WO2019054016A1 - Characteristic value measurement device, method, and program using color image - Google Patents

Characteristic value measurement device, method, and program using color image Download PDF

Info

Publication number
WO2019054016A1
WO2019054016A1 PCT/JP2018/025080 JP2018025080W WO2019054016A1 WO 2019054016 A1 WO2019054016 A1 WO 2019054016A1 JP 2018025080 W JP2018025080 W JP 2018025080W WO 2019054016 A1 WO2019054016 A1 WO 2019054016A1
Authority
WO
WIPO (PCT)
Prior art keywords
characteristic value
wavelength
calibration curve
intensity
color component
Prior art date
Application number
PCT/JP2018/025080
Other languages
French (fr)
Japanese (ja)
Inventor
忠久 當山
Original Assignee
株式会社オルタステクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オルタステクノロジー filed Critical 株式会社オルタステクノロジー
Publication of WO2019054016A1 publication Critical patent/WO2019054016A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour

Definitions

  • the present invention is an apparatus and method for measuring a characteristic value such as concentration or acid value of a detection substance in a sample based on an image obtained as a result of a color reaction on a test paper to which the sample is dropped. And the program.
  • the carrier mainly composed of paper or resin is used as a method to easily replace the analysis device.
  • An analytical method that uses a color tone judgment that visually compares a colored test strip with a standard color chart using a test strip on which a reaction reagent whose coloration state changes according to characteristic values such as concentration and acid value is fixed There is.
  • the optical element is used to calculate the sum, difference or ratio of various spectral intensities, or time difference to reduce the variation of the test paper
  • the calculation performed by the above-described first method does not necessarily carry out the optimum calculation processing according to each color reaction system, and there is a problem that sufficient measurement accuracy can not be obtained.
  • the visual judgment is replaced with the device measurement, and the color tone judgment result depending on the subjectivity, the individual difference in the judgment timing, the color tone change due to external light etc. Is planned.
  • the present invention has been made in view of such circumstances, and provides a characteristic value measuring apparatus, method, and program for measuring characteristic values of a detection substance in a sample simply and with sufficient accuracy. With the goal.
  • a characteristic value measuring apparatus is an apparatus for measuring a characteristic value of a detection substance in a sample, the imaging means for capturing a color image on a test paper on which the sample is dropped, and imaging And calculating means for performing a predetermined calculation based on the color-changed image and calculating a characteristic value of the detected substance in the sample based on the result of the calculation.
  • the test paper has a color reaction reagent having a wavelength characteristic in which the light reflectance exhibits a maximum value at a first wavelength and the light reflectance exhibits a minimum value at a second wavelength different from the first wavelength. Hold.
  • the characteristic value measuring method is a method for measuring a characteristic value of a detection substance in a sample, and the light reflectance exhibits a maximum value at the first wavelength, and the first wavelength And a step of dropping a sample on a test sheet holding a color reaction reagent having a wavelength characteristic in which the light reflectance shows a local minimum value at a second wavelength different from the above, and a presentation generated on the test sheet according to the drop of the sample.
  • a program according to an aspect of the present invention is a program according to one embodiment of the present invention, in which a light reflectance exhibits a maximum value at a first wavelength to measure a characteristic value of a detection substance in a sample, and a second wavelength different from the first wavelength
  • a test paper holding a color reaction reagent having a wavelength characteristic in which the light reflectance shows a local minimum value, a function to cause the imaging means to image a color image generated by dropping the sample, and the imaged color image
  • FIG. 1 is a block diagram showing a configuration example of a characteristic value measuring device to which the characteristic value measuring method according to the embodiment is applied.
  • FIG. 3 is a view showing an example of a calibration curve consisting of second-order fitting of the magenta component and the acid value of fat and oil.
  • FIG. 4 is a diagram showing an example of a calibration curve consisting of secondary fitting of magenta component / yellow component and acid value of fat and oil.
  • FIG. 5 is a view showing an example of a calibration curve consisting of second-order fitting of an RG (red-green) difference tone value and an acid value of fat and oil.
  • FIG. 6A is a diagram showing an example of the correlation between R (red) pixel tone values and the acid value of fats and oils.
  • FIG. 6B is a diagram showing an example of the correlation between G (green) pixel tone values and the acid value of fats and oils.
  • FIG. 7 is a flowchart showing an operation example of the characteristic value measuring device according to the embodiment.
  • FIG. 8 is a schematic view showing an example of the imaging screen.
  • FIG. 1 is a block diagram showing a configuration example of a characteristic value measuring apparatus 10 to which a characteristic value measuring method according to an embodiment of the present invention is applied.
  • the characteristic value measuring apparatus 10 is an apparatus for measuring a characteristic value such as concentration, acid value, etc., of a detection substance in a sample, and is an imaging unit 12, an operation unit 14, a storage unit 16, and an output unit 18. , The display unit 20, and the display 21.
  • the test paper 22 has a wavelength at which the light reflectance exhibits a maximum value at the first wavelength and the light reflectance exhibits a minimum value at a second wavelength different from the first wavelength such that a color reaction occurs. It holds a color reaction reagent having characteristics.
  • test paper 22 which hold
  • AV test paper by Shibata science.
  • the Shibata Scientific AV Test Paper is suitable for measuring the acid value of fryer oil, and when fryer oil is dropped, light is emitted at a first wavelength (530 nm), as illustrated in FIG. 2A.
  • the color reaction reagent having a wavelength characteristic in which the reflectance shows the maximum value and the light reflectance shows the minimum value at the second wavelength (620 nm) is held.
  • the acid value (AV) value of fats and oils by visual colorimetry after a predetermined time has elapsed.
  • the first wavelength showing a maximum value goes from 530 nm to the long wavelength side
  • the shift results in the disappearance of the blue component and the change of the reaction color from yellowish green to yellow.
  • the second wavelength showing a minimal value does not shift from 620 nm even if the acid value increases (1.5 ⁇ 2.5 ⁇ 3.5), but the light reflectance increases and the red component increases. To go.
  • the imaging unit 12 When the imaging unit 12 captures a color image, the imaging unit 12 outputs an imaging result to the calculation unit 14.
  • the imaging unit 12 for example, a color imaging device such as a built-in CCD light receiving device can be used, but an external device such as a smartphone or a digital camera can also be used. When using these external devices, the imaging unit 12 is provided outside the characteristic value measuring device 10.
  • the calculation unit 14 executes a predetermined calculation based on the imaging result of the color image output from the imaging unit 12 and calculates the characteristic value of the detection substance in the sample based on the calculation result.
  • the result of the calculation is performed by collating with a previously prepared calibration curve. Alternatively, it is performed by substituting the result of the operation into a mathematical expression representing a calibration curve.
  • the calibration curve is stored in advance in the storage unit 16.
  • the storage device 16 is realized by a program memory (for example, a non-volatile memory such as a solid state drive (SSD) or a hard disk drive (HDD) that can be written and read as needed) and stores one or more calibration curves. There is. When calculating the characteristic value, the calculation unit 14 selects an appropriate calibration curve from among the calibration curves stored in the storage device 16 for comparison.
  • FIGS. 3, 5 and 4 are examples of calibration curves stored in the storage device 16.
  • the calibration curve 1 shown in FIG. 3 shows the correlation between the strength of the magenta component (M component) obtained from the color image and the acid value of the oil.
  • the calibration curve 2 shown in FIG. 4 shows the correlation between the ratio of the intensity of the magenta component to the intensity of the yellow component (M component / Y component) obtained from the color image and the acid value of the oil.
  • the calibration curve 3 shown in FIG. 5 shows the correlation between the difference between the intensity of the red component and the intensity of the green component (RG difference tone value) obtained from the color image and the acid value of the oil and fat. .
  • a fat or oil having a known acid value is dropped on the test paper 22, a color image on the test paper 22 is captured, and the Y axis value is calculated based on the color image.
  • a process of calculating and plotting the calculation result is performed at a plurality of acid values, and finally, obtained by performing second-order fitting on a plurality of plots.
  • the unit of the Y axis is the intensity of the magenta component.
  • the unit of the Y axis in the calibration curve is referred to as "index".
  • the reason why the index of the calibration curve 1 is the strength of the magenta component will be described.
  • the first wavelength (530 nm) at which the color reaction reagent exhibits a maximum value changes as shown in FIG. 2A, according to the amount of acid value, as shown in FIG. 2B and FIG. 2C. It is determined focusing on having wavelength characteristics.
  • the index is M component / Y component.
  • This index is shown in FIG. 2A as the color reaction reagent shows the first wavelength (530 nm) at which the maximum value is shown, and as the acid value increases as shown in FIG. 2B and FIG. It is determined focusing on the wavelength characteristic of shifting to the side.
  • the index is an RG difference tone value.
  • This index has a wavelength characteristic that the color reaction reagent has a first wavelength (530 nm) showing a maximum value and a second wavelength (620 nm) showing a minimum value, as shown in FIG. 2A.
  • the decision was made focusing on the In this case, the difference (RG difference tone value) between the intensity of the color component (green component) including the first wavelength (530 nm) and the intensity of the color component (red component) including the second wavelength (620 nm) )
  • the reason for having such a good correlation is that, by subtracting the G tone value from the R tone value, the bias component that does not contribute to the color reaction is subtracted from the reflected light reflected by the test paper 22, This is because the correlation is enhanced.
  • FIG. 6A shows the relationship between the red component (R component) tone value and the acid value.
  • the determination coefficient R 2 is 0.265, and no high correlation is observed.
  • FIG. 6B shows the relationship between the green component (G component) tone value and the acid value.
  • the coefficient of determination R 2 is 0.504, and again no high correlation is seen.
  • the operation unit 14 uses the imaging results output from the imaging unit 12 and calibration curves such as calibration curves 1, 2 and 3 having a good determination coefficient R 2 to detect the acid of the detection substance in the sample. Calculate the value.
  • the calculation unit 14 calculates the intensity of the magenta component which is the index of the calibration curve 1 from the imaging result output from the imaging unit 12 . Then, the acid value is calculated from the calculated strength of the magenta component and the calibration curve 1. Specifically, the acid value is calculated by comparing the calculated intensity of the magenta component with the calibration curve 1. Alternatively, the acid value is calculated by substituting the calculated intensity of the magenta component into the equation representing the calibration curve 1.
  • the calculation unit 14 calculates the acid value using the calibration curve 2
  • the calculation unit 14 calculates the M component / Y component that is the index of the calibration curve 2 from the imaging result output from the imaging unit 12. Do. Then, the acid value is calculated from the calculated M component / Y component and the calibration curve 2. Specifically, the acid value is calculated by comparing the calculated intensity of the M component / Y component with the calibration curve 2. Alternatively, the acid value is calculated by substituting the calculated intensity of the M component / Y component into the equation representing the calibration curve 2.
  • the calculation unit 14 determines from the imaging result output from the imaging unit 12 an RG difference tone value that is an index of the calibration curve 3. Calculate Then, the acid value is calculated from the calculated RG difference tone value and the calibration curve 3. Specifically, the acid value is calculated by comparing the calculated RG difference tone value with the calibration curve 3. Alternatively, the acid value is calculated by substituting the calculated intensity of the RG difference tone value into the equation representing the calibration curve 3.
  • the output value of the imaging result is the RGB tone value. Therefore, when calculating the index of the calibration curve 3, the calculation unit 14 can use the output value of the imaging result as it is, but in order to calculate the index of the calibration curve 1 or the calibration curve 2, imaging is performed.
  • the RGB tone values of each sub-pixel in the result need to be converted to CMYK values.
  • RGB tone values are output as 8-bit 255 tone
  • conversion of RGB tone values to CMYK values is performed using the following equations (1) to (7).
  • R% R / 255 (1)
  • G% G / 255 (2)
  • B% B / 255 (3)
  • K min (1-R%, 1-G%, 1-B%) ...
  • C% (1-R% -K) / (1-K) (5)
  • M% (1-G% -K) / (1-K) (6)
  • Y% (1-B% -K) / (1-K) (7)
  • the output unit 18 outputs the index, the acid value, and the like calculated by the calculation unit 14 as electronic data.
  • the display unit 20 causes the display 21 to display the index, the acid value, and the like calculated by the calculation unit 14.
  • the display unit 20 may further display the calibration curve used by the calculation unit 14 from the display 21 or may display the calculated index on the displayed calibration curve.
  • Arithmetic unit 14, output unit 18, and display unit 20 are, for example, a field-programmable gate array (FPGA) or a central processing unit (CPU) or a combination thereof and a program memory (for example, a solid state drive (SSD) or a hard disk (HDD)).
  • FPGA field-programmable gate array
  • CPU central processing unit
  • program memory for example, a solid state drive (SSD) or a hard disk (HDD)
  • the present invention is realized by a computer having a non-volatile memory capable of writing and reading at any time such as Drive), and realizes control functions necessary to implement the present embodiment. These control functions are all realized by causing the FPGA or CPU to execute the measurement program stored in the program memory.
  • the characteristic value measuring device 10 can be realized by a smartphone in which the measurement program is installed.
  • the specific example which measures an acid value by the measurement program installed in the smart phone is demonstrated using the flowchart shown in FIG.
  • the measurer activates the measurement program installed in the smartphone (S1).
  • the camera imaging mode of the smartphone is activated, and an imaging target mark 24 such as a ⁇ (square) mark or an X mark as shown in FIG. 8 is displayed at the center of the screen. It is in the state of waiting for the start of measurement of acid value.
  • the measurer drops the fat as the sample onto the reagent portion 23 of the test paper 22 (S2) and simultaneously presses the measurement start button displayed from the smartphone (S3).
  • the measurement program starts counting time (S4), and after a predetermined time has elapsed (S5: Yes), issues an alarm sound or voice guidance prompting imaging (S6).
  • the predetermined time is preferably several seconds to several minutes, for example, 30 seconds to 2 minutes. It is desirable that the predetermined time be a time zone in which most of the color reaction is completed and the color change is stable, and the reaction speed is controlled to be completed within a predetermined time by the component configuration of the reagent. Is preferred.
  • the measurer displays an imaging target mark 24 as represented by a square ( ⁇ ) as an example in FIG. 8 from the screen of the smartphone (S7), and matches it with the reagent portion 23 of the test paper 22. (S8), imaging is performed (S9).
  • the imaging target mark 24 be displayed so as to match the size of the reagent portion 23, so that the imaging distances between the test paper 22 and the camera (smartphone) are kept substantially the same.
  • the measurement program reads the imaging result obtained in step S9, selects one or more pixels in the vicinity of the center of the reagent portion 23, and corresponds to each pixel according to the equations (1) to (3) described above.
  • R, G, B gradation values (%) are calculated (S10).
  • an average value of a plurality of pixels may be used, or a median or mode of a plurality of pixels may be used.
  • An appropriate correction coefficient a, b, c may be multiplied.
  • the strength of the magenta component (M component) is determined according to the above (6) (S12).
  • a color reaction may be imaged using a digital camera, or a dedicated measuring device using an imaging element such as a CCD light receiving element is used. May be
  • a digital camera In the case of using a digital camera, it is performed by sending the imaged imaging result to a device such as a personal computer installed with a measurement program via a recording medium, communication means, and the like.
  • the color reaction caused by the dropping of the sample on the test paper 22 is started by the action as described above.
  • An acid value can be calculated with high accuracy by imaging a color-developed image, calculating an index based on the imaging result, and collating the index with a calibration curve.
  • the characteristic value of the detection substance in the sample can be simply and highly accurately, though it is a simple method. It becomes possible to measure by
  • the refined fryer oil (the acid value of the edible oil is 0.5 or less) is used for frying, the fats and oils react with water at high temperature to cause hydrolysis and increase the acid value.
  • the fats and oils are auto-oxidized, carbon chains of fatty acids are cut to generate aldehydes, and further, the portions are oxidized to become carboxylic acids, resulting in an increase in acid value.
  • the acid value is an indicator of the deterioration of the fryer oil.
  • the acid value can be measured simply and with sufficient accuracy, it can be used, for example, to measure the acid value of fryer oil used for frying in a convenience store. For example, it becomes possible to easily grasp the appropriate timing for changing the fryer oil.
  • the present invention is not limited to the above embodiment, and can be variously modified in the implementation stage without departing from the scope of the invention.
  • the embodiments may be implemented in combination as appropriate as possible, in which case the combined effect is obtained.
  • the above embodiments include inventions of various stages, and various inventions can be extracted by an appropriate combination of a plurality of disclosed configuration requirements.
  • the measurement method in the case of the acid value was described as the characteristic value, but those skilled in the art can also apply to measurement of the concentration by the characteristic value measurement method according to the present embodiment. You will easily think of what is possible.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

This characteristic value measurement device is for measuring characteristic values of a detected substance in a sample, wherein the device comprises: an imaging means that captures a color image on a test paper onto which the sample has been dripped; and a computation means that executes prescribed computation on the basis of the captured color image and calculates the characteristic values of the detected substance in the sample on the basis of the results of the computation. The test paper retains a color-reaction reagent with wavelength characteristics such that the reflectance at a first wavelength represents a maximum value and the reflectance at a second wavelength that differs from the first wavelength represents a minimum value.

Description

呈色画像を利用した特性値測定装置、方法、およびプログラムDevice, method, and program for measuring characteristic value using a colored image
 本発明は、検体が滴下された試験紙における呈色反応の結果得られる画像に基づいて、検体中の検出物質の、例えば、濃度や酸価値等のような特性値を測定する装置、方法、およびプログラムに関する。 The present invention is an apparatus and method for measuring a characteristic value such as concentration or acid value of a detection substance in a sample based on an image obtained as a result of a color reaction on a test paper to which the sample is dropped. And the program.
 従来、検体中の検出物質の濃度や酸価値等のような特性値を分析する際に、分析装置を簡便に代替する方法として、紙や樹脂を主体とした担体に、検体中の検出物質の濃度や酸価値等のような特性値により呈色状態が変化する反応試薬を定着した試験紙を用い、呈色された試験紙を、目視により標準色票と比較する色調判定を利用する分析方法がある。 Conventionally, when analyzing characteristic values such as concentration and acid value of a detection substance in a sample, the carrier mainly composed of paper or resin is used as a method to easily replace the analysis device. An analytical method that uses a color tone judgment that visually compares a colored test strip with a standard color chart using a test strip on which a reaction reagent whose coloration state changes according to characteristic values such as concentration and acid value is fixed There is.
 しかしながら、目視による色調判定は、周囲環境光、検体着色、個人の主観等によって影響を受けるので、客観的かつ正確な結果を得ることは困難である。 However, it is difficult to obtain objective and accurate results because visual color judgment is affected by ambient light, specimen coloring, individual subjectivity, and the like.
 そのため、客観的かつより正確な結果を得ることができる簡便な方法として、光学素子を用いて種々の分光強度の和、差または比、あるいは時間差等の演算を施して試験紙のばらつきを低減する方法(第1の方法)や、CCD受光素子等を用いて撮像した情報を、RGB表色系等の各種三刺激値を基に色分析して呈色物の呈量を行う方法(第2の方法)が提案されている。 Therefore, as a simple method that can obtain objective and more accurate results, the optical element is used to calculate the sum, difference or ratio of various spectral intensities, or time difference to reduce the variation of the test paper Method of performing coloration of colored matter by color analysis of information captured using a method (first method) or a CCD light receiving element etc. based on various tristimulus values such as RGB color system Method has been proposed.
特許第1228630号明細書Patent 1228630 specification 特開平3-220445号公報JP-A-3-220445 特開平7-35744号公報JP-A-7-35744 特開2000-121561号公報Japanese Patent Laid-Open No. 2000-121561 特開2001-349834号公報JP 2001-349834 A 特開平10-73534号公報JP 10-73534 A 特許第3880057号明細書Patent No. 3880057 特許第5330106号明細書Patent No. 5330106 WO2016/031267号公報WO 2016/031267
 しかしながら、前述した第1の方法でなされる演算は、必ずしも個々の呈色反応系に応じた最適な演算処理がなされるとは限らず、依然として十分な測定精度が得られないという問題がある。 However, the calculation performed by the above-described first method does not necessarily carry out the optimum calculation processing according to each color reaction system, and there is a problem that sufficient measurement accuracy can not be obtained.
 一方、前述した第2の方法では、目視判定が装置計測に置き換えられることによって、主観に依存した色調判定結果、判定タイミングの個人差、外光等外乱要因による色調変化が排除され、精度の向上が図られている。 On the other hand, in the second method described above, the visual judgment is replaced with the device measurement, and the color tone judgment result depending on the subjectivity, the individual difference in the judgment timing, the color tone change due to external light etc. Is planned.
 しかしながら、試験紙のばらつき、検体履歴による着色、検体採取量から生じる測定誤差については、十分な対処がなされていない。 However, sufficient measures have not been taken with regard to measurement paper errors, coloration due to specimen history, and measurement errors resulting from the amount of specimen collection.
 また、色分析も、単純に試験紙呈色物の反射光や透過光の光量演算値と基準値との比較に基づいているため、必ずしも個々の呈色反応系に応じた最適な演算処理がなされるとは限らず、依然として十分な測定精度が得られないという問題がある。 Also, since color analysis is simply based on comparison of the calculated value of the light quantity of the reflected light and transmitted light of the test paper color product with the reference value, the optimum arithmetic processing according to the individual color reaction system is not necessarily required. However, there is still a problem that sufficient measurement accuracy can not be obtained.
 本発明はこのような事情に鑑みてなされたものであり、検体中の検出物質の特性値を、簡便に、かつ、十分な精度で測定する特性値測定装置、方法、およびプログラムを提供することを目的とする。 The present invention has been made in view of such circumstances, and provides a characteristic value measuring apparatus, method, and program for measuring characteristic values of a detection substance in a sample simply and with sufficient accuracy. With the goal.
 本発明の一態様に係る特性値測定装置は、検体中の検出物質の特性値を測定するための装置であって、検体を滴下された試験紙における呈色画像を撮像する撮像手段と、撮像された呈色画像に基づいて所定の演算を実行し、演算の結果に基づいて、検体中の検出物質の特性値を算出する演算手段とを備える。ここで、試験紙は、第1の波長において光反射率が極大値を示し、第1の波長とは異なる第2の波長において光反射率が極小値を示す波長特性を有する呈色反応試薬を保持する。 A characteristic value measuring apparatus according to an aspect of the present invention is an apparatus for measuring a characteristic value of a detection substance in a sample, the imaging means for capturing a color image on a test paper on which the sample is dropped, and imaging And calculating means for performing a predetermined calculation based on the color-changed image and calculating a characteristic value of the detected substance in the sample based on the result of the calculation. Here, the test paper has a color reaction reagent having a wavelength characteristic in which the light reflectance exhibits a maximum value at a first wavelength and the light reflectance exhibits a minimum value at a second wavelength different from the first wavelength. Hold.
 本発明の一態様に係る特性値測定方法は、検体中の検出物質の特性値を測定するための方法であって、第1の波長において、光反射率が極大値を示し、第1の波長とは異なる第2の波長において光反射率が極小値を示す波長特性を有する呈色反応試薬を保持した試験紙に、検体を滴下する工程と、検体の滴下に応じて試験紙において生じた呈色画像を撮像する工程と、撮像された呈色画像に基づいて所定の演算を実行し、演算の結果に基づいて、検体中の検出物質の特性値を算出する工程とを含む。 The characteristic value measuring method according to one aspect of the present invention is a method for measuring a characteristic value of a detection substance in a sample, and the light reflectance exhibits a maximum value at the first wavelength, and the first wavelength And a step of dropping a sample on a test sheet holding a color reaction reagent having a wavelength characteristic in which the light reflectance shows a local minimum value at a second wavelength different from the above, and a presentation generated on the test sheet according to the drop of the sample The steps of capturing a color image, and performing a predetermined calculation based on the captured color image, and calculating a characteristic value of the detected substance in the sample based on the result of the calculation.
 本発明の一態様に係るプログラムは、検体中の検出物質の特性値を測定するために、第1の波長において、光反射率が極大値を示し、第1の波長とは異なる第2の波長において光反射率が極小値を示す波長特性を有する呈色反応試薬を保持する試験紙に、検体が滴下されることによって生じる呈色画像を撮像手段に撮像させる機能、撮像された呈色画像に基づいて所定の演算を実行し、演算の結果に基づいて、検体中の検出物質の特性値を算出する機能をコンピュータに実現させるためのプログラムである。 A program according to an aspect of the present invention is a program according to one embodiment of the present invention, in which a light reflectance exhibits a maximum value at a first wavelength to measure a characteristic value of a detection substance in a sample, and a second wavelength different from the first wavelength A test paper holding a color reaction reagent having a wavelength characteristic in which the light reflectance shows a local minimum value, a function to cause the imaging means to image a color image generated by dropping the sample, and the imaged color image It is a program for causing a computer to realize a function of executing a predetermined calculation based on the calculation result and calculating a characteristic value of a detection substance in a sample based on the calculation result.
 本発明によれば、検体中の検出物質の特性値を、簡便に、かつ、十分な精度で測定することが可能となる。 According to the present invention, it is possible to measure characteristic values of a detection substance in a sample simply and with sufficient accuracy.
図1は、実施形態に係る特性値測定方法が適用された特性値測定装置の構成例を示すブロック図である。FIG. 1 is a block diagram showing a configuration example of a characteristic value measuring device to which the characteristic value measuring method according to the embodiment is applied. 図2Aは、試験紙分光反射率の経時変化の一例を示す図(酸価値=1.5の場合)である。FIG. 2A is a figure (in the case of acid value = 1.5) which shows an example of a time-dependent change of a test paper spectral reflectance factor. 図2Bは、試験紙分光反射率の経時変化の一例を示す図(酸価値=2.5の場合)である。FIG. 2B is a diagram (in the case of acid value = 2.5) showing an example of the time-dependent change of the test paper spectral reflectance. 図2Cは、試験紙分光反射率の経時変化の一例を示す図(酸価値=3.5の場合)である。FIG. 2C is a diagram (in the case of acid value = 3.5) showing an example of the temporal change of the test paper spectral reflectance. 図3は、マゼンダ成分と油脂の酸価値との2次フィッティングからなる検量線の一例を示す図である。FIG. 3 is a view showing an example of a calibration curve consisting of second-order fitting of the magenta component and the acid value of fat and oil. 図4は、マゼンダ成分/イエロー成分と油脂の酸価値との2次フィッティングからなる検量線の一例を示す図である。FIG. 4 is a diagram showing an example of a calibration curve consisting of secondary fitting of magenta component / yellow component and acid value of fat and oil. 図5は、R-G(レッド-グリーン)差分階調値と油脂の酸価値との2次フィッティングからなる検量線の一例を示す図である。FIG. 5 is a view showing an example of a calibration curve consisting of second-order fitting of an RG (red-green) difference tone value and an acid value of fat and oil. 図6Aは、R(レッド)ピクセル階調値と油脂の酸価値との相関関係の一例を示す図である。FIG. 6A is a diagram showing an example of the correlation between R (red) pixel tone values and the acid value of fats and oils. 図6Bは、G(グリーン)ピクセル階調値と油脂の酸価値との相関関係の一例を示す図である。FIG. 6B is a diagram showing an example of the correlation between G (green) pixel tone values and the acid value of fats and oils. 図7は、実施形態に係る特性値測定装置の動作例を示すフローチャートである。FIG. 7 is a flowchart showing an operation example of the characteristic value measuring device according to the embodiment. 図8は、撮像画面の一例を示す模式図である。FIG. 8 is a schematic view showing an example of the imaging screen.
 以下に、本発明を実施するための最良の形態について図面を参照しながら説明する。 Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.
 図1は、本発明の実施形態に係る特性値測定方法が適用された特性値測定装置10の構成例を示すブロック図である。 FIG. 1 is a block diagram showing a configuration example of a characteristic value measuring apparatus 10 to which a characteristic value measuring method according to an embodiment of the present invention is applied.
 特性値測定装置10は、検体中の検出物質の、例えば濃度、酸価値等のような特性値を測定するための装置であって、撮像部12、演算部14、記憶装置16、出力部18、表示部20、およびディスプレイ21を備えている。 The characteristic value measuring apparatus 10 is an apparatus for measuring a characteristic value such as concentration, acid value, etc., of a detection substance in a sample, and is an imaging unit 12, an operation unit 14, a storage unit 16, and an output unit 18. , The display unit 20, and the display 21.
 特性値を求めるためには、試験紙22に検体を滴下し、試験紙22において呈色反応を引き起こさせ、呈色反応の呈色画像を、撮像部12が撮像する必要がある。従って、呈色反応が生じるように、試験紙22は、第1の波長において光反射率が極大値を示し、第1の波長とは異なる第2の波長において光反射率が極小値を示す波長特性を有する呈色反応試薬を保持している。 In order to obtain the characteristic value, it is necessary to drop the sample on the test paper 22, cause a color reaction on the test paper 22, and capture the color image of the color reaction by the imaging unit 12. Therefore, the test paper 22 has a wavelength at which the light reflectance exhibits a maximum value at the first wavelength and the light reflectance exhibits a minimum value at a second wavelength different from the first wavelength such that a color reaction occurs. It holds a color reaction reagent having characteristics.
 このような呈色反応試薬を保持した試験紙22の具体例としては、限定されないが、柴田科学製AV試験紙がある。柴田科学製AV試験紙は、フライヤー油の酸価値を測定するために好適なものであって、フライヤー油が滴下されると、図2Aに例示するように、第1の波長(530nm)において光反射率が極大値を示し、第2の波長(620nm)において光反射率が極小値を示す波長特性を有する呈色反応試薬を保持している。 As a specific example of the test paper 22 which hold | maintains such a color reaction reagent, although it is not limited, there exists AV test paper by Shibata science. The Shibata Scientific AV Test Paper is suitable for measuring the acid value of fryer oil, and when fryer oil is dropped, light is emitted at a first wavelength (530 nm), as illustrated in FIG. 2A. The color reaction reagent having a wavelength characteristic in which the reflectance shows the maximum value and the light reflectance shows the minimum value at the second wavelength (620 nm) is held.
 この呈色反応によれば、所定時間経過後、目視による比色法にて油脂の酸価(AV)値を判定することが可能である。また、図2A、図2B、図2Cに示すように、酸価値の上昇(1.5→2.5→3.5)に伴い、極大値を示す第1の波長が530nmから長波長側にシフトし、その結果、青成分が消失し、黄緑色から黄色へ反応色が変化する。一方、極小値を示す第2の波長は、酸価値が上昇(1.5→2.5→3.5)しても620nmからシフトしないが、光反射率が上昇し、赤成分が増加していく。 According to this color reaction, it is possible to determine the acid value (AV) value of fats and oils by visual colorimetry after a predetermined time has elapsed. In addition, as shown in FIGS. 2A, 2B, and 2C, as the acid value increases (1.5 → 2.5 → 3.5), the first wavelength showing a maximum value goes from 530 nm to the long wavelength side The shift results in the disappearance of the blue component and the change of the reaction color from yellowish green to yellow. On the other hand, the second wavelength showing a minimal value does not shift from 620 nm even if the acid value increases (1.5 → 2.5 → 3.5), but the light reflectance increases and the red component increases. To go.
 撮像部12は、呈色画像を撮像すると、撮像結果を、演算部14へ出力する。撮像部12としては、例えば、内蔵型のCCD受光素子のようなカラー撮像素子を用いることができるが、スマートフォンや、デジタルカメラのような外部機器を用いることもできる。これら外部機器を用いる場合、撮像部12は、特性値測定装置10の外部に設けられる。 When the imaging unit 12 captures a color image, the imaging unit 12 outputs an imaging result to the calculation unit 14. As the imaging unit 12, for example, a color imaging device such as a built-in CCD light receiving device can be used, but an external device such as a smartphone or a digital camera can also be used. When using these external devices, the imaging unit 12 is provided outside the characteristic value measuring device 10.
 演算部14は、撮像部12から出力された呈色画像の撮像結果に基づいて所定の演算を実行し、演算の結果に基づいて、検体中の検出物質の特性値を算出する。特性値を算出する際には、演算の結果を、予め準備された検量線と照合することによって行う。あるいは、演算の結果を、検量線を表す数式に代入することによって行う。検量線は、記憶装置16に予め記憶されている。 The calculation unit 14 executes a predetermined calculation based on the imaging result of the color image output from the imaging unit 12 and calculates the characteristic value of the detection substance in the sample based on the calculation result. When calculating the characteristic value, the result of the calculation is performed by collating with a previously prepared calibration curve. Alternatively, it is performed by substituting the result of the operation into a mathematical expression representing a calibration curve. The calibration curve is stored in advance in the storage unit 16.
 記憶装置16は、プログラムメモリ(例えばSSD(Solid State Drive)やHDD(Hard Disk Drive)等の随時書き込みおよび読み出しが可能な不揮発性メモリ)により実現され、1つまたは複数の検量線を記憶している。演算部14は、特性値を算出する際には、記憶装置16に記憶されている検量線の中から、照合のために適切な検量線を選択する。図3、図5、図4は、記憶装置16が記憶している検量線の例である。 The storage device 16 is realized by a program memory (for example, a non-volatile memory such as a solid state drive (SSD) or a hard disk drive (HDD) that can be written and read as needed) and stores one or more calibration curves. There is. When calculating the characteristic value, the calculation unit 14 selects an appropriate calibration curve from among the calibration curves stored in the storage device 16 for comparison. FIGS. 3, 5 and 4 are examples of calibration curves stored in the storage device 16.
 図3に示す検量線1は、呈色画像から得られるマゼンダ成分(M成分)の強度と、油脂の酸価値との相関関係を示している。図4に示す検量線2は、呈色画像から得られるマゼンダ成分の強度とイエロー成分の強度との比(M成分/Y成分)と、油脂の酸価値との相関関係を示している。図5に示す検量線3は、呈色画像から得られる赤成分の強度と緑成分の強度との差(R-G差分階調値)と、油脂の酸価値との相関関係を示している。 The calibration curve 1 shown in FIG. 3 shows the correlation between the strength of the magenta component (M component) obtained from the color image and the acid value of the oil. The calibration curve 2 shown in FIG. 4 shows the correlation between the ratio of the intensity of the magenta component to the intensity of the yellow component (M component / Y component) obtained from the color image and the acid value of the oil. The calibration curve 3 shown in FIG. 5 shows the correlation between the difference between the intensity of the red component and the intensity of the green component (RG difference tone value) obtained from the color image and the acid value of the oil and fat. .
 検量線1、2、3は何れも、既知の酸価値を有する油脂を試験紙22に滴下し、試験紙22における呈色画像を撮像し、呈色画像に基づいて、それぞれY軸の値を演算し、演算結果をプロットする処理を、複数の酸価値において行い、最後に、複数のプロットを対象に、2次フィッティングすることにより得られたものである。 In each of the calibration curves 1, 2 and 3, a fat or oil having a known acid value is dropped on the test paper 22, a color image on the test paper 22 is captured, and the Y axis value is calculated based on the color image. A process of calculating and plotting the calculation result is performed at a plurality of acid values, and finally, obtained by performing second-order fitting on a plurality of plots.
 図3に示すように、検量線1は、Y軸の単位を、マゼンダ成分の強度としている。以下、検量線におけるY軸の単位を「指標」と称する。検量線1の指標を、マゼンダ成分の強度とした理由について説明する。この指標は、呈色反応試薬が、図2Aに示すように、極大値を示す第1の波長(530nm)が、図2B、図2Cに示すように、酸価値の量に応じて変化するという波長特性を有していることに着目して決定したものである。この場合、第1の波長(530nm)を含む色成分(緑成分)の補色成分(マゼンダ成分)の強度と、酸価値とは、2次フィッティングの決定係数R=0.963という良好な相関関係を有する。 As shown in FIG. 3, in the calibration curve 1, the unit of the Y axis is the intensity of the magenta component. Hereinafter, the unit of the Y axis in the calibration curve is referred to as "index". The reason why the index of the calibration curve 1 is the strength of the magenta component will be described. In this index, it is said that the first wavelength (530 nm) at which the color reaction reagent exhibits a maximum value changes as shown in FIG. 2A, according to the amount of acid value, as shown in FIG. 2B and FIG. 2C. It is determined focusing on having wavelength characteristics. In this case, the intensity of the complementary color component (magenta component) of the color component (green component) including the first wavelength (530 nm) and the acid value have a good correlation of determination coefficient R 2 = 0.963 of second -order fitting Have a relationship.
 図4に示すように、検量線2は、指標を、M成分/Y成分としている。この指標は、呈色反応試薬が、図2Aに示すように、極大値を示す第1の波長(530nm)が、図2B、図2Cに示すように、酸価値の増加に応じて、長波長側にシフトするという波長特性を有していることに着目して決定したものである。この場合、シフト前の第1の波長(530nm)を含む色成分(緑成分)の補色成分(マゼンダ成分)の強度と、シフト後の第1の波長(530nm<)を含む色成分(イエロー成分)の強度との比(M成分/Y成分)と、酸価値とは、2次フィッティングの決定係数R=0.978という良好な相関関係を有する。 As shown in FIG. 4, in the calibration curve 2, the index is M component / Y component. This index is shown in FIG. 2A as the color reaction reagent shows the first wavelength (530 nm) at which the maximum value is shown, and as the acid value increases as shown in FIG. 2B and FIG. It is determined focusing on the wavelength characteristic of shifting to the side. In this case, the intensity of the complementary color component (magenta component) of the color component (green component) including the first wavelength (530 nm) before the shift and the color component (yellow component) including the first wavelength (530 nm <) after the shift The ratio of M) to the intensity (M component / Y component) and the acid value have a good correlation with the second -order fitting determination coefficient R 2 = 0.978.
 図5に示すように、検量線3は、指標を、R-G差分階調値としている。この指標は、呈色反応試薬が、図2Aに示すように、極大値を示す第1の波長(530nm)と極小値を示す第2の波長(620nm)とを有するという波長特性を有していることに着目して決定したものである。この場合、第1の波長(530nm)を含む色成分(緑成分)の強度と、第2の波長(620nm)を含む色成分(赤成分)の強度との差(R-G差分階調値)と、酸価値とは、2次フィッティングの決定係数R=0.958という良好な相関関係を有する。このように良好な相関関係を有する理由は、R階調値からG階調値を差し引くことによって、試験紙22に反射された反射光のうち、呈色反応に寄与しないバイアス成分が差し引かれ、相関が高まるからである。 As shown in FIG. 5, in the calibration curve 3, the index is an RG difference tone value. This index has a wavelength characteristic that the color reaction reagent has a first wavelength (530 nm) showing a maximum value and a second wavelength (620 nm) showing a minimum value, as shown in FIG. 2A. The decision was made focusing on the In this case, the difference (RG difference tone value) between the intensity of the color component (green component) including the first wavelength (530 nm) and the intensity of the color component (red component) including the second wavelength (620 nm) ) And acid value have a good correlation of determination coefficient of second -order fitting R 2 = 0.958. The reason for having such a good correlation is that, by subtracting the G tone value from the R tone value, the bias component that does not contribute to the color reaction is subtracted from the reflected light reflected by the test paper 22, This is because the correlation is enhanced.
 このように、検量線1、2、3では何れも、酸価値との良好な相関関係を有する適切な指標が用いられているが、参考までに、他の指標を用いた場合における相関関係を紹介する。 As described above, in each of the calibration curves 1, 2 and 3, an appropriate index having a good correlation with the acid value is used, but for reference, the correlation in the case of using other indices is introduce.
 例えば図6Aは、赤成分(R成分)階調値と、酸価値との関係を示すものである。決定係数R=0.265であり、高い相関は見られない。また、図6Bは、緑成分(G成分)階調値と、酸価値との関係を示すものである。決定係数R=0.504であり、やはり高い相関は見られない。これら指標は、酸価値との相関関係は低いので、検量線として使用することはできない。 For example, FIG. 6A shows the relationship between the red component (R component) tone value and the acid value. The determination coefficient R 2 is 0.265, and no high correlation is observed. Also, FIG. 6B shows the relationship between the green component (G component) tone value and the acid value. The coefficient of determination R 2 is 0.504, and again no high correlation is seen. These indices can not be used as a calibration curve because they have a low correlation with acid value.
 従って、演算部14は、撮像部12から出力された撮像結果と、良好な決定係数Rを有する検量線1、2、3のような検量線とを用いて、検体中の検出物質の酸価値を算出する。 Therefore, the operation unit 14 uses the imaging results output from the imaging unit 12 and calibration curves such as calibration curves 1, 2 and 3 having a good determination coefficient R 2 to detect the acid of the detection substance in the sample. Calculate the value.
 例えば、演算部14が、検量線1を用いて酸価値を算出する場合、演算部14は、撮像部12から出力された撮像結果から、検量線1の指標であるマゼンダ成分の強度を演算する。そして、演算されたマゼンダ成分の強度と、検量線1とから、酸価値を算出する。具体的には、演算されたマゼンダ成分の強度を、検量線1と照合することによって、酸価値を算出する。あるいは、演算されたマゼンダ成分の強度を、検量線1を表す数式に代入することによって、酸価値を算出する。 For example, when the calculation unit 14 calculates the acid value using the calibration curve 1, the calculation unit 14 calculates the intensity of the magenta component which is the index of the calibration curve 1 from the imaging result output from the imaging unit 12 . Then, the acid value is calculated from the calculated strength of the magenta component and the calibration curve 1. Specifically, the acid value is calculated by comparing the calculated intensity of the magenta component with the calibration curve 1. Alternatively, the acid value is calculated by substituting the calculated intensity of the magenta component into the equation representing the calibration curve 1.
 また、演算部14が、検量線2を用いて酸価値を算出する場合、演算部14は、撮像部12から出力された撮像結果から、検量線2の指標であるM成分/Y成分を演算する。そして、演算されたM成分/Y成分と、検量線2とから、酸価値を算出する。具体的には、演算されたM成分/Y成分の強度を、検量線2と照合することによって、酸価値を算出する。あるいは、演算されたM成分/Y成分の強度を、検量線2を表す数式に代入することによって、酸価値を算出する。 When the calculation unit 14 calculates the acid value using the calibration curve 2, the calculation unit 14 calculates the M component / Y component that is the index of the calibration curve 2 from the imaging result output from the imaging unit 12. Do. Then, the acid value is calculated from the calculated M component / Y component and the calibration curve 2. Specifically, the acid value is calculated by comparing the calculated intensity of the M component / Y component with the calibration curve 2. Alternatively, the acid value is calculated by substituting the calculated intensity of the M component / Y component into the equation representing the calibration curve 2.
 また、演算部14が、検量線3を用いて酸価値を算出する場合、演算部14は、撮像部12から出力された撮像結果から、検量線3の指標であるR-G差分階調値を演算する。そして、演算されたR-G差分階調値と、検量線3とから、酸価値を算出する。具体的には、演算されたR-G差分階調値を、検量線3と照合することによって、酸価値を算出する。あるいは、演算されたR-G差分階調値の強度を、検量線3を表す数式に代入することによって、酸価値を算出する。 In addition, when the calculation unit 14 calculates the acid value using the calibration curve 3, the calculation unit 14 determines from the imaging result output from the imaging unit 12 an RG difference tone value that is an index of the calibration curve 3. Calculate Then, the acid value is calculated from the calculated RG difference tone value and the calibration curve 3. Specifically, the acid value is calculated by comparing the calculated RG difference tone value with the calibration curve 3. Alternatively, the acid value is calculated by substituting the calculated intensity of the RG difference tone value into the equation representing the calibration curve 3.
 ところで、一般に、カラー撮像素子の画素には、RGBカラーフィルターが用いられているので、撮像結果の出力値はRGB階調値である。従って、演算部14は、検量線3の指標を演算する場合には、撮像結果の出力値をそのまま使用することができるが、検量線1や検量線2の指標を演算するためには、撮像結果における各々のサブピクセルのRGB階調値を、CMYK値へ変換する必要がある。 Generally, since RGB color filters are used for the pixels of the color imaging element, the output value of the imaging result is the RGB tone value. Therefore, when calculating the index of the calibration curve 3, the calculation unit 14 can use the output value of the imaging result as it is, but in order to calculate the index of the calibration curve 1 or the calibration curve 2, imaging is performed. The RGB tone values of each sub-pixel in the result need to be converted to CMYK values.
 RGB階調値が、8ビットの255階調で出力される場合、RGB階調値の、CMYK値への変換は、以下の式(1)~(7)を用いて行う。 When RGB tone values are output as 8-bit 255 tone, conversion of RGB tone values to CMYK values is performed using the following equations (1) to (7).
  R%=R/255             ・・・(1)
  G%=G/255             ・・・(2)
  B%=B/255             ・・・(3)
  K=min(1-R%、1-G%、1-B%)・・・(4)
  C%=(1-R%-K)/(1-K)    ・・・(5)
  M%=(1-G%-K)/(1-K)    ・・・(6)
  Y%=(1-B%-K)/(1-K)    ・・・(7)
 出力部18は、演算部14によって演算された指標や酸価値等を、電子データとして出力する。
R% = R / 255 (1)
G% = G / 255 (2)
B% = B / 255 (3)
K = min (1-R%, 1-G%, 1-B%) ... (4)
C% = (1-R% -K) / (1-K) (5)
M% = (1-G% -K) / (1-K) (6)
Y% = (1-B% -K) / (1-K) (7)
The output unit 18 outputs the index, the acid value, and the like calculated by the calculation unit 14 as electronic data.
 表示部20は、演算部14によって演算された指標や酸価値等を、ディスプレイ21から表示させる。表示部20はさらに、演算部14によって使用された検量線を、ディスプレイ21から表示させたり、さらには、表示された検量線上に、演算された指標を表示させても良い。 The display unit 20 causes the display 21 to display the index, the acid value, and the like calculated by the calculation unit 14. The display unit 20 may further display the calibration curve used by the calculation unit 14 from the display 21 or may display the calculated index on the displayed calibration curve.
 演算部14、出力部18、および表示部20は、例えばFPGA(field-programmable gate array)もしくはCPU(Central Processing Unit)もしくはこれらの組合せおよびプログラムメモリ(例えばSSD(Solid State Drive)やHDD(Hard Disk Drive)等の随時書き込みおよび読み出しが可能な不揮発性メモリ)を有するコンピュータによって実現され、本実施形態を実施するために必要な制御機能を実現する。これら制御機能はいずれも上記プログラムメモリに格納された測定プログラムを上記FPGAやCPUに実行させることにより実現される。 Arithmetic unit 14, output unit 18, and display unit 20 are, for example, a field-programmable gate array (FPGA) or a central processing unit (CPU) or a combination thereof and a program memory (for example, a solid state drive (SSD) or a hard disk (HDD)). The present invention is realized by a computer having a non-volatile memory capable of writing and reading at any time such as Drive), and realizes control functions necessary to implement the present embodiment. These control functions are all realized by causing the FPGA or CPU to execute the measurement program stored in the program memory.
 例えば、特性値測定装置10は、上記測定プログラムをインストールされたスマートフォンによって実現することができる。スマートフォンにインストールされた測定プログラムによって、酸価値を測定する具体例について、図7に示すフローチャートを用いて説明する。 For example, the characteristic value measuring device 10 can be realized by a smartphone in which the measurement program is installed. The specific example which measures an acid value by the measurement program installed in the smart phone is demonstrated using the flowchart shown in FIG.
 先ず、測定者はスマートフォンにインストールされた測定プログラムを起動させる(S1)。これによって、スマートフォンのカメラ撮像モードが起動し、画面中央に図8に示すような□(四角)印や×印などの撮像目標印24を表示するとともに、検体であるフライヤー油のような油脂における酸価値の測定開始待ちの状態になる。 First, the measurer activates the measurement program installed in the smartphone (S1). As a result, the camera imaging mode of the smartphone is activated, and an imaging target mark 24 such as a □ (square) mark or an X mark as shown in FIG. 8 is displayed at the center of the screen. It is in the state of waiting for the start of measurement of acid value.
 次に、測定者は、試験紙22の試薬部分23に検体である油脂を滴下する(S2)と同時に、スマートフォンから表示されている測定開始ボタンを押す(S3)。 Next, the measurer drops the fat as the sample onto the reagent portion 23 of the test paper 22 (S2) and simultaneously presses the measurement start button displayed from the smartphone (S3).
 測定開始ボタンが押されると、測定プログラムは、時間のカウントを始め(S4)、所定時間経過後(S5:Yes)、撮像を促す警報音または音声案内を発報する(S6)。所定時間は数秒から数分、例えば30秒から2分が好ましい。この所定時間は、呈色反応の大部分が終了し、色変化が安定している時間帯とすることが望ましく、試薬の成分構成によって反応速度が所定時間内に終了するよう制御されていることが好ましい。 When the measurement start button is pressed, the measurement program starts counting time (S4), and after a predetermined time has elapsed (S5: Yes), issues an alarm sound or voice guidance prompting imaging (S6). The predetermined time is preferably several seconds to several minutes, for example, 30 seconds to 2 minutes. It is desirable that the predetermined time be a time zone in which most of the color reaction is completed and the color change is stable, and the reaction speed is controlled to be completed within a predetermined time by the component configuration of the reagent. Is preferred.
 次に、測定者は、図8では一例として□(四角)印にて表されているような撮像目標印24を、スマートフォンの画面から表示し(S7)、試験紙22の試薬部分23に合わせ(S8)、撮像を行う(S9)。なお、撮像目標印24は、試薬部分23の大きさに合致するように表示されることが望ましく、これにより、試験紙22と、カメラ(スマートフォン)との撮像距離がほぼ同一に保たれ、誤差の少ない撮像がなされるようになる。 Next, the measurer displays an imaging target mark 24 as represented by a square (□) as an example in FIG. 8 from the screen of the smartphone (S7), and matches it with the reagent portion 23 of the test paper 22. (S8), imaging is performed (S9). In addition, it is desirable that the imaging target mark 24 be displayed so as to match the size of the reagent portion 23, so that the imaging distances between the test paper 22 and the camera (smartphone) are kept substantially the same. An image with less of
 その後、撮像結果と、検量線とを用いて、酸価値を算出するための演算がなされる。ここでは、スマートフォンに、検量線1がインストールされており、検量線1が用いられることによって酸価値が算出される場合を例に説明する。 Thereafter, an operation for calculating the acid value is performed using the imaging result and the calibration curve. Here, the case where the calibration curve 1 is installed in the smartphone and the acid value is calculated by using the calibration curve 1 will be described as an example.
 すなわち、測定プログラムは、ステップS9において得られた撮像結果を読み出し、試薬部分23の中心付近の画素を単数または複数選択して、上述した式(1)~(3)に従って、各画素に対応するR、G、B階調値(%)を算出する(S10)。画素を複数選択した場合、複数の画素の平均値を用いるか、あるいは、複数の画素の中央値または最頻値を用いても良い。また、呈色発光スペクトルの変化形状に合わせるか、または、撮像素子の感度特性を考慮して、例えば、a*R、b*G、c*Bのように、R、G、B成分毎に適切な補正係数a、b、cを乗じても良い。 That is, the measurement program reads the imaging result obtained in step S9, selects one or more pixels in the vicinity of the center of the reagent portion 23, and corresponds to each pixel according to the equations (1) to (3) described above. R, G, B gradation values (%) are calculated (S10). When a plurality of pixels are selected, an average value of a plurality of pixels may be used, or a median or mode of a plurality of pixels may be used. In addition, in accordance with the change shape of the color emission spectrum or in consideration of the sensitivity characteristic of the image pickup element, for example, for each of R, G, B components like a * R, b * G, c * B. An appropriate correction coefficient a, b, c may be multiplied.
 次に、上述した式(4)に従って、1-R%、1-G%、1-B%のうちの最小値Kを算出する(S11)。 Next, the minimum value K among 1-R%, 1-G%, and 1-B% is calculated according to the above-mentioned equation (4) (S11).
 さらに、上述した(6)に従って、マゼンダ成分(M成分)の強度を求める(S12)。 Further, the strength of the magenta component (M component) is determined according to the above (6) (S12).
 そして、M成分の強度を、検量線1と照合することによって、あるいは、検量線1を表す式に代入することによって油脂の酸価値を算出し(S13)、算出された酸価値をディスプレイ21から表示する(S14)。 And the acid value of fats and oils is calculated by collating the intensity | strength of M component with the calibration curve 1, or substituting in the formula showing the calibration curve 1 (S13), The calculated acid value is displayed from the display 21 Display (S14).
 前述したように、検量線1では、M成分の強度と、酸価値とは、2次フィッティングの決定係数R=0.963という良好な相関関係を有するので、検量線1を使ってM成分の強度から算出された酸価値は、高い精度を有している。 As described above, in the calibration curve 1, since the strength of the M component and the acid value have a good correlation of determination coefficient R 2 = 0.963 of the second fitting, the M component using the calibration curve 1 The acid value calculated from the strength of has a high accuracy.
 なお、本例では、スマートフォンを用いた場合の例を述べたが、デジタルカメラを用いて呈色反応を撮像してもよいし、CCD受光素子等の撮像素子を用いた専用の測定装置を用いてもよい。 In this example, although an example using a smartphone has been described, a color reaction may be imaged using a digital camera, or a dedicated measuring device using an imaging element such as a CCD light receiving element is used. May be
 デジタルカメラを用いる場合は、撮像した撮像結果を、記録媒体や通信手段などを介して、測定プログラムがインストールされたパソコンなどの機器へ送ることによって行う。 In the case of using a digital camera, it is performed by sending the imaged imaging result to a device such as a personal computer installed with a measurement program via a recording medium, communication means, and the like.
 上述したように、本実施形態に係る特性値測定方法が適用された特性値測定装置10によれば、上記のような作用により、試験紙22に検体を滴下して開始される呈色反応による呈色画像を撮像し、撮像結果に基づいて指標を計算し、指標と、検量線とを照合することによって、酸価値を高い精度で算出することができる。 As described above, according to the characteristic value measuring apparatus 10 to which the characteristic value measuring method according to the present embodiment is applied, the color reaction caused by the dropping of the sample on the test paper 22 is started by the action as described above. An acid value can be calculated with high accuracy by imaging a color-developed image, calculating an index based on the imaging result, and collating the index with a calibration curve.
 なお、上記では一例として、検量線2の決定係数Rが最も高く、次に検量線1の決定係数Rが高く、次に検量線3の決定係数Rが高い場合について説明した。しかしながら、呈色反応によっては、決定係数Rの順序は、この通りとならない場合もある。重要なのは光学系の特性も含めた応答波形に適切な検量線を使用することである。同様に、油脂の酸価値の検査のみならず、濃度等といった用途に応じた適切な検量線を把握し、適用することが肝要である。 As an example in the above, highest determination coefficient R 2 of the calibration curve 2, then high determination coefficient R 2 of the calibration curve 1, followed been described determination coefficient R 2 of the calibration curve 3 is high. However, depending on the color reaction, the order of the determination coefficient R 2 may not follow this order. It is important to use an appropriate calibration curve for the response waveform including the characteristics of the optical system. Similarly, it is important not only to check the acid value of fats and oils, but to grasp and apply an appropriate calibration curve according to the application such as concentration.
 このように、本実施形態に係る特性値測定方法が適用された特性値測定装置10によれば、簡便な手法でありながら、検体中の検出物質の特性値を、簡便に、かつ、高い精度で測定することが可能となる。 As described above, according to the characteristic value measuring apparatus 10 to which the characteristic value measuring method according to the present embodiment is applied, the characteristic value of the detection substance in the sample can be simply and highly accurately, though it is a simple method. It becomes possible to measure by
 これによって、特に、特性値として酸価値を測定する場合、以下のような応用が可能となる。すなわち、精製されたフライヤー油(食用油の酸価値は0.5以下)が揚げ物に使用されると、油脂が高温で水と反応するため加水分解が起こり、酸価値が上昇する。また油脂が自動酸化すると、脂肪酸の炭素鎖が切れてアルデヒドが生成され、更にその部分が酸化してカルボン酸となる結果、酸価が上昇する。このように、酸価値はフライヤー油の変質の指標となる。本発明によれば、酸価値を、簡便に、かつ、十分な精度で測定することができるので、例えば、コンビニエンスストアで揚げ物を揚げるために使用されているフライヤー油における酸価値の測定に利用すれば、フライヤー油の交換のための適切なタイミングを容易に把握することが可能となる。 By this, especially when measuring an acid value as a characteristic value, the following applications are attained. That is, when the refined fryer oil (the acid value of the edible oil is 0.5 or less) is used for frying, the fats and oils react with water at high temperature to cause hydrolysis and increase the acid value. In addition, when fats and oils are auto-oxidized, carbon chains of fatty acids are cut to generate aldehydes, and further, the portions are oxidized to become carboxylic acids, resulting in an increase in acid value. Thus, the acid value is an indicator of the deterioration of the fryer oil. According to the present invention, since the acid value can be measured simply and with sufficient accuracy, it can be used, for example, to measure the acid value of fryer oil used for frying in a convenience store. For example, it becomes possible to easily grasp the appropriate timing for changing the fryer oil.
 なお、本願発明は、上記実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、各実施形態は可能な限り適宜組み合わせて実施してもよく、その場合組み合わせた効果が得られる。更に、上記実施形態には種々の段階の発明が含まれており、開示される複数の構成要件における適当な組み合わせにより種々の発明が抽出され得る。 The present invention is not limited to the above embodiment, and can be variously modified in the implementation stage without departing from the scope of the invention. In addition, the embodiments may be implemented in combination as appropriate as possible, in which case the combined effect is obtained. Furthermore, the above embodiments include inventions of various stages, and various inventions can be extracted by an appropriate combination of a plurality of disclosed configuration requirements.
 例えば、上記実施の形態では、特性値として、酸価値である場合の測定方法について説明したが、当業者であれば、本実施形態に係る特性値測定方法によって、濃度の測定に適用することも可能であることを容易に想到するであろう。 For example, in the above embodiment, the measurement method in the case of the acid value was described as the characteristic value, but those skilled in the art can also apply to measurement of the concentration by the characteristic value measurement method according to the present embodiment. You will easily think of what is possible.

Claims (12)

  1.  検体中の検出物質の特性値を測定するための装置であって、
     前記検体を滴下された試験紙における呈色画像を撮像する撮像手段と、
     前記撮像された呈色画像に基づいて所定の演算を実行し、前記演算の結果に基づいて、前記検体中の検出物質の特性値を算出する演算手段とを備え、
     前記試験紙は、第1の波長において光反射率が極大値を示し、前記第1の波長とは異なる第2の波長において前記光反射率が極小値を示す波長特性を有する呈色反応試薬を保持する、特性値測定装置。
    An apparatus for measuring a characteristic value of a detection substance in a sample, the apparatus comprising:
    An imaging unit configured to capture a color image on a test paper on which the sample is dropped;
    Arithmetic means for executing a predetermined calculation based on the captured color image and calculating a characteristic value of the detection substance in the sample based on the result of the calculation
    The test paper has a color reaction reagent having a wavelength characteristic in which the light reflectance exhibits a maximum value at a first wavelength and the light reflectance exhibits a minimum value at a second wavelength different from the first wavelength. Characteristic value measuring device to hold.
  2.  前記第1の波長が、前記特性値の量に応じて変化する場合、前記第1の波長を含む色成分の補色成分の強度と、前記特性値との相関関係を示す検量線を予め記憶した記憶装置をさらに備え、
     前記演算手段は、前記撮像された呈色画像から、前記補色成分の強度を演算し、前記補色成分の強度と、前記検量線とに基づいて、前記特性値を算出する、請求項1に記載の特性値測定装置。
    When the first wavelength changes according to the amount of the characteristic value, a calibration curve indicating the correlation between the intensity of the complementary color component of the color component including the first wavelength and the characteristic value is stored in advance Further comprising a storage device,
    The calculation unit according to claim 1, wherein the calculation unit calculates the intensity of the complementary color component from the captured color image, and calculates the characteristic value based on the intensity of the complementary color component and the calibration curve. Characteristic value measuring device.
  3.  前記第1の波長が、前記特性値の量に応じてシフトする場合、前記シフト前の第1の波長を含む色成分の補色成分の強度と、前記シフト後の第1の波長を含む色成分の強度との比と、前記特性値との相関関係を示す検量線を予め記憶した記憶装置をさらに備え、
     前記演算手段は、前記撮像された呈色画像から、前記比を演算し、前記比と、前記検量線とに基づいて、前記特性値を算出する、請求項1に記載の特性値測定装置。
    When the first wavelength shifts according to the amount of the characteristic value, the intensity of the complementary color component of the color component including the first wavelength before the shift and the color component including the first wavelength after the shift A storage device storing in advance a calibration curve indicating a correlation between the ratio to the intensity of the light emission and the characteristic value;
    The characteristic value measuring device according to claim 1, wherein the calculating means calculates the ratio from the captured color image, and calculates the characteristic value based on the ratio and the calibration curve.
  4.  前記第1の波長を含む色成分の強度と、前記第2の波長を含む色成分の強度との差と、前記特性値との相関関係を示す検量線を予め記憶した記憶装置をさらに備え、
     前記演算手段は、前記撮像された呈色画像から、前記差を演算し、前記差と、前記検量線とに基づいて、前記特性値を算出する、請求項1に記載の特性値測定装置。
    It further comprises a storage device storing in advance a calibration curve showing a correlation between the characteristic value and the difference between the intensity of the color component including the first wavelength, the intensity of the color component including the second wavelength,
    The characteristic value measuring device according to claim 1, wherein the calculation means calculates the difference from the captured color image, and calculates the characteristic value based on the difference and the calibration curve.
  5.  前記撮像手段は、スマートフォンのカメラ機能、またはデジタルカメラである、請求項1に記載の特性値測定装置。 The characteristic value measuring device according to claim 1, wherein the imaging means is a camera function of a smartphone or a digital camera.
  6.  検体中の検出物質の特性値を測定するための方法であって、
     第1の波長において、光反射率が極大値を示し、前記第1の波長とは異なる第2の波長において前記光反射率が極小値を示す波長特性を有する呈色反応試薬を保持した試験紙に、前記検体を滴下する工程と、
     前記検体の滴下に応じて前記試験紙において生じた呈色画像を撮像する工程と、
     前記撮像された呈色画像に基づいて所定の演算を実行し、前記演算の結果に基づいて、前記検体中の検出物質の特性値を算出する工程とを含む、特性値測定方法。
    A method for measuring a characteristic value of a detection substance in a sample, comprising
    Test paper holding a color reaction reagent having a wavelength characteristic in which the light reflectance exhibits a maximum value at a first wavelength and the light reflectance exhibits a minimum value at a second wavelength different from the first wavelength And dropping the sample.
    Imaging a color image generated on the test paper in response to the dropping of the sample;
    And D. performing a predetermined calculation based on the captured color image, and calculating a characteristic value of the detection substance in the sample based on a result of the calculation.
  7.  前記第1の波長が、前記特性値の量に応じて変化する場合、前記第1の波長を含む色成分の補色成分の強度と、前記特性値との相関関係を示す検量線を予め記憶装置に記憶しておき、
     前記算出する工程では、前記撮像された呈色画像から、前記補色成分の強度を演算し、前記補色成分の強度と、前記検量線とに基づいて、前記特性値を算出する、請求項6に記載の特性値測定方法。
    When the first wavelength changes according to the amount of the characteristic value, a calibration curve indicating the correlation between the intensity of the complementary color component of the color component including the first wavelength and the characteristic value is stored in advance Remember to
    In the calculating step, an intensity of the complementary color component is calculated from the captured color image, and the characteristic value is calculated based on the intensity of the complementary color component and the calibration curve. Characteristic value measurement method described.
  8.  前記第1の波長が、前記特性値の量に応じてシフトする場合、前記シフト前の第1の波長を含む色成分の補色成分の強度と、前記シフト後の第1の波長を含む色成分の強度との比と、前記特性値との相関関係を示す検量線を予め記憶装置に記憶しておき、
     前記算出する工程では、前記撮像された呈色画像から、前記比を演算し、前記比と、前記検量線とに基づいて、前記特性値を算出する、請求項6に記載の特性値測定方法。
    When the first wavelength shifts according to the amount of the characteristic value, the intensity of the complementary color component of the color component including the first wavelength before the shift and the color component including the first wavelength after the shift A calibration curve indicating the correlation between the ratio of the intensity of the light and the characteristic value is stored in advance in the storage device,
    The characteristic value measuring method according to claim 6, wherein in the calculating step, the ratio is calculated from the captured color image, and the characteristic value is calculated based on the ratio and the calibration curve. .
  9.  前記第1の波長を含む色成分の強度と、前記第2の波長を含む色成分の強度との差と、前記特性値との相関関係を示す検量線を予め記憶装置に記憶しておき、
     前記算出する工程では、前記撮像された呈色画像から、前記差を演算し、前記差と、前記検量線とに基づいて、前記特性値を算出する、請求項6に記載の特性値測定方法。
    A calibration curve indicating a correlation between the characteristic value and the difference between the intensity of the color component including the first wavelength and the intensity of the color component including the second wavelength is stored in the storage device in advance
    The characteristic value measuring method according to claim 6, wherein in the calculating step, the difference is calculated from the captured color image, and the characteristic value is calculated based on the difference and the calibration curve. .
  10.  前記特性値は、前記検体中の前記検出物質の酸価値である、請求項6に記載の特性値測定方法。 The characteristic value measuring method according to claim 6, wherein the characteristic value is an acid value of the detection substance in the sample.
  11.  前記撮像する工程を、スマートフォンのカメラ機能、またはデジタルカメラを用いて実施する、請求項6に記載の特性値測定方法。 The characteristic value measurement method according to claim 6, wherein the imaging step is performed using a camera function of a smartphone or a digital camera.
  12.  検体中の検出物質の特性値を測定するために、第1の波長において、光反射率が極大値を示し、前記第1の波長とは異なる第2の波長において前記光反射率が極小値を示す波長特性を有する呈色反応試薬を保持する試験紙に、前記検体が滴下されることによって生じる呈色画像を撮像手段に撮像させる機能、
     前記撮像された呈色画像に基づいて所定の演算を実行し、前記演算の結果に基づいて、前記検体中の検出物質の特性値を算出する機能をコンピュータに実現させるためのプログラム。
    In order to measure the characteristic value of the detection substance in the sample, the light reflectance exhibits a maximum value at a first wavelength, and the light reflectance exhibits a minimum value at a second wavelength different from the first wavelength. A function of causing an imaging unit to capture a color image generated by dropping the sample on test paper holding a color reaction reagent having a wavelength characteristic to be shown;
    A program for causing a computer to realize a function of executing a predetermined calculation based on the captured color image and calculating a characteristic value of a detection substance in the sample based on a result of the calculation.
PCT/JP2018/025080 2017-09-13 2018-07-02 Characteristic value measurement device, method, and program using color image WO2019054016A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017175862A JP2019052887A (en) 2017-09-13 2017-09-13 Characteristic value measurement device, method and program using coloring image
JP2017-175862 2017-09-13

Publications (1)

Publication Number Publication Date
WO2019054016A1 true WO2019054016A1 (en) 2019-03-21

Family

ID=65722718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/025080 WO2019054016A1 (en) 2017-09-13 2018-07-02 Characteristic value measurement device, method, and program using color image

Country Status (2)

Country Link
JP (1) JP2019052887A (en)
WO (1) WO2019054016A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110907441A (en) * 2019-12-04 2020-03-24 南京大学 Real-time visual sensing detection system and method for Cr (VI) ions in water
CN111721760A (en) * 2019-03-22 2020-09-29 台湾奈米碳素股份有限公司 System and method for evaluating flavor of food material based on gas
JP2023515712A (en) * 2020-04-27 2023-04-13 クーパーヴィジョン インターナショナル リミテッド antioxidant contact lenses

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0843387A (en) * 1994-08-02 1996-02-16 Kdk Corp Testee component analysing device using test paper
JP2001141648A (en) * 1999-11-12 2001-05-25 Higeta Shoyu Co Ltd Method and apparatus for estimation of measured value by absorbance measurement
JP2002040022A (en) * 2000-05-17 2002-02-06 Wako Pure Chem Ind Ltd Test paper analytical device
JP2003139769A (en) * 2001-11-06 2003-05-14 Asahi Tekuneion Kk Device for automatically determining chemical
JP2010281610A (en) * 2009-06-02 2010-12-16 Suwa Optronics:Kk Device for measuring degradation level of oil and fat, method of manufacturing the same, and method of controlling degradation state of oil and fat
JP2012088232A (en) * 2010-10-21 2012-05-10 Sutakku System:Kk Water quality inspection test paper measurement apparatus
JP2012150096A (en) * 2011-01-20 2012-08-09 Middleland Sensing Technology Inc Method and system for automatically determining test paper
WO2013010178A1 (en) * 2011-07-14 2013-01-17 Brigham And Women's Hospital, Inc. System and method for integration of mobile device imaging with microchip elisa
WO2015038717A1 (en) * 2013-09-11 2015-03-19 Wellumina Health, Inc. System for diagnostic testing of liquid samples
JP2015536465A (en) * 2013-01-07 2015-12-21 アイセンサー・インコーポレイテッドiXensor Inc. Test paper and test paper reading method
JP2017503167A (en) * 2013-12-27 2017-01-26 スリーエム イノベイティブ プロパティズ カンパニー Analysis apparatus, system, and program
JP2017049030A (en) * 2015-08-31 2017-03-09 スリーエム イノベイティブ プロパティズ カンパニー Device, system, program and method for measuring deterioration level of edible oil
JP2017511466A (en) * 2014-02-17 2017-04-20 アイセンサー・インコーポレイテッドiXensor Inc. Measurement of physical and biochemical parameters using portable devices

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0843387A (en) * 1994-08-02 1996-02-16 Kdk Corp Testee component analysing device using test paper
JP2001141648A (en) * 1999-11-12 2001-05-25 Higeta Shoyu Co Ltd Method and apparatus for estimation of measured value by absorbance measurement
JP2002040022A (en) * 2000-05-17 2002-02-06 Wako Pure Chem Ind Ltd Test paper analytical device
JP2003139769A (en) * 2001-11-06 2003-05-14 Asahi Tekuneion Kk Device for automatically determining chemical
JP2010281610A (en) * 2009-06-02 2010-12-16 Suwa Optronics:Kk Device for measuring degradation level of oil and fat, method of manufacturing the same, and method of controlling degradation state of oil and fat
JP2012088232A (en) * 2010-10-21 2012-05-10 Sutakku System:Kk Water quality inspection test paper measurement apparatus
JP2012150096A (en) * 2011-01-20 2012-08-09 Middleland Sensing Technology Inc Method and system for automatically determining test paper
WO2013010178A1 (en) * 2011-07-14 2013-01-17 Brigham And Women's Hospital, Inc. System and method for integration of mobile device imaging with microchip elisa
JP2015536465A (en) * 2013-01-07 2015-12-21 アイセンサー・インコーポレイテッドiXensor Inc. Test paper and test paper reading method
WO2015038717A1 (en) * 2013-09-11 2015-03-19 Wellumina Health, Inc. System for diagnostic testing of liquid samples
JP2017503167A (en) * 2013-12-27 2017-01-26 スリーエム イノベイティブ プロパティズ カンパニー Analysis apparatus, system, and program
JP2017511466A (en) * 2014-02-17 2017-04-20 アイセンサー・インコーポレイテッドiXensor Inc. Measurement of physical and biochemical parameters using portable devices
JP2017049030A (en) * 2015-08-31 2017-03-09 スリーエム イノベイティブ プロパティズ カンパニー Device, system, program and method for measuring deterioration level of edible oil

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SIBATA CATALOG, August 2016 (2016-08-01), Retrieved from the Internet <URL:https://www.sibata.co.jp/wpcms/wp-content/uploads/2016/09/Acid_Value_Tester1.pdf> *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111721760A (en) * 2019-03-22 2020-09-29 台湾奈米碳素股份有限公司 System and method for evaluating flavor of food material based on gas
CN110907441A (en) * 2019-12-04 2020-03-24 南京大学 Real-time visual sensing detection system and method for Cr (VI) ions in water
JP2023515712A (en) * 2020-04-27 2023-04-13 クーパーヴィジョン インターナショナル リミテッド antioxidant contact lenses

Also Published As

Publication number Publication date
JP2019052887A (en) 2019-04-04

Similar Documents

Publication Publication Date Title
EP3087534B1 (en) Analysis device, system and program
CN101296302B (en) Information processing apparatus and method
JP2019070648A (en) High accuracy imaging colorimeter by specially designed pattern closed loop calibration assisted by spectrograph
US9506855B2 (en) Method and system for analyzing a colorimetric assay
JP5931031B2 (en) Endoscope system and method for operating endoscope system
WO2019054016A1 (en) Characteristic value measurement device, method, and program using color image
JP7356490B2 (en) Methods for detecting analytes in samples
JP5131211B2 (en) Optical emission spectrometer
US8587783B2 (en) Spectral estimation parameter generation device, method of generating spectral estimation parameter, and spectral estimation device
JPH10508940A (en) Apparatus and method for measuring and analyzing spectral radiation mainly for measuring and analyzing color characteristics
JP2015127680A (en) Measuring device, system and program
JPWO2018034166A1 (en) Signal processing apparatus, signal processing method, and program
WO2017019762A1 (en) Image based photometry
JP5039520B2 (en) Method and system for measuring state quantity of observation object by electronic image colorimetry
JP6813316B2 (en) Deterioration information acquisition device, deterioration information acquisition system, deterioration information acquisition method and deterioration information acquisition program
JP6844976B2 (en) Deterioration information acquisition device, deterioration information acquisition system, deterioration information acquisition method and deterioration information acquisition program
JP2014109562A (en) Color and luminance display apparatus and color and luminance display method
US11169023B2 (en) Optical measuring device, malfunction determination system, malfunction determination method, and a non-transitory recording medium storing malfunction
JP6555276B2 (en) Stimulus value reading type colorimetry photometer
JPH04157350A (en) Fluorescent measurement apparatus
RU2768216C1 (en) Method for determining concentration of an analyte in a physiological fluid
JP2002323376A (en) Color information measuring method, display color evaluation method, display color adjusting method, and manufacturing method of device using them and projector
JP2007183153A (en) Spectral measuring method, spectral measuring program, storage medium, and spectral measuring apparatus
JP7450960B2 (en) Color measurement method and device
RU2791099C2 (en) Method for determining analyte in a sample

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18856737

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18856737

Country of ref document: EP

Kind code of ref document: A1