WO2019052420A1 - 电子设备和通信方法 - Google Patents

电子设备和通信方法 Download PDF

Info

Publication number
WO2019052420A1
WO2019052420A1 PCT/CN2018/104835 CN2018104835W WO2019052420A1 WO 2019052420 A1 WO2019052420 A1 WO 2019052420A1 CN 2018104835 W CN2018104835 W CN 2018104835W WO 2019052420 A1 WO2019052420 A1 WO 2019052420A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic device
downlink
antenna elements
transmit
signal
Prior art date
Application number
PCT/CN2018/104835
Other languages
English (en)
French (fr)
Inventor
刘文东
王昭诚
曹建飞
Original Assignee
索尼公司
刘文东
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 刘文东 filed Critical 索尼公司
Priority to US16/636,035 priority Critical patent/US11290159B2/en
Priority to EP18857319.0A priority patent/EP3683974A4/en
Priority to CN201880057868.1A priority patent/CN111052619B/zh
Publication of WO2019052420A1 publication Critical patent/WO2019052420A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering

Definitions

  • the present disclosure generally relates to an electronic device and communication method, and more particularly to an electronic device and communication method for a millimeter wave large-scale multi-antenna system.
  • Massive multiple-input multiple-output (Massive MIMO) technology has attracted wide attention.
  • each channel coefficient tends to be orthogonal, and this property is hereinafter referred to asymptotic orthogonality.
  • the spectral efficiency and energy efficiency of the system can be effectively improved by low-complexity linear signal processing algorithms.
  • conjugate-transpose beamforming can be used to effectively cancel interference from unrelated channels of different user equipment (UE).
  • the asymptotic orthogonality in a large-scale multi-antenna system depends on the complex scattering environment in which the wireless channel is located, in which non-line-of-sight (NLoS) is the main scene and comes from many
  • NoS non-line-of-sight
  • the superposition of the multipath signals of the clusters can also be approximated by the condition that the channel coefficients obey the complex Gaussian distribution, so the channel correlation between different user equipments is very low, which is in the cell communication scenario in the traditional LTE/LTE-A. Has been widely used.
  • the path loss of the non-line-of-sight channel is relatively high, so the line-of-sight (LoS) becomes The main scene in very high frequency band communication such as millimeter wave.
  • LoS line-of-sight
  • new communication scenarios such as aircraft communication scenarios, will be introduced as technology advances, where wireless channels between access points and air vehicles such as drones will be less Obscured by obstacles, it can also be regarded as a communication scene dominated by the line of sight channel.
  • the channel coefficients do not obey the complex Gaussian distribution, and there is a strong correlation between different channels.
  • the electronic device and communication method are particularly suitable for large-scale multi-antenna systems in millimeter wave communication scenarios or aircraft communication scenarios.
  • An aspect of the present disclosure is directed to an electronic device including a processing circuit configured to determine that a signal transmission to at least two user equipments simultaneously and a degree of proximity of a direction of a downlink transmission signal for at least two user equipments is satisfied a predetermined condition; and obtaining the number of activated antenna elements for downlink beamforming determined based on directions of downlink transmit signals for the at least two user equipments.
  • Yet another aspect of the present disclosure is directed to an electronic device including processing circuitry configured to: determine a received quality for each transmit beam for transmit beam training; according to a transmit beam having an optimal receive quality and its neighbors Transmitting a beam direction of the beam to determine the number of activated antenna elements for downlink beamforming transmission to the electronic device; and feeding back the transmission with optimal reception quality to another electronic device that initiates transmission beam training The number of the beam and the adjacent transmit beam and the number.
  • Another aspect of the disclosure relates to an electronic device including processing circuitry configured to: determine a reception quality for each transmit beam used for transmit beam training; for a transmit beam with an optimal receive quality, calculate from a launch An emission angle of a downlink transmission signal transmitted by another electronic device trained by the beam to the electronic device; determining, according to the transmission angle and a beam direction of an adjacent transmission beam of the transmission beam having the optimal reception quality, for the electronic device The number of activated antenna elements performing downlink beamforming transmission; and feeding back the transmission angle, the transmit beam with the best reception quality, and the adjacent transmit beam to the other electronic device that initiates transmit beam training The serial number and the quantity.
  • Yet another aspect of the present disclosure is directed to an electronic device including a processing circuit configured to: transmit an uplink reference signal to another electronic device for calculating a direction of an uplink reference signal; and receive a downlink reference signal, the downlink reference signal Is another electronic device performing downlink beamforming transmission using the number of activated antenna elements for downlink beamforming determined according to the direction of the uplink reference signal; and estimating the downlink channel by the downlink reference signal and The noise power is fed back to the other electronic device.
  • a further aspect of the present disclosure is directed to a communication method, including: determining that signal transmission is simultaneously performed to at least two user equipments and that a degree of proximity of a direction of a downlink transmission signal for the at least two user equipments satisfies a predetermined condition; and acquiring is based on The number of activated antenna elements for downlink beamforming determined for the direction of the downlink transmit signals of at least two user equipments.
  • a further aspect of the present disclosure relates to a communication method comprising: determining a reception quality of each transmit beam for transmit beam training; determining according to a beam direction of a transmit beam having an optimal receive quality and its adjacent transmit beam The number of activated antenna elements for performing downlink beamforming transmission to the electronic device; and feeding back the sequence of the transmit beam and the adjacent transmit beam having the best received quality to another electronic device that initiates transmit beam training And the amount.
  • a further aspect of the present disclosure is directed to a communication method including: determining a reception quality for each transmit beam used for transmit beam training; and calculating another electronic device trained from initiating transmit beam for a transmit beam having an optimal receive quality An emission angle of a downlink transmission signal to the electronic device; determining, according to the transmission angle and a beam direction of an adjacent transmission beam of the transmission beam having the optimal reception quality, a downlink beamforming transmission for the electronic device The number of activated antenna elements; and feedback to the other electronic device that initiates transmit beam training, the transmit angle, the sequence of transmit beams and adjacent transmit beams having the best received quality, and the number.
  • a further aspect of the present disclosure relates to a communication method, including: transmitting an uplink reference signal to another electronic device for calculating a direction of an uplink reference signal; receiving a downlink reference signal, where the downlink reference signal is used by another electronic device Determining the number of activated antenna elements for downlink beamforming determined by the direction of the uplink reference signal for downlink beamforming transmission; and estimating the downlink channel through the downlink reference signal and feeding back to the other electronic device Noise power.
  • Yet another aspect of the present disclosure is also directed to a computer readable storage medium having stored thereon instructions for implementing the aforementioned communication method when loaded and executed by a processor.
  • Yet another aspect of the present disclosure is also directed to an electronic device including a processing circuit configured to: determine that a degree of proximity of at least two object devices satisfies a predetermined condition; and obtain an estimate determined based on the degree of proximity The number of activated antenna elements that transmit beam-formed radio waves.
  • FIG. 1 illustrates a schematic configuration of a communication environment in accordance with an embodiment of the present disclosure
  • FIG. 2A is a schematic diagram showing a direction of a downlink transmission signal from a base station to a user equipment;
  • FIG. 2B specifically shows an asymptotic interference between user equipment of a conventional complex Gaussian channel and a millimeter wave line-of-sight channel as the number of antenna elements increases.
  • Figure 2C shows a schematic diagram of activating some of the antenna elements in all antenna elements while turning off other antenna elements;
  • FIG. 3 schematically illustrates a block diagram of an electronic device on a control device side, according to an embodiment of the present disclosure
  • FIG. 4 illustrates a flow chart of a communication method in accordance with an embodiment of the present disclosure
  • Figure 5 shows a plot of asymptotic orthogonality B(N, ⁇ ) as a function of the number N of activated antenna elements
  • FIGS. 6A-7B illustrate schematic diagrams of communication processes in accordance with various embodiments of the present disclosure
  • FIGS. 8A-8C illustrate structural diagrams of an electronic device in accordance with an embodiment of the present disclosure
  • 9A-9B are a block diagram and a flow chart schematically illustrating an electronic device on a user equipment side according to an embodiment of the present disclosure
  • FIG. 10A-10B schematically illustrate a block diagram and a flowchart of an electronic device on a user equipment side according to another embodiment of the present disclosure
  • FIG. 11A-11B schematically illustrate a block diagram and a flowchart of an electronic device on a user equipment side according to still another embodiment of the present disclosure
  • FIG. 12 is a diagram showing a comparison of the number of resource blocks employed by conventional user scheduling with the number of resource blocks employed in accordance with an embodiment of the present disclosure
  • FIG. 14 is a block diagram of a first example of a schematic configuration of a control device side electronic device, according to an embodiment of the present disclosure
  • FIG. 15 is a block diagram of a second example of a schematic configuration of a control device side electronic device, according to an embodiment of the present disclosure.
  • 16 is a block diagram of an example of a schematic configuration of a smartphone according to an embodiment of the present disclosure.
  • 17 is a block diagram of an example of a schematic configuration of a car navigation device according to an embodiment of the present disclosure.
  • FIG. 1 illustrates a schematic configuration of a communication environment in accordance with an embodiment of the present disclosure.
  • a base station 101 in a cell is equipped with a large-scale multi-antenna system that performs beamforming with conjugate transposition, such as transmit beams 105, 106, and 107, with different user equipments 102, 103, and 104, respectively.
  • Communication As mentioned above, in the case where the non-line-of-sight channel is the main scene, the channel coefficients obey the complex Gaussian distribution, so the channel correlation between different user equipments is low and the interference is small.
  • the channel coefficients do not obey the complex Gaussian distribution, so the channel correlation between different user equipments is high and the interference is large.
  • the interference is more obvious, as in the case of user equipments 102 and 103 in FIG. 1, in the case of downlink transmission using conventional conjugate transposed beamforming based on asymptotic orthogonality. Beams 105 and 106 can cause significant interference between user equipments 102 and 103, thereby greatly reducing system spectral efficiency. Therefore, it is necessary to improve the conventional conjugate transposed beamforming in the case where, for example, the base station 101 and the user equipments 102, 103 perform signal transmission simultaneously, thereby improving the system spectral efficiency.
  • ULA Uniformly-spaced linear array
  • s 1 , s 2 are transmitted symbols
  • n 1 , n 2 are power Additive Gaussian white noise symbol.
  • the downlink average spectral efficiency C can be calculated by:
  • h i can be expressed as:
  • ⁇ i is the direction (emission angle) of the downlink transmission signal of the base station 101 to the user equipments 102 and 103, which is specifically shown in FIG. 2A and can be understood as, for example, the angle between the transmission signal and the plane of the antenna array. Therefore, the asymptotic orthogonality of the above transmission model can be further expressed as:
  • cos ⁇ i - cos ⁇ j reflects the correlation of the channels h i and h j or the proximity of the two user equipments 102, 103.
  • ⁇ 1 ⁇ ⁇ 2 , ⁇ ⁇ 0 cause serious interference between user equipment That is, the more the number of antennas used, the larger the interference, and the average spectral efficiency is also seriously degraded.
  • FIG. 2B specifically shows the asymptotic behavior of the interference between the user equipment of the conventional complex Gaussian channel and the millimeter wave line-of-sight channel as the number of antenna elements increases by the inventor through simulation, wherein the abscissa indicates the antenna element
  • the number, ordinate represents the asymptotic orthogonality between two user equipments.
  • the condition of the complex Gaussian channel is that each channel coefficient follows a standard normal distribution, and the curve in the figure is the average of 1000 simulations.
  • the total number of antenna elements is large, and the M value at the valley point may be smaller than the total number of antenna elements, that is, only the on/active portion is turned on/activated.
  • Antenna array elements and turning off/deactivating other antenna elements can reduce interference and achieve optimal spectral efficiency.
  • digital precoding operations for multiple user equipments can be eliminated and the interference between user equipments can be suppressed to a certain extent by deactivating a certain number of antenna array elements, thereby reducing system complexity and computational overhead. .
  • M may also be equal to the total number of antenna elements, ie all antenna elements are activated and the antenna elements are not turned off.
  • M may also be equal to the total number of antenna elements, ie all antenna elements are activated and the antenna elements are not turned off.
  • a total of 256 antenna elements are assumed, and with M The asymptotic point corresponding to the point of 256 is just zero.
  • 2C shows a schematic diagram of activating all of the antenna elements in all antenna elements while turning off other antenna elements, wherein the white circles represent antenna elements activated for the user equipment, which transmit downlink beams to communicate with the user equipment, while dark colors
  • the circle represents the antenna element that is turned off for the user equipment, which is not used to transmit the downlink beam.
  • the line-of-sight channel is taken as an example, it should be understood that the same applies to some non-line-of-sight channels.
  • the channel generally only considers the superposition of 3 to 5 paths, including the direct path signal, that is, the line-of-sight channel, and the non-line-of-sight channel transmitted from the base station to the user equipment through the reflection of the building.
  • the line-of-sight signal strength is much larger than the non-line-of-sight signal strength, so the beamforming signal direction will point to the direct path direction.
  • the non-line-of-sight channel is the main scene. At this time, the direction of the strongest reflection path of the signal can be considered.
  • the technical solution of the present disclosure can also be extended to a non-communication system involving beamforming, such as a phased array antenna radar system.
  • beamforming such as a phased array antenna radar system.
  • the side lobes of the transmitting beam of the antenna array for the first detecting object reach the second detecting object to generate an echo and affect the first Detection accuracy of positioning, ranging, etc. of the detected object.
  • preliminary positioning of two detecting objects may be performed according to a preliminary scan of the radar to determine the degree of proximity, and if it is determined that the degree of proximity satisfies a predetermined condition, a certain number of antenna elements are turned off/deactivated to A probe object is accurately detected.
  • FIG. 3 illustrates a block diagram of an electronic device 300 such as a base station, a radar tower on a control device side, in accordance with an embodiment of the present disclosure.
  • the electronic device can be located in various control devices or launch devices.
  • the control device referred to herein is, for example, a base station such as an eNB or a gNB of 3GPP communication standard of 3GPP, a remote radio head, a wireless access point, etc.
  • the transmitting device includes, for example, a large-sized vehicle-mounted transmitting device or a fixed transmitting device (for example) , drone management tower).
  • the electronic device 300 on the control device side may include, for example, a communication unit 301, a memory 302, and a processing circuit 303.
  • Processing circuitry 303 of electronic device 300 provides various functions of electronic device 300.
  • the processing circuit 303 of the electronic device 300 may include a proximity degree determining unit 304 and an activation amount acquiring unit 305.
  • the proximity determination unit 304 can be configured to determine that the proximity to the at least two user devices, such as 102, 103, and the proximity of the direction of the downlink transmit signals for the at least two user devices 102, 103 satisfy a predetermined condition.
  • the proximity of the two user equipments as hereinbefore described with reference to FIG. 2A 102,103 ⁇ of cos ⁇ i -cos ⁇ j, where ⁇ i and ⁇ j, respectively, reach the user equipment 102 and downlink 103 transmitted to base station 101 The direction in which the signal is emitted.
  • the processing circuit 303 can set a value of ⁇ corresponding to the direction of the downlink transmission signal of the user equipments 102 and 103 by 5 degrees as a threshold.
  • the direction of the transmitted signal may be the angle between the downlink transmit signal transmitted from the base station 101 to the user equipments 102 and 103 and the plane of the antenna array, or the angle for approximating the angle may be obtained by other means, as described in the following section 4-1. - Section 2.
  • both the base station 101 and the user equipments 102 and 103 can know the beam direction of each transmit beam of the base station during beamforming transmission, the direction of the transmitted signal can also be directly indicated by the beam direction instead of the transmission angle. , to set the threshold in the previous example.
  • the transmit beam adjacent to the transmit beam for the user equipment 102 forms a large interference to the user equipment 102, it is possible to set two adjacent (one on each side) or four (two on each side) The sequence number of the beam is used as a threshold. For example, once the base station uses the transmit beam whose sequence number is less than or equal to the threshold for the other user equipment 103, the proximity degree determining unit 304 determines that the degree of proximity satisfies the predetermined condition.
  • the channel information reported by the user equipment 102 can also be used to reflect the proximity of the direction in which the signal is transmitted.
  • the base station 101 transmits a CSI-RS reference signal for measuring the downlink channel state to the user equipment 102, and then the user equipment 102 provides the measured channel direction information such as a precoding matrix indication PMI, CSI-RS resource indication CRI or beam to the base station 101.
  • Index BI (CRI and BI are used to feedback the base station transmit beam that the user equipment receives the RSRP signal).
  • the proximity degree determining unit 304 determines that the degree of proximity satisfies the predetermined condition.
  • the angle of the transmitted signal and the signal to interference and noise ratio may also be used in combination to indicate the proximity of the direction in which the signal is transmitted.
  • the proximity degree determining unit 304 determines that the degree of proximity satisfies the predetermined condition.
  • predetermined conditions are listed above, but it should be understood that these are merely examples and are not intended to limit the scope of the predetermined conditions.
  • the predetermined condition may include other examples, such as directly locating the locations of the two user equipments and setting a threshold of the distance, such as based on channel measurements of the sidelinks between the two user equipments and setting the channel quality. Threshold.
  • the activation quantity acquisition unit 305 can be configured to acquire the number of activated antenna elements for downlink beamforming determined based on the direction of the downlink transmission signals for the at least two user equipments 102, 103. As described in Section 1.2, by selecting values at the valley points, i.e., only a portion of the antenna elements are activated and other antenna elements are turned off, interference between the user equipments 102, 103 can be reduced and optimal spectral efficiency can be obtained. In certain cases, it is also possible to activate all antenna elements and not turn off the antenna elements. An embodiment of determining the number of activated antenna elements will be described in detail below in Section 4.
  • the electronic device 300 further includes an antenna array configured to directionalally transmit a radio beam to two object devices using the number of antenna elements based on control of the processing circuit 303.
  • the electronic device 300 can be implemented as a radar device for performing radar detection on two object devices, the electronic device 300 further comprising a radar receiver configured to receive radar signals reflected by the two object devices to determine the The positioning of two object devices.
  • the communication unit 301 (transceiver) of the electronic device 300 can be configured to perform communication with the respective user devices 102, 103 under the control of the processing circuit 303.
  • the communication unit 301 can be implemented, for example, as a communication interface component such as an antenna device, a radio frequency circuit, and a partial baseband processing circuit.
  • Communication unit 301 is depicted in dashed lines as it may also be located within processing circuitry 303 or external to electronic device 300.
  • the memory 302 can store information generated by the processing circuit 303, information received from the respective user devices 102, 103 through the communication unit 301, programs, machine codes and data for operation of the electronic device 300, and the serial number of the beam direction described above and the like. Memory 302 is depicted in dashed lines as it may also be located within processing circuitry 303 or external to electronic device 300. Memory 302 can be volatile memory and/or non-volatile memory. For example, memory 302 can include, but is not limited to, random access memory (RAM), dynamic random access memory (DRAM), static random access memory (SRAM), read only memory (ROM), and flash memory.
  • RAM random access memory
  • DRAM dynamic random access memory
  • SRAM static random access memory
  • ROM read only memory
  • the various units described above are exemplary and/or preferred modules for implementing the processes described in this disclosure. These modules may be hardware units (such as a central processing unit, field programmable gate array, digital signal processor or application specific integrated circuit, etc.) and/or software modules (such as computer readable programs).
  • the modules for implementing the various steps described below are not described in detail above. However, as long as there are steps to perform a certain process, there may be corresponding modules or units (implemented by hardware and/or software) for implementing the same process.
  • the technical solutions defined by the steps described below and all combinations of the units corresponding to the steps are included in the disclosure of the present disclosure as long as the technical solutions they constitute are complete and applicable.
  • a device composed of various units may be incorporated as a functional module into a hardware device such as a computer.
  • the computer may of course have other hardware or software components.
  • FIG. 4 illustrates a flow chart of a communication method for controlling an electronic device on a device side, according to an embodiment of the present disclosure.
  • This communication method can be used, for example, for the electronic device 300 as shown in FIG.
  • step S401 it is determined that signal transmission to at least two user equipments, such as 102, 103, and the proximity of the direction of the downlink transmission signals for the at least two user equipments 102, 103 are satisfied. Predetermined conditions.
  • This step can be performed by the processing circuit 303 of the electronic device 300 described in FIG. 3, specifically, by the proximity degree determining unit 304.
  • step S402 the number of activated antenna elements for downlink beamforming determined based on the direction of the downlink transmit signals for the at least two user equipments 102, 103 is obtained.
  • This step can be performed by the processing circuit 303 of the electronic device 300 described in FIG. 3, specifically, by the activation number acquisition unit 305.
  • the processing circuit 303 of the electronic device 300 described in FIG. 3 specifically, by the activation number acquisition unit 305.
  • the valley points i.e., only a portion of the antenna elements are activated and other antenna elements are turned off, interference between the user equipments 102, 103 can be reduced and optimal spectral efficiency can be obtained.
  • the base station and user equipment UE have multiple antenna elements supporting large-scale multi-antenna technology.
  • the use of large-scale multi-antenna technology enables base stations and UEs to utilize spatial domain to support spatial multiplexing, beamforming, and transmit diversity. Spatial multiplexing is typically used when the channel is in good condition. Beamforming can be used to concentrate the transmitted energy in one or more directions when channel conditions are less favorable. In order to better understand the determination of the direction of the transmitted signal, beam scanning in a large-scale multi-antenna system will be described below with reference to FIGS. 1 and 2.
  • the downlink direction from base station 101 to user equipment 102-104 is illustrated in FIG. 1, and the uplink direction from user equipment 102-104 to base station 101 is not shown in accordance with the needs of the present disclosure and for simplicity.
  • the base station 101 includes three downlink transmit beams, and the user equipments 102-104 include a certain number of downlink receive beams (for example, one, but not limited to one, and may be more).
  • the downlink receive beam of the user equipment, the uplink transmit beam of the user equipment, and the uplink receive beam of the base station are not shown. It should be understood, however, that the coverage and number of the uplink receive beam and the downlink transmit beam of the base station 101 may be the same or different according to system requirements and settings, as well as the user equipment.
  • the downlink transmit beam 105 of the three downlink transmit beams of the base station 101 transmits the downlink reference signal CSI-RS1 to the user equipment 102-104 by using the CSI-RS resource 1, and the user equipment 102 passes at least one The downlink receive beam receives the downlink reference signal.
  • the user equipment 103 receives the downlink reference signal through at least one downlink receive beam and the user equipment 104 receives the downlink reference signal through at least one downlink receive beam.
  • the other two transmit beams 106, 107 of the three downlink transmit beams of the base station 101 sequentially transmit the downlink reference signals CSI-RS2, CSI-RS3 to the user equipments 102-104 by using the CSI-RS resources 2, 3.
  • the user equipments 102-104 respectively receive the other two downlink reference signals CSI-RS2 and CSI-RS3 through at least one downlink receiving beam, that is, the downlink receiving beams of the user equipments 102-104 are received on the three transmitting beams from the base station 101. Reference signal.
  • the user equipment 102 measures the received three downlink reference signals CSI-RS1, CSI-RS2, and CSI-RS3 (for example, measures the received signal power (RSRP) of the downlink reference signal), thereby determining the downlink transmit beam of the base station 101.
  • the sequence number of the downlink transmit beam with the best reception quality In the example of FIG. 1, user equipment 102 determines the beam of sequence number 105 as its downlink transmit beam with the best reception quality.
  • the user equipment 103 measures the received three downlink reference signals to determine the sequence number of the downlink transmit beam with the best reception quality among the downlink transmit beams of the base station 101, such as 106.
  • the user equipment 104 measures the received three downlink reference signals to determine the sequence number of the downlink transmit beam with the best reception quality among the downlink transmit beams of the base station 101, such as 107.
  • the user equipments 102-104 may communicate through the communication protocol, such as MAC layer signaling or PHY layer signaling on the physical uplink data channel PUSCH, or physical uplink.
  • the PHY layer signaling on the control channel PUCCH transmits this information to the base station 101, which can also be referred to the description in Section 5 below.
  • the process of uplink beam scanning is similar to the downlink beam scanning, and embodiments of the present disclosure do not describe the uplink beam scanning.
  • the downlink transmission of the next data and/or control signal is performed by using the determined transmit beam of the base station and the strongest transmit and receive beam of the user equipment.
  • the above process of determining the transmit beams of the base station and the user equipment by beam scanning is sometimes referred to as a beam training process.
  • the direction of the downlink transmit signals for these user equipments is represented according to the direction of the transmit beams for these user equipments 102-104.
  • both the base station 101 and the user equipments 102-104 are aware of the sequence numbers of the transmit beams for the respective user equipments 102-104. Because the DFT codebook introduced in Section 6 below is fixed during the base station's use of the beam beam scan to communicate with the user equipment by downlink beamforming, the resulting direction of each transmit beam is fixed. (Beam direction) is relatively fixed, so both the base station 101 and the user equipments 102-104 can know the beam direction of each transmit beam, so the direction ⁇ i of the transmitted signal can be directly represented by the beam direction.
  • the predetermined threshold may be represented by the magnitude relationship between the serial numbers of the beams, and the specific The range may be determined by the degree of proximity between different transmit beams determined by the number of base station codebooks and different codewords, for example ⁇ 1,2. For example, when the magnitude relationship between the sequence numbers of the beams for the different user devices 102, 103 is below a predetermined threshold, the proximity degree determining unit 304 determines that the proximity degree satisfies the predetermined condition.
  • both the base station and the user equipment can know the direction of the transmit signal of the downlink beamforming transmission. Determining the direction of the transmitted signal based on the sequence number of the transmitted beam can quickly determine the direction of the transmitted signal and then determine whether the proximity of the directions of the transmitted signals satisfies a predetermined condition.
  • determining the direction of the transmitted signal according to the sequence number of the transmit beam described in this example requires less additional resources or operations and can be broadly applied to various situations, such as frequency division duplex FDD and time division duplex TDD.
  • determining the direction of the transmitted signal based on the sequence number of the transmitted beam can quickly determine the direction of the transmitted signal.
  • the direction of the transmit signal from the base station to the user equipment may actually deviate from the beam direction of the transmit beam, thereby affecting the accuracy of the determination of the direction of the transmitted signal. Sex.
  • the inventors propose to transmit a signal according to the downlink from the base station 101 to the user equipment 102-104 on the basis of Section 4-1-2.
  • the angle of emission is used to indicate the direction of the downlink transmit signal for these user equipments.
  • the user equipment for example, the user equipment 102, using its interpolation quality for each downlink transmit beam, can estimate the base station signal transmission angle of the location where the user equipment 102 is located by the interpolation method.
  • the reception quality is obtained, for example, by measuring the received signal power (e.g., RSRP) of the downlink reference signal. ⁇ k antenna elements and q k by known beam direction thus obtained number M, according to the formula (7) ⁇ calculated.
  • RSRP received signal power
  • the estimation of the emission angle ⁇ can be made more accurate by averaging the calculation results of the plurality of emission angles obtained from the plurality of q k .
  • a more accurate ⁇ can be estimated by performing linear interpolation by a plurality of transmission angles obtained from a plurality of q k , such as polynomial interpolation, or performing nonlinear interpolation.
  • the user equipment 102-104 can transmit the transmission angle to the base station 101 via, for example, a physical uplink data channel, which can also be referred to the description in Section 5 below.
  • the beam number as a result of beam scanning in Section 4-1-1 is used to determine the direction of the transmitted signal.
  • a simpler approach is proposed that utilizes a channel having reciprocal channel characteristics to determine the direction of the downlink transmit signal directly from the direction of the uplink transmit signal transmitted from the user equipment 102-104 to the base station 101, and There is no need to use the beam number.
  • the uplink transmission signal here may be, for example, an uplink reference signal SRS (Sounding Reference Signal).
  • SRS Sounding Reference Signal
  • the base station 101 performs uplink channel estimation according to the received uplink reference signal SRS, thereby obtaining an arrival angle of the uplink transmission signal transmitted from the user equipment 102-104 to the base station 101, that is, the direction and antenna of the uplink transmission signal.
  • the present example does not utilize the sequence number of the transmit beam for the user equipment determined by the beam scanning process, thus also avoiding the deviation between the direction of the base station to the user equipment's transmitted signal and the beam direction of the transmit beam.
  • the channel reciprocity characteristic is utilized, and the direction of the downlink transmission signal is directly determined according to the direction of the uplink transmission signal, and the direction of the downlink transmission signal can be quickly and accurately determined and then the proximity of the directions of the transmission signals is determined. Whether the predetermined conditions are met.
  • the uplink reference signal is selected as the SRS, but this is only an example and not a limitation of the scope of the present disclosure. It should be understood that other uplink reference signals, such as DM-RS, may also be used to implement channel estimation to determine the direction of the uplink transmit signal.
  • the accuracy of determining the direction of the transmitted signal by this example depends on the channel estimation by the uplink reference signal to determine the accuracy of the direction of the uplink transmitted signal. It is known that there are many methods for determining the angle of arrival of an uplink transmitted signal, such as conventional ESPRIT (estimating signal parameters by means of rotation invariant techniques), MUSIC (matrix based on matrix feature space decomposition), and signal arrival angle estimation method based on compressed sensing. ,and many more.
  • the activation quantity acquisition unit 305 may acquire the downlink transmission signals based on the downlink transmission signals for the at least two user equipments 102, 103, in the case where the direction of the downlink transmission signal is determined and then the degree of proximity of the directions of the transmission signals is determined to satisfy the predetermined condition.
  • the number of activated antenna elements for downstream beamforming in a large-scale multi-antenna system determined by direction. This will be described in detail below.
  • the activation quantity acquisition unit 305 determines the number of activated antenna elements for downlink beamforming based on the direction of the downlink transmission signals for the at least two user equipments 102, 103.
  • b i is the downlink beamforming vector for the ith user equipment in the case of activating N antennas, as follows:
  • 0 1 ⁇ (MN) is a zero vector of 1 ⁇ (M-N) dimension, indicating that the vector element whose index is N ⁇ m ⁇ M-1 takes zero.
  • A(N, ⁇ ) 2 represents the interference between the user equipments 102, 103, Represents the noise power after beam shaping. If you want to maximize the average spectral efficiency C, you need to make the denominator The smallest. Therefore, as in the following equation (10), the denominator is made by selecting the number N opt of the optimal antenna elements The smallest, that is, the average spectral efficiency C is maximized.
  • the noise power is negligible, so the interference problem between user equipments can be mainly considered.
  • the above equation (10) can be approximated as a suboptimal solution, and the interference A(N, ⁇ ) 2 between the user equipments is minimized by selecting N sub-opt , thereby obtaining the following formula:
  • the N sub-opt candidate set is obtained as follows:
  • the final N sub-opt and N opt can be obtained from the following candidate sets:
  • Example 1 of Section 4-2 the complexity of N opt is O(M) by the conventional poor search method. It can be seen that as the number M of antenna elements increases, the complexity is very high, which is for the processing circuit 303 or The burden of the activation quantity acquisition unit 305 is very large and may cause the calculation time to be improperly extended, which is disadvantageous for the improvement of the efficiency of the communication system.
  • the number N n -opt of the activated antenna elements that make B(N, ⁇ ) less than the set threshold ⁇ searched for the first time can be directly used. It is used for downlink beamforming instead of selecting N sub-opt which minimizes B(N, ⁇ ) from the final set obtained by multiple searches. This is a way to reduce the complexity, but it may not be able to get N sub-opt which minimizes B(N, ⁇ ).
  • Figure 5 shows a plot of asymptotic orthogonality B(N, ⁇ ) as a function of the number N of active antenna elements.
  • the inventors propose to determine the number of activated antenna elements for downlink beamforming by periodically searching from the total number M of antenna elements N sub-opt . For example, when the first search to make B (N, ⁇ ) is less than the set threshold value ⁇ is activated first number of antenna elements N sub-opt, not from the first number N sub-opt Continuing to successively search for the number of activated antenna elements that cause B(N, ⁇ ) to be less than the threshold ⁇ , but obtain a new value of N by subtracting the first number N sub-opt from the period, at which N Searching near the value to obtain a second number N sub-opt of the activated antenna elements that cause B(N, ⁇ ) to be less than the threshold ⁇ , and so on, until all of the found B(N, ⁇ ) is less than the threshold
  • the number of activated antenna elements of ⁇ N sub-opt as the above set.
  • the N sub-opt candidate set is a quasi-periodic distribution, and the search complexity is For adjacent user equipments 102, 103, ⁇ is small and the search complexity is greatly reduced.
  • the period T is approximately
  • the period T of the search is determined according to the direction of the downlink transmission signals of the two user equipments 102, 103 associated with ⁇ such that the closer the direction of the transmission signal is, the larger the period for searching. For example, for the spacing D of the antenna elements, the more general expression of the period T is
  • the predetermined threshold ⁇ can be determined based on empirical values, or can be determined by the simulation results of FIG. The determination of different predetermined thresholds ⁇ will result in a different number of candidate values for N sub-opt within the set.
  • the number of activated antenna elements is calculated in real time. Although we have derived the method of reducing complexity through simulation, it still generates real-time computing resources and time overhead.
  • the beamforming codebook for example, the DFT codebook is fixed, whereby the pointing directions (beam directions) of the respective transmitting beams generated by the base station are relatively fixed, so that both the base station 101 and the user equipments 102-104 can know The beam direction of each transmit beam.
  • the correspondence between the beam direction and the number of activated antenna elements can be calculated one by one by using the calculation algorithms in the determination example 1 and the determination example 2 directly. .
  • the directions of all the downlink transmission beams are previously stored in association with the corresponding number of activated antenna elements calculated according to the direction of all the downlink transmission beams, for example, stored in a table form, Used to shape the downstream beam for the user equipment.
  • both the base station 101 and the user equipments 102-104 are aware of the sequence numbers of the transmit beams for the respective user equipments 102-104.
  • the number of antenna elements that need to be activated for the user equipment can be determined directly by searching a pre-stored table. It can thus be seen that in the case where the direction of the downlink transmission signal can be represented by the beam direction, this example avoids time-consuming real-time calculations by a prior static configuration, thereby further improving the efficiency of determining the number of activated antenna elements.
  • the activation quantity acquisition unit 305 needs to determine the activated for downlink beamforming based on the direction of the downlink transmission signals for the at least two user equipments 102, 103.
  • the number of antenna elements may be determined in the user equipment, and then the activation quantity acquisition unit 305 obtains the quantity by, for example, a physical uplink data channel, which will be hereinafter 5- Details are described in sections 3 and 5-4.
  • 6A-6B and 7A-7B are schematic diagrams of communication processes of an embodiment of the present disclosure for a more detailed understanding of the implementation of the above-described embodiments.
  • 6A is a schematic diagram of a downlink communication procedure, which may be applied to TDD downlink communication or FDD downlink communication between a base station 101 and user equipments 102-104, where TDD and FDD are merely examples, and are not limiting, in accordance with an embodiment of the present disclosure. This disclosure.
  • S601 to S604 correspond to step S401 in FIG. 4 for determining the direction of simultaneous transmission of signals to at least two user equipments such as 102, 103 and for downlink transmission signals of the at least two user equipments 102, 103 The proximity of the meeting satisfies the predetermined condition.
  • step S601 based on the present example, the code contains L basis of DFT codeword c l, base station 101 provides the L downlink transmit beams for beam training.
  • step S602 for each downlink transmit beam, the user equipment 102 calculates its reception quality Q l , which contains the quantized value of the noise power level, and selects the best reception quality. Beam number l o .
  • the noise power level may be in the form of a reference signal received power RSRP, and the base station 101 receives the feedback RSRP value, which may approximate the noise level of the user equipment.
  • the noise power level may also be in the form of a signal to interference and noise ratio SINR obtained by the user equipment through channel estimation.
  • step S603 the user equipment 102 feeds back the beam training information to the base station 101, including the best beam number l o , and optionally the corresponding reception quality. , the quantized value of the noise power level.
  • the user equipment 103 feeds back the beam training information to the base station, including the best beam number l i , and optionally also the quantized value corresponding to the received quality Q li , the noise power level.
  • step S604 the base station 101 determines that signal transmission is simultaneously performed to at least two user equipments such as 102, 103 and the proximity of the direction of the downlink transmit beam for the at least two user equipments 102, 103 satisfies a predetermined condition, such as As described in Sections 4-1-2 and 2, they are not described here.
  • Steps S605-S606 correspond to step S402 in FIG. 4 for determining the number of activated antenna elements for downlink beamforming based on the direction of the downlink transmit beams for the at least two user equipments 102, 103. .
  • step S605 the base station 101 calculates an antenna array for activation of the user equipment 102, 103 based on the information transmitted (feedback) from the user equipments 102, 103, including at least the best beam number l o and the adjacent beam number l i .
  • the number of elements N sub-opt are the number of elements.
  • the base station 101 calculates the activated antenna element of the user equipment 102, 103 based on the information transmitted (feedback) from the user equipment, including the optimal beam number l o and the adjacent beam number l i and the quantized value of the noise power level.
  • the number of N opt is the number of N opt .
  • the number of activated antenna elements calculated for each user equipment 102, 103 is the same.
  • the number of activated antenna elements calculated for each user equipment 102, 103 may be different.
  • the average spectral efficiency can be optimized by selecting the number of one of the active antenna elements to maximize the average spectral efficiency of the downlink beamforming transmission.
  • the noise power may be measured once when the user equipment initially accesses the base station, and then the measured noise power is used to calculate the number of activated antenna elements, instead of Feedback noise power level.
  • the noise power level is calculated again only if the channel state changes or the downlink transmit beams for these user equipments need to be switched, so that computational and transmission resources can be saved.
  • step S606 the base station 101 activates the determined number of antenna elements for downlink beamforming. Further details of this step will be described in Section 6 in conjunction with an embodiment of the novel codebook of the present disclosure.
  • the active antenna elements are continuously selected among all antenna elements.
  • the first and last antenna elements in all antenna elements are also considered to be continuous with each other.
  • the direction of the downlink transmission signal for these user equipments is indicated according to the sequence number of the downlink transmission beams from the base station 101 to the user equipments 102-104, and various scenarios can be quickly and widely applied. And thus improve the simplicity and applicability of the number of activated antenna elements.
  • 6B is a schematic diagram of a downlink communication procedure, which may be applied to TDD downlink communication or FDD downlink communication between a base station 101 and user equipments 102-104, where TDD and FDD are merely examples, and are not limiting, in accordance with an embodiment of the present disclosure.
  • TDD and FDD are merely examples, and are not limiting, in accordance with an embodiment of the present disclosure.
  • This disclosure The differences from the first example will be mainly described below, and the same points will not be described again and can be understood with reference to the first example.
  • step S602' is added.
  • the user equipment for example, the user equipment 102, by using its reception quality for each downlink transmit beam, can estimate the transmission of the location of the user equipment 102 by the interpolation method. angle.
  • step S603 the user equipment 102 feeds back the beam training information to the base station 101, except that the best beam number l o is included , and optionally the corresponding reception quality.
  • an emission angle for the user equipment 102 is also included.
  • the user equipment 103 feeds back the beam training information to the base station, and includes the best beam number l i , and optionally the corresponding received quality Q li , the quantized value of the noise power level, and the user equipment.
  • the launch angle of 103 is also included.
  • step S604 the base station 101 determines that signal transmission is simultaneously performed to at least two user equipments such as 102, 103 and that the degree of proximity of the downlink transmission angles for the at least two user equipments 102, 103 satisfies a predetermined condition, as in the fourth These are described in Sections 1-3 and 2, and are not described here.
  • step S605 the base station 101 calculates the number N sub-opt or N opt of the activated antenna elements of the user equipment 102, 103 based on the information transmitted (feedback) from the user equipment, including at least the transmission angle.
  • the direction of the downlink transmit signal for these user equipments is expressed in terms of the transmission angle of the downlink transmit signal from the base station 101 to the user equipment 102-104, and the determination of the direction of the transmitted signal can be improved.
  • the accuracy and therefore the accuracy of the number of activated antenna elements is determined.
  • 6C is a schematic diagram of a downlink communication procedure, which may be applied to TDD downlink communication or FDD downlink communication between a base station 101 and user equipments 102-104, where TDD and FDD are merely examples, and are not limiting, in accordance with an embodiment of the present disclosure. This disclosure.
  • This example is described by taking the FDD downlink communication process as an example, but it should be understood that the descriptions are equally applicable to the TDD downlink communication process.
  • This example is a variation of the first example, the main change being that it is determined that the number of activated antenna elements (step S603 in this example) is performed on the side of the user equipment.
  • Step S605 corresponds to step S401 in FIG. 4 for determining the simultaneous transmission of signals to at least two user equipments such as 102, 103 and for the proximity of the direction of the downlink transmission signals of the at least two user equipments 102, 103. The degree meets the predetermined conditions.
  • Step S603 corresponds to step S402 in FIG.
  • step S601 based on the present example, the code contains L basis of DFT codeword c l, base station 101 provides the L downlink transmit beams for beam training.
  • step S602 for each downlink transmit beam, the user equipment 102 calculates its reception quality Q l , which contains the quantized value of the noise power level, and selects the best reception quality. Beam number l o .
  • step S603 the user equipment 102 calculates the number of antenna elements N opt or N sub-opt for activation of its neighboring beams according to the beam direction representing the direction of the downlink transmission signal.
  • the user equipment 102 to the base station 101 the beam training feedback information includes the optimum beam number and optional mass l o , the adjacent beam number l i and the number of activated antenna elements N opt or N sub-opt .
  • Neighboring beams refer to beams that are close to the beam with the best reception quality. These beams form a large interference to the user equipment, and it is necessary to perform beamforming by controlling the number of activated antenna elements to eliminate interference.
  • the user equipment can report adjacent two adjacent (one on each side) or four (two on each side) adjacent beams, and the specific number can be agreed with the base station, and the adjacent beam can also be referred to Threshold setting in Section 4-1-2.
  • step S605 the base station 101 determines that the neighboring user equipment 103 has selected the neighboring beam l i .
  • the base station 101 determines that the signal transmission to the at least two user equipments, such as 102, 103, and the proximity of the direction of the downlink transmit beams for the at least two user equipments 102, 103 meet predetermined conditions, such as 4-1 - Section 2 and Section 2 are not repeated here.
  • step S606 the base station 101 activates the determined number N opt or N sub-opt antenna elements for downlink beamforming.
  • 6D is a schematic diagram of a downlink communication procedure that may be applied to TDD downlink communication or FDD downlink communication between base station 101 and user equipment 102-104, in accordance with an embodiment of the present disclosure.
  • the differences from the third example will be mainly described below, and the same points will not be described again and can be understood with reference to the third example.
  • This example is also a variant of the second example, the main change being that the number of activated antenna elements (step S603 of this example) is determined on the side of the user equipment.
  • step S602' is added.
  • the user equipment for example, the user equipment 102, by using its reception quality for each downlink transmit beam, can estimate the transmission of the location of the user equipment 102 by the interpolation method. angle.
  • the user equipment 102 calculates the number of active antenna elements N opt or N sub-opt for its neighboring beams based on the transmission angle representing the direction of the downlink transmission signal and the beam direction of the adjacent beam 1 i .
  • each user equipment such as user equipment 102
  • each user equipment only calculates its own transmission angle and does not know the transmission angle of the adjacent user equipment, such as user equipment 103. Therefore, the user equipment uses its own transmission angle and adjacent beam direction, and cannot
  • the number of antenna elements activated is calculated using the emission angles of two adjacent user equipments like a base station. It can be seen from this that the accuracy of the fourth example is lower than that of the second example.
  • FIG. 7A is a schematic diagram of a downlink communication procedure, which may be applied to communication with a reciprocal channel characteristic between a base station 101 and user equipments 102-104, such as TDD downlink communication, where TDD is an example and not a limitation, in accordance with an embodiment of the present disclosure.
  • TDD is an example and not a limitation
  • step S701 the user equipment 102 transmits an uplink reference signal, such as an SRS signal, to the base station 101 for uplink channel estimation.
  • user equipment 103 transmits an uplink reference signal, such as an SRS signal, to base station 101 for uplink channel estimation.
  • step S702 the base station 101 estimates the uplink channel based on the uplink reference signal and obtains the direction of the uplink transmission signal transmitted by the user equipment 102 to the base station 101, that is, the signal arrival angle. Similarly, the base station 101 obtains the direction of the uplink transmission signal transmitted by the user equipment 103 to the base station 101. The base station 101 then directly determines the transmission angle of the downlink transmission signal according to the angle of arrival as the direction of the downlink transmission signal, and determines that the proximity of the direction of the downlink transmission beam for the at least two user equipments 102, 103 satisfies the predetermined condition.
  • the base station 101 estimates the uplink channel based on the uplink reference signal and obtains the direction of the uplink transmission signal transmitted by the user equipment 102 to the base station 101, that is, the signal arrival angle.
  • the base station 101 obtains the direction of the uplink transmission signal transmitted by the user equipment 103 to the base station 101.
  • the base station 101 then directly determines the transmission angle of the downlink transmission signal according
  • the base station 101 estimates the uplink channel based on the uplink reference signal and obtains the uplink noise power.
  • step S703 the base station 101 can calculate the number N sub-opt of activated antenna elements based on the direction of the transmission signal for the user equipment thus obtained.
  • the base station 101 can calculate the number N opt of activated antenna elements based on the direction and noise power of the transmission signal for the user equipment thus obtained. Since the noise power of the downlink communication may be different from the noise power of the uplink communication, the number N opt may not be optimal.
  • step S704 the base station 101 activates the determined number of antenna elements for beamforming for downlink data transmission.
  • the direction of the downlink transmit signal for these user equipments is indicated in terms of the direction of the uplink transmit signal from the user equipment 102, 103 to the base station 101, and the downlink transmit signal can be determined quickly and accurately. The direction and therefore the efficiency of the number of activated antenna elements is determined.
  • FIG. 7B is a schematic diagram of a downlink communication procedure, which may also be applicable to communication with reciprocal channel characteristics between base station 101 and user equipment 102-104, in accordance with an embodiment of the present disclosure.
  • the differences from the fifth example will be mainly described below, and the same points will not be described again and can be understood with reference to the fifth example.
  • steps S705 to S708 are added so that the base station 101 calculates the optimal number of activations N opt .
  • step S705 when the base station 101 transmits a downlink reference signal such as a CSI-RS in step S704, the user equipments 102, 103 estimate the downlink channel, thereby obtaining downlink channel state information and its noise power quantization value.
  • a downlink reference signal such as a CSI-RS
  • step S706 the user equipment 102, 103 transmits (feedback) a more accurate noise power quantization value to the base station 101 and possibly other downlink channel state information.
  • step S707 the base station 101 calculates an optimal number N opt of activated antenna elements based on the noise power quantization values transmitted by the user equipments 102, 103.
  • step S708 the base station 101 activates the determined number N opt of the antenna elements for downlink beamforming.
  • step S606 the base station 101 activates the determined number of antenna elements for downlink beamforming. This embodiment will be described in connection with the inventor's innovative design.
  • beamforming is performed by activating a determined number of antenna elements by designing a new codebook to facilitate implementation of an existing transmission architecture.
  • the codebook based beamforming is to pre-set a beamforming codebook at the receiving end and the transmitting end, the codebook comprising a plurality of beamforming matrices.
  • the receiving end first determines, according to the beam scanning process, the best received transmit beam of the multiple transmit beams at the transmitting end, and then feeds back the indication information of the transmit beam, such as the sequence number and the resource, to the transmitting end.
  • the transmitting end selects an analog precoding matrix corresponding to the transmit beam to perform beamforming according to the indication information.
  • each transmit beam of the base station 101 to the user equipment 102-104 may be generated by a DFT (Discrete Fourier Transform) vector, also referred to as a codeword, and the set of these DFT vectors is referred to as a DFT codebook.
  • DFT Discrete Fourier Transform
  • the uplink receive beam on the base station side and the transmit/receive beam on the user equipment side can also be generated in a similar manner.
  • the equivalent channel of the base station 101 to the user equipment can be represented as a vector H of n t ⁇ 1.
  • the DFT vector u can be expressed as:
  • the length of the DFT vector u is n t
  • C represents a parameter for adjusting the width of the beam and the shaping gain
  • T represents the transpose operator
  • Multiplying the equivalent channel H of the base station to the user equipment by the DFT vector u may result in a transmit beam of the base station (e.g., one of the downlink transmit beams 105, 106, 107 shown in Figure 1).
  • the parameter C for adjusting the width and shaping gain of the beam in equation (14) can be represented by the product of two parameters O 2 , N 2 , by separately adjusting the two parameters O 2 , N 2 , the beam width and shaping gain can be adjusted.
  • the conventional DFT codebook is based on a DFT codebook in which each codeword is a DFT vector for downlink beamforming and channel matching
  • the codeword in the conventional DFT codebook does not contain zero elements, and therefore each antenna element is required.
  • the connected phase shifters are rotated by a certain phase and it is not possible to control whether the antenna elements are activated.
  • the present disclosure proposes a novel codebook for determining beamforming for a determined number of antenna elements based on the determined number of activated antenna elements and a fully activated antenna beamformed codebook Codebook.
  • the new codebook consists of two levels.
  • the second layer is an activation indicator codebook or matrix whose structure is:
  • N opt is the optimal number of active antenna elements calculated for the interfering user equipment 102, 103
  • the activation indication codebook is used to indicate, for example, that the user equipment 102, 103
  • the phase shifter connected to the Nth opt ⁇ m ⁇ M-1 antenna elements is turned off.
  • the resulting beamformed codeword is obtained by multiplying the first layer of DFT codewords by the second layer of activation indicator matrix, as follows:
  • Beamforming is performed by using the new codebook, because different numbers of antenna elements can be activated for different user equipments, so beamforming of partially activated antenna elements can provide higher degree of implementation freedom.
  • each RF link is connected to all antenna elements.
  • each radio frequency link connects, for example, a part of antenna elements, that is, each antenna element is connected to one radio frequency link.
  • FIG. 8A illustrates an example of a fully-connected structure of an electronic device in accordance with an embodiment of the present disclosure.
  • the electronic device further includes: a radio frequency link unit 801, each radio frequency link unit passes the data stream to the phase shifter 802; a phase shifter 802, each phase shifter is configured to beamform a signal of the received data stream; a switch 803 is connected between each phase shifter 802 and each antenna array element 805, based on the processing circuit a control signal of 303, each switch 803 for controlling activation or deactivation of an antenna element corresponding to the switch; and an antenna array, each activated antenna element 805 in the antenna array for shaping the beam Signal transmission.
  • the electronic device can also include a combiner 804 for merging signals from the various RF link units to corresponding antenna elements 805.
  • each RF link unit 801 is coupled to all of the antenna elements, respectively. Therefore, for the structure of FIG. 8A, assuming that there are K RF link units 801 and M antenna elements 805 corresponding to K user equipments, a total of K x M phase shifters are required. Beamforming by phase shifter 802 can adjust the phase of the signal of the received data stream based, for example, on the DFT codeword from processing circuit 303 corresponding to the downlink transmit beam.
  • a switch 803 connected between each phase shifter 802 and the corresponding antenna element 805 is provided, and these switches can be applied to the RF chain.
  • switches Various types of switches (such as switching diodes).
  • the switch can correspond to the phase shifter, and since K ⁇ M phase shifters are provided in total, K ⁇ M switches are correspondingly provided.
  • Switch 805 can control whether the signal of the data stream transmitted by the radio frequency link unit can be transmitted by the corresponding antenna element. For example, when the first switch 803 is closed, the signal of the data stream transmitted by the first RF link unit 801 can be transmitted to the corresponding first after beamforming via the corresponding first phase shifter 802.
  • the antenna elements 805 are transmitted by the antenna element 805, and the antenna element 805 is activated for the first RF link unit 801.
  • the first switch 803 When the first switch 803 is turned off, the signal of the data stream transmitted by the first RF link unit 801 cannot be transmitted to the corresponding first antenna array after beamforming via the first phase shifter 802. Element 805, at which point the first antenna element 805 is deactivated for the first RF link unit 801.
  • the operating principles of other switches are similar.
  • each switch can be used to control activation or deactivation of an antenna element corresponding to the switch.
  • the activated antenna element can transmit a corresponding beamformed signal; the deactivated antenna element does not transmit the corresponding beamformed signal.
  • the control of activation or deactivation of the antenna element 805 by the switch 803 for the switch may be based on a control signal from the processing circuit 303.
  • the processing circuit 303 provides the control signal based on the determined number of activated antenna elements, which may specify activation of N antenna elements (N is less than or equal to M), such as the activation indicator matrix described in Section 6.2, such as The interference between beamforming transmissions for different user equipments is reduced and spectral efficiency is improved as previously described.
  • N switches can be closed for the corresponding RF link unit 801 and the remaining (MN) switches are turned off such that the corresponding activated antenna elements are N consecutive antennas.
  • Array element In other examples, the control signal may also specify which N consecutive antenna elements are activated.
  • FIG. 8A shows the switch 803 in a position further away from the RF link unit 801 with respect to the phase shifter 802, it will be appreciated that in an alternative example, the switch 803 may also be located in the phase shifter 802 and the RF link unit 801. between.
  • An advantage of such a configuration is that since the switch 803 and the phase shifter 802 correspond one by one, it is possible to allow different numbers of antenna elements to be activated for different RF link units, thereby enabling different numbers of activated antennas to be used for different user equipments.
  • Array element This is beneficial when the noise power levels of the two user equipments that interfere with each other are different or the number of user equipments K > 2, since the number N of different activated antenna elements may be obtained for different user equipments.
  • the number of antenna elements that may be activated for the user equipment 1 and the user equipment 3 is N1.
  • the optimal number of active antenna elements may be N2, and N1 is not equal to N2.
  • N1 switches of the first group M switches can be closed, and for the second radio frequency link unit corresponding to the user equipment 2.
  • 801 can close N2 switches of the second group of M switches, and the N1 switches and N2 switches are independent of each other.
  • the switch 803 and the phase shifter 802 correspond one by one.
  • the switches may also directly correspond to the antenna elements one by one, that is, there are a total of M switches.
  • FIG. 8B illustrates a preferred example of a fully-connected structure of an electronic device in which switch 803 is located before antenna element 805 and after combiner 804, in accordance with an embodiment of the present disclosure.
  • the number of visible switches is M, which is significantly less than the number of switches K x M in the example of Figure 8A. This preferred example therefore greatly reduces the cost of the fully connected structure.
  • the first switch 803 when the first switch 803 is closed, signals on all radio frequency links coupled to the corresponding first antenna element 805 can be transmitted by the antenna element 805; When the switch is closed, signals on all RF links coupled to the corresponding first antenna element 805 cannot be transmitted by the antenna element 805.
  • the operation of other switches is similar.
  • the closing or opening of the switch affects all of the radio link units corresponding to all user equipment, a different number of activated antenna elements cannot be used for each user equipment, but only a single The number of activated antenna elements. For example, for two user equipments that interfere with each other with different noise power levels or the number of user equipments K>2, the number of active antenna elements can be determined such that the average spectral efficiency for these user equipments is optimal.
  • the switch 803 is not used to control the activation and deactivation of the antenna element 805, but the signal of the received data stream can be beamformed by the phase shifter based on the beamformed new codebook.
  • the phase shifter in a variant, a new phase shifter that can take zero is used, in which the processing circuit 303 selects an activation indicator matrix based on the determined number of activated antenna elements, while selecting and corresponding The DFT codeword corresponding to the downlink transmit beam is multiplied by the DFT codeword to control the phase of the new phase shifter.
  • the amplitude of the amplifier can be set to zero using a conventional phase shifter combined with an amplifier, in which the processing circuit 303 selects an activation indicator matrix based on the determined number of activated antenna elements, while selecting The DFT codeword corresponding to the corresponding downlink transmit beam is multiplied by the DFT codeword and the active indication matrix for controlling the amplitude and phase of the conventional phase shifter combined with the amplifier.
  • Other structures are the same as the foregoing examples in this section and will not be described again.
  • An advantage of this alternative example is that it allows the use of a conventional fully connected structure without a switch.
  • FIG. 8C illustrates an example of a sub-connected structure of an electronic device in accordance with an embodiment of the present disclosure. Similar to the structure of FIG. 8A, in addition to the communication unit 301, the memory 302, and the processing circuit 303, which are generally shown in the block diagram of FIG.
  • the electronic device further includes: a radio frequency link unit 801, each of which transmits data streams Passed to phase shifter 802; phase shifter 802, each phase shifter is used for beamforming the signal of the received data stream; switch 803 is connected to each phase shifter 802 and each antenna array element 805 Each switch 803 is configured to control activation or deactivation of an antenna element corresponding to the switch based on a control signal of the processing circuit 303; and an antenna array, each of the activated antenna elements 805 in the antenna array The signal after shaping the beam is emitted.
  • the electronic device can also include a combiner 804 for incorporating signals from the various RF link units into corresponding switches 803. In other examples, if the number of phase shifters and antenna elements are the same, the electronic device may also not include a combiner.
  • each radio frequency link unit 801 is connected, for example, to M/K antenna elements, that is, each antenna element 805 is connected to one radio frequency link unit 801. Therefore, for the structure of FIG. 8C, assuming that there are K RF link units 801 and M antenna elements 805 corresponding to K user equipments, a total of M phase shifters are required.
  • the switch 803 can correspond to the phase shifter 802. Since M phase shifters are provided in total, M switches are correspondingly provided.
  • the switch 805 can control whether the signal of the data stream transmitted by the radio frequency link unit 801 can be transmitted by the corresponding antenna element. Similarly, control of activation or deactivation of switch 803 for antenna element 805 corresponding to the switch may be based on control signals from processing circuit 303.
  • FIG. 8C shows switch 803 in a position closer to antenna unit 805 relative to phase shifter 802, it will be appreciated that switch 803 may also be located between phase shifter 802 and radio frequency link unit 801 in an alternative example. Regardless of the position of the switch 803, the sub-connected structure of FIG. 8C can achieve the advantage that since the switch 803 can always correspond to the phase shifter 802 and thus to the radio frequency link unit 801, different RF link units can be allowed. Different numbers of antenna elements are activated to enable different numbers of activated antenna elements for different user equipment.
  • the switch 803 is not used to control the activation and deactivation of the antenna elements, and the signal of the received data stream can be beamformed by the phase shifter based on the beamformed new codebook, This is similar to the description in Section 7-1 and will not be described again.
  • An advantage of this alternative example is that it allows the use of conventional sub-connected structures without switches.
  • FIG. 9A illustrates a block diagram of an electronic device 9000, such as a smart phone, on the user device side, in accordance with an embodiment of the present disclosure.
  • the electronic device 9000 may include, for example, a communication unit 9001, a memory 9002, and a processing circuit 9003.
  • Processing circuitry 9003 of electronic device 9000 provides various functions of electronic device 9000.
  • the processing circuit 9003 of the electronic device 9000 may include a beam determining unit 9004, an antenna number determining unit 9005, and a feedback unit 9006.
  • the beam determining unit 9004 can determine the reception quality for each of the transmit beams used for transmit beam training, as described in step S602 of Section 5-3.
  • the antenna number determining unit 9005 may determine the number of activated antenna elements for performing downlink beamforming transmission to the electronic device 9000 according to the beam direction of the transmitting beam having the optimal receiving quality and its adjacent transmitting beam, such as Step S603 is described in Section 5-3.
  • the feedback unit 9006 may feed back the serial number of the beam with the best reception quality and the adjacent beam to the other electronic device that initiates the beam training, for example, the electronic device 300 described in Section 2, as shown in Figure 5-3. Step S604 is described in the section.
  • the communication unit 9001 of the electronic device 9000 can be configured to perform communication with the aforementioned electronic device 300 under the control of the processing circuit 9003.
  • Communication unit 9001 is depicted in dashed lines as it may also be located within processing circuitry 9003 or external to electronic device 9000.
  • the memory 9002 can store information generated by the processing circuit 9003, information received from the electronic device 300 through the communication unit 9001, programs and data for operation of the electronic device 9000, and resource allocation parameters. Memory 9002 is depicted in dashed lines as it may also be located within processing circuitry 9003 or external to memory 9002.
  • the memory 9002 can be a volatile memory and/or a non-volatile memory.
  • memory 9002 can include, but is not limited to, random access memory (RAM), dynamic random access memory (DRAM), static random access memory (SRAM), read only memory (ROM), and flash memory. Other undescribed content can be understood in Section 2 and will not be described here.
  • FIG. 9B shows a flowchart of a communication method for an electronic device on the user equipment side of the present disclosure.
  • This communication method can be used, for example, for the electronic device 9000 as shown in FIG. 9A.
  • step S9007 the reception quality of each of the transmission beams for transmission beam training is determined as described in step S602 of Section 5-3.
  • step S9008 the number of activated antenna elements for performing downlink beamforming transmission to the electronic device is determined according to the beam direction of the transmit beam having the optimal reception quality and its adjacent transmit beam, as in the fifth - Step S603 of Section 3.
  • step S9009 another electronic device that initiates transmit beam training, such as the electronic device 300 described in Section 2, feeds back the sequence number of the beam and the adjacent beam with the optimal reception quality and the number, as in the fifth- Step S604 of Section 3.
  • FIG. 10A illustrates a block diagram of an electronic device 1000, such as a smart phone, on the user device side, in accordance with an embodiment of the present disclosure.
  • the electronic device 1000 may include, for example, a communication unit 1001, a memory 1002, and a processing circuit 1003.
  • the processing circuit 1003 of the electronic device 1000 provides various functions of the electronic device 1000.
  • the processing circuit 1003 of the electronic device 1000 may include a beam determining unit 1004, an emission angle calculating unit 1005, an antenna number determining unit 1006, and a feedback unit 1007.
  • the beam determining unit 1004 can determine the reception quality for each of the transmit beams used for transmit beam training, as described in step S602 of Section 5-3.
  • the transmission angle calculation unit 1005 may calculate, for the transmission beam having the optimal reception quality, another electronic device trained from the initiation of the transmission beam, such as the electronic device 300 described in Section 2, the transmission angle of the downlink transmission signal to the electronic device, As described in step S602' of Section 5-4.
  • the antenna number determining unit 1006 may determine the activated antenna element element for performing downlink beamforming transmission to the electronic device according to the transmission angle and the beam direction of the adjacent transmitting beam of the transmitting beam having the optimal receiving quality. The number is as described in step S603 of Section 5-3.
  • the feedback unit 1007 may feed back the transmission angle, the transmit beam with the best reception quality, and the sequence number of the adjacent transmit beam to the other electronic device that initiates the transmit beam training, and the number, as in Section 5-3 Step S604.
  • the communication unit 1001 and the memory 1002 of the electronic device 1000 are similar to the first embodiment, and can be understood by referring to Section 8-1-1, and details are not described herein again.
  • FIG. 10B shows a flowchart of a communication method for an electronic device on the user equipment side of the present disclosure. This communication method can be used, for example, for the electronic device 1000 as shown in FIG. 10A.
  • step S1008 the reception quality of each of the transmission beams for transmission beam training is determined as described in step S602 of Section 5-3.
  • step S1009 for a transmit beam having an optimal reception quality, an emission angle of a downlink transmission signal from another electronic device that initiates transmission beam training to the electronic device is calculated, as described in step S602' of Section 5-4. .
  • step S1010 the number of activated antenna elements for performing downlink beamforming transmission to the electronic device is determined according to the transmission angle and the beam direction of the adjacent transmit beam of the transmit beam having the optimal reception quality. , as described in step S603 of Section 5-3.
  • step S1011 the another electronic device that initiates transmit beam training, such as the electronic device 300 described in Section 2, feeds back the transmit angle, the transmit beam with the best reception quality, and the adjacent transmit beam.
  • the serial number and the number are as described in step S604 of Section 5-3.
  • FIG. 11A illustrates a block diagram of an electronic device 1100, such as a smart phone, on the user device side, in accordance with an embodiment of the present disclosure.
  • the electronic device 1100 may include, for example, a communication unit 1101, a memory 1102, and a processing circuit 1103.
  • the processing circuit 1103 of the electronic device 1100 provides various functions of the electronic device 1100.
  • the processing circuit 1103 of the electronic device 1100 may include a transmitting unit 1104, a receiving unit 1105, an estimating unit 1106, and a feedback unit 1107.
  • the transmitting unit 1104 can transmit an uplink reference signal to another electronic device, such as the electronic device 300 described in Section 2, for calculating the direction of the uplink reference signal, as described in step S701 of Section 5-5.
  • the receiving unit 1105 may receive a downlink reference signal, where the downlink reference signal is a downlink beam assignment by another electronic device using the number of activated antenna elements for downlink beamforming determined according to the direction of the uplink reference signal. Transmitted as described in steps S702 through S704 of Section 5-5.
  • the estimating unit 1106 is optional, and the downlink channel can be estimated by the downlink reference signal, as described in step S705 of Section 5-6.
  • Feedback unit 1107 is also optional and can report noise power to the other electronic device as described in step S706 of Sections 5-6.
  • the communication unit 1101 and the memory 1102 of the electronic device 1100 are similar to the first embodiment, and can be understood by referring to Section 8-1-1, and details are not described herein again.
  • FIG. 11B shows a flowchart of a communication method for an electronic device on the user equipment side of the present disclosure. This communication method can be used, for example, for the electronic device 1100 as shown in FIG. 11A.
  • an uplink reference signal is transmitted to another electronic device, such as the electronic device 300 described in Section 2, for calculating the direction of the uplink reference signal, as in steps 5-5. S701.
  • step S1109 a downlink reference signal is received, where the downlink reference signal is a downlink beam that is used by another electronic device to determine the number of activated antenna elements for downlink beamforming determined according to the direction of the uplink reference signal.
  • the shape is sent as described in steps S702 to S704 of Section 5-5.
  • Step S1110 is optional, wherein the downlink channel is estimated by the downlink reference signal, as described in step S705 of Section 5-6.
  • Step S1111 is optional, wherein the noise power is fed back to the other electronic device, as described in step S706 of Sections 5-6.
  • downlink beamforming for a determined number of antenna elements can reduce interference between user equipments
  • user equipments that interfere with each other can be allocated by adjusting the number of activated antenna elements.
  • time-frequency resource blocks Within the same or overlapping time-frequency resource blocks.
  • Figure 12 shows the number of resource blocks (left) employed by user scheduling in a conventional orthogonal manner in the case of two mutually interfering user equipments and the number of resource blocks (right) employed in accordance with an embodiment of the present disclosure.
  • the MN sub-opt antenna elements need to be turned off.
  • the activated N sub-opt antenna elements may be the first N sub-opt antenna elements in the M antenna elements, or the N sub-opt antenna elements selected in the middle, or may be the following N sub- Opt antenna elements.
  • the activated antenna elements are consecutive N sub-opt antenna elements to ensure that the activated antenna elements still have a uniform linear antenna array ULA channel structure.
  • Embodiments of the present disclosure may be applied to a common antenna array such as a uniform linear antenna array ULA, a uniform planar array UPA, a uniform circular array UCA, and the like.
  • Embodiments of the present disclosure may vary with the spacing of the antenna elements.
  • the spacing D of the antenna elements is the same, the foregoing embodiments of the present disclosure may be modified to apply.
  • the method of determining the number of activated antenna elements remains the same, but for the direction of the same downlink transmitted signal, the period for searching in Section 5-3 becomes ⁇ /( ⁇ D).
  • the phase shifters of the array elements are controlled by independent switches.
  • the inventors conducted the following comparative experiment on the beamforming transmission of the embodiment of the present disclosure with the conventional conjugate transposition.
  • Figure 13A shows the average downlink spectral efficiency comparison of conventional conjugate transposed beamforming with embodiments of the present disclosure with different fixed emission angle differences. It can be seen that the embodiment of the present disclosure adopts N opt and N sub-opt antenna elements for partial activation beamforming to obtain a lower average spectral efficiency than the conventional scheme, especially when the ⁇ is small, the average spectral efficiency is more significant.
  • Figure 13C shows a performance comparison of a conventional conjugate transposed beamforming with an embodiment of the present disclosure in the case of a 3D-MIMO scenario where the base station employs a 64 x 64 planar array.
  • Embodiments of the present disclosure can still achieve performance gains. Especially when the signal to noise ratio is high, the gain is more significant.
  • the technology of the present disclosure can be applied to various products.
  • the user side electronic devices 9000, 1000, and 1100 may be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/encrypted dog type mobile router, and a digital camera device) or Vehicle terminal (such as car navigation equipment).
  • the user side electronic device can also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine to machine (M2M) communication.
  • MTC machine type communication
  • M2M machine to machine
  • the user side electronic device may be a wireless communication module (such as an integrated circuit module including a single wafer) mounted on each of the above terminals.
  • the control device side electronic device 300 can be implemented as any type of base station, preferably a macro gNB and a small gNB in a 5G communication standard New Radio (NR) access technology such as 3GPP.
  • the small gNB may be a gNB that covers a cell smaller than the macro cell, such as pico gNB, micro gNB, and home (femto) gNB.
  • the control device can be implemented as any other type of base station, such as a NodeB and a base transceiver station (BTS).
  • the control device can include a body (also referred to as a base station device) configured to control wireless communication and one or more remote wireless headends (RRHs) disposed at a different location than the body.
  • RRHs remote wireless headends
  • the term base station in this disclosure has the full breadth of its ordinary meaning and includes at least a wireless communication station that is used as part of a wireless communication system or radio system to facilitate communication.
  • the base station may be, for example but not limited to, the following: the base station may be one or both of a base transceiver station (BTS) and a base station controller (BSC) in the GSM system, and may be a radio network controller in the WCDMA system.
  • BTS base transceiver station
  • BSC base station controller
  • RNC radio network controller
  • NodeB may be eNBs in LTE and LTE-Advanced systems, or may be corresponding network nodes in future communication systems (eg, gNBs that may appear in 5G communication systems, etc. ).
  • a logical entity that has control functions for communication may also be referred to as a base station.
  • a logical entity that acts as a spectrum coordination function can also be referred to as a base station.
  • FIG. 14 is a block diagram showing a first example of a schematic configuration of a control device side electronic device 300 to which the technology of the present disclosure can be applied.
  • the electronic device 300 is shown as a gNB 800.
  • the gNB 800 includes a plurality of antennas 810 and a base station device 820.
  • the base station device 820 and each antenna 810 may be connected to each other via an RF cable.
  • Each of the antennas 810 includes a plurality of antenna elements, such as a plurality of antenna elements included in a multiple input multiple output (MIMO) antenna, and is used by the base station apparatus 820 to transmit and receive wireless signals.
  • gNB 800 can include multiple antennas 810.
  • multiple antennas 810 can be compatible with multiple frequency bands used by gNB 800.
  • 14 shows an example in which the gNB 800 includes a plurality of antennas 810 that can be used to implement the large-scale multi-antenna system described in the embodiments of the present disclosure.
  • the base station device 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
  • the controller 821 can be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station device 820.
  • controller 821 can include processing circuit 300 as described above to determine the number of active antenna elements in accordance with the methods described above, or to control various components of electronic device 300.
  • controller 821 generates data packets based on data in signals processed by wireless communication interface 825 and communicates the generated packets via network interface 823.
  • Controller 821 can bundle data from multiple baseband processors to generate bundled packets and pass the generated bundled packets.
  • the controller 821 can have logic functions that perform control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby gNB or core network nodes.
  • the memory 822 includes a RAM and a ROM, and stores programs executed by the controller 821 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • Network interface 823 is a communication interface for connecting base station device 820 to core network 824. Controller 821 can communicate with a core network node or another gNB via network interface 823. In this case, the gNB 800 and the core network node or other gNBs can be connected to each other through logical interfaces such as an S1 interface and an X2 interface. Network interface 823 can also be a wired communication interface or a wireless communication interface for wireless backhaul lines. If network interface 823 is a wireless communication interface, network interface 823 can use a higher frequency band for wireless communication than the frequency band used by wireless communication interface 825.
  • the wireless communication interface 825 supports any cellular communication schemes, such as Long Term Evolution (LTE) and LTE-Advanced, and provides wireless connectivity to terminals located in cells of the gNB 800 via the antenna 810.
  • Wireless communication interface 825 may typically include, for example, a baseband (BB) processor 826 and RF circuitry 827.
  • the BB processor 826 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers (eg, L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) Various types of signal processing.
  • BB processor 826 may have some or all of the above described logic functions.
  • the BB processor 826 can be a memory that stores a communication control program, or a module that includes a processor and associated circuitry configured to execute the program.
  • the update program can cause the function of the BB processor 826 to change.
  • the module can be a card or blade that is inserted into a slot of the base station device 820. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 827 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 810.
  • the wireless communication interface 825 can include a plurality of BB processors 826.
  • multiple BB processors 826 can be compatible with multiple frequency bands used by gNB 800.
  • the wireless communication interface 825 can include a plurality of RF circuits 827.
  • multiple RF circuits 827 can be compatible with multiple antenna elements.
  • FIG. 14 illustrates an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, the wireless communication interface 825 may also include a single BB processor 826 or a single RF circuit 827.
  • one or more components (proximity degree determining unit 304 and activation number obtaining unit 305) included in the processing circuit 303 described with reference to FIG. 3 may be implemented in the wireless communication interface 825.
  • controller 821 at least a portion of these components can be implemented in controller 821.
  • g NB 800 comprising a portion (e.g., BB processor 826) or a wireless communication interface 825, integers, and / or 821 includes a controller module and one or more of the components may be implemented in the module.
  • the module may store a program for allowing the processor to function as one or more components (in other words, a program for allowing the processor to perform operations of one or more components), and may execute the program.
  • a program for allowing a processor to function as one or more components can be installed in gNB 800, and wireless communication interface 825 (eg, BB processor 826) and/or controller 821 can perform the program.
  • wireless communication interface 825 eg, BB processor 826
  • controller 821 can perform the program.
  • a device including one or more components a gNB 800, a base station device 820, or a module may be provided, and a program for allowing the processor to function as one or more components may be provided.
  • a readable medium in which the program is recorded may be provided.
  • the communication unit 301 described with reference to FIG. 3 may be implemented in a wireless communication interface 825 (eg, RF circuit 827). Additionally, communication unit 301 can be implemented in controller 821 and/or network interface 823.
  • the control device can include, for example, electronic device 300 for downlink transmission.
  • the electronic device 300 is shown as a gNB 830.
  • the gNB 830 includes one or more antennas 840, a base station device 850, and an RRH 860.
  • the RRH 860 and each antenna 840 may be connected to each other via an RF cable.
  • the base station device 850 and the RRH 860 can be connected to each other via a high speed line such as a fiber optic cable.
  • Each of the antennas 840 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the RRH 860 to transmit and receive wireless signals.
  • gNB 830 can include multiple antennas 840.
  • multiple antennas 840 can be compatible with multiple frequency bands used by gNB 830.
  • 15 shows an example in which the gNB 830 includes a plurality of antennas 840 that can be used to implement the large scale multi-antenna system described in the embodiments of the present disclosure.
  • the base station device 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
  • the controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG.
  • the wireless communication interface 855 supports any cellular communication scheme (such as LTE and LTE-Advanced) and provides wireless communication to terminals located in sectors corresponding to the RRH 860 via the RRH 860 and the antenna 840.
  • Wireless communication interface 855 can generally include, for example, BB processor 856.
  • the BB processor 856 is identical to the BB processor 826 described with reference to FIG. 14 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • wireless communication interface 855 can include a plurality of BB processors 856.
  • multiple BB processors 856 can be compatible with multiple frequency bands used by gNB 830.
  • FIG. 15 illustrates an example in which the wireless communication interface 855 includes a plurality of BB processors 856, the wireless communication interface 855 can also include a single BB processor 856.
  • connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860.
  • the connection interface 857 may also be a communication module for communicating the base station device 850 (wireless communication interface 855) to the above-described high speed line of the RRH 860.
  • the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850.
  • the connection interface 861 can also be a communication module for communication in the above high speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840.
  • Wireless communication interface 863 can typically include, for example, RF circuitry 864.
  • the RF circuit 864 can include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 can include a plurality of RF circuits 864.
  • multiple RF circuits 864 can support multiple antenna elements.
  • FIG. 15 illustrates an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, the wireless communication interface 863 may also include a single RF circuit 864.
  • one or more components included in the processing circuit 303 described with reference to FIG. 3 may be implemented in the wireless communication interface 855.
  • controller 851 e.g. BB processor 856
  • a module that includes controller 851, and one or more components can be implemented in the module.
  • the module may store a program for allowing the processor to function as one or more components (in other words, a program for allowing the processor to perform operations of one or more components), and may execute the program.
  • a program for allowing a processor to function as one or more components can be installed in gNB 830, and wireless communication interface 855 (eg, BB processor 856) and/or controller 851 can perform the program.
  • wireless communication interface 855 eg, BB processor 856
  • controller 851 can perform the program.
  • a device including one or more components a gNB 830, a base station device 850 or a module can be provided, and a program for allowing the processor to function as one or more components can be provided.
  • a readable medium in which the program is recorded may be provided.
  • the communication unit 301 described with reference to FIG. 3 may be implemented in a wireless communication interface 855 (eg, BB circuit 856). Additionally, communication unit 301 can be implemented in controller 851 and/or network interface 853.
  • FIG. 16 is a block diagram showing an example of a schematic configuration of a smartphone 900 to which the technology of the present disclosure can be applied.
  • the smart phone 900 includes a processor 901, a memory 902, a storage device 903, an external connection interface 904, a camera 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more An antenna switch 915, one or more antennas 916, a bus 917, a battery 918, and an auxiliary controller 919.
  • the processor 901 can be, for example, a CPU or a system on chip (SoC), and controls the functions of the application layer and the other layers of the smart phone 900.
  • the memory 902 includes a RAM and a ROM, and stores data and programs executed by the processor 901.
  • the storage device 903 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smartphone 900.
  • USB universal serial bus
  • the camera 906 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensor 907 can include a set of sensors, such as measurement sensors, gyro sensors, geomagnetic sensors, and acceleration sensors.
  • the microphone 908 converts the sound input to the smartphone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 910, and receives an operation or information input from the user.
  • the display device 910 includes screens such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900.
  • the speaker 911 converts the audio signal output from the smartphone 900 into sound.
  • the wireless communication interface 912 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 912 may generally include, for example, BB processor 913 and RF circuitry 914.
  • the BB processor 913 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • RF circuitry 914 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via antenna 916.
  • the wireless communication interface 912 can be a chip module on which the BB processor 913 and the RF circuit 914 are integrated. As shown in FIG.
  • the wireless communication interface 912 can include a plurality of BB processors 913 and a plurality of RF circuits 914.
  • FIG. 16 illustrates an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914, the wireless communication interface 912 may also include a single BB processor 913 or a single RF circuit 914.
  • wireless communication interface 912 can support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 912 can include a BB processor 913 and RF circuitry 914 for each wireless communication scheme.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 between a plurality of circuits included in the wireless communication interface 912, such as circuits for different wireless communication schemes.
  • Each of the antennas 916 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the wireless communication interface 912 to transmit and receive wireless signals.
  • smart phone 900 can include multiple antennas 916.
  • FIG. 16 shows an example in which the smartphone 900 includes a plurality of antennas 916, the smartphone 900 may also include a single antenna 916.
  • smart phone 900 can include an antenna 916 for each wireless communication scheme.
  • the antenna switch 915 can be omitted from the configuration of the smartphone 900.
  • the bus 917 sets the processor 901, the memory 902, the storage device 903, the external connection interface 904, the camera 906, the sensor 907, the microphone 908, the input device 909, the display device 910, the speaker 911, the wireless communication interface 912, and the auxiliary controller 919 to each other. connection.
  • Battery 918 provides power to various blocks of smart phone 900 shown in FIG. 16 via a feeder, which is partially shown as a dashed line in the figure.
  • the auxiliary controller 919 operates the minimum necessary function of the smartphone 900, for example, in a sleep mode.
  • one or more components included in the processing circuits 9003, 1003, and 1103 described with reference to FIGS. 9A, 10A, and 11A may be implemented in the wireless communication interface 912.
  • processor 901 or auxiliary controller 919 can be implemented in processor 901 or auxiliary controller 919.
  • smart phone 900 includes a portion of wireless communication interface 912 (eg, BB processor 913) or entirely, and/or modules including processor 901 and/or auxiliary controller 919, and one or more components can be Implemented in this module.
  • the module can store a program that allows processing of one or more components (in other words, a program for allowing the processor to perform operations of one or more components), and can execute the program.
  • a program for allowing a processor to function as one or more components can be installed in smart phone 900, and wireless communication interface 912 (eg, BB processor 913), processor 901, and/or assistance
  • the controller 919 can execute the program.
  • a smart phone 900 or module can be provided, and a program for allowing the processor to function as one or more components can be provided.
  • a readable medium in which the program is recorded may be provided.
  • the communication units 9001, 1001, and 1101 described with reference to FIGS. 9A, 10A, and 11A may be implemented in a wireless communication interface 912 (eg, the RF circuit 914).
  • a wireless communication interface 912 eg, the RF circuit 914.
  • FIG. 17 is a block diagram showing an example of a schematic configuration of a car navigation device 920 to which the technology of the present disclosure can be applied.
  • the car navigation device 920 includes a processor 921, a memory 922, a global positioning system (GPS) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, and a wireless device.
  • the processor 921 can be, for example, a CPU or SoC and controls the navigation functions and additional functions of the car navigation device 920.
  • the memory 922 includes a RAM and a ROM, and stores data and programs executed by the processor 921.
  • the GPS module 924 measures the position of the car navigation device 920 (such as latitude, longitude, and altitude) using GPS signals received from GPS satellites.
  • Sensor 925 can include a set of sensors, such as a gyro sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 926 is connected to, for example, the in-vehicle network 941 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 927 reproduces content stored in a storage medium such as a CD and a DVD, which is inserted into the storage medium interface 928.
  • Input device 929 includes, for example, a touch sensor, button or switch configured to detect a touch on the screen of display device 930, and receives an operation or information input from the user.
  • the display device 930 includes a screen such as an LCD or OLED display, and displays an image of the navigation function or reproduced content.
  • the speaker 931 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 933 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 933 may typically include, for example, BB processor 934 and RF circuitry 935.
  • the BB processor 934 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 935 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 937.
  • the wireless communication interface 933 can also be a chip module on which the BB processor 934 and the RF circuit 935 are integrated. As shown in FIG.
  • the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935.
  • FIG. 17 shows an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935, the wireless communication interface 933 may also include a single BB processor 934 or a single RF circuit 935.
  • the wireless communication interface 933 can support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near-field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 933 may include a BB processor 934 and an RF circuit 935 for each wireless communication scheme.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 between a plurality of circuits included in the wireless communication interface 933, such as circuits for different wireless communication schemes.
  • Each of the antennas 937 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for the wireless communication interface 933 to transmit and receive wireless signals.
  • car navigation device 920 can include a plurality of antennas 937.
  • FIG. 17 shows an example in which the car navigation device 920 includes a plurality of antennas 937, the car navigation device 920 may also include a single antenna 937.
  • car navigation device 920 can include an antenna 937 for each wireless communication scheme.
  • the antenna switch 936 can be omitted from the configuration of the car navigation device 920.
  • Battery 938 provides power to various blocks of car navigation device 920 shown in Figure 17 via feeders, which are partially shown as dashed lines in the figure. Battery 938 accumulates power supplied from the vehicle.
  • car navigation device 920 In the car navigation device 920 shown in FIG. 17, one or more components included in the processing circuits 9003, 1003, and 1103 described with reference to FIGS. 9A, 10A, and 11A may be implemented in the wireless communication interface 933. Alternatively, at least a portion of these components can be implemented in processor 921. As an example, car navigation device 920 includes a portion of wireless communication interface 933 (eg, BB processor 934) or a whole, and/or a module that includes processor 921, and one or more components can be implemented in the module. In this case, the module can store a program that allows processing of one or more components (in other words, a program for allowing the processor to perform operations of one or more components), and can execute the program.
  • BB processor 934 e.g., BB processor 934
  • the module can store a program that allows processing of one or more components (in other words, a program for allowing the processor to perform operations of one or more components), and can execute the program.
  • a program for allowing a processor to function as one or more components can be installed in car navigation device 920, and wireless communication interface 933 (eg, BB processor 934) and/or processor 921 can Execute the program.
  • a device that includes one or more components a car navigation device 920 or module can be provided, and a program for allowing the processor to function as one or more components can be provided.
  • a readable medium in which the program is recorded may be provided.
  • the communication units 9001, 1001, and 1101 described with reference to FIGS. 9A, 10A, and 11A can be implemented in the wireless communication interface 933 (for example, the RF circuit 935).
  • the technology of the present disclosure may also be implemented as an onboard system (or vehicle) 940 that includes one or more of the car navigation device 920, the in-vehicle network 941, and the vehicle module 942.
  • vehicle module 942 generates vehicle data such as vehicle speed, engine speed, and fault information, and outputs the generated data to the in-vehicle network 941.
  • a readable medium in which the program is recorded may be provided. Accordingly, the present disclosure also relates to a computer readable storage medium having stored thereon a program including instructions for implementing the aforementioned communication method when loaded and executed by a processor, such as a processing circuit or controller.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种电子设备和通信方法。该电子设备包括处理电路,该处理电路被配置为:确定向至少两个用户设备同时进行信号传输并且用于所述至少两个用户设备的下行发射信号的方向的邻近程度满足预定条件;以及获取基于用于所述至少两个用户设备的下行发射信号的方向而确定的用于下行波束赋形的被激活的天线阵元的数量。

Description

电子设备和通信方法
相关申请的交叉引用
本公开要求于2017年9月13日递交的中国专利申请第201710820287.6号的优先权,在此全文引用上述中国专利申请公开的内容以作为本公开的一部分。
技术领域
本公开总地涉及一种电子设备和通信方法,尤其是用于毫米波大规模多天线系统的电子设备和通信方法。
背景技术
作为下一代无线通信(5G)的关键技术之一,大规模多天线(Massive multiple-input multiple-output,Massive MIMO)技术吸引了广泛的关注。随着大规模多天线系统中的天线数量增多,各个信道系数趋于正交,下文把这种性质称为渐近正交性(asymptotic orthogonality)。受益于大规模多天线系统引入的渐近正交性,可以通过低复杂度的线性信号处理算法,有效地提升系统频谱效率和能量效率。在这种系统中,共轭转置(conjugate-transpose)的波束赋形可用来有效地消除来自不同用户设备(User equipment,UE)的不相关信道的干扰。
大规模多天线系统中的渐近正交性依赖于无线信道所处的复散射环境,在该环境中非视距信道(Non-line-of-sight,NLoS)是主要场景,并且来自于多簇的多径信号的叠加也可以以信道系数服从复高斯分布为条件进行近似建模,因此不同用户设备间的信道相关性很低,这在传统的LTE/LTE-A中的小区通信场景中已经得到广泛应用。
对于毫米波(millimeter-wave,mmWave)、丝米波(decimillimetre-wave)等极高的频段,非视距信道的路径损耗相对较高,所以视距信道(Line-of-sight,LoS)成为诸如毫米波等极高频段通信中的主要场景。对于现有的分米波、厘米波通信系统,随着技术的发展将引入新的通信场景,例如飞行器通信场景,其中接入点与无人机等空中飞行器之间的无线信道会较少地受到障碍物的遮挡,所以也可视为以视距信道为主的通信场景。而在视距信道的情况下,信道系数不服从复高斯分布,并且不同信道之间存在较强的相关性,因此大规模多天线系统的渐近正交性在毫米波频段通信中的 适用性较差。虽然在诸如毫米波等的通信系统中,可以采用混合预编码架构以降低硬件实现复杂度和功耗,但是在混合预编码架构中数字预编码与模拟预编码的联合优化复杂度依然很高,导致在实际应用中开销较大。
发明内容
本公开的目的是提出一种电子设备和通信方法,使得能够进行更低复杂度、更高效的基于传统共轭转置的波束赋形传输。该电子设备和通信方法尤其适用于毫米波通信场景或者飞行器通信场景下的大规模多天线系统。
本公开的一方面涉及一种电子设备,包括处理电路,处理电路被配置为:确定向至少两个用户设备同时进行信号传输并且用于至少两个用户设备的下行发射信号的方向的邻近程度满足预定条件;以及获取基于用于至少两个用户设备的下行发射信号的方向而确定的用于下行波束赋形的被激活的天线阵元的数量。
本公开的又一方面涉及一种电子设备,包括处理电路,处理电路被配置为:确定对用于发射波束训练的各发射波束的接收质量;根据具有最优接收质量的发射波束及其相邻发射波束的波束方向来确定用于向该电子设备进行下行波束赋形传输的被激活的天线阵元的数量;以及向发起发射波束训练的另一电子设备反馈所述具有最优接收质量的发射波束和相邻发射波束的序号以及该数量。
本公开的另一方面涉及一种电子设备,包括处理电路,处理电路被配置为:确定对用于发射波束训练的各发射波束的接收质量;针对具有最优接收质量的发射波束,计算从发起发射波束训练的另一电子设备向该电子设备的下行发射信号的发射角;根据该发射角和该具有最优接收质量的发射波束的相邻发射波束的波束方向来确定用于向该电子设备进行下行波束赋形传输的被激活的天线阵元的数量;以及向发起发射波束训练的所述另一电子设备反馈所述发射角、所述具有最优接收质量的发射波束和相邻发射波束的序号以及该数量。
本公开的又一方面涉及一种电子设备,包括处理电路,处理电路被配置为:向另一电子设备发射上行参考信号用于计算上行参考信号的方向;接收下行参考信号,所述下行参考信号是另一电子设备使用根据所述上行参考信号的方向而确定的用于下行波束赋形的被激活的天线阵元的数量进行下行波束赋形发送的;以及通过该下行参考信号估计下行信道并向所述另一电子设备反馈噪声功率。
本公开的再一方面涉及一种通信方法,包括:确定向至少两个用户设备同时进行信号传输并且用于至少两个用户设备的下行发射信号的方向的邻近程度满足预定条件;以及获取基于用于至少两个用户设备的下行发射信号的方向而确定的用于下行波束赋形的被激活的天线阵元的数量。
本公开的再一方面涉及一种通信方法,包括:确定对用于发射波束训练的各发射波束的接收质量;根据具有最优接收质量的发射波束及其相邻发射波束的波束方向来确定用于向该电子设备进行下行波束赋形传输的被激活的天线阵元的数量;以及向发起发射波束训练的另一电子设备反馈所述具有最优接收质量的发射波束和相邻发射波束的序号以及该数量。
本公开的再一方面涉及一种通信方法,包括:确定对用于发射波束训练的各发射波束的接收质量;针对具有最优接收质量的发射波束,计算从发起发射波束训练的另一电子设备向该电子设备的下行发射信号的发射角;根据该发射角和该具有最优接收质量的发射波束的相邻发射波束的波束方向来确定用于向该电子设备进行下行波束赋形传输的被激活的天线阵元的数量;以及向发起发射波束训练的所述另一电子设备反馈所述发射角、所述具有最优接收质量的发射波束和相邻发射波束的序号以及该数量。
本公开的再一方面涉及一种通信方法,包括:向另一电子设备发射上行参考信号用于计算上行参考信号的方向;接收下行参考信号,所述下行参考信号是另一电子设备使用根据所述上行参考信号的方向而确定的用于下行波束赋形的被激活的天线阵元的数量进行下行波束赋形发送的;以及通过该下行参考信号估计下行信道并向所述另一电子设备反馈噪声功率。
本公开的又一方面还涉及一种计算机可读存储介质,上面存储有指令,所述指令在由处理器载入并执行时用于实施前述的通信方法。
本公开的又一方面还涉及一种电子设备,包括处理电路,所述处理电路被配置为:确定至少两个对象设备的邻近程度满足预定条件;以及获取基于所述邻近程度而确定的用于发射波束赋形的无线电波的被激活的天线阵元的数量。
因此,根据本公开的各方面,通过确定激活的天线阵元的数量,能够进行更低复杂度、更高效的基于传统共轭转置的波束赋形。
附图说明
下面结合具体的实施例,并参照附图,对本公开的上述和其它目的和优点做进一步的描述。在附图中,相同的或对应的技术特征或部件将采用相同或对应的附图标记来表示。
图1示出根据本公开的实施例的通信环境的示意性配置;
图2A示出基站到用户设备的下行发射信号的方向的示意图;图2B具体示出了随着天线阵元的数量增加,传统复高斯信道与毫米波视距信道的用户设备间干扰的渐近特性;图2C示出了全部天线阵元中激活一部分天线阵元而关闭其它天线阵元的示意图;
图3示意性示出根据本公开的实施例的控制设备侧的电子设备的框图;
图4示出根据本公开的实施例的通信方法的流程图;
图5示出渐近正交性B(N,φ)随着激活的天线阵元的数量N变化的曲线;
图6A-图7B示出根据本公开的不同实施例的通信过程的示意图;
图8A-图8C示出根据本公开的实施例的电子设备的结构图;
图9A-图9B示意性示出根据本公开的一个实施例的用户设备侧的电子设备的框图和流程图;
图10A-图10B示意性示出根据本公开的另一个实施例的用户设备侧的电子设备的框图和流程图;
图11A-图11B示意性示出根据本公开的又一个实施例的用户设备侧的电子设备的框图和流程图;
图12示出了传统用户调度采用的资源块数目与根据本公开的实施例采用的资源块数目的对比图;
图13A-图13C示出根据本公开的实施例的性能仿真结果;
图14是根据本公开的实施例的控制设备侧电子设备的示意性配置的第一示例的框图;
图15是根据本公开的实施例的控制设备侧电子设备的示意性配置的第二示例的框图;
图16是根据本公开的实施例的智能电话的示意性配置的示例的框图;以及
图17是根据本公开的实施例的汽车导航设备的示意性配置的示例的框图。
具体实施方式
在下文中将结合附图对本公开的示范性实施例进行描述。为了清楚和简明起见,在说明书中并未描述实施例的所有特征。然而,应该了解,在对实施例进行实施的过程中必须做出很多特定于实施方式的设置,以便实现开发人员的具体目标,例如,符合与设备及业务相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本公开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
在此,还应当注意,为了避免因不必要的细节而模糊了本公开,在附图中仅仅示出了与至少根据本公开的方案密切相关的处理步骤和/或设备结构,而省略了与本公开关系不大的其他细节。
接下来,按照以下顺序进行描述。
1.根据本公开的实施例的通信环境的示意性配置
图1示出根据本公开的实施例的通信环境的示意性配置。在图1中,小区中的基站101配有大规模多天线系统,其通过共轭转置的波束赋形,例如发射波束105、106和107,来分别与不同用户设备102、103和104进行通信。如前所述,在非视距信道是主要场景的情况下,信道系数服从复高斯分布,因此不同用户设备间的信道相关性很低并且干扰较小。而在视距信道为主要场景的情况下,信道系数不服从复高斯分布,因此不同用户设备之间的信道相关性很高并且干扰较大。尤其对于其发射波束邻近的用户设备而言干扰更加明显,如图1中的用户设备102和103那样,在采用基于渐近正交性的传统共轭转置波束赋形进行下行传输的情况下,波束105和106会引起用户设备102和103之间的较大干扰,从而大大降低系统频谱效率。因此,需要在例如基站101与用户设备102、103同时进行信号发射的情况下对传统共轭转置波束赋形进行改进,从而提高系统频谱效率。
下面首先以传统分米波频段和毫米波频段通信为例详细说明下行传输模型和信道性质,从而可以更好地理解本公开的接下来的各个方面。应当理解,虽然这里说明了传统分米波频段和毫米波频段的通信,但其仅是示例,而并非限制本公开的应用;实际上,本公开可以应用到各种适当频段的通信。
1.1下行传输模型
为简化模型,假设用户设备如用户设备102和103采用单天线。基站101配置M×1均匀线性天线阵列(Uniformly-spaced linear array,ULA),天线阵元的间距D为半波长D=λ/2。记
Figure PCTCN2018104835-appb-000001
为基站101与两个用户设备102和103的信道向量,接收符号y 1,y 2可表示为:
Figure PCTCN2018104835-appb-000002
其中s 1,s 2为发送符号,n 1,n 2是功率为
Figure PCTCN2018104835-appb-000003
的加性高斯白噪声符号。采用传统的模拟共轭转置波束赋形,波束赋形向量
Figure PCTCN2018104835-appb-000004
其中‘*’表示共轭运算。下行平均频谱效率C可由下式计算:
Figure PCTCN2018104835-appb-000005
对于传统分米波频段的复散射环境信道系数,有渐近正交性如下:
Figure PCTCN2018104835-appb-000006
基于上式,在传统分米波频段通信中,可以表明当基站101的大规模多天线系统中的天线阵元的数量增多时,用户设备102和103间的干扰
Figure PCTCN2018104835-appb-000007
可以被逐渐降低。
1.2视距信道性质
在1.1节的下行传输模型的基础上,对于作为毫米波频段中的主要场景的视距信道,假设采用单径空间信道模型,则h i可表示为:
Figure PCTCN2018104835-appb-000008
其中θ i为基站101到达用户设备102和103的下行发射信号的方向(发射角),其具体示于图2A中并且可理解为例如该发射信号与天线阵列平面的夹角。因此,采用上述传输模型的渐近正交性可以进一步表示为:
Figure PCTCN2018104835-appb-000009
上式中φ=cosθ i-cosθ j反映信道h i与h j的相关程度(correlation)或者说两个用户设备102、103的邻近程度(proximity)。对于邻近用户设备(信道高度相关的用户设备),θ 1→θ 2,φ→0引起了严重的用户设备间的干扰
Figure PCTCN2018104835-appb-000010
即,使用的天线数量越多干扰反而越大,平均频谱效率也会严重降低。
图2B具体示出了发明人通过仿真实现的随着天线阵元的数量增加,传统复高斯信道与毫米波视距信道的用户设备间干扰的渐近特性,其中,横坐标表示天线阵元的数量,纵坐标表示两个用户设备之间的渐近正交性。在图2B中,复高斯信道的条件是每个信道系数服从标准正态分布,并且图中的曲线是1000次仿真的平均值。记
Figure PCTCN2018104835-appb-000011
图2B中φ=cos90°-cos85°,从纵坐标0.6开始的曲线表明在传统的复高斯信道环境中
Figure PCTCN2018104835-appb-000012
随着天线阵元的数量增加而稳定下降,即渐近正交性
Figure PCTCN2018104835-appb-000013
依然适用,但是效率较低。与传统的复高斯信道环境中不同,对于毫米波视距信道,A(M,φ)为随着M增大而振荡衰减,见从纵坐标1开始的曲线。在右侧的波谷点处,A(M,φ)非常接近0。因此可以考虑基于波谷点处的天线数量M值来激活天线阵元进行下行波束赋形以提高邻近用户设备的正交性,从而进一步降低用户设备间的干扰。
通过图2B可以看出,对于实际的大规模多天线系统来说,天线阵元的总数量很大,则在波谷点处的M值可能小于天线阵元的总数量,即只开启/激活部分天线阵元并且关闭/去激活其它天线阵元,可以降低干扰并得到最优的频谱效率。借此,可以免去针对多个用户设备的数字预编码操作并且通过去激活特定数量的天线阵元保证用户设备间的干扰被抑制在一定的范围内,从而减小系统的复杂度和运算开销。在物理原理上,这可以理解为当关闭部分天线阵元时,不再存在由于被关闭的天线阵元的发射波束的旁瓣而对其它用户设备造成的影响。但应注意,在特定情况下,M也可能等于天线阵元的总数量,即激活全部天线阵元并且没有关闭天线阵元,例如在图2B中,假设共有256个天线阵元,而与M取256的点对应的渐近性刚好为零。
图2C示出了全部天线阵元中激活一部分天线阵元而关闭其它天线阵元的示意图,其中白色圆圈代表对于用户设备而言激活的天线阵元,其发射下行波束与用户设备通信,而暗色的圆圈代表对于用户设备而言关闭的天线阵元,其不用于发射下行波束。
应当注意,尽管这里是以视距信道为例进行说明,但是应理解对于某些非视距信道也同样适用。特别地,对于非视距信道中存在到用户设备的强反射路径的情况,所获得的效果几乎是相同的。实际上,在毫米波系统中,信道一般只考虑3 5条路径的叠加,其中包含直射路径信号,即视距信道,以及从基站发射经过建筑物反射到达用户设备的非视距信道。而视距信号强度远大于非视距信号强度,因此波束赋形的信号方向会指向直射路径方向。所以在包含视距信道的多径叠加时,可以只考虑视距信道 情况,将其发射信号的方向作为波束赋形的主要考虑因素。而在针对不包含视距信道的场景下,例如直射路径被障碍物遮挡的情况,非视距信道是主要场景。此时主要考虑信号最强的反射路径的方向即可。
进一步地,根据上述原理分析,可以理解,本公开的技术方案还可以扩展到涉及波束赋形的非通信系统中,例如相控阵天线雷达系统。在利用波束赋形进行雷达探测的过程中,如果两个探测对象的相互邻近,针对第一探测对象的天线阵列的发射波束的旁瓣会到达第二探测对象从而产生回波并影响对第一探测对象的定位、测距等探测精度。应用本公开的技术方案,例如可以根据雷达初步扫描对两个探测对象进行初步定位以确定邻近程度,如果确定该邻近程度满足预定条件,则关闭/去激活特定数量的天线阵元以对这两个探测对象进行精准探测。
2.根据本公开的在控制设备侧的电子设备的实施例
图3示出根据本公开的实施例的在控制设备侧的电子设备300如基站、雷达塔台的框图。电子设备可以位于各种控制设备或发射装置中。这里所言的控制设备例如是诸如eNB或3GPP的5G通信标准的gNB之类的基站、远程无线电头端、无线接入点等,发射装置例如包括大尺寸的车载发射装置或固定发射装置(例如,无人机管理塔台)。
根据本公开的一个实施例的控制设备侧的电子设备300可以包括例如通信单元301、存储器302和处理电路303。
电子设备300的处理电路303提供电子设备300的各种功能。例如,电子设备300的处理电路303可以包括邻近程度确定单元304和激活数量获取单元305。邻近程度确定单元304可被配置为确定向至少两个用户设备如102、103同时进行信号传输并且用于所述至少两个用户设备102、103的下行发射信号的方向的邻近程度满足预定条件。
在一个示例中,两个用户设备102、103的邻近程度如前文参照图2A所述的φ=cosθ i-cosθ j,其中θ i和θ j分别为基站101到达用户设备102和103的下行发射信号的发射方向。处理电路303可以预先设定一个阈值(例如根据经验值确定),当φ=cosθ i-cosθ j小于该阈值时,邻近程度确定单元304确定邻近程度满足预定条件。例如,处理电路303可以设定与用户设备102和103的下行发射信号的方向相差5度对应的φ值作为阈值。发射信号的方向可以是从基站101发射到用户设备102和103的下行发射信号与天线阵列平面的夹角,也可以是通过其它方式获得用于近似该夹角 的角度,如后面第4-1-2节所述。
在另一个示例中,因为在波束赋形传输时,基站101和用户设备102和103均能够知道基站各个发射波束的波束方向,所以也可以直接用波束方向来代替发射角来表示发射信号的方向,来进行前一个示例中阈值的设定。替代地,因为与用于用户设备102的发射波束邻近的发射波束对该用户设备102形成较大的干扰,所以可以设定邻近2个(左右各1个)、或4个(左右各2个)的波束的序号作为阈值。例如,一旦基站对其它用户设备103使用序号小于或等于该阈值的发射波束,则邻近程度确定单元304确定邻近程度满足预定条件。
在又一个更具体的示例中,还可以使用用户设备102上报的信道信息来反映发射信号的方向的邻近程度。例如,基站101向用户设备102发送用于测量下行信道状态的CSI-RS参考信号,然后用户设备102向基站101提供测量的信道方向信息如预编码矩阵指示PMI、CSI-RS资源指示CRI或波束索引BI(CRI与BI用于反馈用户设备接收到的信号RSRP较强的基站发射波束)。当基站101向至少两个用户设备如102、103同时进行信号传输时,如果两个用户设备102、103提供的PMI所指示的预编码矩阵相关性大于阈值,或者CRI相同,又或者BI相同,则邻近程度确定单元304确定邻近程度满足预定条件。
在另一个示例中,还可以结合使用发射信号的角度和信干噪比来表示发射信号的方向的邻近程度。具体来说,当基站101向至少两个用户设备如102、103同时进行信号传输时,如果φ=cosθ i-cosθ j小于预定阈值时并且两个用户设备102、103提供的SINR均小于预定阈值,则邻近程度确定单元304确定邻近程度满足预定条件。
以上列举了预定条件的一些示例,但是应理解,这些仅是示例而不是要限制预定条件的范围。预定条件可以包括其它示例,比如直接定位两个用户设备的位置并且设定距离的阈值,又比如根据两个用户设备对彼此之间侧链路(sidelink)的信道测量结果并且设定信道质量的阈值。
激活数量获取单元305可被配置为获取基于用于至少两个用户设备102、103的下行发射信号的方向而确定的用于下行波束赋形的被激活的天线阵元的数量。如第1.2节所述,通过选取在波谷点处的值,即只激活一部分天线阵元并且关闭其它天线阵元,可以降低用户设备102、103之间的干扰并得到最优的频谱效率。在特定情况下,也可能激活全部天线阵元并且没有关闭天线阵元。下文将在第4节具体描述确定 激活的天线阵元的数量的实施例。
在一个示例中,该电子设备300还包括天线阵列,所述天线阵列被配置为基于处理电路303的控制使用所述数量的天线阵元向两个对象设备定向发射无线电波束。优选地,该电子设备300可实现为雷达装置,用于对两个对象设备进行雷达探测,该电子设备300还包括雷达接收机,被配置为接收两个对象设备反射回来的雷达信号以确定该两个对象设备的定位。
电子设备300的通信单元301(收发机)可以被配置为在处理电路303的控制下与各个用户设备102、103执行通信。
在本公开的实施例中,通信单元301例如可以实现为天线器件、射频电路和部分基带处理电路等通信接口部件。通信单元301用虚线绘出,因为它还可以位于处理电路303内或者位于电子设备300之外。
存储器302可以存储由处理电路303产生的信息,通过通信单元301从各个用户设备102、103接收的信息,用于电子设备300操作的程序、机器代码和数据,以及上述的波束方向的序号等。存储器302用虚线绘出,因为它还可以位于处理电路303内或者位于电子设备300之外。存储器302可以是易失性存储器和/或非易失性存储器。例如,存储器302可以包括,但不限于,随机存取存储器(RAM)、动态随机存取存储器(DRAM)、静态随机存取存储器(SRAM)、只读存储器(ROM)以及闪存存储器。
以上描述的各个单元是用于实施本公开中描述的处理的示例性和/或优选的模块。这些模块可以是硬件单元(诸如中央处理器、场可编程门阵列、数字信号处理器或专用集成电路等)和/或软件模块(诸如计算机可读程序)。以上并未详尽地描述用于实施下文描述各个步骤的模块。然而,只要有执行某个处理的步骤,就可以有用于实施同一处理的对应的模块或单元(由硬件和/或软件实施)。通过下文所描述的步骤以及与这些步骤对应的单元的所有组合限定的技术方案都被包括在本公开的公开内容中,只要它们构成的这些技术方案是完整并且可应用的。
此外,由各种单元构成的设备可以作为功能模块被并入到诸如计算机之类的硬件设备中。除了这些功能模块之外,计算机当然可以具有其他硬件或者软件部件。
3.根据本公开的实施例的通信方法
图4示出根据本公开的实施例的用于控制设备侧的电子设备的通信方法的流程 图。该通信方法例如可以用于如图3所示的电子设备300。
如图4中所示,在步骤S401中,确定向至少两个用户设备如102、103同时进行信号传输并且用于所述至少两个用户设备102、103的下行发射信号的方向的邻近程度满足预定条件。该步骤可以由图3中描述的电子设备300的处理电路303执行,具体来说,由邻近程度确定单元304执行。
在步骤S402中,获取基于用于至少两个用户设备102、103的下行发射信号的方向而确定的用于下行波束赋形的被激活的天线阵元的数量。该步骤可以由图3中描述的电子设备300的处理电路303执行,具体来说,由激活数量获取单元305执行。类似地,通过选取在波谷点处值,即只激活一部分天线阵元并且关闭其它天线阵元,可以降低用户设备102、103之间的干扰并得到最优的频谱效率。
4.根据本公开的实施例的天线阵元数量的确定
下面先描述如何确定发射信号的方向的实施例,然后重点介绍确定激活的天线阵元的数量的实施例。
4-1.发射信号的方向的确定
4-1-1.波束扫描介绍
在大规模多天线系统中,基站和用户设备UE具有支持大规模多天线技术的多个天线阵元。大规模多天线技术的使用使得基站和UE能够利用空域来支持空间复用、波束赋形和发射分集。空间复用一般在信道状况良好时使用。在信道状况不那么有利时,可使用波束赋形来将发射能量集中在一个或多个方向上。为了更好理解发射信号的方向的确定,下面先参照图1和图2介绍大规模多天线系统中的波束扫描。
图1中表示从基站101到用户设备102-104的下行链路方向,根据本公开的需要并且为了简明,并未示出从用户设备102-104到基站101的上行链路方向。如图1所示,基站101包括3个下行发射波束,用户设备102-104包括一定数量(例如本实施例中为1个,但不限于1个,可以为更多个)的下行接收波束,此处为了示出根据本公开的用户设备之间的邻近程度,并未示出用户设备的下行接收波束、用户设备的上行发射波束以及基站的上行接收波束。但应当理解,根据系统需求和设定,基站101的上行接收波束和下行发射波束的覆盖范围以及数量可以相同也可以不同,用户设备也是如此。
在下行波束扫描过程中,例如,基站101的3个下行发射波束中的下行发射波束105 利用CSI-RS资源1向用户设备102-104发送下行参考信号CSI-RS1,用户设备102通过至少1个下行接收波束接收该下行参考信号。类似地,用户设备103通过至少1个下行接收波束接收该下行参考信号并且用户设备104通过至少1个下行接收波束接收该下行参考信号。
以这种方式,基站101的3个下行发射波束中的另两个发射波束106、107依次利用CSI-RS资源2、3向用户设备102-104发送下行参考信号CSI-RS2、CSI-RS3,用户设备102-104分别通过至少1个下行接收波束来接收另两个下行参考信号CSI-RS2、CSI-RS3,即用户设备102-104的下行接收波束共接收来自基站101的3个发射波束上的参考信号。
用户设备102对所接收的3个下行参考信号CSI-RS1、CSI-RS2、和CSI-RS3进行测量(例如测量下行参考信号的接收信号功率(RSRP)),从而确定基站101的下行发射波束中具有最好接收质量的下行发射波束的序号。在图1的示例中,用户设备102确定序号为105的波束作为其具有最好接收质量的下行发射波束。
类似地,用户设备103对所接收的3个下行参考信号进行测量,从而确定基站101的下行发射波束中具有最好接收质量的下行发射波束的序号,如106。用户设备104对所接收的3个下行参考信号进行测量,从而确定基站101的下行发射波束中具有最好接收质量的下行发射波束的序号,如107。在确定出各自的具有最好接收质量的下行发射波束之后,用户设备102-104可以通过通信协议的信令例如在物理上行数据信道PUSCH上的MAC层信令或PHY层信令,或者物理上行控制信道PUCCH上的PHY层信令将该信息发送给基站101,这也可参照下文第5节的描述。
上行波束扫描的过程与下行波束扫描类似,本公开的实施例不对上行波束扫描进行赘述。在完成了下行波束扫描和上行波束扫描过程之后,利用所确定的基站的发射波束和用户设备的最强收发波束来进行接下来的数据和/或控制信号的下行传输。上述通过波束扫描来确定基站和用户设备的发射波束的过程有时也称为波束训练过程。
4-1-2.发射信号的方向的第一示例
在该示例中,根据用于这些用户设备102-104的发射波束的方向来表示用于这些用户设备的下行发射信号的方向。
如第4-1-1节所述,在波束扫描之后,基站101和用户设备102-104都已知用于各个用户设备102-104的发射波束的序号。因为在基站利用该次波束扫描的结果通过下行波束赋形与用户设备通信期间,波束赋形码本例如下文第6节介绍的DFT码 本是固定的,由此产生的各个发射波束的指向方向(波束方向)都是相对固定的,因此基站101和用户设备102-104均能够知道各个发射波束的波束方向,所以可以直接用波束方向来表示发射信号的方向θ i
接下来,如第2节所述,处理电路303可以使用如此得到的发射信号的方向θ i来确定两个用户设备102、103的邻近程度φ=cosθ i-cosθ j。如果该邻近程度φ=cosθ i-cosθ j小于预定阈值,则邻近程度确定单元304确定该邻近程度满足预定条件。
替代地,在各个发射波束的指向方向(波束方向)都是相对固定的情况下,波束方向和波束的序号存在对应关系,因此也可以通过波束的序号之间的大小关系表示预定阈值,其具体范围可由基站码本个数及不同码字决定的不同发射波束之间的邻近程度决定,例如±1,2。例如,当用于不同用户设备102、103的波束的序号之间的大小关系低于预定阈值,则邻近程度确定单元304确定该邻近程度满足预定条件。
从以上描述可知,一旦通过波束扫描过程确定了用于用户设备的发射波束的序号,则基站和用户设备双方就可以知道下行波束赋形传输的发射信号的方向。根据发射波束的序号来确定发射信号的方向可以快速地确定发射信号的方向并且然后判断这些发射信号的方向的邻近程度是否满足预定条件。
此外,在该示例中描述的根据发射波束的序号来确定发射信号的方向对额外资源或者操作要求较少,可以广泛地适用于各种情况,例如频分双工FDD和时分双工TDD。
4-1-3.发射信号的方向的第二示例
在上述4-1-2节的第一示例中,根据发射波束的序号来确定发射信号的方向可以快速地确定发射信号的方向。但是因为用户设备可能位于发射波束覆盖的范围内的不同位置,所以基站到用户设备的发射信号的方向实际上可能与发射波束的波束方向存在一定的偏差,从而影响发射信号的方向的确定的准确性。
因此,在本示例中,为了提高发射信号的方向的确定的准确性,在第4-1-2节的基础上,本发明人提出根据从基站101向用户设备102-104的下行发射信号的发射角来表示用于这些用户设备的下行发射信号的方向。
具体而言,用户设备例如用户设备102利用其对各个下行发射波束的接收质量,通过插值方法,可以估计出用户设备102所在位置的基站信号发射角。
例如在LoS视距信道的情况下,假设基站101到用户设备102的发射角为α,信道为 h(α),,则用户设备102对K个下行发射波束b(θ k),k=1,…K的接收质量分别为:
Figure PCTCN2018104835-appb-000014
接收质量例如通过测量下行参考信号的接收信号功率(例如RSRP)来获得。通过如此获得的q k与已知的波束方向θ k和天线阵元的数量M,可以根据式(7)将α计算出来。
优选地,通过根据多个q k获得的多个发射角的计算结果取平均,可以使得发射角α的估计更加精确。
优选地,当信道环境较复杂时,通过根据多个q k获得的多个发射角进行线性插值,如多项式插值法,或者进行非线性插值等方法,可估计出更加精确的α。
对于其它用户设备103、104,也可以类似地计算它们各自的发射角。在计算出各自的发射角之后,用户设备102-104可以通过例如物理上行数据信道将发射角发送给基站101,这也可参照下文第5节的描述。
接下来,处理电路303可以使用如此得到的发射角作为下行发射信号的方向θ i来确定两个用户设备102、103的邻近程度φ=cosθ i-cosθ j。如果该邻近程度φ=cosθ i-cosθ j小于预定阈值,则邻近程度确定单元304确定该邻近程度满足预定条件。
对于此处未具体描述的其它方面,可以参照第4-1-2节的第一示例进行理解。
4-1-4.发射信号的方向的第三示例
在前面的第一示例和第二示例中,都要用到第4-1-1节中的作为波束扫描的结果的波束序号来确定发射信号的方向。在本示例中,提出一种更简单的方式,其利用具有互易信道特性的信道来直接根据从用户设备102-104向基站101发射的上行发射信号的方向来确定下行发射信号的方向,而无须利用波束序号。
这里的上行发射信号可以例如是上行参考信号SRS(Sounding Reference Signal)。在这种情况下,基站101根据收到的上行参考信号SRS来进行上行信道估计,从而获得从用户设备102-104向基站101发射的上行发射信号的到达角,即上行发射信号的方向与天线阵列平面的夹角。从而,因为信道具有互易性,可以直接根据该到达角确定下行发射信号的发射角,作为下行发射信号的方向。
接下来,如第2节所述,处理电路303可以使用如此得到的发射信号的方向θ i来 确定两个用户设备102、103的邻近程度φ=cosθ i-cosθ j。如果该邻近程度φ=cosθ i-cosθ j小于预定阈值,则邻近程度确定单元304确定该邻近程度满足预定条件。
从以上描述可知,本示例不利用通过波束扫描过程确定的用于用户设备的发射波束的序号,因此也避免了基站到用户设备的发射信号的方向与发射波束的波束方向之间存在的偏差。在本示例中,利用了信道互易特性,直接根据上行发射信号的方向来确定下行发射信号的方向,也可以快速且准确地确定下行发射信号的方向并且然后判断这些发射信号的方向的邻近程度是否满足预定条件。
在该示例中,上行参考信号被选取为SRS,但这仅是示例而不是限制本公开的范围。应当理解,其它上行参考信号例如DM-RS也可以被用来实现信道估计来确定上行发射信号的方向。
这个示例的确定发射信号的方向的准确度取决于通过上行参考信号进行信道估计从而确定上行发射信号的方向的准确度。已经知道有很多方法用于确定上行发射信号的到达角,例如传统的ESPRIT(借助旋转不变技术估计信号参数)、MUSIC(基于矩阵特征空间分解)算法,也有基于压缩感知的信号到达角估计方法,等等。
对于此处未具体描述的其它方面,可以参照第4-1-2节的第一示例进行理解。
这些都是确定下行发射信号的方向的示例,而并非限制本公开的范围。在确定了下行发射信号的方向并且然后判断这些发射信号的方向的邻近程度满足预定条件的情况下,激活数量获取单元305就可以获取基于用于至少两个用户设备102、103的下行发射信号的方向而确定的大规模多天线系统中用于下行波束赋形的被激活的天线阵元的数量。下面对此进行详细说明。
4-2.天线阵元的数量的确定示例1
在该示例中,激活数量获取单元305基于用于至少两个用户设备102、103的下行发射信号的方向来确定用于下行波束赋形的被激活的天线阵元的数量。
假设天线阵元的总数量为M,记b i为用于第i个用户设备的在激活N根天线的情况下的下行波束赋形向量,如下:
Figure PCTCN2018104835-appb-000015
其中,
Figure PCTCN2018104835-appb-000016
为功率归一化因子,0 1×(M-N)为1×(M-N)维的零向量,表明索引为N≤m≤M-1 的向量元素取零。
把上式(8)的波束赋形向量代入前面的式(3)得到平均频谱效率为:
Figure PCTCN2018104835-appb-000017
其中A(N,φ) 2代表用户设备102、103之间的干扰,
Figure PCTCN2018104835-appb-000018
代表波束赋形后的噪声功率。如果要使平均频谱效率C最大,则需要使分母
Figure PCTCN2018104835-appb-000019
最小。因此,如下式(10)那样,通过选取最优天线阵元的数量N opt使分母
Figure PCTCN2018104835-appb-000020
最小,也就是使平均频谱效率C最大。
Figure PCTCN2018104835-appb-000021
在特别示例中,在高信噪比环境下,噪声功率较小可以忽略不计,因此可以主要考虑用户设备之间的干扰问题。在这种情况下,上式(10)可近似为次最优解,通过选取N sub-opt使得用户设备之间的干扰A(N,φ) 2最小化,由此得到下式:
Figure PCTCN2018104835-appb-000022
如前面第1.2节所述,
Figure PCTCN2018104835-appb-000023
在本节中,对于A(N,φ) 2而言,因为分母中的常数sin(φπ/2)不影响结果,所以在计算中可以忽略。为了进一步简化,可以忽略线性因子N。在这种情况下,上式(11)可近一步简化为:
Figure PCTCN2018104835-appb-000024
针对B(N,φ)可以采用传统穷搜方法得到,也就是说,对于激活的天线阵元的数量N从天线阵元的总数量M到1递减地搜索来确定用于进行下行波束赋形的N sub-opt
通过预先设定阈值η,得到N sub-opt候选集为:
Figure PCTCN2018104835-appb-000025
最终的N sub-opt与N opt可由以下候选集合中得到:
Figure PCTCN2018104835-appb-000026
Figure PCTCN2018104835-appb-000027
4-3.天线阵元的数量的确定示例2
在第4-2节的示例1中,通过传统穷搜方法得到N opt的复杂度为O(M),可见随着天线阵元的数量M增加,复杂度非常高,这对于处理电路303或者激活数量获取单元305的负担非常大并且可能导致计算时间不正当地延长,不利于通信系统效率的提升。
在这种情况下,如果对结果要求不是特别严格,则可以直接采用第一次搜索到的使B(N,φ)小于设定阈值η的被激活的天线阵元的数量N sub-opt,来用于下行波束赋形,而不是再从通过多次搜索而得到的最终集合中选取使B(N,φ)最小的N sub-opt。这是一种可以降低复杂度的方式,但是其可能无法获得使B(N,φ)最小的N sub-opt
为了既能降低复杂度又能获得使B(N,φ)最小的N sub-opt,本发明人进行了深入的工作。具体而言,发明人通过仿真发现渐近正交性B(N,φ)是随着被激活的天线阵元的数量N而变化的准周期序列,对于本示例中的条件而言,天线阵元的间距D为半波长D=λ/2,因此周期T近似为
Figure PCTCN2018104835-appb-000028
Figure PCTCN2018104835-appb-000029
接近于整数时,渐近正交性B(N,φ)非常接近0。图5示出渐近正交性B(N,φ)随着激活天线阵元的数量N变化的曲线。
根据B(N,φ)的这个特性,本发明人提出通过从天线阵元的总数量M开始周期性地搜索来确定用于下行波束赋形的被激活的天线阵元的数量N sub-opt。举例来说,当第一次搜索到使B(N,φ)小于设定阈值η的被激活的天线阵元的第一数量N sub-opt时,不再从该第一数量N sub-opt继续递减地搜索使B(N,φ)小于阈值η的被激活的天线阵元的数量,而是通过使该第一数量N sub-opt减去该周期来获得新的N值,在该N值附近进行搜索来获得使B(N,φ)小于阈值η的被激活的天线阵元的第二数量N sub-opt,以次类推,直至搜索到全部的使B(N,φ)小于阈值η的被激活的天线阵元的数量N sub-opt,作为上述集合。
因此可取的N sub-opt候选集为准周期性分布,其搜寻复杂度为
Figure PCTCN2018104835-appb-000030
对于邻近的用户设备102、103,φ较小,搜寻复杂度会大大降低。
在该示例中,所述周期T近似为
Figure PCTCN2018104835-appb-000031
搜索的周期T是根据用于与φ相关的这两个用户设备102、103的下行发射信号的方向来确定的,使得所述发射信号的方向越接近,用于搜索的周期越大。例如,对于天线阵元的间距D,周期T的更一般性表达为
Figure PCTCN2018104835-appb-000032
预定阈值η可以根据经验值来确定,也可以通过图5的仿真结果来确定。不同的预定 阈值η的确定将导致所述集合内的N sub-opt的候选值的数量不同。
4-4.天线阵元的数量的确定示例3
在前面的确定示例1和确定示例2中,被激活的天线阵元的数量都是实时计算得到的。尽管我们已经通过仿真得出了降低复杂度的方法,但还是产生实时的计算资源和时间的开销。
在该示例3中,提出一种通过预先的静态配置来避免实时的计算资源和时间的开销的方法。
具体而言,波束赋形码本例如DFT码本是固定的,由此基站产生的各个发射波束的指向方向(波束方向)都是相对固定的,因此基站101和用户设备102-104均能够知道各个发射波束的波束方向。
既然事先能够知道代表下行发射信号的方向的波束方向,那么直接使用确定示例1和确定示例2中的计算算法,可以预先逐个计算所述波束方向和激活的天线阵元的数量之间的对应关系。
因此,在该确定示例3中,预先把所有下行发射波束的方向与根据所有下行发射波束的方向而计算出的被激活的天线阵元的相应数目相关联地存储,例如以表格形式存储,以用于针对用户设备的下行波束赋形。
在实施时,如第4-1-2节所述,在波束扫描之后,基站101和用户设备102-104都已知用于各个用户设备102-104的发射波束的序号。如第2节所述,如果确定邻近程度满足预定条件,则可以直接通过搜索预先存储的表格来确定针对用户设备需要激活的天线阵元的数量。由此可见,在可以用波束方向表示下行发射信号的方向的情况下,该示例通过预先的静态配置避免了耗时的实时计算,从而进一步提高确定激活的天线阵元的数量的效率。
在上述的三个示例中,无论实时计算还是预先配置,激活数量获取单元305需要基于用于至少两个用户设备102、103的下行发射信号的方向来确定用于下行波束赋形的被激活的天线阵元的数量。在替代示例中,用于下行波束赋形的被激活的天线阵元的数量可以在用户设备中确定,然后激活数量获取单元305通过例如物理上行数据信道获取该数量,这将在下文第5-3和5-4节中详细描述。
5.根据本公开的实施例的通信过程
图6A-6B和图7A-7B是本公开的实施例的通信过程的示意图,用于更详细地理解上述的实施例的实施。
5-1.确定激活的天线阵元的数量的过程的第一示例
图6A是根据本公开的实施例的下行通信过程的示意图,其可以适用于基站101和用户设备102-104之间的TDD下行通信或FDD下行通信,这里TDD和FDD仅为示例,而并非限制本公开。
下面以FDD下行通信过程为例说明该示例,但应当理解这些说明也同样适用于TDD下行通信过程。
S601至步骤S604对应于附图4中的步骤S401,用于确定向至少两个用户设备如102、103同时进行信号传输并且用于所述至少两个用户设备102、103的下行发射信号的方向的邻近程度满足预定条件。
在步骤S601中,基于例如包含L个基础DFT码字c l的码本,基站101提供L个下行发射波束用于波束训练。
在步骤S602中,对于每个下行发射波束,用户设备102计算其接收质量Q l,其中包含噪声功率水平的量化值,并选择具有最好接收质量
Figure PCTCN2018104835-appb-000033
的波束序号l o
在一个示例中,噪声功率水平可以是参考信号接收功率RSRP的形式,基站101接收到反馈的RSRP值,可以大致估计出用户设备的噪声水平。在另一示例中,噪声功率水平还可以是用户设备通过信道估计而得到的信干噪比SINR的形式。
在步骤S603中,用户设备102向基站101反馈波束训练信息,包含最佳波束序号l o,以及可选地还有对应接收质量
Figure PCTCN2018104835-appb-000034
、噪声功率水平的量化值。类似地,用户设备103向基站反馈波束训练信息,包含最佳波束序号l i,以及可选地还有对应接收质量Q li、噪声功率水平的量化值。
在步骤S604中,基站101确定向至少两个用户设备如102、103同时进行信号传输并且用于所述至少两个用户设备102、103的下行发射波束的方向的邻近程度满足预定条件,如第4-1-2节和第2节所述,此处不再赘述。
步骤S605-S606对应于附图4中的步骤S402,用于基于用于至少两个用户设备102、103的下行发射波束的方向来确定用于下行波束赋形的被激活的天线阵元的数量。
在步骤S605中,基站101基于从用户设备102、103发送(反馈)的信息,包含至少最佳波束序号l o和邻近波束序号l i,来计算用于用户设备102、103的激活的天线阵元的数 量N sub-opt
优选地,基站101基于从用户设备发送(反馈)的信息,包含最佳波束序号l o和邻近波束序号l i以及噪声功率水平的量化值,来计算用户设备102、103的激活的天线阵元的数量N opt
在一个示例中,在两个用户设备102、103的噪声功率相同的情况下,对于每个用户设备102、103计算出的激活的天线阵元的数量是相同的。
在另一个示例中,在两个用户设备102、103的噪声功率不相同的情况下,对于每个用户设备102、103计算出的激活的天线阵元的数量可以是不同的。此时可以优化平均频谱效率,即选择其中一个激活的天线阵元的数量,使得下行波束赋形传输的平均频谱效率最大化即可。
在一个优选示例中,对于长期比较稳定的信道环境,可以在用户设备初始接入基站时测量一次噪声功率,之后使用该测量的噪声功率进行计算激活的天线阵元的数量即可,而不再反馈噪声功率水平。仅在信道状态发生变化或者用于这些用户设备的下行发射波束需要切换的情况下才再次计算噪声功率水平,从而可以节省计算和传输资源。
在步骤S606中,基站101激活所确定的数量的天线阵元进行下行的波束赋形。在第6节中将结合本公开的新型码本的实施例来描述该步骤的更多细节。
在优选示例中,在所有天线阵元中,激活的天线阵元是连续选取的。所有天线阵元中的首尾天线阵元也视为彼此连续的。
如第4-1-2节所述,根据从基站101向用户设备102-104的下行发射波束的序号来表示用于这些用户设备的下行发射信号的方向,可以迅速且广泛地适用各种情景,并因此提高激活的天线阵元的数量确定的简便和适用性。
5-2.确定激活的天线阵元的数量的过程的第二示例
图6B是根据本公开的实施例的下行通信过程的示意图,其可以适用于基站101和用户设备102-104之间的TDD下行通信或FDD下行通信,这里TDD和FDD仅为示例,而并非限制本公开。下面主要说明与第一示例不同之处,相同之处不再赘述并且可以参照第一示例进行理解。
第二示例与第一示例的主要区别在于增加了步骤S602’。在该步骤S602’中,根据第4-1-3节描述的方法,用户设备例如用户设备102利用其对各个下行发射波束的接收质量,通过插值方法,可以估计出用户设备102所在位置的发射角。
因此,在步骤S603中,用户设备102向基站101反馈波束训练信息,除了包含最佳波束序号l o,以及可选地还有对应接收质量
Figure PCTCN2018104835-appb-000035
、噪声功率水平的量化值之外,还包括用于该用户设备102的发射角。类似地,用户设备103向基站反馈波束训练信息,除了包含最佳波束序号l i,以及可选地还有对应接收质量Q li、噪声功率水平的量化值之外,还包括用于该用户设备103的发射角。
在步骤S604中,基站101确定向至少两个用户设备如102、103同时进行信号传输并且用于所述至少两个用户设备102、103的下行发射角的邻近程度满足预定条件,如第4-1-3节和第2节所述,此处不再赘述。
在步骤S605中,基站101基于从用户设备发送(反馈)的信息,至少包含发射角,来计算用户设备102、103的激活的天线阵元的数量N sub-opt或N opt
如第4-1-3节所述,根据从基站101向用户设备102-104的下行发射信号的发射角来表示用于这些用户设备的下行发射信号的方向,可以提高发射信号的方向的确定的准确性并因此提高激活的天线阵元的数量确定的准确性。
5-3.确定激活的天线阵元的数量的过程的第三示例
图6C是根据本公开的实施例的下行通信过程的示意图,其可以适用于基站101和用户设备102-104之间的TDD下行通信或FDD下行通信,这里TDD和FDD仅为示例,而并非限制本公开。
下面以FDD下行通信过程为例说明该示例,但应当理解这些说明也同样适用于TDD下行通信过程。该示例是第一示例的变型,主要变化在于确定激活的天线阵元的数量(本示例中的步骤S603)是在用户设备一侧进行的。
步骤S605对应于附图4中的步骤S401,用于确定向至少两个用户设备如102、103同时进行信号传输并且用于所述至少两个用户设备102、103的下行发射信号的方向的邻近程度满足预定条件。步骤S603则对应于附图4中的步骤S402。
在步骤S601中,基于例如包含L个基础DFT码字c l的码本,基站101提供L个下行发射波束用于波束训练。
在步骤S602中,对于每个下行发射波束,用户设备102计算其接收质量Q l,其中包含噪声功率水平的量化值,并选择具有最好接收质量
Figure PCTCN2018104835-appb-000036
的波束序号l o
在步骤S603中,用户设备102根据代表下行发射信号的方向的波束方向来计算针对其邻近波束的激活的天线阵元的数量N opt或N sub-opt
在步骤S604中,用户设备102向基站101反馈波束训练信息,包含最佳波束序号l o及其可选的对应接收质量
Figure PCTCN2018104835-appb-000037
,邻近波束序号l i以及激活的天线阵元的数量N opt或N sub-opt。邻近波束是指与具有最好接收质量的波束靠近的波束,这些波束对用户设备形成较大的干扰,需要通过控制激活的天线阵元的数量进行波束赋形来消除干扰。这里用户设备在接入过程中,可以上报邻近2个(左右各1个)、或4个(左右各2个)的邻近波束,具体数量与基站达成约定即可,关于邻近波束还可参见第4-1-2节的阈值设定。
在步骤S605中,基站101确定邻近用户设备103选择了邻近波束l i
即,基站101确定向至少两个用户设备如102、103同时进行信号传输并且用于所述至少两个用户设备102、103的下行发射波束的方向的邻近程度满足预定条件,如第4-1-2节和第2节所述,此处不再赘述。
在步骤S606中,基站101激活所确定的数量N opt或N sub-opt的天线阵元进行下行波束赋形。
5-4.确定激活的天线阵元的数量的过程的第四示例
图6D是根据本公开的实施例的下行通信过程的示意图,其可以适用于基站101和用户设备102-104之间的TDD下行通信或FDD下行通信。下面主要说明与第三示例不同之处,相同之处不再赘述并且可以参照第三示例进行理解。
该示例还是第二示例的变型,主要变化在于确定激活的天线阵元的数量(该示例的步骤S603)是在用户设备一侧进行的。
第四示例与第三示例的主要区别在于增加了步骤S602’。在该步骤S602’中,根据第4-1-3节描述的方法,用户设备例如用户设备102利用其对各个下行发射波束的接收质量,通过插值方法,可以估计出用户设备102所在位置的发射角。
因此,在步骤S603中,用户设备102根据代表下行发射信号的方向的发射角与邻近波束l i的波束方向来计算针对其邻近波束的激活的天线阵元的数量N opt或N sub-opt。这个区别是因为每个用户设备如用户设备102只计算自己的发射角而不知道相邻用户设备如用户设备103的发射角,因此该用户设备使用自己的发射角和相邻波束方向,而不能像基站一样使用两个相邻用户设备的发射角进行计算激活的天线阵元的数量。由此可知,第四示例的准确度要低于第二示例。
其余步骤可以参照第三示例进行理解。
5-5.确定激活的天线阵元的数量的过程的第五示例
图7A是根据本公开的实施例的下行通信过程的示意图,其可以适用于基站101和用户设备102-104之间具有互易信道特性的通信,比如TDD下行通信,这里TDD是示例而并非限制本公开。
下面以TDD下行通信过程为例说明该示例。
在步骤S701中,用户设备102向基站101发送上行参考信号例如SRS信号用于上行信道估计。类似地,用户设备103向基站101发送上行参考信号例如SRS信号用于上行信道估计。
在步骤S702中,基站101根据上行参考信号估计上行信道并获得用户设备102向基站101发射的上行发射信号的方向,即信号到达角。类似地,基站101获得用户设备103向基站101发射的上行发射信号的方向。然后基站101直接根据所述到达角来确定下行发射信号的发射角,作为下行发射信号的方向,并且确定用于所述至少两个用户设备102、103的下行发射波束的方向的邻近程度满足预定条件。详细的描述请参见第4-1-4节,此处不再赘述。
优选地,基站101根据上行参考信号估计上行信道并获得上行的噪声功率。
在步骤S703中,基站101可以根据如此获得的用于用户设备的发射信号的方向来计算激活的天线阵元的数量N sub-opt
优选地,基站101可以根据如此获得的用于用户设备的发射信号的方向和噪声功率来计算激活的天线阵元的数量N opt。因为下行通信的噪声功率可能与上行通信的噪声功率不同,因此数量N opt可能不是最优的。
在步骤S704中,基站101激活所确定的数量的天线阵元进行波束赋形进行下行数据传输。
在该第五示例中未提及的部分可以参照第一示例进行理解。如第4-1-4节所述,根据从用户设备102、103向基站101的上行发射信号的方向来表示用于这些用户设备的下行发射信号的方向,可以快速且准确地确定下行发射信号的方向,并因此提高激活的天线阵元的数量确定的效率。
5-6.确定激活的天线阵元的数量的过程的第六示例
图7B是根据本公开的实施例的下行通信过程的示意图,其也可以适用于基站101和用户设备102-104之间具有互易信道特性的通信。下面主要说明与第五示例不同之处,相同之处不再赘述并且可以参照第五示例进行理解。
第六示例与第五示例的主要区别在于增加了步骤S705至S708以便基站101计算最优的激活数量N opt
在步骤S705中,基站101在步骤S704中发送下行参考信号如CSI-RS的情况下,用户设备102、103估计下行信道,从而获得下行信道状态信息及其噪声功率量化值。
在步骤S706中,用户设备102、103向基站101发送(反馈)更精确的噪声功率量化值以及可能有的其它下行信道状态信息。
在步骤S707中,基站101根据用户设备102、103发送的噪声功率量化值来计算激活的天线阵元的最优数量N opt
在步骤S708中,基站101激活所确定的数量N opt的天线阵元进行下行波束赋形。
如第六示例所述,通过进一步发送波束赋形的下行参考信号,可以获取更精确的下行信道状态信息及下行噪声功率,以使得基站101可以与第五示例相比更准确地计算激活的天线阵元的最优数量N opt
6.根据本公开的实施例的码本设计
如前所述,在步骤S606中,基站101激活所确定的数量的天线阵元进行下行波束赋形。本实施例将结合发明人的创新性的设计来对此展开描述。
具体来说,在本实施例中,通过设计新型码本以便于在已有发射架构下实现通过激活所确定数量的天线阵元进行波束赋形。
6-1.传统码本设计
基于码本的波束赋形是在接收端和发送端预设置波束赋形码本,该码本包括多个波束赋形矩阵。接收端首先根据波束扫描过程确定发送端的多个发射波束中接收情况最佳的发射波束,然后将该发射波束的指示信息例如序号、所在的资源反馈给发送端。发送端根据该指示信息选择对应于该发射波束的模拟预编码矩阵进行波束赋形。
举例来说,基站101向用户设备102-104的各发射波束可以通过DFT(DiscreteFourier Transform,离散傅立叶变换)向量来产生,也称为码字,这些DFT向量的集合称为DFT码本。下面以基站侧的下行发射波束为例进行介绍,基站侧的上行接收波束以及用户设备侧的收发波束也可以通过类似的方法产生。
假设在基站侧配备有n t根发射天线,则基站101到用户设备的等效信道可以表示为一个n t×1的向量H。DFT向量u可以表示为:
Figure PCTCN2018104835-appb-000038
其中,DFT向量u的长度为n t,C表示用于调节波束的宽度和赋形增益的参数,“T”表示转置运算符。
基站到用户设备的等效信道H与DFT向量u相乘可以得到基站的一个发射波束(例如图1中所示的下行发射波束105、106、107中的一个)。
在一个实施例中,该式(14)中的用于调节波束的宽度和赋形增益的参数C可以用两个参数O 2、N 2的乘积来表示,通过分别调节两个参数O 2、N 2,可以调整波束的宽度和赋形增益。一般来说,天线的数量n t越大,或者参数C(例如O 2、N 2的乘积)越大,则所得到的波束的空间指向性越强,但波束宽度一般也越窄。在一个实施例中,可以取O 2=1并且N 2=1,这样得到的DFT向量u是n t个元素都为1的向量。
6-2.本公开的码本设计
虽然传统DFT码本基于其中每个码字都是DFT向量的DFT码本来用于下行波束赋形与信道匹配,但是传统DFT码本中的码字不包含零元素,因此需要每个天线阵元连接的移相器都旋转一定相位,而无法控制天线阵元是否被激活。
因此,本公开提出一种新型码本,即基于所确定的被激活的天线阵元的数量与全激活的天线波束赋形的码本来确定用于针对所确定数量的天线阵元进行波束赋形的码本。该新型码本包括两个层次,第一层为传统的基础DFT码本,记为C=[c 0,…,c L]∈C M×L,其中c i,l=0,…,L-1为第l个DFT码字。第二层为激活指示码本或矩阵,其结构为:
Figure PCTCN2018104835-appb-000039
其中M是天线阵元的总数量,N opt是针对干扰的用户设备102、103计算出的激活的天线阵元的最优数量,激活指示码本用于表明对于例如用户设备102、103而言连接至第N opt≤m≤M-1个天线阵元的移相器处于关闭状态。而最终生成的波束赋形的码字由第一层DFT码字与第二层激活指示矩阵相乘得到,如下:
b i=Dc l    (16)
采用该新型码本进行波束赋形,因为针对不同的用户设备可以激活不同数量的天线阵元,所以对部分激活天线阵元的波束赋形可以提供更高的实现自由度。
7.根据本公开的实施例的在控制设备侧的电子设备的结构
下面参照图8A-8C说明实现第6-2节中所描述的新型码本设计的电子设备的结构。
已知相控阵天线的混合预编码结构有两种,一种是全连接式的,另一种是子连接式的。在全连接式结构下,每个射频链路都与所有天线阵元相连接。在子连接式结构下,每个射频链路例如连接一部分天线阵元,即每个天线阵元与一个射频链路相连接。
7-1.全连接式结构的示例
图8A示出根据本公开的实施例的电子设备的全连接式结构的示例。除了图3的框图一般性地示出的通信单元301、存储器302和处理电路303,该电子设备还包括:射频链路单元801,每个射频链路单元把数据流传递到移相器802;移相器802,每一移相器用于对接收到的数据流的信号进行波束赋形;开关803,连接于每一移相器802与每一天线阵元805之间,基于所述处理电路303的控制信号,每个开关803用于控制与该开关对应的天线阵元的激活或去激活;以及天线阵列,天线阵列中的每一个激活的天线阵元805用于把波束赋形后的信号发射。此外,该电子设备还可以包括合路器804,用于对来自各路RF链路单元的信号合并到对应的天线阵元805。
如前所述,在全连接式结构中,每个射频链路单元801与所有天线阵元分别耦接。因此,对于图8A的结构,假设存在与K个用户设备对应的K个RF链路单元801和M个天线阵元805,则共需要K×M个移相器。由移相器802进行的波束赋形可以例如基于来自处理电路303的与下行发射波束对应的DFT码字来调整接收到的数据流的信号的相位。
在图8A所示的结构中,与传统的全连接式结构不同,还设置有连接在每个移相器802与对应的天线阵元805之间的开关803,这些开关可以是适用于射频链路的各种类型的开关(例如开关二极管)。在本示例中,开关可以与移相器对应,由于共设置有K×M个移相器,所以对应地设置有K×M个开关。开关805可以控制由射频链路单元发送的数据流的信号是否能够被对应的天线阵元发射。例如,当第1个开关803闭合时,由第1个射频链路单元801传送的数据流的信号在经由对应的第1个移相器802进行波束赋形后可以被传递到对应的第1个天线阵元805并由该天线阵元805发射,此时该天线阵元805对于第1个射频链路单元801而言是激活的。当第1个开关803断开时,由第1个射频链路单元801传送的数据流的信号在经由第1个移相器802进行波束赋形后不能被传递到对应的第1个天线阵元805,此时第1个天线阵元805对于第1 个射频链路单元801而言是去激活的。其它开关的操作原理也是类似的。由此,从具体的射频链路单元的角度来看,每个开关可以用于控制与该开关对应的天线阵元的激活或去激活。激活的天线阵元可以发射对应的波束赋形后的信号;去激活的天线阵元不发射对应的波束赋形后的信号。
根据一个示例,开关803对于与该开关对应的天线阵元805的激活或去激活的控制可以基于来自处理电路303的控制信号。处理电路303根据所确定的激活的天线阵元的数量来提供该控制信号,其可以指定激活N个天线阵元(N小于或等于M),例如第6.2节所述的激活指示矩阵,从而如前面所描述的那样减小用于不同用户设备的波束赋形传输之间的干扰并提升频谱效率。当控制信号指定激活N个天线阵元时,可以对于对应的RF链路单元801闭合N个开关而断开剩余的(M-N)个开关使得对应的被激活的天线阵元是N个连续的天线阵元。在其它示例中,控制信号也可以具体地指定激活哪N个连续的天线阵元。
尽管图8A示出开关803位于相对于移相器802更远离射频链路单元801的位置,但可以理解,在替代性示例中,开关803也可以位于移相器802与射频链路单元801之间。这样的结构的优点是:由于开关803与移相器802逐个对应,所以可以允许针对不同的射频链路单元激活不同数量的天线阵元,从而实现针对不同的用户设备使用不同数量的激活的天线阵元。这在相互干扰的两个用户设备的噪声功率水平不同或者用户设备的数量K>2时是有益的,这是因为对于不同的用户设备可能得到不同的激活的天线阵元的数量N。例如,当K=3时,为了减小用户设备1和用户设备2对用于用户设备3的波束赋形传输的干扰,对于用户设备1和用户设备3可能得到激活的天线阵元数量为N1,对于用户设备2和用户设备3可能得到最优激活天线阵元数为N2,并且N1不等于N2。在这种情况下,对于与用户设备1对应的第1个射频链路单元801可以闭合第1组M个开关中的N1个开关,而对于与用户设备2对应的第2个射频链路单元801可以闭合第2组M个开关中的N2个开关,这N1个开关与N2个开关是彼此无关的。
在以上示例中,开关803与移相器802逐个对应。尽管未示出,但是根据本公开的其它优选示例,开关也可以直接与天线阵元逐个对应,即总共有个M开关。图8B示出根据本公开的实施例的电子设备的全连接式结构的优选示例,其中,开关803位于天线阵元805之前并且在合路器804之后。在该优选示例中,可见开关的数量为M,其显著小于图8A的示例中的开关数量K×M。因此该优选示例大大降低了全连接式结构的成本。此外, 在这种情况下,当第1个开关803闭合时,与对应的第1个天线阵元805耦接的所有射频链路上的信号都可以由该天线阵元805发射;而当该开关闭合时,与对应的第1个天线阵元805耦接的所有射频链路上的信号都不能由该天线阵元805发射。其它开关的操作也类似。在该优选示例中,由于开关的闭合或打开影响与所有用户设备相对应的所有的射频链路单元,所以不能针对每个用户设备来使用不同数量的激活的天线阵元,而只能使用单一的激活天线阵元的数量。例如,对于相互干扰的两个用户设备的噪声功率水平不同或者用户设备的数量K>2时,可以确定一个激活的天线阵元的数量,使得用于这些用户设备的平均频谱效率最优。
根据本公开的一个替代示例,不使用开关803来控制天线阵元805的激活与去激活,而可以通过移相器基于波束赋形的新型码本对接收到的数据流的信号进行波束赋形。对于移相器而言,在一个变型中,采用可以取零的新型移相器,在该变型中,处理电路303根据所确定的激活的天线阵元的数量选择激活指示矩阵,同时选择与相应下行发射波束对应的DFT码字,将DFT码字与激活指示矩阵相乘用于控制新型移相器的相位。在另一个变型中,采用与放大器组合的传统移相器,放大器的幅值可以置零,在该变型中,处理电路303根据所确定的激活的天线阵元的数量选择激活指示矩阵,同时选择与相应下行发射波束对应的DFT码字,将DFT码字与激活指示矩阵相乘用于控制与放大器组合的传统移相器的幅值和相位。其它结构与本节的前述示例相同,不再赘述。该替代示例的优点是允许使用不具有开关的传统的全连接式结构。
7-2.子连接式结构的示例
图8C示出根据本公开的实施例的电子设备的子连接式结构的示例。与图8A的结构类似,除了图3的框图一般性地示出的通信单元301、存储器302和处理电路303,该电子设备还包括:射频链路单元801,每个射频链路单元把数据流传递到移相器802;移相器802,每一移相器用于对接收到的数据流的信号进行波束赋形;开关803,连接于每一移相器802与每一天线阵元805之间,基于所述处理电路303的控制信号,每个开关803用于控制与该开关对应的天线阵元的激活或去激活;以及天线阵列,天线阵列中的每一个激活的天线阵元805用于把波束赋形后的信号发射。此外,该电子设备还可以包括合路器804,用于对来自各路RF链路单元的信号合并到对应的开关803。在另一些示例中,如果移相器和天线阵元的数量相同,则该电子设备也可以不包括合路器。
下文主要描述子连接式结构与全连接式结构的区别,其它未描述的内容可以参照第7-1节进行理解。
如前所述,在子连接式结构中,每个射频链路单元801例如连接M/K个天线阵元,即每个天线阵元805与一个射频链路单元801相连接。因此,对于图8C的结构,假设存在与K个用户设备对应的K个RF链路单元801和M个天线阵元805,则共需要M个移相器。
在本示例中,开关803可以与移相器802对应,由于共设置有M个移相器,所以对应地设置有M个开关。开关805可以控制由射频链路单元801发送的数据流的信号是否能够被对应的天线阵元发射。类似地,开关803对于与该开关对应的天线阵元805的激活或去激活的控制可以基于来自处理电路303的控制信号。
尽管图8C示出开关803位于相对于移相器802更靠近天线单元805的位置,但可以理解,在替代性示例中,开关803也可以位于移相器802与射频链路单元801之间。无论开关803的位置如何,图8C的子连接式结构都可以获得如下优点:由于开关803总能与移相器802并因此与射频链路单元801对应,所以可以允许对不同的射频链路单元激活不同数量的天线阵元,从而实现针对不同的用户设备使用不同数量的激活的天线阵元。
根据本公开的一个替代示例,不使用开关803来控制天线阵元的激活与去激活,而可以通过移相器基于波束赋形的新型码本对接收到的数据流的信号进行波束赋形,这与第7-1节的描述类似,不再赘述。该替代示例的优点是允许使用不具有开关的传统的子连接式结构。
8.根据本公开的在用户设备侧的电子设备
下面参照图9A-图11B描述用户设备侧的电子设备和通信方法的实施例。
8-1.第一实施例
8-1-1.电子设备的结构
图9A示出根据本公开的实施例的在用户设备侧的电子设备9000如智能手机的框图。
根据第一实施例的电子设备9000可以包括例如通信单元9001、存储器9002和处理电路9003。
电子设备9000的处理电路9003提供电子设备9000的各种功能。例如,电子设备 9000的处理电路9003可以包括:波束确定单元9004,天线数量确定单元9005和反馈单元9006。波束确定单元9004可以确定对用于发射波束训练的各发射波束的接收质量,如第5-3节的步骤S602所述。天线数量确定单元9005可以根据具有最优接收质量的发射波束及其相邻发射波束的波束方向来确定用于向该电子设备9000进行下行波束赋形传输的被激活的天线阵元的数量,如第5-3节的步骤S603所述。反馈单元9006可以向发起发射波束训练的另一电子设备,例如第2节所述电子设备300,反馈所述具有最优接收质量的波束和相邻波束的序号以及该数量,如第5-3节的步骤S604所述。
电子设备9000的通信单元9001可被配置为在处理电路9003的控制下与前述的电子设备300执行通信。通信单元9001用虚线绘出,因为它还可以位于处理电路9003内或者位于电子设备9000之外。
存储器9002可以存储由处理电路9003产生的信息,通过通信单元9001从电子设备300接收的信息,用于电子设备9000操作的程序和数据,以及资源分配参数。存储器9002用虚线绘出,因为它还可以位于处理电路9003内或者位于存储器9002之外。存储器9002可以是易失性存储器和/或非易失性存储器。例如,存储器9002可以包括,但不限于,随机存取存储器(RAM)、动态随机存取存储器(DRAM)、静态随机存取存储器(SRAM)、只读存储器(ROM)以及闪存存储器。其它未描述的内容可参见第2节理解,此处不再赘述。
8-1-2.电子设备执行的通信方法
图9B示出本公开的用于用户设备侧的电子设备的通信方法的流程图。该通信方法例如可以用于如图9A所示的电子设备9000。
如图9B中所示,在步骤S9007中,确定对用于发射波束训练的各发射波束的接收质量,如第5-3节的步骤S602所述。
在步骤S9008中,根据具有最优接收质量的发射波束及其相邻发射波束的波束方向来确定用于向该电子设备进行下行波束赋形传输的被激活的天线阵元的数量,如第5-3节的步骤S603所述。
在步骤S9009中,向发起发射波束训练的另一电子设备,例如第2节所述电子设备300,反馈所述具有最优接收质量的波束和相邻波束的序号以及该数量,如第5-3节的步骤S604所述。
8-2.第二实施例
8-2-1.电子设备的结构
图10A示出根据本公开的实施例的在用户设备侧的电子设备1000如智能手机的框图。
根据第二实施例的电子设备1000可以包括例如通信单元1001、存储器1002和处理电路1003。
电子设备1000的处理电路1003提供电子设备1000的各种功能。例如,电子设备1000的处理电路1003可以包括:波束确定单元1004、发射角计算单元1005、天线数量确定单元1006和反馈单元1007。波束确定单元1004可以确定对用于发射波束训练的各发射波束的接收质量,如第5-3节的步骤S602所述。发射角计算单元1005可以针对具有最优接收质量的发射波束,计算从发起发射波束训练的另一电子设备,例如第2节所述电子设备300,向该电子设备的下行发射信号的发射角,如第5-4节的步骤S602’所述。天线数量确定单元1006可以根据该发射角和该具有最优接收质量的发射波束的相邻发射波束的波束方向来确定用于向该电子设备进行下行波束赋形传输的被激活的天线阵元的数量,如第5-3节的步骤S603所述。反馈单元1007可以向发起发射波束训练的所述另一电子设备反馈所述发射角、所述具有最优接收质量的发射波束和相邻发射波束的序号以及该数量,如第5-3节的步骤S604所述。
电子设备1000的通信单元1001和存储器1002与第一实施例类似,可参见第8-1-1节理解,此处不再赘述。
8-2-2.电子设备执行的通信方法
图10B示出本公开的用于用户设备侧的电子设备的通信方法的流程图。该通信方法例如可以用于如图10A所示的电子设备1000。
如图10B中所示,在步骤S1008中,确定对用于发射波束训练的各发射波束的接收质量,如第5-3节的步骤S602所述。
在步骤S1009中,针对具有最优接收质量的发射波束,计算从发起发射波束训练的另一电子设备向该电子设备的下行发射信号的发射角,如第5-4节的步骤S602’所述。
在步骤S1010中,根据该发射角和该具有最优接收质量的发射波束的相邻发射波束的波束方向来确定用于向该电子设备进行下行波束赋形传输的被激活的天线阵元的 数量,如第5-3节的步骤S603所述。
在步骤S1011中,向发起发射波束训练的所述另一电子设备,例如第2节所述的电子设备300,反馈所述发射角、所述具有最优接收质量的发射波束和相邻发射波束的序号以及该数量,如第5-3节的步骤S604所述。
8-3.第三实施例
8-3-1.电子设备的结构
图11A示出根据本公开的实施例的在用户设备侧的电子设备1100如智能手机的框图。
根据第三实施例的电子设备1100可以包括例如通信单元1101、存储器1102和处理电路1103。
电子设备1100的处理电路1103提供电子设备1100的各种功能。例如,电子设备1100的处理电路1103可以包括:发射单元1104、接收单元1105、估计单元1106和反馈单元1107。发射单元1104可以向另一电子设备,例如第2节所述的电子设备300,发射上行参考信号用于计算上行参考信号的方向,如第5-5节的步骤S701所述。接收单元1105可以接收下行参考信号,所述下行参考信号是另一电子设备使用根据所述上行参考信号的方向而确定的用于下行波束赋形的被激活的天线阵元的数量进行下行波束赋形发送的,如第5-5节的步骤S702至S704所述。估计单元1106为可选的,可以通过该下行参考信号估计下行信道,如第5-6节的步骤S705所述。反馈单元1107也是可选的,可以向所述另一电子设备反馈噪声功率,如第5-6节的步骤S706所述。
电子设备1100的通信单元1101和存储器1102与第一实施例类似,可参见第8-1-1节理解,此处不再赘述。
8-3-2.电子设备执行的通信方法
图11B示出本公开的用于用户设备侧的电子设备的通信方法的流程图。该通信方法例如可以用于如图11A所示的电子设备1100。
如图11B中所示,在步骤S1108中,向另一电子设备,例如第2节所述的电子设备300,发射上行参考信号用于计算上行参考信号的方向,如第5-5节的步骤S701所述。
在步骤S1109中,接收下行参考信号,所述下行参考信号是另一电子设备使用根据所述上行参考信号的方向而确定的用于下行波束赋形的被激活的天线阵元的数量进行下行波束赋形发送的,如第5-5节的步骤S702至S704所述。
步骤S1110是可选的,其中,通过该下行参考信号估计下行信道,如第5-6节的步骤S705所述。
步骤S1111是可选的,其中,向所述另一电子设备反馈噪声功率,如第5-6节的步骤S706所述。
9.根据本公开的用户调度
如图1所示,在大规模多天线系统中,不同用户设备之间的信道相关性很高并且干扰较大。
传统的用户调度策略中,为了降低干扰,使互相干扰的用户设备分配在不同的时频资源块内,以避免多用户设备之间的强烈的干扰。
在本公开的实施例中,因为针对所确定数量的天线阵元进行下行波束赋形可以降低用户设备之间的干扰,所以通过调整激活的天线阵元的数量可以把互相干扰的用户设备分配在相同或交叠的时频资源块内。
图12示出了在两个相互干扰的用户设备的情况下传统正交方式的用户调度采用的资源块数目(左)与根据本公开的实施例采用的资源块数目(右)。通过比较可见根据本公开的实施例节省了系统资源,提高了用户调度的自由度。
10.其它实施例
10-1.激活天线阵元的方式
在本公开的实施例中,假定需要激活N sub-opt个天线阵元,则需要关闭M-N sub-opt个天线阵元。激活的N sub-opt个天线阵元可以是M个天线阵元中的前N sub-opt个天线阵元,或者中间选取的N sub-opt个天线阵元,也可以是后面的N sub-opt个天线阵元。
在特别的实施例中,还可以交替地激活M个天线阵元中的奇数序号的天线阵元并关闭偶数序号的天线阵元,反之亦然。
优选地,激活的天线阵元是连续的N sub-opt个天线阵元,以保证激活的天线阵元仍然具有均匀线性天线阵列ULA信道结构。
10-2.天线阵元的间距
本公开的实施例可以适用于常见的天线阵列,例如均匀线性天线阵列ULA,均匀平面 阵列UPA,均匀圆形阵列UCA等。
本公开的实施例可以随天线阵元的间距而变化。优选地,对于均匀天线阵列,即天线阵元的间距D相同,本公开的前述实施例都可以经修改而适用。
例如,在前面的实施例中,假定D=λ/2进行了描述。
对于其它的间距D,设波长为λ,相应的表达式(5)、(8)和A(N,φ)成为如下形式:
Figure PCTCN2018104835-appb-000040
但是确定激活的天线阵元的数量的方法不变,只是针对相同的下行发射信号的方向,第5-3节中用于搜索的周期变为λ/(φD)。
10-3.多个(>2)用户设备的干扰
虽然上面以两个相互干扰的用户设备为例描述本公开的实施例,但是本公开的实施例适用于相互干扰的用户设备的数量K>2的情况。
在该实施例中,针对第i个用户设备,基站101需要计算其激活的天线阵元的数量
Figure PCTCN2018104835-appb-000041
针对该用户设备的邻近用户设备与该用户设备组成的对存在不同的φ ij=cosθ i-cosθ i,1≤i≠j≤K。由于存在多个邻近用户设备对,所以在实际实现时对于干扰第i个用户设备的不同用户设备对而言激活的天线阵元的数量也是不一样的,并且需要从每个用户数据流到天线阵元的移相器均由独立的开关控制。
对于各个用户设备重复上述过程,得到不同的激活数量的集合:
Figure PCTCN2018104835-appb-000042
其中
Figure PCTCN2018104835-appb-000043
为针对第i个用户设备与j个用户设备确定的激活数量的集合。
然后从该集合
Figure PCTCN2018104835-appb-000044
中选取针对不同用户设备的激活数量,使得平均频谱效率最大即可:
Figure PCTCN2018104835-appb-000045
11.根据本公开的实施例的仿真
为了评估根据本公开的实施例的电子设备和通信方法的性能,发明人对本公开的实施例与传统共轭转置的波束赋形传输进行了如下的对比实验。
考虑单小区系统,相互干扰的用户设备的数量为K=2,其下行发射角之差Δθ=|θ 12|表明用户设备的接近程度。基站采用M t=128个天线阵元,用户设备端采用M r=16个天线阵元。由于用户设备端也采用多天线进行传输,因此用户设备端可以通过多个接收波束,使得下行波束赋形后的噪声功率与用户设备间的干扰相比进一步降低。在此情况下式(10)成为:
Figure PCTCN2018104835-appb-000046
采用波束赋形前归一化信噪比
Figure PCTCN2018104835-appb-000047
对比结果如图13A-13C所示。
图13A示出了在不同的固定发射角之差的情况下,传统共轭转置的波束赋形与本公开的实施例的平均下行频谱效率对比。可见本公开的实施例采用N opt与N sub-opt个天线阵元进行部分激活波束赋形得到下行平均频谱效率均大于传统方案,尤其在Δθ较小时,对平均频谱效率的提升更加显著。
图13B示出了在固定的发射角之差Δθ=2°时,不同SNR的情况下传统共轭转置的波束赋形与本公开的实施例的性能对比。可见本公开的实施例在不同SNR时,均能获得较显著的下行平均频谱效率的提升。
图13C示出了在3D-MIMO场景下,基站采用64×64平面阵列的情况下传统共轭转置的波束赋形与本公开的实施例的性能对比图。本公开的实施例仍能获得性能增益。尤其当信噪比较高时,增益更为显著。
12.本公开的应用示例
本公开内容的技术能够应用于各种产品。
例如,用户侧电子设备9000、1000和1100可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户侧电子设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户侧电子设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如 包括单个晶片的集成电路模块)。
例如,控制设备侧电子设备300可以被实现为任何类型的基站,优选地,诸如3GPP的5G通信标准新无线电(New Radio,NR)接入技术中的宏gNB和小gNB。小gNB可以为覆盖比宏小区小的小区的gNB,诸如微微gNB、微gNB和家庭(毫微微)gNB。代替地,控制设备可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。控制设备可以包括:被配置为控制无线通信的主体(也称为基站设备)以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。
12-1.关于控制设备侧电子设备的应用示例
(第一应用示例)
应理解,本公开中的基站一词具有其通常含义的全部广度,并且至少包括被用于作为无线通信系统或无线电系统的一部分以便于通信的无线通信站。基站的例子可以例如是但不限于以下:基站可以是GSM系统中的基站收发信机(BTS)和基站控制器(BSC)中的一者或两者,可以是WCDMA系统中的无线电网络控制器(RNC)和NodeB中的一者或两者,可以是LTE和LTE-Advanced系统中的eNB,或者可以是未来通信系统中对应的网络节点(例如可能在5G通信系统中出现的gNB,等等)。在D2D、M2M以及V2V通信场景下,也可以将对通信具有控制功能的逻辑实体称为基站。在认知无线电通信场景下,还可以将起频谱协调作用的逻辑实体称为基站。
图14是示出可以应用本公开内容的技术的控制设备侧电子设备300的示意性配置的第一示例的框图。其中,电子设备300被示出为gNB 800。其中,gNB 800包括多个天线810以及基站设备820。基站设备820和每个天线810可以经由RF线缆彼此连接。
天线810中的每一个均包括多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线阵元),并且用于基站设备820发送和接收无线信号。如图14所示,gNB 800可以包括多个天线810。例如,多个天线810可以与gNB 800使用的多个频带兼容。图14示出其中gNB 800包括多个天线810的示例,这些天线810可以被用来实现本公开的实施例所述的大规模多天线系统。
基站设备820包括控制器821、存储器822、网络接口823以及无线通信接口825。
控制器821可以为例如CPU或DSP,并且操作基站设备820的较高层的各种功能。例如,控制器821可以包括上面所述的处理电路300,按照上面描述的方法来确定激 活的天线阵元的数量,或者控制电子设备300的各个部件。例如,控制器821根据由无线通信接口825处理的信号中的数据来生成数据分组,并经由网络接口823来传递所生成的分组。控制器821可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器821可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的gNB或核心网节点来执行。存储器822包括RAM和ROM,并且存储由控制器821执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口823为用于将基站设备820连接至核心网824的通信接口。控制器821可以经由网络接口823而与核心网节点或另外的gNB进行通信。在此情况下,gNB 800与核心网节点或其他gNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口823还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口823为无线通信接口,则与由无线通信接口825使用的频带相比,网络接口823可以使用较高频带用于无线通信。
无线通信接口825支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线810来提供到位于gNB 800的小区中的终端的无线连接。无线通信接口825通常可以包括例如基带(BB)处理器826和RF电路827。BB处理器826可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器821,BB处理器826可以具有上述逻辑功能的一部分或全部。BB处理器826可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器826的功能改变。该模块可以为插入到基站设备820的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路827可以包括例如混频器、滤波器和放大器,并且经由天线810来传送和接收无线信号。
如图14所示,无线通信接口825可以包括多个BB处理器826。例如,多个BB处理器826可以与gNB 800使用的多个频带兼容。如图14所示,无线通信接口825可以包括多个RF电路827。例如,多个RF电路827可以与多个天线元件兼容。虽然图14示出其中无线通信接口825包括多个BB处理器826和多个RF电路827的示例, 但是无线通信接口825也可以包括单个BB处理器826或单个RF电路827。
在图14中示出的gNB 800中,参考图3描述的处理电路303中包括的一个或多个组件(邻近程度确定单元304和激活数量获取单元305)可被实现在无线通信接口825中。可替代地,这些组件中的至少一部分可被实现在控制器821中。例如, gNB 800包含无线通信接口825的一部分(例如,BB处理器826)或者整体,和/或包括控制器821的模块,并且一个或多个组件可被实现在模块中。在这种情况下,模块可以存储用于允许处理器起一个或多个组件的作用的程序(换言之,用于允许处理器执行一个或多个组件的操作的程序),并且可以执行该程序。作为另一个示例,用于允许处理器起一个或多个组件的作用的程序可被安装在gNB 800中,并且无线通信接口825(例如,BB处理器826)和/或控制器821可以执行该程序。如上所述,作为包括一个或多个组件的装置,gNB 800、基站装置820或模块可被提供,并且用于允许处理器起一个或多个组件的作用的程序可被提供。另外,将程序记录在其中的可读介质可被提供。
另外,在图14中示出的gNB 800中,参考图3描述的通信单元301可被实现在无线通信接口825(例如,RF电路827)中。另外,通信单元301可被实现在控制器821和/或网络接口823中。
(第二应用示例)
图15是示出可以应用本公开内容的技术的控制设备侧电子设备300的示意性配置的第二示例的框图。控制设备可以包括例如电子设备300以用于下行传输。其中,电子设备300被示出为gNB 830。gNB 830包括一个或多个天线840、基站设备850和RRH 860。RRH 860和每个天线840可以经由RF线缆而彼此连接。基站设备850和RRH860可以经由诸如光纤线缆的高速线路而彼此连接。
天线840中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 860发送和接收无线信号。如图15所示,gNB 830可以包括多个天线840。例如,多个天线840可以与gNB 830使用的多个频带兼容。图15示出其中gNB 830包括多个天线840的示例,这些天线840可以被用来实现本公开的实施例所述的大规模多天线系统。
基站设备850包括控制器851、存储器852、网络接口853、无线通信接口855以及连接接口857。控制器851、存储器852和网络接口853与参照图14描述的控制 器821、存储器822和网络接口823相同。
无线通信接口855支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 860和天线840来提供到位于与RRH 860对应的扇区中的终端的无线通信。无线通信接口855通常可以包括例如BB处理器856。除了BB处理器856经由连接接口857连接到RRH 860的RF电路864之外,BB处理器856与参照图14描述的BB处理器826相同。如图15所示,无线通信接口855可以包括多个BB处理器856。例如,多个BB处理器856可以与gNB 830使用的多个频带兼容。虽然图15示出其中无线通信接口855包括多个BB处理器856的示例,但是无线通信接口855也可以包括单个BB处理器856。
连接接口857为用于将基站设备850(无线通信接口855)连接至RRH 860的接口。连接接口857还可以为用于将基站设备850(无线通信接口855)连接至RRH 860的上述高速线路中的通信的通信模块。
RRH 860包括连接接口861和无线通信接口863。
连接接口861为用于将RRH 860(无线通信接口863)连接至基站设备850的接口。连接接口861还可以为用于上述高速线路中的通信的通信模块。
无线通信接口863经由天线840来传送和接收无线信号。无线通信接口863通常可以包括例如RF电路864。RF电路864可以包括例如混频器、滤波器和放大器,并且经由天线840来传送和接收无线信号。如图15所示,无线通信接口863可以包括多个RF电路864。例如,多个RF电路864可以支持多个天线元件。虽然图15示出其中无线通信接口863包括多个RF电路864的示例,但是无线通信接口863也可以包括单个RF电路864。
在图15中示出的gNB 830中,参考图3描述的处理电路303中包括的一个或多个组件(邻近程度确定单元304和激活数量获取单元305)可被实现在无线通信接口855中。可替代地,这些组件中的至少一部分可被实现在控制器851中。例如,gNB 830包含无线通信接口855的一部分(例如,BB处理器856)或者整体,和/或包括控制器851的模块,并且一个或多个组件可被实现在模块中。在这种情况下,模块可以存储用于允许处理器起一个或多个组件的作用的程序(换言之,用于允许处理器执行一个或多个组件的操作的程序),并且可以执行该程序。作为另一个示例,用于允许处理器起一个或多个组件的作用的程序可被安装在gNB 830中,并且无线通信接口855 (例如,BB处理器856)和/或控制器851可以执行该程序。如上所述,作为包括一个或多个组件的装置,gNB 830、基站装置850或模块可被提供,并且用于允许处理器起一个或多个组件的作用的程序可被提供。另外,将程序记录在其中的可读介质可被提供。
另外,在图15中示出的gNB 830中,参考图3描述的通信单元301可被实现在无线通信接口855(例如,BB电路856)中。另外,通信单元301可被实现在控制器851和/或网络接口853中。
12-2.关于用户侧电子设备的应用示例
(第一应用示例)
图16是示出可以应用本公开内容的技术的智能电话900的示意性配置的示例的框图。智能电话900包括处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入设备909、显示设备910、扬声器911、无线通信接口912、一个或多个天线开关915、一个或多个天线916、总线917、电池918以及辅助控制器919。
处理器901可以为例如CPU或片上系统(SoC),并且控制智能电话900的应用层和另外层的功能。存储器902包括RAM和ROM,并且存储数据和由处理器901执行的程序。存储装置903可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口904为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话900的接口。
摄像装置906包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器907可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风908将输入到智能电话900的声音转换为音频信号。输入设备909包括例如被配置为检测显示设备910的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示设备910包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话900的输出图像。扬声器911将从智能电话900输出的音频信号转换为声音。
无线通信接口912支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行 无线通信。无线通信接口912通常可以包括例如BB处理器913和RF电路914。BB处理器913可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路914可以包括例如混频器、滤波器和放大器,并且经由天线916来传送和接收无线信号。无线通信接口912可以为其上集成有BB处理器913和RF电路914的一个芯片模块。如图16所示,无线通信接口912可以包括多个BB处理器913和多个RF电路914。虽然图16示出其中无线通信接口912包括多个BB处理器913和多个RF电路914的示例,但是无线通信接口912也可以包括单个BB处理器913或单个RF电路914。
此外,除了蜂窝通信方案之外,无线通信接口912可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口912可以包括针对每种无线通信方案的BB处理器913和RF电路914。
天线开关915中的每一个在包括在无线通信接口912中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线916的连接目的地。
天线916中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线阵元),并且用于无线通信接口912传送和接收无线信号。如图16所示,智能电话900可以包括多个天线916。虽然图16示出其中智能电话900包括多个天线916的示例,但是智能电话900也可以包括单个天线916。
此外,智能电话900可以包括针对每种无线通信方案的天线916。在此情况下,天线开关915可以从智能电话900的配置中省略。
总线917将处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入设备909、显示设备910、扬声器911、无线通信接口912以及辅助控制器919彼此连接。电池918经由馈线向图16所示的智能电话900的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器919例如在睡眠模式下操作智能电话900的最小必需功能。
在图16中示出的智能电话900中,参考图9A、10A和11A描述的处理电路9003、1003和1103中包括的一个或多个组件可被实现在无线通信接口912中。可替代地,这些组件中的至少一部分可被实现在处理器901或者辅助控制器919中。作为一个示例,智能电话900包含无线通信接口912的一部分(例如,BB处理器913)或者整体,和/或包括处理器901和/或辅助控制器919的模块,并且一个或多个组件可被实现在 该模块中。在这种情况下,该模块可以存储允许处理起一个或多个组件的作用的程序(换言之,用于允许处理器执行一个或多个组件的操作的程序),并且可以执行该程序。作为另一个示例,用于允许处理器起一个或多个组件的作用的程序可被安装在智能电话900中,并且无线通信接口912(例如,BB处理器913)、处理器901和/或辅助控制器919可以执行该程序。如上所述,作为包括一个或多个组件的装置,智能电话900或者模块可被提供,并且用于允许处理器起一个或多个组件的作用的程序可被提供。另外,将程序记录在其中的可读介质可被提供。
另外,在图16中示出的智能电话900中,例如,参考图9A、10A和11A描述的通信单元9001、1001和1101可被实现在无线通信接口912(例如,RF电路914)中。(第二应用示例)
图17是示出可以应用本公开内容的技术的汽车导航设备920的示意性配置的示例的框图。汽车导航设备920包括处理器921、存储器922、全球定位系统(GPS)模块924、传感器925、数据接口926、内容播放器927、存储介质接口928、输入设备929、显示设备930、扬声器931、无线通信接口933、一个或多个天线开关936、一个或多个天线937以及电池938。
处理器921可以为例如CPU或SoC,并且控制汽车导航设备920的导航功能和另外的功能。存储器922包括RAM和ROM,并且存储数据和由处理器921执行的程序。
GPS模块924使用从GPS卫星接收的GPS信号来测量汽车导航设备920的位置(诸如纬度、经度和高度)。传感器925可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口926经由未示出的终端而连接到例如车载网络941,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器927再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口928中。输入设备929包括例如被配置为检测显示设备930的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示设备930包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器931输出导航功能的声音或再现的内容。
无线通信接口933支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口933通常可以包括例如BB处理器934和RF电路935。BB处理器934可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线 通信的各种类型的信号处理。同时,RF电路935可以包括例如混频器、滤波器和放大器,并且经由天线937来传送和接收无线信号。无线通信接口933还可以为其上集成有BB处理器934和RF电路935的一个芯片模块。如图17所示,无线通信接口933可以包括多个BB处理器934和多个RF电路935。虽然图17示出其中无线通信接口933包括多个BB处理器934和多个RF电路935的示例,但是无线通信接口933也可以包括单个BB处理器934或单个RF电路935。
此外,除了蜂窝通信方案之外,无线通信接口933可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口933可以包括BB处理器934和RF电路935。
天线开关936中的每一个在包括在无线通信接口933中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线937的连接目的地。
天线937中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口933传送和接收无线信号。如图17所示,汽车导航设备920可以包括多个天线937。虽然图17示出其中汽车导航设备920包括多个天线937的示例,但是汽车导航设备920也可以包括单个天线937。
此外,汽车导航设备920可以包括针对每种无线通信方案的天线937。在此情况下,天线开关936可以从汽车导航设备920的配置中省略。
电池938经由馈线向图17所示的汽车导航设备920的各个块提供电力,馈线在图中被部分地示为虚线。电池938累积从车辆提供的电力。
在图17中示出的汽车导航装置920中,参考图9A、10A和11A描述的处理电路9003、1003和1103中包括的一个或多个组件可被实现在无线通信接口933中。可替代地,这些组件中的至少一部分可被实现在处理器921中。作为一个示例,汽车导航装置920包含无线通信接口933的一部分(例如,BB处理器934)或者整体,和/或包括处理器921的模块,并且一个或多个组件可被实现在该模块中。在这种情况下,该模块可以存储允许处理起一个或多个组件的作用的程序(换言之,用于允许处理器执行一个或多个组件的操作的程序),并且可以执行该程序。作为另一个示例,用于允许处理器起一个或多个组件的作用的程序可被安装在汽车导航装置920中,并且无线通信接口933(例如,BB处理器934)和/或处理器921可以执行该程序。如上所述,作为包括一个或多个组件的装置,汽车导航装置920或者模块可被提供,并且用于允 许处理器起一个或多个组件的作用的程序可被提供。另外,将程序记录在其中的可读介质可被提供。
另外,在图17中示出的汽车导航装置920中,例如,参考图9A、10A和11A描述的通信单元9001、1001和1101可被实现在无线通信接口933(例如,RF电路935)中。
本公开内容的技术也可以被实现为包括汽车导航设备920、车载网络941以及车辆模块942中的一个或多个块的车载系统(或车辆)940。车辆模块942生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络941。
另外,将程序记录在其中的可读介质可被提供。因此,本公开还涉及一种计算机可读存储介质,上面存储有包括指令的程序,所述指令在由处理器例如处理电路或控制器等载入并执行时用于实施前述的通信方法。
虽然已详细描述了本公开的一些具体实施例,但是本领域技术人员应当理解,上述实施例仅是说明性的而不限制本公开的范围。本领域技术人员应该理解,上述实施例可以被组合、修改或替换而不脱离本公开的范围和实质。本公开的范围是通过所附的权利要求限定的。

Claims (36)

  1. 一种电子设备,其特征在于包括:
    处理电路,被配置为:
    确定向至少两个用户设备同时进行信号传输并且用于所述至少两个用户设备的下行发射信号的方向的邻近程度满足预定条件;以及
    获取基于用于所述至少两个用户设备的下行发射信号的方向而确定的用于下行波束赋形的被激活的天线阵元的数量。
  2. 根据权利要求1所述的电子设备,其中,处理电路还被配置为根据用于所述至少两个用户设备的发射波束的方向的邻近程度来确定用于下行波束赋形的被激活的天线阵元的数量。
  3. 根据权利要求2所述的电子设备,其中,处理电路还被配置为预先把所有下行发射波束的方向与根据所有下行发射波束的方向所确定的被激活的天线阵元的相应数目相关联地存储,以用于针对所述至少两个用户设备的下行波束赋形。
  4. 根据权利要求1所述的电子设备,其中,处理电路还被配置为根据从该电子设备向所述至少两个用户设备的下行发射信号的发射角的邻近程度来确定用于下行波束赋形的天线阵元的数量。
  5. 根据权利要求1所述的电子设备,其中,处理电路还被配置为根据从所述至少两个用户设备向该电子设备的上行发射信号的方向来确定用于所述至少两个用户设备的下行发射信号的方向。
  6. 根据权利要求1至5之一所述的电子设备,其中,处理电路还被配置为使用来自所述至少两个用户设备的反馈信息以获得用于所述至少两个用户设备的所述下行发射信号的方向。
  7. 根据权利要求6所述的电子设备,其中,所述反馈信息包括通过波束训练过程得到的用于这些用户设备的具有最好接收质量的发射波束的序号。
  8. 根据权利要求7所述的电子设备,其中,所述反馈信息还包括从该电子设备向所述至少两个用户设备的下行发射信号的发射角。
  9. 根据权利要求1至5之一所述的电子设备,其中,处理电路还被配置为使用来自所述至少两个用户设备的上行参考信号以获得用于所述至少两个用户设备的所述下行发射信号的方向。
  10. 根据权利要求1至5之一所述的电子设备,其中,处理电路还被配置为还根据噪声功率来确定用于下行波束赋形的被激活的天线阵元的数量。
  11. 根据权利要求10所述的电子设备,其中,处理电路还被配置为使用来自所述至少两个用户设备的反馈信息来获得所述噪声功率。
  12. 根据权利要求11所述的电子设备,其中,处理电路还被配置为在信道状态发生变化或者用于这些用户设备的下行发射波束需要切换的情况下获得噪声功率。
  13. 根据权利要求1至5之一所述的电子设备,其中,处理电路还被配置为根据代表用于这些用户设备的下行发射信号的方向的角度、下行发射波束的序号、以及信干噪比中的至少一个来设定预定阈值,在用于所述至少两个用户设备的下行发射信号的方向的邻近程度低于所述预定阈值的情况下满足所述预定条件。
  14. 如权利要求1至5之一所述的电子设备,其中,处理电路还被配置为通过从总天线阵元的数量开始递减地搜索来确定用于下行波束赋形的被激活的天线阵元的数量。
  15. 如权利要求14所述的电子设备,其中,处理电路还被配置为直接采用第一 次搜索到的用于下行波束赋形的被激活的天线阵元的数量。
  16. 如权利要求1至5之一所述的电子设备,其中,处理电路还被配置为通过从总天线阵元的数量开始周期性地搜索来确定用于下行波束赋形的被激活的天线阵元的数量。
  17. 如权利要求16所述的电子设备,其中,处理电路还被配置为根据用于所述至少两个用户设备的下行发射信号的方向来确定搜索的周期,使得所述下行发射信号的方向越接近,用于搜索的周期越大。
  18. 如权利要求1至5之一所述的电子设备,其中,处理电路还被配置为激活所确定的数量的连续的天线阵元。
  19. 如权利要求1至5之一所述的电子设备,其中,处理电路还被配置为确定用于下行波束赋形的被激活的天线阵元的数量以使得平均频谱效率最大化。
  20. 如权利要求19所述的电子设备,其中,处理电路还被配置为使得所述至少两个用户设备的下行传输被分配在交叠或相同的时频资源块中。
  21. 如权利要求1至5之一所述的电子设备,其中,所述电子设备适用于毫米波大规模多天线系统。
  22. 如权利要求1所述的电子设备,其中,所述电子设备还包括:
    多个射频链路单元,每个射频链路单元把数据流传递到移相器;
    移相器,每一移相器用于对接收到的数据流的信号进行波束赋形;
    开关,每个开关连接于对应的每一移相器与每一天线阵元之间,基于所述处理电路的控制信号,用于控制与该开关对应的天线阵元的激活或去激活;以及
    天线阵列,天线阵列中的每一个激活的天线阵元用于把波束赋形后的信号发射。
  23. 如权利要求1所述的电子设备,其中,所述处理电路还被配置为基于所述被激活的天线阵元的数量与全激活天线波束赋形的码本确定用于针对所确定数量的天线阵元进行波束赋形的码本,以及
    所述电子设备还包括:
    多个射频链路单元,每个射频链路单元把数据流传递到移相器;
    移相器,每一移相器用于基于所述用于针对所确定数量的天线阵元进行波束赋形的码本对接收到的数据流的信号进行波束赋形;以及
    天线阵列,用于发射波束赋形后的下行发射信号。
  24. 如权利要求1至5之一所述的电子设备,其中,所述天线阵元之间的间距是均匀的。
  25. 如权利要求1所述的电子设备,其中,处理电路还被配置为使用来自所述至少两个用户设备的反馈信息来确定用于下行波束赋形的被激活的天线阵元的数量。
  26. 一种电子设备,其特征在于包括:
    处理电路,被配置为:
    确定对用于发射波束训练的各发射波束的接收质量;
    根据具有最优接收质量的发射波束及其相邻发射波束的波束方向来确定用于向该电子设备进行下行波束赋形传输的被激活的天线阵元的数量;以及
    向发起发射波束训练的另一电子设备反馈所述具有最优接收质量的发射波束和相邻发射波束的序号以及该数量。
  27. 一种电子设备,其特征在于包括:
    处理电路,被配置为:
    确定对用于发射波束训练的各发射波束的接收质量;
    针对具有最优接收质量的发射波束,计算从发起发射波束训练的另一电子设备向该电子设备的下行发射信号的发射角;
    根据该发射角和该具有最优接收质量的发射波束的相邻发射波束的波束方向来确 定用于向该电子设备进行下行波束赋形传输的被激活的天线阵元的数量;以及
    向发起发射波束训练的所述另一电子设备反馈所述发射角、所述具有最优接收质量的发射波束和相邻发射波束的序号以及该数量。
  28. 一种电子设备,其特征在于包括:
    处理电路,被配置为:
    向另一电子设备发射上行参考信号用于计算上行参考信号的方向;
    接收下行参考信号,所述下行参考信号是另一电子设备使用根据所述上行参考信号的方向而确定的用于下行波束赋形的被激活的天线阵元的数量进行下行波束赋形发送的;以及
    通过该下行参考信号估计下行信道并向所述另一电子设备反馈噪声功率。
  29. 一种通信方法,其特征在于包括:
    确定向至少两个用户设备同时进行信号传输并且用于所述至少两个用户设备的下行发射信号的方向的邻近程度满足预定条件;以及
    获取基于用于所述至少两个用户设备的下行发射信号的方向而确定的用于下行波束赋形的被激活的天线阵元的数量。
  30. 一种通信方法,其特征在于包括:
    确定对用于发射波束训练的各发射波束的接收质量;
    根据具有最优接收质量的发射波束及其相邻发射波束的波束方向来确定用于向该电子设备进行下行波束赋形传输的被激活的天线阵元的数量;以及
    向发起发射波束训练的另一电子设备反馈所述具有最优接收质量的发射波束和相邻发射波束的序号以及该数量。
  31. 一种通信方法,其特征在于包括:
    确定对用于发射波束训练的各发射波束的接收质量;
    针对具有最优接收质量的发射波束,计算从发起发射波束训练的另一电子设备向该电子设备的下行发射信号的发射角;
    根据该发射角和该具有最优接收质量的发射波束的相邻发射波束的波束方向来确定用于向该电子设备进行下行波束赋形传输的被激活的天线阵元的数量;以及
    向发起发射波束训练的所述另一电子设备反馈所述发射角、所述具有最优接收质量的发射波束和相邻发射波束的序号以及该数量。
  32. 一种通信方法,其特征在于包括:
    向另一电子设备发射上行参考信号用于计算上行参考信号的方向;
    接收下行参考信号,所述下行参考信号是另一电子设备使用根据所述上行参考信号的方向而确定的用于下行波束赋形的被激活的天线阵元的数量进行下行波束赋形发送的;以及
    通过该下行参考信号估计下行信道并向所述另一电子设备反馈噪声功率。
  33. 一种计算机可读存储介质,上面存储有指令,所述指令在由处理器载入并执行时用于实施根据权利要求29-32之一所述的通信方法。
  34. 一种电子设备,其特征在于包括:
    处理电路,被配置为:
    确定至少两个对象设备的邻近程度满足预定条件;以及
    获取基于所述邻近程度而确定的用于发射波束赋形的无线电波的被激活的天线阵元的数量。
  35. 如权利要求34所述的电子设备,其中,该电子设备还包括天线阵列,所述天线阵列被配置为基于所述处理电路的控制使用所述数量的天线阵元向所述两个对象设备定向发射无线电波束。
  36. 如权利要求35所述的电子设备,其中,所述电子设备实现为雷达装置,用于对所述两个对象设备进行雷达探测,该电子设备还包括雷达接收机,被配置为接收所述两个对象设备反射回来的雷达信号以确定该两个对象设备的定位。
PCT/CN2018/104835 2017-09-13 2018-09-10 电子设备和通信方法 WO2019052420A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/636,035 US11290159B2 (en) 2017-09-13 2018-09-10 Electronic device and communication method
EP18857319.0A EP3683974A4 (en) 2017-09-13 2018-09-10 ELECTRONIC DEVICE AND COMMUNICATION METHOD
CN201880057868.1A CN111052619B (zh) 2017-09-13 2018-09-10 电子设备和通信方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710820287.6 2017-09-13
CN201710820287.6A CN109495152A (zh) 2017-09-13 2017-09-13 电子设备和通信方法

Publications (1)

Publication Number Publication Date
WO2019052420A1 true WO2019052420A1 (zh) 2019-03-21

Family

ID=65687203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/104835 WO2019052420A1 (zh) 2017-09-13 2018-09-10 电子设备和通信方法

Country Status (4)

Country Link
US (1) US11290159B2 (zh)
EP (1) EP3683974A4 (zh)
CN (2) CN109495152A (zh)
WO (1) WO2019052420A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2598740A (en) * 2020-09-09 2022-03-16 British Telecomm Wireless telecommunication system

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110138519A (zh) * 2018-02-02 2019-08-16 索尼公司 无线通信系统中的装置和方法、计算机可读存储介质
EP3683975A1 (en) * 2019-01-17 2020-07-22 Mitsubishi Electric R&D Centre Europe B.V. Method for enabling analog precoding and analog combining
CN111083629A (zh) * 2019-05-13 2020-04-28 中兴通讯股份有限公司 基于二元周期序列的定位方法及装置
CN110446248A (zh) * 2019-06-28 2019-11-12 维沃移动通信有限公司 一种天线增益调整方法及终端设备
WO2021007833A1 (en) * 2019-07-18 2021-01-21 Qualcomm Incorporated Beamforming determination for iab system with full duplex
US11032729B1 (en) * 2019-08-20 2021-06-08 Sprint Communications Company L.P. Simultaneous wireless communication service over fifth generation new radio (5GNR) and long term evolution (LTE)
US11516655B2 (en) * 2019-11-08 2022-11-29 Massachusetts Institute Of Technology Physical layer key generation
CN110839204B (zh) * 2019-12-23 2020-10-16 华中科技大学 一种irs辅助通信系统的通信优化方法及装置
EP4100758A4 (en) * 2020-03-13 2023-01-11 Huawei Technologies Co., Ltd. SIDELINK RADIATION DETECTION WITH BASE STATION SUPPORT
CN117083815A (zh) * 2021-04-15 2023-11-17 深圳传音控股股份有限公司 panel状态的处理方法、通信设备及存储介质
KR20230014001A (ko) * 2021-07-20 2023-01-27 삼성전자주식회사 빔포밍 코드북을 이용한 빔 탐색 방법 및 장치
US11923921B2 (en) * 2021-11-05 2024-03-05 Qualcomm Incorporated Techniques for dynamic beam correspondence for mitigation of blockage conditions
WO2023092357A1 (zh) * 2021-11-24 2023-06-01 株式会社Ntt都科摩 接收设备和发射设备
CN114726425B (zh) * 2022-04-14 2023-06-09 哈尔滨工业大学(深圳) 基于移相器开关控制的波束成形方法、装置、无线通信系统及存储介质
CN115087007B (zh) * 2022-06-20 2024-04-02 中国联合网络通信集团有限公司 灵活帧结构仿真系统的下行信号检测方法及装置
CN116112043B (zh) * 2022-12-30 2024-04-30 东莞理工学院 基于ris辅助基站与用户之间的近场通信方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101350652A (zh) * 2007-07-20 2009-01-21 中兴通讯股份有限公司 Td-scdma系统的信道估计方法
CN101848021A (zh) * 2009-03-24 2010-09-29 大唐移动通信设备有限公司 一种智能天线阵广播波束权值的生成方法和装置
CN103499811A (zh) * 2013-08-28 2014-01-08 电子科技大学 提高雷达目标估计性能的天线个数分配方法
US20150180561A1 (en) * 2013-04-12 2015-06-25 Broadcom Corporation Spatial Null Creation Using Massive MIMO (M-MIMO)
US20170026094A1 (en) * 2015-07-20 2017-01-26 Centre Of Excellence In Wireless Technology Method for beam steering in multiple-input multiple-output system

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7411899B2 (en) * 2001-04-06 2008-08-12 Samsung Electronics Co. Ltd. Apparatus and method for allocating walsh codes to access terminals in an adaptive antenna array CDMA wireless network
US7206608B1 (en) 2003-11-06 2007-04-17 Nortel Networks Limited System and method for scheduling transmission from multiple-beam transmitters
US8542763B2 (en) * 2004-04-02 2013-09-24 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US8116698B2 (en) * 2007-08-07 2012-02-14 Cisco Technology, Inc. Generalized MIMO-beamforming weight estimation
EP2166808B1 (en) * 2008-09-19 2011-06-01 Alcatel Lucent Method for building sets of mobile stations in MIMO systems, corresponding mobile station, base station, operation and maintenance centre and radio communication network
US10063105B2 (en) * 2013-07-11 2018-08-28 Energous Corporation Proximity transmitters for wireless power charging systems
US9462581B2 (en) 2012-10-16 2016-10-04 Qualcomm Incorporated Methods and apparatus for synchronously coded subcarriers in OFDMA systems
US20160261325A1 (en) * 2013-11-04 2016-09-08 Lg Electronics Inc. Method and apparatus for transmitting signal in wireless communication system
CN105471487B (zh) * 2014-07-01 2020-07-24 索尼公司 通信设备、基站和通信方法
US10020574B2 (en) * 2014-09-24 2018-07-10 Telefonaktiebolaget Lm Ericsson (Publ) Antenna arrangement for non-linear distortion mitigation
US10686498B2 (en) * 2015-03-31 2020-06-16 Huawei Technologies Canada Co., Ltd. Systems and methods for massive MIMO adaptation
CN104821840B (zh) * 2015-05-12 2018-12-18 厦门大学 一种大规模多输入多输出下行系统的抗干扰方法
CN105656609B (zh) * 2015-12-25 2019-06-18 华为技术有限公司 一种多载波下的载波聚合实现方法及基站
CN106374989B (zh) * 2016-09-19 2019-07-16 浙江大学 一种基于频分复用多天线系统的下行非正交多接入方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101350652A (zh) * 2007-07-20 2009-01-21 中兴通讯股份有限公司 Td-scdma系统的信道估计方法
CN101848021A (zh) * 2009-03-24 2010-09-29 大唐移动通信设备有限公司 一种智能天线阵广播波束权值的生成方法和装置
US20150180561A1 (en) * 2013-04-12 2015-06-25 Broadcom Corporation Spatial Null Creation Using Massive MIMO (M-MIMO)
CN103499811A (zh) * 2013-08-28 2014-01-08 电子科技大学 提高雷达目标估计性能的天线个数分配方法
US20170026094A1 (en) * 2015-07-20 2017-01-26 Centre Of Excellence In Wireless Technology Method for beam steering in multiple-input multiple-output system

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Overview on NR MIMO for sub-6 GHz", 3GPP TSG RAN WG1 MEETING #85, R1-164294, 27 May 2016 (2016-05-27), XP051096503 *
CATT: "Discussion on transmission schemes for NR MIMO", 3GPP TSG RAN WG1 MEETING #87, R1-1611378, 18 November 2016 (2016-11-18), XP051175359 *
HUAWEI: "General views on DL beam management", 3GPP TSG RAN WG1 NR AD HOC MEETING, R1-1711636, 30 June 2017 (2017-06-30), XP051300798 *
See also references of EP3683974A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2598740A (en) * 2020-09-09 2022-03-16 British Telecomm Wireless telecommunication system
GB2598740B (en) * 2020-09-09 2022-11-30 British Telecomm Wireless telecommunication system

Also Published As

Publication number Publication date
EP3683974A4 (en) 2020-07-29
US20210028832A1 (en) 2021-01-28
CN111052619B (zh) 2022-06-24
CN109495152A (zh) 2019-03-19
CN111052619A (zh) 2020-04-21
EP3683974A1 (en) 2020-07-22
US11290159B2 (en) 2022-03-29

Similar Documents

Publication Publication Date Title
CN111052619B (zh) 电子设备和通信方法
US11043997B2 (en) Electronic device, communication method and storage medium in wireless communication system
CN111512565B (zh) 用于无线通信系统的电子设备、方法、装置和存储介质
US20230291445A1 (en) Wireless communication system, and device and method in wireless communication system
US10790894B2 (en) Electronic device, communication apparatus and signal processing method
US20240064043A1 (en) Wireless communication method and wireless communication device
US9155097B2 (en) Methods and arrangements for beam refinement in a wireless network
US10284279B2 (en) Apparatus and method in wireless communications system
US9819516B2 (en) Channel estimation in wireless communications
WO2017118337A1 (zh) 无线通信方法和无线通信设备
WO2015186380A1 (ja) 端末装置、基地局、及びプログラム
CN114257475A (zh) 电子设备、无线通信方法以及计算机可读存储介质
CN110602781A (zh) 电子设备、用户设备、无线通信方法和存储介质
WO2018086486A1 (zh) 电子设备、无线通信方法以及介质
WO2022021443A1 (zh) 一种预编码方法及装置
US10455591B2 (en) Apparatuses, methods, computer programs, and computer program products for interference avoidance
WO2020061781A1 (zh) 通信方法、装置及系统
US20240048191A1 (en) Method and apparatus for calibration in distributed mimo networks
CN117498902A (zh) 一种信息传输的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18857319

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018857319

Country of ref document: EP

Effective date: 20200414