WO2019051921A1 - 一种超声波传感器 - Google Patents

一种超声波传感器 Download PDF

Info

Publication number
WO2019051921A1
WO2019051921A1 PCT/CN2017/106970 CN2017106970W WO2019051921A1 WO 2019051921 A1 WO2019051921 A1 WO 2019051921A1 CN 2017106970 W CN2017106970 W CN 2017106970W WO 2019051921 A1 WO2019051921 A1 WO 2019051921A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic sensor
matching layer
piezoelectric wafer
epoxy
fixed
Prior art date
Application number
PCT/CN2017/106970
Other languages
English (en)
French (fr)
Inventor
萧建虎
李勇跃
Original Assignee
苏州市易德龙电子元件科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州市易德龙电子元件科技有限公司 filed Critical 苏州市易德龙电子元件科技有限公司
Priority to JP2020600092U priority Critical patent/JP3229362U/ja
Publication of WO2019051921A1 publication Critical patent/WO2019051921A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/48Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using wave or particle radiation means

Definitions

  • the invention relates to electronic components, in particular to a novel structure ultrasonic sensor.
  • the use of the ultrasonic sensor of the 0.08 meter test blind zone on the device determines that the device must provide enough space for the ultrasonic sensor to distinguish between the residual vibration (clutter) and the primary echo (useful feedback), so that the device is not allowed. Not designed to be large and cumbersome.
  • the structure of the existing ultrasonic sensor is as shown in FIG. 1, and includes a matching layer material 1, a wafer 2 and a rubber member 3, wherein the wafer 2 is separately fabricated, and then bonded with a wafer by epoxy, the performance is lowered, and the damping effect of the rubber member 3 is Affected by the structure, the effect is poor.
  • the object of the present invention is to provide a novel structure of an ultrasonic sensor, which can reduce the size of the device, reduce the residual vibration, and increase the echo sensitivity to improve the performance of the sensor.
  • An ultrasonic sensor includes a housing and a piezoelectric wafer placed in the housing, the housing is mounted with a base at one end, the piezoelectric wafer is fixed with a flexible glue on one side of the base, and a matching layer is fixed on the other side.
  • the stirred paste-like matching layer is fixed on the piezoelectric wafer by dispensing or brushing, so that the matching layer and the surface of one side of the piezoelectric wafer are not gap-bonded, and then the matching layer material is heated. Fully cured to integrate the matching layer with the piezoelectric wafer.
  • the housing is of, but not limited to, cylindrical or square.
  • the flexible rubber has a Shore hardness range after curing from A15 to A40.
  • the flexible glue is one of UV glue, silica gel or epoxy glue.
  • the ultrasonic sensor of the present invention has a large reduction in residual vibration and reduces measurement dead zones.
  • the invention has simple structure, low cost increase and greatly improved performance.
  • 1 is a schematic structural view of a conventional ultrasonic sensor
  • FIG. 2 is a schematic structural view of an ultrasonic sensor of the present invention
  • 3 is a schematic view showing the measurement effect of the conventional ultrasonic sensor at 0.04 m;
  • Fig. 4 is a view showing the measurement effect of the ultrasonic sensor of the present invention at 0.04 m.
  • the ultrasonic sensor of the present invention comprises a housing 1 and a piezoelectric wafer 2 placed in the housing.
  • the housing is mounted with a base 3 at one end thereof, and the piezoelectric wafer is fixed with flexibility toward a side of the base.
  • the glue 5 has a matching layer 4 fixed on the other side. In the specific implementation, the following steps are included.
  • Oxygen: epoxy silane coupling agent 1: (0.010 - 0.013) An epoxy silane coupling agent was added and vacuum-stirred until uniform to form a paste-like matching layer material.
  • the housing and the wafer are fixed by special tooling fixtures.
  • the wafer is placed in the middle of the housing and the distance from the housing port is 2.4 + mm to ensure the matching layer thickness.
  • the stirred paste-like matching layer material is fixed on the wafer in the casing by dispensing or brushing, and then subjected to 7 to 8 hours and 70 ° C ⁇ 5 ° C at 40 ° C ⁇ 5 ° C respectively. Curing for 8 to 10 hours.
  • the thickness of the matching layer of the cured semi-finished product is 2.4 +/- 0.2 mm by grinding, and the working surface is flat.
  • the ground semi-finished product is taken out, and the flexible adhesive is spotted on the wafer and cured.
  • the base is mounted and soldered to the lead wires of the wafer.
  • the cavity of the flexible adhesive between the base and the outer casing is filled again and solidified to fix the base and the outer casing.
  • the existing ultrasonic sensor and the ultrasonic sensor of the present invention respectively, Schematic diagram of the measurement effect at 0.04 meters.
  • the existing ultrasonic sensor (the residual vibration and the primary echo are mixed together and is difficult to distinguish; the ultrasonic sensor of the present invention, the residual vibration and the primary echo are clear at a glance, and are very easy to distinguish.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

一种超声波传感器,包括壳体(1)及放置在壳体(1)内的压电晶片(2),壳体(1)一端安装有底座(3),压电晶片(2)朝向底座(3)的一侧固定有柔性胶(5),另一侧固定有匹配层(4)。通过点胶或刷胶的方法把搅拌后的膏状匹配层(4)固定在压电晶片(2)上,与其表面无间隙粘合,再通过加热使匹配层(4)材料充分固化从而使匹配层(4)与压电晶片(2)成为一体。匹配层(4)与压电晶片(2)粘接一体的方法使回波灵敏度得到提升,余振大幅度减少,减少了测量盲区,超声波传感器的结构简单、成本低且性能大幅度提升。

Description

一种超声波传感器 技术领域
本发明涉及电子元器件,特别涉及一种新型结构的超声波传感器。
背景技术
目前,0.08米的测试盲区的超声波传感器在设备上的运用,决定了设备必须提供足够大的空间以便超声波传感器能够分辨余振(杂波)与一次回波(有用的反馈),这样设备就不得不设计得比较大而笨重。现有的超声波传感器结构如图1所示,包括匹配层材料1、晶片2和橡胶件3,其中晶片2单独制作,然后用环氧与晶片粘接,性能降低,橡胶件3的阻尼作用,受结构影响,效果差。
发明内容
本发明目的是:提供一种新型结构的超声波传感器,使得设备可以小型化,减少余振、增加回波灵敏度以提高传感器性能。
本发明的技术方案是:
一种超声波传感器,包括壳体及放置在壳体内的压电晶片,所述壳体一端安装有底座,所述压电晶片朝向底座的一侧固定有柔性胶,另一侧固定有匹配层。
优选的,所述匹配层以密度1.16的环氧作为载体,按环氧∶玻璃微珠∶固化剂=1∶(0.65~0.75)∶(0.4~0.5)的比例添加玻璃微珠及固化剂,再按环氧∶环氧硅烷偶联剂=1∶(0.010~0.013)添加环氧硅烷偶联剂并真空均匀搅拌,分别在40℃±5℃经7~8小时、70℃±5℃经8~10小时固化而成。
优选的,通过点胶或刷胶的方法把搅拌后的膏状匹配层固定在压电晶片上,使匹配层与压电晶片的一侧表平面无间隙粘合,再通过加热使匹配层材料充分固化从而使匹配层与压电晶片成为一体。
优选的,所述壳体采用但不限于圆柱形或方形。
优选的,所述柔性胶固化后的邵氏硬度范围为A15~A40。
优选的,所述柔性胶是UV胶、硅胶或环氧胶中的一种。
本发明与现有技术相比具有下列优点:
1、本发明的超声波传感器,余振大幅度减少,减少了测量盲区。
2、本发明的匹配层材料与晶片粘接一体的方法使回波灵敏度得到提升。
3、本发明结构简单、成本增加低且性能大幅度提升。
附图说明
下面结合附图及实施例对本发明作进一步描述:
图1为现有的超声波传感器结构示意图;
图2本发明的超声波传感器结构示意图;
图3是现有的超声波传感器在0.04米时的测量效果示意图;
图4是本发明的超声波传感器在0.04米时的测量效果示意图。
具体实施方式
如图2所示,本发明的超声波传感器,包括壳体1及放置在壳体内的压电晶片2,所述壳体一端安装有底座3,所述压电晶片朝向底座的一侧固定有柔性胶5,另一侧固定有匹配层4。具体实施时,包括以下步骤。
第一步,以密度1.16的环氧作为载体,按环氧∶玻璃微珠∶固化剂=1∶(0.65~0.75)∶(0.4~0.5)的比例添加玻璃微珠及固化剂,再按环氧∶环氧硅烷偶联剂=1∶(0.010~0.013)添加环氧硅烷偶联剂并抽真空搅拌直至均匀,形成膏状的匹配层材料。
第二步,把壳体和晶片用特制工装夹具固定。保证晶片置于壳体中间,且离壳体端口距离为2.4+mm,以保证匹配层厚度。
第三步,把搅拌好的膏状匹配层材料用点胶或刷胶的方法固定在壳体中的晶片上,再分别在40℃±5℃经7~8小时、70℃±5℃经8~10小时固化。
第四步,通过研磨的方法使上述固化后的半成品的匹配层材料厚度为2.4+/-0.2mm,且工作面平整。
第五步,取出研磨后的半成品,在晶片上点柔性胶并固化。
第六步,安装底座并与晶片的引出导线焊接好。
第七步,再次填充柔性胶在底座与外壳间的空腔并固化,使底座与外壳固定。
如图3和4所示,分别为现有的超声波传感器和本发明的超声波传感器, 在0.04米时的测量效果示意图。从图中可以看出,现有的超声波传感器(余振与一次回波混杂在一起,不易区分;本发明的超声波传感器,余振与一次回波一目了然,非常容易区分。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明主要技术方案的精神实质所做的修饰,都应涵盖在本发明的保护范围之内。

Claims (6)

  1. 一种超声波传感器,包括壳体及放置在壳体内的压电晶片,其特征在于:所述壳体一端安装有底座,所述压电晶片朝向底座的一侧固定有柔性胶,另一侧固定有匹配层。
  2. 根据权利要求1所述的超声波传感器,其特征在于:所述匹配层以密度1.16的环氧作为载体,按环氧∶玻璃微珠∶固化剂=1∶(0.65~0.75)∶(0.4~0.5)的比例添加玻璃微珠及固化剂,再按环氧∶环氧硅烷偶联剂=1∶(0.010~0.013)添加环氧硅烷偶联剂并真空均匀搅拌,分别在40℃±5℃经7~8小时、70℃±5℃经8~10小时固化而成。
  3. 根据权利要求2所述的超声波传感器,其特征在于:通过点胶或刷胶的方法把搅拌后的膏状匹配层固定在压电晶片上,与之表平面无间隙粘合,再通过加热使匹配层材料充分固化,从而使匹配层与压电晶片成为一体。
  4. 根据权利要求1所述的超声波传感器,其特征在于:所述壳体采用但不限于圆柱形或方形。
  5. 根据权利要求1所述的超声波传感器,其特征在于:所述柔性胶固化后的邵氏硬度范围为A15~A40。
  6. 根据权利要求1所述的超声波传感器,其特征在于:所述柔性胶是UV胶、硅胶或环氧胶中的一种。
PCT/CN2017/106970 2017-09-18 2017-10-20 一种超声波传感器 WO2019051921A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020600092U JP3229362U (ja) 2017-09-18 2017-10-20 超音波センサ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710840689.2 2017-09-18
CN201710840689.2A CN107449455A (zh) 2017-09-18 2017-09-18 一种超声波传感器

Publications (1)

Publication Number Publication Date
WO2019051921A1 true WO2019051921A1 (zh) 2019-03-21

Family

ID=60495701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/106970 WO2019051921A1 (zh) 2017-09-18 2017-10-20 一种超声波传感器

Country Status (3)

Country Link
JP (1) JP3229362U (zh)
CN (1) CN107449455A (zh)
WO (1) WO2019051921A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115825963A (zh) * 2022-12-14 2023-03-21 成都汇通西电电子有限公司 一种超声波传感器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109124574B (zh) * 2018-06-26 2021-10-08 深圳迈瑞生物医疗电子股份有限公司 光声-超声探头、声透镜的制作方法、光声-超声成像设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030189391A1 (en) * 2002-03-29 2003-10-09 Yasuo Shimizu Ultrasonic probe
CN201408266Y (zh) * 2009-04-30 2010-02-17 中国船舶重工集团公司第七一五研究所 一种超声测距探头
CN201611266U (zh) * 2010-03-16 2010-10-20 山东力创科技有限公司 热量表超声波换能器
CN201692927U (zh) * 2010-04-12 2011-01-05 杨宝君 一种超声波换能器
US20110303013A1 (en) * 2010-06-11 2011-12-15 Daniel Stephen Kass removable wear-plate assembly for acoustic probes
CN102288782A (zh) * 2011-07-19 2011-12-21 江苏物联网研究发展中心 高精度超声波传感器
CN202171478U (zh) * 2011-08-17 2012-03-21 李志慧 超声波流量计探头
CN102873018A (zh) * 2012-09-18 2013-01-16 浙江大学 一种匹配层异步固化的超声波换能器
CN103230866A (zh) * 2013-04-11 2013-08-07 镇江畅信超声电子有限公司 一种超声换能器及其制备工艺
CN103743423A (zh) * 2013-12-20 2014-04-23 常州波速传感器有限公司 一种新型高频率超声波传感器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030189391A1 (en) * 2002-03-29 2003-10-09 Yasuo Shimizu Ultrasonic probe
CN201408266Y (zh) * 2009-04-30 2010-02-17 中国船舶重工集团公司第七一五研究所 一种超声测距探头
CN201611266U (zh) * 2010-03-16 2010-10-20 山东力创科技有限公司 热量表超声波换能器
CN201692927U (zh) * 2010-04-12 2011-01-05 杨宝君 一种超声波换能器
US20110303013A1 (en) * 2010-06-11 2011-12-15 Daniel Stephen Kass removable wear-plate assembly for acoustic probes
CN102288782A (zh) * 2011-07-19 2011-12-21 江苏物联网研究发展中心 高精度超声波传感器
CN202171478U (zh) * 2011-08-17 2012-03-21 李志慧 超声波流量计探头
CN102873018A (zh) * 2012-09-18 2013-01-16 浙江大学 一种匹配层异步固化的超声波换能器
CN103230866A (zh) * 2013-04-11 2013-08-07 镇江畅信超声电子有限公司 一种超声换能器及其制备工艺
CN103743423A (zh) * 2013-12-20 2014-04-23 常州波速传感器有限公司 一种新型高频率超声波传感器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115825963A (zh) * 2022-12-14 2023-03-21 成都汇通西电电子有限公司 一种超声波传感器
CN115825963B (zh) * 2022-12-14 2024-03-15 成都汇通西电电子有限公司 一种超声波传感器

Also Published As

Publication number Publication date
JP3229362U (ja) 2020-12-03
CN107449455A (zh) 2017-12-08

Similar Documents

Publication Publication Date Title
CN104441631B (zh) 一种易磨硅橡胶环与金属胶接件制造方法
WO2019051921A1 (zh) 一种超声波传感器
CN110191405B (zh) 双频大尺寸压电复合材料球形换能器及其制备方法
PH12014502374A1 (en) Composition for film adhesives, method for producing same, film adhesive, semiconductor package using film adhesive and method for manufacturing semiconductor package using film adhesive
JP2008521240A5 (zh)
TW201129791A (en) Method of evaluating adhesiveness
EP2584014A3 (en) Method for joining aluminum part and resin and composite made by same
CN109337610A (zh) 一种金属用粘结胶的配方及其应用
CN110519675B (zh) 水下航行器声信息电子感知皮肤及其制备方法
CN210885911U (zh) 用于oled产品的一种高性能缓冲散热材
CN105758793B (zh) 面向固化过程的复合材料与模具界面力监测方法
CN102636106A (zh) 中温箔式电阻应变计
JP2010028087A5 (zh)
WO2021103876A1 (zh) 背衬材料及其制备方法、超声波探头
CN205209473U (zh) 厚度均匀的箔式应变计
CN109826069A (zh) 沥青路面内部裂缝无线监测系统及裂缝宽度、位置确定方法
CN207528252U (zh) 一种超声波传感器
CN102346172A (zh) 一种用于超声波无损检测探头的背衬材料及其制造方法
JP2008261732A (ja) 超音波送受波器とそれを使用した超音流速流量計
CN103197364A (zh) 一种透镜埋入型反光膜及其植珠工艺
CN108735489B (zh) 电磁传输组件的密封方法
CN207347462U (zh) 一种按压型工业创口贴
CN109696115A (zh) 水泥路面内部裂缝无线监测系统及裂缝宽度、位置确定方法
CN101650246B (zh) 内置调理电路的弯曲圆盘式水压传感器
CN209007386U (zh) 一种橡胶基底有机陶瓷磨块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17925398

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020600092

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17925398

Country of ref document: EP

Kind code of ref document: A1