WO2019051881A1 - 一种三维超声成像探头 - Google Patents

一种三维超声成像探头 Download PDF

Info

Publication number
WO2019051881A1
WO2019051881A1 PCT/CN2017/103299 CN2017103299W WO2019051881A1 WO 2019051881 A1 WO2019051881 A1 WO 2019051881A1 CN 2017103299 W CN2017103299 W CN 2017103299W WO 2019051881 A1 WO2019051881 A1 WO 2019051881A1
Authority
WO
WIPO (PCT)
Prior art keywords
sleeve
piston
space
expansion
base
Prior art date
Application number
PCT/CN2017/103299
Other languages
English (en)
French (fr)
Inventor
曾云泉
张梦悦
Original Assignee
深圳嘉瑞电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳嘉瑞电子科技有限公司 filed Critical 深圳嘉瑞电子科技有限公司
Publication of WO2019051881A1 publication Critical patent/WO2019051881A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/483Diagnostic techniques involving the acquisition of a 3D volume of data

Definitions

  • the invention relates to a device for use in the field of medical ultrasound.
  • three-dimensional ultrasound imaging technology has been widely used in medical ultrasound imaging.
  • This technology is a computer to reconstruct and reconstruct a two-dimensional ultrasound image captured by an ultrasound probe during ultrasonic scanning, thereby obtaining a three-dimensional three-dimensional stereo for more convenient observation and diagnosis. image.
  • the transducer set of the three-dimensional probe can oscillate around a fixed axis of rotation over a range of angles, while the transducer set of the two-dimensional probe is stationary. Therefore, the three-dimensional probe is structurally composed of a core functional component of the transducer group, a drive motor, a transmission mechanism, and a sealed space composed of a sound-transmitting cover and a base for the transducer group to swing freely. In this confined space, in particular, the gap between the transducer set and the sound-permeable cover must be filled with the coupling fluid as a medium that facilitates the transmission of ultrasound between the transducer set and the human body.
  • the three-dimensional probe will continuously experience changes in ambient temperature from the aspects of manufacturing, transportation, storage, and use. At the same time, there are two heat sources inside the three-dimensional probe: the transducer group and the driving motor. When the ambient temperature rises, or the transducer group and the drive motor work, the volume of the coupling fluid will Expansion, at this time the positive pressure of the coupling fluid, may cause the coupling fluid to leak.
  • the volume of the coupling fluid shrinks, the ambient atmospheric pressure is greater than the internal pressure of the closed space, and the negative pressure of the coupling fluid, the external gas may enter the confined space, causing the coupling fluid to mix bubbles.
  • Bubbles are strong reflective materials of ultrasound, which can seriously degrade the quality of ultrasound imaging, making the probe unusable.
  • the technical problem to be solved by the invention is that the internal pressure is too large or too small after overcoming the temperature change of the coupling liquid in the closed space composed of the sound permeable cover and the base, and the coupling fluid leaks or bubbles are mixed to reduce the ultrasonic wave.
  • a defect in imaging quality is proposed.
  • a three-dimensional ultrasound imaging probe is proposed.
  • the coupling fluid expansion and contraction compensation mechanism can adaptively adjust the internal pressure of the coupling fluid regardless of the temperature of the coupling fluid, thereby avoiding the above defects.
  • a three-dimensional ultrasonic imaging probe comprising a base, a sound-transmitting cover, and a coupling liquid expansion and contraction compensation mechanism;
  • a pedestal flow port is opened at the top of the base
  • a sound permeable cover is mounted on the bottom of the base
  • the pedestal and the sound permeable cover are surrounded to form a coupling liquid sealing space, and the coupling liquid sealing space is sealed;
  • the coupling fluid expansion and contraction compensation mechanism comprises a sleeve, a conduit and a piston
  • the sleeve is fixedly mounted above the base, and a sleeve liquid outlet is opened at the top of the sleeve;
  • the two ends of the conduit are respectively connected to the base flow port and the sleeve flow port;
  • the piston is slidably mounted inside the sleeve, and divides the inner space of the sleeve into upper and lower parts, wherein the upper part is an expansion and contraction compensation space, and the expansion and contraction compensation space is connected with the sleeve liquid discharge port;
  • the coupling liquid sealing space, the expansion and contraction compensation space, and the duct form a sealed space with good sealing performance.
  • the coupling liquid expansion and contraction compensation mechanism further includes an elastic member, and the lower portion of the upper and lower portions into which the piston divides the inner space of the sleeve is an elastic member installation space for mounting the elastic member, and the elasticity The component is mounted between the bottom surface of the piston and the upper surface of the bottom wall of the sleeve.
  • the elastic member is a spring.
  • the above technical solution is further defined in that the lower portion of the upper and lower portions in which the piston partitions the inner space of the sleeve communicates with the air outside the sleeve, and the piston is moved by the pressure difference between the upper and lower portions of the piston.
  • the coupling fluid expansion and contraction compensation mechanism further includes a piston seal, and the piston seal is mounted on the piston.
  • a second embodiment of a three-dimensional ultrasonic imaging probe comprising a base, a sound-transmitting cover, and a coupling liquid expansion and contraction compensation mechanism;
  • a base opening is formed at the top of the base
  • a sound permeable cover is mounted on the bottom of the base
  • the base and the sound permeable cover are surrounded to form a coupling liquid sealing space, and the coupling liquid seal is empty The air is sealed;
  • the coupling fluid expansion and contraction compensation mechanism comprises a sleeve and a piston
  • the sleeve is integrally formed extending from the edge of the base opening of the base upwardly, and the bottom of the sleeve and the base are connected;
  • the piston is slidably mounted inside the sleeve, which divides the inner space of the sleeve into upper and lower parts, wherein the lower part is the expansion and contraction compensation space;
  • the expansion and contraction compensation space is connected to the coupling liquid sealing space
  • the coupling liquid sealing space and the expansion and contraction compensation space constitute a whole sealing space with good sealing performance.
  • the coupling fluid expansion and contraction compensation mechanism further includes an elastic member that is mounted between the top surface of the piston and the lower surface of the top wall of the sleeve.
  • the elastic member is a spring.
  • the above technical solution is further defined in that the piston separates the upper portion of the upper and lower portions of the sleeve into air communication with the outside of the sleeve, and pushes the piston movement by the pressure difference between the upper and lower portions of the piston.
  • the coupling fluid expansion and contraction compensation mechanism further includes a piston seal, and the piston seal is mounted on the piston.
  • the present invention has the following beneficial effects: the sleeve, the piston and the conduit (or the sleeve and the piston) of the coupling fluid expansion and contraction compensation mechanism cooperate to form an expansion and contraction compensation space which is in communication with the coupling liquid sealing space, and the elasticity
  • the component exerts an elastic force on the piston or applies the thrust to the piston by atmospheric pressure, so that the internal pressure of the coupling liquid sealing space is kept stable, regardless of the storage environment or working environment conditions, regardless of the coupling fluid How the temperature changes, the coupling fluid expansion and contraction compensation mechanism can realize the adaptive adjustment of the internal pressure of the coupling liquid, thereby solving two major problems that the internal pressure is too high, causing the leakage of the coupling liquid and the internal pressure to cause the bubble to enter the internal sealed space.
  • FIG. 1 is a perspective view of a first embodiment of a three-dimensional ultrasound imaging probe of the present invention.
  • FIG. 2 is a cross-sectional view of a first embodiment of a three-dimensional ultrasound imaging probe of the present invention.
  • Figure 3 is a cross-sectional view showing a second embodiment of the three-dimensional ultrasonic imaging probe of the present invention.
  • a first embodiment of a three-dimensional ultrasonic imaging probe includes a base 11, a sound-transmitting cover 13, a driven wheel shaft 15, a driven wheel 17, a drive motor 19, and a driving wheel 21.
  • the susceptor 11 is a semi-enclosed structure having a pedestal flow port 114 at the top.
  • the sound permeable cover 13 is a C-shaped semi-enclosed structure.
  • the sound permeable cover 13 is mounted at the bottom of the base 11.
  • the driven wheel shaft 15 is mounted on the top of the base 11.
  • the susceptor 11 and the sound permeable cover 13 are surrounded to form a coupling liquid sealing space 16 having a volume V1.
  • the coupling liquid sealing space 16 is hermetically sealed, and the sealing performance is good, and the coupling liquid stored therein does not leak out.
  • the driven wheel 17 is fixedly coupled to the driven wheel shaft 15.
  • the drive motor 19 is fixedly mounted above the base 11.
  • the driving wheel 21 is mounted and fixed to a rotating shaft (not shown) of the driving motor 19.
  • the timing belt 23 is mounted between the driving wheel 21 and the driven wheel 17.
  • the transmission member 25 is mounted in the coupling liquid sealing space 16.
  • the driven wheel shaft 15 is coupled to the transmission member 25.
  • the transducer component 27 is rotatably mounted on the transmission component 25, and the transducer component 27 is located in the coupling fluid tight space 16.
  • the rotating shaft of the driving motor 19 drives the driving wheel 21 to rotate, and the driven wheel 23 and the driven wheel rotating shaft 15 are rotated by the action of the timing belt 23, and the driven wheel rotating shaft 15 drives the transmission member 25 and the transducer member 27 Turn.
  • the coupling fluid expansion and contraction compensation mechanism 29 includes a sleeve 291, a conduit 292, a piston 293, a piston seal 294, and an elastic member 295.
  • the sleeve 291 is fixedly mounted above the base 11 and the driven wheel 17, and a sleeve flow port 2912 is opened at the top of the sleeve 291.
  • Both ends of the conduit 292 are connected to the base flow port 114 and the sleeve flow port 2912, respectively.
  • the seal between the conduit 292 and the base 11 and the sleeve 291 is good, and no liquid leakage occurs.
  • the piston 293 is mounted inside the sleeve 291, which divides the inner space of the sleeve 291 into upper and lower portions, wherein the upper portion is the expansion and contraction compensation space 2914, and the lower portion is the elastic member for mounting the elastic member 295. Installation space 2952.
  • the volume of the expansion and contraction compensation space 2914 is Vx, and the expansion and contraction compensation space 2914 is in communication with the sleeve flow port 2912.
  • the piston seal 294 is mounted on the piston 293 to increase the liquid tightness of the piston 293 and prevent the coupling fluid in the expansion and contraction compensation space 2914 from flowing into the elastic member mounting space 2952.
  • the expansion and contraction compensation space 2914 of the sleeve 291 is hermetic and does not leak liquid.
  • the coupling fluid in the coupling liquid sealing space 16 enters the expansion and contraction compensation space 2914 via the conduit 292, and the coupling fluid in the expansion and contraction compensation space 2914 enters the coupling liquid sealing space 16 through the conduit 292.
  • the elastic member 295 is mounted between the bottom surface of the piston 293 and the upper surface of the bottom wall of the sleeve 291, and the elastic member 295 applies an upward elastic force to the piston 293.
  • the resilient member 295 is preferably a spring of choice.
  • the function of the elastic member 295 is to apply a pressure to the coupling liquid in the expansion and contraction compensation space 2914, and to conduct the pressure to the coupling liquid in the coupling liquid sealing space 16 to prevent the coupling liquid in the coupling liquid sealing space 16 from being too small to affect the ultrasonic wave. Conduction reduces the quality of ultrasound imaging.
  • the coupling liquid sealing space 16, the expansion and contraction compensation space 2914, and the conduit 292 constitute an integral sealing space with good sealing performance, and the coupling liquid fills the coupling liquid sealing space 16, the expansion and contraction compensation space 2914, and the above-mentioned integral sealing space composed of the conduit 292.
  • the coupling fluid has an ultimate expansion volume at the highest temperature and a limit contraction volume at the lowest temperature.
  • the maximum value (Vx-max) of the volume Vx of the expansion/contraction compensation space 2914 is greater than the sum of the above-described limit expansion volume and the above-described ultimate contraction volume, thereby ensuring that the sealing structure of the above-described integral sealed space does not fail.
  • the three-dimensional ultrasonic imaging probe of the present invention When the three-dimensional ultrasonic imaging probe of the present invention is manufactured at the factory, according to the current production environment temperature of the factory, considering the maximum temperature and the minimum temperature that the internal coupling fluid may reach after leaving the factory, the three-dimensional ultrasonic imaging probe respectively calculates the above-mentioned ultimate expansion volume and The above-described limit contraction volume, and thus the maximum value (Vx-max) of the volume Vx of the above-described expansion/contraction compensation space 2914.
  • an initial position of the piston 293 is determined.
  • the volume of the expansion and contraction compensation space 2914 corresponding to the initial position of the piston 293 is the factory preset volume V0.
  • the piston 293 of the coupling fluid expansion and contraction compensation mechanism 29 is pushed downward by the fluid pressure of the expansion, and at this time, the volume Vx of the expansion and contraction compensation space 2914 of the coupling fluid expansion and contraction compensation mechanism 29 is Vx.
  • the increase is made from the factory preset volume V0, so that the internal pressure of the coupling liquid sealing space 16 can be prevented from being excessively high.
  • the volume Vx of the expansion/contraction compensation space 2914 is increased to a certain extent, and the pressure is balanced by the upper and lower sides of the piston 293, the piston 293 stops moving.
  • the present invention has the following advantageous effects: the sleeve 291 of the coupling fluid expansion and contraction compensation mechanism 29, the piston 293 and the conduit 292 cooperate to form an expansion and contraction compensation space 2914 which communicates with the coupling liquid sealing space 16, and the elastic member 295 applies an elasticity to the piston 293.
  • the force makes the internal pressure of the coupling liquid sealing space 16 stable.
  • the coupling liquid expansion and contraction compensation mechanism 29 can realize the internal pressure of the coupling liquid regardless of the temperature of the coupling liquid. Adjusted to solve the internal pressure High causes two large problems of coupling fluid leakage and low internal pressure resulting in air bubbles entering the internal sealed space.
  • the above is the first embodiment, and the following is a modified embodiment of the first embodiment (not shown).
  • Other structures are the same as those of the first embodiment, except that the coupling fluid expansion and contraction compensation mechanism does not include elasticity.
  • the part, the sleeve is divided into upper and lower parts by the piston, and the upper part is still the expansion and compensation space, but the lower part is empty and communicates with the air outside the sleeve, relying on the pressure between the upper and lower parts of the piston The difference pushes the piston movement.
  • This modified embodiment enables a function equivalent to that of the first embodiment to achieve a considerable technical effect.
  • a second embodiment of a three-dimensional ultrasonic imaging probe includes a base 11', a sound-transmitting cover 13', a driven wheel shaft 15', a driven wheel 17', a drive motor 19', and an active The wheel 21', the timing belt 23', the transmission member 25', the transducer member 27', and the coupling fluid expansion and contraction compensation mechanism 29'.
  • the base 11' is a semi-enclosed structure having a base opening 112' at the top.
  • the sound permeable cover 13' is a C-shaped semi-enclosed structure.
  • the sound permeable cover 13' is mounted at the bottom of the base 11'.
  • the driven wheel shaft 15' is mounted on the top of the base 11'.
  • the susceptor 11' and the sound permeable cover 13' are surrounded to form a coupling liquid sealing space 16' having a volume V1'.
  • the coupling liquid sealing space 16' is hermetically sealed and has good sealing performance, and the coupling liquid stored therein can only flow out from the base opening 112' without leaking from other places.
  • the driven wheel 17' is fixedly coupled to the driven wheel shaft 15'.
  • the drive motor 19' is fixedly mounted above the base 11'.
  • the driving wheel 21' is mounted and fixed to a rotating shaft (not shown) of the driving motor 19'.
  • the timing belt 23' is mounted between the driving wheel 21' and the driven wheel 17'.
  • the transmission member 25' is mounted in the coupling liquid sealing space 16'.
  • the driven wheel shaft 15' is coupled to the transmission member 25'.
  • the transducer member 27' is rotatably mounted on the transmission member 25', and the transducer member 27' is located in the coupling liquid sealing space 16'.
  • the rotating shaft of the driving motor 19' drives the driving wheel 21' to rotate, and the driven wheel 17' and the driven wheel rotating shaft 15' are rotated by the action of the timing belt 23', and the driven wheel rotating shaft 15' drives the transmission component. 25' and transducer component 27' rotate.
  • the coupling fluid expansion compensation mechanism 29' includes a sleeve 291', a piston 293', and a piston seal 294'.
  • the sleeve 291' is integrally formed integrally extending upward from the edge of the base opening 112' of the base 11', and the bottom of the sleeve 291' and the base 11' are in communication.
  • the piston 293' is slidably mounted inside the sleeve 291', which divides the inner space of the sleeve 291' into upper and lower portions, wherein the lower portion is the expansion and contraction compensation space 2914', and the upper portion is empty. And in communication with the air outside the sleeve 291', the piston 293' is moved by the pressure difference between the upper and lower faces of the piston 293'.
  • the expansion and contraction compensation space 2914' is in communication with the coupling liquid sealing space 16', and the coupling fluid may flow from the expansion and contraction compensation space 2914' into the coupling liquid sealing space 16', or may flow from the coupling liquid sealing space 16' to the expansion and contraction. Compensation space 2914'.
  • the volume of the expansion and contraction compensation space 2914' is Vx'
  • the piston seal 294' is mounted on the piston 293' to increase the liquid tightness of the piston 293' and prevent the coupling fluid in the expansion and contraction compensation space 2914' from flowing over the piston 293'.
  • the expansion and contraction compensation space 2914' of the sleeve 291' is hermetic and does not leak liquid.
  • the piston 293' applies pressure to the coupling liquid in the expansion and contraction compensation space 2914', and conducts the pressure to the coupling liquid in the coupling liquid sealing space 16' to prevent the coupling liquid in the coupling liquid sealing space 16' from being too small to affect the ultrasonic wave. Conduction reduces the quality of ultrasound imaging.
  • the coupling liquid sealing space 16' and the expansion and contraction compensation space 2914' constitute an integral sealing space with good sealing performance, and the coupling liquid fills the above-mentioned integral sealing space composed of the coupling liquid sealing space 16' and the expansion and contraction compensation space 2914'.
  • the coupling fluid has an ultimate expansion volume at the highest temperature and a limit contraction volume at the lowest temperature.
  • the maximum value (Vx'-max) of the volume Vx' of the expansion/contraction compensation space 2914' is larger than the sum of the above-described limit expansion volume and the above-described limit contraction volume, thereby ensuring that the sealing structure of the above-described integral sealed space does not fail.
  • the three-dimensional ultrasonic imaging probe of the present invention When the three-dimensional ultrasonic imaging probe of the present invention is manufactured at the factory, according to the current production environment temperature of the factory, considering the maximum temperature and the minimum temperature that the internal coupling fluid may reach after leaving the factory, the three-dimensional ultrasonic imaging probe respectively calculates the above-mentioned ultimate expansion volume and The above limit shrinkage volume, and thus the maximum value (Vx'-max) of the volume Vx' of the above-described expansion and contraction compensation space 2914'.
  • an initial position of the piston 293' is determined, and the initial position of the piston 293' corresponds to the expansion and contraction compensation space.
  • the volume of 2914' is the factory preset volume V0'.
  • the volume expands, and the piston 293' of the coupling fluid expansion and contraction compensation mechanism 29' is pushed downward by the fluid pressure of the expansion.
  • the expansion and contraction compensation space of the coupling fluid expansion and contraction compensation mechanism 29' is 2914.
  • the volume Vx' increases from the factory preset volume V0', so that the internal pressure of the coupling liquid sealing space 16' can be prevented from being excessive.
  • the volume Vx' of the expansion/contraction compensation space 2914' is increased to a certain extent, the upper and lower sides of the piston 293' are balanced by the pressure, and the piston 293' stops moving.
  • the present invention has the following beneficial effects: the sleeve 291' of the coupling fluid expansion and contraction compensation mechanism 29' and the piston 293' cooperate to form an expansion and contraction compensation space 2914' communicating with the coupling liquid sealing space 16', the atmospheric pressure and the gravity of the piston 293'. A force is applied to the piston 293' to stabilize the internal pressure of the coupling liquid sealing space 16'.
  • the coupling fluid expansion and contraction compensation mechanism 29' can be controlled regardless of the temperature of the coupling liquid within a specified range of storage environmental conditions or working environmental conditions.
  • the self-adaptive adjustment of the internal pressure of the coupling fluid is realized, thereby solving two major problems that the internal pressure is too high, causing the coupling fluid to leak and the internal pressure to be too low, causing the air bubbles to enter the internal sealed space.
  • the coupling fluid expansion and contraction compensation mechanism further includes an elastic member (not shown) mounted on the top surface of the piston 293' and the sleeve. Between the lower surface of the top wall of 291', the elastic member exerts a downward elastic force on the piston 293'.
  • the resilient member is a spring.
  • the function of the elastic member is to apply a pressure to the coupling liquid in the expansion and contraction compensation space 2914', and conduct the pressure to the coupling liquid in the coupling liquid sealing space 16' to prevent the coupling fluid in the coupling liquid sealing space 16' from being too small.
  • Ultrasonic conduction reduces the quality of ultrasound imaging.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种三维超声成像探头,包括基座(11)、透声罩(13)、耦合液涨缩补偿机构(29);基座(11)顶部开设有一个基座流液口(114);透声罩(13)安装在基座(11)的底部;基座(11)和透声罩(13)包围形成一个耦合液密封空间(16),耦合液密封空间(16)是密闭的;耦合液涨缩补偿机构(29)包括套筒(291)、导管(292)、活塞(293);套筒(291)安装固定在基座(11)的上方,套筒(291)的顶部开设有一个套筒流液口(2912);导管(292)的两端分别连接基座流液口(114)和套筒流液口(2912);活塞(293)可滑动地安装在套筒(291)的内部,其把套筒(291)内部空间分隔成上下两个部分,其中靠上的部分是涨缩补偿空间(2914),涨缩补偿空间(2914)与套筒流液口(2912)连通;耦合液密封空间(16)、涨缩补偿空间(2914)以及导管(292)组成一个密封性能良好的整体密封空间。该耦合液涨缩补偿机构(29)能够实现耦合液内部压力的自适应调节。

Description

一种三维超声成像探头 技术领域
本发明涉及一种医用超声领域用的设备。
背景技术
目前三维超声成像技术已普遍应用在医用超声成像上,该技术是通过计算机将超声探头在超声扫描过程中所捕捉到的二维超声图像进行合成重构,从而得到更便于观察和诊疗的三维立体图像。
三维探头在机械上跟二维探头的区别,在于三维探头的换能器组可以绕着一个固定旋转轴在一定角度范围内摆动,而二维探头的换能器组是固定不动的。因此,三维探头在结构上除了有换能器组这个核心功能部件,还包括驱动电机、传动机构,以及一个由透声罩和基座组成的供换能器组自由摆动的密闭空间。在该密闭空间中,尤其是换能器组与透声罩之间的间隙,必须充满耦合液,作为有利于超声波在换能器组与人体之间传导的介质。
众所周知,相对固体而言,液体的体积膨胀系数一般比较大,在一个密封空间内,温度升高时,液体内部压力随着增大,增大到一定程度时将会造成密封失效。
三维探头从制造、运输、储存,使用等环节会不断经历环境温度的变化,同时三维探头内部有两个发热源:换能器组和驱动电机。当环境温度升高,或换能器组和驱动电机工作时,耦合液体积就会 膨胀,此时耦合液正压,将可能造成耦合液泄漏。
当环境温度降低时,耦合液体积会收缩,环境大气压力大于密闭空间的内部压力,耦合液负压,外部气体将可能进入密闭空间,造成耦合液混杂气泡。而气泡是超声波的强反射物质,会严重降低超声成像质量,导致探头无法使用。
因此,为避免耦合液体积变化造成探头损坏,设置耦合液涨缩补偿机构为当务之急。
发明内容
本发明要解决的技术问题在于:克服现有的三维探头由透声罩和基座组成的密闭空间中耦合液温度变化后造成内部压力过大或过小,造成耦合液泄漏或者混入气泡降低超声成像质量的缺陷,提出一种三维超声成像探头,无论耦合液温度如何变化,耦合液涨缩补偿机构均能够实现耦合液内部压力的自适应调节,避免了上述缺陷。
为了解决上述技术问题,本发明提出以下技术方案:一种三维超声成像探头,包括基座、透声罩、耦合液涨缩补偿机构;
基座顶部开设有一个基座流液口;
透声罩安装在基座的底部;
基座和透声罩包围形成一个耦合液密封空间,耦合液密封空间是密闭的;
耦合液涨缩补偿机构包括套筒、导管、活塞;
套筒安装固定在基座的上方,套筒的顶部开设有一个套筒流液口;
导管的两端分别连接基座流液口和套筒流液口;
活塞可滑动地安装在套筒的内部,其把套筒内部空间分隔成上下两个部分,其中靠上的部分是涨缩补偿空间,涨缩补偿空间与套筒流液口连通;
耦合液密封空间、涨缩补偿空间以及导管组成一个密封性能良好的整体密封空间。
上述技术方案的进一步限定在于,耦合液涨缩补偿机构还包括弹性部件,活塞把套筒内部空间分隔成的上下两个部分中靠下的部分是用来安装弹性部件的弹性部件安装空间,弹性部件安装在活塞的底面和套筒的底壁上表面之间。
上述技术方案的进一步限定在于,弹性部件是弹簧。
上述技术方案的进一步限定在于,活塞把套筒内部空间分隔成的上下两个部分中靠下的部分和套筒外部的空气连通,依靠活塞的上下面之间的压力差推动活塞运动。
上述技术方案的进一步限定在于,耦合液涨缩补偿机构还包括活塞密封件,活塞密封件安装在活塞上。
为了解决上述技术问题,本发明提出以下技术方案:一种三维超声成像探头的第二实施例,包括基座、透声罩、耦合液涨缩补偿机构;
基座顶部开设有一个基座开口;
透声罩安装在基座的底部;
基座和透声罩包围形成一个耦合液密封空间,该耦合液密封空 间是密闭的;
耦合液涨缩补偿机构包括套筒、活塞;
套筒从基座的基座开口的边缘向上方一体成型地延伸突设而成,套筒的底部和基座是连通的;
活塞可滑动地安装在套筒的内部,其把套筒内部空间分隔成上下两个部分,其中靠下的部分是涨缩补偿空间;
涨缩补偿空间与耦合液密封空间是连通的;
耦合液密封空间、涨缩补偿空间组成一个密封性能良好的整体密封空间。
上述技术方案的进一步限定在于,耦合液涨缩补偿机构还包括弹性部件,该弹性部件安装在活塞的顶面和套筒的顶壁下表面之间。
上述技术方案的进一步限定在于,弹性部件是弹簧。
上述技术方案的进一步限定在于,活塞把套筒内部空间分隔成的上下两个部分中靠上的部分和套筒外部的空气连通,依靠活塞的上下面之间的压力差推动活塞运动。
上述技术方案的进一步限定在于,耦合液涨缩补偿机构还包括活塞密封件,活塞密封件安装在活塞上。
与现有技术相比,本发明具有以下有益效果:耦合液涨缩补偿机构的套筒、活塞和导管(或者套筒和活塞)配合形成一个与耦合液密封空间连通的涨缩补偿空间,弹性部件施加给活塞一个弹性力或者依靠大气压施加给活塞推力,使耦合液密封空间内部压力保持稳定,在储存环境条件或工作环境条件的规定范围内,无论耦合液 温度如何变化,耦合液涨缩补偿机构均能够实现耦合液内部压力的自适应调节,从而解决了内部压力过高导致耦合液泄漏和内部压力过低导致气泡进入内部密封空间的两个大问题。
附图说明
图1是本发明三维超声成像探头第一实施例的立体图。
图2是本发明三维超声成像探头第一实施例的剖视图。
图3是本发明三维超声成像探头第二实施例的剖视图。
具体实施方式
请参阅图1至图2,为本发明一种三维超声成像探头的第一实施例,其包括基座11、透声罩13、从动轮转轴15、从动轮17、驱动电机19、主动轮21、同步带23、传动部件25、换能器部件27、耦合液涨缩补偿机构29。
基座11是半包围结构,其顶部开设有一个基座流液口114。
透声罩13是呈C形的半包围结构。透声罩13安装在基座11的底部。
从动轮转轴15安装在基座11的顶部。
基座11和透声罩13包围形成一个耦合液密封空间16,其容积为V1。该耦合液密封空间16是密闭的,密封性能良好,存储其中的耦合液不会渗漏出来。
从动轮17固定地连接从动轮转轴15。
驱动电机19固定地安装在基座11的上方。
主动轮21安装固定在驱动电机19的转动轴(图未示)上。
同步带23安装在主动轮21和从动轮17之间。
传动部件25安装在耦合液密封空间16中。从动轮转轴15与传动部件25连接。
换能器部件27可旋转地安装在传动部件25上,换能器部件27位于耦合液密封空间16中。
启动驱动电机19后,驱动电机19的转动轴带动主动轮21旋转,通过同步带23的作用,带动从动轮17、从动轮转轴15旋转,从动轮转轴15带动传动部件25和换能器部件27转动。
耦合液涨缩补偿机构29包括套筒291、导管292、活塞293、活塞密封件294、弹性部件295。
套筒291安装固定在基座11和从动轮17的上方,套筒291的顶部开设有一个套筒流液口2912。
导管292的两端分别连接基座流液口114和套筒流液口2912。导管292和基座11、套筒291之间的密封性良好,不会有液体渗漏。
活塞293安装在套筒291的内部,其把套筒291内部空间分隔成上下两个部分,其中靠上的部分是涨缩补偿空间2914,靠下的部分是用来安装弹性部件295的弹性部件安装空间2952。
涨缩补偿空间2914的容积为Vx,涨缩补偿空间2914与套筒流液口2912连通。
活塞密封件294安装在活塞293上,作用是提高活塞293的液体密封性,防止涨缩补偿空间2914内的耦合液流入到弹性部件安装空间2952内。
由于活塞密封件294良好的密封性能,除了套筒流液口2912之外,套筒291的涨缩补偿空间2914是密闭的,不会泄漏液体出来。
耦合液密封空间16内的耦合液经过导管292进入涨缩补偿空间2914内,涨缩补偿空间2914内的耦合液经过导管292进入耦合液密封空间16内。
弹性部件295安装在活塞293的底面和套筒291的底壁上表面之间,弹性部件295施加给活塞293向上的弹性力。
弹性部件295最好是选择弹簧。
弹性部件295的作用在于施加压力到涨缩补偿空间2914内的耦合液,并把压力传导到耦合液密封空间16内的耦合液,防止耦合液密封空间16内的耦合液过少而影响超声波的传导,降低超声成像质量。
耦合液密封空间16、涨缩补偿空间2914以及导管292组成一个密封性能良好的整体密封空间,耦合液充满耦合液密封空间16、涨缩补偿空间2914以及导管292组成的上述整体密封空间。
耦合液在温度最高时具有一个极限膨胀体积,在温度最低时具有一个极限收缩体积。涨缩补偿空间2914的容积Vx的最大值(Vx-max)大于上述极限膨胀体积与上述极限收缩体积之和,由此而保证上述整体密封空间的密封结构不失效。
本发明三维超声成像探头在工厂制造时,根据当前工厂的生产环境温度,结合考虑本发明三维超声成像探头出厂后其内部耦合液可能到达的最高温度和最低温度,分别计算出上述极限膨胀体积和 上述极限收缩体积,并由此确定上述涨缩补偿空间2914的容积Vx的最大值(Vx-max)。
同时根据当前工厂的生产环境温度,确定上述活塞293的一个初始位置,此时活塞293的初始位置所对应的涨缩补偿空间2914的容积即为出厂预设容积V0。本发明三维超声成像探头离开工厂环境后,所处环境温度改变,探头内部的耦合液温度就会跟着波动。
若耦合液温度升高,其体积膨胀,耦合液涨缩补偿机构29的活塞293就会被膨胀的液体压力向下推动,此时耦合液涨缩补偿机构29的涨缩补偿空间2914的容积Vx从出厂预设容积V0开始增大,因此可以避免耦合液密封空间16内部压力过高。当涨缩补偿空间2914的容积Vx增大到一定程度,活塞293的上下两面获得了压力的平衡后,活塞293停止移动。
若耦合液温度下降,其体积收缩,涨缩补偿机构的活塞293在弹性部件295的弹性力的作用下开始向上滑动,从而避免耦合液密封空间16的内部出现负压。弹性部件295伸长一定距离之后,活塞293的上下两面获得了压力的平衡后,活塞293停止移动。
本发明具有以下有益效果:耦合液涨缩补偿机构29的套筒291、活塞293和导管292配合形成一个与耦合液密封空间16连通的涨缩补偿空间2914,弹性部件295施加给活塞293一个弹性力,使耦合液密封空间16内部压力保持稳定,在储存环境条件或工作环境条件的规定范围内,无论耦合液温度如何变化,耦合液涨缩补偿机构29均能够实现耦合液内部压力的自适应调节,从而解决了内部压力过 高导致耦合液泄漏和内部压力过低导致气泡进入内部密封空间的两个大问题。
以上为第一实施例,下面是第一实施例(图未示)的一种变形的实施例,其它结构都与第一实施例相同,不同之处在于:耦合液涨缩补偿机构不包括弹性部件,套筒被活塞分隔成上下两个部分,靠上的部分仍然还是涨缩补偿空间,但是靠下的部分是空的并且和套筒外部的空气连通,依靠活塞的上下面之间的压力差推动活塞运动。这个变形的实施例能够实现与第一实施例相当的功能,达到相当的技术效果。
请参阅图3,为本发明一种三维超声成像探头的第二实施例,其包括基座11’、透声罩13’、从动轮转轴15’、从动轮17’、驱动电机19’、主动轮21’、同步带23’、传动部件25’、换能器部件27’、耦合液涨缩补偿机构29’。
基座11’是半包围结构,其顶部开设有一个基座开口112’。
透声罩13’是呈C形的半包围结构。透声罩13’安装在基座11’的底部。
从动轮转轴15’安装在基座11’的顶部。
基座11’和透声罩13’包围形成一个耦合液密封空间16’,其容积为V1’。该耦合液密封空间16’是密闭的,密封性能良好,存储其中的耦合液只能从基座开口112’流出,不会从其它地方渗漏出去。
从动轮17’固定地连接从动轮转轴15’。
驱动电机19’固定地安装在基座11’的上方。
主动轮21’安装固定在驱动电机19’的转动轴(图未示)上。
同步带23’安装在主动轮21’和从动轮17’之间。
传动部件25’安装在耦合液密封空间16’中。从动轮转轴15’与传动部件25’连接。
换能器部件27’可旋转地安装在传动部件25’上,换能器部件27’位于耦合液密封空间16’中。
启动驱动电机19’后,驱动电机19’的转动轴带动主动轮21’旋转,通过同步带23’的作用,带动从动轮17’、从动轮转轴15’旋转,从动轮转轴15’带动传动部件25’和换能器部件27’转动。
耦合液涨缩补偿机构29’包括套筒291’、活塞293’、活塞密封件294’。
套筒291’从基座11’的基座开口112’的边缘向上方一体成型地延伸突设而成,套筒291’的底部和基座11’是连通的。
活塞293’可滑动地安装在套筒291’的内部,其把套筒291’内部空间分隔成上下两个部分,其中靠下的部分是涨缩补偿空间2914’,靠上的部分是空的并且和套筒291’外部的空气连通,依靠活塞293’的上下面之间的压力差推动活塞293’运动。
涨缩补偿空间2914’与耦合液密封空间16’是连通的,耦合液可以从涨缩补偿空间2914’流到耦合液密封空间16’内,也可以从耦合液密封空间16’流到涨缩补偿空间2914’内。
涨缩补偿空间2914’的容积为Vx’,
活塞密封件294’安装在活塞293’上,作用是提高活塞293’的液体密封性,防止涨缩补偿空间2914’内的耦合液流到活塞293’的上方去。
由于活塞密封件294’良好的密封性能,套筒291’的涨缩补偿空间2914’是密闭的,不会泄漏液体出来。
活塞293’施加压力到涨缩补偿空间2914’内的耦合液,并把压力传导到耦合液密封空间16’内的耦合液,防止耦合液密封空间16’内的耦合液过少而影响超声波的传导,降低超声成像质量。
耦合液密封空间16’、涨缩补偿空间2914’组成一个密封性能良好的整体密封空间,耦合液充满耦合液密封空间16’、涨缩补偿空间2914’组成的上述整体密封空间。
耦合液在温度最高时具有一个极限膨胀体积,在温度最低时具有一个极限收缩体积。涨缩补偿空间2914’的容积Vx’的最大值(Vx’-max)大于上述极限膨胀体积与上述极限收缩体积之和,由此保证上述整体密封空间的密封结构不失效。
本发明三维超声成像探头在工厂制造时,根据当前工厂的生产环境温度,结合考虑本发明三维超声成像探头出厂后其内部耦合液可能到达的最高温度和最低温度,分别计算出上述极限膨胀体积和上述极限收缩体积,并由此确定上述涨缩补偿空间2914’的容积Vx’的最大值(Vx’-max)。
同时根据当前工厂的生产环境温度,确定上述活塞293’的一个初始位置,此时活塞293’的初始位置所对应的涨缩补偿空间 2914’的容积即为出厂预设容积V0’。本发明三维超声成像探头离开工厂环境后,所处环境温度改变,探头内部的耦合液温度就会跟着波动。
若耦合液温度升高,其体积膨胀,耦合液涨缩补偿机构29’的活塞293’就会被膨胀的液体压力向下推动,此时耦合液涨缩补偿机构29’的涨缩补偿空间2914’的容积Vx’从出厂预设容积V0’开始增大,因此可以避免耦合液密封空间16’内部压力过高。当涨缩补偿空间2914’的容积Vx’增大到一定程度,活塞293’的上下两面获得了压力的平衡后,活塞293’停止移动。
若耦合液温度下降,其体积收缩,涨缩补偿机构的活塞293’在大气压和自身重力的作用向下滑动,从而避免耦合液密封空间16’的内部出现负压。活塞293’运动一定距离之后,活塞293’的上下两面获得了压力的平衡后,活塞293’停止移动。
本发明具有以下有益效果:耦合液涨缩补偿机构29’的套筒291’和活塞293’配合形成一个与耦合液密封空间16’连通的涨缩补偿空间2914’,大气压和活塞293’的重力施加给活塞293’一个力,使耦合液密封空间16’内部压力保持稳定,在储存环境条件或工作环境条件的规定范围内,无论耦合液温度如何变化,耦合液涨缩补偿机构29’均能够实现耦合液内部压力的自适应调节,从而解决了内部压力过高导致耦合液泄漏和内部压力过低导致气泡进入内部密封空间的两个大问题。
以上为第二实施例,下面是第二实施例(图未示)的一种变形 的实施例,其它结构都与第二实施例相同,不同之处在于:耦合液涨缩补偿机构还进一步包括弹性部件(图未示),该弹性部件安装在活塞293’的顶面和套筒291’的顶壁下表面之间,弹性部件施加给活塞293’向下的弹性力。
弹性部件最好是选择弹簧。
弹性部件的作用在于施加压力到涨缩补偿空间2914’内的耦合液,并把压力传导到耦合液密封空间16’内的耦合液,防止耦合液密封空间16’内的耦合液过少而影响超声波的传导,降低超声成像质量。
上述变形实施例可以实现与第二实施例相当的功能,达到相当的技术效果。

Claims (10)

  1. 一种三维超声成像探头,其特征在于,其包括基座、透声罩、耦合液涨缩补偿机构;
    基座顶部开设有一个基座流液口;
    透声罩安装在基座的底部;
    基座和透声罩包围形成一个耦合液密封空间,耦合液密封空间是密闭的;
    耦合液涨缩补偿机构包括套筒、导管、活塞;
    套筒安装固定在基座的上方,套筒的顶部开设有一个套筒流液口;
    导管的两端分别连接基座流液口和套筒流液口;
    活塞可滑动地安装在套筒的内部,其把套筒内部空间分隔成上下两个部分,其中靠上的部分是涨缩补偿空间,涨缩补偿空间与套筒流液口连通;
    耦合液密封空间、涨缩补偿空间以及导管组成一个密封性能良好的整体密封空间。
  2. 根据权利要求1所述的一种三维超声成像探头,其特征在于,耦合液涨缩补偿机构还包括弹性部件,活塞把套筒内部空间分隔成的上下两个部分中靠下的部分是用来安装弹性部件的弹性部件安装空间,弹性部件安装在活塞的底面和套筒的底壁上表面之间。
  3. 根据权利要求2所述的一种三维超声成像探头,其特征在于,弹性部件是弹簧。
  4. 根据权利要求1所述的一种三维超声成像探头,其特征在于,活塞把套筒内部空间分隔成的上下两个部分中靠下的部分和套筒外部的空气连通,依靠活塞的上下面之间的压力差推动活塞运动。
  5. 根据权利要求1所述的一种三维超声成像探头,其特征在于,耦合液涨缩补偿机构还包括活塞密封件,活塞密封件安装在活塞上。
  6. 一种三维超声成像探头,其特征在于,其包括基座、透声罩、耦合液涨缩补偿机构;
    基座顶部开设有一个基座开口;
    透声罩安装在基座的底部;
    基座和透声罩包围形成一个耦合液密封空间,该耦合液密封空间是密闭的;
    耦合液涨缩补偿机构包括套筒、活塞;
    套筒从基座的基座开口的边缘向上方一体成型地延伸突设而成,套筒的底部和基座是连通的;
    活塞可滑动地安装在套筒的内部,其把套筒内部空间分隔成上下两个部分,其中靠下的部分是涨缩补偿空间;
    涨缩补偿空间与耦合液密封空间是连通的;
    耦合液密封空间、涨缩补偿空间组成一个密封性能良好的整体密封空间。
  7. 根据权利要求1所述的一种三维超声成像探头,其特征在于,耦合液涨缩补偿机构还包括弹性部件,该弹性部件安装在活塞的顶面和套筒的顶壁下表面之间。
  8. 根据权利要求7所述的一种三维超声成像探头,其特征在于,弹性部件是弹簧。
  9. 根据权利要求1所述的一种三维超声成像探头,其特征在于,活塞把套筒内部空间分隔成的上下两个部分中靠上的部分和套筒外部的空气连通,依靠活塞的上下面之间的压力差推动活塞运动。
  10. 根据权利要求1所述的一种三维超声成像探头,其特征在于,耦合液涨缩补偿机构还包括活塞密封件,活塞密封件安装在活塞上。
PCT/CN2017/103299 2017-09-15 2017-09-26 一种三维超声成像探头 WO2019051881A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2017108303735 2017-09-15
CN201710830373.5A CN107485411A (zh) 2017-09-15 2017-09-15 一种三维超声成像探头

Publications (1)

Publication Number Publication Date
WO2019051881A1 true WO2019051881A1 (zh) 2019-03-21

Family

ID=60652711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/103299 WO2019051881A1 (zh) 2017-09-15 2017-09-26 一种三维超声成像探头

Country Status (2)

Country Link
CN (1) CN107485411A (zh)
WO (1) WO2019051881A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108903972B (zh) * 2018-06-20 2020-12-08 青岛大学附属医院 一种医用超声波探头用单边补充装置
CN108852412A (zh) * 2018-07-30 2018-11-23 深圳嘉瑞电子科技有限公司 一种减弱成像干扰的容积探头
WO2020047850A1 (zh) * 2018-09-07 2020-03-12 深圳迈瑞生物医疗电子股份有限公司 具有耦合液补偿功能的超声探头
CN109276273A (zh) * 2018-11-26 2019-01-29 深圳开立生物医疗科技股份有限公司 一种用于超声声头的密封装置及其压力释放装置
CN111528908A (zh) * 2020-05-09 2020-08-14 上海爱声生物医疗科技有限公司 一种b超设备及其探头
CN113598816B (zh) * 2021-08-03 2023-09-12 卓瑞姆生物技术有限公司 一种超声成像探头及其使用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050261586A1 (en) * 2004-05-18 2005-11-24 Makin Inder R S Medical system having an ultrasound source and an acoustic coupling medium
US20060191345A1 (en) * 2003-03-31 2006-08-31 Matsushita Electric Industrial Co., Ltd. Ultrasonic probe
CN1937964A (zh) * 2004-04-02 2007-03-28 皇家飞利浦电子股份有限公司 超声探测头的体积补偿系统
CN102551792A (zh) * 2010-12-27 2012-07-11 深圳迈瑞生物医疗电子股份有限公司 一种3d机械探头
CN102631221A (zh) * 2012-04-25 2012-08-15 绵阳美科电子设备有限责任公司 有调压装置的超声波探头
CN103356240A (zh) * 2013-06-28 2013-10-23 深圳嘉瑞电子科技有限公司 超声波探头

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4237901A (en) * 1978-08-30 1980-12-09 Picker Corporation Low and constant pressure transducer probe for ultrasonic diagnostic system
US20130232962A1 (en) * 2012-03-06 2013-09-12 GM Global Technology Operations LLC Hydraulic control for a vehicle powertrain
CN208551848U (zh) * 2017-09-15 2019-03-01 深圳嘉瑞电子科技有限公司 一种三维超声成像探头

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060191345A1 (en) * 2003-03-31 2006-08-31 Matsushita Electric Industrial Co., Ltd. Ultrasonic probe
CN1937964A (zh) * 2004-04-02 2007-03-28 皇家飞利浦电子股份有限公司 超声探测头的体积补偿系统
US20050261586A1 (en) * 2004-05-18 2005-11-24 Makin Inder R S Medical system having an ultrasound source and an acoustic coupling medium
CN102551792A (zh) * 2010-12-27 2012-07-11 深圳迈瑞生物医疗电子股份有限公司 一种3d机械探头
CN102631221A (zh) * 2012-04-25 2012-08-15 绵阳美科电子设备有限责任公司 有调压装置的超声波探头
CN103356240A (zh) * 2013-06-28 2013-10-23 深圳嘉瑞电子科技有限公司 超声波探头

Also Published As

Publication number Publication date
CN107485411A (zh) 2017-12-19

Similar Documents

Publication Publication Date Title
WO2019051881A1 (zh) 一种三维超声成像探头
CN206919294U (zh) 雾化器的自动补水装置
WO2021115094A1 (zh) 一种水下密封舱
BR112015001962B1 (pt) Reservatório de fluído e unidade medidora de pressão de fluído para medir uma pressão de fluído no mesmo
CN210830488U (zh) 一种防外漏的波纹管结构调节阀
US10149662B2 (en) 3D mechanical probe
CN208551848U (zh) 一种三维超声成像探头
JPH0767062A (ja) 投写型表示装置
JP2000294174A (ja) プロジェクションtvのcrt組立体
CN218564396U (zh) 一种防泄漏的机械密封组件
CN111544034A (zh) 一种3d机械探头
TW201522778A (zh) 排液裝置
KR102017052B1 (ko) 하이드로 엔진마운트
US11944494B2 (en) Ultrasonic probe
JP4666560B2 (ja) 液封防振装置
CN217977479U (zh) 一种新型二片式高平台内螺纹球阀
CN213836893U (zh) 一种伸缩囊及排水阀
CN213146084U (zh) 一种压力可调节的氯气缓冲罐
CN221097663U (zh) 一种调节活门结构
CN211213244U (zh) 超声探头及经食道超声探头
CN211343835U (zh) 一种粘滞阻尼器
CN219830201U (zh) 一种用于平衡密闭腔体内外气压的测漏装置
CN220919774U (zh) 大容量点胶容器及点胶装置
JP5276038B2 (ja) 流体制御弁
CN215937461U (zh) 一种超声探头耦合装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17924984

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17924984

Country of ref document: EP

Kind code of ref document: A1