WO2019052581A1 - 一种极性码的编码方法和编码装置 - Google Patents

一种极性码的编码方法和编码装置 Download PDF

Info

Publication number
WO2019052581A1
WO2019052581A1 PCT/CN2018/106288 CN2018106288W WO2019052581A1 WO 2019052581 A1 WO2019052581 A1 WO 2019052581A1 CN 2018106288 W CN2018106288 W CN 2018106288W WO 2019052581 A1 WO2019052581 A1 WO 2019052581A1
Authority
WO
WIPO (PCT)
Prior art keywords
bits
information bits
type
information
bit
Prior art date
Application number
PCT/CN2018/106288
Other languages
English (en)
French (fr)
Inventor
罗禾佳
杜颖钢
李榕
黄凌晨
陈莹
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to BR112020005224-8A priority Critical patent/BR112020005224B1/pt
Priority to JP2020515937A priority patent/JP2020534746A/ja
Priority to RU2020113530A priority patent/RU2782234C2/ru
Priority to EP21192840.3A priority patent/EP3979532B1/en
Priority to EP18856598.0A priority patent/EP3614593B1/en
Priority to KR1020207011051A priority patent/KR102325813B1/ko
Priority to CA3076271A priority patent/CA3076271C/en
Priority to EP23205319.9A priority patent/EP4336759A3/en
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to AU2018333350A priority patent/AU2018333350B9/en
Publication of WO2019052581A1 publication Critical patent/WO2019052581A1/zh
Priority to US16/506,765 priority patent/US10693590B2/en
Priority to US16/908,252 priority patent/US11303388B2/en
Priority to US17/716,402 priority patent/US11843461B2/en
Priority to US18/512,912 priority patent/US20240171307A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/09Error detection only, e.g. using cyclic redundancy check [CRC] codes or single parity bit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/27Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data

Definitions

  • Embodiments of the present invention relate to the field of codecs, and more particularly, to a method and an encoding apparatus for a polar code.
  • Polar code is an encoding method that can achieve Shannon capacity and has low coding and decoding complexity.
  • the Polar code is a linear block code including information bits and freeze bits.
  • the generation matrix of the Polar code is G N.
  • the encoding process is Here, Is a binary line vector with a length of N.
  • the application provides a method for encoding a polar code, including:
  • Determining the payload of the broadcast signaling payload includes: D cyclic redundancy check CRC bits and M predictable information bits;
  • the coded bits are transmitted.
  • the application provides a method for encoding a polar code, including:
  • a polar code encoding device comprising:
  • the payload payload for determining broadcast signaling includes: D cyclic redundancy check CRC bits and M predictable information bits; mapping the M predictable information bits to the polarity respectively The M information bits with low reliability among the K information bits of the code, and the D cyclic redundancy check CRC bits are mapped to the D information bits with high reliability among the remaining information bits of the K information bits. Obtaining the mapped bit, where M ⁇ K, and D, M and K are both positive integers;
  • Polar code coding is performed on the mapped bits to obtain coded coded bits.
  • FIG. 1 illustrates a wireless communication system in accordance with various embodiments described herein;
  • FIG. 2 is a schematic block diagram of a system for a polar code encoding method to which the present invention is applied in a wireless communication environment;
  • FIG. 3 is a schematic flowchart of a method for encoding a polar code according to an embodiment of the present invention
  • FIG. 3a is a schematic block diagram of a method for encoding a polar code according to an embodiment of the present invention
  • FIG. 3b is a schematic block diagram of another method for encoding a polar code according to an embodiment of the present invention.
  • FIG. 4 is a schematic block diagram of an encoding apparatus for a polar code according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an access terminal that facilitates performing the foregoing encoding method of a Polar code in a wireless communication system
  • FIG. 6 is a schematic diagram of a system having a method of encoding the aforementioned Polar code in a wireless communication environment
  • FIG. 7 is a schematic diagram of a system in which a method of encoding the aforementioned Polar code is performed in a wireless communication environment.
  • a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • Both the application running on the computing device and the computing device can be components.
  • One or more components can reside within a process and/or execution thread, and the components can be located on one computer and/or distributed between two or more computers. Moreover, these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on signals having one or more data packets (eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems
  • An access terminal may also be called a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, a user device, or a UE (User Equipment, User equipment).
  • the access terminal may be a cellular phone, a cordless phone, a SIP (Session Initiation Protocol) phone, a WLL (Wireless Local Loop) station, a PDA (Personal Digital Assistant), and a wireless communication.
  • the base station can be used for communication with a mobile device, and the base station can be a BTS (Base Transceiver Station) in GSM (Global System of Mobile communication) or CDMA (Code Division Multiple Access), or
  • the NB (NodeB, base station) in the WCDMA (Wideband Code Division Multiple Access) may be an eNB or an eNodeB (Evolved Node B) in LTE (Long Term Evolution).
  • the term "article of manufacture” as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or media.
  • the computer readable medium may include, but is not limited to, a magnetic storage device (for example, a hard disk, a floppy disk, or a magnetic tape), and an optical disk (for example, a CD (Compact Disk), a DVD (Digital Versatile Disk). Etc.), smart cards and flash memory devices (eg, EPROM (Erasable Programmable Read-Only Memory), cards, sticks or key drivers, etc.).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, without limitation, a wireless channel and various other mediums capable of storing, containing, and/or carrying instructions and/or data.
  • FIG. 1 illustrates a wireless communication system in accordance with various embodiments described herein.
  • System 100 includes a base station 102 that can include multiple antenna groups.
  • one antenna group may include antennas 104 and 106
  • another antenna group may include antennas 108 and 110
  • additional groups may include antennas 112 and 114.
  • Two antennas are shown for each antenna group, however more or fewer antennas may be used for each group.
  • Base station 102 can additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, which can include multiple components associated with signal transmission and reception (e.g., processor, modulator, multiplexer, demodulation) , demultiplexer or antenna, etc.).
  • Base station 102 can communicate with one or more access terminals, such as access terminal 116 and access terminal 122. However, it will be appreciated that base station 102 can communicate with substantially any number of access terminals similar to access terminals 116 and 122. Access terminals 116 and 122 can be, for example, cellular telephones, smart phones, portable computers, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, and/or any other for communicating over wireless communication system 100. Suitable for equipment. As shown, access terminal 116 is in communication with antennas 112 and 114, with antennas 112 and 114 transmitting information to access terminal 116 over forward link 118 and receiving information from access terminal 116 over reverse link 120.
  • access terminal 116 is in communication with antennas 112 and 114, with antennas 112 and 114 transmitting information to access terminal 116 over forward link 118 and receiving information from access terminal 116 over reverse link 120.
  • access terminal 122 is in communication with antennas 104 and 106, wherein antennas 104 and 106 transmit information to access terminal 122 over forward link 124 and receive information from access terminal 122 over reverse link 126.
  • FDD Frequency Division Duplex
  • the forward link 118 can utilize a different frequency band than that used by the reverse link 120, and the forward link 124 can utilize the reverse link 126. Different frequency bands used.
  • the forward link 118 and the reverse link 120 can use a common frequency band, and the forward link 124 and the reverse link 126 can use a common frequency band.
  • Each set of antennas and/or regions designed for communication is referred to as a sector of base station 102.
  • the antenna group can be designed to communicate with access terminals in sectors of the coverage area of base station 102.
  • the transmit antennas of base station 102 may utilize beamforming to improve the signal to noise ratio for forward links 118 and 124 of access terminals 116 and 122.
  • the base station 102 transmits to the randomly dispersed access terminals 116 and 122 in the relevant coverage area by the base station as compared to all of the access terminals transmitted by the base station, the mobile devices in the adjacent cells are subject to Less interference.
  • base station 102, access terminal 116, and/or access terminal 122 may be transmitting wireless communication devices and/or receiving wireless communication devices.
  • the transmitting wireless communication device can encode the data for transmission.
  • the transmitting wireless communication device can have (eg, generate, obtain, store in memory, etc.) a certain number of information bits to be transmitted over the channel to the receiving wireless communication device.
  • Such information bits may be included in a transport block (or multiple transport blocks) of data that may be segmented to produce a plurality of code blocks.
  • the transmitting wireless communication device can encode each code block using a Polar code encoder (not shown) to improve the reliability of data transmission, thereby ensuring communication quality.
  • System 200 includes a wireless communication device 202 that is shown to transmit data via a channel. Although shown as transmitting data, the wireless communication device 202 can also receive data via a channel (eg, the wireless communication device 202 can transmit and receive data simultaneously, the wireless communication device 202 can transmit and receive data at different times, or a combination thereof, etc.) .
  • the wireless communication device 202 can be, for example, a base station (e.g., base station 102 of FIG. 1), an access terminal (e.g., access terminal 116 of FIG. 1, access terminal 122 of FIG. 1, etc.), and the like.
  • the wireless communication device 202 can include a polar code encoder 204, a rate matching device 205, and a transmitter 206.
  • the wireless communication device 202 may also include a receiver that may be present separately or integrated with the transmitter 206 to form a transceiver.
  • the polar code encoder 204 is configured to encode the data to be transmitted from the wireless communication device 202 to obtain the encoded polar code.
  • the payload of the polar encoder 204 for determining broadcast signaling includes: D cyclic redundancy check CRC bits and M predictable information bits; and the M predictable
  • the information bits are respectively mapped to the M information bits with low reliability among the K information bits of the polar code, and the D cyclic redundancy check CRC bits are mapped to the remaining information bits of the K information bits.
  • the D information bits with high reliability obtain the mapped bits, where M ⁇ K, and D, M and K are both positive integers; the mapped bits are polar code encoded to obtain the encoded code. Bit.
  • transmitter 206 can then transmit the rate matched output bits processed by rate matching device 205 over the channel.
  • transmitter 206 can transmit relevant data to other different wireless communication devices (not shown).
  • FIG. 3 is a schematic flowchart of a method for encoding a polar code according to an embodiment of the present invention.
  • the method illustrated in Figure 3 can be performed by a wireless communication device, such as polar encoder 204 in the wireless communication device shown in Figure 2.
  • the encoding method described in FIG. 3 includes:
  • broadcast signaling refers to signaling carried on a broadcast channel, such as the physical broadcast channel PBCH.
  • PBCH is taken as an example to describe the encoding method in detail, but is not limited to the PBCH.
  • the payload payload of the PBCH includes: D cyclic redundancy check CRC bits and M predictable information bits.
  • the payload of the PBCH is classified into the following four categories according to whether the content of the access service is variable:
  • the first type of bits include: reserved bits reserved bits or bits that are completely fixed in value or values that are directly determined according to the protocol.
  • the second type of bits includes: information bits whose values remain unchanged.
  • the information bits remain unchanged in the Master Information Block (MIB). It can also be understood that the value in the MIB cannot be directly determined from the protocol. When accessing the network, it needs to be detected, but its value.
  • MIB Master Information Block
  • the second type of bits may include one or more of system bandwidth related information, subcarrier information, indication information of a system configuration numerology supported by the base station BS, or general control channel information.
  • the third type of bits includes: changes in the content of the timing information, and predictable information bits. Although the content of the timing information changes, the portion of the MIB information that can be predicted.
  • the third type of bits include: a system frame number, a sequence number of a sync block SS block, and a field frame indicating one or more of a half frame radio indicator.
  • the fourth type of bits includes: unpredictable information bits.
  • Information can change at any time, unpredictable part of the MIB information.
  • the control channel configuration information of the current frame may be repeated although it may be repeated at any time.
  • the fourth type of bit is different from the third type of bit and must be detected each time.
  • the fourth type of bits includes: indication information of the current system configuration parameter numerology, and SIB resource indication information.
  • the corresponding CRC bit also belongs to this class.
  • the CRC bit can be divided into the third type of bit; if the fourth type of bit is not included in the MIB, the CRC bit is divided into the fourth type of bit; If the MIB contains the third type of bits and the fourth type of bits, the CRC bits are divided into the fourth type of bits.
  • the division of the CRC here mainly considers that if there is a third type of bit set, the value of the CRC is related according to the third type of bits in the MIB information; if there is a fourth type of bit, the value of the CRC is based on the MIB information.
  • the fourth type of bits are related, so the above division is performed on the CRC bits.
  • the payload of PBCH may include one set of bits in the above-described four types or more of the set of bits.
  • the first class to the third class may be divided into predictable information bits, and the fourth class is divided into unpredictable information bits.
  • the content of the payload of the PBCH is mapped to the information according to the reliability of the subchannel in the set of the bit information of the polar code information according to the order of the first to fourth classes.
  • the specific mapping method in the bit set differs depending on the type of partition.
  • the M third-class bits include: information bits of the M1 system frame number and bits of the information sequence number of the M2 synchronization blocks SS block, and the bits of the system frame number and the synchronization block SS block in the third type of bits
  • the bits of the M1 system frame number are mapped to the M1 information bits of the M information bits with low reliability, and the information of the sequence numbers of the M2 SS blocks is obtained.
  • the bit maps to the M2 information bits with low reliability among the remaining information bits of the M information with low reliability; or maps the information bits of the sequence number of the M2 SS blocks to the M information bits with low reliability, M2
  • the information bits map the bits of the M1 system frame numbers to the M1 information bits of the remaining information bits of the M information with low reliability.
  • the one SS block carries one primary synchronization sequence and one secondary synchronization sequence.
  • Broadcast signaling usually includes a number of reserved bits that do not actually carry useful information, so that in the process of encoding the Polar code, the bits are divided, and the bits of the classified type are mapped to the information bits with low reliability according to the rules. Even if the reserved bits change during transmission, it will not affect the correct decoding of the broadcast signaling.
  • the embodiment of the present invention does not limit the form of measurement of reliability.
  • the M predictable information bits include: the M1 first type bits and the M2 second type bits, or the M1 reserved bits and the M3 first
  • the M1 first type bits are mapped to the M1 information bits with low reliability among the M information bits
  • the M3 second type bits are mapped to M3 information bits of low reliability among the remaining information bits of the M information bits.
  • the M predictable information bits include: the M1 first class bits, the M2 second class bits, and the M3 second class bits
  • the M1 first One type of bit is mapped to M1 information bits of low reliability among M information bits
  • the M3 third class bits are mapped to the less reliable M3 information bits of the (M-M1-M2) bits.
  • the payload further includes: J unpredictable information bits;
  • the four types of bit information of the foregoing division may include one or more of the following types according to the reliability of the Polar code from low to high, but are not limited to:
  • Example 1.1 According to the reliability of the Polar code from low to high, the order of the above four types of bits including the division may be:
  • a first type of bit a second type of bit, a third type of bit, a fourth type of bit, a CRC bit;
  • each type of bit in the above order, for example, a first type of bit including a Reserved bit, a second type of bit including bandwidth information, general control channel configuration information, and a third type including timing information.
  • Class bits including the fourth type of bits indicated by the SIB, CRC bits.
  • the reliability of the Polar code is low from low to high.
  • Example 1.2 According to the reliability of the Polar code from low to high, the above-mentioned arrangement order of the four types of bits divided may be:
  • a first type of bit a second type of bit, a third type of bit, a fourth type of bit, a CRC bit;
  • each type of bit in the above order, for example, a first type of bits including a Reserved bit, a second type of bits including general control channel configuration information, bandwidth information, and a third type including timing information.
  • Class bits including the fourth type of bits indicated by the SIB, CRC bits.
  • the order of the second type of bits in the 1.2th example is sorted, and the order in the same class can be exchanged.
  • the reliability of the Polar code is low from low to high.
  • Example 1.3 According to the reliability of the Polar code from low to high, the order of the above four types of bits including the division may be:
  • each type of bit in the above order, for example, a first type of bit including a Reserved bit, a second type of bit including general control channel configuration information, timing information, and bandwidth information;
  • the second type of bits and the third type of bits of information including the fourth type of bits indicated by the SIB, CRC bits.
  • the second type of bits can be combined with the third type of bits, that is, in the divided bit set, the second type of bits and the third type of bits are all divided into one class, and this type can be combined. They are all divided into the second type of bits, and can also be combined and divided into the third bits. There is no limitation here.
  • the reliability of the Polar code is low from low to high.
  • Example 1.4 According to the reliability of the Polar code from low to high, the order of the above four types of bits including the division may be:
  • each type of bit in the above order, for example, a first type of bit including a Reserved bit; a second type of bit including a general control channel configuration information, bandwidth information, timing information, and a third type Bit; includes the fourth type of bits indicated by the SIB, CRC;
  • the difference between the example here and the above example 1.3 is that the second type of bits can be combined with the third type of bits, and the combined set of bits includes different types.
  • the reliability of the Polar code is low from low to high.
  • Example 1.5 According to the reliability of the Polar code from low to high, the order of the above four types of bits including the division may be:
  • each type of bit in the above order, for example, a type of bit including a Reserved bit; a second type of bit including general control channel configuration information and bandwidth information; and a third class including timing information Bit, CRC;
  • the set of bits included in the payload of the PBCH may be any combination of the above four types.
  • the payload of the PBCH includes the first type of bits, the second type of bits, and the third.
  • the class bits which are not limited at this time, may also include only the first type of bits, the third type of bits, and the fourth type of bits that are divided, such as Example 1.6.
  • the reliability of the Polar code is low from low to high.
  • Example 1.6 According to the reliability of the Polar code from low to high, the order of the above four types of bits including the division may be:
  • a type of bit including a Reserved bit includes a third type of bit of timing information, a fourth type of bit including an SIB indication, a CRC;
  • the set of bits included in the payload of the PBCH may be any combination of the above four types.
  • the payload of the PBCH includes the first type of bits, the third type of bits, and the fourth.
  • the class bits may also include the first type of bits and the third type of bits that are divided, for example, Example 1.7.
  • Example 1.7 According to the reliability of the Polar code from low to high, the order of the above four types of bits including the division may be:
  • each type of bit in the above order, for example, a first type of bit including a Reserved bit; a third type of bit including timing information, a CRC.
  • Example 1.8 According to the reliability of the Polar code from low to high, the order of the above four types of bits including the division may be:
  • each type of bit in the above order, for example, a first type of bit including a Reserved bit; a second type of bit including a bandwidth information, a CRC.
  • bit combinations of the above various types of divisions can be arbitrarily matched, and are not limited herein, and generally follow the above rules of division and ordering.
  • mapping method can be implemented by introducing an interlace of information to be encoded. for example:
  • the 72 most reliable subchannels in the Polar code are selected as the information bit information bit set: 72 subchannel numbers are low to high according to reliability.
  • the ordering is: [484; 430; 488; 239; 378; 459; 437; 380; 461; 496; 351; 467; 438; 251; 462; 442; 441; 469; 247; 367; 253; 470;483;415;485;473;474;254;379;431;489;486;476;439;490;463;381;497;492;443;382;498;445;471;500;446; 475;487;504;255;477;491;478;383;493;499;502;494;501;447;505;506;479;508
  • the results of the MIB after the Cyclic Redundancy Check (CRC) are a0, a1, ..., a9, a10, ..., a14, a15, ..., a29, a30, ..., a39, a48, ..., a71. According to the reliability priority order of the following table, it is sequentially taken out from the order of the polar subchannels.
  • the discrete CRC When there is a D-CRC, the discrete CRC will occupy some subchannel locations. Then, from the first type of bits to the fourth type of bits, the bit positions of the discrete CRCs are first considered. According to the set of the bit information of the polar code information, the subchannels that have been occupied by the CRC are removed, and the reliability of the remaining subchannels is low. To the high, the remaining bits except the mapping of the CRC bits are removed. The remaining bits are subjected to the above four types of division according to the manner of the first embodiment, and the bit types including the divided bits are mapped according to the division result of the first embodiment. Go to the information bit set.
  • the polar code subchannels that have been occupied by the discrete CRC bits are removed, and the possible order of the MIBs is:
  • the four types of bit information of the foregoing division may include one or more of the following types according to the reliability of the Polar code from low to high, but are not limited to:
  • Example 2.1 According to the reliability of the Polar code from low to high, the order of the above four types of bits including the division may be:
  • each type of bit in the above order, for example, a first type of bit including a Reserved bit, a second type of bit including bandwidth information, general control channel configuration information, and a third type including timing information Class bits, including the fourth type of bits of the SIB.
  • the reliability of the Polar code is low from low to high.
  • Example 2.2 According to the reliability of the Polar code from low to high, the order of the above four types of bits including the division may be:
  • each type of bit in the above-mentioned order, for example, a second type of bit including a reserved bit first class bit, including general control channel configuration information and bandwidth information; and a third class including timing information Bit; includes the fourth type of bits of the SIB.
  • the reliability of the Polar code is low from low to high.
  • Example 2.3 According to the reliability of the Polar code from low to high, the order of the above four types of bits including the division may be:
  • each type of bit in the above order, for example, a first type of bit including a Reserved bit; a second type of bit including a general control channel configuration information, timing information, bandwidth information, and a third type Bit-combined bits; including the fourth type of bits indicated by the SIB.
  • the reliability of the Polar code is low from low to high.
  • the SIBs in all the foregoing embodiments may be SIB information or SIB resource indication information.
  • Example 2.4 According to the reliability of the Polar code from low to high, the order of the above four types of bits including the division may be:
  • each type of bit in the above order, for example, a first type of bit including a Reserved bit; a second type of bit including a general control channel configuration information, bandwidth information, timing information, and a third type Bit-combined bits; including the fourth type of bits of the SIB.
  • the reliability of the Polar code is low from low to high.
  • Example 2.5 According to the reliability of the Polar code from low to high, the above-mentioned arrangement order of the four types of bits divided may be: a first type of bits, a second type of bits, and a third type of bits.
  • each type of bit in the above order, for example, a first type of bit including a Reserved bit; a second type of bit including general control channel configuration information and bandwidth information; and a third type including timing information Class bits.
  • the above may further include a first type of bit, a third type of bit, and a fourth type of bit, and the order is: a first type of bit including a Reserved bit, a third type of bit including timing information, and a fourth type of bit including an SIB:
  • the corresponding ordering is: including a first bit of the Reserved bit, and a third type of bit including timing information; or
  • the corresponding ordering is: including the first bit of the Reserved bit, and the second type of bits including the bandwidth information.
  • the reliability of the Polar code is low from low to high.
  • the location of the CRC is not strictly in accordance with the above criteria.
  • the total length of the MIB and CRC is 72. Therefore, the 72 most reliable subchannels in the Polar code are selected as the information bit information bit set: 72 subchannel numbers are low to high according to reliability. Sort as described above.
  • the 72 information bits contain a 24-bit CRC.
  • the interleaver for generating a D-CRC from this CRC is as follows:
  • the position of the information obtained by placing the D-CRC in the polar code can be obtained as follows:
  • the bits that place the DCRC are removed from the set of polar code information bits, and the order of reliability of the remaining parts is from low to high:
  • the present application further provides an embodiment, according to the foregoing first embodiment and the second embodiment, the discrete CRC bits and other CRC bits are specifically sorted, and the discrete CRC is first according to the second embodiment.
  • the manner is carried out, and other CRCs are carried out in the manner of the first embodiment. I won't go into details here.
  • the broadcast signaling (signaling carried by the PBCH channel) passes through a Cyclic Redundancy Check (CRC) and the result is a0, a1, ..., a13, a14, ..., a23, a24, ...
  • CRC Cyclic Redundancy Check
  • a39 where a14, ..., a23 are reserved bits (10), a24, ..., a39 corresponds to check bits (may contain a mask).
  • 10 information bits with low reliability in the polar code are ⁇ 79, 106, 55, 105, 92, 102, 90, 101, 47, 89 ⁇ .
  • the wireless communication device when the wireless communication device is ready to send broadcast signaling through a PBCH (Public Broadcast Channel, PBCH) channel, the broadcast signaling may be first coded with a polar code.
  • PBCH Public Broadcast Channel
  • the encoded output of the Polar code can be expressed as equation (1):
  • Is a binary line vector with a length of N; G N. is an N*N matrix, N is the length of the encoded coded bit, n ⁇ 0; here B N is a transposed matrix, Is the Kronecker power, defined as .
  • a part of the bits are used to carry information (that is, information that needs to be sent to the receiving end). These bits are called information bits, and the index set of these bits is denoted as A; the remaining part of the bits is a fixed value, called freezing.
  • the frozen bit for example, can often be set to zero.
  • the M predictable information bits are respectively mapped to the M information bits with low reliability among the K information bits of the polar code, and D cyclic redundancy check is performed.
  • the CRC bits are mapped to the D information bits with high reliability among the remaining information bits of the K information bits, and the mapped bits are obtained.
  • the encoded Polar code can be obtained according to the encoding process shown by the formula (1), that is, the encoded coded bits are obtained.
  • the encoded Polar code output through the encoding process of the Polar code encoder can be simplified as: Where u A is In the set of information bits, u A is the row vector of length K, and K is the number of information bits. G N. (A) is a sub-matrix rows G N. A by the set corresponding to the index obtained, G N. (A) is a K * N matrix.
  • the M information bits with low reliability include M information bits whose reliability is lower than a preset threshold, or the M information bits with low reliability include the lowest reliability among the K information bits. M information bits.
  • the K information may be first The size of the bit reliability, sorting the K information bits.
  • the M reserved bits of the broadcast signaling are respectively mapped to the M information bits with low reliability among the K information bits of the polar code
  • the M reserved bits may be selected according to the sorting result. The M information bits with low reliability among the K information bits are respectively mapped.
  • the polarity code includes 40 information bits, and 40 information bits are sorted according to reliability from large to small, and the following sorted indexes are obtained:
  • the length of the broadcast signaling is 40 bits, including 10 bits of reserved bits.
  • the 10-bit reserved bits should be mapped to the information bits corresponding to ⁇ 79, 106, 55, 105, 92, 102, 90, 101, 47, 89 ⁇ , respectively.
  • the remaining bits of the broadcast signaling are mapped to other information bits than the above 10 bits.
  • the magnitude of the reliability of the information bits is determined based on the bit capacity, the Barth's distance Bhattacharyya parameter, or the error probability.
  • the bit capacity of each information bit of the Polar code can be determined first, and the size of the information bit reliability can be expressed by the size of the bit capacity.
  • the bit having a large bit capacity has high reliability.
  • the Bhattacharyya parameter of each information bit of the Polar code can be determined, and the information bit reliability is represented by the Bhattacharyya parameter size.
  • the information bits of the Bhattacharyya parameter are highly reliable.
  • the encoding device 400 of FIG. 4 may be located at a base station or access terminal (e.g., base station 102 and access terminal 116) that includes a mapping unit 401 and an encoding unit 402.
  • the mapping unit 401 is configured to map the M reserved bits of the broadcast signaling to the M information bits with low reliability among the K information bits of the polar code, and map the remaining bits of the broadcast signaling to the K information.
  • the remaining information bits in the bits result in mapped bits, where M ⁇ K, and M and K are both positive integers.
  • broadcast signaling refers to signaling carried on a broadcast channel (e.g., physical broadcast channel PBCH).
  • Broadcast signaling usually includes a number of reserved bits that do not actually carry useful information, so that in the process of Polar code encoding, the reserved bits are mapped to information bits with low reliability, even if the reserved bits occur during transmission. Changes will not affect the correct decoding of broadcast signaling.
  • the embodiment of the present invention does not limit the form of measurement of reliability.
  • the broadcast signaling (signaling carried by the PBCH channel) passes through a Cyclic Redundancy Check (CRC) and the result is a0, a1, ..., a13, a14, ..., a23, a24, ..., A39, where a14, ..., a23 are reserved bits (10), a24, ..., a39 correspond to check bits (may contain a mask).
  • CRC Cyclic Redundancy Check
  • the 10 information bits with low reliability in the polarity code are ⁇ 79, 106, 55, 105, 92, 102, 90, 101, 47, 89 ⁇ , respectively.
  • the encoding unit 402 is configured to perform polar code encoding on the mapped bits to obtain encoded coded bits.
  • the process of encoding the bit code of the mapped bit by the coding unit may refer to the description in the foregoing embodiment. To avoid repetition, details are not described herein again.
  • the M information bits with low reliability include M information bits whose reliability is lower than a preset threshold, or the M information bits with low reliability include the lowest reliability among the K information bits. M information bits.
  • the encoding device 400 further includes a sorting unit 403.
  • the sorting unit 403 is configured to sort the K information bits according to the reliability of the K information bits.
  • the coding unit 402 is specifically configured to map the M reserved bits to the M information bits with low reliability among the K information bits according to the sorting result.
  • the polarity code includes 40 information bits, and 40 information bits are sorted according to reliability from large to small, and the following sorted indexes are obtained:
  • the length of the broadcast signaling is 40 bits, including 10 bits of reserved bits.
  • the 10-bit reserved bits should be mapped to the information bits corresponding to ⁇ 79, 106, 55, 105, 92, 102, 90, 101, 47, 89 ⁇ , respectively.
  • the remaining bits of the broadcast signaling are mapped to other information bits than the above 10 bits.
  • the magnitude of the reliability of the information bits is determined based on the bit capacity, the Barth's distance Bhattacharyya parameter, or the error probability.
  • the bit capacity when used as the reliability metric of the information bits, it may be determined that the bit capacity of each information bit of the Polar code is first determined, and the size of the information bit reliability is expressed by the size of the bit capacity. Among them, the bit having a large bit capacity has high reliability.
  • the Bhattacharyya parameter of each information bit of the Polar code can be determined, and the information bit reliability is represented by the Bhattacharyya parameter size.
  • the information bits of the Bhattacharyya parameter are highly reliable.
  • the encoding apparatus 400 further includes an interleaving unit 404 and an intercepting unit 405.
  • the interleaved single 404 element and intercepting unit 405 can be located on the rate matching device 205 of the wireless communication device 202 as shown in FIG.
  • the rate matching means 205 and the polar code encoder 204 together form the encoding means 400 of the polar code.
  • the interleaving unit 404 is configured to perform sorting congruence interleaving on the encoded coded bits to obtain coded bits after interleaving.
  • the intercepting unit 405 is configured to input the first E bits of the interleaved coded bits into the circular buffer according to the preset value E.
  • the intercepting unit 405 is configured to perform inverse processing on the interleaved coded bits, and input the first E bits of the reverse-processed coded bits into the circular buffer according to the preset value E.
  • the preset value E is related to the frame format of the broadcast signaling.
  • the embodiment of the present invention can further improve the code rate.
  • the interleaving unit 404 is specifically configured to obtain a congruence sequence according to the length of the encoded coded bits. Then, according to the preset rule, the congruence sequence is sorted to obtain a reference sequence, and the mapping function is determined according to the congruence sequence and the reference sequence. Finally, according to the mapping function, the encoded coded bits are interleaved to obtain the coded bits after the interleaving.
  • the process of interleaving the coded bits by the interleaving unit 404 may refer to the specific description of the foregoing embodiments. To avoid repetition, details are not described herein again.
  • the interleaving unit 404 is specifically configured to use the following formula (3).
  • N is the length of the encoded coded bits
  • x 0 , a, c, and m are specific parameters
  • x(0), x(1), ..., x(N-1) are congruence sequences.
  • N is the length of the encoded coded bit, which means that N is the code length of the Polar code.
  • Equation (2) represents a linear congruence method, m represents a modulus, and m > 0; a represents a multiplier; c represents an increment; and x (0) represents a starting value.
  • x 0 4831
  • a 7 5
  • Access terminal 500 includes a receiver 502 for receiving signals from, for example, a receiving antenna (not shown) and performing typical actions (e.g., filtering, amplifying, downconverting, etc.) on the received signals, and adjusting The resulting signal is digitized to obtain samples.
  • Receiver 502 can be, for example, a Minimum Mean-Squared Error (MMSE) receiver.
  • Access terminal 500 can also include a demodulator 504 that can be used to demodulate received symbols and provide them to processor 506 for channel estimation.
  • MMSE Minimum Mean-Squared Error
  • Processor 506 can be a processor dedicated to analyzing information received by receiver 502 and/or generating information transmitted by transmitter 516, a processor for controlling one or more components of access terminal 500, and/or A controller for analyzing information received by receiver 502, generating information transmitted by transmitter 516, and controlling one or more components of access terminal 500.
  • Access terminal 500 can additionally include a memory 508 operatively coupled to processor 506 and storing the following data: data to be transmitted, received data, and any other related to performing various actions and functions described herein. Suitable for information.
  • Memory 508 can additionally store associated protocols and/or algorithms for Polar code processing.
  • non-volatile memory can include: Read-Only Memory (ROM), Programmable Read Only Memory (ROM), Erasable Programmable Read Only Memory (Erasable) PROM, EPROM), electrically erasable programmable read only memory (EEPROM) or flash memory.
  • Volatile memory can include: Random Access Memory (RAM), which acts as an external cache.
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • Synchronous DRAM synchronous dynamic random access memory
  • Memory 508 of the systems and methods described herein is intended to comprise, without being limited to, these and any other suitable types of memory.
  • the access terminal 500 also includes a Polar code encoder 512 and a rate matching device 510.
  • receiver 502 can also be coupled to rate matching device 510.
  • Rate matching device 510 can be substantially similar to rate matching device 205 of FIG.
  • the Polar code encoder 512 is substantially similar to the Polar code encoder 204 of FIG.
  • the payload code 512 that the Polar code encoder 512 can use to determine the broadcast signaling includes: D cyclic redundancy check CRC bits and M predictable information bits;
  • Polar code coding is performed on the mapped bits to obtain coded coded bits.
  • first determining a payload payload of the broadcast signaling includes: D cyclic redundancy check CRC bits and M predictable information bits; and the M predictable
  • the information bits are respectively mapped to the M information bits with low reliability among the K information bits of the polar code, and the D cyclic redundancy check CRC bits are mapped to the remaining information bits of the K information bits.
  • the D information bits with high reliability obtain the mapped bits, where M ⁇ K, and D, M and K are both positive integers; the mapped bits are polar code encoded to obtain the encoded code.
  • the bits are capable of broadcasting the reliability of the signaling transmission.
  • the M information bits with low reliability include M information bits whose reliability is lower than a preset threshold, or the M information bits with low reliability include the lowest reliability among the K information bits. M information bits.
  • the M predictable information bits include one or more of the following bit combinations: M1 first type bits, M2 second type bits, or M3 third type bits
  • the first type of bits are reserved bits
  • the second type of bits include: information bits whose values remain unchanged
  • the third type of bits take values that change the content of the time series information
  • the M predictable information bits include: the M1 first class bits and the M2 second class bits, or the M1 reserved bit sums
  • the M1 first type bits are mapped to the M1 information bits with low reliability among the M information bits
  • the M2 second type bits are mapped to the M2 information bits with low reliability among the remaining information bits of the M information bits; or the M1 first class is The bits are mapped to the less reliable M1 information bits of the M information bits; the M3 second type bits are mapped to the M3 information bits of the remaining information bits of the M information bits with low reliability.
  • the Polar code encoder 512 is specifically configured to: when the M predictable information bits include: the M1 first class bits, the M2 second class bits, and the M3 first class bits are mapped to M1 information bits with low reliability among M information bits;
  • the Polar code encoder 512 is specifically configured to map the M2 second type bits to the low reliability M2 information bits of the (M-M1) information bits;
  • the M3 third class bits are mapped to the less reliable M3 information bits of the (M-M1-M2) bits.
  • the Polar code encoder 512 is further configured to: the payload further includes: J unpredictable information bits; mapping the J unpredictable information bits to the (KMD) J information bits with low reliability among the information bits, J ⁇ K, and the J is a positive integer.
  • the Polar code encoder 512 sorts the K information bits according to the reliability of the K information bits. Then, the Polar code encoder 512 maps the M reserved bits to the M information bits having low reliability among the K information bits, respectively, according to the sorting result.
  • the magnitude of the reliability of the information bits is determined based on the bit capacity, the Barth's distance Bhattacharyya parameter, or the error probability.
  • System 600 includes a base station 602 (e.g., an access point, a NodeB or an eNB, etc.) having a receiver 610 that receives signals from one or more access terminals 604 through a plurality of receive antennas 606, and through transmit antenna 608 to one or A plurality of access terminals 604 transmit signals to the transmitter 624.
  • Receiver 610 can receive information from receive antenna 606 and is operatively associated to a demodulator 612 that demodulates the received information.
  • the demodulated symbols are analyzed by a processor-like processor 614 as described with respect to Figure 7, which is coupled to a memory 616 for storing to be transmitted to the access terminal 604 (or a different base station ( The data of not shown)) or data received from access terminal 604 (or a different base station (not shown)) and/or any other suitable information related to performing the various actions and functions described herein.
  • Processor 614 can also be coupled to Polar code encoder 618 and rate matching device 620.
  • the payload code 618 that the Polar code encoder 618 can use to determine broadcast signaling includes: D cyclic redundancy check CRC bits and M predictable information bits;
  • modulator 622 can multiplex frames for transmitter 624 to transmit to access terminal 604 via antenna 608, although shown separate from processor 614, but it will be appreciated that Polar code encoder 618 Rate matching device 620 and/or modulator 622 may be part of processor 614 or a plurality of processors (not shown).
  • the embodiments described herein can be implemented in hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processing (DSP), Digital Signal Processing Equipment (DSP Device, DSPD), programmable Programmable Logic Device (PLD), Field-Programmable Gate Array (FPGA), processor, controller, microcontroller, microprocessor, other electronics for performing the functions described herein Unit or combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSP Digital Signal Processing
  • DSP Device Digital Signal Processing Equipment
  • PLD programmable Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • processor controller, microcontroller, microprocessor, other electronics for performing the functions described herein Unit or combination thereof.
  • a code segment can represent a procedure, a function, a subprogram, a program, a routine, a subroutine, a module, a software group, a class, or any combination of instructions, data structures, or program statements.
  • a code segment can be combined into another code segment or hardware circuit by transmitting and/or receiving information, data, arguments, parameters, or memory contents. Information, arguments, parameters, data, etc. can be communicated, forwarded, or transmitted using any suitable means including memory sharing, messaging, token passing, network transmission, and the like.
  • the techniques described herein can be implemented by modules (eg, procedures, functions, and so on) that perform the functions described herein.
  • the software code can be stored in a memory unit and executed by the processor.
  • the memory unit can be implemented in the processor or external to the processor, in the latter case the memory unit can be communicatively coupled to the processor via various means known in the art.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be implemented in the embodiment of the present invention. Form any limit.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .
  • the payload code used by the polar code encoder 204 to determine broadcast signaling includes: D cyclic redundancy check CRC bits and M predictable information bits; M predictable information bits are respectively mapped to the M subchannels with low reliability among the subchannels corresponding to the K information bits of the polar code, and D cyclic redundancy check CRC bits are mapped to the K
  • the D subchannels with high reliability among the subchannels corresponding to the remaining information bits in the information bits obtain the mapped bits, where M is less than or equal to (KD), and D, M and K are positive integers;
  • the mapped bits are subjected to polar code encoding to obtain encoded bits.
  • transmitter 206 can then transmit the bits processed by rate matching device 205 over the channel.
  • transmitter 206 can transmit relevant data to other different wireless communication devices (not shown).
  • the M subchannels with low reliability in the subchannels corresponding to the K information bits of the above-mentioned polar code have M reliability lower than the K information bits of the polar code mentioned in the foregoing embodiment.
  • the description of the information bits is consistent.
  • the M information bits with low reliability among the K information bits of the polar code in the foregoing embodiment may be Further described as: selecting K subchannels from subchannels of the polar code, mapping K information bits to the selected K subchannels, and then selecting M subchannels with low reliability from the K subchannels, M The information bits are mapped to the selected M subchannels.
  • the payload of the PBCH is categorized into four categories according to whether the content of the access service is variable.
  • the fifth type of bits are added according to different bit types in different scenarios.
  • Bit the fifth type of bit, including: the bit type to which it belongs in different scenarios.
  • the one or more bits that are divided into the third type of bits carry a certain content in the first scenario
  • the content carried according to the scenario may be divided into the second type of bits, and the bits are in the second type.
  • the content carried in the scenario may be classified into a third type of bit according to the content carried in the scenario, that is, the content carried in different scenarios is different, and the bits belonging to different classes are classified into the fifth class.
  • bits carry different contents and belong to different classes.
  • the first scenario of a certain type of bit carries one content
  • the second scenario carries another content: some bits carry some content in the first scenario, and the one or more bits carry another in the second scenario.
  • a content, that is, different scenes carry different contents and belong to different classes, and these bits can be divided into fifth type bits.
  • some bits that characterize timing may be indicated in a low frequency application scenario with a configuration that changes from time to time.
  • these time-characterized bits are used to characterize timing in high frequency scenarios, and these bits are divided into third class bits when used to characterize timing. That is, the one or more bits are divided into the third type of bits in the high frequency scene, and can be divided into the fourth type of bits in the low frequency scene, that is, the content carried by different scenes is different, and the bits belonging to different classes are divided into the first Five categories.
  • One or more bits belong to the first type of bits in some scenarios, and belong to the second or fourth type of bits in other application scenarios, but such bits carry the same content.
  • some system configuration information may belong to the fourth category when working in the same cell.
  • the configuration information is notified in advance through other means, so that it has characteristics that can be known before decoding. Can be divided into first class bits.
  • a certain pilot density control signaling belongs to the fourth type of bits in the broadband application scenario, and belongs to the second type of bits in the narrowband, and the one or more bits are divided into the fifth type of bits.
  • bits that are carried in different scenarios: in the first scenario, one or more bits carry a content, and in the second scenario, the bits do not carry content. That is, the bit may or may not carry content in different scenarios.
  • the bits for indicating the high-frequency sync block index SSBI do not carry information at low frequencies, and the one or more bits may be divided into the fifth type of bits.
  • some bandwidth configuration indication signaling belongs to the fourth type of bits, and only exists in the high frequency.
  • the bits used to carry these signalings do not carry information at low frequencies, and these one or more bits can be divided into fifth class bits.
  • the M predictable information bits include: the M 5 fifth type bits, and the M 5 fifth type bits are mapped to the low reliability M among the M information bits.
  • the information bits specifically include:
  • the fifth type of bits are different according to the application scenario, and according to the carried content, if the content carried by the one or more bits belongs to any one of the first type of bits to the fourth type of bits,
  • the bit mapping method of the class is mapped. Unless special settings such as the system are set according to the priority of different scenarios, further processing is performed according to actual needs.
  • mapping process is further described based on the difference in the fifth type of bit division manner described above:
  • the fifth type of bit if the fifth type of bit belongs to: the first scenario carries one content, and the second scenario carries another content: the bit carries a certain content in the first scenario, The bit carries another content in the second scenario: the content carried by different scenes is different and belongs to different classes.
  • the fifth type of bits may be mapped according to the importance or priority of one or more bits in an application scenario.
  • a third type of bit such as SSBI
  • SSBI a third type of bit
  • one or more bits are divided into third class bits at high frequencies; at low frequencies, one or more The bits may be indicated to some configuration that changes from time to time, ie, can be classified as a fourth class at low frequencies.
  • the one or more bits are divided into the fifth type of bits due to the above characteristics.
  • the bits are mapped to the subchannel of the polar code, if the bit is in the high frequency scene, the bit carries the third type. The content of the bit, mapping the one or more bits to the position of the subchannel corresponding to the third type of bit; in the low frequency scene, mapping the one or more bits to the position of the subchannel corresponding to the fourth type of bit .
  • the one or more bits can also be divided into the first type of bits, and in the low frequency scenario, the bits are mapped to the first bit.
  • the system and the scene do not support such adjustment according to the scene, it should be considered according to the priority of different scenes in the initial stage of system design. For example, if the low frequency scene is used more densely, then one or more of the whole system will be used.
  • the bits are processed in accordance with the mapping of the first type of bits or the fourth type of bits. Conversely, if the high frequency scene is more important, the one or more bits are processed in a manner that maps the third type of bits.
  • the content carried by some bits in different scenarios is the same, but the bits of the same content belong to different types in different scenarios.
  • the system switching performance can be prioritized in the system design, and these bits are mapped to a low reliability position in the subchannel of the polar code, for example: Before the subchannel corresponding to the first type of bit, or between the subchannel corresponding to the third type of bit and the corresponding subchannel of the fourth type. If the system design does not focus on the performance of the cell handover, the corresponding mapping process is performed according to the originally divided bit class.
  • the HFI repeatedly informs the terminal at other frequencies in the low frequency.
  • the HFI information also has some characteristics of the first type of bits.
  • mapping to the subchannel of the polar code the HFI can be mapped to the first type of bits. Before the subchannel, or other unreliable location.
  • a certain pilot density control signaling belongs to the fourth type of bits in the broadband application scenario and belongs to the second type of bits in the narrowband, because the broadband application scenario uses higher priority such as frequency and load in the system. Therefore, the design requirements of the broadband system are preferentially satisfied, and the mapping of the one or more bits is processed according to the mapping method of the fourth type of bits. Conversely, if the performance of the narrowband device is more considered, the mapping of the one or more bits is processed according to the mapping manner of the second type of bits.
  • bits that are carried in different scenarios: in the first scenario, one or more bits carry a content, and in the second scenario, the bits do not carry content. That is, the bit may or may not carry content in different scenarios.
  • the mapping manner of the one or more bits is specifically as follows: for example, if one or more bits of the SSBI at a high frequency do not carry information at a low frequency, the mapping of the one or more bits according to the first type of bits may be performed. Mode processing, that is, mapping the one or more bits to the subchannel corresponding to the first type of bit; or mapping to the position of the subchannel after the subchannel corresponding to the first type of bit, but corresponding to the third type of bit The position of the subchannel is before.
  • some bandwidth configuration indication signaling belongs to the fourth category, and only exists in the high frequency.
  • One or more bits used to carry the signaling do not carry information at low frequencies, and if high frequency performance is prioritized,
  • the one or more bits may be processed according to a mapping manner of the first type of bits, or the one or more bits may be mapped to the subchannel corresponding to the first type of bits, but before the subchannel position corresponding to the fourth type of bits .
  • the content of the payload of the PBCH is mapped from the lowest to the highest according to the reliability of the subchannel in the polar code information bit set according to the order of the first to fifth classes. In the set, or according to the natural sequence number of the subchannel in the polar code information bit set, it is mapped from the back to the information bit set.
  • the present application is described in terms of reliability ranking. The specific mapping method varies depending on the type of division.
  • mapping M 5 fifth-class bits to sub-channels corresponding to M 1 first-class bits it should be understood that: mapping the M 5 fifth-class bits to (M 1 +M 5 )
  • the M 5 subchannels in the subchannel corresponding to the first type of bits are the same as the other mapping methods.
  • one or more bits that are classified into a certain class may still be further divided in the category, for example, according to the application scenario of the one or more bits, the bits that have been divided into the fifth type of bits are in progress.
  • the mapping is further divided and mapped accordingly. This kind of design considers the compatibility and consistency of the system, and considers the characteristics of different scenarios with the smallest difference.
  • one or more bits of the SSBI divided into the fifth type of bits the one or more bits belong to the third type of bits at high frequencies, and the use is pending at low frequencies, but still belongs to the third type of bits.
  • the one or more bits are further divided and mapped accordingly: if the one or more idle bits in the low frequency are not used in the future, map it to the first a location of lower reliability among the subchannels corresponding to the three types of bits; if the one or more idle bits are designed to be used in the future, mapping the one or more bits to the corresponding bits in the third class A highly reliable location in the subchannel.
  • the embodiment of the present application further provides an interleaving process of a distributed CRC (D-CRC) as shown in FIG. 7:
  • D-CRC distributed CRC
  • a 0 , a 1 , ..., a k is the broadcast information transmitted from the upper layer, and after interleaving 1 becomes b 0 , b 1 , ..., b k , the sequence is concatenated with d CRC bits to obtain a sequence b 0 , b 1 , ..., b k , c 0 , c 1 , ..., c d-1 , and then interleaved by a distributed CRC (Distributed-CRC, D-CRC) to obtain d 0 , d 1 ,...d k +d-1 .
  • distributed CRC distributed-CRC, D-CRC
  • the order of the bits of various MIBs that need to be placed in a specific reliability position may be pre-mapped, so that CRC serial connection, D-CRC interleaving, And each bit mapped to the polar code sub-channel conforms to the final mapping effect in the table of FIG. 3b.
  • a pre-interleaver can also be used to pre-interleave the MIB information for bit order adjustment, thereby achieving a similar effect.
  • Embodiment 1 The payload of the radio code ploar code is 512, and the payload of the broadcast signaling is determined to include: a cyclic redundancy check CRC bit and a predictable information bit; the number of K information bits is 56 Bit, where the cyclic redundancy check CRC bit is here, taking D-CRC as an example D is 24 bits, and the number of predictable information bits M is less than or equal to (56-24) being 32 bits.
  • the sequence number of the subchannel sequence number corresponding to the information bit starts from 0, and has a total of 56 bits.
  • the specific set is as follows:
  • 24 subchannels are selected from the subchannels corresponding to the information bits, and 24 D-CRC bits are carried, and the specific 24 D-CRCs are mapped to the following 24 subchannels:
  • the remaining polar subchannel sequence has a total of 32 subchannels for carrying M predictable information bits, and M is less than or equal to 32:
  • mapping of specific M predictable information bits is as follows:
  • M predictable information bits include: a fifth type of bit and a third type of bit, wherein the fifth type of bits include SSBI; the third type of bits include: HFI and SFN; and the fourth type of bits include: RMSI config And/or reserved bits that will be used:
  • the SSBI bit is divided into the first type of bits in the low frequency band, and the lowest reliability is mapped to the above 32 subchannel sets. On the three subchannels, the mapping is as follows: SSBI: (247 441 469).
  • bit sequence d0, d1, ... dk+d-1 is mapped into the subchannel of the polar code according to the above mapping manner.
  • the inverse mapping is performed according to the mapping relationship of the subchannels of the Polar and the interleaving pattern of the D-CRC, and the MIB sequence a0, a1...ak corresponding to FIG. 7 is mapped by the interlace 1 to output the interleaved MIB.
  • Sequence: b0, b1...bk as follows:
  • the SSBI bit is divided into the fourth type of bits.
  • mapping first consider the mapping of the third type of bits, and the third type of bit HFI. And the SFN is mapped to the 11 subchannels with the lowest reliability among the above 32 subchannel sets (HFI and SFN are not further subdivided in this embodiment), and considering the remaining 21 subchannels, three subchannels are selected to carry the above.
  • SSBI the mapping relationship of specific subchannels is as follows
  • the inverse mapping is performed according to the mapping relationship of the subchannels of the Polar and the interleaving pattern of the D-CRC, and the MIB sequence a0, a1...ak corresponding to FIG. 7 is mapped by the interlace 1 to output the interleaved MIB.
  • Sequence: b0, b1...bk as follows:
  • M predictable information bits include: the second type of bits are, for example:
  • RMSI config and third class bits for example: HFI, SFN, SSBI
  • mapping the second type of bits mapping the second type of bits to the least reliable 8 subchannels; and considering the third type of bits, mapping the third type of bits to (32-8) 24 subchannels On the 14 subchannels with the lowest reliability,
  • the final subchannel mapping is as follows:
  • the inverse mapping is performed according to the mapping relationship of the subchannels of the Polar and the interleaving pattern of the D-CRC, and the MIB sequence a0, a1...ak corresponding to FIG. 7 is mapped by the interlace 1 to output the interleaved MIB.
  • Sequence: b0, b1...bk as follows:
  • M predictable information bits include: first type of bits, for example: reserved bits and third type bits that are not used, such as SSBI, HFI, SFN:
  • the first type of bits are mapped to the three subchannels with the lowest reliability among the 32 subchannels; secondly, the third type of bits are mapped to (32-3), that is, the least reliable 14 subchannels of the 29 subchannels
  • the final subchannel mapping is as follows:
  • the inverse mapping is performed according to the mapping relationship of the subchannels of the Polar and the interleaving pattern of the D-CRC, and the MIB sequence a0, a1...ak corresponding to FIG. 7 is mapped by the interlace 1 to output the interleaved MIB.
  • Sequence: b0, b1...bk as follows: reserved bits: 24 6 0 After interleaving 1, these reserved bits are in the position of the output interleaved MIB sequence, for example, the 24th bit of the MIB sequence after interleaving, the 6th bit,
  • the 0-bit bitmap is reserved bits, that is, the bo, b6, and b24 in the MIB sequence are reserved bits:
  • Embodiment 2 The payload of the radio code ploar code is 512, and the payload of the broadcast signaling is determined to include: a cyclic redundancy check CRC bit, a predictable information bit, and the payload further includes: a sub of the polar code
  • the number of these bits in the pre-set position in the subchannel is X, and the number of predictable information bits M is less than or equal to (56-24-X) bits.
  • the sequence number of the subchannel sequence number corresponding to the information bit starts from 0, and has a total of 56 bits.
  • the specific set is as follows:
  • 24 subchannels are selected from the subchannels corresponding to the information bits, and 24 D-CRC bits are carried, and the specific 24 D-CRCs are mapped to the following 24 subchannels:
  • X subchannels are selected for carrying the bits of the pre-set position in the subchannel of the polar code, for example:
  • the 3 bits of the SSBI are the bits of the pre-set position in the subchannel for carrying the polar code, and the SSBI 3 bits are placed in the position of the natural order of the polar code information bit subchannel, ie (247 253) 254), the remaining (32-3), ie, 29 subchannels, map the M predictable information bits according to the mapping manner of the first type of bits to the fourth type of bits:
  • the final subchannel mapping is as follows:
  • the inverse mapping is performed according to the mapping relationship of the subchannels of the Polar and the interleaving pattern of the D-CRC, and the MIB sequence a0, a1...ak corresponding to FIG. 7 is mapped by the interlace 1 to output the interleaved MIB.
  • Sequence: b0, b1...bk as follows:
  • the final subchannel mapping is as follows:
  • the inverse mapping is performed according to the mapping relationship of the subchannels of the Polar and the interleaving pattern of the D-CRC, and the MIB sequence a0, a1...ak corresponding to FIG. 7 is mapped by the interlace 1 to output the interleaved MIB.
  • Sequence: b0, b1...bk as follows:
  • the first embodiment and the second embodiment are described in detail by taking the number of K information bits as 56 bits. The following is a detailed description of the case where the number of K information bits is 64 bits.
  • Embodiment 3 The payload of the radio code ploar code is 512, and the payload of the broadcast signaling is determined to include: a cyclic redundancy check CRC bit and a predictable information bit; the number of K information bits is 64 Bit, where the cyclic redundancy check CRC bit is here, taking D-CRC as an example D is 24 bits, and the number of predictable information bits M is less than or equal to (64-24) being 40 bits.
  • the sequence number of the subchannel sequence number corresponding to the information bit starts from 0, and has a total of 64 bits.
  • the specific set is as follows:
  • 24 subchannels are selected from the subchannels corresponding to the information bits, and 24 D-CRC bits are carried, and the specific 24 D-CRCs are mapped to the following 24 subchannels: 445 477 489 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
  • the remaining polar subchannel sequence has a total of 40 subchannels for carrying M predictable information bits, and M is less than or equal to 40:
  • M predictable information bits include: a fifth type of bit and a third type of bit, wherein the fifth type of bits include SSBI; the third type of bits include: HFI and SFN; and the fourth type of bits include: RMSI config And/or reserved bits that will be used:
  • the mapping is as follows:
  • bit sequence d0, d1, ... dk+d-1 is mapped into the subchannel of the polar code according to the above mapping manner.
  • the inverse mapping is performed according to the mapping relationship of the subchannels of the Polar and the interleaving pattern of the D-CRC, and the MIB sequence a0, a1...ak corresponding to FIG. 7 is mapped by the interlace 1 to output the interleaved MIB.
  • Sequence: b0, b1...bk as follows:
  • the SSBI bit is divided into the fourth type of bits.
  • mapping first consider the mapping of the third type of bits, and the third type of bit HFI. And the SFN is mapped to the 11 subchannels with the lowest reliability among the 32 subchannel sets (the HFI and the SFN are not further subdivided in this embodiment), and then the remaining subchannels are selected, and the three subchannels are selected to carry the SSBI.
  • the mapping relationship of subchannels is as follows: HFI: 461
  • the inverse mapping is performed according to the mapping relationship of the subchannels of the Polar and the interleaving pattern of the D-CRC, and the MIB sequence a0, a1...ak corresponding to FIG. 7 is mapped by the interlace 1 to output the interleaved MIB.
  • Sequence: b0, b1...bk as follows:
  • M predictable information bits include: second type of bits such as: RMSI config and third type of bits, for example: HFI, SFN, SSBI.
  • mapping the second type of bits mapping the second type of bits to the least reliable 8 subchannels; considering the third type of bits, mapping the third type of bits to the remaining subchannels with the lowest reliability On the 14 subchannels,
  • RMSI config is first (RMSI config is the second class):
  • the final subchannel mapping is as follows:
  • the inverse mapping is performed according to the mapping relationship of the subchannels of the Polar and the interleaving pattern of the D-CRC, and the MIB sequence a0, a1...ak corresponding to FIG. 7 is mapped by the interlace 1 to output the interleaved MIB.
  • Sequence: b0, b1...bk as follows:
  • M predictable information bits include: first type of bits, for example: reserved bits and third type bits that are not used, such as SSBI, HFI, SFN:
  • the first type of bits are mapped to the three subchannels with the lowest reliability among the 40 subchannels; secondly, the third type of bits are mapped to the least reliable subchannels of the remaining subchannels, and the final subchannel mapping is as follows :
  • the final subchannel mapping is as follows:
  • the inverse mapping is performed according to the mapping relationship of the subchannels of the Polar and the interleaving pattern of the D-CRC, and the MIB sequence a0, a1...ak corresponding to FIG. 7 is mapped by the interlace 1 to output the interleaved MIB.
  • Sequence: b0, b1...bk as follows:
  • Embodiment 4 determining a payload of a broadcast signaling payload with a code length of 512 of a polar code ploar code, including: a cyclic redundancy check CRC bit, a predictable information bit, and a pre-set position in a subchannel of the polar code These bits; the number of K information bits is 64 bits, wherein the cyclic redundancy check CRC bits here take D-CRC as an example D is 24 bits, assuming that these bits are pre-set in the subchannel of the polar code For X, the number of predictable information bits M is less than or equal to (64-24-X) bits.
  • the sequence number of the subchannel sequence number corresponding to the information bit starts from 0, and has a total of 64 bits.
  • the specific set is as follows:
  • 24 subchannels are selected from the subchannels corresponding to the information bits, and 24 D-CRC bits are carried, and the specific 24 D-CRCs are mapped to the following 24 subchannels:
  • X subchannels are selected for carrying the bits of the pre-set position in the subchannel of the polar code, for example:
  • the 3 bits of the SSBI are the bits of the pre-set position in the subchannel for carrying the polar code, and the SSBI 3 bits are placed in the position of the natural order of the polar code information bit subchannel, ie (247 251) 253) mapping the first type of bits to the fourth type of bits of the remaining subchannels to map the M predictable information bits
  • the final subchannel mapping is as follows:
  • the inverse mapping is performed according to the mapping relationship of the subchannels of the Polar and the interleaving pattern of the D-CRC, and the MIB sequence a0, a1...ak corresponding to FIG. 7 is mapped by the interlace 1 to output the interleaved MIB.
  • Sequence: b0, b1...bk as follows:
  • the inverse mapping is performed according to the mapping relationship of the subchannels of the Polar and the interleaving pattern of the D-CRC, and the MIB sequence a0, a1...ak corresponding to FIG. 7 is mapped by the interlace 1 to output the interleaved MIB.
  • Sequence: b0, b1...bk as follows:

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Error Detection And Correction (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本发明公开了一种极性码的编码方法和编码装置。该方法包括:确定广播信令的有效载荷payload包括:D个循环冗余校验CRC比特和M个可预测的信息比特;将所述M个可预测的信息比特分别映射到所述极性码的K个信息比特中的可靠性低的M个信息比特,将D个循环冗余校验CRC比特映射到所述K个信息比特中的剩余信息比特中可靠性高的D个信息比特,得到映射后的比特,其中,M<K,且D、M与K均为正整数;对所述映射后的比特进行极性码编码,得到编码后的编码比特。本发明实施例能够提高广播信令传输的可靠性。

Description

一种极性码的编码方法和编码装置
本申请要求于2017年11月17日提交中国专利局、申请号为201711148239.3、申请名称为“一种极性码的编码方法和编码装置”的中国专利申请的优先权,所述申请号为201711148239.3的中国专利申请要求2017年9月18日提交中国专利局、申请号为201710843554.1、申请名称为“一种极性码的编码方法和编码装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及编解码领域,并且更具体地,涉及一种极性码的编码方法和编码装置。
背景技术
通信系统通常采用信道编码提高数据传输的可靠性,保证通信的质量。极性码(Polar码)是可以取得香农容量且具有低编译码复杂度的编码方式。Polar码是一种线性块码,包括信息比特和冻结比特。Polar码的生成矩阵为G N.,其编码过程为
Figure PCTCN2018106288-appb-000001
这里,
Figure PCTCN2018106288-appb-000002
是一个二进制的行矢量,长度为N。
然而,在使用Polar码进行物理广播信道(Physical Broadcast Channel,PBCH)信道编码时,广播信道的传输可靠性还有进一步提升的空间。
发明内容
本申请提供一种极性码的编码方法,包括:
确定广播信令的有效载荷payload包括:D个循环冗余校验CRC比特和M个可预测的信息比特;
将所述M个可预测的信息比特分别映射到所述极性码的K个信息比特中的可靠性低的M个信息比特,将D个循环冗余校验CRC比特映射到所述K个信息比特中的剩余信息比特中可靠性高的D个信息比特,得到映射后的比特,其中,M<K,且D、M与K均为正整数;
对所述映射后的比特进行极性码编码,得到编码后的编码比特;
发送所述编码比特。
本申请提供一种极性码的编码方法,包括:
一种极性码的编码装置,包括:
处理器,用于确定广播信令的有效载荷payload包括:D个循环冗余校验CRC比特和M个可预测的信息比特;将所述M个可预测的信息比特分别映射到所述极性码的K个信息比特中的可靠性低的M个信息比特,将D个循环冗余校验CRC比特映射到所述K个信息比特中的剩余信息比特中可靠性高的D个信息比特,得到映射后的比特,其中,M<K,且D、M与K均为正整数;
对所述映射后的比特进行极性码编码,得到编码后的编码比特。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了根据本文所述的各个实施例的无线通信系统;
图2示出了在无线通信环境中适用本发明的用于极性码编码方法的系统的示意性框图;
图3是本发明实施例的极性码的编码方法的示意性流程图;
图3a是本发明实施例的极性码的编码方法的示意性框图;
图3b是本发明实施例的另一极性码的编码方法的示意性框图;
图4是本发明一个实施例的极性码的编码装置的示意性框图;
图5是在无线通信系统中有助于执行前述Polar码的编码方法的接入终端的示意图;
图6是在无线通信环境中有执行前述Polar码的编码方法的系统的示意图;
图7是在无线通信环境中有执行前述Polar码的编码方法的系统的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在两个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
此外,结合接入终端描述各个实施例。接入终端也可以称为系统、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理、用户装置或UE(User Equipment,用户设备)。接入终端可以是蜂窝电话、无绳电话、SIP(Session Initiation Protocol,会话启动协议)电话、WLL(Wireless Local Loop,无线本地环路)站、PDA(Personal Digital Assistant,个人数字处理)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备。此外,结合基站描述了各个实施例。基站可用于与移动设备通信,基站可以是GSM(Global System of Mobile  communication,全球移动通讯)或CDMA(Code Division Multiple Access,码分多址)中的BTS(Base Transceiver Station,基站),也可以是WCDMA(Wideband Code Division Multiple Access,宽带码分多址)中的NB(NodeB,基站),还可以是LTE(Long Term Evolution,长期演进)中的eNB或eNodeB(Evolutional Node B,演进型基站),或者中继站或接入点,或者未来5G网络中的基站设备等。
此外,本发明的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,CD(Compact Disk,压缩盘)、DVD(Digital Versatile Disk,数字通用盘)等),智能卡和闪存器件(例如,EPROM(Erasable Programmable Read-Only Memory,可擦写可编程只读存储器)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
图1示出了根据本文所述的各个实施例的无线通信系统。系统100包括基站102,基站102可包括多个天线组。例如,一个天线组可包括天线104和106,另一个天线组可包括天线108和110,附加组可包括天线112和114。对于每个天线组示出了2个天线,然而可对于每个组使用更多或更少的天线。基站102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。
基站102可以与一个或多个接入终端(例如接入终端116和接入终端122)通信。然而,可以理解,基站102可以与类似于接入终端116和122的基本上任意数目的接入终端通信。接入终端116和122可以是例如蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、PDA和/或用于在无线通信系统100上通信的任意其它适合设备。如图所示,接入终端116与天线112和114通信,其中天线112和114通过前向链路118向接入终端116发送信息,并通过反向链路120从接入终端116接收信息。此外,接入终端122与天线104和106通信,其中天线104和106通过前向链路124向接入终端122发送信息,并通过反向链路126从接入终端122接收信息。在FDD(Frequency Division Duplex,频分双工)系统中,例如,前向链路118可利用与反向链路120所使用的不同频带,前向链路124可利用与反向链路126所使用的不同频带。此外,在TDD(Time Division Duplex,时分双工)系统中,前向链路118和反向链路120可使用共同频带,前向链路124和反向链路126可使用共同频带。
被设计用于通信的每组天线和/或区域称为基站102的扇区。例如,可将天线组设计为与基站102覆盖区域的扇区中的接入终端通信。在通过前向链路118和124的通信中,基站102的发射天线可利用波束成形来改善针对接入终端116和122的前向链路118和124的信噪比。此外,与基站通过单个天线向它所有的接入终端发送相比,在基站102利用波束成形向相关覆盖区域中随机分散的接入终端116和122发送时,相邻小区中的移动设备会受到较少的干扰。
在给定时间,基站102、接入终端116和/或接入终端122可以是发送无线通信装置和 /或接收无线通信装置。当发送数据时,发送无线通信装置可对数据进行编码以用于传输。具体地,发送无线通信装置可具有(例如生成、获得、在存储器中保存等)要通过信道发送至接收无线通信装置的一定数目的信息比特。这种信息比特可包含在数据的传输块(或多个传输块)中,其可被分段以产生多个代码块。此外,发送无线通信装置可使用Polar码编码器(未示出)来对每个代码块编码,以提高数据传输的可靠性,进而保证通信质量。
图2示出了在无线通信环境中适用本发明的用于极性码编码方法的系统的示意性框图。系统200包括无线通信设备202,该无线通信设备202被显示为经由信道发送数据。尽管示出为发送数据,但无线通信设备202还可经由信道接收数据(例如,无线通信设备202可同时发送和接收数据,无线通信设备202可以在不同时刻发送和接收数据,或其组合等)。无线通信设备202例如可以是基站(例如图1的基站102等)、接入终端(例如图1的接入终端116、图1的接入终端122等)等。
无线通信设备202可包括极性码编码器204,速率匹配装置205,发射机206。可选地,当无线通信设备202经由信道接收数据时,该无线通信设备202还可以包括一个接收机,该接收机可以单独存在,也可以与发射机206集成在一起形成一个收发机。
其中,极性码编码器204用于对要从无线通信装置202传送的数据进行编码得到编码后的极性码。
在本发明实施例中,极性编码器204用于确定广播信令的有效载荷payload包括:D个循环冗余校验CRC比特和M个可预测的信息比特;将所述M个可预测的信息比特分别映射到所述极性码的K个信息比特中的可靠性低的M个信息比特,将D个循环冗余校验CRC比特映射到所述K个信息比特中的剩余信息比特中可靠性高的D个信息比特,得到映射后的比特,其中,M<K,且D、M与K均为正整数;对所述映射后的比特进行极性码编码,得到编码后的编码比特。
此外,发射机206可随后在信道上传送经过速率匹配装置205处理后的经过速率匹配的输出比特。例如,发射机206可以将相关数据发送到其它不同的无线通信装置(未示出)。
下面,将对上述极性码编码器的具体处理过程,进行详细说明。应注意,这些例子只是为了帮助本领域技术人员更好地理解本发明实施例,而非限制本发明实施例的范围。
图3是本发明实施例的极性码的编码方法的示意性流程图。图3所示的方法可以由无线通信设备执行,如图2所示的无线通信设备中的极性编码器204。图3所述的编码方法包括:
301,确定广播信令的有效载荷payload包括:D个循环冗余校验CRC比特和M个可预测的信息比特。其中,M<K,且M与K均为正整数。
应理解,广播信令是指承载在广播信道,例如,物理广播信道PBCH上的信令。下面以PBCH为例,对该编码方法进行具体描述,但是不限制为该PBCH。
所述PBCH的有效载荷payload包括:D个循环冗余校验CRC比特和M个可预测的信息比特。
应该理解的是,PBCH的payload按照接入业务的内容是否可变,分为如下四类:
第一类比特包括:预留比特reserved bits或类似取值完全固定的信息或者根据协议直接确定的值的比特。
第二类比特包括:取值保持不变的信息比特。在主信息块(Master Information Block, MIB)中保持不变的信息比特;也可以理解为所述MIB中的值并不能从协议直接确定,接入网络时是需要检测的,但本身的取值保持不变的这些信息比特。例如:第二类比特可以包括系统带宽相关信息、子载波信息、基站BS所支持的系统配置numerology的指示信息或者通用的控制信道信息等一种或多种。
第三类比特包括:时序信息的内容发生变化,且可预测的信息比特。虽然时序信息的内容发生变化但是可预测的MIB信息部分。
应该理解的是,该第三类比特的应用场景不是发生在初始接入阶段。
例如:第三类比特包括:系统帧号,同步块SS block的序号,半帧指示half frame radio indicator等一种或者多种。
第四类比特包括:不可预测的信息比特。信息随时可能变化,无法预测的MIB信息部分。例如当前帧的控制信道配置信息,该配置虽然也有可能会出现重复,但随时可能改变。
该第四类比特与第三类比特不同,必须每次都检测相应的。
例如,第四类比特包括:当前系统配置参数numerology的指示信息、SIB资源指示信息。
如果有第4类MIB信息,相应的CRC比特也属于该类。
应该可以理解的是,若MIB中不包含第四类比特,CRC比特可以被划分到第三类比特中;若MIB中不包含第四类比特,则CRC比特被划分为第四类比特中;若MIB中即包含第三类比特又包含第四类比特,则CRC比特被划分为第四类比特中。这里的CRC的划分主要是考虑到若有第三类比特集合,则CRC的取值根据MIB信息中的第三类比特有关;若有第四类比特,则CRC的取值根据MIB信息中的第四类比特有关,因此对所述CRC比特进行上述划分。
根据上述的划分,将PBCH的payload分成上述四种类型的比特集合,可以理解的是,PBCH的payload中可以包括上述的四种类型的比特集合中的 一种或者多种的比特集合。
其中,根据可预测的信息比特是否可以预测,又可以将第一类到第三类划分为可预测的信息比特这类,将第四类划分为不可预测的信息比特。即,所述M个可预测的信息比特包括下面一种或者多种的比特组合:M1个第一类比特、M2个第二类比特或者M3个第三类比特,其中,所述第一类比特为预留比特,所述第二类比特包括:取值保持不变的信息比特,第三类比特取值为时序信息的内容发生变化,且可预测的信息比特,M1、M2与M3均为正整数,M1<=M、M2<=M以及M3<=M。
302、将所述M个可预测的信息比特分别映射到所述极性码的K个信息比特中的可靠性低的M个信息比特,将D个循环冗余校验CRC比特映射到所述K个信息比特中的剩余信息比特中可靠性高的D个信息比特,得到映射后的比特,其中,M<K,且D、M与K均为正整数。
总体的,将根据上述的比特集合的划分,按照第一类到第四类的顺序将PBCH的payload的内容按照polar码信息比特bit集合中子信道的可靠度由低到高映射到所述信息bit集合中具体的映射方式根据划分的类型不同而不同。
其中,同一类型之中的内容映射到polar码信息比特bit集合中子信道时,同一类型中的不同比特的顺序可以交换。例如:M个第三类比特中包括:M1个系统帧号的信息比特 和M2个同步块SS block的信息序号的比特,则第三类比特中的系统帧号的比特和同步块SS block的序号的比特映射到polar码信息bit集合中子信道时,将所述M1个系统帧号的比特映射到可靠性低的M个信息比特中M1个信息比特,将M2个SS block的序号的信息比特映射到可靠性低的M个信息中剩余信息比特中可靠性低的M2个信息比特;或者,将所述M2个SS block的序号的信息比特映射到可靠性低的M个信息比特中M2个信息比特,将M1个系统帧号的比特映射到可靠性低的M个信息中剩余信息比特中可靠性低的M1个信息比特。
其中,所述1个SS block承载一个主同步序列和一个辅同步序列。
广播信令通常会包括若干实际上并不携带有用信息的预留比特,这样在Polar码编码的过程中,将比特进行划分,将划分后的类型的比特按照规则映射到可靠性低的信息比特,即使预留比特在传输过程中发生变化,也不会影响广播信令的正确解码。
也应理解,本发明实施例对可靠性的度量形式不作限制。例如可参照现有Polar码的可靠性度量,如比特容量、巴氏距离Bhattacharyya参数、错误概率等。
可选地,所述M个可预测的信息比特包括下面一种或者多种的比特组合:M1个第一类比特、M2个第二类比特或者M3个第三类比特,其中,所述第一类比特为预留比特,所述第二类比特包括:取值保持不变的信息比特,第三类比特取值为时序信息的内容发生变化,且可预测的信息比特,M1、M2与M3均为正整数,M1<=M、M2<=M以及M3<=M。
进一步可选地,当所述M个可预测的信息比特包括:所述M1个第一类比特和所述M2个第二类比特,或者,所述M1个预留比特和所述M3个第二类比特时,将所述M1个第一类比特映射到M个信息比特中的可靠性低的M1个信息比特;
将所述M2个第二类比特映射到M个信息比特中的剩余信息比特中可靠性低的M2个信息比特;或者,
将所述M1个第一类比特映射到M个信息比特中的可靠性低的M1个信息比特;
将所述M3个第二类比特映射到M个信息比特中的剩余信息比特中可靠性低的M3个信息比特。
可选地,当所述M个可预测的信息比特包括:所述M1个第一类比特、所述M2个第二类比特和所述M3个第二类比特时,将所述M1个第一类比特映射到M个信息比特中的可靠性低的M1个信息比特;
将所述M2个第二类比特映射到(M-M1)个信息比特中的可靠性低的M2个信息比特;
将所述M3个第三类比特映射到(M-M1-M2)个比特中的可靠性低的M3个信息比特。
所述payload还包括:J个不可预测的信息比特;
将所述J个不可预测的信息比特映射到所述(K-M-D)个信息比特中的可靠性低的J个信息比特,J<K,且所述J为正整数。
下面举例说明上述划分的四类比特信息根据Polar码的可靠性从低到高可能排列顺序可以包括如下一种或者几种,但是不限于:
例1.1:根据Polar码的可靠性从低到高,上述包括被划分的四种类型的比特的排列顺序可以为:
第一类比特、第二类比特、第三类比特、第四类比特、CRC比特;
根据所述每种类型的比特的例子,按照上述的顺序,举例为:包括Reserved bit的第一类比特、包括带宽信息、通用的控制信道配置信息的第二类比特;包括时序信息的第三类比特、包括SIB指示的第四类比特、CRC比特。
按照上述的排列顺序映射到Polar码的可靠性从低到高的可靠性低的位置上。
例1.2:根据Polar码的可靠性从低到高,上述包括被划分的四种类型的比特的排列顺序可以为:
第一类比特、第二类比特、第三类比特、第四类比特、CRC比特;
根据所述每种类型的比特的例子,按照上述的顺序,举例为:包括Reserved bit的第一类比特、包括通用的控制信道配置信息、带宽信息的第二类比特;包括时序信息的第三类比特、包括SIB指示的第四类比特、CRC比特。
其中第1.2例子中的第二类比特内部的顺序进行了排序,同一类之中顺序可以交换
按照上述的排列顺序映射到Polar码的可靠性从低到高的可靠性低的位置上。
例1.3:根据Polar码的可靠性从低到高,上述包括被划分的四种类型的比特的排列顺序可以为:
第一类比特、第二类比特和第三类比特、第四类比特、CRC比特;
根据所述每种类型的比特的例子,按照上述的顺序,举例为:包括Reserved bit的第一类比特、包括通用的控制信道配置信息、、时序信息、带宽信息的第二类比特;包括时序信息的第二类比特和第三类比特、包括SIB指示的第四类比特、CRC比特。
这里例子与上述例子的区别在于,第二类比特可以与第三类比特进行合并,即划分的比特集合中,第二类比特与第三类比特都划分为一类,这一类可以合并后都划分到第二类比特,也可以合并后划分到第三比特,这里不做限制。
按照上述的排列顺序映射到Polar码的可靠性从低到高的可靠性低的位置上。
例1.4:根据Polar码的可靠性从低到高,上述包括被划分的四种类型的比特的排列顺序可以为:
第一类比特、第二类比特和第三类比特、第四类比特、CRC;
根据所述每种类型的比特的例子,按照上述的顺序,举例为:包括Reserved bit的第一类比特;包括通用的控制信道配置信息、带宽信息、时序信息的第二类比特和第三类比特;包括SIB指示的第四类比特、CRC;
这里例子与上述例子1.3的区别在于,第二类比特可以与第三类比特进行合并,且合并的比特集合所包括的类型不同。
按照上述的排列顺序映射到Polar码的可靠性从低到高的可靠性低的位置上。
例1.5:根据Polar码的可靠性从低到高,上述包括被划分的四种类型的比特的排列顺序可以为:
第一类比特、第二类比特、第三类比特、CRC;
根据所述每种类型的比特的例子,按照上述的顺序,举例为:包括Reserved bit的一类比特;包括通用的控制信道配置信息、带宽信息的第二类比特;包括时序信息的第三类比特、CRC;
这里例子与上述例子的区别在于,所述PBCH的payload中包括的比特集合可以是上述四种比特的任意组合,例如PBCH的payload包括上述被划分的第一类比特、第二类比 特、第三类比特,当时这里不做限制,也可以只包括述被划分的第一类比特、第三类比特、第四类比特,例如例1.6。
按照上述的排列顺序映射到Polar码的可靠性从低到高的可靠性低的位置上。
例1.6:根据Polar码的可靠性从低到高,上述包括被划分的四种类型的比特的排列顺序可以为:
第一类比特、第三类比特、第四类比特、CRC;
根据所述每种类型的比特的例子,按照上述的顺序,举例为:包括Reserved bit的一类比特包括时序信息的第三类比特、包括SIB指示的第四类比特、CRC;
这里例子与上述例子的区别在于,所述PBCH的payload中包括的比特集合可以是上述四种比特的任意组合,例如PBCH的payload包括上述被划分的第一类比特、第三类比特、第四类比特,也可以是包括被划分的第一类比特和第三类比特例如例1.7。
例1.7:根据Polar码的可靠性从低到高,上述包括被划分的四种类型的比特的排列顺序可以为:
第一类比特、第三类比特、CRC;
根据所述每种类型的比特的例子,按照上述的顺序,举例为:包括Reserved bit的第一类比特;包括时序信息的第三类比特、CRC。
例1.8:根据Polar码的可靠性从低到高,上述包括被划分的四种类型的比特的排列顺序可以为:
第一类比特、第二类比特、CRC;
根据所述每种类型的比特的例子,按照上述的顺序,举例为:包括Reserved bit的第一类比特;包括带宽信息的第二类比特、CRC。
上述多种被划分的类型的比特组合都可以任意搭配,这里不做限制,总体上遵循上述的划分和排序的规则。
上述映射方法可通过引入一个对待编码信息的交织来实现。举例来说:
针对一个码长为512的Polar码,MIB和CRC的总长度是72,因此选择Polar码中72个可靠度最高的子信道作为信息bit信息比特集合:72个子信道序号按照可靠性从低到高排序为:[484;430;488;239;378;459;437;380;461;496;351;467;438;251;462;442;441;469;247;367;253;375;444;470;483;415;485;473;474;254;379;431;489;486;476;439;490;463;381;497;492;443;382;498;445;471;500;446;475;487;504;255;477;491;478;383;493;499;502;494;501;447;505;506;479;508;495;503;507;509;510;511]。
MIB经过循环冗余校验(Cyclic Redundancy Check,CRC)后的结果为a0,a1,…,a9,a10,…,a14,a15,…,a29,a30,…,a39,a48,…,a71。按照下表的可靠度优先级排序从polar子信道的排序中依次取出。
上述的描述可以通过图3a进行表示。基于上述的映射方式,本申请还提供了另一种映射方式例如有D-CRC的情况:
当有D-CRC的情况,离散后的CRC会占据一些子信道位置。那么从第一类比特到第四类比特中,先考虑这些离散的CRC的比特位置,按照polar码信息bit集合中,除去已经被CRC占据的子信道,将剩余的子信道的可靠度由低到高,将除去CRC比特的映射外 的其它剩余比特按照上述实施例一的方式,将剩余比特进行上述四种类型的划分,将包括划分后的比特类型按照上述实施例一的划分结果映射上到所述信息bit集合中。
进一步举例来说,除去离散的CRC比特已经占用的polar码子信道,MIB几种可能排列顺序是:
下面举例说明上述划分的四类比特信息根据Polar码的可靠性从低到高可能排列顺序可以包括如下一种或者几种,但是不限于:
例2.1:根据Polar码的可靠性从低到高,上述包括被划分的四种类型的比特的排列顺序可以为:
第一类比特、第二类比特、第三类比特、第四类比特;
根据所述每种类型的比特的例子,按照上述的顺序,举例为:包括Reserved bit的第一类比特、包括带宽信息、通用的控制信道配置信息的第二类比特、包括时序信息的第三类比特、包括SIB的第四类比特。
按照上述的排列顺序映射到除去CRC的位置外,Polar码的可靠性从低到高的可靠性低的位置上。
例2.2:根据Polar码的可靠性从低到高,上述包括被划分的四种类型的比特的排列顺序可以为:
第一类比特、第二类比特、第三类比特、第四类比特;
根据所述每种类型的比特的例子,按照上述的顺序,举例为:包括Reserved bit第一类比特、包括通用的控制信道配置信息、带宽信息的第二类比特;包括时序信息的第三类比特;包括SIB的第四类比特。
按照上述的排列顺序映射到除去CRC的位置外,Polar码的可靠性从低到高的可靠性低的位置上。
例2.3:根据Polar码的可靠性从低到高,上述包括被划分的四种类型的比特的排列顺序可以为:
第一类比特、第二类比特和第三类比特、第四类比特;
根据所述每种类型的比特的例子,按照上述的顺序,举例为:包括Reserved bit的第一类比特;包括通用的控制信道配置信息、时序信息、带宽信息的第二类比特和第三类比特合并后的比特;包括SIB指示的第四类比特。
按照上述的排列顺序映射到除去CRC的位置外,Polar码的可靠性从低到高的可靠性低的位置上。
上述所有实施例中所述的SIB可以为SIB信息,也可以为SIB资源指示信息。
例2.4:根据Polar码的可靠性从低到高,上述包括被划分的四种类型的比特的排列顺序可以为:
第一类比特、第二类比特和第三类比特、第四类比特;
根据所述每种类型的比特的例子,按照上述的顺序,举例为:包括Reserved bit的第一类比特;包括通用的控制信道配置信息、带宽信息、时序信息的第二类比特和第三类比特合并后的比特;包括SIB的第四类比特。
按照上述的排列顺序映射到除去CRC的位置外,Polar码的可靠性从低到高的可靠性低的位置上。
例2.5:根据Polar码的可靠性从低到高,上述包括被划分的四种类型的比特的排列顺序可以为:第一类比特、第二类比特、第三类比特。
根据所述每种类型的比特的例子,按照上述的顺序,举例为:包括Reserved bit的第一类比特;包括通用的控制信道配置信息、带宽信息的第二类比特;包括时序信息的第三类比特。
上述还可以包括第一类比特、第三类比特、第四类比特,排序为:包括Reserved bit的第一类比特、包括时序信息的第三类比特、包括SIB的第四类比特:
或者,包括第一类比特、第三类比特,则相应的排序为:包括Reserved bit的第一比特、包括时序信息的第三类比特;或者,
包括第一类比特、第二类比特,则相应的排序为:包括Reserved bit的第一比特、包括带宽信息的第二类比特
按照上述的排列顺序映射到除去CRC的位置外,Polar码的可靠性从低到高的可靠性低的位置上。
其中,CRC的位置放置不严格按照上述准则。
针对一个码长为512的Polar码,MIB和CRC的总长度是72,因此选择Polar码中72个可靠度最高的子信道作为信息bit信息比特集合:72个子信道序号按照可靠性从低到高排序如前所述。
这72个信息bit中包含24个bit的CRC,由这个CRC产生一种D-CRC的交织器如下:
[1,3,6,9,12,14,16,18,19,21,23,26,27,28,30,31,34,35,37,40,42,46,47,48,0,2,4,7,10,13,15,17,20,22,24,29,32,36,38,41,43,49,5,8,11,25,33,39,44,50,45,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71],
由于MIB部分长度为72-24=48,上述序列中序号大于48的位置将放置DCRC交织后的CRC比特。
根据这个DCRC的交织图案和polar码的信息比特集合的结合,可以得到一个得到放置D-CRC的信息在polar码中的位置如下:
[443,478,489,491,492,493,494,495,496,497,498,499,500,501,502,503,504,505,506,507,508,509,510,511]
将放置DCRC的比特从polar码信息比特集合中去除,剩余部分的可靠度从低到高的排序为:
[484,430,488,239,378,459,437,380,461,351,467,438,251,462,442,441,469,247,367,253,375,444,470,483,415,485,473,474,254,379,431,486,476,439,490,463,381,382,445,471,446,475,487,255,477,383,447,479]。上述的具体描述可以从图3b表示。
本申请还提供一种实施例,基于上述第一种实施例和第二种实施例,将离散的CRC比特和其它CRC比特的情况具体进行排序,先将离散的CRC按照上述第二种实施例的方式进行,再将其它CRC按照第一种实施例的方式进行。这里就不再赘述。又例如,假设广播信令(由PBCH信道承载的信令)经过循环冗余校验(Cyclic Redundancy Check,CRC)后的结果为a0,a1,…,a13,a14,…,a23,a24,…,a39,其中a14,…,a23为预留比特(10个),a24,…,a39对应于校验比特(可以包含掩码)。假设极性码中可靠性低的10个信息比特 分别为{79,106,55,105,92,102,90,101,47,89}。这样,将前述10个预留比特映射到前述可靠性低的10个信息比特时,可以通过交织器使得u(79)=a14,u(106)=a15,u(55)=a16,u(105)=a17,u(92)=a18,u(102)=a19,u(90)=a20,u(101)=a21,u(47)=a22,u(89)=a23,进而完成了将预留比特映射到信息比特的过程。相似地,在将广播信令的剩余比特映射到极性码的剩余信息比特时,可以参照前述方法,为避免重复,在此不再赘述。
303,对映射后的比特进行极性码(Polar码)编码,得到编码后的编码比特。
304,发送所述编码比特。
例如,在无线通信设备准备通过PBCH(Physical Broadcast Channel,PBCH)信道发送广播信令时,可以先对该广播信令进行极性码编码。Polar码的编码输出可以表示为公式(1):
Figure PCTCN2018106288-appb-000003
其中,
Figure PCTCN2018106288-appb-000004
是一个二进制的行矢量,长度为N;G N.是一个N*N矩阵,
Figure PCTCN2018106288-appb-000005
N为编码后的编码比特的长度,n≥0;这里
Figure PCTCN2018106288-appb-000006
B N是转置矩阵,
Figure PCTCN2018106288-appb-000007
是克罗内克幂(kronecker power),定义为
Figure PCTCN2018106288-appb-000008
在Polar码的编码过程中,
Figure PCTCN2018106288-appb-000009
中的一部分比特用来携带信息(即,需要发送给接收端的信息),这部分比特称为信息比特,这些比特的索引集合记为A;另外剩下的那一部分比特是固定值,称为冻结frozen比特,例如,可以常设置为0。
按照本发明实施例的方法,将所述M个可预测的信息比特分别映射到所述极性码的K个信息比特中的可靠性低的M个信息比特,将D个循环冗余校验CRC比特映射到所述K个信息比特中的剩余信息比特中可靠性高的D个信息比特,得到映射后的比特。然后,可以根据公式(1)示出的编码过程,得到编码后的Polar码,也即得到了编码后的编码比特。
经由Polar码编码器的编码处理而输出的编码后的Polar码,可以简化为:
Figure PCTCN2018106288-appb-000010
其中,u A
Figure PCTCN2018106288-appb-000011
中的信息比特集合,u A为长度K的行矢量,K为信息比特个数。G N.(A)是G N.中由集合A中的索引对应的那些行得到的子矩阵,G N.(A)是一个K*N矩阵。
基于上述技术方案,在发送广播信令时,先根据Polar码中信息比特的可靠性大小进行映射,再对映射后的比特进行Polar码编码。这样,可以避免将广播信令中的有用比特映射到可靠性低的信息比特上,进而能够提高广播信令传输的可靠性。
可选地,作为一个实施例,可靠性低的M个信息比特包括可靠性低于预设阈值的M个信息比特,或者可靠性低的M个信息比特包括K个信息比特中的可靠性最低的M个信息比特。
可选地,作为另一实施例,在将广播信令的M个预留比特分别映射到极性码的K个 信息比特中的可靠性低的M个信息比特之前,可以先根据K个信息比特的可靠性的大小,对K个信息比特进行排序。这种情况下,在将广播信令的M个预留比特分别映射到极性码的K个信息比特中的可靠性低的M个信息比特时,可以根据排序结果,将M个预留比特分别映射到K个信息比特中的可靠性低的M个信息比特。
例如,以极性码码长为128比特为例进行说明。其中,极性码包括40个信息比特,按照可靠性的从大到小将40个信息比特进行排序,得到以下排序后的索引:
{127,126,125,23,119,111,95,124,122,63,121,118,117,115,110,109,107,94,93,103,91,62,120,87,61,116,114,59,108,113,79,106,55,105,92,102,90,101,47,89}。
假设广播信令的长度为40比特,其中包括10比特的预留比特。这样,10比特的预留比特应该分别映射到{79,106,55,105,92,102,90,101,47,89}对应的信息比特上。广播信令的剩余比特映射到出上述10比特以外的其它信息比特上。
可选地,作为另一实施例,信息比特的可靠性的大小是根据比特容量、巴氏距离Bhattacharyya参数或错误概率确定的。
例如,在使用比特容量作为信息比特的可靠性度量时,可以先确定Polar码的每个信息比特的比特容量,以比特容量的大小来表示信息比特可靠性的大小。其中,比特容量大的比特的可靠性高。
或者,在使用Bhattacharyya参数作为信息比特的可靠性度量时,可以确定Polar码的每个信息比特的Bhattacharyya参数,以Bhattacharyya参数大小来表示信息比特可靠性的大小。其中,Bhattacharyya参数小的信息比特的可靠性高。
图4是本发明一个实施例的极性码的编码装置的示意性框图。图4的编码装置400可以位于基站或接入终端(例如基站102和接入终端116),其包括映射单元401和编码单元402。
映射单元401,用于将广播信令的M个预留比特分别映射到极性码的K个信息比特中的可靠性低的M个信息比特,将广播信令的剩余比特映射到K个信息比特中的剩余信息比特,得到映射后的比特,其中,M<K,且M与K均为正整数。
应理解,广播信令是指承载在广播信道(如,物理广播信道PBCH)上的信令。广播信令通常会包括若干实际上并不携带有用信息的预留比特,这样在Polar码编码的过程中,将预留比特映射到可靠性低的信息比特,即使预留比特在传输过程中发生变化,也不会影响广播信令的正确解码。
也应理解,本发明实施例对可靠性的度量形式不作限制。例如可参照现有Polar码的可靠性度量,如比特容量、巴氏距离Bhattacharyya参数、错误概率等。
例如,假设广播信令(由PBCH信道承载的信令)经过循环冗余校验(Cyclic Redundancy Check,CRC)后的结果为a0,a1,…,a13,a14,…,a23,a24,…,a39,其中a14,…,a23为预留比特(10个),a24,…,a39对应于校验比特(可以包含掩码)。假设极性码中可靠性低的10个信息比特分别为{79,106,55,105,92,102,90,101,47,89}。这样,将前述10个预留比特映射到前述可靠性低的10个信息比特时,可以通过交织器使得u(79)=a14,u(106)=a15,u(55)=a16,u(105)=a17,u(92)=a18,u(102)=a19,u(90)=a20,u(101)=a21,u(47)=a22,u(89)=a23,进而完成了将预留比特映射到信息比特的过程。相似地,在将广播 信令的剩余比特映射到极性码的剩余信息比特时,可以参照前述方法,为避免重复,在此不再赘述。
编码单元402,用于对映射后的比特进行极性码编码,得到编码后的编码比特。
这里,编码单元对映射的比特进行极性码编码的过程可以参照前述实施例中的描述,为避免重复,在此不再赘述。
基于上述技术方案,在发送广播信令时,先根据Polar码中信息比特的可靠性大小进行映射,再对映射后的比特进行Polar码编码。这样,可以避免将广播信令中的有用比特映射到可靠性低的信息比特上,进而能够提高广播信令传输的可靠性。
可选地,作为一个实施例,可靠性低的M个信息比特包括可靠性低于预设阈值的M个信息比特,或者可靠性低的M个信息比特包括K个信息比特中的可靠性最低的M个信息比特。
可选地,作为另一实施例,编码装置400还包括排序单元403。
排序单元403,用于根据K个信息比特的可靠性的大小,对K个信息比特进行排序。
这种情况下,编码单元402,具体用于根据排序结果,将M个预留比特分别映射到K个信息比特中的可靠性低的M个信息比特。
例如,以极性码码长为128比特为例进行说明。其中,极性码包括40个信息比特,按照可靠性的从大到小将40个信息比特进行排序,得到以下排序后的索引:
{127,126,125,23,119,111,95,124,122,63,121,118,117,115,110,109,107,94,93,103,91,62,120,87,61,116,114,59,108,113,79,106,55,105,92,102,90,101,47,89}。
假设广播信令的长度为40比特,其中包括10比特的预留比特。这样,10比特的预留比特应该分别映射到{79,106,55,105,92,102,90,101,47,89}对应的信息比特上。广播信令的剩余比特映射到出上述10比特以外的其它信息比特上。
可选地,作为另一实施例,信息比特的可靠性的大小是根据比特容量、巴氏距离Bhattacharyya参数或错误概率确定的。
例如,在使用比特容量作为信息比特的可靠性度量时,可以确定先确定Polar码的每个信息比特的比特容量,以比特容量的大小来表示信息比特可靠性的大小。其中,比特容量大的比特的可靠性高。
或者,在使用Bhattacharyya参数作为信息比特的可靠性度量时,可以确定Polar码的每个信息比特的Bhattacharyya参数,以Bhattacharyya参数大小来表示信息比特可靠性的大小。其中,Bhattacharyya参数小的信息比特的可靠性高。
可选地,作为另一实施例,编码装置400还包括交织单元404和截取单元405。其中,交织单404元和截取单元405可以位于如图2所示的无线通信设备202的速率匹配装置205上。这样,速率匹配装置205与极性码编码器204一起构成极性码的编码装置400。
交织单元404,用于对编码后的编码比特进行排序同余交织,得到交织后的编码比特。
截取单元405,用于根据预设的数值E,将交织后的编码比特的前E个比特输入循环缓冲器。
或者,截取单元405用于对交织后的编码比特进行逆序处理,根据预设的数值E,将逆序处理后的编码比特的前E个比特输入循环缓冲器。
应理解,预设的数值E与广播信令的帧格式有关。这样,本发明实施例可以进一步提高码速率。
可选地,作为另一实施例,交织单元404具体用于,根据编码后的编码比特的长度,获取同余序列。然后,根据预设规则,对同余序列进行排序处理,得到参考序列,并根据同余序列和参考序列,确定映射函数。最后,根据映射函数,对编码后的编码比特进行交织,得到交织后的编码比特。
具体地,交织单元404对编码后的编码比特进行交织的过程可以参照前述实施例的具体描述,为避免重复,在此不再赘述。
可选地,作为另一实施例,交织单元404具体用于,根据以下公式(3)
,确定同余序列,
x(0)=x o
x(n+1)=[a*x(n)+c]mod m,n=0,1,...,(N-2)      (3)
其中,N为编码后的编码比特的长度,x 0、a、c、m为特定参数,x(0),x(1),...,x(N-1)为同余序列。
应理解,N为编码后的编码比特的长度是指N为Polar码的码长。
具体地说,设Q是一个给定的正整数,如果两个整数A,B用Q除,所得的余数相同,则称A,B对模Q同余。公式(2)表示了线性同余法,m表示模数,且m>0;a表示乘数;c表示增量;x(0)表示开始值。
可选地,作为另一实施例,x 0=4831,a=7 5,c=0,m=2 31-1。
图5是在无线通信系统中有助于执行前述Polar码的编码方法的接入终端的示意图。接入终端500包括接收机502,接收机502用于从例如接收天线(未示出)接收信号,并对所接收的信号执行典型的动作(例如过滤、放大、下变频等),并对调节后的信号进行数字化以获得采样。接收机502可以是例如最小均方误差(Minimum Mean-Squared Error,MMSE)接收机。接入终端500还可包括解调器504,解调器504可用于解调所接收的符号并将它们提供至处理器506用于信道估计。处理器506可以是专用于分析由接收机502接收的信息和/或生成由发射机516发送的信息的处理器、用于控制接入终端500的一个或多个部件的处理器、和/或用于分析由接收机502接收的信息、生成由发射机516发送的信息并控制接入终端500的一个或多个部件的控制器。
接入终端500可以另外包括存储器508,后者可操作地耦合至处理器506,并存储以下数据:要发送的数据、接收的数据以及与执行本文所述的各种动作和功能相关的任意其它适合信息。存储器508可附加地存储Polar码处理的相关的协议和/或算法。
可以理解,本文描述的数据存储装置(例如存储器508)可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。通过示例但不是限制性的,非易失性存储器可包括:只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可包括:随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器 (Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。本文描述的系统和方法的存储器508旨在包括但不限于这些和任意其它适合类型的存储器。
此外,接入终端500还包括Polar码编码器512和速率匹配设备510。实际的应用中,接收机502还可以耦合至速率匹配设备510。速率匹配设备510可基本类似于图2的速率匹配装置205。Polar码编码器512基本类似于图2的Polar码编码器204。
Polar码编码器512可用于确定广播信令的有效载荷payload包括:D个循环冗余校验CRC比特和M个可预测的信息比特;
将所述M个可预测的信息比特分别映射到所述极性码的K个信息比特中的可靠性低的M个信息比特,将D个循环冗余校验CRC比特映射到所述K个信息比特中的剩余信息比特中可靠性高的D个信息比特,得到映射后的比特,其中,M<K,且D、M与K均为正整数;
对所述映射后的比特进行极性码编码,得到编码后的编码比特。
根据本发明实施例,在发送广播信令时,先确定广播信令的有效载荷payload包括:D个循环冗余校验CRC比特和M个可预测的信息比特;将所述M个可预测的信息比特分别映射到所述极性码的K个信息比特中的可靠性低的M个信息比特,将D个循环冗余校验CRC比特映射到所述K个信息比特中的剩余信息比特中可靠性高的D个信息比特,得到映射后的比特,其中,M<K,且D、M与K均为正整数;对所述映射后的比特进行极性码编码,得到编码后的编码比特,进而能够广播信令传输的可靠性。
可选地,作为一个实施例,可靠性低的M个信息比特包括可靠性低于预设阈值的M个信息比特,或者可靠性低的M个信息比特包括K个信息比特中的可靠性最低的M个信息比特。
可选地,作为另一实施例,所述M个可预测的信息比特包括下面一种或者多种的比特组合:M1个第一类比特、M2个第二类比特或者M3个第三类比特,其中,所述第一类比特为预留比特,所述第二类比特包括:取值保持不变的信息比特,第三类比特取值为时序信息的内容发生变化,且可预测的信息比特,M1、M2与M3均为正整数,M1<=M、M2<=M以及M3<=M。
可选地,作为另一实施例,当所述M个可预测的信息比特包括:所述M1个第一类比特和所述M2个第二类比特,或者,所述M1个预留比特和所述M3个第二类比特时,将所述M1个第一类比特映射到M个信息比特中的可靠性低的M1个信息比特;
可选地,作为另一实施例,将所述M2个第二类比特映射到M个信息比特中的剩余信息比特中可靠性低的M2个信息比特;或者,将所述M1个第一类比特映射到M个信息比特中的可靠性低的M1个信息比特;将所述M3个第二类比特映射到M个信息比特中的剩余信息比特中可靠性低的M3个信息比特。
可选地,作为另一实施例,Polar码编码器512具体用于当所述M个可预测的信息比特包括:所述M1个第一类比特、所述M2个第二类比特和所述M3个第二类比特时,将所述M1个第一类比特映射到M个信息比特中的可靠性低的M1个信息比特;
可选地,作为另一实施例,Polar码编码器512具体用于将所述M2个第二类比特映射到(M-M1)个信息比特中的可靠性低的M2个信息比特;
将所述M3个第三类比特映射到(M-M1-M2)个比特中的可靠性低的M3个信息比特。
可选地,作为另一实施例,Polar码编码器512具体还用于,所述payload还包括:J个不可预测的信息比特;将所述J个不可预测的信息比特映射到所述(K-M-D)个信息比特中的可靠性低的J个信息比特,J<K,且所述J为正整数。
可选地,作为另一实施例,Polar码编码器512根据K个信息比特的可靠性的大小,对K个信息比特进行排序。然后,Polar码编码器512根据排序结果,将M个预留比特分别映射到K个信息比特中的可靠性低的M个信息比特。
可选地,作为另一实施例,信息比特的可靠性的大小是根据比特容量、巴氏距离Bhattacharyya参数或错误概率确定的。
图6是在无线通信环境中有执行前述Polar码的编码方法的系统的示意图。系统600包括基站602(例如接入点,NodeB或eNB等),基站602具有通过多个接收天线606从一个或多个接入终端604接收信号的接收机610,以及通过发射天线608向一个或多个接入终端604发射信号的发射机624。接收机610可以从接收天线606接收信息,并且可操作地关联至对接收信息进行解调的解调器612。通过相对于图7描述的处理器类似的处理器614来分析所解调的符号,该处理器614连接至存储器616,该存储器616用于存储要发送至接入终端604(或不同的基站(未示出))的数据或从接入终端604(或不同的基站(未示出))接收的数据和/或与执行本文所述的各个动作和功能相关的任意其它适合信息。处理器614还可耦合至Polar码编码器618和速率匹配装置620。
Polar码编码器618可用于确定广播信令的有效载荷payload包括:D个循环冗余校验CRC比特和M个可预测的信息比特;
将所述M个可预测的信息比特分别映射到所述极性码的K个信息比特中的可靠性低的M个信息比特,将D个循环冗余校验CRC比特映射到所述K个信息比特中的剩余信息比特中可靠性高的D个信息比特,得到映射后的比特,其中,M<K,且D、M与K均为正整数;
对所述映射后的比特进行极性码编码,得到编码后的编码比特;。
此外,在系统600中,调制器622可以对帧进行复用以用于发射机624通过天线608发送到接入终端604尽管示出为与处理器614分离,但是可以理解,Polar码编码器618、速率匹配装置620和/或调制器622可以是处理器614或多个处理器(未示出)的一部分。
可以理解的是,本文描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
当在软件、固件、中间件或微码、程序代码或代码段中实现实施例时,它们可存储在例如存储部件的机器可读介质中。代码段可表示过程、函数、子程序、程序、例程、子例程、模块、软件分组、类、或指令、数据结构或程序语句的任意组合。代码段可通过传送 和/或接收信息、数据、自变量、参数或存储器内容来稿合至另一代码段或硬件电路。可使用包括存储器共享、消息传递、令牌传递、网络传输等任意适合方式来传递、转发或发送信息、自变量、参数、数据等。
对于软件实现,可通过执行本文所述功能的模块(例如过程、函数等)来实现本文所述的技术。软件代码可存储在存储器单元中并通过处理器执行。存储器单元可以在处理器中或在处理器外部实现,在后一种情况下存储器单元可经由本领域己知的各种手段以通信方式耦合至处理器。
应理解,上述的装置实施例都可以按照方法实施例的步骤进行执行,这里就不再赘述。
在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可 以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。
基于上述附图2,在实施例中,极性码编码器204用于确定广播信令的有效载荷payload包括:D个循环冗余校验CRC比特和M个可预测的信息比特;将所述M个可预测的信息比特分别映射到所述极性码的K个信息比特对应的子信道中的可靠性低的M个子信道上,将D个循环冗余校验CRC比特映射到所述K个信息比特中的剩余信息比特对应的子信道中可靠性高的D个子信道,得到映射后的比特,其中,M小于等于(K-D),且D、M与K均为正整数;对所述映射后的比特进行极性码编码,得到编码后的比特。
此外,发射机206可随后在信道上传送经过速率匹配装置205处理后的比特。例如,发射机206可以将相关数据发送到其它不同的无线通信装置(未示出)。
上述提到的极性码的K个信息比特对应的子信道中的可靠性低的M个子信道上与前述实施例中提到的极性码的K个信息比特中的可靠性低的M个信息比特的描述是一致的,为了更清楚的描述出信息比特与信息比特对应的子信道的关系,前述实施例中的极性码的K个信息比特中的可靠性低的M个信息比特可以进一步描述为:从极性码的子信道中选择K个子信道,将K个信息比特映射到所述选择的K个子信道,然后从K个子信道中选择了可靠性低的M个子信道,将M个信息比特映射到所述选择的M个子信道。
下面,将对上述极性码编码器的具体处理过程进一步进行详细说明。
前述实施例已经将PBCH的payload按照接入业务的内容是否可变分为四类,这里将在上述四种类型的比特,根据不同的场景下所属的比特类型不同,新增第五种类型的比特,第五类比特,包括:在不同的场景下所属的比特类型不同。例如:被划分到第三类比特的这些一个或者多个比特在第一种场景下携带某种内容,根据此种场景下携带的内容可以被划分为第二类比特,这些比特在第二种场景下携带另一种内容,根据此种场景下携带的内容可以被划分为第三类比特,即不同场景携带的内容不同,且属于不同类的这些比特,被划分为第五类。
下面分不同场景具体介绍第五类比特的情况:
1)不同场景下,某些比特携带的内容不同,且属于不同类。某类比特第一种场景携带一种内容,第二种场景携带另一种内容:某些比特在第一种场景下携带某种内容,这些一个或者多个比特在第二种场景下携带另一种内容,即不同场景携带的内容不同,且属于不同类,这些比特可以被划分为第五类比特。
例如:第三种类型的比特中,某些表征时序的比特(例如同步块索引sync signal block index,SSBI)在低频应用场景下可能会被指示某种时常变化的配置,此时这些比特可以被划分为第四类比特,这些表征时序的比特在高频场景下,用于表征时序,在用于表征时序时,这些比特被划分到第三类比特。即这些一个或者多个比特在高频场景被划分第三类比特,在低频场景又可以划分为第四类比特,即不同场景携带的内容不同,且属于不同类的这些比特,被划分为第五类。
2)不同场景下某些比特携带的内容相同,但是所述相同内容的这些比特不同场景下 所属的类型不同。
一个或者多个比特,在某些场景下属于第一类比特,在另一些应用场景下属于第二类或者第四类比特,但是这类比特携带的内容相同。例如:某些系统配置信息在同一小区内工作时可能属于第四类,在进行小区切换时,这些配置信息会被通过其他途径提前告知,因此其具有了在译码前就可知道的特性,可以被划分为第一类比特。
再例如:某个导频密度控制信令,在宽带应用场景下属于第四类比特,在窄带下属于第二类比特,这些一个或者多个比特被划分为第五类比特。
3)不同场景下携带的内容不同的这类比特还有一种特殊的情况:第一种场景下一个或者多个比特携带一种内容,第二种场景这些比特不携带内容。即不同场景下该比特可携带也可不携带内容。
例如:第三类比特中,用于指示高频下同步块索引SSBI的比特在低频时不携带信息,则可将这些一个或者多个比特划分为第五类比特。
再例如:某些带宽配置指示信令属于第四类比特,只存在高频之中。用于携带这些信令的比特在低频不携带信息,则可将这些一个或者多个比特划分为第五类比特。
下面进一步具体介绍下第五类比特如何映射到对应的极性码的子信道:
总的来说,所述M个可预测的信息比特包括:所述M 5个第五类比特,则将所述M 5个第五类比特映射到M个信息比特中的可靠性低的M个信息比特具体包括:
将所述M 5个第五类比特映射到下面一种或多种子信道的组合,其中,所述一种或多种子信道的组合包括:
(M 1+M 5)个第一类比特对应的子信道中的M 5个子信道、(M 2+M 5)个第二类比特对应的子信道中的M 5个子信道、(M 3+M 5)个第三类比特对应的子信道中的M 5个子信道、(M 4+M 5)个第四类比特对应的子信道中的M 5个子信道,或者,M 2个第二类比特对应的M 2个子信道与M 3个第三类比特对应的M 3个子信道之间的M 5个子信道。
一般情况下,第五类比特根据应用场景不同,按照携带的内容,若这些一个或者多个比特携带的内容属于第一类比特到第四类比特中任意哪一类比特类型,就按照所述类别的比特映射方式进行映射。除非系统等特殊的设置例如根据不同场景的优先级来设置,则按照实际需求进一步进行处理。
下面基于上述第五类比特划分方式的不同,进一步对上述的映射过程进行描述:
1)对第五类比特,若所述第五类比特属于:第一种场景携带一种内容,第二种场景携带另一种内容:该比特在第一种场景下携带某种内容,该比特在第二种场景下携带另一种内容:不同场景携带的内容不同,且属于不同类。
可以根据某种应用场景下使用一个或者多个比特的重要性或者优先级,对第五类比特进行映射。
例如:第三类比特例如SSBI在高频下用于指示SSBI的一个或者多个比特,即在高频时这一个或者多个比特被划分为第三类比特;在低频时,这一个或者多个比特可能会被指示某种时常变化的配置,即在低频时可以被划分为第四类。一般情况下,这一个或者多个比特由于上述的这些特性被划分为第五类比特,这类比特在映射到极性码的子信道时,若在高频场景下,该比特携带第三类比特的内容,将该一个或者多个比特映射到第三类比特对应的子信道的位置上;在低频场景中,将该一个或者多个比特映射到第四类比特对应的 子信道的位置上。
进一步地,如果在低频段这些比特被闲置,或者其值可被直接获得,则也可以将这些一个比特或者多个比特划分为第一类比特,在低频场景下,将这类比特映射到第一类比特对应的子信道的位置。还有一种考虑,若系统和场景不支持这类根据场景调整,在系统设计初期应该根据不同场景的优先级来考虑,例如低频场景使用密度更高,则将整个系统中的这一个或者多个比特按照第一类比特或者第四类比特的映射方式进行处理。反之,若高频场景更重要,则将这一个或者多个比特按照第三类比特的映射方式处理。
2)不同场景下某些比特携带的内容相同,但是所述相同内容的这些比特不同场景下所属的类型不同。这类比特在映射到极性码的子信道时,可以在进行系统设计时,优先考虑系统切换的性能,再将这些比特映射到极性码的子信道中低可靠度的位置,例如:在第一类比特对应的子信道之前,或者第三类比特对应的子信道和第四类对应的子信道之间。如果系统设计不侧重小区切换的性能,则按照其原有被划分的比特类别进行相应的映射处理。
再例如:HFI在低频由其它方式重复告知终端,此时HFI信息也具有某种第一类比特的特性,在映射到极性码的子信道时,可将其映射置第一类比特对应的子信道之前,或者其他不可靠的位置。
再例如:某个导频密度控制信令,在宽带应用场景下属于第四类比特,在窄带下属于第二类比特,由于宽带应用场景在系统中使用频率和负载之类的优先级更高,因此,优先满足宽带系统的设计诉求,将这一个或者多个比特的映射按照第四类比特的映射方式进行处理。反之,如果更加考虑窄带设备的性能,则将这一个或者多个比特的映射按照第二类比特的映射方式进行处理。
3)不同场景下携带的内容不同的这类比特还有一种特殊的情况:第一种场景下一个或者多个比特携带一种内容,第二种场景这些比特不携带内容。即不同场景下该比特可携带也可不携带内容。
这一个或者多个比特的映射方式具体如下:例如:用于指示高频下SSBI的一个或者多个比特在低频时不携带信息,则可将这一个或者多个比特按照第一类比特的映射方式处理,即将这一个或者多个比特映射到第一类比特对应的子信道上;或者,映射到第一类比特对应的子信道之后的子信道的位置上,但是在第三类比特对应的子信道的位置之前。
再例如:某些带宽配置指示信令属于第四类,只存在高频之中,用于携带这些信令的一个或者多个比特在低频时不携带信息,如果优先考虑高频的性能,则可将这一个或者多个比特按照第一类比特的映射方式处理,或者将这一个或者多个比特映射到第一类比特对应的子信道之后,但在第四类比特对应的子信道位置之前。
总体的,将根据上述的比特集合的划分,按照第一类到第五类的顺序将PBCH的payload的内容按照polar码信息比特集合中子信道的可靠度由低到高映射到所述信息比特集合中,或者按照polar码信息比特集合中子信道的自然序号从前往后映射到所述信息bit集合中。不失一般性,本申请以按照可靠度排序进行阐述。具体的映射方式根据划分的类型不同而不同。
另外,上述提到的各种映射方式由于增加了第五类比特,所以在对五类比特进行映射时的子信道的选择时,都需要考虑第五类比特对应的子信道,例如,根据上述的映射方式, 将M 5个第五类比特映射到M 1个第一类比特对应的子信道,应该理解为:将所述M 5个第五类比特映射到(M 1+M 5)个第一类比特对应的子信道中的M 5个子信道,其它映射方式均同上理解。
进一步可选地,被划分为某类的一个或者多个比特仍然可以在该类别中进一步进行划分,例如:根据该一个或者多个比特的应用场景对已经划分为第五类比特的比特在进行映射时进一步进行划分并进行相应的映射。这类设计较为考虑系统的兼容性和一致性,用最小的差异综合考虑不同场景的特点。
例如:被划分为第五类比特的SSBI这些一个或者多个比特,在高频时这一个或者多个比特属于第三类比特,在低频时,用途待定,但是仍然属于第三类比特。针对上述高频以及低频的不同应用场景,对该一个或者多个比特进一步划分,并进行相应的映射:如果低频中的这一个或者多个闲置比特在将来不会被使用,将其映射到第三类比特对应的子信道中可靠度较低的位置;如果这一个或者多个闲置比特被设计为在将来可能会被用到,则将该一个或者多个比特映射到在第三类比特对应的子信道中可靠度较高的位置。
另外,本申请实施例还提供了如图7所示的一种分散式CRC(D-CRC)的交织过程:
由于D-CRC本身已经需要通过一个交织,映射过程还需要一个交织,整个过程需要两个交织来配合实现,使得两次交织以后的特定种类内容的比特映射一定可靠度的信道上。具体流程如图7所示:
其中a 0,a 1,…,a k是从上层传入的广播信息,通过交织1后变为b 0,b 1,…,b k,将该序列串接d个CRC比特,得到序列b 0,b 1,…,b k,c 0,c 1,…,c d-1,再通过一个分布式CRC(Distributed-CRC,D-CRC)交织后得到d 0,d 1,…d k+d-1
综合考虑D-CRC交织,为了实现图3b表中最终的映射效果,可将需要放入特定可靠度位置的各类MIB的bit的顺序进行预映射,使得进行CRC串接、D-CRC交织、并映射到polar码个子信道中各个bit符合图3b表中最终的映射效果。类似的,也可以使用一个预交织器进行对为进行bit顺序调整的MIB信息进行预交织,从而实现类似效果。
下面具体讨论有D-CRC的情况下,按照上述的映射方法,实现极性码Polar子信道映射。实施例1:以极性码ploar码的码长为512,确定广播信令的有效载荷payload包括:循环冗余校验CRC比特和可预测的信息比特;K个信息比特的个数为56个比特,其中,循环冗余校验CRC比特这里以D-CRC为例D为24个比特,可预测的信息比特M的个数小于等于(56-24)为32个比特。
首先,按照子信道的可靠度由低到高,该信息比特对应的子信道序号集合的序号从0开始,一共56个比特,具体集合如下:
(441 469 247 367 253 375 444 470 483 415 485 473 474 254 379 431 489 486 476 439 490 463 381 497 492 443 382 498 445 471 500 446 475 487 504 255 477 491 478 383 493 499 502 494 501 447 505 506 479 508 495 503 507 509 510 511)
针对K=56,D=24的D-CRC的交织器如下:
(0 2 3 5 7 10 11 12 14 15 18 19 21 24 26 30 31 32 1 4 6 8 13 16 20 22 25 27 33 9 17 23 28 34 29 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55)
根据D-CRC交织器从上述信息比特对应的子信道中,选择24个子信道承载24个D-CRC的比特,具体24个D-CRC映射到下面的24个子信道上:
(446 478 487 490 491 492 493 494 495 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511)。
其次,剩余polar子信道序号一共32个子信道,用于承载M个可预测的信息比特,M小于等于32:
(441 469 247 367 253 375 444 470 483 415 485 473 474 254 379 431 489 486 476 439 463 381 443 382 445 471 475 255 477 383 447 479)。
具体M个可预测的信息比特的映射方式如下:
1)当M个可预测的信息比特包括:第五类比特和第三类比特时,其中,第五类比特包括SSBI;第三类比特包括:HFI和SFN;第四类比特包括:RMSI config和/或会被使用的reserved bits:
a)考虑到所述第五类比特SSBI在低频段为已知比特,不会被使用,则该SSBI比特在低频段被划分为第一类比特,映射到上述32个子信道集合中可靠性最低的3个子信道上,映射如下:SSBI:(247 441 469)。
b)将第三类比特HFI和SFN映射到(32-3)即29个子信道中可靠性最低的3个子信道上,具体映射如下:
HFI:367
SFN:(253 375 444 254 415 470 473 474 483 485)
参见图7所示的实施例,将比特序列为d0,d1,…dk+d-1按照上述映射方式映射到polar码的子信道中。
进一步可选地,根据上述Polar的子信道的映射关系以及D-CRC的交织图案进行反推,得出即对应图7中的MIB序列a0,a1…ak经过交织1映射,输出交织后的MIB序列:b0,b1…bk,具体如下:
SSBI:(24 6 0)
HFI:7
SFN:(2 10 30 8 17 18 23 16 20 3)
2)考虑到所述第五类比特SSBI在低频段将来会被使用,则该SSBI比特被划分为第四类比特,进行映射时,先考虑第三类比特的映射,将第三类比特HFI和SFN映射到上述32个子信道集合中可靠性最低的11个子信道上(HFI和SFN在本实施例中没有进一步进行细分),再考虑剩下的21个子信道中,选择3个子信道承载上述SSBI,具体子信道的映射关系如下
HFI:(441)
SFN:(247 367 469 253 375 415 444 470 483 485)
SSBI:(254 473 474)
进一步可选地,根据上述Polar的子信道的映射关系以及D-CRC的交织图案进行反推,得出即对应图7中的MIB序列a0,a1…ak经过交织1映射,输出交织后的MIB序列:b0,b1…bk,具体如下:
HFI:24
SFN:(6 0 7 2 10 30 8 17 18 23)
SSBI:(16 20 3)
3)当M个可预测的信息比特包括:第二类比特例如:
RMSI config和第三类比特,例如:HFI、SFN、SSBI
首先考虑第二类比特,将所述第二类比特映射到可靠性最低的8个子信道上;再考虑将第三类比特,将所述第三类比特映射到(32-8)24个子信道上可靠性最低的14个子信道上,
最终子信道映射如下:
RMSI Config:(247 253 367 375 441 444 469 470)
HFI:483
SFN:(415 473 485 254 379 431 474 476 486 489)
SSBI:(381 439 463)
进一步可选地,根据上述Polar的子信道的映射关系以及D-CRC的交织图案进行反推,得出即对应图7中的MIB序列a0,a1…ak经过交织1映射,输出交织后的MIB序列:b0,b1…bk,具体如下:
RMSI Config:(24 6 0 7 2 10 30 8)
HFI:17
SFN:(18 23 16 20 3 11 19 29 28 25)
SSBI:(21 4 12)
4)当M个可预测的信息比特包括:第一类比特,例如:不会被使用的reserved bits和第三类比特例如SSBI,HFI,SFN:
首先,将所述第一类比特映射到上述32个子信道中可靠性最低的3个子信道;其次,将第三类比特映射到(32-3)即29个子信道中可靠性最低的14个子信道,最终子信道映射如下:
reserved bits:(247 441 469)
SSBI:(253 367 375)
HFI:444
SFN:(415 470 483 254 379 431 473 474 485 489)
进一步可选地,根据上述Polar的子信道的映射关系以及D-CRC的交织图案进行反推,得出即对应图7中的MIB序列a0,a1…ak经过交织1映射,输出交织后的MIB序列:b0,b1…bk,具体如下:reserved bits:24 6 0经过交织1之后,这些reserved bit在输出的交织后MIB序列的位置,例如交织后MIB序列的第24位,第6位,第0位比特映射reserved比特,即MIB序列中bo,b6,b24放reserved bit:
SSBI:(7 2 10)
HFI:30
SFN:(8 17 18 23 16 20 3 11 19 29)
实施例2:以极性码ploar码的码长为512,确定广播信令的有效载荷payload包括:循环冗余校验CRC比特、可预测的信息比特,所述payload还包括:polar码的子信道中预设置位置的这些一个或者多个比特;K个信息比特的个数为56个比特,其中,循环冗余校验CRC比特这里以D-CRC为例D为24个比特,假设polar码的子信道中预设置位置的这些比特为X个,可预测的信息比特M的个数小于等于(56-24-X)个比特。首先,按照子信道的可靠度由低到高,该信息比特对应的子信道序号集合的序号从0开始,一共56个比特,具体集合如下:
(441 469 247367 253 375 444 470 483 415 485 473 474 254 379 431 489 486 476 439 490 463 381 497 492 443 382 498 445 471 500 446 475 487 504 255 477 491 478 383 493 499 502 494 501 447 505 506 479 508 495 503 507 509 510 511)
针对K=56,D=24的D-CRC的交织器如下:
(0 2 3 5 7 10 11 12 14 15 18 19 21 24 26 30 31 32 1 4 6 8 13 16 20 22 25 27 33 9 17 23 28 34 29 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55)
根据D-CRC交织器从上述信息比特对应的子信道中,选择24个子信道承载24个D-CRC的比特,具体24个D-CRC映射到下面的24个子信道上:
(446 478 487 490 491 492 493 494 495 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511)。
其次,从剩余的polar子信道序号一共32个子信道中,选择X个子信道用于承载polar码的子信道中预设置位置的这些比特,例如:
1)SSBI的3个比特为用于承载polar码的子信道中预设置位置的这些比特,则将SSBI3个比特被放置于polar码信息bit子信道中自然序靠前的位置,即(247 253 254),剩余(32-3)即29个子信道按照上述第一类比特到第四类比特的映射方式对M个可预测的信息比特进行映射:
最终子信道映射如下:
SSBI:(247 253 254)
HFI:441
SFN:(367 375 469 415 444 470 473 474 483 485)
进一步可选地,根据上述Polar的子信道的映射关系以及D-CRC的交织图案进行反推,得出即对应图7中的MIB序列a0,a1…ak经过交织1映射,输出交织后的MIB序列:b0,b1…bk,具体如下:
SSBI:(0 2 3)
HFI:24
SFN:(6 7 10 30 8 17 18 23 16 20)
2)“Cell barred flag”1个比特、SSBI 3个比特为用于承载polar码的子信道中预设置位置的这些比特,则“Cell barred flag”1个比特、SSBI 3个比特被放置于polar码信息bit子信道中自然序靠前的位置,即(247 253 254 255),剩余子信道上承载M个可预测的信息比特的映射方式按照上述第一类比特到第四类比特的映射方式进行映射
最终子信道映射如下:
Cel l barred:247
SSBI:(253 254 255)
HFI:441
SFN:(367 375 469 415 444 470 473 474 483 485)
进一步可选地,根据上述Polar的子信道的映射关系以及D-CRC的交织图案进行反推,得出即对应图7中的MIB序列a0,a1…ak经过交织1映射,输出交织后的MIB序列:b0,b1…bk,具体如下:
Cell barred:0
SSBI:(2 3 5)
HFI:24
SFN:(6 7 10 30 8 17 18 23 16 20)
3)“Cell barred flag”1个比特、SSBI 3个比特为用于承载polar码的子信道中预设置位置的这些比特,则SSBI 3个比特被放置于polar码信息bit子信道中自然序靠前的位置,即(247 253 254)。“Cel l barred flag”放置于较为靠前,由于其值可能变化,放置于可靠度较高的位置有利于整体性能,例如放置于255位置,剩余子信道上承载M个可预测的信息比特的映射方式按照上述第一类比特到第四类比特的映射方式进行映射,不再重复描述。
上述实施例1和实施例2是以K个信息比特的个数为56个比特为例进行详细描述的,下面将以K个信息比特的个数为64个比特为例进一步进行详细描述。
实施例3:以极性码ploar码的码长为512,确定广播信令的有效载荷payload包括:循环冗余校验CRC比特和可预测的信息比特;K个信息比特的个数为64个比特,其中,循环冗余校验CRC比特这里以D-CRC为例D为24个比特,可预测的信息比特M的个数小于等于(64-24)为40个比特。
首先,按照子信道的可靠度由低到高,该信息比特对应的子信道序号集合的序号从0开始,一共64个比特,具体集合如下:
461 496 351 467 438 251 462 442 441 469 247 367 253 375 444 470 483 415 485 473 474 254 379 431 489 486 476 439 490 463 381 497 492 443 382 498 445 471 500 446 475 487 504 255 477 491 478 383 493 499 502 494 501 447 505 506 479 508 495 503 507 509 510 511
针对K=64,D=24的D-CRC的交织器如下:
(1 4 6 8 10 11 13 15 18 19 20 22 23 26 27 29 32 34 38 39 40 2 5 7 9 12 14 16 21 24 28 30 33 35 41 0 3 17 25 31 36 42 37 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63)
根据D-CRC交织器从上述信息比特对应的子信道中,选择24个子信道承载24个D-CRC的比特,具体24个D-CRC映射到下面的24个子信道上:445 477 489 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
其次,剩余polar子信道序号一共40个子信道,用于承载M个可预测的信息比特,M小于等于40:
461 351 467 438 251 462 442 441 469 247 367 253 375 444 470 483 415 485 473 474 254 379 431 486 476 439 490 463 381 443 382 471 446 475 487 255 478 383 447 479
1)当M个可预测的信息比特包括:第五类比特和第三类比特时,其中,第五类比特包括SSBI;第三类比特包括:HFI和SFN;第四类比特包括:RMSI config和/或会被使用的reserved bits:
a)考虑到所述第五类比特SSBI在低频段为已知比特,不会被使用,则该SSBI比特在低频段被划分为第一类比特,映射到上述40个子信道集合中可靠性最低的3个子信道上,映射如下:
SSBI:(351 461 467)
b)将第三类比特HFI和SFN映射到(40-3)即37个子信道中可靠性最低的3个子信道上,具体映射如下:
HFI:438
SFN:(251 442 462 247 253 367 375 441 444 469)
参见图7所示的实施例,将比特序列为d0,d1,…dk+d-1按照上述映射方式映射到polar码的子信道中。
进一步可选地,根据上述Polar的子信道的映射关系以及D-CRC的交织图案进行反推,得出即对应图7中的MIB序列a0,a1…ak经过交织1映射,输出交织后的MIB序列:b0,b1…bk,具体如下:
SSBI:(7 11 14)
HFI:27
SFN:(4 9 34 32 16 1 13 6 15 39)
2)考虑到所述第五类比特SSBI在低频段将来会被使用,则该SSBI比特被划分为第四类比特,进行映射时,先考虑第三类比特的映射,将第三类比特HFI和SFN映射到上述32个子信道集合中可靠性最低的11个子信道上(HFI和SFN在本实施例中没有进一步进行细分),再考虑剩下子信道中,选择3个子信道承载上述SSBI,具体子信道的映射关系如下HFI:461
SFN:(351 438 467 247 251 367 441 442 462 469)
SSBI:(253 375 444)
进一步可选地,根据上述Polar的子信道的映射关系以及D-CRC的交织图案进行反推,得出即对应图7中的MIB序列a0,a1…ak经过交织1映射,输出交织后的MIB序列:b0,b1…bk,具体如下:
HFI:7
SFN:(11 14 27 4 9 34 32 16 1 13)
SSBI:(6 15 39)
3)当M个可预测的信息比特包括:第二类比特例如:RMSI config和第三类比特,例如:HFI、SFN、SSBI。
首先考虑第二类比特,将所述第二类比特映射到可靠性最低的8个子信道上;再考虑将第三类比特,将所述第三类比特映射到剩余的子信道上可靠性最低的14个子信道上,
RMSI config在前(RMSI config为第二类):
RMSI config、HFI、SFN、SSBI、…
最终子信道映射如下:
RMSI Config:(251 351 438 441 442 461 462 467)
HFI:469
SFN:(247 253 367 375 415 444 470 473 483 485)
SSBI:(254 379 474)
进一步可选地,根据上述Polar的子信道的映射关系以及D-CRC的交织图案进行反推,得出即对应图7中的MIB序列a0,a1…ak经过交织1映射,输出交织后的MIB序列:b0,b1…bk,具体如下:
RMSI Config:(7 11 14 27 4 9 34 32)
HFI:16
SFN1:(1 13 6 15 39 21 17 23 25 28)
SSBI:(30 8 18)
4)当M个可预测的信息比特包括:第一类比特,例如:不会被使用的reserved bits和第三类比特例如SSBI,HFI,SFN:
首先,将所述第一类比特映射到上述40个子信道中可靠性最低的3个子信道;其次,将第三类比特映射到剩余子信道中可靠性最低的14个子信道,最终子信道映射如下:
最终子信道映射如下:
reserved bits:(351 461 467)
SSBI:(251 438 462)
HFI:442
SFN:(247 441 469 253 367 375 415 444 470 483)
进一步可选地,根据上述Polar的子信道的映射关系以及D-CRC的交织图案进行反推,得出即对应图7中的MIB序列a0,a1…ak经过交织1映射,输出交织后的MIB序列:b0,b1…bk,具体如下:
reserved bits:(7 11 14)
SSBI:(27 4 9)
HFI:34
SFN:(32 16 1 13 6 15 39 21 17 23)
实施例4:以极性码ploar码的码长为512,确定广播信令的有效载荷payload包括:循环冗余校验CRC比特、可预测的信息比特和polar码的子信道中预设置位置的这些比特;K个信息比特的个数为64个比特,其中,循环冗余校验CRC比特这里以D-CRC为例D为24个比特,假设polar码的子信道中预设置位置的这些比特为X个,可预测的信息比特M的个数小于等于(64-24-X)个比特。
首先,按照子信道的可靠度由低到高,该信息比特对应的子信道序号集合的序号从0开始,一共64个比特,具体集合如下:
(441 469 247 367 253 375 444 470 483 415 485 473 474 254 379 431 489 486 476 439 490 463 381 497 492 443 382 498 445 471 500 446 475 487 504 255 477 491 478 383 493 499 502 494 501 447 505 506 479 508 495 503 507 509 510 511)
针对K=64,D=24的D-CRC的交织器如下:
(14 6 8 10 11 13 15 18 19 20 22 23 26 27 29 32 34 38 39 40 2 5 7 9 12 14 16 21 24 28 30 33 35 41 0 3 17 25 31 36 42 37 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63)
根据D-CRC交织器从上述信息比特对应的子信道中,选择24个子信道承载24个D-CRC的比特,具体24个D-CRC映射到下面的24个子信道上:
(446 478 487 490 491 492 493 494 495 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511)。
其次,从剩余的polar子信道序号一共40个子信道中,选择X个子信道用于承载polar码的子信道中预设置位置的这些比特,例如:
1)SSBI的3个比特为用于承载polar码的子信道中预设置位置的这些比特,则将SSBI3个比特被放置于polar码信息bit子信道中自然序靠前的位置,即(247 251 253),剩余的子信道上述第一类比特到第四类比特的映射方式对M个可预测的信息比特进行映射
最终子信道映射如下:
SSBI:(247 251 253)
HFI:461
SFN:(351 438 467 367 375 441 442 444 462 469)
进一步可选地,根据上述Polar的子信道的映射关系以及D-CRC的交织图案进行反推,得出即对应图7中的MIB序列a0,a1…ak经过交织1映射,输出交织后的MIB序列:b0,b1…bk,具体如下:
SSBI:(1 4 6)
HFI:7
SFN:(11 14 27 9 34 32 16 13 15 39)
2)“Cel l barred flag”1个比特、SSBI 3个比特为用于承载polar码的子信道中预设置位置的这些比特,则“Cell barred flag”1个比特、SSBI 3个比特被放置于polar码信息bit子信道中自然序靠前的位置,即(247 253 254 255),剩余子信道上承载M个可预测的信息比特的映射方式按照上述第一类比特到第四类比特的映射方式进行映射最终子信道映射如下:
Cel l barred:247
SSBI:(251 253 254)
HFI:461
SFN:(351 438 467 367 375 441 442 444 462 469)
进一步可选地,根据上述Polar的子信道的映射关系以及D-CRC的交织图案进行反推,得出即对应图7中的MIB序列a0,a1…ak经过交织1映射,输出交织后的MIB序列:b0,b1…bk,具体如下:
Cel l barred:1
SSBI:(4 6 8)
HFI:7
SFN1:(11 14 27 9 34 32 16 13 15 39)
3)“Cel l barred flag”1个比特、SSBI 3个比特为用于承载polar码的子信道中预设置位置的这些比特,则SSBI 3个比特被放置于polar码信息bi t子信道中自然序靠前的位置,即(247 251 253)。“Cel l barred flag”放置于较为靠前,由于其值可能变化,放置于可靠度较高的位置有利于整体性能,例如放置于255位置,剩余子信道上承载M个可预测的信息比特的映射方式按照上述第一类比特到第四类比特的映射方式进行映射,不再重复描述。

Claims (37)

  1. 一种极性码的编码方法,其特征在于,包括:
    确定广播信令的有效载荷payload包括:D个循环冗余校验CRC比特和M个可预测的信息比特;
    将所述M个可预测的信息比特分别映射到所述极性码的K个信息比特中的可靠性低的M个信息比特,将D个循环冗余校验CRC比特映射到所述K个信息比特中的剩余信息比特中可靠性高的D个信息比特,得到映射后的比特,其中,M<K,且D、M与K均为正整数;
    对所述映射后的比特进行极性码编码,得到编码后的编码比特;
    发送所述编码比特。
  2. 根据权利要求1所述的编码方法,其特征在于,所述M个可预测的信息比特包括下面一种或者多种的比特组合:M 1个第一类比特、M 2个第二类比特或者M 3个第三类比特,其中,所述第一类比特为预留比特,所述第二类比特包括:取值保持不变的信息比特,第三类比特取值为时序信息的内容发生变化,且可预测的信息比特,M 1、M 2与M 3均为正整数,M 1<=M、M 2<=M以及M 3<=M。
  3. 根据权利要求1所述的编码方法,其特征在于,当所述M个可预测的信息比特包括:所述M 1个第一类比特和所述M 2个第二类比特,或者,所述M 1个预留比特和所述M 3个第二类比特时,将所述M 1个第一类比特映射到M个信息比特中的可靠性低的M 1个信息比特;
    将所述M 2个第二类比特映射到M个信息比特中的剩余信息比特中可靠性低的M 2个信息比特;或者,
    将所述M 1个第一类比特映射到M个信息比特中的可靠性低的M 1个信息比特;
    将所述M 3个第二类比特映射到M个信息比特中的剩余信息比特中可靠性低的M 3个信息比特。
  4. 根据权利要求2所述的编码方法,其特征在于,当所述M个可预测的信息比特包括:所述M 1个第一类比特、所述M 2个第二类比特和所述M 3个第三类比特时,将所述M 1个第一类比特映射到M个信息比特中的可靠性低的M 1个信息比特;
    将所述M 2个第二类比特映射到(M-M 1)个信息比特中的可靠性低的M 2个信息比特;
    将所述M 3个第三类比特映射到(M-M 1-M 2)个比特中的可靠性低的M 3个信息比特。
  5. 根据权利要求1所述的编码方法,其特征在于,所述payload还包括:J个不可预测的信息比特;
    将所述J个不可预测的信息比特映射到所述(K-M-D)个信息比特中的可靠性低的J个信息比特,J<K,且所述J为正整数。
  6. 根据权利要求1-5所述的编码方法,其特征在于,所述可靠性低的M个信息比特包括可靠性低于预设阈值的M个信息比特,或者所述可靠性低的M个信息比特包括所述K个信息比特中的可靠性最低的M个信息比特。
  7. 根据权利要求1-6所述的编码方法,其特征在于,所述信息比特的可靠性的大小是根据比特容量、巴氏距离Bhattacharyya参数或错误概率确定的。
  8. 一种极性码的编码装置,其特征在于,包括:
    处理器,用于确定广播信令的有效载荷payload包括:D个循环冗余校验CRC比特和M个可预测的信息比特;将所述M个可预测的信息比特分别映射到所述极性码的K个信息比特中的可靠性低的M个信息比特,将D个循环冗余校验CRC比特映射到所述K个信息比特中的剩余信息比特中可靠性高的D个信息比特,得到映射后的比特,其中,M<K,且D、M与K均为正整数;
    对所述映射后的比特进行极性码编码,得到编码后的编码比特。
  9. 根据权利要求8所述的编码装置,其特征在于,所述M个可预测的信息比特包括下面一种或者多种的比特组合:M 1个第一类比特、M 2个第二类比特或者M 3个第三类比特,其中,所述第一类比特为预留比特,所述第二类比特包括:取值保持不变的信息比特,第三类比特取值为时序信息的内容发生变化,且可预测的信息比特,M 1、M 2与M 3均为正整数,M 1<=M、M 2<=M以及M 3<=M。
  10. 根据权利要求9所述的编码装置,其特征在于,当所述M个可预测的信息比特包括:所述M 1个第一类比特和所述M 2个第二类比特,或者,所述M 1个预留比特和所述M 3个第二类比特时,将所述M 1个第一类比特映射到M个信息比特中的可靠性低的M 1个信息比特;
    所述处理器,具体用于将所述M 2个第二类比特映射到M个信息比特中的剩余信息比特中可靠性低的M 2个信息比特;或者,将所述M 1个第一类比特映射到M个信息比特中的可靠性低的M 1个信息比特;将所述M 3个第二类比特映射到M个信息比特中的剩余信息比特中可靠性低的M 3个信息比特。
  11. 根据权利要求9所述的编码装置,其特征在于,当所述M个可预测的信息比特包括:所述M 1个第一类比特、所述M 2个第二类比特和所述M 3个第二类比特时,将所述M 1个第一类比特映射到M个信息比特中的可靠性低的M 1个信息比特;
    所述处理器,还用于将所述M 2个第二类比特映射到(M-M 1)个信息比特中的可靠性低的M 2个信息比特;
    将所述M 3个第三类比特映射到(M-M 1-M 2)个比特中的可靠性低的M 3个信息比特。
  12. 根据权利要求8所述的编码装置,其特征在于,所述处理器还用于,所述payload还包括:J个不可预测的信息比特;将所述J个不可预测的信息比特映射到所述(K-M-D)个信息比特中的可靠性低的J个信息比特,J<K,且所述J为正整数。
  13. 根据权利要求8-12所述的任意一编码装置,其特征在于,
    所述可靠性低的M个信息比特包括可靠性低于预设阈值的M个信息比特,或者所述可靠性低的M个信息比特包括所述K个信息比特中的可靠性最低的M个信息比特。
  14. 根据权利要求8-13所述的任意一编码装置,所述信息比特的可靠性的大小是根据比特容量、巴氏距离Bhattacharyya参数或错误概率确定的。
  15. 一种极性码的编码方法,其特征在于,包括:
    确定广播信令的有效载荷payload包括:D个循环冗余校验CRC比特和M个可预测的信息比特;
    将所述M个可预测的信息比特分别映射到所述极性码的K个信息比特对应的子信道中的可靠性低的M个子信道上,将D个循环冗余校验CRC比特映射到所述K个信息比特中的剩余信息比特对应的子信道中可靠性高的D个子信道,得到映射后的比特,其中,M<K,且D、M与K均为正整数;
    对所述映射后的比特进行极性码编码,得到编码后的比特;
    发送所述编码后的比特。
  16. 根据权利要求15所述的编码方法,其特征在于,所述M个可预测的信息比特包括下面一种或者多种的比特组合:M 1个第一类比特、M 2个第二类比特、M 3个第三类比特,M 4个第四类比特,或者M 5个第五类比特,其中,所述第一类比特为预留比特,所述第二类比特包括:取值保持不变的信息比特,第三类比特取值为时序信息的内容发生变化,且可预测的信息比特,所述第四类比特为不可预测的信息比特,所述第五类比特为在不同的场景下所属的比特类型不同;M1、M2、M3、M4和M5均为正整数,且取值小于或者等于M。
  17. 根据权利要求15或者16所述的编码方法,其特征在于,所述M个可预测的信息比特包括:所述M 1个第一类比特和所述M 2个第二类比特,
    所述将所述M个可预测的信息比特分别映射到所述极性码的K个信息比特对应的子信道中的可靠性低的M个子信道上具体包括:
    将所述M 1个第一类比特映射到M个子信道中的可靠性低的M 1个子信道,其中,所述M个子信道为极性码的K个信息比特对应的子信道中的可靠性低的M个子信道;
    将所述M 2个第二类比特映射到(M-M 1)个子信道中可靠性低的M 2个信息比特。
  18. 根据权利要求15或者16所述的编码方法,其特征在于,所述M个可预测的信息比特包括:所述M 1个第一类比特、所述M 2个第二类比特和所述M 3个第三类比特,则所述将所述M个可预测的信息比特分别映射到所述极性码的K个信息比特对应的子信道中的可靠性低的M个子信道上具体包括:
    将所述M 1个第一类比特映射到M个子信道中的可靠性低的M 1个子信道;
    将所述M 2个第二类比特映射到(M-M 1)个子信道中可靠性低的M 2个信息比特;
    将所述M 3个第三类比特映射到(M-M 1-M 2)个子信道中的可靠性低的M 3个信息比特。
  19. 根据权利要求15或者16所述的编码方法,其特征在于,所述M个可预测的信息比特包括:所述M 5第五类比特,则
    所述将所述M 5个第五类比特映射到M个信息比特中的可靠性低的M个信息比特具体包括:
    将所述M 5个第五类比特映射到下面一种或多种子信道的组合,其中,所述一种或多种子信道的组合包括:
    (M 1+M 5)个第一类比特对应的子信道中的M 5个子信道、(M 2+M 5)个第二类比特对应的子信道中的M 5个子信道、(M 3+M 5)个第三类比特对应的子信道中的M 5个子信道、(M 4+M 5)个第四类比特对应的子信道中的M 5个子信道,或者,M 2个第二类比特对应的M 2个子信道与M 3个第三类比特对应的M 3个子信道之间的M 5个子信道。
  20. 根据权利要求15所述的编码方法,其特征在于,所述payload还包括:J个不可 预测的信息比特;
    将所述J个不可预测的信息比特映射到所述(K-M-D)个子信道中的可靠性低的J个子信道,J<K,且所述J为正整数。
  21. 一种极性码的编码装置,其特征在于,包括:
    处理器,用于确定广播信令的有效载荷payload包括:D个循环冗余校验CRC比特和M个可预测的信息比特;将所述M个可预测的信息比特分别映射到所述极性码的K个信息比特对应的子信道中的可靠性低的M个子信道上,将D个循环冗余校验CRC比特映射到所述K个信息比特中的剩余信息比特对应的子信道中可靠性高的D个子信道,得到映射后的比特,其中,M<K,且D、M与K均为正整数;对所述映射后的比特进行极性码编码,得到编码后的比特。
  22. 根据权利要求21所述的编码装置,其特征在于,所述M个可预测的信息比特包括下面一种或者多种的比特组合:M 1个第一类比特、M 2个第二类比特、M 3个第三类比特,M 4个第四类比特,或者M 5个第五类比特,其中,所述第一类比特为预留比特,所述第二类比特包括:取值保持不变的信息比特,第三类比特取值为时序信息的内容发生变化,且可预测的信息比特,所述第四类比特为不可预测的信息比特,所述第五类比特为在不同的场景下所属的比特类型不同;M1、M2、M3、M4和M5均为正整数,且取值小于或者等于M。
  23. 根据权利要求20或者21所述的编码装置,其特征在于,所述处理器具体用于,当所述M个可预测的信息比特包括:所述M 1个第一类比特和所述M 2个第二类比特,将所述M 1个第一类比特映射到M个子信道中的可靠性低的M 1个子信道,其中,所述M个子信道为极性码的K个信息比特对应的子信道中的可靠性低的M个子信道;将所述M 2个第二类比特映射到(M-M 1)个子信道中可靠性低的M 2个信息比特。
  24. 根据权利要求20或者21所述的编码装置,其特征在于,所述处理器具体用于,当所述M个可预测的信息比特包括:所述M 1个第一类比特、所述M 2个第二类比特和所述M 3个第三类比特,将所述M 1个第一类比特映射到M个子信道中的可靠性低的M 1个子信道;将所述M 2个第二类比特映射到(M-M 1)个子信道中可靠性低的M 2个信息比特;将所述M 3个第三类比特映射到(M-M 1-M 2)个子信道中的可靠性低的M 3个信息比特。
  25. 根据权利要求20或者21所述的编码装置,其特征在于,所述处理器具体用于,当所述M个可预测的信息比特包括:所述M 5第五类比特,将所述M 5个第五类比特映射到下面一种或多种子信道的组合,其中,所述一种或多种子信道的组合包括:
    (M 1+M 5)个第一类比特对应的子信道中的M 5个子信道、(M 2+M 5)个第二类比特对应的子信道中的M 5个子信道、(M 3+M 5)个第三类比特对应的子信道中的M 5个子信道、(M 4+M 5)个第四类比特对应的子信道中的M 5个子信道,或者,M 2个第二类比特对应的M 2个子信道与M 3个第三类比特对应的M 3个子信道之间的M 5个子信道。
  26. 根据权利要求20所述的编码装置,其特征在于,所述处理器还用于,所述payload还包括:J个不可预测的信息比特;将所述J个不可预测的信息比特映射到所述(K-M-D)个子信道中的可靠性低的J个子信道,J<K,且所述J为正整数。
  27. 一种极化码编码装置,其特征在于,包括处理器和存储器,其中,所述存储器中存储一组程序,所述处理器用于调用所述存储器中存储的程序,当所述程序被执行时,使 得所述处理器执行如权利要求15-20中任一项所述的方法。
  28. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求15-20任意一项所述的方法。
  29. 一种极性码的编码方法,其特征在于,包括:
    输入比特序列,其中,所述比特序列包括表征时序的比特,所述表征时序的比特包括:时序同步块索引SSBI;
    将所述比特序列进行交织映射,输出交织后的比特序列,其中,所述SSBI被映射到交织后的比特序列对应的序列集合中,所述序列集合为{2,3,5};
    将所述交织后的比特序列串接d个循环冗余校验CRC比特,获得串接后的比特序列,d为正整数;
    根据分布式-循环冗余校验D-CRC交织图案,对所述串接后的比特序列进行D-CRC交织,输出D-CRC交织后的比特序列;
    将所述D-CRC交织后的比特序列进行极性polar码编码;
    输出polar编码后的比特。
  30. 根据权利要求29所述的编码方法,其特征在于,所述表征时序的比特还包括:半帧指示HFI,所述方法还包括:
    所述HFI被映射到信息比特集合中自然序号最小的bit上,其中,所述信息比特集合是按照Polar信息比特对应的子信道的自然序号从前往后进行排序后的比特集合。
  31. 根据权利要求29所述的编码方法,其特征在于,所述将所述D-CRC交织后的比特序列进行极性polar码编码具体包括:
    所述D-CRC交织后的比特序列中表征时序的比特被映射到Polar子信道除去被d个CRC比特占据的子信道外剩余的子信道的Polar子信道上。
  32. 根据权利要求29所述的编码方法,其特征在于,所述d为24。
  33. 根据权利要求29-32任意一项所述的编码方法,其特征在于,所述D-CRC交织器图案为:
    (0 2 3 5 7 10 11 12 14 15 18 19 21 24 26 30 31 32 1 4 6 8 13 16 20 22 25 27 33 9 17 23 28 34 29 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55)。
  34. 根据权利要求29所述的编码方法,其特征在于,所述将所述比特序列进行交织映射具体为:
    当所述表征时序的比特为所述SFN时,所述SFN的一部分被映射到交织后的比特序列对应的序列集合中的子集,所述子集为{10,30,8,17,18,23,16},或者,所述子集为{6,10,30,8,17,18,23}。
  35. 一种极化码编码装置,其特征在于,包括处理器和存储器,其中,所述存储器中存储一组程序,所述处理器用于调用所述存储器中存储的程序,当所述程序被执行时,使得所述处理器执行如权利要求29-34中任一项所述的方法。
  36. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求29-34任意一项所述的方法。
  37. 一种编码装置,其特征在于,所述装置用于执行权利要求29-34任意一项所述的方法。
PCT/CN2018/106288 2017-09-18 2018-09-18 一种极性码的编码方法和编码装置 WO2019052581A1 (zh)

Priority Applications (13)

Application Number Priority Date Filing Date Title
CA3076271A CA3076271C (en) 2017-09-18 2018-09-18 Method for polar coding and apparatus
RU2020113530A RU2782234C2 (ru) 2017-09-18 2018-09-18 Способ кодирования и устройство кодирования для полярного кода
EP21192840.3A EP3979532B1 (en) 2017-09-18 2018-09-18 Method for polar decoding and apparatus
EP18856598.0A EP3614593B1 (en) 2017-09-18 2018-09-18 Coding method and coding apparatus for polar code
KR1020207011051A KR102325813B1 (ko) 2017-09-18 2018-09-18 폴라 코딩 방법 및 장치
BR112020005224-8A BR112020005224B1 (pt) 2017-09-18 2018-09-18 Método e aparelho para codificação polar e aparelho
EP23205319.9A EP4336759A3 (en) 2017-09-18 2018-09-18 Method for polar coding and apparatus
JP2020515937A JP2020534746A (ja) 2017-09-18 2018-09-18 極性符号化のための方法及び機器
AU2018333350A AU2018333350B9 (en) 2017-09-18 2018-09-18 Coding method and coding apparatus for polar code
US16/506,765 US10693590B2 (en) 2017-09-18 2019-07-09 Method for polar coding and apparatus
US16/908,252 US11303388B2 (en) 2017-09-18 2020-06-22 Method for polar coding and apparatus
US17/716,402 US11843461B2 (en) 2017-09-18 2022-04-08 Method for polar coding and apparatus
US18/512,912 US20240171307A1 (en) 2017-09-18 2023-11-17 Method for polar coding and apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710843554.1 2017-09-18
CN201710843554 2017-09-18
CN201711148239.3A CN109525362A (zh) 2017-09-18 2017-11-17 一种极性码的编码方法和编码装置
CN201711148239.3 2017-11-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/506,765 Continuation US10693590B2 (en) 2017-09-18 2019-07-09 Method for polar coding and apparatus

Publications (1)

Publication Number Publication Date
WO2019052581A1 true WO2019052581A1 (zh) 2019-03-21

Family

ID=65769147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/106288 WO2019052581A1 (zh) 2017-09-18 2018-09-18 一种极性码的编码方法和编码装置

Country Status (9)

Country Link
US (4) US10693590B2 (zh)
EP (3) EP3979532B1 (zh)
JP (2) JP2020534746A (zh)
KR (1) KR102325813B1 (zh)
CN (2) CN109525362A (zh)
AU (1) AU2018333350B9 (zh)
BR (1) BR112020005224B1 (zh)
CA (1) CA3076271C (zh)
WO (1) WO2019052581A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118054824A (zh) 2016-09-28 2024-05-17 交互数字专利控股公司 用于nr的波束形成系统中的有效广播信道
CN110971337B (zh) 2018-09-28 2021-02-23 华为技术有限公司 信道编码方法及装置
CN113824532B (zh) * 2020-06-18 2023-06-16 华为技术有限公司 发送数据帧的方法、接收数据帧的方法及通信装置
CN117155514A (zh) * 2022-05-24 2023-12-01 华为技术有限公司 一种通信方法及通信装置
US12021545B2 (en) * 2022-09-23 2024-06-25 SK Hynix Inc. Data interleaver for burst error correction
WO2024123160A1 (en) * 2022-12-09 2024-06-13 Samsung Electronics Co., Ltd. Method and apparatus for encoding and decoding using crc bit in wireless communication system
CN116847453B (zh) * 2023-09-04 2023-11-14 四川轻化工大学 卫星数据传输及卫星物联网接入时间的管理方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017124941A1 (zh) * 2016-01-20 2017-07-27 华为技术有限公司 传输数据的方法、用户设备和基站

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6611755B1 (en) * 1999-12-19 2003-08-26 Trimble Navigation Ltd. Vehicle tracking, communication and fleet management system
US7860128B2 (en) * 2006-06-28 2010-12-28 Samsung Electronics Co., Ltd. System and method for wireless communication of uncompressed video having a preamble design
JP2009188751A (ja) * 2008-02-06 2009-08-20 Fujitsu Ltd 無線通信システムにおける暗号化及び復号化方法並びに送信装置及び受信装置
CN112202536A (zh) * 2009-10-01 2021-01-08 交互数字专利控股公司 上行链路控制数据传输
DK2556597T3 (en) 2010-04-07 2017-09-25 ERICSSON TELEFON AB L M (publ) PRE-CODE STRUCTURE FOR MIMO CODE
CN102122966B (zh) * 2011-04-15 2012-11-14 北京邮电大学 基于信道极化的交错结构重复码的编码器及其编译码方法
CN104219019B (zh) * 2013-05-31 2021-06-22 华为技术有限公司 编码方法及编码设备
JP6363721B2 (ja) * 2014-02-21 2018-07-25 華為技術有限公司Huawei Technologies Co.,Ltd. ポーラ符号のためのレートマッチング方法および装置
AU2014415500B2 (en) * 2014-12-22 2019-01-17 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Polar code encoding method and encoding apparatus
EP3533144A4 (en) * 2017-01-09 2019-12-25 MediaTek Inc. BROADCAST CHANNEL IMPROVEMENT USING A POLAR CODE
DE102018113351A1 (de) * 2017-06-08 2018-12-13 Samsung Electronics Co., Ltd. Polares Codieren und Decodieren unter Verwendung von vordefinierten Informationen
KR102605328B1 (ko) 2017-06-14 2023-11-24 인터디지탈 패튼 홀딩스, 인크 폴라 코딩된 pdcch 송신을 위한 2-단계 스크램블링
US10778370B2 (en) * 2017-06-26 2020-09-15 Qualcomm Incorporated Communication techniques involving polar codewords with reduced repetition
CN109412747A (zh) * 2017-08-15 2019-03-01 株式会社Ntt都科摩 一种用于极化码的速率匹配交织方法及装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017124941A1 (zh) * 2016-01-20 2017-07-27 华为技术有限公司 传输数据的方法、用户设备和基站

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Polar Code Design for NR-PBCH", 3GPP TSG RAN WG1 MEETING NR#3, R1-1715741, 12 September 2017 (2017-09-12), XP051329456 *
HUAWEI: "Order of PBCH fields", 3GPP TSG RAN WG1 MEETING #91, R1- 1720758, 1 December 2017 (2017-12-01), XP051370209 *
MEDIATEK INC: "PBCH Enhancement with Polar Code", 3GPP TSG RAN WG1 AH NR MEETING, R1-1700169, 20 January 2017 (2017-01-20), XP051207711 *
MEDIATEK: "Way Forward on PBCH Bit Mapping Design", 3GPP TSG RAN WG1 MEETING #91, R1-1721503, 1 December 2017 (2017-12-01), XP051370567 *
QUALCOMM INCORPORATED: "PBCH design using Polar codes", 3GPP TSG-RAN WG1 NR-ADHOC #3, R1-1716448, 12 September 2017 (2017-09-12), XP051330037 *

Also Published As

Publication number Publication date
EP3614593A1 (en) 2020-02-26
RU2020113530A (ru) 2021-10-20
AU2018333350B9 (en) 2021-10-14
KR20200056419A (ko) 2020-05-22
JP7454542B2 (ja) 2024-03-22
JP2020534746A (ja) 2020-11-26
EP3979532A1 (en) 2022-04-06
CN109525362A (zh) 2019-03-26
CA3076271C (en) 2023-01-10
US20220303051A1 (en) 2022-09-22
US11843461B2 (en) 2023-12-12
KR102325813B1 (ko) 2021-11-11
BR112020005224A2 (pt) 2020-09-15
EP4336759A3 (en) 2024-05-29
EP3979532C0 (en) 2023-11-15
US11303388B2 (en) 2022-04-12
EP3979532B1 (en) 2023-11-15
EP3614593B1 (en) 2021-08-25
US20190334654A1 (en) 2019-10-31
CN109889310B (zh) 2020-06-19
US10693590B2 (en) 2020-06-23
EP4336759A2 (en) 2024-03-13
EP3614593A4 (en) 2020-08-26
RU2020113530A3 (zh) 2022-01-24
AU2018333350B2 (en) 2021-09-23
US20240171307A1 (en) 2024-05-23
JP2022031789A (ja) 2022-02-22
US20200389251A1 (en) 2020-12-10
CA3076271A1 (en) 2019-03-21
AU2018333350A1 (en) 2020-04-16
BR112020005224B1 (pt) 2023-05-16
CN109889310A (zh) 2019-06-14

Similar Documents

Publication Publication Date Title
WO2019052581A1 (zh) 一种极性码的编码方法和编码装置
US10966118B2 (en) Channel encoding method and communication device
CN110401456B (zh) 极性码的编码方法和编码装置
WO2016138632A1 (zh) 用于上行数据传输的方法和装置
WO2016082142A1 (zh) 极化码的速率匹配的方法、装置和无线通信设备
WO2017101631A1 (zh) 用于处理极化码的方法和通信设备
US10484137B2 (en) Polar code hybrid automatic repeat request method and apparatus
WO2017124844A1 (zh) 确定极化码传输块大小的方法和通信设备
WO2016082123A1 (zh) 处理数据的方法、网络节点和终端
WO2017133407A1 (zh) 信号传输方法和装置
WO2017193932A1 (zh) 通信方法及其网络设备、用户设备
RU2782234C2 (ru) Способ кодирования и устройство кодирования для полярного кода
CN109600197B (zh) 极性码的编码方法和编码装置
WO2019178736A1 (zh) 控制信息的接收和发送方法、装置及通信系统
WO2022152094A1 (zh) 一种控制信道监测方法、装置及存储介质
WO2016070323A1 (zh) 通信方法、终端设备和基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18856598

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018856598

Country of ref document: EP

Effective date: 20190920

ENP Entry into the national phase

Ref document number: 2020515937

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3076271

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018333350

Country of ref document: AU

Date of ref document: 20180918

Kind code of ref document: A

Ref document number: 20207011051

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020005224

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020005224

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200316