WO2019054483A1 - Hot-dip plated checkered plate and manufacturing method thereof - Google Patents

Hot-dip plated checkered plate and manufacturing method thereof Download PDF

Info

Publication number
WO2019054483A1
WO2019054483A1 PCT/JP2018/034188 JP2018034188W WO2019054483A1 WO 2019054483 A1 WO2019054483 A1 WO 2019054483A1 JP 2018034188 W JP2018034188 W JP 2018034188W WO 2019054483 A1 WO2019054483 A1 WO 2019054483A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot
plating
dip
plating layer
steel plate
Prior art date
Application number
PCT/JP2018/034188
Other languages
French (fr)
Japanese (ja)
Inventor
完 齊藤
高橋 武寛
石塚 清和
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to SG11202002217XA priority Critical patent/SG11202002217XA/en
Priority to KR1020207009277A priority patent/KR102346426B1/en
Priority to BR112020004763-5A priority patent/BR112020004763A2/en
Priority to CN201880059381.7A priority patent/CN111094613B/en
Priority to JP2019542309A priority patent/JP6669316B2/en
Publication of WO2019054483A1 publication Critical patent/WO2019054483A1/en
Priority to PH12020500490A priority patent/PH12020500490A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/026Deposition of sublayers, e.g. adhesion layers or pre-applied alloying elements or corrosion protection
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Coating With Molten Metal (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Chemically Coating (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

This hot-dip plated checkered plate has: a base material steel plate, an Ni plated layer, and a hot-dip plated layer, and has on the plate surface a projecting part and a flat part. The film thickness of the Ni plated layer of the projecting part is 0.07 to 0.4 µm, the film thickness of the Ni plated layer of the flat part is 0.05 to 0.35 µm, and the film thickness of the Ni plated layer of the projecting part is more than 100% and 400% or less than the film thickness of the Ni plated layer of the flat part.

Description

溶融めっき縞鋼板とその製造方法Hot-dip galvanized steel sheet and method of manufacturing the same
 本発明は、溶融めっき縞鋼板とその製造方法に関する。
 本願は、2017年9月15日に、日本に出願された特願2017-178011号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a hot-dip galvanized steel sheet and a method of manufacturing the same.
Priority is claimed on Japanese Patent Application No. 2017-178011, filed September 15, 2017, the content of which is incorporated herein by reference.
 縞鋼板は、圧延によって表面に連続した滑り止め用の突起(凸部)を付けた鋼板である。一般的には、一定の幅、一定の長さ、一定の高さの凸部が、圧延方向に対して、一定の角度および一定のピッチで設けられている。通常、縞鋼板は、熱間圧延により製造される。そして、バス、トラック等の床板やステップ、工場の敷板、船舶の甲板、建設現場の仮設足場や階段等に使用されている。 The striped steel plate is a steel plate having a non-slip projection (convex portion) continuous on the surface by rolling. Generally, projections of a constant width, a constant length and a constant height are provided at a constant angle and a constant pitch with respect to the rolling direction. Usually, a striped steel plate is manufactured by hot rolling. And it is used for floor boards and steps such as buses and trucks, floor boards for factories, decks of ships, temporary scaffolds for construction sites, stairs and the like.
 従来、縞鋼板は、熱間圧延まま、または塗装されて使用されることが多い。特に防錆が必要な場合は、縞鋼板の切板を、フラックス法によるバッチ式の溶融亜鉛めっきプロセスを経ることで亜鉛めっきしていた。しかしながら、バッチ式の溶融亜鉛めっきプロセスは、生産性が低い上に、溶融めっき工程で生じるFe-Zn合金層が肥大化するため、めっき層の加工性を損ない、めっき割れやめっき層の剥離が生じて、耐食性に問題を生じることもあった。 Conventionally, striped steel plates are often used as they are hot-rolled or painted. In particular, when rust prevention is required, the cut sheet of the striped steel plate is galvanized by going through a batch-type hot dip galvanization process by a flux method. However, batch-type hot-dip galvanizing process has low productivity, and the Fe-Zn alloy layer generated in the hot-dip plating process is enlarged, so that the processability of the plating layer is impaired, and the plating cracking and peeling of the plating layer occur. It may occur and cause problems in corrosion resistance.
 バッチ式の溶融亜鉛めっきと比較して、連続溶融亜鉛めっきは生産性が高い。連続溶融亜鉛めっきは一般的に還元性または非酸化性の雰囲気で所定温度に加熱された鋼板を溶融亜鉛めっき浴に通過させることで行われる。また、溶融亜鉛浴中には少なくとも0.05%程度のAlが含有されるため、めっき皮膜の加工性を損なうFe-Zn合金層の成長を抑制することができる。なお、一般的なフラックス法によるバッチ式の溶融亜鉛めっきでは、Zn浴にAlを含有させるとAlがフラックスを分解するため、不めっきが多発し、上手くめっきができない。 Continuous galvanization is more productive than batch galvanization. Continuous galvanization is generally performed by passing a steel sheet heated to a predetermined temperature in a reducing or non-oxidizing atmosphere to a hot dip galvanizing bath. Further, since at least about 0.05% of Al is contained in the molten zinc bath, it is possible to suppress the growth of the Fe—Zn alloy layer which impairs the processability of the plating film. In addition, in batch hot dip galvanization by a general flux method, when Al is contained in a Zn bath, Al decomposes a flux, so that non-plating occurs frequently and plating can not be performed well.
 縞鋼板に対して連続溶融亜鉛めっきを適用する場合、その表面形状等に起因する課題を考慮する必要がある。例えば、特許文献1は、帯状縞鋼板の連続溶融亜鉛めっき方法、特にめっきライン内張力や溶融めっき後のガスワイピングの適正条件を教える。現在、連続溶融亜鉛めっきされた縞鋼板は商品化されている。 When applying continuous hot-dip galvanization to a striped steel plate, it is necessary to consider the subject resulting from the surface shape etc. For example, Patent Document 1 teaches a continuous hot-dip galvanizing method for strip-shaped striped steel plates, in particular, tension in a plating line and appropriate conditions for gas wiping after hot-dip plating. Currently, continuous hot-dip galvanized striped steel plates are commercialized.
 近年、溶融亜鉛めっき鋼板に加えて、亜鉛めっき以上の優れた耐食性への要求から、Zn-Al、Zn-Al-Mg、Zn-Al-Mg-Si等の溶融亜鉛基合金めっき鋼板が開発され商品化されている。これに呼応する形で、縞鋼板に対しても、溶融亜鉛基合金めっきを適用する試みも見られる。 In recent years, in addition to hot-dip galvanized steel sheets, hot-dip zinc-based alloy coated steel sheets such as Zn-Al, Zn-Al-Mg and Zn-Al-Mg-Si have been developed from the demand for excellent corrosion resistance over zinc plating. It is commercialized. In response to this, attempts have also been made to apply hot-dip zinc-based alloy plating to striped steel plates.
 特許文献2は、縞鋼板の表面に、第1層として厚みが2μm以下のNi-Al-Zn-Feの4元系合金層を有し、第2層として重量換算で0.1~1%のAlを含んだZn基合金の溶融めっき層を有する事を特徴とする加工性、耐蝕性に優れた縞鋼板を開示する。具体的なめっき手法として、特許文献2は、縞鋼板に0.5~2.0g/mのNiめっきを行い、次いで該縞鋼板を加熱し、引き続いて重量換算で0.1~1%のAlを添加した溶融亜鉛浴へ浸漬時間1~30秒で浸漬させる工程からなる縞鋼板の製造方法を教える。 Patent Document 2 has a Ni-Al-Zn-Fe quaternary alloy layer having a thickness of 2 μm or less as a first layer on the surface of a striped steel plate, and 0.1 to 1% in weight conversion as a second layer. Disclosed is a striped steel plate excellent in workability and corrosion resistance characterized by having a hot-dip plating layer of a Zn-based alloy containing Al. As a specific plating method, Patent Document 2 performs Ni plating of 0.5 to 2.0 g / m 2 on a striped steel plate, and then heats the striped steel plate, and subsequently 0.1 to 1% in weight conversion. The method of producing a striped steel plate is provided, which comprises the steps of immersing in a molten zinc bath to which Al is added for an immersion time of 1 to 30 seconds.
 特許文献3は、特許文献2とほぼ同一と考えられるめっき浴を使用するが、Sendzimir法によって得られる溶融めっき皮膜の構造を規定する。特許文献2および3のいずれも、Al濃度が1%以下の溶融亜鉛基合金を用いることを必須特徴とする。なお、特許文献2および3では、めっき層中のAl濃度が1%以下なので、Alに起因するバリアー防食効果が得にくく、めっき皮膜自身の顕著な耐食性の好ましい向上は期待できない。 Patent Document 3 uses a plating bath considered to be substantially the same as Patent Document 2, but specifies the structure of a hot-dip plating film obtained by the Sendzimir method. Each of Patent Documents 2 and 3 is essentially characterized by using a molten zinc-based alloy having an Al concentration of 1% or less. In Patent Documents 2 and 3, since the Al concentration in the plating layer is 1% or less, it is difficult to obtain the barrier anticorrosion effect caused by Al, and a preferable improvement in the remarkable corrosion resistance of the plating film itself can not be expected.
 特許文献4は、質量%でAl:4.0~20.0%、Mg:1.0~4.0%、さらに任意選択的にTi:0.002~0.1%およびB:0.001~0.045%を含み、残部がZnおよび不可避不純物からなる組成の溶融めっき層で被覆したことを特徴とする耐傷付性、耐摩耗性および耐食性に優れた溶融Zn基めっき縞鋼板を開示する。このめっき層はAl/Zn/ZnMg系金属間化合物の三元共晶組織の存在割合が大きく、かつこの三元共晶が硬質であるため、ビッカース硬さが120~180Hvとなり、耐食性の他、耐傷付性、耐摩耗性にも優れるとされる。 Patent Document 4 is, by mass%, Al: 4.0-20.0%, Mg: 1.0-4.0%, and optionally, Ti: 0.002-0.1% and B: 0. Disclosed is a hot-dip galvanized steel sheet excellent in scratch resistance, wear resistance and corrosion resistance characterized in that it is covered with a hot-dip plating layer containing 001 to 0.045% and the balance being Zn and unavoidable impurities. Do. This plated layer has a large proportion of ternary eutectic structure of Al / Zn / ZnMg intermetallic compound, and since this ternary eutectic is hard, the Vickers hardness becomes 120 to 180 Hv, and in addition to corrosion resistance, It is considered to be excellent in scratch resistance and abrasion resistance.
 上述のように、従来、縞鋼板は、めっき無しで使用されることが多く、必要に応じて亜鉛めっきが施され、さらには、亜鉛めっきに代わって亜鉛基合金めっきの適用も試みられてきた。なお、母材鋼板にNiプレめっきを施し、Niプレめっき後にAl濃度が1.0%超の亜鉛基合金めっきを施すことは、これまで全く検討されていない。 As described above, conventionally, striped steel plates are often used without plating, and zinc plating is optionally performed, and application of zinc-based alloy plating has also been tried in place of zinc plating. . In addition, it has not been examined at all so far to apply Ni pre-plating to a base material steel plate and apply zinc base alloy plating having an Al concentration of more than 1.0% after Ni pre-plating.
日本国特開平7-11411号公報Japanese Patent Application Laid-Open No. 7-11411 日本国特開平6-81170号公報Japanese Patent Application Laid-Open No. 6-81170 日本国特開平6-248409号公報Japanese Patent Application Laid-Open No. 6-248409 日本国特開平11-279732号公報Japanese Patent Application Laid-Open No. 11-279732
 本発明者らも、当初、縞鋼板の耐食性をさらに向上させることを目的として、縞鋼板にAl濃度が1.0%超の亜鉛基合金めっきを施すことを試みた。ただ、検討の結果、縞鋼板に単にAl濃度が1.0%超の亜鉛基合金めっきを施すだけでは、不めっきが多発することが明らかになった。すなわち、例えば特許文献2および3のように、亜鉛基合金めっきのAl濃度が1.0%以下ならば不めっきの発生が課題とはならないが、例えば特許文献4のように、亜鉛基合金めっきのAl濃度が1.0%超ならば不めっきの発生が課題となることが明らかになった。 The present inventors also initially attempted to apply zinc base alloy plating with an Al concentration of more than 1.0% to a striped steel plate for the purpose of further improving the corrosion resistance of the striped steel plate. However, as a result of examination, it has become clear that non-plating occurs frequently only by applying zinc base alloy plating having an Al concentration of more than 1.0% to the striped steel sheet. That is, as in Patent Documents 2 and 3, if the Al concentration in zinc-based alloy plating is 1.0% or less, occurrence of non-plating does not become a problem, but as in Patent Document 4, zinc-based alloy plating is It became clear that the occurrence of non-plating becomes a problem if the Al concentration of Al exceeds 1.0%.
 具体的には、本発明者らは、当初、縞鋼板に優れた耐食性を付与することを意図して、一般的にZnめっきよりも耐食性が優れると言われる、Alを1.0%超および若干量のMgを含有するZn系合金めっきを縞鋼板に施すことを検討した。そしてその過程で、溶融めっき法として通常採用されているSendzimir法によって、縞鋼板にAl濃度が1.0%超のZn-Al-Mg系合金の溶融めっきを行うと、不めっきが多発することを知見した。 Specifically, the present inventors initially intended to impart excellent corrosion resistance to a striped steel plate, and generally said that the corrosion resistance is generally superior to Zn plating. It was studied to apply a Zn-based alloy plating containing a slight amount of Mg to a striped steel plate. And in that process, when the Zn-Al-Mg alloy with Al concentration over 1.0% is electroplated on the striped steel sheet by Sendzimir method that is usually adopted as the hot dip plating method, non-plating occurs frequently. Found out.
 本発明者らは、Al:1.0%超および若干量のMgを含有するZn系合金を縞鋼板に溶融めっきする過程で不めっきが発生しやすいのは、Zn溶湯中のAl濃度が増加するに従い、鋼板と溶湯との濡れ性が低下することが関係しており、また、縞鋼板の熱延履歴に起因する特有の原因も関係していると考えている。 The inventors of the present invention have found that the non-plating tends to occur in the process of hot-dip plating a Zn-based alloy containing Al: more than 1.0% and a certain amount of Mg onto the striped steel sheet. It is considered that the wettability between the steel plate and the molten metal is reduced as it is performed, and that a specific cause resulting from the hot rolling history of the striped steel plate is also related.
 この不めっきの問題に対して、本発明者らは、特許文献2でも採用されているNiプレめっきを採用することを試みた。検討の結果、本発明者らは、Niプレめっき後に亜鉛基合金めっきを行うことで不めっきの発生をある程度は抑制できるが、縞鋼板に対してAl濃度が1.0%超の亜鉛基合金めっきを施す場合には、NiプレめっきにおけるNi付着量を比較的大きくする必要があることを知見した。しかし、その一方で、本発明者らは、上記の検討の結果、NiプレめっきにおけるNi付着量を大きくすると、溶融めっき縞鋼板が損耗したときに凸部で耐食性が低下しやすいことも合わせて知見した。 With respect to the problem of this non-plating, the present inventors tried to adopt Ni pre-plating, which is also adopted in Patent Document 2. As a result of examination, the present inventors can suppress the occurrence of non-plating to some extent by performing zinc-based alloy plating after Ni pre-plating, but a zinc-based alloy having an Al concentration of more than 1.0% with respect to a striped steel plate It has been found that in the case of plating, it is necessary to relatively increase the amount of Ni attached in Ni pre-plating. However, on the other hand, as a result of the above investigations, when the amount of deposited Ni in Ni pre-plating is increased as a result of the above examination, it is also combined that the corrosion resistance tends to be reduced in the convex portions when the hot-dip galvanized steel sheet is worn out. I found out.
 すなわち、本発明者らは、耐食性をさらに向上させるためにAl濃度が1.0%超の亜鉛基合金めっきを縞鋼板に適用することに関して、下記のことを知見した。
 (a)縞鋼板に対して、単に、Al濃度が1.0%超の亜鉛基合金めっきを施すだけでは不めっきが多発する。
 (b)縞鋼板に対してAl濃度が1.0%超の亜鉛基合金めっきを施すには、Niプレめっきが必要となり、且つNi付着量を従来よりも増やす必要がある。
 (c)しかし、縞鋼板に対してNiプレめっきのNi付着量を増やすと、溶融めっき縞鋼板が損耗したときに凸部で耐食性が低下しやすい。
That is, the present inventors have found the following regarding application of a zinc-based alloy plating with an Al concentration of more than 1.0% to a striped steel sheet in order to further improve the corrosion resistance.
(A) Non-plating occurs frequently only by applying zinc-based alloy plating having an Al concentration of more than 1.0% to a striped steel plate.
(B) In order to apply zinc base alloy plating having an Al concentration of more than 1.0% to a striped steel sheet, it is necessary to pre-plate Ni, and it is necessary to increase the amount of attached Ni more than before.
(C) However, when the deposition amount of Ni pre-plating is increased with respect to the striped steel plate, when the hot-dip galvanized striped steel plate is worn out, the corrosion resistance tends to be deteriorated at the convex portion.
 上記の現象について本発明者らは、以下のように考えた。例えば、床板等に溶融めっき縞鋼板を用いた場合、その凸部で溶融めっき層の摩耗、損耗が大きく、Niめっき層が露出することがある。なお、Niプレめっきされた鋼板が、溶融Znや溶融Zn-Al等でめっきされると、溶湯との反応によって、一部のNiはめっき層や溶湯中に移動するが、一部のNiはNiめっき層として鋼板の表面に残存する。そのため、NiプレめっきのNi付着量が大きい場合、溶融めっき後に鋼板の表面に残存するNiめっき層が厚くなる。 The present inventors considered the above phenomenon as follows. For example, when a hot-dip galvanized steel sheet is used as a floor plate or the like, wear and wear of the hot-dip plating layer may be large at the convex portions, and the Ni plating layer may be exposed. When Ni pre-plated steel plates are plated with molten Zn or molten Zn-Al etc., some Ni will move into the plating layer or melt due to the reaction with the molten metal, but some Ni will move It remains on the surface of a steel plate as a Ni plating layer. Therefore, when the Ni adhesion amount of Ni pre-plating is large, the Ni plating layer remaining on the surface of the steel sheet after hot-dip plating becomes thick.
 通常、自然浸漬電位はNi、Fe、めっき層の順に貴から卑になるが、比較的薄いNiめっき層の自然浸漬電位はNiとFeとの混成電位となる。NiプレめっきされたZn基合金の溶融めっきでは、上層のZn基合金の溶融めっき層が損耗し、Niめっき層が露出すると、露出部と露出部近傍との間でGalvanic腐食が発生する。例えば、溶融めっき縞鋼板では、凸部で露出したNiめっき層と、露出部近傍の溶融めっき層との間でGalvanic腐食が発生する。Niめっき層が露出しても、Niめっき層が薄い場合は、Niめっき層の自然浸漬電位は混成電位となってFeの電位に近くなり、Niめっき層と溶融めっき層との間のGalvanic腐食速度は大きくはない。逆に、Niめっき層が厚い場合は、Niめっき層の自然浸漬電位は混成電位といっても実質的にNiの電位に近くなるから、Niめっき層と溶融めっき層との間のGalvanic腐食速度が大きくなる。その結果、溶融めっき層が腐食損耗しやすい。 Usually, the natural immersion potential is higher in the order of Ni, Fe and plated layer, but the natural immersion potential of a relatively thin Ni plated layer is a hybrid potential of Ni and Fe. In hot-dip plating of a Ni-preplated Zn-based alloy, the galvanized layer of the upper Zn-based alloy is worn away, and when the Ni-plated layer is exposed, Galvanic corrosion occurs between the exposed portion and the vicinity of the exposed portion. For example, in the hot-dip galvanized steel sheet, Galvanic corrosion occurs between the Ni plating layer exposed at the convex portion and the hot-dip plating layer near the exposed portion. Even if the Ni plating layer is exposed, if the Ni plating layer is thin, the natural immersion potential of the Ni plating layer becomes a mixed potential and becomes close to the potential of Fe, and Galvanic corrosion between the Ni plating layer and the hot-dip plating layer The speed is not big. Conversely, when the Ni plating layer is thick, the natural immersion potential of the Ni plating layer is substantially close to the Ni potential even if it is the hybrid potential, so the Galvanic corrosion rate between the Ni plating layer and the hot-dip plating layer Becomes larger. As a result, the hot-dip plating layer is susceptible to corrosion and wear.
 以下、混乱を防止するために、本件明細書では、特段の断りがない限り、めっき層を表すために「Niめっき層」、「Niめっき」を用いた場合は、溶融めっき後に残存するNi被覆層を意味し、「Niプレめっき層」、「Niプレめっき」は、溶融めっき工程前に存在するNi被覆層を意味するものとする。また、本件明細書の以下の記述中、「Zn基合金の溶融めっき」や「溶融めっき」などの表現を用いる場合、「Zn-Al-Mg系合金の溶融めっき」であることを意味する。 Hereinafter, in order to prevent confusion, in the present specification, unless otherwise specified, "Ni plating layer" to indicate a plating layer, "Ni plating" is used, Ni coating remaining after hot-dip plating A layer is meant, "Ni pre-plating layer", "Ni pre-plating" shall mean the Ni coating layer which exists before a hot dip plating process. Further, in the following description of the present specification, when using expressions such as “hot-dip plating of Zn-based alloy” and “hot-dip plating”, it means “hot-dip plating of Zn—Al—Mg-based alloy”.
 本発明は、1.0%超のAlを含有するZn-Al-Mg系合金の溶融めっきを施した縞鋼板であって、不めっきがほとんどなく、かつ、縞鋼板の凸部でZn基合金の溶融めっきが損耗(腐食または摩耗)した際にも優れた耐食性を示す溶融めっき縞鋼板とその製造方法を提供することを目的とする。なお、本発明では、溶融めっき縞鋼板に要求される一般的な特性である、めっき外観や加工性などを満足した上で、上記した不めっきの抑制と損耗後の耐食性とを両立できる溶融めっき縞鋼板とその製造方法を提供することを目的とする。 The present invention is a striped steel plate on which a Zn-Al-Mg-based alloy containing 1.0% or more of Al has been subjected to hot-dip plating, which has almost no non-plating and a Zn-based alloy at the convex portion of the striped steel plate. It is an object of the present invention to provide a hot-dip galvanized steel sheet which exhibits excellent corrosion resistance even when hot-dip plating is worn out (corrosion or wear) and a method for producing the same. In the present invention, after satisfying the plating appearance and processability, etc., which are general characteristics required for hot-dip galvanized striped steel sheets, the hot-dip plating can achieve both the suppression of the non-plating and the corrosion resistance after wear. It aims at providing a striped steel plate and its manufacturing method.
 本発明者らは、Niプレめっきされた縞鋼板に1.0%超のAlを含有するZn-Al-Mg系合金の溶融めっきを試みる場合、不めっき防止の観点からは比較的大きいNi付着量が必要とされるものの、縞鋼板の凸部での耐食性を確保する観点からは、少なくとも凸部でのNi付着量は一定値以下に抑制する必要があると考えた。 The present inventors attempted to carry out the hot-dip plating of a Zn-Al-Mg-based alloy containing 1.0% or more of Al on a Ni pre-plated striped steel plate, the relatively large Ni adhesion from the viewpoint of preventing non-plating. Although the amount is required, it was considered that at least the amount of Ni adhesion at the convex portion needs to be suppressed to a certain value or less from the viewpoint of securing the corrosion resistance at the convex portion of the striped steel plate.
 鋼帯にNiプレめっきを行う場合、通常は電気めっきが採用される。無電解法によりNiを鋼帯に析出させることは可能ではあるが、生産性が劣る上に、析出被膜にNi以外の元素が大量に混入し好ましくない。一般的な鋼帯に電気めっきを行う場合、通常は、陰極である鋼帯面に対向する形で陽極を配置し、鋼帯と陽極との極間距離を、できるだけ小さくして電解することで、電流分布の均一性を確保しつつ、電力コストを抑える。 When pre-plating Ni on steel strip, electroplating is usually employed. Although it is possible to deposit Ni on a steel strip by the electroless method, it is not preferable because the productivity is inferior and, in addition, a large amount of elements other than Ni are mixed into the deposited film. When electroplating is performed on a general steel strip, usually, the anode is disposed to face the steel strip surface which is a cathode, and electrolysis is performed by minimizing the distance between the steel strip and the anode as much as possible. The power cost can be reduced while ensuring the uniformity of the current distribution.
 しかしながら、縞鋼板に電気めっきを行う場合、縞鋼板の凸部は縞鋼板の平面部よりも陽極との極間距離が近接するため、縞鋼板の凸部ではNi付着量が大きくなる。即ち、縞鋼板を通常の電解槽で且つ従来の条件で電気めっきしてNiプレめっきを行う場合、凸部でのNi付着量が非常に大きくなり、その結果、溶融めっき縞鋼板の溶融めっき層が損耗したときに凸部にて著しいGalvanic腐食が生じることが懸念される。 However, when performing electroplating on a striped steel plate, the distance between the electrode and the anode is closer to the convex portion of the striped steel plate than to the flat portion of the striped steel plate, so the amount of Ni attached becomes large at the convex portion of the striped steel plate. That is, in the case of performing Ni pre-plating by electroplating a striped steel plate in a conventional electrolytic cell under conventional conditions, the amount of Ni attached on the convex portion becomes very large, and as a result, the hot-dip galvanized steel layer There is a concern that significant Galvanic corrosion will occur at the ridges when the.
 本発明者らは、1.0%超のAlを含有するZn-Al-Mg系合金の溶融めっき縞鋼板に関して、不めっき防止のために必要となるNiプレめっき層の厚さの下限値と、凸部での耐食性を確保するために制限すべきNiめっき層の厚さの上限値とを見極め、且つ凸部と平面部とでのNiめっき層の厚さ比を規定することで、上記課題を克服できることを見出した。 The present inventors, regarding hot-dip galvanized steel sheets of Zn-Al-Mg-based alloy containing 1.0% or more of Al, have a lower limit value of the thickness of Ni pre-plating layer required for preventing non-plating and By determining the upper limit value of the thickness of the Ni plating layer to be limited in order to secure the corrosion resistance in the convex portion, and defining the thickness ratio of the Ni plating layer in the convex portion and the flat portion, I found that I could overcome the problem.
 本発明の要旨は以下の通りである。
(1)本発明の一態様に係る溶融めっき縞鋼板は、母材鋼板と、母材鋼板の表面に配されたNiめっき層と、Niめっき層の表面に配された溶融めっき層とを有し、板面に凸部と平面部とを有する溶融めっき縞鋼板であって、凸部のNiめっき層の膜厚が片面当たり0.07~0.4μmであり、平面部のNiめっき層の膜厚が片面当たり0.05~0.35μmであり、凸部のNiめっき層の膜厚が、平面部のNiめっき層の膜厚に対して、100%超400%以下であり、溶融めっき層の付着量が片面当たり60~400g/m2であり、溶融めっき層が、化学組成として、質量%で、Al:1.0%超26%以下、Mg:0.05~10%、Si:0~1.0%、Sn:0~3.0%、Ca:0~1.0%を含み、残部がZnおよび不純物よりなる。
(2)上記(1)に記載の溶融めっき縞鋼板では、凸部のNiめっき層の膜厚が、平面部のNiめっき層の膜厚に対して、100%超300%以下であってもよい。
(3)上記(1)または(2)に記載の溶融めっき縞鋼板では、凸部のNiめっき層の膜厚が片面当たり0.07~0.3μmであってもよい。
(4)上記(1)~(3)のいずれか1つに記載の溶融めっき縞鋼板では、溶融めっき層が、化学組成として、質量%で、Al:4.0~25.0%、Mg:1.5~8.0%を含んでもよい。
(5)上記(1)~(4)のいずれか1つに記載の溶融めっき縞鋼板では、溶融めっき層が、化学組成として、質量%で、Si:0.05~1.0%、Sn:0.1~3.0%、Ca:0.01~1.0%のうちの少なくとも1つを含んでもよい。
(6)上記(1)~(5)のいずれか1つに記載の溶融めっき縞鋼板では、厚さ方向から見たとき、溶融めっき層の被覆率が板面に対して面積%で99~100%であってもよい。
(7)本発明の一態様に係る溶融めっき縞鋼板の製造方法は、上記(1)~(6)のいずれか1つに記載の縞鋼板を製造する方法であって、鋼板の圧延面に凸部と平面部とを付与する圧延工程と、圧延工程を経た鋼板にNiプレめっきを施すプレめっき工程と、プレめっき工程を経た鋼板に溶融めっきを施す溶融めっき工程と、を備え、プレめっき工程では、鋼板の圧延面と陽極面とを対向させて配置し、圧延面の凸部と陽極との極間距離を40~100mmに制御し、片面当たりのめっき付着量が平均で0.5~3g/mとなる条件で電気Niめっきを行い、溶融めっき工程では、鋼板を加熱し、質量%で、Al:1.0超26%以下、Mg:0.05~10%、Si:0~1.0%、Sn:0~3.0%、Ca:0~1.0%を含有し、残部がZnおよび不純物よりなる溶融めっき浴に鋼板を浸漬し、片面当たりのめっき付着量が平均で60~400g/mとなる条件で連続溶融めっきを行う。
(8)上記(7)に記載の溶融めっき縞鋼板の製造方法では、プレめっき工程で、極間距離を45~100mmに制御してもよい。
The gist of the present invention is as follows.
(1) The hot-dip galvanized striped steel sheet according to one aspect of the present invention comprises a base steel plate, a Ni-plated layer disposed on the surface of the base steel plate, and a hot-dip plated layer disposed on the surface of the Ni-plated layer. A Ni-plated layer in the convex portion having a thickness of 0.07 to 0.4 μm per side, and the Ni plated layer in the flat portion is The film thickness is 0.05 to 0.35 μm per one side, and the film thickness of the Ni plating layer in the convex portion is more than 100% and 400% or less of the film thickness of the Ni plating layer in the flat portion. The adhesion amount of the layer is 60 to 400 g / m 2 per one side, and the hot-dip plating layer has a chemical composition of Al: more than 1.0% and 26% or less, Mg: 0.05 to 10%, Si: Containing 0 to 1.0%, Sn: 0 to 3.0%, Ca: 0 to 1.0%, the balance being Zn and impurities It consists of things.
(2) In the hot-dip galvanized striped steel sheet according to (1), the thickness of the Ni plating layer in the convex portion is more than 100% and 300% or less of the thickness of the Ni plating layer in the flat portion. Good.
(3) In the hot-dip galvanized steel sheet described in the above (1) or (2), the film thickness of the Ni plating layer in the convex portion may be 0.07 to 0.3 μm per one surface.
(4) In the hot-dip galvanized striped steel sheet according to any one of the above (1) to (3), the hot-dip plated layer has a chemical composition of, by mass%, Al: 4.0 to 25.0%, Mg May contain 1.5 to 8.0%.
(5) In the hot-dip galvanized striped steel sheet according to any one of the above (1) to (4), the hot-dip plated layer has a chemical composition represented by mass: Si: 0.05 to 1.0%, Sn It may contain at least one of 0.1 to 3.0% and Ca: 0.01 to 1.0%.
(6) In the hot-dip galvanized striped steel sheet according to any one of the above (1) to (5), when viewed from the thickness direction, the coverage of the hot-dip plating layer is 99 to 99% in area% with respect to the plate surface. It may be 100%.
(7) The method of manufacturing a hot-dip galvanized striped steel sheet according to an aspect of the present invention is a method of producing the striped steel sheet according to any one of the above (1) to (6) The pre-plating process includes a rolling process for providing a convex portion and a flat surface, a pre-plating process for applying Ni pre-plating to a steel plate subjected to the rolling process, and a hot-dip plating process for hot dip plating on a steel plate subjected to the pre-plating process. In the process, the rolling surface and the anode surface of the steel plate are arranged to face each other, the distance between the projections of the rolling surface and the anode is controlled to 40 to 100 mm, and the plating adhesion amount per one side is 0.5 on average. ~ perform electrical Ni plating at 3 g / m 2 and comprising condition, the hot dipping step, heating the steel sheet contains, by mass%, Al: 1.0 super 26% or less, Mg: 0.05 ~ 10%, Si: Contains 0 to 1.0%, Sn: 0 to 3.0%, Ca: 0 to 1.0% The steel plate is immersed in a hot-dip plating bath containing the remainder of Zn and impurities, and continuous hot-dip plating is performed under the condition that the plating adhesion amount per one side is 60 to 400 g / m 2 on average.
(8) In the method of manufacturing a hot-dip galvanized steel sheet according to (7), the distance between the electrodes may be controlled to 45 to 100 mm in the pre-plating step.
 本発明の上記態様によれば、溶融めっき層が1.0%超のAlを含有するので優れた耐食性が得られ、加えて、Niめっき層の膜厚が制御されているので、不めっきの発生が抑制でき、且つ溶融めっき層が損耗してNiめっき層が露出したときの腐食も抑制できる。その結果、溶融めっき縞鋼板として、床板、敷板、構造物、その他のライフ・サイクルコストを抑えることが可能となる。 According to the above aspect of the present invention, since the hot-dip plating layer contains Al of more than 1.0%, excellent corrosion resistance is obtained, and additionally, the film thickness of the Ni plating layer is controlled. The occurrence can be suppressed, and the corrosion when the hot-dip plating layer is worn out and the Ni plating layer is exposed can also be suppressed. As a result, it is possible to suppress floor plates, base plates, structures, and other life cycle costs as hot-dip galvanized steel sheets.
本発明の一実施形態に係る溶融めっき縞鋼板の母材鋼板を厚さ方向から見た場合の模式図である。It is a schematic diagram at the time of seeing the base material steel plate of the hot-dip galvanized striped steel plate which concerns on one Embodiment of this invention from thickness direction. 同実施形態に係る溶融めっき縞鋼板の母材鋼板を厚さ方向と切断方向とが平行となる切断面で見た場合の断面模式図であって、図1AのG-G断面図である。It is a cross-sectional schematic diagram at the time of seeing the base material steel plate of the hot-dip galvanized striped steel plate which concerns on the embodiment by the cut surface where a thickness direction and a cutting direction become parallel, Comprising: It is GG sectional drawing of FIG. 同実施形態に係る溶融めっき縞鋼板の母材鋼板を厚さ方向と切断方向とが平行となる切断面で見た場合の断面模式図であって、図1AのF-F断面図である。It is a cross-sectional schematic diagram at the time of seeing the base material steel plate of the hot-dip galvanized striped steel plate which concerns on the embodiment by the cut surface where a thickness direction and a cutting direction become parallel, Comprising: It is FF sectional drawing of FIG. 同実施形態に係る溶融めっき縞鋼板を厚さ方向と切断方向とが平行となる切断面で見た場合の断面模式図である。It is a cross-sectional schematic diagram at the time of seeing the hot-dip galvanized striped steel plate which concerns on the embodiment by the cut surface where a thickness direction and a cutting direction become parallel.
 以下、本発明の好適な実施形態について詳細に説明する。ただ、本発明は本実施形態に開示の構成のみに制限されることなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。また、下記する数値限定範囲には、下限値及び上限値がその範囲に含まれる。「超」または「未満」と示す数値は、その値が数値範囲に含まれない。 Hereinafter, preferred embodiments of the present invention will be described in detail. However, the present invention is not limited to only the configuration disclosed in the present embodiment, and various modifications can be made without departing from the spirit of the present invention. Further, the lower limit value and the upper limit value are included in the numerical limitation range described below. The numerical value shown as "super" or "less than" does not include the value in the numerical range.
 本実施形態に係る溶融めっき縞鋼板は、母材鋼板と、母材鋼板の表面に配されたNiめっき層と、Niめっき層の表面に配されたZn基(Zn-Al-Mg系)合金の溶融めっき層とを有し、板面に凸部と平面部とを有する。また、凸部のNiめっき層の膜厚が片面当たり0.07~0.4μmであり、平面部のNiめっき層の膜厚が片面当たり0.05~0.35μmであり、且つ凸部のNiめっき層の膜厚が、平面部のNiめっき層の膜厚に対して、100%超400%以下である。また、溶融めっき層の付着量が片面当たり60~400g/mであり、溶融めっき層が、化学組成として、質量%で、Al:1.0%超26%以下、Mg:0.05~10%、Si:0~1.0%、Sn:0~3.0%、Ca:0~1.0%を含み、残部がZnおよび不純物からなる。 The hot-dip galvanized striped steel sheet according to the present embodiment comprises a base steel plate, a Ni plating layer disposed on the surface of the base steel plate, and a Zn-based (Zn-Al-Mg-based) alloy disposed on the surface of the Ni plating layer. And a convex portion and a flat portion on the plate surface. In addition, the film thickness of the Ni plating layer in the convex portion is 0.07 to 0.4 μm per one surface, the film thickness of the Ni plating layer in the flat portion is 0.05 to 0.35 μm per one surface, and The film thickness of the Ni plating layer is more than 100% and 400% or less of the film thickness of the Ni plating layer in the flat portion. In addition, the adhesion amount of the hot-dip plating layer is 60 to 400 g / m 2 per one side, and the hot-dip plating layer has a chemical composition of Al: more than 1.0% and 26% or less, Mg: 0.05 to 10%, Si: 0 to 1.0%, Sn: 0 to 3.0%, Ca: 0 to 1.0%, the balance being Zn and impurities.
 なお、溶融めっき層のNiめっき層側には、溶湯(Zn基合金の溶融めっき浴)とNiプレめっきされた鋼板との反応に基づく薄い金属間化合物層が形成される場合があり、その組成はZn基合金の溶融めっき浴の組成により変化する。本実施形態では、「Zn基合金の溶融めっき層」とは、この金属間化合物層を包含した意味で使用する。 In addition, a thin intermetallic compound layer may be formed on the Ni plating layer side of the hot-dip plating layer based on the reaction between a molten metal (hot-dip plating bath of Zn-based alloy) and a steel plate preplated with Ni. Varies with the composition of the Zn-based alloy hot-dip plating bath. In the present embodiment, the “hot-dip plating layer of a Zn-based alloy” is used in the meaning including the intermetallic compound layer.
 まず、本実施形態に係る溶融めっき縞鋼板の溶融めっき層について詳細に説明する。 First, the hot-dip galvanized steel sheet according to the present embodiment will be described in detail.
 溶融めっき層は、Zn基合金であって、化学組成として、質量%で、Al:1.0%超かつ26%以下、およびMg:0.05~10%を含有する。 The hot-dip plating layer is a Zn-based alloy and contains, as a chemical composition, by mass, Al: more than 1.0% and not more than 26%, and Mg: 0.05 to 10%.
 Al(アルミニウム)は、溶融めっき層の耐食性を確保する上で重要であり、また溶湯の酸化防止やFe-Zn系のドロスの発生を抑制する。そのため、溶融めっき層のAl濃度は1.0%超えとする。一方、めっき浴のAl濃度が増加すると、融点が上昇するため溶湯の温度を高める必要があり、また、Al濃度が26%を超えると、めっき層の表面性状の美麗さを確保することが困難になり、加工性の低下も招きやすい。それ故、溶融めっき層のAl濃度は26%以下とする。耐食性の観点から、溶融めっき層のAl濃度は4.0%以上とすることが好ましい。加工性の観点から、溶融めっき層のAl濃度は、25.0%以下が好ましく、21.0%以下がさらに好ましい。 Al (aluminum) is important for securing the corrosion resistance of the hot-dip plating layer, and also prevents the oxidation of the molten metal and the generation of the Fe-Zn dross. Therefore, the Al concentration of the hot-dip plating layer exceeds 1.0%. On the other hand, if the Al concentration in the plating bath increases, the melting point rises, so it is necessary to raise the temperature of the molten metal. If the Al concentration exceeds 26%, it is difficult to secure the beauty of the surface properties of the plating layer It is easy to cause the deterioration of processability. Therefore, the Al concentration of the hot-dip plating layer is 26% or less. From the viewpoint of corrosion resistance, the Al concentration of the hot-dip plating layer is preferably 4.0% or more. From the viewpoint of processability, the Al concentration of the hot-dip plating layer is preferably 25.0% or less, more preferably 21.0% or less.
 Mg(マグネシウム)は、腐食環境で、安定な腐食生成物を形成して、腐食に対するバリアー層を形成し、耐食性をより優れたものとする。Mg濃度が0.05%未満では、この効果に乏しいので、溶融めっき層中のMg濃度は0.05%以上とする。一方、溶湯中のMg濃度の増加に従い、溶湯の酸化が促進される。このため、溶融めっき層中のMg濃度を10%以下とする。また、Mgの濃度が10%を超えると、酸化物系のドロスの発生量の増加の影響も含め、めっき層の表面性状の美麗さを確保することが困難になる。Mg濃度の好ましい下限は0.5%であり、より好ましくは1%であり、さらに好ましくは1.5%であり、さらに好ましくは2.0%である。Mg濃度の好ましい上限は8.5%であり、より好ましくは8.0%であり、さらに好ましくは6.0%である。 Mg (magnesium) forms a stable corrosion product in a corrosive environment to form a barrier layer against corrosion and makes the corrosion resistance more excellent. If the Mg concentration is less than 0.05%, this effect is poor, so the Mg concentration in the hot-dip plating layer is made 0.05% or more. On the other hand, the oxidation of the molten metal is promoted as the Mg concentration in the molten metal increases. For this reason, the Mg concentration in the hot-dip plating layer is 10% or less. Moreover, when the concentration of Mg exceeds 10%, it becomes difficult to secure the beauty of the surface property of the plating layer, including the influence of the increase in the amount of generation of oxide dross. The preferable lower limit of the Mg concentration is 0.5%, more preferably 1%, still more preferably 1.5%, and still more preferably 2.0%. The upper limit of the Mg concentration is preferably 8.5%, more preferably 8.0%, and still more preferably 6.0%.
 本実施形態に係る溶融めっき縞鋼板の溶融めっき層は、化学組成として、上記した基本元素であるAlおよびMgを含有し、残部がZnおよび不純物からなる。例えば、溶融めっき層では、Zn濃度が質量%で64~98.95%になる。溶融めっき層は、上記残部であるZnの一部に代えて、選択元素として、質量%で、1.0%以下のSi、3.0%以下のSn、1.0%以下のCaを含有させてもよい。 The hot-dip plated layer of the hot-dip galvanized striped steel sheet according to the present embodiment contains Al and Mg which are the above-described basic elements as a chemical composition, and the balance is made of Zn and impurities. For example, in the hot-dip plating layer, the Zn concentration is 64 to 98.95% in mass%. The hot-dip plating layer contains 1.0% or less of Si, 3.0% or less of Sn, and 1.0% or less of Ca in mass%, as a selective element, instead of part of Zn that is the above-mentioned remaining portion. You may
 Si(シリコン)は、母材鋼板との界面に形成される界面合金相の成長を抑制し、加工性の向上に寄与するとともに、Mgの酸化を抑制し、またMgとMgSiを形成することで耐食性の向上にも寄与する。そのため、溶融めっき層のSi濃度を0~1.0%としてもよい。Siの上記効果を好ましく得ようとする場合、Siを0.05%以上、好ましくは0.1%以上含有させる。一方、Si濃度が1.0%を超えても上記効果が飽和する。Si濃度の好ましい上限は0.6%である。 Si (silicon) suppresses the growth of the interfacial alloy phase formed at the interface with the base steel plate, contributes to the improvement of the workability, suppresses the oxidation of Mg, and forms Mg and Mg 2 Si. Contributes to the improvement of corrosion resistance. Therefore, the Si concentration of the hot-dip plating layer may be 0 to 1.0%. In order to preferably obtain the above-mentioned effect of Si, Si is contained in an amount of 0.05% or more, preferably 0.1% or more. On the other hand, the above effect is saturated even if the Si concentration exceeds 1.0%. The preferred upper limit of the Si concentration is 0.6%.
 Sn(スズ)は、MgとMgSnを形成し、耐食性、特に端面耐食性の向上にも寄与する。そのため、溶融めっき層のSn濃度を0~3.0%としてもよい。Snの上記効果を好ましく得ようとする場合、Snを0.1%以上、好ましくは0.3%以上含有させる。一方、Sn濃度が3.0%を超えると、耐食性の低下、特に平面部の耐食性の低下を招きやすい。Sn濃度の好ましい上限は2.4%である。 Sn (tin) forms Mg and Mg 2 Sn and also contributes to the improvement of the corrosion resistance, particularly the edge corrosion resistance. Therefore, the Sn concentration of the hot-dip plating layer may be 0 to 3.0%. In order to preferably obtain the above effect of Sn, 0.1% or more, preferably 0.3% or more of Sn is contained. On the other hand, when the Sn concentration exceeds 3.0%, the corrosion resistance, particularly the corrosion resistance of the flat portion tends to be reduced. The preferred upper limit of the Sn concentration is 2.4%.
 Ca(カルシウム)は、めっき浴面の酸化を防止する上で効果がある。Zn-Al-Mg系合金の溶湯は、Mgを含まない場合に比べて、酸化しやすい傾向にある。Caを含有させることでめっき浴面の酸化を好ましく抑制できる。そのため、溶融めっき層のCa濃度を0~1.0%としてもよい。Ca濃度は、好ましくは0.01%以上であり、より好ましくは0.1%以上である。一方、Ca濃度が1.0%を超えると、Ca系の金属間化合物の析出の増加を招き、耐食性を低下、特に平面部の耐食性を低下させることがある。Ca濃度の好ましい上限は0.7%である。 Ca (calcium) is effective in preventing oxidation of the plating bath surface. The molten metal of the Zn-Al-Mg-based alloy tends to be easily oxidized as compared with the case where it does not contain Mg. By including Ca, oxidation of the plating bath surface can be preferably suppressed. Therefore, the Ca concentration of the hot-dip plating layer may be 0 to 1.0%. The Ca concentration is preferably 0.01% or more, more preferably 0.1% or more. On the other hand, when the Ca concentration exceeds 1.0%, precipitation of Ca-based intermetallic compounds is increased, which may lower the corrosion resistance, particularly the corrosion resistance of the flat portion. The preferred upper limit of the Ca concentration is 0.7%.
 溶融めっき層の化学組成に関して、上記した基本元素および選択元素の残部は、Znおよび不純物からなる。なお、「不純物」とは、原料または製造環境等から混入するものを指す。例えば、本実施形態に係る溶融めっき縞鋼板の溶融めっき層では、NiやFeなどが鋼板表面からめっき浴へ溶解して、Zn基合金の不純物となる。例えば、溶融めっき層は、Niプレめっき層に由来するNiを含むことがあり、Ni濃度が質量%で0.01~0.3%になることもある。本実施形態に係る溶融めっき縞鋼板の溶融めっき層では、目的の特性を阻害しない範囲内ならば、不純物が含有されることを許容する。 With respect to the chemical composition of the hot-dip plating layer, the balance of the above-mentioned basic element and selective element consists of Zn and impurities. In addition, an "impurity" refers to the thing mixed from a raw material or a manufacturing environment etc. For example, in the hot-dip plated layer of the hot-dip galvanized striped steel sheet according to the present embodiment, Ni, Fe and the like dissolve from the surface of the steel plate into the plating bath to become impurities of the Zn-based alloy. For example, the hot-dip plating layer may contain Ni derived from the Ni pre-plating layer, and the Ni concentration may be 0.01 to 0.3% by mass%. In the hot-dip plating layer of the hot-dip galvanized striped steel sheet according to the present embodiment, impurities are allowed to be contained as long as the target characteristics are not impaired.
 なお、溶融めっき層とNiめっき層との界面に、Ni-Al系の金属間化合物層が形成される場合がある。本実施形態では、この金属間化合物層が溶融めっき層の一部であると見なす。 In addition, a Ni-Al based intermetallic compound layer may be formed at the interface between the hot-dip plating layer and the Ni plating layer. In this embodiment, this intermetallic compound layer is considered to be part of the hot-dip plating layer.
 また、本実施形態では、溶融めっき層の平均付着量が片面当たり60g/m以上である。平均付着量とは、溶融めっき縞鋼板の凸部と平面部とを含む平均の付着量を意味する。すなわち、溶融めっき縞鋼板の凸部のでっぱりを無視した、投影面積当たりの付着量のことを意味する。溶融めっき層の平均付着量が60g/m未満では耐食性が不十分となる。溶融めっき層の平均付着量の上限は、必ずしも限定しないが、溶融めっき層の過剰な付着によってめっき垂れが著しくなり外観を損なうため、溶融めっき層の平均付着量を片面当たり400g/m以下とすることが好ましい。 Moreover, in this embodiment, the average adhesion amount of the hot-dip plating layer is 60 g / m 2 or more per one side. The average amount of adhesion means the average amount of adhesion including the convex portion and the flat portion of the hot-dip galvanized steel sheet. That is, it means the amount of adhesion per projected area ignoring the unevenness of the convex part of the hot-dip galvanized steel sheet. When the average adhesion amount of the hot-dip plating layer is less than 60 g / m 2 , the corrosion resistance is insufficient. The upper limit of the average adhesion amount of the hot-dip plating layer is not necessarily limited, but excessive adhesion of the hot-dip plating layer makes the plating sagging remarkable and impairs the appearance, so the average adhesion amount of the hot-dip plating layer is 400 g / m 2 or less per side. It is preferable to do.
 また、本実施形態では、溶融めっき縞鋼板を厚さ方向から見たとき、溶融めっき層の被覆率が板面に対して面積%で99~100%であることが好ましい。溶融めっき層の被覆率が面積%で99%以上であれば、不めっきの発生が好ましく抑制できていると判断できる。 Further, in the present embodiment, when the hot-dip galvanized striped steel sheet is viewed from the thickness direction, the coverage of the hot-dip plating layer is preferably 99 to 100% in area% with respect to the plate surface. If the coverage of the hot-dip plating layer is 99% or more in area%, it can be judged that the occurrence of non-plating can be preferably suppressed.
 次に、本実施形態に係る溶融めっき縞鋼板のNiめっき層について詳細に説明する。 Next, the Ni plating layer of the hot-dip galvanized steel sheet according to the present embodiment will be described in detail.
 Niめっき層は、溶融めっき工程における不めっきを防止するために予め母材鋼板の表面に形成されたNiプレめっき層が、溶融めっき後も母材鋼板と溶融めっき層との間に残存したものである。 In the Ni plating layer, a Ni pre-plating layer previously formed on the surface of the base steel plate in order to prevent non-plating in the hot-dip plating process remains between the base steel plate and the hot-dip plating layer even after hot dipping. It is.
 Niめっき層は、例えば、溶融めっき縞鋼板の断面をSEM(Scanning Electron Microscope)の反射電子像で観察した際に、母材鋼板と溶融めっき層との間に観察されるコントラストが淡色の領域(白く表示される範囲)である。本実施形態では、Niめっき層と母材鋼板との界面に形成されることがあるNiを含む金属間化合物層、およびNiめっき層と溶融めっき層との界面に形成されることがあるNiを含む金属間化合物層は、Niめっき層に含まない。 The Ni-plated layer is, for example, a light-colored contrast area observed between the base steel plate and the hot-dip plating layer when the cross section of the hot-dip streaked steel plate is observed by a reflection electron image of SEM (Scanning Electron Microscope) It is the range displayed white). In the present embodiment, an intermetallic compound layer containing Ni that may be formed at the interface between the Ni plating layer and the base steel plate, and Ni that may be formed at the interface between the Ni plating layer and the hot-dip plating layer The intermetallic compound layer is not included in the Ni plating layer.
 Niめっき層は、化学組成として、Niを含有し、残部が不純物からなる。例えば、Niめっき層のNi濃度は、質量%で、50~100%であることが好ましい。なお、「不純物」とは、原料または製造環境等から混入するものを指す。例えば、本実施形態に係る溶融めっき縞鋼板のNiめっき層は、素地鋼板からのFeの拡散等による不純物を含む。 The Ni plating layer contains Ni as a chemical composition, and the balance consists of impurities. For example, the Ni concentration of the Ni plating layer is preferably 50 to 100% by mass. In addition, an "impurity" refers to the thing mixed from a raw material or a manufacturing environment etc. For example, the Ni plating layer of the hot-dip galvanized striped steel sheet according to the present embodiment contains impurities due to diffusion of Fe from the base steel sheet, and the like.
 本実施形態では、厚さ方向と切断方向とが平行となる切断面で見たとき、溶融めっき縞鋼板の凸部のNiめっき層の膜厚が片面当たり平均で0.4μm以下であることが必要である。この膜厚が0.4μmを超えると、凸部でZn基合金の溶融めっき層が損耗してNiめっき層が露出したときの耐食性が低下する。この凸部のNiめっき層の膜厚は、0.3μm以下であることが好ましい。一方、凸部のNiめっき層の膜厚の下限は、片面当たり平均で0.07μm以上とする。この膜厚が0.07μm未満になると、凸部で不めっきが発生する。この凸部のNiめっき層の膜厚は、0.1μm以上であることが好ましい。 In the present embodiment, the thickness of the Ni plating layer on the convex part of the hot-dip galvanized steel sheet is 0.4 μm or less on average per one side when viewed in a cut surface in which the thickness direction and the cutting direction are parallel. is necessary. When the film thickness exceeds 0.4 μm, the hot-dip plating layer of the Zn-based alloy is worn away in the convex portions, and the corrosion resistance when the Ni plating layer is exposed is reduced. It is preferable that the film thickness of the Ni plating layer of this convex part is 0.3 micrometer or less. On the other hand, the lower limit of the film thickness of the Ni plating layer of the convex portion is set to 0.07 μm or more per one surface on average. When the film thickness is less than 0.07 μm, non-plating occurs in the convex portion. It is preferable that the film thickness of the Ni plating layer of this convex part is 0.1 micrometer or more.
 また、本実施形態では、厚さ方向と切断方向とが平行となる切断面で見たとき、溶融めっき縞鋼板の平面部のNiめっき層の膜厚が片面当たり平均で0.05μm以上であることが必要である。この膜厚が0.05μm未満であると、平面部における不めっきが発生する。一方、平面部のNiめっき層の膜厚の上限は、片面当たり平均で0.35μm以下とする。この膜厚が0.35μmを超えると、平面部でのめっき密着性向上の効果が飽和し、経済的ではない。 Further, in the present embodiment, the thickness of the Ni plating layer in the flat portion of the hot-dip galvanized steel sheet is 0.05 μm or more per one surface on the cut surface in which the thickness direction and the cutting direction are parallel. It is necessary. If this film thickness is less than 0.05 μm, non-plating occurs on the flat portion. On the other hand, the upper limit of the film thickness of the Ni plating layer in the flat portion is 0.35 μm or less on an average per one side. If the film thickness exceeds 0.35 μm, the effect of improving the plating adhesion on the flat portion is saturated, which is not economical.
 また、本実施形態では、厚さ方向と切断方向とが平行となる切断面で見たとき、凸部のNiめっき層の膜厚が、平面部のNiめっき層の膜厚に対して、100%超400%以下であることが必要である。 Further, in the present embodiment, the thickness of the Ni plating layer in the convex portion is 100 as compared to the thickness of the Ni plating layer in the flat portion when viewed in a cut surface in which the thickness direction and the cutting direction are parallel. It is necessary to be more than% and not more than 400%.
 上述のように、従来の電気めっきのめっき条件では、縞鋼板の場合、平面部ではなく凸部に優先してNiが付着する。例えば、本発明者らは、従来のように縞鋼板の凸部と陽極との極間距離を40mm未満にすると、凸部のNiめっき層の膜厚が、平面部のNiめっき層の膜厚に対して、2000%以上になる場合があることを確認した。 As described above, under the conventional plating conditions for electroplating, in the case of a striped steel plate, Ni adheres preferentially to not the flat portion but the convex portion. For example, when the distance between the projections of the striped steel plate and the anode is less than 40 mm as in the prior art, the thickness of the Ni plating layer of the projections is the thickness of the Ni plating layer of the flat portion. In contrast, it was confirmed that it might be 2000% or more.
 ただ、上述のように、本発明者らは、凸部における損耗後の耐食性を高めるためには凸部のNiめっき層の膜厚をあまり厚くせず、一方で、平面部における不めっきを抑制するためには平面部のNiめっき層の膜厚をある程度確保する必要があることを見出した。すなわち、本実施形態では、平面部に対する凸部のNiめっき層の膜厚比(凸部の膜厚÷平面部の膜厚×100)を、従来の溶融めっき縞鋼板よりも小さくする。 However, as described above, the present inventors do not thicken the film thickness of the Ni plating layer of the convex part so as to enhance the corrosion resistance after the wear in the convex part, while suppressing the non-plating in the flat part It has been found that in order to achieve this, it is necessary to secure a film thickness of the Ni plating layer in the flat portion to a certain extent. That is, in this embodiment, the film thickness ratio of the Ni plating layer of the convex portion to the flat portion (film thickness of convex portion / film thickness of flat portion × 100) is smaller than that of the conventional hot-dip galvanized steel sheet.
 平面部に対する凸部のNiめっき層の膜厚比(凸部の膜厚÷平面部の膜厚×100)が400%超では、平面部での不めっき抑制と凸部での損耗後の耐食性とを好ましく両立させることが難しくなるので、本実施形態では、平面部に対する凸部のNiめっき層の膜厚比を400%以下とする。平面部に対する凸部のNiめっき層の膜厚比は、350%以下であることが好ましく、300%以下であることがさらに好ましく、250%以下であることが最も好ましい。 When the film thickness ratio of the Ni plating layer of the convex portion to the flat portion (film thickness of the convex portion / film thickness of the flat portion × 100) exceeds 400%, suppression of non-plating in the flat portion and corrosion resistance after wear at the convex portion In the present embodiment, the film thickness ratio of the Ni plating layer of the convex portion to the flat portion is 400% or less. The film thickness ratio of the Ni plating layer of the convex portion to the flat portion is preferably 350% or less, more preferably 300% or less, and most preferably 250% or less.
 一方、凸部のNiめっき層の膜厚を平面部のNiめっき層の膜厚よりも小さくすることや、凸部と平面部とでNiめっき層の膜厚を同一にすることは、縞鋼板の形状に起因して電気めっきでは実質的に困難である。したがって、本実施形態では、平面部に対する凸部のNiめっき層の膜厚比を100%超とする。 On the other hand, making the thickness of the Ni plating layer in the convex portion smaller than the thickness of the Ni plating layer in the flat portion, or making the thickness of the Ni plating layer the same between the convex portion and the flat portion Due to its shape, electroplating is substantially difficult. Therefore, in the present embodiment, the film thickness ratio of the Ni plating layer of the convex portion to the flat portion is set to be more than 100%.
 なお、平面部に対する凸部のNiめっき層の膜厚比を上記範囲に制御することによって、平面部での不めっき抑制と凸部での損耗後の耐食性とを両立できるという効果が得られることに加えて、必要領域(平面部)のNi付着量を増やして不必要領域(凸部)のNi付着量を減らすことが可能となるので、有限資源であるNiの有効活用も可能となる。 In addition, by controlling the film thickness ratio of the Ni plating layer of the convex portion to the flat portion within the above range, the effect of being able to achieve both the non-plating suppression in the flat portion and the corrosion resistance after wear at the convex portion can be obtained. In addition to the above, it is possible to increase the Ni deposition amount in the necessary area (flat portion) and reduce the Ni deposition amount in the unnecessary area (convex portion), so it is also possible to effectively use Ni, which is a limited resource.
 次に、本実施形態に係る溶融めっき縞鋼板の母材鋼板について詳細に説明する。 Next, the base material steel plate of the hot-dip plated striped steel plate according to the present embodiment will be described in detail.
 本実施形態では、母材鋼板(めっきされる原板)は縞鋼板である。縞鋼板は通常、熱間圧延によって凸部の形状が付与される。母材鋼板の鋼種は特に限定されるものではないが、通常はJIS G3101に規定される一般構造用圧延鋼材に相当する鋼種が用いられる。縞鋼板の凸形状は、例えば熱間圧延の仕上げ段階で、作動ロールに形成された凹形状を鋼板面に転写することで付与することができる。本実施形態では、縞高さ(凸部の高さ)や、縞部分(凸部分)の占有率を必ずしも限定するものではないが、特に床板としての滑り防止の観点、使用性を考慮して、縞高さを0.5~3.5mm、縞部分の面積占有率を15~60%とする。 In the present embodiment, the base steel plate (original plate to be plated) is a striped steel plate. The striped steel sheet is usually given the shape of the convex portion by hot rolling. The steel type of the base steel plate is not particularly limited, but generally, a steel type corresponding to the general structural rolled steel defined in JIS G3101 is used. The convex shape of the striped steel sheet can be imparted, for example, by transferring the concave shape formed on the work roll to the steel sheet surface at the finishing stage of hot rolling. In the present embodiment, the stripe height (height of the convex portion) and the occupancy ratio of the stripe portion (convex portion) are not necessarily limited, but in particular, in view of slip prevention as a floor plate and usability. The stripe height is 0.5 to 3.5 mm, and the area occupancy of the stripe portion is 15 to 60%.
 図1A~図1Cに、母材鋼板となる縞鋼板の形状を示す。図1Aは、本発明の一実施形態に係る溶融めっき縞鋼板の母材鋼板を厚さ方向から見た場合の模式図である。図1Bは、同実施形態に係る溶融めっき縞鋼板の母材鋼板を厚さ方向と切断方向とが平行となる切断面で見た場合の断面模式図であって、図1AのG-G断面図である。図1Cは、同実施形態に係る溶融めっき縞鋼板の母材鋼板を厚さ方向と切断方向とが平行となる切断面で見た場合の断面模式図であって、図1AのF-F断面図である。これらの図中の、A、B、C、D、E、Hは、それぞれ、以下のとおりである。A:圧延方向に対する凸部の配列角度。B:凸部1つ分の長さ。C:凸部1つ分の最大幅。D:凸部1つ分の最小幅。E:凸部の配列ピッチ。H:凸部の高さ。 FIGS. 1A to 1C show the shape of a striped steel plate to be a base steel plate. FIG. 1A is a schematic view when a base steel plate of a hot-dip galvanized striped steel plate according to an embodiment of the present invention is viewed from the thickness direction. FIG. 1B is a schematic cross-sectional view of the base steel plate of the hot-dip galvanized striped steel plate according to the embodiment as viewed from a cut surface in which the thickness direction and the cutting direction are parallel. FIG. FIG. 1C is a schematic cross-sectional view of the base steel plate of the hot-dip galvanized striped steel plate according to the embodiment as viewed from a cut surface in which the thickness direction and the cutting direction are parallel. FIG. A, B, C, D, E and H in these figures are as follows, respectively. A: Alignment angle of convex portions with respect to the rolling direction. B: Length of one convex portion. C: Maximum width of one convex portion. D: Minimum width of one convex portion. E: Arrangement pitch of convex portions. H: Height of convex portion.
 次に、本実施形態に係る溶融めっき縞鋼板に関して、観察方法および測定方法を説明する。 Next, an observation method and a measurement method will be described with respect to the hot-dip galvanized steel sheet according to the present embodiment.
 溶融めっき縞鋼板の凸部および平面部は、溶融めっき縞鋼板の外観および断面を観察すればよい。例えば、溶融めっき縞鋼板の外観を厚さ方向から観察したとき、図1Aに示す縞鋼板と同等の外観である場合、溶融めっき縞鋼板に凸部および平面部が存在すると判断できる。 The convex portion and the flat portion of the hot-dip galvanized steel sheet may be observed in the appearance and the cross section of the hot-dip galvanized steel sheet. For example, when the appearance of the hot-dip galvanized striped steel sheet is observed from the thickness direction, it can be determined that a convex portion and a flat portion exist in the hot-dip galvanized striped steel sheet if the appearance is equivalent to that of the striped steel plate shown in FIG.
 より詳細には、溶融めっき縞鋼板を、図1AのG-G断面に対応する断面、すなわち、切断方向が厚さ方向と平行となる切断面であって、且つ凸部の中心点(重心)および凸部の長軸を含む切断面で観察して、凸部および平面部が存在するか否かを判断すればよい。例えば、この断面に現れる溶融めっき縞鋼板の輪郭曲線に対して、溶融めっき縞鋼板の平面部に対応する領域を基準として基準線を決定し、この基準線と輪郭曲線上で最も高い山の頂点との間の距離を求め、この距離が0.5mm以上ならば輪郭曲線上の山が凸部であると判断すればよい。この凸部が、鋼板を厚さ方向から観察したときに、100mm当たり1つ以上存在するとき、この鋼板が溶融めっき縞鋼板であると判断すればよい。 More specifically, the hot-dip galvanized striped steel sheet is a cross section corresponding to the GG cross section of FIG. 1A, that is, a cutting plane in which the cutting direction is parallel to the thickness direction and the center point (center of gravity) of the convex portion It may be observed on a cut surface including the major axis of the and the convex portion to determine whether or not the convex portion and the flat portion exist. For example, with respect to the contour curve of the hot-dip galvanized steel sheet appearing in this cross section, a reference line is determined on the basis of the region corresponding to the flat portion of the hot-dip galvanized steel sheet. If the distance is 0.5 mm or more, it may be determined that the peaks on the contour curve are convex. When one or more convex portions are present per 100 mm 2 when the steel plate is observed in the thickness direction, it may be determined that the steel plate is a hot-dip galvanized steel plate.
 溶融めっき縞鋼板に、母材鋼板、Niめっき層、溶融めっき層が存在するか否かは、FE-SEM(Field Emission Scanning Electron Microscope)またはTEM(Transmission Electron Microscope)で観察すればよい。例えば、切断方向が厚さ方向と平行となるように試験片を切り出し、この切断面の断面構造を、観察視野中に各層が入る倍率にてFE-SEMまたはTEMで観察すればよい。図2に、本実施形態に係る溶融めっき縞鋼板の断面構造の模式図を示す。 Whether or not the base steel plate, the Ni plating layer, and the hot-dip plating layer are present in the hot-dip galvanized steel sheet may be observed by a field emission scanning electron microscope (FE-SEM) or a transmission electron microscope (TEM). For example, the test piece may be cut out so that the cutting direction is parallel to the thickness direction, and the cross-sectional structure of the cut surface may be observed by FE-SEM or TEM at a magnification at which each layer is included in the observation field of view. FIG. 2 shows a schematic view of the cross-sectional structure of the hot-dip galvanized steel sheet according to the present embodiment.
 例えば、断面構造中の各層を同定するには、EDS(Energy Dispersive X-ray Spectroscopy)を用いて、20000倍の倍率で厚さ方向に沿って加速電圧を15kV、照射電流を10nA、ビーム径は約100nm弱、測定ピッチを0.025μm、対物レンズの絞り径を30μmφとして線分析を行い、Ni、Fe、Znの合計で100質量%として各層の化学組成の定量分析を行えばよい。この線分析の結果に対して測定ノイズを除去するために前後5点のデータを平均する移動平均処理をしてから、走査線上でNi濃度が50質量%以上となる領域を、Niめっき層であると判断すればよい。また、走査線上で同定した上記のNiめっき層を基準として、表面側の領域を溶融めっき層と判断し、内部側の領域を母材鋼板と判断すればよい。溶融めっき層はZn基合金であり、母材鋼板はFe基合金である。 For example, in order to identify each layer in the cross-sectional structure, the acceleration voltage is 15kV, the irradiation current is 10nA, the beam diameter is 10kA along the thickness direction at 20000 magnification using EDS (Energy Dispersive X-ray Spectroscopy). Linear analysis may be performed with about 100 nm less, a measurement pitch of 0.025 μm, and an aperture diameter of the objective lens of 30 μmφ, and quantitative analysis of the chemical composition of each layer may be performed with a total of 100% by mass of Ni, Fe and Zn. After moving average processing to average the data of 5 points before and after in order to remove the measurement noise to the result of this line analysis, the area where Ni concentration becomes 50 mass% or more on the scanning line is Ni plating layer It may be determined that there is. Further, the region on the surface side may be determined as the hot-dip plating layer, and the region on the inner side may be determined as the base steel plate, with the Ni plating layer identified on the scanning line as a reference. The hot-dip plating layer is a Zn-based alloy, and the base steel plate is a Fe-based alloy.
 凸部のNiめっき層の膜厚は、図1AのG-G断面に対応する断面にて、凸部のNiめっき層を同定し、その膜厚を測定すればよい。例えば、上記の断面にて、溶融めっき縞鋼板の輪郭曲線上で最も高い山の頂点を含むように厚さ方向に沿って線分析を行い、線分析の走査線上でNiめっき層を同定し、走査線上でのNiめっき層の線分を求め、この線分を凸部のNiめっき層の膜厚として採用すればよい。 The film thickness of the Ni plating layer of the convex portion may be determined by identifying the Ni plating layer of the convex portion in a cross section corresponding to the GG cross section of FIG. 1A. For example, in the above cross section, line analysis is performed along the thickness direction so as to include the top of the highest peak on the contour curve of the hot-dip galvanized steel sheet, and the Ni plating layer is identified on the scanning line of the line analysis; A line segment of the Ni plating layer on the scanning line may be obtained, and this line segment may be adopted as the film thickness of the Ni plating layer of the convex portion.
 平面部のNiめっき層の膜厚も、上記と同様に測定すればよい。例えば、図1AのG-G断面に対応する断面にて、凸部の端部から2mm以上離れた位置の平坦部で厚さ方向に沿って線分析を行い、線分析の走査線上でNiめっき層を同定し、走査線上でのNiめっき層の線分を求め、この線分を平面部のNiめっき層の膜厚として採用すればよい。 The film thickness of the Ni plating layer in the flat portion may be measured in the same manner as described above. For example, in the cross section corresponding to the GG cross section in FIG. 1A, line analysis is performed along the thickness direction at a flat portion at a position 2 mm or more away from the end of the convex portion. The layer may be identified, a line segment of the Ni plating layer on the scanning line may be determined, and this line segment may be adopted as the film thickness of the Ni plating layer in the flat portion.
 なお、凸部および平面部のNiめっき層の膜厚は、それぞれ少なくとも3箇所以上で測定し、その平均値を採用すればよい。また、凸部および平面部のNiめっき層の膜厚が0.3μm未満であるときは、SEMではなくTEMによって膜厚を求めることが好ましい。 In addition, the film thickness of the Ni plating layer of a convex part and a plane part may be measured in at least three or more places, respectively, and the average value may be adopted. In addition, when the film thickness of the Ni plating layer in the convex portion and the flat portion is less than 0.3 μm, it is preferable to obtain the film thickness not by SEM but by TEM.
 また、上記で求めた凸部および平面部のNiめっき層の膜厚に基づいて、平面部に対する凸部のNiめっき層の膜厚比(凸部の膜厚÷平面部の膜厚×100)を計算すればよい。 Moreover, based on the film thickness of the Ni plating layer of the convex part and the flat part obtained above, the film thickness ratio of the Ni plating layer of the convex part to the flat part (film thickness of convex part 凸 film thickness of flat part × 100) You can calculate
 溶融めっき層の化学組成および付着量は、ICP(Inductive Coupled Plasma:誘導結合プラズマ)発光分光分析法を用いて測定すればよい。例えば、溶融めっき縞鋼板の任意の箇所から30mm×30mmの大きさの試料を採取し、この試料からインヒビター(例えば、朝日化学工業製イビット、型番:イビット710-K、濃度:300ppm、なおppmはmg/kg)を添加した10%塩酸を用いてめっき層のみを酸洗剥離し、ICP定量分析を行って各元素の濃度を求め、各元素の濃度から溶融めっき層の化学組成および付着量を求めればよい。なお、上記の測定を少なくとも3箇所以上から採取した試料に対して実施し、その平均値を採用すればよい。 The chemical composition and the adhesion amount of the hot-dip plating layer may be measured using ICP (Inductive Coupled Plasma) emission spectroscopy. For example, a sample of 30 mm × 30 mm in size is taken from any part of a hot-dip galvanized steel sheet, and an inhibitor (eg, Asahi Chemical Industries Ibit, model number: Ibit 710-K, concentration: 300 ppm, ppm is Only the plating layer is pickled and peeled off using 10% hydrochloric acid added with mg / kg), ICP quantitative analysis is performed to determine the concentration of each element, and the chemical composition and adhesion amount of the hot-dip plating layer from the concentration of each element You just need to ask. In addition, what is necessary is to carry out said measurement with respect to the sample extract | collected from at least 3 or more places, and what is necessary is just to employ the average value.
 溶融めっき層の板面に対する被覆率は、溶融めっき縞鋼板を厚さ方向から観察して求めればよい。例えば、溶融めっき縞鋼板の任意の箇所から100mm×100mmの試料を採取し、厚さ方向からこの試料を観察し、試料面積中の不めっき領域の面積率を求めればよい。面積率は、画像解析ソフト(例えば、三谷商事製WinROOF)を使用して求めればよい。より詳細には、上記の100mm×100mmの試料をEDSまたはEPMA(Electron Probe Micro-Analyzer)で測定できる大きさに分割し、分割した各試料に対してEDSまたはEPMAを用いて面分析を行ってFe分布マップを求め、これらのFe分布マップから、試料面積中の不めっき領域(Fe濃度が20質量%以上となる領域)の面積率を求めればよい。この不めっき領域の面積率に基づいて、溶融めっき層の被覆率を求めればよい。 The coverage with respect to the plate surface of the hot-dip plating layer may be determined by observing the hot-dip galvanized steel sheet from the thickness direction. For example, a sample of 100 mm × 100 mm may be taken from any part of the hot-dip galvanized steel sheet, and this sample may be observed from the thickness direction to determine the area ratio of the unplated area in the sample area. The area ratio may be determined using image analysis software (for example, WinROOF manufactured by Mitani Corporation). More specifically, the 100 mm × 100 mm sample is divided into sizes that can be measured by EDS or EPMA (Electron Probe Micro-Analyzer), and surface analysis is performed on each of the divided samples using EDS or EPMA. The Fe distribution map may be obtained, and the area ratio of the non-plating area (the area where the Fe concentration is 20 mass% or more) in the sample area may be obtained from these Fe distribution maps. The coverage of the hot-dip plating layer may be determined based on the area ratio of the non-plating area.
 次に、本実施形態に係る溶融めっき縞鋼板の製造方法について詳細に説明する。 Next, a method of manufacturing the hot-dip galvanized steel sheet according to the present embodiment will be described in detail.
 本実施形態に係る溶融めっき縞鋼板の製造方法は、鋼板の圧延面に凸部と平面部とを付与する圧延工程と、圧延工程を経た鋼板にNiプレめっきを施すプレめっき工程と、プレめっき工程を経た鋼板に溶融めっきを施す溶融めっき工程と、を備える。プレめっき工程では、鋼板の圧延面と陽極面とを対向させて配置し、圧延面の凸部と陽極との極間距離を40~100mmに制御し、片面当たりのめっき付着量が平均で0.5~3g/mとなる条件で電気Niめっきを行う。また、溶融めっき工程では、鋼板を加熱し、質量%で、Al:1.0超26%以下、Mg:0.05~10%、Si:0~1.0%、Sn:0~3.0%、Ca:0~1.0%を含有し、残部がZnおよび不純物よりなる溶融めっき浴に鋼板を浸漬し、片面当たりのめっき付着量が平均で60~400g/mとなる条件で連続溶融めっきを行う。 In the method of manufacturing a hot-dip galvanized striped steel sheet according to the present embodiment, a rolling step of providing a convex portion and a flat portion on a rolled surface of a steel plate, a pre-plating step of applying Ni pre-plating to a steel plate subjected to the rolling step, and pre-plating And D. a hot-dip plating process for hot-dip plating a steel plate that has undergone the process. In the pre-plating step, the rolling surface and the anode surface of the steel plate are arranged to face each other, the distance between the projections of the rolling surface and the anode is controlled to 40 to 100 mm, and the plating adhesion amount per one side is 0 on average. Electro Ni plating is performed under conditions of 5 to 3 g / m 2 . Further, in the hot-dip plating process, the steel plate is heated, and Al: 1.0 to 26% or less, Mg: 0.05 to 10%, Si: 0 to 1.0%, Sn: 0 to 3% by mass. The steel sheet is immersed in a hot-dip plating bath containing 0%, Ca: 0 to 1.0%, the balance being Zn and impurities, and the plating adhesion amount per one side is 60 to 400 g / m 2 on average. Conduct continuous hot-dip plating.
 圧延工程では、鋼板の圧延面に凸部と平面部とを付与する。圧延条件は特に制限されないが、熱間圧延の仕上げ段階で、作動ロールに形成された凹形状を鋼板面に転写することで、鋼板の圧延面に凸部と平面部とを付与すればよい。熱間圧延により形状付与された縞鋼板は、酸洗等の前処理を行って、スケール等を除去する。必要に応じて鋼板表面にブラシ研削等を行ってもよい。 In the rolling process, a convex portion and a flat portion are provided on the rolling surface of the steel plate. The rolling conditions are not particularly limited, but the convex portion and the flat portion may be provided on the rolled surface of the steel sheet by transferring the concave shape formed on the working roll to the steel sheet surface at the finishing stage of hot rolling. The striped steel plate shaped by hot rolling is subjected to pretreatment such as pickling to remove scale and the like. Brush grinding or the like may be performed on the surface of the steel plate as necessary.
 プレめっき工程では、前処理された縞鋼板にNiプレめっきを施す。Niプレめっきは、生産性の観点や不純物元素の混入抑制の観点から、電気めっきを用いることが望ましい。電気めっきはワット浴やスルファミン酸浴等を用いる方法が例示される。 In the pre-plating step, the pre-treated striped steel plate is subjected to Ni pre-plating. It is desirable to use electroplating from the viewpoint of productivity and the viewpoint of suppression of mixing of an impurity element in Ni pre-plating. The electroplating is exemplified by a method using a watt bath, a sulfamic acid bath or the like.
 ワット浴を用いる方法であれば、好ましいNiめっき浴組成は、NiSO・6HO:250~350g/L、NaSO:50~150g/L、HBO:30~50g/L、pH:2~3.5、好ましい浴温は、50~70℃、好ましい陰極電流密度は、5~30A/dmである。具体的には、例えばNiSO・6HO:340g/L、NaSO:100g/L、HBO:45g/L、pH:2.5、温度:60℃、陰極電流密度:20A/dmが挙げられる。 In the case of a method using a watt bath, the preferred Ni plating bath composition is NiSO 4 .6H 2 O: 250 to 350 g / L, Na 2 SO 4 : 50 to 150 g / L, H 3 BO 3 : 30 to 50 g / L PH: 2 to 3.5, preferred bath temperature is 50 to 70 ° C., preferred cathodic current density is 5 to 30 A / dm 2 . Specifically, for example, NiSO 4 · 6H 2 O: 340 g / L, Na 2 SO 4 : 100 g / L, H 3 BO 3 : 45 g / L, pH: 2.5, temperature: 60 ° C., cathodic current density: 20 A / dm 2 can be mentioned.
 本実施形態では、溶融めっき工程での不めっき発生を防止するために、従前の方法に比べてNiプレめっきでのNi付着量を増加させる。ただ、溶融めっき層が損耗して凸部でNiめっき層が露出したとしても鋼板の腐食が抑制されるように、凸部での過剰なNi析出を回避する。 In the present embodiment, in order to prevent the occurrence of non-plating in the hot-dip plating process, the Ni adhesion amount in Ni pre-plating is increased as compared to the conventional method. However, even if the hot-dip plating layer is worn out and the Ni plating layer is exposed at the convex portion, excessive Ni precipitation at the convex portion is avoided so that the corrosion of the steel plate is suppressed.
 電気めっき槽(電解槽)では、通常、鋼帯を陰極とし、鋼板面に対向する形で陽極が配置される。鋼帯面と陽極とは平行であり、平行平板電極系で近似される。このような電解槽で縞鋼板に電気めっきを行うと、縞鋼板の凸部と陽極との極間距離が近接するため、凸部に電流集中が生じやすくなる。本実施形態では、縞鋼板の凸部への電流集中を抑制するため、極間距離(鋼帯面の凸部と陽極との距離)を大きくする。従来の条件では、電流分布の均一性を確保しつつ、電力コストを抑えるために、極間距離を40mm未満に設定していたが、本実施形態では、極間距離を40~100mmにする。極間距離が40mm未満であると凸部に電流集中が生じて、凸部のNiめっき層の厚みを所定範囲に制御することが困難となる。一方、極間距離が100mmを超えると、液抵抗に基づく電力ロスの増加を招く。極間距離の下限は、45mmであることが好ましく、50mmであることがさらに好ましい。極間距離の上限は、90mmであることが好ましく、85mmであることがさらに好ましい。 In an electroplating bath (electrolytic bath), usually, a steel strip is used as a cathode, and an anode is disposed to face the steel plate surface. The steel strip surface and the anode are parallel and approximated by a parallel plate electrode system. When electroplating is performed on the striped steel plate in such an electrolytic cell, the distance between the poles of the convex portion of the striped steel plate and the anode is close, so that current concentration easily occurs in the convex portion. In the present embodiment, the distance between the electrodes (the distance between the convex portion of the steel strip surface and the anode) is increased in order to suppress current concentration on the convex portion of the striped steel plate. In the conventional conditions, in order to reduce the power cost while securing the uniformity of the current distribution, the inter-electrode distance is set to less than 40 mm, but in the present embodiment, the inter-electrode distance is set to 40 to 100 mm. If the distance between the electrodes is less than 40 mm, current concentration occurs in the projections, making it difficult to control the thickness of the Ni plating layer of the projections within a predetermined range. On the other hand, if the distance between the electrodes exceeds 100 mm, an increase in power loss due to liquid resistance is caused. The lower limit of the distance between the electrodes is preferably 45 mm, and more preferably 50 mm. The upper limit of the distance between the electrodes is preferably 90 mm, and more preferably 85 mm.
 例えば、従来のように極間距離を40mm未満に設定して製造した溶融めっき縞鋼板では、平面部に対する凸部のNiめっき層の膜厚比(凸部の膜厚÷平面部の膜厚×100)が、2000%以上になる場合がある。それに対して、極間距離を40mm以上に設定して製造した溶融めっき縞鋼板では、平面部に対する凸部のNiめっき層の膜厚比を400%以下に制御しやすい。また、極間距離を45mm以上に設定すれば、溶融めっき縞鋼板としたときに、平面部に対する凸部のNiめっき層の膜厚比を300%以下に制御しやすい。 For example, in a hot-dip galvanized steel sheet manufactured by setting the distance between the electrodes to less than 40 mm as in the prior art, the film thickness ratio of the Ni plating layer of the convex to the flat (film thickness of the convex ÷ film thickness of the flat × 100) may be 2000% or more. On the other hand, in the hot-dip galvanized steel sheet manufactured by setting the distance between the electrodes to 40 mm or more, the film thickness ratio of the Ni plating layer of the convex portion to the flat portion can be easily controlled to 400% or less. In addition, when the distance between the electrodes is set to 45 mm or more, the thickness ratio of the Ni plating layer of the convex portion to the flat portion can be easily controlled to 300% or less when the hot-dip galvanized steel sheet is formed.
 プレめっき工程では、Niプレめっきの片面当たりの平均付着量を0.5~3g/mとする。平均付着量が0.5g/m未満では、溶融めっき後の縞鋼板の平面部のNiめっき層の膜厚が0.05μm未満となり、不めっきが発生しやすくなる。平均付着量が3g/mを超えると、溶融めっき後に凸部に残存するNiめっき層が過剰になり、凸部のNiめっき層の厚さを0.4μm以下にすることが困難になる。 In the pre-plating step, the average adhesion amount per side of Ni pre-plating is set to 0.5 to 3 g / m 2 . If the average adhesion amount is less than 0.5 g / m 2 , the film thickness of the Ni plating layer in the flat portion of the striped steel plate after hot-dip plating becomes less than 0.05 μm, and non-plating tends to occur. When the average adhesion amount exceeds 3 g / m 2 , the Ni plating layer remaining in the convex portions after hot-dip plating becomes excessive, and it becomes difficult to make the thickness of the Ni plating layer in the convex portions 0.4 μm or less.
 NiプレめっきのNi付着量は、Zn基合金の溶融めっき前に、以下の手順a~手順eに基づいて測定すればよい。
 手順a:Niプレめっきした鋼板を30質量%硝酸で溶解する(溶解液A)。
 手順b:手順aで使用した試料の近傍から試料を採取し、研削等でNiプレめっき層を除去した後30質量%硝酸で溶解する(溶解液B)。
 手順c:溶解液B中に溶解したFe量とNi量とをICPで求め、Fe量とNi量との比率を求める。
 手順d:溶解液A中に溶解したFe量をICPで求め、手順cで算出した比率から母材鋼板から溶解したNi量を求める。
 手順e:溶解液A中に溶解したNi量をICPで求め、手順dで算出した母材鋼板に由来するNi量を差し引いて、Niプレめっき層に由来するNi量を算出する。Niプレめっき層に由来するNi量を、単位面積当たりの付着量に換算する。
The Ni adhesion amount of Ni pre-plating may be measured based on the following procedures a to e before hot-dip plating of a Zn-based alloy.
Procedure a: Dissolve Ni pre-plated steel plate with 30% by mass nitric acid (dissolution solution A).
Procedure b: A sample is taken from the vicinity of the sample used in procedure a, and after removing the pre-plated Ni layer by grinding or the like, it is dissolved in 30% by mass nitric acid (solution B).
Procedure c: The amount of Fe and the amount of Ni dissolved in the solution B are determined by ICP, and the ratio of the amount of Fe to the amount of Ni is determined.
Procedure d: The amount of Fe dissolved in the solution A is determined by ICP, and the amount of Ni dissolved from the base steel plate is determined from the ratio calculated in the procedure c.
Step e: The amount of Ni dissolved in the solution A is determined by ICP, and the amount of Ni derived from the base steel plate calculated in step d is subtracted to calculate the amount of Ni derived from the pre-plated Ni layer. The amount of Ni derived from the Ni pre-plated layer is converted to the amount of adhesion per unit area.
 なお、電解槽の設計にも依るが、鋼帯の連続電気めっき設備では、鋼板の幅方向端部に電流集中によるエッジオーバーコートを生じる場合がある。そのため、上記の平均付着量を算定する場合、測定対象から鋼帯の幅方向端部(例えば両端から50mmの領域)を除外してもよい。 In addition, although it depends on the design of the electrolytic cell, an edge overcoat due to current concentration may occur at the width direction end of the steel plate in the continuous electroplating apparatus for steel strip. Therefore, when calculating said average adhesion amount, you may exclude the width direction edge part (for example, area | region of 50 mm from both ends) of a steel strip from a measuring object.
 溶融めっき工程では、Niプレめっきされた縞鋼板(鋼帯)を非酸化性雰囲気下で予熱した後、溶融めっき槽を連続的に通過させる(溶融めっき浴に連続的に浸漬する)。非酸化性雰囲気とは、例えば窒素と水素との混合ガス等である。予熱温度は、[めっき浴の温度+10℃]~[めっき浴の温度+50℃]の範囲が好ましい。予熱温度が低いと不めっきが多発しやすい。予熱に当たっては、鋼板が350℃以上である時間が40sec以下であるように急速加熱することが好ましい。鋼板が350℃以上である時間を短くすることで、Niが母材鋼板に拡散するのを抑制できるので、不めっき防止のためのNiプレめっき量を十分に確保できる。 In the hot-dip plating process, after preheating a Ni pre-plated striped steel plate (steel strip) in a non-oxidizing atmosphere, the hot-dip plating bath is continuously passed (continuously immersed in the hot-dip plating bath). The non-oxidizing atmosphere is, for example, a mixed gas of nitrogen and hydrogen. The preheating temperature is preferably in the range of [temperature of plating bath + 10 ° C.] to [temperature of plating bath + 50 ° C.]. When the preheating temperature is low, non-plating tends to occur frequently. In preheating, it is preferable to rapidly heat the steel plate so that the time for which the temperature is 350 ° C. or more is 40 seconds or less. Since the diffusion of Ni into the base steel plate can be suppressed by shortening the time during which the steel plate is 350 ° C. or more, the amount of Ni pre-plating for preventing non-plating can be sufficiently secured.
 非酸化性雰囲気で予熱された縞鋼板は、Al:1.0%超かつ26%以下、Mg:0.05~10%、必要に応じてSi:0~1.0%、Sn:0~3.0%、Ca:0~1.0%を含む、溶融亜鉛基合金のめっき浴を通過させる(溶融めっき浴に浸漬する)。めっき浴の温度は、[Zn基合金溶湯の融点+20℃]~[Zn基合金溶湯の融点+50℃]の範囲が好ましい。縞鋼板はめっき浴中で、好ましくは1~6sec浸漬された後、ワイピングされ、必要に応じて気水スプレー等で冷却する。 Al: more than 1.0% and 26% or less, Mg: 0.05 to 10%, if necessary Si: 0 to 1.0%, Sn: 0 to Passing (immersing in a hot-dip plating bath) a hot-dip zinc-based alloy plating bath containing 3.0%, Ca: 0 to 1.0%. The temperature of the plating bath is preferably in the range of [melting point + 20 ° C. of molten Zn-based alloy] to [melting point + 50 ° C. of molten Zn-based alloy]. The striped steel plate is dipped in a plating bath, preferably for 1 to 6 seconds, and then wiped, and optionally cooled by an air-water spray or the like.
 溶融めっき工程では、溶融めっき層の片面当たりの平均付着量を60~400g/mとする。平均付着量が60g/m未満では、耐食性が不十分になることがある。平均付着量が400g/m超では、溶融めっき層の過剰な付着によってめっき垂れが著しくなり外観を損なうことがある。 In the hot-dip plating process, the average adhesion amount per one side of the hot-dip plating layer is set to 60 to 400 g / m 2 . If the average adhesion amount is less than 60 g / m 2 , the corrosion resistance may be insufficient. When the average adhesion amount is more than 400 g / m 2 , excessive deposition of the hot-dip plating layer may cause significant plating sag and damage the appearance.
 溶融めっき浴の化学組成、および溶融めっきの付着量は、上記と同様に、ICP発光分光分析法を用いて測定すればよい。なお、溶融めっき浴の化学組成は、溶融めっき縞鋼板から採取した試料ではなく、溶融めっき浴から採取した試料に基づいてICP測定を行ってもよい。 The chemical composition of the hot-dip plating bath and the adhesion amount of hot-dip plating may be measured using ICP emission spectroscopy in the same manner as described above. The chemical composition of the hot-dip plating bath may be ICP measurement based on a sample collected from the hot-dip plating bath, not a sample collected from the hot-dip galvanized steel sheet.
 次に、実施例により本発明の一態様の効果を更に具体的に詳細に説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。 Next, the effects of one aspect of the present invention will be described in more detail by way of examples, but the conditions in the examples are one example of conditions adopted to confirm the feasibility and effects of the present invention. However, the present invention is not limited to this one condition example. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the scope of the present invention.
 めっき原板として、2.3mm厚さの熱延縞鋼板を使用した。
 この縞鋼板(母材鋼板)の形状は、図1A~図1Cと同等であった。図中では、A、B、C、D、E、Hは、それぞれ、以下のとおりである。
 A:圧延方向に対する凸部の配列角度。
 B:凸部1つ分の長さ。
 C:凸部1つ分の最大幅。
 D:凸部1つ分の最小幅。
 E:凸部の配列ピッチ。
 H:凸部の高さ。
 この縞鋼板は、熱延Alキルド鋼であり、角度A=45°、幅C=5.1mm、長さB=25.3mm、高さH=1.5mm、ピッチE=28.6mmであった。このように凸部が規則的に配列した縞鋼板を、酸洗し、各種の極間距離でNiプレめっきを行い、Niの平均付着量を変化させた。表1および表2にNiプレめっきの条件を示す。電解効率は約80%であった。得られた縞鋼板は、図2に示すような断面構造を有していた。
A 2.3 mm thick hot-rolled steel plate was used as a plating base plate.
The shape of this striped steel plate (base steel plate) was equivalent to that of FIGS. 1A to 1C. In the figure, A, B, C, D, E and H are as follows respectively.
A: Alignment angle of convex portions with respect to the rolling direction.
B: Length of one convex portion.
C: Maximum width of one convex portion.
D: Minimum width of one convex portion.
E: Arrangement pitch of convex portions.
H: Height of convex portion.
This striped steel plate is a hot-rolled Al-killed steel and has an angle A = 45 °, a width C = 5.1 mm, a length B = 25.3 mm, a height H = 1.5 mm, and a pitch E = 28.6 mm. The As described above, the striped steel plate in which the convex portions are regularly arranged is pickled, and Ni pre-plating is performed at various distances between the electrodes to change the average adhesion amount of Ni. Tables 1 and 2 show the conditions for Ni pre-plating. The electrolysis efficiency was about 80%. The obtained striped steel plate had a cross-sectional structure as shown in FIG.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 Niプレめっきされた鋼板に対して、表2に示すZn基合金の溶融めっき浴を用いてZn基合金の溶融めっきを行った。表2にZn基合金の溶融めっき浴の温度を併記した。Zn基合金の溶融めっきを行うに当たって、鋼板を非酸化性雰囲気(N-2%H)中で昇温速度10℃/secでZn基合金のめっき浴温度+30℃まで加熱し、上記雰囲気中でめっき浴温度+10℃まで冷却後、めっき浴に鋼板を浸漬した。浸漬時間は3secとし、溶融めっき装置出側の溶融めっき付着量調整装置により溶融めっき付着量を調整した。 Hot-dip plating of a Zn-based alloy was performed using a hot-dip plating bath of a Zn-based alloy shown in Table 2 on a Ni pre-plated steel plate. Table 2 also shows the temperature of the Zn-based alloy hot-dip plating bath. In hot-dip plating of a Zn-based alloy, the steel plate is heated to a plating bath temperature of + 30 ° C. in a non-oxidizing atmosphere (N 2 -2% H 2 ) at a heating rate of 10 ° C./sec. After cooling to a plating bath temperature of + 10 ° C., the steel sheet was immersed in the plating bath. The immersion time was 3 seconds, and the hot-dip deposition adhesion adjustment was adjusted by the hot-dip deposition adhesion adjustment device on the hot-dip plating apparatus outlet side.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 得られた溶融めっき縞鋼板に関し、上記した観察・測定の方法に基づいて、断面構造に母材鋼板、Niめっき層、溶融めっき層が存在することを確認し、板面に凸部と平面部とを有することを確認した。また、凸部のNiめっき層の膜厚、平面部のNiめっき層の膜厚、平面部に対する凸部のNiめっき層の膜厚比(凸部の膜厚÷平面部の膜厚×100)、溶融めっき層の付着量、溶融めっき層の化学組成、溶融めっき層の被覆率、NiプレめっきのNi付着量、溶融めっき浴の化学組成などを測定した。 Regarding the obtained hot-dip galvanized steel sheet, based on the observation and measurement method described above, it is confirmed that the base steel sheet, the Ni plating layer, and the hot-dip plating layer are present in the cross-sectional structure. It confirmed that it had. In addition, the film thickness of the Ni plating layer of the convex portion, the film thickness of the Ni plating layer of the flat portion, and the film thickness ratio of the Ni plating layer of the convex portion to the flat portion (film thickness of the convex portion 膜厚 film thickness of the flat portion × 100) The adhesion amount of the hot-dip plating layer, the chemical composition of the hot-dip plating layer, the coverage of the hot-dip plating layer, the Ni adhesion amount of Ni pre-plating, the chemical composition of the hot-dip plating bath, etc. were measured.
 また、得られた溶融めっき縞鋼板を、以下の方法に基づいて評価した。 Moreover, the obtained hot-dip galvanized steel sheet was evaluated based on the following method.
 摩耗後の腐食試験
 100mm×50mmの試料の上に5mmの厚さのスチレンブタジエンゴムを張り付けた鋼板を置き、その上に1kgの重りを載せて横方向に往復振動(ストローク:30mm、往復回数1000回)を与えてめっきを摩耗させた。摩耗させた鋼板を、暴露架台に地面に対し45°の傾きで南向きに暴露し、雨に当たる環境で1回/週の頻度で5%NaCl水溶液を1回あたり20ml散布する試験を1ヵ月継続した。1ヵ月継続後に、凸部近傍の赤錆発生面積率を評価した。赤錆発生面積率の評価は、三谷商事製WinROOF(画像解析ソフト)を使用し、赤錆発生部の面積を測定して面積率を計算した。赤錆発生部は色抽出で赤錆の色を抽出することで面積率を測定した。赤錆発生面積率が5%以上の場合に、摩耗後の耐食性が不良であると判定した。表中では、赤錆発生面積率:5%未満を「Good」、赤錆発生面積率:5%以上を「Bad」で示す。
Corrosion test after abrasion A steel plate pasted with 5 mm thick styrene butadiene rubber is placed on a 100 mm × 50 mm sample, a 1 kg weight is placed on it, and it is reciprocated in the horizontal direction (stroke: 30 mm, reciprocation number 1000) Times) to wear the plating. The exposed steel plate is exposed southward at a 45 ° inclination to the ground in the exposure frame, and the test is continued for one month with a 20 ml solution of 5% aqueous NaCl solution once a week in a rainy environment. did. After continuing for one month, the area rate of red rust generation near the convex portion was evaluated. The evaluation of the area rate of occurrence of red rust was performed by using WinROOF (image analysis software) manufactured by Mitani Corporation, and the area rate was calculated by measuring the area of the red rust occurrence part. The red rust generation part measured the area ratio by extracting the color of red rust by color extraction. It was judged that the corrosion resistance after abrasion was poor when the rate of occurrence of red rust was 5% or more. In the table, the ratio of red rust occurrence area: less than 5% is indicated by “Good”, and the percentage of red rust generation area: 5% or more by “Bad”.
 めっき外観
 100mm角の試料を用意し、厚さ方向からめっき表面を観察し、ドロスに由来してめっき外観が劣化している領域の面積率(「ドロス面積率」と呼ぶ)を、三谷商事製WinROOF(画像解析ソフト)を用いて測定した。ドロス面積率が20%以上の場合に、めっき外観が不良であると判定した。表中では、ドロス面積率:20%未満を「Good」、ドロス面積率:20%以上を「Bad」で示す。
Plating appearance A 100 mm square sample is prepared, and the plating surface is observed from the thickness direction, and the area ratio (referred to as "dross area ratio") of the area where the plating appearance is deteriorated due to dross is made by Mitani Corporation. It measured using WinROOF (image analysis software). When the dross area ratio was 20% or more, it was determined that the plating appearance was poor. In the table, the dross area ratio: less than 20% is indicated by “Good”, and the dross area ratio: 20% or more by “Bad”.
 加工性
 試料を90°にV曲げ後、曲げ加工部の外側に日東電工製ポリエステル粘着テープを貼り付け、テープを剥がした後、テープにめっき層からの剥離物が付着しているか否かを確認した。テープにめっき層からの剥離物が付着した場合に、加工性が不良であると判定した。表中では、剥離物なしの場合を「Good」、剥離物ありの場合を「Bad」で示す。
Processability After bending the sample to 90 °, attach a polyester adhesive tape made by Nitto Denko to the outside of the bending part, and after peeling off the tape, check whether the peeling material from the plating layer is attached to the tape did. When the peeling material from the plating layer adhered to the tape, it was determined that the processability was poor. In the table, the case without the release is indicated by "Good", and the case with the release is indicated by "Bad".
 表3に、製造した溶融めっき縞鋼板の製造結果および評価結果を示す。なお、表3中に示す「Niめっき層の膜厚比」は、平面部に対する凸部のNiめっき層の膜厚比(凸部の膜厚÷平面部の膜厚×100)を意味する。 Table 3 shows the manufacturing results and the evaluation results of the manufactured hot-dip galvanized steel sheet. The “film thickness ratio of the Ni plating layer” shown in Table 3 means the film thickness ratio of the Ni plating layer of the convex portion to the plane portion (film thickness of the convex portion / film thickness of the plane portion × 100).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 比較例1は、Niプレめっきを施す際の電極間の距離が適正でないため、凸部のNiめっき層の膜厚が0.4μmを超え、平面部のNiめっき層の膜厚が0.05μmに満たなかった。その結果、不めっきによるめっき不良が発生し、摩耗後の腐食試験において十分な耐食性を得ることができなかった。
 比較例2は、Niプレめっきの付着量が少ないため、縞鋼板の平面部のNiめっき層の膜厚が不足した。その結果、不めっきによるめっき不良が発生し、十分な耐食性を得ることができなかった。
 比較例3は、Niプレめっきの付着量が多いため、凸部のNiめっき層の膜厚が0.4μmを超えた。その結果、摩耗後の腐食試験において十分な耐食性を得ることができなかった。
 比較例4は、Zn基合金の溶融めっき層のAl量が少ないため、十分な耐食性を得ることができず、まためっき外観も不良であった。
 比較例5は、Zn基合金の溶融めっき層のAl量が多いため、めっき外観が不良となり、加工性も十分ではなく、工業的に好ましくない溶融めっき縞鋼板となった。
 比較例6は、Zn基合金の溶融めっき層のMg量が少ないため、十分な耐食性を得ることができなかった。
 比較例7は、Zn基合金の溶融めっき層のMg量が多いため、めっき外観が不良となり、工業的に好ましくない溶融めっき縞鋼板となった。
 比較例8は、Zn基合金の溶融めっき層の付着量が少ないため、十分な耐食性を得ることができなかった。
 これに対し、実施例1~10では、不めっきの発生が抑制され、且つ摩耗後にも十分な耐食性を有していた。加えて、めっき外観および加工性も満足した。
In Comparative Example 1, since the distance between the electrodes at the time of applying Ni pre-plating is not appropriate, the thickness of the Ni plating layer in the convex portion exceeds 0.4 μm, and the thickness of the Ni plating layer in the flat portion is 0.05 μm. It did not reach. As a result, a plating failure due to non-plating occurs, and sufficient corrosion resistance can not be obtained in the corrosion test after wear.
In Comparative Example 2, since the adhesion amount of Ni pre-plating was small, the film thickness of the Ni plating layer in the flat portion of the striped steel plate was insufficient. As a result, a plating failure due to non-plating occurs, and sufficient corrosion resistance can not be obtained.
In Comparative Example 3, since the adhesion amount of Ni pre-plating was large, the film thickness of the Ni plating layer in the convex portion exceeded 0.4 μm. As a result, sufficient corrosion resistance could not be obtained in the corrosion test after abrasion.
In Comparative Example 4, because the amount of Al in the hot-dip plating layer of the Zn-based alloy is small, sufficient corrosion resistance can not be obtained, and the plating appearance is also poor.
In Comparative Example 5, since the amount of Al in the hot-dip plating layer of the Zn-based alloy is large, the plating appearance is poor, the processability is not sufficient, and the hot-dip galvanized steel sheet is industrially undesirable.
In Comparative Example 6, sufficient corrosion resistance could not be obtained because the amount of Mg in the hot-dip plating layer of the Zn-based alloy is small.
In Comparative Example 7, since the amount of Mg in the hot-dip plating layer of the Zn-based alloy is large, the plating appearance is poor, and the hot-dip galvanized steel sheet is industrially undesirable.
In Comparative Example 8, since the adhesion amount of the hot-dip plating layer of the Zn-based alloy is small, sufficient corrosion resistance can not be obtained.
On the other hand, in Examples 1 to 10, the occurrence of non-plating was suppressed and corrosion resistance was sufficient even after abrasion. In addition, the plating appearance and processability were also satisfactory.
 本発明の上記態様によれば、不めっきの発生が抑制され、且つ溶融めっき層が損耗してNiめっき層が露出したときの腐食も抑制された溶融めっき縞鋼板およびその製造方法を提供することができる。よって、産業上の利用可能性が高い。 According to the above aspect of the present invention, it is possible to provide a hot-dip galvanized striped steel sheet in which the occurrence of non-plating is suppressed and the corrosion when the hot-dip plating layer is worn and the Ni plating layer is exposed is suppressed. Can. Therefore, industrial applicability is high.
  1…凸部、
  2…平面部、
  3…Zn基合金の溶融めっき層、
  4…Niめっき層、
  5…母材鋼板
1 ... convex part,
2 flat part,
3 ... Hot-dip plating layer of Zn-based alloy,
4 ... Ni plating layer,
5 ... base material steel plate

Claims (8)

  1.  母材鋼板と、前記母材鋼板の表面に配されたNiめっき層と、前記Niめっき層の表面に配された溶融めっき層とを有し、板面に凸部と平面部とを有する溶融めっき縞鋼板であって、
     前記凸部の前記Niめっき層の膜厚が片面当たり0.07~0.4μmであり、
     前記平面部の前記Niめっき層の膜厚が片面当たり0.05~0.35μmであり、
     前記凸部の前記Niめっき層の前記膜厚が、前記平面部の前記Niめっき層の前記膜厚に対して、100%超400%以下であり、
     前記溶融めっき層の付着量が片面当たり60~400g/mであり、
     前記溶融めっき層が、化学組成として、質量%で、Al:1.0%超26%以下、Mg:0.05~10%、Si:0~1.0%、Sn:0~3.0%、Ca:0~1.0%を含み、残部がZnおよび不純物よりなる、ことを特徴とする溶融めっき縞鋼板。
    A base plate steel plate, a Ni plating layer disposed on the surface of the base plate steel plate, and a hot-dip plating layer disposed on the surface of the Ni plating layer, and melting having a convex portion and a flat portion on the plate surface Plated striped steel plate,
    The film thickness of the Ni plating layer on the convex portion is 0.07 to 0.4 μm per one side,
    The film thickness of the Ni plating layer on the flat portion is 0.05 to 0.35 μm per one side,
    The thickness of the Ni plating layer of the convex portion is more than 100% and 400% or less of the thickness of the Ni plating layer of the flat portion,
    The adhesion amount of the hot-dip plating layer is 60 to 400 g / m 2 per one side,
    Al: 1.0% or more and 26% or less, Mg: 0.05 to 10%, Si: 0 to 1.0%, Sn: 0 to 3.0% by mass as a chemical composition of the hot-dip plating layer %, Ca: 0 to 1.0%, the balance being Zn and impurities, characterized in that the hot-dip galvanized steel sheet.
  2.  前記凸部の前記Niめっき層の前記膜厚が、前記平面部の前記Niめっき層の前記膜厚に対して、100%超300%以下である、ことを特徴とする請求項1に記載の溶融めっき縞鋼板。 The film thickness of the Ni plating layer of the convex portion is more than 100% and 300% or less with respect to the film thickness of the Ni plating layer of the flat portion. Hot-dip galvanized steel plate.
  3.  前記凸部の前記Niめっき層の前記膜厚が片面当たり0.07~0.3μmである、ことを特徴とする請求項1または請求項2に記載の溶融めっき縞鋼板。 The hot-dip galvanized striped steel sheet according to claim 1 or 2, wherein the film thickness of the Ni plating layer of the convex portion is 0.07 to 0.3 μm per one surface.
  4.  前記溶融めっき層が、前記化学組成として、質量%で、Al:4.0~25.0%、Mg:1.5~8.0%を含む、ことを特徴とする請求項1~請求項3のいずれか1項に記載の溶融めっき縞鋼板。 The said hot-dip plating layer contains Al: 4.0-25.0% and Mg: 1.5-8.0% by mass% as said chemical composition, It is characterized by the above-mentioned. The hot-dip galvanized striped steel sheet according to any one of 3.
  5.  前記溶融めっき層が、前記化学組成として、質量%で、Si:0.05~1.0%、Sn:0.1~3.0%、Ca:0.01~1.0%のうちの少なくとも1つを含む、ことを特徴とする請求項1~請求項4のいずれか1項に記載の溶融めっき縞鋼板。 The hot-dip plating layer is composed of Si: 0.05 to 1.0%, Sn: 0.1 to 3.0%, Ca: 0.01 to 1.0% by mass as the chemical composition. The hot-dip galvanized steel sheet according to any one of claims 1 to 4, comprising at least one.
  6.  厚さ方向から見たとき、前記溶融めっき層の被覆率が板面に対して面積%で99~100%である、ことを特徴とする請求項1~請求項5のいずれか1項に記載の溶融めっき縞鋼板。 The coverage of the said hot-dipped layer is 99 to 100% by area% with respect to a plate surface, when it sees from thickness direction, It is characterized by the above-mentioned. Hot-dip galvanized steel plate.
  7.  請求項1~請求項6のいずれか1項に記載の溶融めっき縞鋼板の製造方法であって、
     鋼板の圧延面に凸部と平面部とを付与する圧延工程と、
     前記圧延工程を経た鋼板にNiプレめっきを施すプレめっき工程と、
     前記プレめっき工程を経た鋼板に溶融めっきを施す溶融めっき工程と、
    を備え、
     前記プレめっき工程では、鋼板の圧延面と陽極面とを対向させて配置し、前記圧延面の凸部と陽極との極間距離を40~100mmに制御し、片面当たりのめっき付着量が平均で0.5~3g/mとなる条件で電気Niめっきを行い、
     前記溶融めっき工程では、鋼板を加熱し、質量%で、Al:1.0超26%以下、Mg:0.05~10%、Si:0~1.0%、Sn:0~3.0%、Ca:0~1.0%を含有し、残部がZnおよび不純物よりなる溶融めっき浴に鋼板を浸漬し、片面当たりのめっき付着量が平均で60~400g/mとなる条件で連続溶融めっきを行う、
    ことを特徴とする溶融めっき縞鋼板の製造方法。
    A method of manufacturing a hot-dip galvanized steel sheet according to any one of claims 1 to 6,
    A rolling process for applying a convex portion and a flat portion to a rolled surface of a steel plate;
    Pre-plating step of applying Ni pre-plating to the steel plate which has passed through the rolling step;
    A hot-dip plating process of subjecting the steel plate that has undergone the pre-plating process to hot-dip plating;
    Equipped with
    In the pre-plating step, the rolling surface and the anode surface of the steel plate are disposed to face each other, the distance between the projections of the rolling surface and the anode is controlled to 40 to 100 mm, and the plating adhesion amount per one surface is average Perform electrolytic Ni plating under the conditions of 0.5 to 3 g / m 2
    In the hot-dip plating process, the steel plate is heated, and by mass%, Al: more than 1.0 and 26% or less, Mg: 0.05 to 10%, Si: 0 to 1.0%, Sn: 0 to 3.0 The steel sheet is immersed in a hot-dip plating bath containing 0%, Ca: 0 to 1.0%, the balance being Zn and impurities, and the plating coverage per side is on average 60 to 400 g / m 2 on an average Do hot-dip plating,
    A method of producing a hot-dip galvanized steel sheet, characterized in that
  8.  前記プレめっき工程で、前記極間距離を45~100mmに制御する、ことを特徴とする請求項7に記載の溶融めっき縞鋼板の製造方法。 8. The method according to claim 7, wherein the distance between the electrodes is controlled to 45 to 100 mm in the pre-plating step.
PCT/JP2018/034188 2017-09-15 2018-09-14 Hot-dip plated checkered plate and manufacturing method thereof WO2019054483A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
SG11202002217XA SG11202002217XA (en) 2017-09-15 2018-09-14 Hot-dipped checkered steel plate and manufacturing method thereof
KR1020207009277A KR102346426B1 (en) 2017-09-15 2018-09-14 Hot-dip galvanized striped steel sheet and manufacturing method thereof
BR112020004763-5A BR112020004763A2 (en) 2017-09-15 2018-09-14 hot-immersed checkered steel plate and method of manufacturing it
CN201880059381.7A CN111094613B (en) 2017-09-15 2018-09-14 Hot-dip coated textured steel sheet and method for producing same
JP2019542309A JP6669316B2 (en) 2017-09-15 2018-09-14 Hot-dip coated striped steel sheet and method for producing the same
PH12020500490A PH12020500490A1 (en) 2017-09-15 2020-03-11 Hot-dipped checkered steel plate and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017178011 2017-09-15
JP2017-178011 2017-09-15

Publications (1)

Publication Number Publication Date
WO2019054483A1 true WO2019054483A1 (en) 2019-03-21

Family

ID=65722799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034188 WO2019054483A1 (en) 2017-09-15 2018-09-14 Hot-dip plated checkered plate and manufacturing method thereof

Country Status (8)

Country Link
JP (1) JP6669316B2 (en)
KR (1) KR102346426B1 (en)
CN (1) CN111094613B (en)
BR (1) BR112020004763A2 (en)
PH (1) PH12020500490A1 (en)
SG (1) SG11202002217XA (en)
TW (1) TWI690621B (en)
WO (1) WO2019054483A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021004403A (en) * 2019-06-27 2021-01-14 日本製鉄株式会社 Plated steel, and method for producing plated steel
WO2022215694A1 (en) 2021-04-06 2022-10-13 日本製鉄株式会社 Zn-al-mg plated checkered steel plate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114807739A (en) * 2021-01-28 2022-07-29 宝山钢铁股份有限公司 Aluminum-plated steel plate, hot-formed part and manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0378050U (en) * 1989-11-30 1991-08-07
JPH0681170A (en) * 1992-09-02 1994-03-22 Nippon Steel Corp Checkered steel sheet excellent in workability and corrosion resistance
JPH11279732A (en) * 1998-03-30 1999-10-12 Nisshin Steel Co Ltd Galvanized banded steel plate excellent in resistances to flawing, wearing and corrosion

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2825724B2 (en) 1993-02-23 1998-11-18 新日本製鐵株式会社 Striped steel sheet with excellent workability and corrosion resistance
JP2000064012A (en) * 1998-08-13 2000-02-29 Nippon Steel Corp HOT DIP Zn-Mg-Al PLATED STEEL SHEET EXCELLENT IN DESIGNING PROPERTY
EP1354970B1 (en) * 2000-12-29 2011-02-16 Nippon Steel Corporation High-strength molten-zinc-plated steel plate excellent in deposit adhesion and suitability for press forming and process for producing the same
JP2005082834A (en) * 2003-09-05 2005-03-31 Nippon Steel Corp Highly corrosion-resistant hot-dip plating steel sheet and manufacturing method therefor
JP4473587B2 (en) * 2004-01-14 2010-06-02 新日本製鐵株式会社 Hot-dip galvanized high-strength steel sheet with excellent plating adhesion and hole expandability and its manufacturing method
CA2605486C (en) * 2005-04-20 2010-12-14 Nippon Steel Corporation Hot dip galvannealed steel sheet and method of production of the same
JP5119465B2 (en) * 2006-07-19 2013-01-16 新日鐵住金株式会社 Alloy having high amorphous forming ability and alloy plating metal material using the same
JP4987510B2 (en) * 2007-03-01 2012-07-25 新日本製鐵株式会社 Alloyed hot-dip galvanized steel sheet with excellent paint sharpness and press formability and method for producing the same
PL2474639T3 (en) * 2009-08-31 2019-09-30 Nippon Steel & Sumitomo Metal Corporation High-strength galvannealed steel sheet
EP2495347B1 (en) * 2009-10-26 2018-10-10 Nippon Steel & Sumitomo Metal Corporation Alloyed hot-dip galvanized steel sheet and manufacturing method therefor
JP5454706B2 (en) * 2011-07-20 2014-03-26 新日鐵住金株式会社 panel
KR101359107B1 (en) * 2011-12-08 2014-02-06 주식회사 포스코 Galvanized steel sheet having excellent coatibility and coating adhesion and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0378050U (en) * 1989-11-30 1991-08-07
JPH0681170A (en) * 1992-09-02 1994-03-22 Nippon Steel Corp Checkered steel sheet excellent in workability and corrosion resistance
JPH11279732A (en) * 1998-03-30 1999-10-12 Nisshin Steel Co Ltd Galvanized banded steel plate excellent in resistances to flawing, wearing and corrosion

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021004403A (en) * 2019-06-27 2021-01-14 日本製鉄株式会社 Plated steel, and method for producing plated steel
JP7315826B2 (en) 2019-06-27 2023-07-27 日本製鉄株式会社 Plated steel and method for producing plated steel
WO2022215694A1 (en) 2021-04-06 2022-10-13 日本製鉄株式会社 Zn-al-mg plated checkered steel plate
KR20230155533A (en) 2021-04-06 2023-11-10 닛폰세이테츠 가부시키가이샤 Zn-Al-Mg plated striped steel sheet

Also Published As

Publication number Publication date
BR112020004763A2 (en) 2020-09-15
KR20200044936A (en) 2020-04-29
CN111094613B (en) 2021-08-31
TW201920714A (en) 2019-06-01
TWI690621B (en) 2020-04-11
JPWO2019054483A1 (en) 2020-03-26
PH12020500490A1 (en) 2021-03-01
JP6669316B2 (en) 2020-03-18
KR102346426B1 (en) 2022-01-04
SG11202002217XA (en) 2020-04-29
CN111094613A (en) 2020-05-01

Similar Documents

Publication Publication Date Title
JP7312142B2 (en) Zinc alloy plated steel material with excellent weldability and corrosion resistance of processed parts, and method for producing the same
KR101368990B1 (en) HOT-DIP Zn-Al-Mg-Si-Cr ALLOY COATED STEEL MATERIAL WITH EXCELLENT CORROSION RESISTANCE
JP6368730B2 (en) Molten Al-Zn-Mg-Si plated steel sheet and method for producing the same
JPWO2020179147A1 (en) Fused Al-Zn-Mg-Si-Sr plated steel sheet and its manufacturing method
KR101714935B1 (en) Zn ALLOY PLATED STEEL SHEET HAVING EXCELLENT WELDABILITY AND PROCESSED PART CORROSION RESISTANCE AND METHOD FOR MANUFACTURING SAME
JP5994856B2 (en) Molten Al-Zn-based plated steel sheet and method for producing the same
KR101665883B1 (en) Zn ALLOY PLATED STEEL SHEET HAVING EXCELLENT CORROSION RESISTANCE AND BENDABILITY AND METHOD FOR MANUFACTURING SAME
JP2015214747A (en) MOLTEN Al-Zn-BASED PLATED SHEET STEEL, AND PRODUCTION METHOD THEREOF
JP2016166415A (en) MOLTEN Al-Zn-Mg-Si PLATED SHEET STEEL AND PRODUCTION METHOD THEREOF
JP6669316B2 (en) Hot-dip coated striped steel sheet and method for producing the same
JP2015214749A (en) MOLTEN Al-Zn-BASED PLATED SHEET STEEL, AND PRODUCTION METHOD THEREOF
JP2013248645A (en) Hot press-formed member having high strength and high corrosion resistance
JP2009120948A (en) Alloy plated steel member having excellent corrosion resistance and weldability
JP5532086B2 (en) Hot-dip galvanized steel pipe
KR101657843B1 (en) Zn ALLOY PLATED STEEL SHEET HAVING EXCELLENT WELDABILITY AND PROCESSED PART CORROSION RESISTANCE AND METHOD FOR MANUFACTURING THE SAME
JP7453583B2 (en) Al-plated hot stamping steel material
EP4079923A1 (en) Hot dip alloy coated steel material having excellent anti-corrosion properties and method of manufacturing same
JP6480132B2 (en) Al-plated steel sheet
JP6493472B2 (en) Manufacturing method of hot press-formed member
JP6089895B2 (en) Alloyed hot-dip galvanized steel sheet with excellent chipping resistance
JP6771749B2 (en) Multi-layer plated steel sheet and its manufacturing method
JP7265217B2 (en) Galvanized steel sheet for hot stamping
JP6337711B2 (en) Fused Al-based plated steel sheet
JP2016060946A (en) MOLTEN Al-BASED PLATED SHEET STEEL
JPH11158594A (en) Hot dip galvanized steel plate excellent in corrosion resistance and plating adhesion, and its production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18855494

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019542309

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020004763

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20207009277

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112020004763

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200310

122 Ep: pct application non-entry in european phase

Ref document number: 18855494

Country of ref document: EP

Kind code of ref document: A1