa
Board distance: 60 mm
Time: 20 minutes
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 金属錫相として含まれるSn量が0.83mol%とされた比較例1においては、比抵抗値が高く、DCスパッタを行うことができなかった。また、相対密度は95%未満であった。
 金属錫相として含まれるSn量が11.75mol%とされた比較例2においては、焼結時に金属の溶け出しが認められた。このため、スパッタ試験を実施しなかった。また、相対密度は95%未満であった。
 酸化錫相を含まず、金属亜鉛相を多く含む比較例3においては、焼結時に金属の溶け出しが認められた。このため、スパッタ試験を実施しなかった。また、相対密度は95%未満であった。
In Comparative Example 1 in which the amount of Sn contained as the metal tin phase was 0.83 mol%, the specific resistance value was high and DC sputtering could not be performed. Also, the relative density was less than 95%.
In Comparative Example 2 in which the amount of Sn contained as the metal tin phase was 11.75 mol%, melting of the metal was observed at the time of sintering. For this reason, the sputter test was not performed. Also, the relative density was less than 95%.
In Comparative Example 3 containing no tin oxide phase and containing a large amount of metallic zinc phase, dissolution of metal was observed at the time of sintering. For this reason, the sputter test was not performed. Also, the relative density was less than 95%.
 原料として金属錫粉を用いており、金属錫相として含まれるSn量が10.58mol%とされた比較例4においては、金属錫相の円相当径の平均値が1.32μmと1μmを超えていた。また、焼結時に金属の溶け出しが認められた。このため、スパッタ試験を実施しなかった。さらに、相対密度は95%未満であった。
 原料として金属錫粉を用いており、金属錫相として含まれるSn量が0.54mol%とされた比較例5においては、金属錫相の円相当径の平均値が1.29μmと1μmを超えていた。また、比抵抗値が高く、DCスパッタを行うことができなかった。さらに、相対密度は95%未満であった。
In Comparative Example 4 in which metal tin powder is used as a raw material and the amount of Sn contained as a metal tin phase is set to 10.58 mol%, the average equivalent circle diameter of the metal tin phase exceeds 1.32 μm and 1 μm. It was In addition, melting of metal was observed at the time of sintering. For this reason, the sputter test was not performed. Furthermore, the relative density was less than 95%.
In Comparative Example 5 in which metal tin powder is used as the raw material and the amount of Sn contained as the metal tin phase is 0.54 mol%, the average equivalent circle diameter of the metal tin phase exceeds 1.29 μm and 1 μm. It was In addition, the specific resistance value was high, and DC sputtering could not be performed. Furthermore, the relative density was less than 95%.
 焼結温度が400℃とされた比較例6においては、金属錫相が形成されず、金属亜鉛相が形成された。金属亜鉛によって酸化錫を還元することができなかったためと推測される。また、この比較例6においては、金属の溶け出しが認められた。このため、スパッタ試験を実施しなかった。さらに、相対密度は95%未満であった。
 酸化錫粉として酸化第一錫(SnO)の粉を用いた比較例7においては、酸化錫相(SnO相)が形成されず、金属錫相が多く形成された。また、金属錫相の円相当径の平均値が3.55μmと1μmを超えていた。さらに、焼結時に金属(Sn)の溶け出しが認められた。このため、スパッタ試験を実施しなかった。また、相対密度は95%未満であった。
In Comparative Example 6 in which the sintering temperature was set to 400 ° C., the metal tin phase was not formed, and the metal zinc phase was formed. It is speculated that tin oxide could not be reduced by zinc metal. In addition, in Comparative Example 6, melting of metal was observed. For this reason, the sputter test was not performed. Furthermore, the relative density was less than 95%.
In Comparative Example 7 in which powder of stannous oxide (SnO) was used as tin oxide powder, a tin oxide phase (SnO 2 phase) was not formed, and a large amount of metal tin phase was formed. Moreover, the average value of the circle equivalent diameter of the metal tin phase was over 3.55 μm and 1 μm. Furthermore, melting of metal (Sn) was observed at the time of sintering. For this reason, the sputter test was not performed. Also, the relative density was less than 95%.
 これに対して、本発明例1-10においては、金属錫粉を原料として用いていないが、焼結後の組織中には金属錫相が形成されていた。原料として使用された金属亜鉛粉及び元素Mの金属粉によって酸化錫の一部が還元されることにより、金属錫相が形成されたものと推測される。このため、焼結温度を高く設定しても、焼結時に金属の溶け出しが確認されなかった。
 また、本発明例1-10においては、焼結温度が十分に高いことから、相対密度も95%以上と高くなった。
On the other hand, although metal tin powder was not used as a raw material in the invention examples 1-10, a metal tin phase was formed in the structure after sintering. It is presumed that a metal tin phase is formed by reduction of part of tin oxide by the metal zinc powder used as a raw material and the metal powder of element M. For this reason, even if the sintering temperature is set high, melting out of the metal was not confirmed at the time of sintering.
Further, in the examples 1-10 of the invention, since the sintering temperature is sufficiently high, the relative density is also as high as 95% or more.
 さらに、本発明例1-10においては、ターゲット中の金属錫の円相当径の平均値が1μm以下とされており、金属錫相が偏析なく、且つ、均一に分散しており、比抵抗値が十分に低くなった。これにより、スパッタ時の異常放電の発生回数も抑えられており、安定してDCスパッタを実施可能であった。 Furthermore, in Inventive Example 1-10, the average equivalent circle diameter of metal tin in the target is 1 μm or less, and the metal tin phase is uniformly dispersed without segregation, and the specific resistance value is Was low enough. As a result, the number of occurrences of abnormal discharge at the time of sputtering is also suppressed, and DC sputtering can be stably performed.
 また、本発明例8、9においては、金属元素MとしてAlを添加したものであるが、焼結温度を高く設定しても、焼結時に金属の溶け出しが確認されなかった。さらに、ターゲット中の金属錫の円相当径の平均値が1μm以下とされており、金属錫相が偏析なく、且つ、均一に分散しており、比抵抗値が十分に低くなった。さらに、相対密度も95%以上と高くなった。
 さらに、本発明例10においては、金属元素MとしてZrを添加したものであるが、ターゲット中の金属錫の円相当径の平均値が1μm以下とされており、金属錫相が偏析なく、且つ、均一に分散しており、比抵抗値が十分に低くなった。さらに、相対密度も95%以上と高くなった。
Moreover, in the invention examples 8 and 9, although Al is added as the metal element M, melting out of metal was not confirmed at the time of sintering even if the sintering temperature was set high. Furthermore, the average equivalent circle diameter of metal tin in the target was 1 μm or less, the metal tin phase did not segregate and was uniformly dispersed, and the specific resistance value was sufficiently low. Furthermore, the relative density also increased to 95% or more.
Furthermore, in the invention example 10, Zr is added as the metal element M, but the average value of the circle equivalent diameter of metal tin in the target is 1 μm or less, and the metal tin phase is not segregated and It was dispersed uniformly, and the specific resistance value was sufficiently low. Furthermore, the relative density also increased to 95% or more.
 以上のように、本発明例によれば、異常放電の発生を抑制することができるとともに、比抵抗値が低く、安定してDCスパッタが可能なスパッタリングターゲットを提供することが可能であることが確認された。 As described above, according to the example of the present invention, it is possible to provide a sputtering target which can suppress the occurrence of abnormal discharge and can stably perform DC sputtering with a low specific resistance value. confirmed.
 窓ガラス等の遮熱膜や赤外線フィルター等に使用されるZnとSnとOを主成分とする酸化物膜の形成を、より効率良く行うことができるようになる。 It becomes possible to more efficiently form an oxide film mainly composed of Zn, Sn and O used for a heat shielding film such as window glass or an infrared filter.

Claims (3)

  1.  ZnとSnとOを主成分とし、ZnとSnを原子比でZn/(Zn+Sn)が0.1以上0.6以下の範囲内となるように含有し、
     酸化錫相と錫亜鉛複合酸化物相とを主相とするとともに、金属錫相を有しており、
     前記金属錫相として存在するSn量が1.0mol%以上8.0mol%以下の範囲内とされており、
     前記金属錫相の円相当径の平均値が1μm以下とされ、
     相対密度が95%以上とされていることを特徴とするスパッタリングターゲット。
    Containing Zn, Sn, and O as main components and containing Zn and Sn in an atomic ratio such that Zn / (Zn + Sn) is in the range of 0.1 or more and 0.6 or less,
    While having a tin oxide phase and a tin-zinc complex oxide phase as main phases, it has a metal tin phase,
    The amount of Sn present as the metal tin phase is in the range of 1.0 mol% or more and 8.0 mol% or less,
    The average value of the circle equivalent diameter of the metal tin phase is 1 μm or less,
    A sputtering target characterized by having a relative density of 95% or more.
  2.  さらに、Cr,V,Si,Ti,Al,Zrから選択される一種又は二種以上の金属元素Mの酸化物を含むことを特徴とする請求項1に記載のスパッタリングターゲット。 The sputtering target according to claim 1, further comprising an oxide of one or more metal elements M selected from Cr, V, Si, Ti, Al and Zr.
  3.  前記金属元素Mを、原子比でM/(Zn+Sn+M)が0.001以上0.05以下の範囲内となるように含有していることを特徴とする請求項2に記載のスパッタリングターゲット。 The sputtering target according to claim 2, wherein the metal element M is contained such that M / (Zn + Sn + M) is in the range of 0.001 or more and 0.05 or less in atomic ratio.
PCT/JP2018/034211 2017-09-14 2018-09-14 Sputtering target WO2019054489A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020207003567A KR20200053469A (en) 2017-09-14 2018-09-14 Sputtering target

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-176800 2017-09-14
JP2017176800 2017-09-14

Publications (1)

Publication Number Publication Date
WO2019054489A1 true WO2019054489A1 (en) 2019-03-21

Family

ID=65723316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034211 WO2019054489A1 (en) 2017-09-14 2018-09-14 Sputtering target

Country Status (3)

Country Link
JP (1) JP2019052373A (en)
KR (1) KR20200053469A (en)
WO (1) WO2019054489A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6557750B1 (en) * 2018-03-16 2019-08-07 株式会社コベルコ科研 Sputtering target material and sputtering target

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007314364A (en) * 2006-05-24 2007-12-06 Sumitomo Metal Mining Co Ltd Oxide sintered compact, target, oxide transparent conductive film obtained by using the same and method of manufacturing the same
JP2012066968A (en) * 2010-09-24 2012-04-05 Kobelco Kaken:Kk Oxide sintered compact and sputtering target
JP2012121791A (en) * 2010-11-16 2012-06-28 Kobelco Kaken:Kk Oxide sintered body and sputtering target
JP2013177260A (en) * 2012-02-28 2013-09-09 Sumitomo Chemical Co Ltd Zinc oxide-tin oxide sintered body and method for manufacturing the same
JP2014167163A (en) * 2013-01-31 2014-09-11 Nitto Denko Corp Method for producing infrared reflection film
JP2014167162A (en) * 2013-01-31 2014-09-11 Nitto Denko Corp Method for producing infrared reflection film
JP2017110291A (en) * 2015-12-11 2017-06-22 日立金属株式会社 Sputtering target material
JP2018053311A (en) * 2016-09-29 2018-04-05 日立金属株式会社 Oxide target material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010031364A (en) 2008-06-25 2010-02-12 Sumitomo Chemical Co Ltd Transparent conductive film and method for producing the same
JP5024226B2 (en) 2008-08-06 2012-09-12 日立金属株式会社 Oxide sintered body and manufacturing method thereof, sputtering target, semiconductor thin film
JP6677095B2 (en) * 2015-11-20 2020-04-08 住友金属鉱山株式会社 Sn-Zn-O-based oxide sintered body and method for producing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007314364A (en) * 2006-05-24 2007-12-06 Sumitomo Metal Mining Co Ltd Oxide sintered compact, target, oxide transparent conductive film obtained by using the same and method of manufacturing the same
JP2012066968A (en) * 2010-09-24 2012-04-05 Kobelco Kaken:Kk Oxide sintered compact and sputtering target
JP2012121791A (en) * 2010-11-16 2012-06-28 Kobelco Kaken:Kk Oxide sintered body and sputtering target
JP2013177260A (en) * 2012-02-28 2013-09-09 Sumitomo Chemical Co Ltd Zinc oxide-tin oxide sintered body and method for manufacturing the same
JP2014167163A (en) * 2013-01-31 2014-09-11 Nitto Denko Corp Method for producing infrared reflection film
JP2014167162A (en) * 2013-01-31 2014-09-11 Nitto Denko Corp Method for producing infrared reflection film
JP2017110291A (en) * 2015-12-11 2017-06-22 日立金属株式会社 Sputtering target material
JP2018053311A (en) * 2016-09-29 2018-04-05 日立金属株式会社 Oxide target material

Also Published As

Publication number Publication date
JP2019052373A (en) 2019-04-04
KR20200053469A (en) 2020-05-18

Similar Documents

Publication Publication Date Title
TWI525208B (en) Sputtering target material
KR101990663B1 (en) Sputtering target for forming transparent oxide film and method for producing same
KR20140000688A (en) Zinc oxide sintered compact, sputtering target, and zinc oxide thin film
KR20190095414A (en) Tungsten Silicide Target and Manufacturing Method Thereof
KR102166104B1 (en) Sputtering target, method of producing sputtering target, method of producing amorphous film, method of producing amorphous film, method of producing crystalline film and crystalline film
JP7081394B2 (en) Sputtering target and manufacturing method of sputtering target
JP2017025348A (en) Mo-W OXIDE SPUTTERING TARGET, AND MANUFACTURING METHOD OF Mo-W OXIDE SPUTTERING TARGET
JP5392633B2 (en) Target for ZnO-based transparent conductive film and method for producing the same
WO2019054489A1 (en) Sputtering target
JP2007314812A (en) Sputtering target and film-forming method
JP7024636B2 (en) Manufacturing method of sputtering target
WO2017179278A1 (en) Oxide sintered body, sputtering target, and methods for making same
WO2020090867A1 (en) Sintered body
EP2505686A1 (en) Cu-Ga-based alloy powder with low oxygen content, Cu-Ga-based alloy target material and method for producing the target material
JPWO2019031105A1 (en) Oxide sintered body and sputtering target
JP2017025349A (en) Te-Ge-BASED SPUTTERING TARGET, AND MANUFACTURING METHOD OF Te-Ge-BASED SPUTTERING TARGET
KR102316360B1 (en) Sputtering target and production method
TW202126838A (en) Oxide sputtering target and oxide sputtering target production method
JP2019148007A (en) Sputtering target and method for manufacturing the same
JP6149999B1 (en) Sputtering target
WO2019187269A1 (en) Oxide sintered body, sputtering target, and transparent conductive film
CN111936660A (en) Cu-Ni alloy sputtering target
JP2012224903A (en) Oxide sputtering target, and method for manufacturing the same
CN112055758A (en) W-Ti sputtering target
WO2019168013A1 (en) Sputtering target and production method for sputtering target

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18855563

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18855563

Country of ref document: EP

Kind code of ref document: A1