WO2019052018A1 - 紫外光配向设备 - Google Patents

紫外光配向设备 Download PDF

Info

Publication number
WO2019052018A1
WO2019052018A1 PCT/CN2017/113510 CN2017113510W WO2019052018A1 WO 2019052018 A1 WO2019052018 A1 WO 2019052018A1 CN 2017113510 W CN2017113510 W CN 2017113510W WO 2019052018 A1 WO2019052018 A1 WO 2019052018A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultraviolet
lamps
columns
rows
ultraviolet lamps
Prior art date
Application number
PCT/CN2017/113510
Other languages
English (en)
French (fr)
Inventor
李炳龙
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Publication of WO2019052018A1 publication Critical patent/WO2019052018A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation

Definitions

  • the present invention relates to the field of liquid crystal display, and more particularly to an ultraviolet light alignment device.
  • TFT-LCD Thin Film Transistor-Liquid Crystal Display
  • TN Twisted Nematic
  • STN Super Twisted Nematic
  • IPS In -Plane Switching
  • VA Vertical Alignment
  • the VA type liquid crystal display has a very high contrast ratio compared with other kinds of liquid crystal displays, and has a very wide application in large-size display, such as television, and the polymer Stabilized-Vertical Alignment (PSVA) technology is one of them.
  • PSVA polymer Stabilized-Vertical Alignment
  • a popular VA technology, PSVA technology can make the liquid crystal panel have the advantages of faster response time and high transmittance. It is characterized by the formation of polymer protrusions on the surface of the alignment film, so that the liquid crystal molecules have a pretilt angle.
  • PSVA technology is the same as other technologies, and it also needs to pre-tilt the liquid crystal molecules.
  • This is the optical alignment technology.
  • a liquid alignment display a liquid crystal layer between two glass substrates is filled with a negative liquid crystal molecule, and a reactive monomer is mixed with a negative liquid crystal molecule, wherein the surface of the substrate is coated with Polyimide (PI) is used as an alignment substrate.
  • PI Polyimide
  • the light alignment device applies a voltage to the above glass substrate and irradiates the ultraviolet light to cause a phase separation phenomenon between the Monomer and the liquid crystal molecules, and aggregates toward the PI substrate of the substrate to form a polymer. Due to the interaction between the polymer and the liquid crystal molecules, the liquid crystal molecules will be aligned along the direction of the polymeric molecules to form a pre-tile angle.
  • the key machine in the PSVA process is the UV alignment device, and the illuminance uniformity of the UV alignment device is an important parameter affecting the process quality.
  • the ultraviolet lamp (the source of ultraviolet light) commonly used in the early and current devices is Metal halide lamp, due to its special structure, the lamp pitch is about 200mm, and the illumination of the whole UV alignment device is between 20% and 30% (313nm wavelength).
  • the size of the glass substrate is 3370mm x 2940mm (and the size of the G8.5 glass substrate is 2200mm x 2500mm). Compared with the G8.5 liquid crystal panel, the size of the corresponding UV alignment device also needs to be changed. Big. Then, in the irradiation area covering the entire glass substrate, the length of the lamp needs to reach a size of 3000 mm or more, and the existing Lamp technology cannot produce a Lamp of such a length, and two Lamps are required to meet the process requirements. Splicing is performed to a size that can cover the G11 glass substrate.
  • the present invention provides an ultraviolet light alignment device comprising a plurality of ultraviolet lamps for supplying ultraviolet light to a substrate, wherein the plurality of ultraviolet lamps are arranged in the same plane to form an ultraviolet light source;
  • the plurality of ultraviolet lamps are arranged in two rows without a gap; or
  • One of the plurality of ultraviolet lamps is arranged in two rows with two intervals, and the other portion is sandwiched between the two columns;
  • the ultraviolet lamp tube is a fluorescent ultraviolet lamp tube.
  • the distance between two adjacent ultraviolet lamps in each column of the ultraviolet lamp tube is 25-60 mm.
  • the plurality of ultraviolet lamps are arranged in a staggered non-butting manner, that is, the plurality of ultraviolet tubes are specifically arranged in two rows and multiple rows, and all the ultraviolet tubes in the two columns are themselves Arranged in the same direction, and the adjacent ends of the two columns of ultraviolet lamps are staggered in each row, and the length of the staggered overlap is 40-80 mm.
  • the plurality of ultraviolet lamps are arranged in a butt-type splicing manner, that is, the plurality of ultraviolet lamps are specifically arranged in two rows and multiple rows, and all the ultraviolet lamps in the two columns are facing the same The directions are arranged, and the adjacent ends of the two columns of ultraviolet lamps are juxtaposed in parallel in each row.
  • the plurality of ultraviolet tubes are arranged in a positive butt-type splicing manner, and the two columns of ultraviolet tubes are docked in all rows along a line perpendicular to the direction in which the ultraviolet tubes themselves extend.
  • the plurality of ultraviolet lamps are arranged in a staggered butt joint manner.
  • the two columns of UV lamps are staggered row by row in all rows.
  • the plurality of ultraviolet lamps are arranged in a butt-plug type, that is, a part of the plurality of ultraviolet tubes are arranged in two rows and a plurality of rows to form an array group, and the two columns are All the ultraviolet lamps are arranged in the same direction, and the adjacent ends of the two columns of ultraviolet tubes are juxtaposed in each row, and another part of the plurality of ultraviolet tubes is plugged between the two columns of ultraviolet tubes. Together, they form the Gaze Group.
  • the arrangement direction of the ultraviolet lamps in the stopper group is perpendicular to the arrangement direction of the ultraviolet lamps in the array group, and the adjacent ends of the adjacent two ultraviolet tubes in the stopper group are alternately overlapped.
  • the distance between the two columns of ultraviolet lamps for plugging the ultraviolet lamps is 90-180 mm.
  • the ultraviolet light alignment device further includes a carrier platform for carrying the substrate and having a temperature control function, and a power-on module for applying a voltage to the substrate.
  • the invention also provides an ultraviolet light alignment device, comprising a plurality of ultraviolet lamps for providing ultraviolet light to the substrate, wherein the plurality of ultraviolet lamps are arranged in the same plane to form an ultraviolet light source;
  • the plurality of ultraviolet lamps are arranged in two rows without a gap
  • a part of the plurality of ultraviolet lamps is arranged in two rows with two intervals in parallel, and the other portion is sandwiched between the two columns;
  • the ultraviolet lamp tube is a fluorescent ultraviolet lamp tube
  • the distance between two adjacent ultraviolet lamps in each column of the ultraviolet lamp tube is 25-60 mm;
  • the plurality of ultraviolet lamps are arranged in a butt-plug-type splicing manner, that is, a part of the plurality of ultraviolet lamps are arranged in two rows and a plurality of rows to form an array group, and all ultraviolet rays in the two columns
  • the tubes themselves are arranged in the same direction, and the adjacent ends of the two columns of ultraviolet tubes are juxtaposed in each row, and the other part of the plurality of ultraviolet tubes is plugged between the two columns of ultraviolet tubes.
  • the arrangement direction of the ultraviolet lamps in the stopper group is perpendicular to the arrangement direction of the ultraviolet lamps in the array group, and the adjacent ends of the adjacent two ultraviolet tubes in the stopper group are alternately overlapped;
  • the distance between the two columns of ultraviolet lamps for plugging the ultraviolet lamps is 90-180 mm;
  • a carrier platform for carrying a substrate and having a temperature control function, and a power-on module for applying a voltage to the substrate.
  • the invention provides an ultraviolet light alignment device, which comprises a plurality of ultraviolet lamps for supplying ultraviolet light to a substrate, wherein the plurality of ultraviolet lamps are arranged in the same plane to form an ultraviolet light surface.
  • the light source adopts a fluorescent ultraviolet lamp tube which is simpler than the metal halogen ultraviolet lamp tube structure, and optimizes the arrangement structure of the ultraviolet lamp tube, and specifically arranges the plurality of ultraviolet lamp tubes into two parallel rows without gaps.
  • Column, or part of the plurality of UV lamps The two columns are arranged in parallel with each other, and the other portion is sandwiched between the two columns.
  • the gap between the ultraviolet lamps can be reduced, thereby improving the ultraviolet alignment device of the existing large-size liquid crystal panel. The problem of poor uniformity of illumination.
  • FIG. 1 is a schematic view showing a layout of a metal halogen ultraviolet lamp in a conventional ultraviolet light alignment device
  • FIG. 2 is a schematic structural view and a partially enlarged schematic view showing the arrangement of the ultraviolet lamp tube in the ultraviolet light distribution device according to the positive butt joint type in the ultraviolet light alignment device of the present invention
  • FIG. 3 is a schematic structural view and a partially enlarged schematic view showing the arrangement of the ultraviolet lamps in the ultraviolet light alignment device according to the staggered butt joint type in the ultraviolet light alignment device of the present invention
  • FIG. 4 is a schematic structural view and a partially enlarged schematic view showing the arrangement of the ultraviolet lamp tube in the ultraviolet light alignment device according to the butt-plugging type in the ultraviolet light alignment device of the present invention
  • FIG. 5 is a schematic structural view and a partially enlarged schematic view showing the arrangement of the ultraviolet lamps in the ultraviolet light alignment device according to the staggered non-butt joint type in the ultraviolet light alignment device of the present invention
  • Figure 6 is a schematic view showing the structure of the ultraviolet light alignment device of the present invention.
  • the present invention provides an ultraviolet light alignment device, comprising: a plurality of ultraviolet lamps 11 for supplying ultraviolet light to the substrate 90, a carrying platform 20 for carrying the substrate 90 and having a temperature control function, and The power-on module 30 for applying a voltage to the substrate 90; wherein the ultraviolet lamp tube 11 is a fluorescent ultraviolet lamp tube, and the plurality of ultraviolet lamps 11 are arranged in the same plane to form an ultraviolet light source.
  • the plurality of ultraviolet lamps 11 are arranged in two rows without a gap; or
  • a portion of the plurality of ultraviolet lamps 11 are arranged in two rows with a gap therebetween, and the other portion is sandwiched between the two columns.
  • the ultraviolet lamp tube 11 adopts a fluorescent ultraviolet lamp tube which is simpler than the metal halogen ultraviolet lamp tube structure, thereby avoiding the limitation of the structure of the metal halogen ultraviolet lamp tube.
  • the gap between the ultraviolet lamps 11 is narrowed, and the ultraviolet lamps 11 are arranged in a more compact manner.
  • the plurality of ultraviolet tubes 11 are arranged in parallel to form two rows without gaps. Columns, or a part of the plurality of ultraviolet lamps 11 are arranged in two rows arranged in parallel, and the other portion is sandwiched between the two columns, and the ultraviolet lamp tube 11 can be reduced between the prior art and the prior art.
  • the gap can further improve the uniformity of illuminance uniformity of the ultraviolet alignment device of the existing large-size liquid crystal panel.
  • the distance between two adjacent ultraviolet lamps 11 in each column of the ultraviolet lamps 11 can be reduced to 25-60 mm with respect to the prior art.
  • the plurality of ultraviolet lamps 11 can be arranged in a butt-type splicing manner, that is, the plurality of ultraviolet lamps 11 are specifically arranged in two rows and a plurality of rows, and all the ultraviolet lamps 11 in the two columns are themselves Arranged in the same direction, and the adjacent ends of the two columns of ultraviolet lamps 11 are juxtaposed in parallel in each row; that is, the plurality of rows of ultraviolet lamps 11 in each column are parallel, and the ultraviolet lamps 11 in each row are themselves in the same Docking in a straight line, the ultraviolet lamps 11 in each row are arranged in a row along the direction in which the ultraviolet lamps 11 themselves extend.
  • the docking type splicing method can be further divided into a positive butt type splicing mode and an interlaced splicing type splicing mode.
  • the plurality of ultraviolet light pipes 11 can be arranged in a positive butt type splicing manner.
  • the two rows of ultraviolet lamps 11 are docked in all rows along a line perpendicular to the direction in which the ultraviolet lamps 11 themselves extend, and the positions of the two columns of the ultraviolet tubes 11 that are docked in each row are set as junction points, that is, All of the intersections of the two rows of ultraviolet lamps 11 are arranged in a line along the direction in which the vertical ultraviolet lamps 11 themselves extend in the plurality of rows. or,
  • the plurality of ultraviolet lamps 11 can also be arranged in a staggered butt-type splicing manner, and the two columns of ultraviolet tubes 11 are alternately butted in each row, that is, the two columns of ultraviolet tubes. All of the junction points of 11 are staggered line by line within the plurality of rows.
  • the plurality of ultraviolet lamps 11 may also be arranged in a butt-plug-type splicing manner, that is, a part of the plurality of ultraviolet lamps 11 are arranged. Forming an array group in two rows and multiple rows, all of the ultraviolet lamps 11 in the two columns are arranged in the same direction, and the adjacent ends of the two columns of ultraviolet lamps 11 are juxtaposed in each row, the plurality of Another portion of the strip of ultraviolet lamps 11 is interposed between the two rows of ultraviolet tubes 11 to form a plug group.
  • the arrangement direction of the ultraviolet lamps 11 in the plugging group is perpendicular to the direction in which the ultraviolet lamps 11 in the array group are arranged, and the adjacent groups in the plugging group are adjacent. The adjacent ends of the two ultraviolet lamps 11 are alternately overlapped.
  • the distance between the two columns of ultraviolet lamps 11 is not excessive, but at least the sum of the widths of the two ultraviolet tubes 11 can be accommodated.
  • the distance between the tubes 11 for applying the ultraviolet lamp tube 11 may be 90-180 mm.
  • the plurality of ultraviolet lamps 11 can also be arranged in a staggered non-butting manner, that is, the plurality of ultraviolet tubes 11 are specifically arranged in two rows and a plurality of rows, and the two columns are All the ultraviolet lamps 11 are arranged in the same direction, and the adjacent ends of the two columns of ultraviolet tubes 11 are alternately overlapped in each row; that is, the plurality of rows of ultraviolet tubes 11 in each column are parallel, and the two columns are ultraviolet.
  • the lamps 11 are parallel to each other in each row, and the adjacent ends of the two columns of the ultraviolet lamps 11 are alternately overlapped in each row, and the length of the staggered overlap is 40 to 80 mm.
  • the ultraviolet alignment device provided by the present invention will be better illustrated in conjunction with specific experimental data, and the technical advantages thereof will be verified.
  • the illuminance data of the ultraviolet light aligning device in the following tests are all data under the condition that the ultraviolet lamp emits 313 nm ultraviolet light, and the illuminance uniformity value, the positive side illuminance uniform value, and the negative side illuminance are uniform.
  • the calculations worthwhile are as follows:
  • Illumination uniformity value (%) (Max-Min) / (Max + Min) * 100%;
  • Negative side illumination uniformity value (%) (Min-Ave.) / Ave. * 100%;
  • Max refers to the maximum illuminance measured by the ultraviolet aligning device under certain conditions
  • Min refers to the minimum illuminance measured by the ultraviolet aligning device under certain conditions
  • Ave refers to the measurement of the ultraviolet aligning device under certain conditions. The average illuminance of the illuminance.
  • the illuminance data actually measured in the following tests were carried out using a UV-MO3 model illuminometer manufactured by Kyoto Yuki Co., Ltd. (ORC) and a UV-SN31 model measuring head.
  • the existing arrangement of the metal halogen ultraviolet lamp in the ultraviolet alignment device for the G8.5 liquid crystal panel is applied to the G11 liquid crystal panel, specifically the metal halogen in the ultraviolet light alignment device.
  • the ultraviolet lamps 51 are arranged in two rows and rows, wherein the distance between the adjacent two rows of metal halogen ultraviolet lamps 51 is 200 mm, and the distance between the two rows of metal halogen ultraviolet lamps 51 is 380 mm, which constitutes a size.
  • the 3400mm*3000mm UV surface light source is suitable for the light alignment process in the G11 liquid crystal panel.
  • the illuminance test is performed on the above ultraviolet light aligning device by an illuminance meter, and the illuminance uniformity value (Max-Min) and the positive side illuminance uniform value of the ultraviolet light aligning device are obtained under an average illuminance of 0.5 mW/cm 2 ( The + side) and the negative side illuminance are equal (- side), and the specific test data are shown in Table 1 below.
  • the ultraviolet light tube adopts the ultraviolet light of the positive splicing type, the staggered butt type, the butt-plug type, and the staggered non-butt type of the splicing method of the present invention.
  • the equipping equipment was separately studied and modeled; the illuminance uniformity simulation was performed on the ultraviolet aligning equipment under the different splicing modes (assuming an average illuminance of 1 mW/cm 2 ), and the simulation data results are shown in Table 2 below.
  • the splicing manners of the four types of ultraviolet lamps of the positive butt type, the staggered butt type, the butt and the plug type, and the staggered non-docking type can all achieve the effect of improving the uniformity of the illumination of the ultraviolet alignment device, wherein The illuminance uniformity of the UV alignment device under the staggered non-butt joint type is the best, which can reach 7.7%.
  • the simulation results (illuminance uniformity values) obtained by the same splicing method based on the size of the G11 liquid crystal panel are consistent with the results based on the size of the G8.5 liquid crystal panel, so that the G11 liquid crystal panel is used.
  • the UV lamp of the ultraviolet alignment device selects the interlaced non-docked splicing method as the best solution, which can improve the illuminance uniformity of the ultraviolet aligning device from 39% to 10% of the prior art.
  • the structural modification of the ultraviolet lamp tube was carried out on the existing ultraviolet light-aligning device based on the G8.5 liquid crystal panel, and the optimal scheme of the ultraviolet lamp tube was used: Non-docking splicing method.
  • the modified UV-aligning device based on G8.5 liquid crystal panel is used to measure the illuminance uniformity data of every 0.1mW/cm 2 illuminance in the illuminance interval of 0.4 ⁇ 1.1mW/cm 2 by illuminance meter.
  • the test results are shown in Table 4 below. .
  • the measured illuminance uniformity data of the interlaced non-docking splicing method is consistent with the simulation result of the modeling scheme, and the illuminance uniformity values of the ultraviolet aligning devices are all within 10%. (about 7.7%).
  • the illuminance uniformity of the ultraviolet light alignment device based on the G11 liquid crystal panel is consistent with the illuminance uniformity based on the G8.5 liquid crystal panel.
  • the present invention provides an ultraviolet light alignment device comprising a plurality of ultraviolet lamps for providing ultraviolet light to a substrate, wherein the plurality of ultraviolet lamps are arranged in the same plane to form an ultraviolet light source.
  • the plurality of ultraviolet lamps are arranged in two rows without parallel spacing. Or arranging a part of the plurality of ultraviolet lamps in two rows arranged in parallel, and the other portion is sandwiched between the two columns, and the gap between the ultraviolet lamps can be reduced compared with the prior art, and further It can improve the uniformity of illuminance uniformity of the ultraviolet alignment device of the existing large-size liquid crystal panel.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

一种紫外光配向设备,包括多条用于向基板(90)提供紫外光的紫外灯管(11),多条紫外灯管(11)排布于同一平面内共同构成紫外光面光源,通过将紫外灯管(11)采用比金属卤素紫外灯管结构更为简单的荧光紫外灯管,并同时优化紫外灯管(11)的排列结构,具体使多条紫外灯管(11)排列成并列无间隔的两列,或者使多条紫外灯管(11)中的一部分排列成并列有间隔的两列,另一部分加塞于该两列之间,相对于现有技术,可减小紫外灯管(11)之间的间隙,进而能够改善现有大尺寸液晶面板的紫外光配向设备的照度均一性不佳问题。

Description

紫外光配向设备 技术领域
本发明涉及液晶显示领域,尤其涉及一种紫外光配向设备。
背景技术
薄膜晶体管液晶显示器(Thin Film Transistor-Liquid Crystal Display,TFT-LCD)由于色彩度高、体积小、功耗低等优势,在目前平板显示领域中占主流位置。就目前主流市场上的TFT-LCD显示面板而言,可分为三种类型,分别是扭曲向列(Twisted Nematic,TN)或超扭曲向列(Super Twisted Nematic,STN)型,平面转换(In-Plane Switching,IPS)型、及垂直配向(Vertical Alignment,VA)型。其中VA型液晶显示器相对其他种类的液晶显示器具有极高的对比度,在大尺寸显示,如电视等方面具有非常广的应用,聚合物稳定垂直配向(Polymer Stabilized-Vertical Alignment,PSVA)技术就是其中比较热门的一种VA技术,PSVA技术能够使液晶面板具有较快的响应时间、穿透率高等优点,其特点是在配向膜表面形成聚合物突起,从而使液晶分子具有预倾角。
PSVA技术和其他技术相同,也需要对液晶分子做预倾角处理,这就是光配向技术。光配向技术液晶显示器中,两玻璃基板之间的液晶层内,填充负性液晶分子,同时掺有反应型单体(Reactive Monomer),混合于负性液晶分子,其中,基板的表面涂布有聚酰亚胺(polyimide,PI),以作为配向基材。光配向设备对以上的玻璃基板施加电压及进行紫外光照射,使Monomer与液晶分子产生相分离(phase separation)现象,并朝基板的PI基材聚集,形成聚合物(Polymer)。由于聚合物跟液晶分子之间的相互作用,液晶分子将沿着聚合分子的方向排列,形成预倾角(pre-tile angle)。
因此,PSVA制程中的关键机台为紫外光配向设备,而紫外光配向设备的照度均一性是影响制程品质的重要参数,早期及目前该设备普遍使用的紫外线灯管(产生紫外线的光源)为金属卤素灯,该种灯管因其特殊的构造,灯管间距(Lamp pitch)在200mm左右,整体紫外光配向设备的照度均齐值在20%~30%(313nm波长)。
随着高阶(如8K)液晶面板、及高世代玻璃基板(G8.5以上)的生产需求,紫外光配向设备的照度均一性的提升迫在眉睫。原有20%~30%的照度均齐值已不能满足产品的生产需求,否则可能造成因照度不均而导致配 向Mura的产生。
在高世代G11液晶面板的制造中,玻璃基板的尺寸是3370mm x2940mm(而G8.5玻璃基板的尺寸为2200mm x2500mm),相对于G8.5液晶面板,相应的紫外光配向设备的尺寸同样需要变大。那么在能覆盖整个玻璃基板的照射面积下,灯管(Lamp)的长度需要达到3000mm以上的尺寸,而现有的Lamp技术无法制作出这样长度的Lamp,为满足工艺要求则需要将2根Lamp进行拼接而达到能够覆盖G11玻璃基板的尺寸。如果继续使用现有针对于G8.5液晶面板的紫外光配向设备中的Lamp及其排列结构进行排列,则因其特殊的构造,Lamp间距大,拼接间隙也大,最终紫外光配向设备整体Lamp的照度均齐值会恶化到30%以上,如此差的照度均一性会产生严重的产品配向Mura,无法满足G11产品量产需求。
发明内容
本发明的目的在于提供一种紫外光配向设备,能够改善现有大尺寸液晶面板的紫外光配向设备的照度均一性不佳问题。
为实现上述目的,本发明提供一种紫外光配向设备,包括多条用于向基板提供紫外光的紫外灯管,所述多条紫外灯管排布于同一平面内共同构成紫外光面光源;
所述多条紫外灯管排列成并列无间隔的两列;或者,
所述多条紫外灯管中的一部分排列成并列有间隔的两列,另一部加塞于该两列之间;
所述紫外灯管为荧光紫外灯管。
所述每列紫外灯管中相邻两紫外灯管之间的距离为25-60mm。
可选地,所述多条紫外灯管按交错非对接型拼接方式进行排布,即所述多条紫外灯管具体排布成两列多行,该两列中的所有紫外灯管自身均朝同一方向排列,且该两列紫外灯管相靠近的一端在每行内交错重叠,其交错重叠的长度为40-80mm。
可选地,所述多条紫外灯管按对接型拼接方式进行排布,即所述多条紫外灯管具体排布成两列多行,该两列中的所有紫外灯管自身均朝同一方向排列,且该两列紫外灯管相靠近的一端在每行内并列对接。
进一步可选地,所述多条紫外灯管按正对接型拼接方式进行排布,所述两列的紫外灯管在所有行内沿垂直于所述紫外灯管本身延伸方向的直线对接。
进一步可选地,所述多条紫外灯管按交错对接型拼接方式进行排布, 所述两列的紫外灯管在所有行内逐行交错对接。
可选地,所述多条紫外灯管按对接加塞型拼接方式进行排布,即所述多条紫外灯管中的一部分排布成两列多行而共同构成阵列组,该两列中的所有紫外灯管自身均朝同一方向排列,且该两列紫外灯管相靠近的一端在每行内并列相间隔,所述多条紫外灯管中的另一部分加塞于该两列紫外灯管之间而共同构成加塞组。
所述加塞组内的紫外灯管自身排列方向与所述阵列组内的紫外灯管自身排列方向相垂直,且所述加塞组内相邻两紫外灯管的相邻两端交错重叠。
所述两列紫外灯管之间用于加塞紫外灯管的距离为90-180mm。
所述的紫外光配向设备还包括用于承载基板且具有控温功能的承载平台、及用于向基板施加电压的加电模块。
本发明还提供一种紫外光配向设备,包括多条用于向基板提供紫外光的紫外灯管,所述多条紫外灯管排布于同一平面内共同构成紫外光面光源;
所述多条紫外灯管排列成并列无间隔的两列;
或者,所述多条紫外灯管中的一部分排列成并列有间隔的两列,另一部加塞于该两列之间;
所述紫外灯管为荧光紫外灯管;
其中,所述每列紫外灯管中相邻两紫外灯管之间的距离为25-60mm;
其中,所述多条紫外灯管按对接加塞型拼接方式进行排布,即所述多条紫外灯管中的一部分排布成两列多行而共同构成阵列组,该两列中的所有紫外灯管自身均朝同一方向排列,且该两列紫外灯管相靠近的一端在每行内并列相间隔,所述多条紫外灯管中的另一部分加塞于该两列紫外灯管之间而共同构成加塞组;
其中,所述加塞组内的紫外灯管自身排列方向与所述阵列组内的紫外灯管自身排列方向相垂直,且所述加塞组内相邻两紫外灯管的相邻两端交错重叠;
其中,所述两列紫外灯管之间用于加塞紫外灯管的距离为90-180mm;
还包括用于承载基板且具有控温功能的承载平台、及用于向基板施加电压的加电模块。
本发明的有益效果:本发明提供的一种紫外光配向设备,包括多条用于向基板提供紫外光的紫外灯管,所述多条紫外灯管排布于同一平面内共同构成紫外光面光源,通过将紫外灯管采用比金属卤素紫外灯管结构更为简单的荧光紫外灯管,并同时优化紫外灯管的排列结构,具体使所述多条紫外灯管排列成并列无间隔的两列,或者使所述多条紫外灯管中的一部分 排列成并列有间隔的两列,另一部分加塞于该两列之间,相对于现有技术,可减小紫外灯管之间的间隙,进而能够改善现有大尺寸液晶面板的紫外光配向设备的照度均一性不佳问题。
附图说明
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图中,
图1为现有紫外光配向设备中金属卤素紫外灯管的排布示意图及局部放大示意图;
图2为本发明的紫外光配向设备中紫外灯管按正对接型拼接方式进行排布的结构示意图及局部放大示意图;
图3为本发明的紫外光配向设备中紫外灯管按交错对接型拼接方式进行排布的结构示意图及局部放大示意图;
图4为本发明的紫外光配向设备中紫外灯管按对接加塞型拼接方式进行排布的结构示意图及局部放大示意图;
图5为本发明的紫外光配向设备中紫外灯管按交错非对接型拼接方式进行排布的结构示意图及局部放大示意图;
图6为本发明的紫外光配向设备的结构示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图6,本发明提供一种紫外光配向设备,包括多条用于向基板90提供紫外光的紫外灯管11、用于承载基板90且具有控温功能的承载平台20、及用于向基板90施加电压的加电模块30;其中,所述紫外灯管11为荧光紫外灯管,所述多条紫外灯管11排布于同一平面内共同构成紫外光面光源。
具体地,所述多条紫外灯管11排列成并列无间隔的两列;或者,
所述多条紫外灯管11中的一部分排列成并列有间隔的两列,另一部加塞于该两列之间。
本发明的紫外光配向设备,将紫外灯管11采用比金属卤素紫外灯管结构更为简单的荧光紫外灯管,从而可避免金属卤素紫外灯管结构上的限制, 缩小紫外灯管11之间的间隙,使紫外灯管11按更为紧密的方式排列,通过优化紫外灯管11的排列结构,具体使所述多条紫外灯管11排列成并列无间隔的两列,或者使所述多条紫外灯管11中的一部分排列成并列有间隔的两列,另一部加塞于该两列之间,相对于现有技术,可减小紫外灯管11之间的间隙,进而能够改善现有大尺寸液晶面板的紫外光配向设备的照度均一性不佳问题。
具体地,所述每列紫外灯管11中相邻两紫外灯管11之间的距离相对于现有技术可缩小至25-60mm。
具体地,所述多条紫外灯管11可以按对接型拼接方式进行排布,即所述多条紫外灯管11具体排布成两列多行,该两列中的所有紫外灯管11自身均朝同一方向排列,且该两列紫外灯管11相靠近的一端在每行内并列对接;即每列中的多行紫外灯管11本身相平行,每行中的紫外灯管11本身在同一直线内对接,每行内的紫外灯管11均沿紫外灯管11本身延伸的方向排列成一行。
具体地,所述对接型拼接方式又进一步可分为正对接型拼接方式和交错对接型拼接方式,如图2所示,所述多条紫外灯管11可以按正对接型拼接方式进行排布,所述两列的紫外灯管11在所有行内沿垂直于所述紫外灯管11本身延伸方向的直线对接,所述两列的紫外灯管11在每行内对接的位置设为交接点,即该两列紫外灯管11的所有交接点在所述多行内沿垂直紫外灯管11本身延伸方向的直线排列。或者,
如图3所示,所述多条紫外灯管11也可以按交错对接型拼接方式进行排布,所述两列的紫外灯管11在所有行内逐行交错对接,即该两列紫外灯管11的所有交接点在所述多行内逐行交错排列。
具体地,除上述对接型拼接方式,如图4所示,所述多条紫外灯管11也可以按对接加塞型拼接方式进行排布,即所述多条紫外灯管11中的一部分排布成两列多行而共同构成阵列组,该两列中的所有紫外灯管11自身均朝同一方向排列,且该两列紫外灯管11相靠近的一端在每行内并列相间隔,所述多条紫外灯管11中的另一部分加塞于该两列紫外灯管11之间而共同构成加塞组。
具体地,所述对接加塞型拼接方式中,所述加塞组内的紫外灯管11自身排列方向与所述阵列组内的紫外灯管11自身排列方向相垂直,且所述加塞组内相邻两紫外灯管11的相邻两端交错重叠。
具体地,所述对接加塞型拼接方式中,所述两列紫外灯管11之间的距离不宜过大,但至少能够容纳两紫外灯管11的宽度之和,所述两列紫外灯 管11之间用于加塞紫外灯管11的距离可为90-180mm。
如图5所示,所述多条紫外灯管11也可以按交错非对接型拼接方式进行排布,即所述多条紫外灯管11具体排布成两列多行,该两列中的所有紫外灯管11自身均朝同一方向排列,且该两列紫外灯管11相靠近的一端在每行内交错重叠;即每列中的多行紫外灯管11本身相平行,该两列的紫外灯管11在每行内相互平行,且该两列的紫外灯管11相靠近的一端在每行内交错重叠,其交错重叠的长度为40~80mm。
下面将结合具体的试验数据更好地阐明本发明所提供的紫外光配向设备,并验证其所具有的技术优势。
需要说明的是,下列试验中紫外光配向设备的照度数据均为紫外灯管发射313nm紫外光条件下的数据,所涉及的照度均齐值、正侧照度均齐值、及负侧照度均齐值得的计算方式如下:
照度均齐值(%)=(Max-Min)/(Max+Min)*100%;
正侧照度均齐值(%)=(Max-Ave.)/Ave.*100%;
负侧照度均齐值(%)=(Min-Ave.)/Ave.*100%;
其中,Max指的是紫外光配向设备在特定条件下测量的最大照度,Min指的是紫外光配向设备在特定条件下测量的最小照度,Ave.指的是紫外光配向设备在特定条件下测量照度的平均照度。
另外,在下述试验中所实际测量的照度数据均采用京都玉崎株式会社(ORC)制UV-MO3型号照度计和UV-SN31型号测量头进行。
试验一
如图1所示,使用现有的针对G8.5液晶面板的紫外光配向设备中金属卤素紫外灯管的排布方式,将其应用于G11液晶面板,具体使紫外光配向设备中的金属卤素紫外灯管51排列成两列多行,其中,相邻两行金属卤素紫外灯管51之间的距离为200mm,该两列金属卤素紫外灯管51之间的距离为380mm,构成一尺寸为3400mm*3000mm的紫外面光源,以适用于G11液晶面板中的光配向制程。然后通过照度计对上述紫外光配向设备进行照度测试,在平均照度为0.5mW/cm2下,得出该紫外光配向设备的照度均齐值(Max-Min)、正侧照度均齐值(+侧)、及负侧照度均齐值(-侧),具体试验数据如下表1所示。
表1.采用现有技术的基于G11基板的紫外光配向设备的照度数据
Figure PCTCN2017113510-appb-000001
Figure PCTCN2017113510-appb-000002
由上述表1的数据可知,对于大尺寸的液晶面板,采用现有的金属卤素紫外灯管的排布方式,将会使紫外光配向设备的照度均一性会恶化到30%以上,如此差的均一性会产生严重的产品配向Mura,因此无法满足G11产品的量产需求。
试验二
基于G8.5液晶面板,使用长度约1300mm的荧光紫外灯管,来对紫外灯管采用本发明的正对接型、交错对接型、对接加塞型、及交错非对接型四种拼接方式的紫外光配向设备分别研究建模;通过对以上不同拼接方式下的紫外光配向设备进行照度均一性的模拟仿真(假设平均照度为1mW/cm2),模拟数据结果如下表2所示。
表2.基于G8.5基板建模的紫外光配向设备在不同拼接方式下的照度均一性数据
拼接方式 正对接型 交错对接型 对接加塞型 交错非对接型
照度均齐值 9.6% 14% 12.1% 7.7%
由上述表2的数据可知,本发明中正对接型、交错对接型、对接加塞型、及交错非对接型四种紫外灯管的拼接方式,均可以达到提高紫外配向设备照度均一性的效果,其中,交错非对接型拼接方式下的紫外配向设备照度均一性结果最佳,可以达到7.7%。
试验三
根据上述试验二中基于G8.5液晶面板尺寸下的模拟数据结果,我们得知了交错非对接型拼接方式下的紫外配向设备照度均一性结果最佳,以下我们将继续应用交错非对接型的拼接方式,基于G11液晶面板,选用长度约1700mm的荧光紫外灯管进行模拟仿真试验,模拟数据结果如下表3所示。
表3.基于G11基板建模的紫外光配向设备在交错非对接型拼接方式下的照度数据
Figure PCTCN2017113510-appb-000003
由上述表3的数据可知,基于G11液晶面板尺寸的采用相同的拼接方式取得的模拟仿真结果(照度均齐值)与基于G8.5液晶面板尺寸的结果相一致,故针对于G11液晶面板的紫外光配向设备的紫外灯管选择交错非对接的拼接方式为最佳方案,可使得紫外光配向设备的照度均一性从现有技术的39%改善到10%以内。
试验四
为验证上述试验二和试验三中模型方案的成立,特在既有的基于G8.5液晶面板的紫外光配向设备上进行紫外灯管的结构改造,将紫外灯管使用最优的方案:交错非对接型拼接方式。改造后的基于G8.5液晶面板的紫外光配向设备我们通过照度计测量0.4~1.1mW/cm2照度区间内每隔0.1mW/cm2照度的照度均一性数据,测试结果如下表4所示。
表4.基于G8.5基板的紫外光配向设备在交错非对接型拼接方式下的实测照度数据
Figure PCTCN2017113510-appb-000004
由上述表4及表2的数据对比可知,该种交错非对接型拼接方式下的实测照度均一性数据与建模方案的模拟结果一致,紫外光配向设备的照度均齐值均在10%以内(7.7%左右)。又根据试验二和试验三的数据对比可知,在相同的紫外灯管拼接方式的模拟环境下,紫外光配向设备基于G11液晶面板的照度均一性与基于G8.5液晶面板的照度均一性一致,通过以上基于G8.5液晶面板的紫外光配向设备的实机验证,可得知对于G11产品的改善方案同样可以达成。
综上所述,本发明提供的一种紫外光配向设备,包括多条用于向基板提供紫外光的紫外灯管,所述多条紫外灯管排布于同一平面内共同构成紫外光面光源,通过将紫外灯管采用比金属卤素紫外灯管结构更为简单的荧光紫外灯管,并同时优化紫外灯管的排列结构,具体使所述多条紫外灯管排列成并列无间隔的两列,或者使所述多条紫外灯管中的一部分排列成并列有间隔的两列,另一部分加塞于该两列之间,相对于现有技术,可减小紫外灯管之间的间隙,进而能够改善现有大尺寸液晶面板的紫外光配向设备的照度均一性不佳问题。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明后附的权利要求的保护范围。

Claims (11)

  1. 一种紫外光配向设备,包括多条用于向基板提供紫外光的紫外灯管,所述多条紫外灯管排布于同一平面内共同构成紫外光面光源;
    所述多条紫外灯管排列成并列无间隔的两列;
    或者,所述多条紫外灯管中的一部分排列成并列有间隔的两列,另一部加塞于该两列之间;
    所述紫外灯管为荧光紫外灯管。
  2. 如权利要求1所述的紫外光配向设备,其中,所述每列紫外灯管中相邻两紫外灯管之间的距离为25-60mm。
  3. 如权利要求1所述的紫外光配向设备,其中,所述多条紫外灯管按交错非对接型拼接方式进行排布,即所述多条紫外灯管具体排布成两列多行,该两列中的所有紫外灯管自身均朝同一方向排列,且该两列紫外灯管相靠近的一端在每行内交错重叠,其交错重叠的长度为40~80mm。
  4. 如权利要求1所述的紫外光配向设备,其中,所述多条紫外灯管按对接型拼接方式进行排布,即所述多条紫外灯管具体排布成两列多行,该两列中的所有紫外灯管自身均朝同一方向排列,且该两列紫外灯管相靠近的一端在每行内并列对接。
  5. 如权利要求4所述的紫外光配向设备,其中,所述多条紫外灯管按正对接型拼接方式进行排布,所述两列的紫外灯管在所有行内沿垂直于所述紫外灯管本身延伸方向的直线对接。
  6. 如权利要求4所述的紫外光配向设备,其中,所述多条紫外灯管按交错对接型拼接方式进行排布,所述两列的紫外灯管在所有行内逐行交错对接。
  7. 如权利要求1所述的紫外光配向设备,其中,所述多条紫外灯管按对接加塞型拼接方式进行排布,即所述多条紫外灯管中的一部分排布成两列多行而共同构成阵列组,该两列中的所有紫外灯管自身均朝同一方向排列,且该两列紫外灯管相靠近的一端在每行内并列相间隔,所述多条紫外灯管中的另一部分加塞于该两列紫外灯管之间而共同构成加塞组。
  8. 如权利要求7所述的紫外光配向设备,其中,所述加塞组内的紫外灯管自身排列方向与所述阵列组内的紫外灯管自身排列方向相垂直,且所述加塞组内相邻两紫外灯管的相邻两端交错重叠。
  9. 如权利要求7所述的紫外光配向设备,其中,所述两列紫外灯管之 间用于加塞紫外灯管的距离为90-180mm。
  10. 如权利要求1所述的紫外光配向设备,还包括用于承载基板且具有控温功能的承载平台、及用于向基板施加电压的加电模块。
  11. 一种紫外光配向设备,包括多条用于向基板提供紫外光的紫外灯管,所述多条紫外灯管排布于同一平面内共同构成紫外光面光源;
    所述多条紫外灯管排列成并列无间隔的两列;
    或者,所述多条紫外灯管中的一部分排列成并列有间隔的两列,另一部加塞于该两列之间;
    所述紫外灯管为荧光紫外灯管;
    其中,所述每列紫外灯管中相邻两紫外灯管之间的距离为25-60mm;
    其中,所述多条紫外灯管按对接加塞型拼接方式进行排布,即所述多条紫外灯管中的一部分排布成两列多行而共同构成阵列组,该两列中的所有紫外灯管自身均朝同一方向排列,且该两列紫外灯管相靠近的一端在每行内并列相间隔,所述多条紫外灯管中的另一部分加塞于该两列紫外灯管之间而共同构成加塞组;
    其中,所述加塞组内的紫外灯管自身排列方向与所述阵列组内的紫外灯管自身排列方向相垂直,且所述加塞组内相邻两紫外灯管的相邻两端交错重叠;
    其中,所述两列紫外灯管之间用于加塞紫外灯管的距离为90-180mm;
    还包括用于承载基板且具有控温功能的承载平台、及用于向基板施加电压的加电模块。
PCT/CN2017/113510 2017-09-12 2017-11-29 紫外光配向设备 WO2019052018A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710818908.7A CN107357090A (zh) 2017-09-12 2017-09-12 紫外光配向设备
CN201710818908.7 2017-09-12

Publications (1)

Publication Number Publication Date
WO2019052018A1 true WO2019052018A1 (zh) 2019-03-21

Family

ID=60290285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113510 WO2019052018A1 (zh) 2017-09-12 2017-11-29 紫外光配向设备

Country Status (2)

Country Link
CN (1) CN107357090A (zh)
WO (1) WO2019052018A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107357090A (zh) * 2017-09-12 2017-11-17 深圳市华星光电半导体显示技术有限公司 紫外光配向设备
CN109557692A (zh) * 2018-12-25 2019-04-02 深圳市华星光电半导体显示技术有限公司 烘烤装置、显示面板以及显示面板的烘烤方法
CN110888267B (zh) * 2019-11-26 2020-12-08 Tcl华星光电技术有限公司 液晶配向装置及其操作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101498900A (zh) * 2009-03-12 2009-08-05 友达光电股份有限公司 曝光机台
JP2011253759A (ja) * 2010-06-03 2011-12-15 Ushio Inc 光照射装置
CN103558714A (zh) * 2013-11-01 2014-02-05 京东方科技集团股份有限公司 一种光配向设备及其配向方法和显示装置生产系统
CN104656313A (zh) * 2015-03-10 2015-05-27 京东方科技集团股份有限公司 光配向装置及方法
JP2015106015A (ja) * 2013-11-29 2015-06-08 株式会社ブイ・テクノロジー 偏光光照射装置、偏光光照射方法および偏光光照射プログラム
CN106773329A (zh) * 2015-11-25 2017-05-31 群创光电股份有限公司 曝光系统及曝光方法
CN107357090A (zh) * 2017-09-12 2017-11-17 深圳市华星光电半导体显示技术有限公司 紫外光配向设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101498900A (zh) * 2009-03-12 2009-08-05 友达光电股份有限公司 曝光机台
JP2011253759A (ja) * 2010-06-03 2011-12-15 Ushio Inc 光照射装置
CN103558714A (zh) * 2013-11-01 2014-02-05 京东方科技集团股份有限公司 一种光配向设备及其配向方法和显示装置生产系统
JP2015106015A (ja) * 2013-11-29 2015-06-08 株式会社ブイ・テクノロジー 偏光光照射装置、偏光光照射方法および偏光光照射プログラム
CN104656313A (zh) * 2015-03-10 2015-05-27 京东方科技集团股份有限公司 光配向装置及方法
CN106773329A (zh) * 2015-11-25 2017-05-31 群创光电股份有限公司 曝光系统及曝光方法
CN107357090A (zh) * 2017-09-12 2017-11-17 深圳市华星光电半导体显示技术有限公司 紫外光配向设备

Also Published As

Publication number Publication date
CN107357090A (zh) 2017-11-17

Similar Documents

Publication Publication Date Title
CN105404060B (zh) 液晶显示面板
US9804433B2 (en) Liquid crystal display panel of improving color washout
JP5642635B2 (ja) 液晶表示装置
JP4197404B2 (ja) 液晶表示装置およびその製造方法
US20130010248A1 (en) Pixel electrode structure
WO2019052018A1 (zh) 紫外光配向设备
CN104777671B (zh) 液晶显示面板及其制造方法
WO2016078236A1 (zh) Uv2a像素结构
CN105204232A (zh) 液晶显示面板
US20230375871A1 (en) Manufacturing method of liquid crystal display panel and liquid crystal display panel
JP2010033093A (ja) 液晶表示装置及びその製造方法
JP4640863B2 (ja) 液晶表示装置の製造方法
CN102566129B (zh) 光学自补偿弯曲型液晶显示面板及其制造方法
CN206877009U (zh) 液晶显示面板及显示装置
CN104808402A (zh) 液晶面板及显示装置
JP2000171808A (ja) 液晶表示装置
GB2557831A (en) Display panel preparation method and liquid crystal display
TWI489183B (zh) 液晶顯示面板及液晶顯示裝置
KR20160127856A (ko) 프린지 필드 스위칭 액정 표시장치 및 그 제조방법
WO2020015400A1 (zh) 显示面板及其显示方法
CN109917590A (zh) 液晶显示面板的制作方法及液晶显示面板
CN105647548A (zh) 配向剂、配向膜的制作方法、显示面板及显示装置
CN107329329B (zh) 液晶显示面板及其uv2a配向方法
TWI477862B (zh) 液晶顯示面板及液晶顯示裝置
WO2020024404A1 (zh) 掩膜版及柔性液晶显示面板的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17924871

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17924871

Country of ref document: EP

Kind code of ref document: A1