WO2019050233A1 - 산소 리치 바나듐산화물 전자파 센서 및 그 시스템 - Google Patents

산소 리치 바나듐산화물 전자파 센서 및 그 시스템 Download PDF

Info

Publication number
WO2019050233A1
WO2019050233A1 PCT/KR2018/010216 KR2018010216W WO2019050233A1 WO 2019050233 A1 WO2019050233 A1 WO 2019050233A1 KR 2018010216 W KR2018010216 W KR 2018010216W WO 2019050233 A1 WO2019050233 A1 WO 2019050233A1
Authority
WO
WIPO (PCT)
Prior art keywords
material layer
electromagnetic wave
wave sensor
vanadium oxide
present
Prior art date
Application number
PCT/KR2018/010216
Other languages
English (en)
French (fr)
Inventor
김현탁
조진철
슬라테티아나
Original Assignee
한국전자통신연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전자통신연구원 filed Critical 한국전자통신연구원
Publication of WO2019050233A1 publication Critical patent/WO2019050233A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to an oxygen rich vanadium oxide electromagnetic wave sensor and a system thereof, and more particularly to an oxygen rich vanadium oxide electromagnetic wave sensor and a system thereof, which in turn include first and second material layers stacked.
  • a sensor is a sensor that senses changes in external environmental energy and informs it of a certain signal.
  • sensors such as temperature sensor, electromagnetic wave sensor, chemical sensor and magnetic sensor.
  • electromagnetic wave sensor When converting external energy into quantum mechanical energy, all of the energy can be expressed as a function of frequency or wavelength.
  • Energy expressed as a function of frequency or wavelength can be classified into electromagnetic waves (or electromagnetic waves).
  • An electromagnetic wave sensor is a device that converts light itself or information contained in light into electric signals and senses them.
  • the objects to be detected by the electromagnetic wave sensor include visible light, ultraviolet light, and infrared light.
  • the undoped silicon has the largest absorption coefficient at a wavelength of near infrared light of 800 nm to 1000 nm. Therefore, the electromagnetic wave sensor including silicon has an absorption characteristic for electromagnetic waves in the near infrared region.
  • the absorption peak of an electromagnetic wave sensor using silicon as a sensing layer is formed in the near-infrared region.
  • Such an electromagnetic wave sensor has a low absorption coefficient for light in the visible light region, particularly in the vicinity of a wavelength of 500 nm.
  • a filter is needed to remove the light in the near infrared region from the Si sensor.
  • An electromagnetic wave sensor in which a detection wavelength range is controlled using a filter is disadvantageous in terms of manufacturing cost and detection sensitivity. It is required to develop an electromagnetic sensor that can selectively detect electromagnetic waves in the visible light and ultraviolet region using new materials and simple structures.
  • a motion detection sensor made of a pyroelectric material which judges the presence or absence of a person.
  • a motion sensing sensor based on a pyroelectric material senses a human motion by using a principle that a small capacitance is formed inside the human motion based on the movement of the human.
  • a motion sensing sensor based on a pyroelectric material is used for a capacitor When the charged charge is discharged, the person is not detected. There is an inconvenience that a person must keep moving in order to be continuously recognized by the motion detection sensor. At this time, when the infrared rays from the human body are detected, the person does not have to move.
  • a human body infrared sensor is needed to detect people even if they are not moving.
  • a thermistor measuring a high temperature of 150 ° C or more is expensive due to difficulty in manufacturing.
  • the use of thin film materials can be made simple, and development of such materials has been required.
  • An object of the present invention is to provide an oxygen rich vanadium oxide electromagnetic wave sensor capable of selectively sensing electromagnetic waves in a specific wavelength range.
  • an electromagnetic wave sensor comprising: a first material layer including silicon doped with an n-type dopant; A second material layer disposed on the first material layer and comprising a vanadium oxide represented by the molecular formula V x O y ; A first electrode on the second material layer; And the first, but includes a second electrode on the layer of material or the second material layer, the dopant concentration of the first material layer is 1.0 x 10 15 cm - greater than 1.0 x 10 19 cm 3 less than 3, the molecular formula
  • the ratio of y to x may be greater than 2 and less than 2.5.
  • the second electrode is disposed on the second material layer, and may be spaced apart from the first electrode.
  • the second material layer has the highest absorption coefficient for electromagnetic waves of the first wavelength, and the first wavelength may have a value between 100 nm and 700 nm.
  • the first material layer may have a resistivity of 1? Cm to 10? Cm.
  • the band gap of the vanadium oxide may be 2.30 eV to 2.40 eV.
  • the ratio of y to x in the molecular formula may be 2.3.
  • the first material layer may have a lower resistivity than the second material layer.
  • the second material layer may be in direct contact with the first material layer.
  • the first material layer may form a PN junction with the second material layer.
  • the second electrode may be disposed on the first material layer.
  • the electromagnetic wave sensor may have an absorption coefficient for an electromagnetic wave of between 2 m and 20 m.
  • an electromagnetic sensor system including: first and second material layers sequentially stacked; Electrodes on the first and second material layers; And an amplifier coupled to the electrodes to amplify a sense signal received from the first and second material layers, wherein the first material layer comprises silicon doped with an n-type dopant, the first material dopant concentration of the layer is 1.0 x 10 15 cm - less than the larger 1.0 x 10 19 cm -3 than 3, wherein the second layer of material comprises a vanadium oxide represented by the molecular formula V x O y, for x in the molecular formula y may be greater than 2 and less than 2.5.
  • a digital converter may be included to convert the amplified sensing signal received from the amplifier into a digital signal.
  • the amplifier may include a Wheatstone bridge for measuring resistance values of the first and second material layers and a differential amplifier for amplifying the output voltage of the Wheatstone bridge.
  • sensitivity to electromagnetic waves in the thermal infrared, visible, and ultraviolet regions is improved, and an oxygen rich vanadium oxide electromagnetic wave sensor that is not affected by electromagnetic waves in the infrared region can be provided.
  • FIG. 1 is a block diagram showing an electromagnetic wave sensor according to an embodiment of the present invention.
  • FIG. 2 is a perspective view illustrating an electromagnetic wave sensor according to an embodiment of the present invention.
  • FIG 3 is a graph showing the atomic percent of vanadium and oxygen measured for a vanadium oxide thin film according to embodiments of the present invention.
  • FIG. 4 is a graph illustrating absorption coefficient of a vanadium oxide thin film according to embodiments of the present invention.
  • FIG. 5 is an enlarged graph of a wavelength region of 450 nm to 800 nm in the graph of FIG.
  • FIG. 6 is a graph illustrating electromagnetic wave sensing characteristics according to the illuminance of the electromagnetic wave sensor according to the embodiments of the present invention.
  • FIG. 7 is a graph showing the temperature dependency of the sensitivity of the electromagnetic wave sensor according to the embodiments of the present invention.
  • FIG. 8 is a graph showing the absorption spectrum of the electromagnetic wave sensor when exposed to thermal infrared rays according to the embodiments of the present invention.
  • FIG. 9 is a block diagram schematically showing an electromagnetic wave sensor according to embodiments of the present invention.
  • FIG. 10 is a graph showing the electromagnetic wave sensing characteristics of the electromagnetic wave sensor according to the direction of the bias voltage.
  • FIG. 11 is a perspective view of an electromagnetic wave sensor according to embodiments of the present invention.
  • FIG. 12 is a perspective view of an electromagnetic wave sensor package according to embodiments of the present invention.
  • FIG. 13 and 14 are perspective views of an electromagnetic wave sensor package according to embodiments of the present invention.
  • 15 is a plan view of an electromagnetic wave sensor package according to embodiments of the present invention.
  • 16 is a cross-sectional view of an electromagnetic wave sensor package according to embodiments of the present invention.
  • FIG. 17 is a block diagram showing an electromagnetic sensor system according to embodiments of the present invention.
  • 18 and 19 are circuit diagrams showing an electromagnetic wave sensor and an amplifier according to embodiments of the present invention.
  • 20 is a diagram illustrating a method of measuring an electromagnetic wave using an electromagnetic wave sensor according to embodiments of the present invention.
  • 21 is a diagram illustrating a current measurement method using an electromagnetic wave sensor according to embodiments of the present invention.
  • an element when referred to as being on another element, it means that it can be directly formed (contacted) on another element, or a third element may be interposed therebetween.
  • the first film when it is mentioned that the first film is on the second film, it means that the first film can be formed on the upper surface of the second film, the lower surface of the second film or another surface of the second film. That is, the expression 'on the phase' is not limited to the meaning that one configuration is 'above' another configuration.
  • 1 is a block diagram showing an electromagnetic wave sensor according to an embodiment of the present invention.
  • 2 is a perspective view illustrating an electromagnetic wave sensor according to an embodiment of the present invention.
  • a vanadium oxide electromagnetic sensor includes a first material layer 120, a second material layer 130 on a first material layer 120, and a second material layer 130, (Not shown).
  • the first material layer 120 and the second material layer 130 may receive the electromagnetic wave L from the outside of the electromagnetic wave sensor and output the electromagnetic wave sensing signal Sld through the electrodes 140.
  • the controller 200 may be connected to the electrodes 140.
  • the control unit 200 may apply the control signal Sc to the second material layer 130 through the electrodes 140.
  • the control signal Sc may include a bias voltage.
  • the first material layer 120 and the second material layer 130 can change the resistance of the second material layer 130 by reacting with electromagnetic waves of a specific wavelength region among the electromagnetic waves L received from the outside.
  • the first material layer 120 and the second material layer 130 may output the electromagnetic wave sensing signal Sld to the control unit 200 in response to the control signal Sc and electromagnetic waves in a specific wavelength region.
  • the electromagnetic wave detection signal Sld may include a change amount of a current in the closed circuit formed by the electromagnetic wave sensor and the control unit 200.
  • a first material layer 120 may be disposed on an insulating support substrate 110.
  • the first material layer 120 may comprise a semiconductor material.
  • the semiconductor material may be silicon (Si).
  • the first material layer 120 may be an n-type semiconductor layer doped with an n-type conductivity type dopant.
  • the n-type conductivity type dopant may be, for example, a Group 5 element.
  • the Group 5 element may be, for example, phosphorus (P) or arsenic (As).
  • the first material layer 120 may cover a portion of the upper surface of the supporting substrate 110.
  • the first material layer 120 may have a constant thickness from one end to the other end.
  • the thickness of the first material layer 120 may be, for example, 500 nm to 1 ⁇ ⁇ .
  • the first material layer 120 may interact with the second material layer 130 to allow the second material layer 130, described below, to be sensitive to electromagnetic waves of a particular wavelength range.
  • the first material layer 120 may provide a carrier (e.g., hole or electron) to the second material layer 130.
  • the first material layer 120 may form a PN junction with the second material layer 130.
  • the n-type dopant in the first material layer 120 density is 1.0 x 10 15 cm - may be less than 3 x 10 19 cm large and 1.0 than 3.
  • the n-type dopant concentration of the first material layer 120 is 1.0 x 10 19 cm -3 or more, the first material layer 120 functions as a conductor, and a change in resistance of the second material layer 130 is not detected .
  • the electrons in the first material layer 120 may not function as a majority carrier. That is, when the concentration of the n-type dopant in the first material layer 120 is 1.0 x 10 15 cm -3 or less, the first material layer 120 is a layer in which the second material layer 130 reacts with electromagnetic waves of a specific wavelength band It may not help.
  • the first material layer 120 has a conductivity type of n-type, and, 1.0 x 10 15 cm - greater than 3 1.0 x 10 19 cm - by having a small dopant concentration greater than 3, of the electromagnetic wave in the visible region The reactivity may be lowered. Thereby, the first material layer 120 absorbs electromagnetic waves unnecessarily, and noise can be prevented from being included in the electromagnetic wave detection signal Sld.
  • the first material layer 120 may have a lower resistivity than the second material layer 130.
  • the first material layer 120 having a resistivity of between 1 OMEGA cm and 10 OMEGA cm can be fabricated by forming a first material layer 130 having a resistivity of a second material layer 130 for an electromagnetic wave of a specific wavelength region without interfering with the resistance change of the second material layer 130 being measured Can be improved.
  • forming the first material layer 120 may include performing an ion implant process and a rapid thermal process on the silicon layer.
  • a second material layer 130 may be disposed on the first material layer 120.
  • the second material layer 130 may completely cover the top surface of the first material layer 120.
  • the second material layer 130 may also be in direct contact with the first material layer 120.
  • the thickness of the second material layer 130 may be constant from one end to the other end.
  • the thickness of the second material layer 130 may be, for example, 500 nm to 1 [mu] m.
  • the second material layer 130 may be disposed directly on the first material layer 120.
  • the second material layer 130 may comprise a vanadium oxide represented by the molecular formula VxOy. In this molecular formula, the ratio of y to x may be greater than 2 and less than 2.5.
  • the atomic ratio of oxygen (O) to vanadium (V) in the vanadium oxide may be greater than 2 and less than 2.5.
  • the ratio of the atomic percent of vanadium to the atomic percent of oxygen in the second material layer 130 may be constant from the top surface of the second material layer 130 to the bottom surface of the second material layer 130 (See FIG. 3).
  • the vanadium oxide may have a band gap of 2.30 eV to 2.40 eV.
  • the second material layer 130 has the highest absorption coefficient for electromagnetic waves of the first wavelength, and the first wavelength may have a value between 100 nm and 700 nm.
  • the electromagnetic wave sensor of the present invention can have an absorption coefficient for an electromagnetic wave of between 2 m and 20 m.
  • the second material layer 130 may have an absorption coefficient for electromagnetic waves between 2 and 20 micrometers.
  • the second material layer 130 may selectively absorb light in the visible light region and the ultraviolet ray region, and may reflect or transmit most of the light in the infrared region.
  • the electromagnetic wave sensor may further include a filter for absorbing electromagnetic waves in a specific wavelength range.
  • forming the second material layer 130 may include performing a deposition process on the first material layer 120 to grow the vanadium oxide.
  • the deposition process may include pulse laser deposition (PLD), sputtering, sol-gel, and atomic layer deposition (ALD).
  • the second material layer 130 may be formed in an oxygen-rich atmosphere. For example, when the second material layer 130 is formed using atomic layer deposition, a time for surface saturation reaction using an oxygen precursor compared with the time for surface saturation adsorption of vanadium It can be big.
  • forming the second material layer 130 may further include annealing the vanadium oxide in an oxygen atmosphere after growing the vanadium oxide on the first material layer 120.
  • Electrodes 140 may be disposed on the first and second material layers 120, 130.
  • the electromagnetic wave sensor 10 may be a two-terminal device including two electrodes 140 spaced from each other. Specifically, as shown in FIG. 2, the electrodes 140 may be spaced apart from each other on the second material layer 130. Each of the electrodes 140 may be disposed on one end of the second material layer 130 and on the other end opposite to the one end. For example, each of the electrodes 140 may have the form of a bar that traverses the top surface of the second layer of material.
  • the electrodes 140 may comprise, for example, aluminum (Al) or copper (Cu).
  • FIG. 3 is a graph showing the atomic percent of vanadium and oxygen measured for a vanadium oxide thin film according to embodiments of the present invention.
  • FIG. 4 is a graph illustrating absorption coefficient of a vanadium oxide thin film according to embodiments of the present invention.
  • FIG. 5 is an enlarged graph of a wavelength region of 450 nm to 800 nm in the graph of FIG. 6 is a graph illustrating electromagnetic wave sensing characteristics according to the illuminance of the electromagnetic wave sensor according to the embodiments of the present invention.
  • 7 is a graph showing the temperature dependency of the sensitivity of the electromagnetic wave sensor according to the embodiments of the present invention.
  • 8 is a graph showing an absorption spectrum of the electromagnetic wave sensor when exposed to thermal infrared rays according to the embodiments of the present invention.
  • a thin vanadium oxide thin film was deposited on the substrate and the deposited thin vanadium oxide thin film was annealed in an oxygen atmosphere for a predetermined time to form a vanadium oxide thin film having controlled atomic percent of oxygen.
  • the atomic percent of vanadium and oxygen in the vanadium oxide thin film was measured by X-ray photoelectron spectroscopy (XPS) while etching the vanadium oxide thin film. The measurement results are shown in Fig.
  • the ratio of y to x of vanadium oxide (VxOy) is greater than 2 and less than 2.5, except for a section where errors in binding energy measurement may be caused by scattering by carbon .
  • vanadium oxide thin film was formed under the same conditions as in Experimental Example 1.
  • the vanadium oxide thin film used in Experimental Example 2 contains vanadium oxide represented by the molecular formula V x O y , and the ratio of y to x in the molecular formula may be larger than 2 and smaller than 2.5.
  • the UV-Vis absorption spectrum of the vanadium oxide thin film at room temperature was measured using a UV spectrometer and is shown in FIG. 4 and FIG.
  • the vanadium oxide having an atomic percent as in Experimental Example 1 it is found that the vanadium oxide has an absorption characteristic for an electromagnetic wave having a wavelength of 100 nm to 700 nm. It can also be seen that the wavelength of the electromagnetic wave having the highest absorption coefficient of the vanadium oxide thin film has a value between 100 nm and 700 nm.
  • the electromagnetic wave sensor using the vanadium oxide thin film can selectively detect wavelengths of 700 nm or less. Thereby, the electromagnetic wave having the wavelength in the near-infrared region can be excluded from the detection region of the electromagnetic wave sensor.
  • a silicon layer doped with an n-type or p-type dopant was formed on the substrate, and a vanadium oxide thin film was formed on the silicon layer under the same conditions as Experimental Example 1.
  • the resistance of the vanadium oxide thin film exposed to the electromagnetic wave source of 400 Lux intensity and the resistance of the vanadium oxide thin film not exposed to the electromagnetic wave source were measured and shown in Table 1 below.
  • Dopant type of doped silicon layer Dopant concentration (cm -3 )
  • the resistance (M ⁇ ) of the vanadium oxide thin film in an electromagnetic wave source of 400 Lux The resistance (M ⁇ ) of the vanadium oxide thin film in the absence of an electromagnetic wave source evaluation N 1 x 10 16 0.9 5.00 As varied as N 1 x 10 17 0.79 2.63 As varied as N 1 x 10 18 0.65 1.86 As varied as N 1 x 10 19 0.15 0.15 No change P 1 x 10 17 1.74 1.79 Very small change
  • the vanadium oxide thin film on the silicon layer doped with the n-type dopant is more sensitive to electromagnetic waves than the vanadium oxide thin film on the silicon layer doped with the P-type dopant.
  • the dopant formed a doped silicon thin film at a concentration of about 1.0 x 10 18 cm -3 .
  • a vanadium oxide thin film was formed on the silicon thin film under the same conditions as in Experimental Example 1. [ The resistance of the vanadium oxide thin film was measured while varying the illuminance and is shown in Fig.
  • the electromagnetic wave sensor can detect electromagnetic waves in an illuminance ranging from 0 Lux to 1000 Lux.
  • a silicon layer doped with an n-type dopant was formed on the substrate, and a vanadium oxide thin film was formed on the silicon layer under the same conditions as Experimental Example 1. [ Subsequently, spaced electrodes were formed on the vanadium oxide thin film to produce an electromagnetic sensor. The resistance between the electrodes was measured while varying the temperature. The white light was irradiated onto the silicon layer and the vanadium oxide thin film, and the resistance between the electrodes was measured again while changing the temperature.
  • the electromagnetic wave sensor according to the embodiments of the present invention can detect temperature together.
  • sensitivity to temperature increases when white light is absent.
  • a silicon layer doped with an n-type dopant was formed on the substrate, and a vanadium oxide thin film was formed on the silicon layer under the same conditions as Experimental Example 1. [ Subsequently, spaced electrodes were formed on the vanadium oxide thin film to produce an electromagnetic sensor.
  • the absorption coefficient was measured with an FTIR (Fourier Transform InfraRed) apparatus for generating and measuring electromagnetic waves having a wavelength in the range of 2 ⁇ m to 25 ⁇ m, and the results are shown in FIG.
  • FTIR Fastier Transform InfraRed
  • Electromagnetic waves with a wavelength in the range of 2 ⁇ to 25 ⁇ belong to the mid-infrared region.
  • the electromagnetic wave sensor according to the embodiments of the present invention exhibits a small absorption peak near the human body region. Also, the electromagnetic wave sensor according to the embodiments of the present invention shows that the absorption coefficient continuously increases up to 800 degrees. This means that the electromagnetic sensor according to the embodiments of the present invention can measure the temperature up to 800 degrees as well as the human body temperature. Therefore, the electromagnetic wave sensor according to the embodiments of the present invention can also be used as a human body temperature sensor and a thermistor.
  • FIG. 9 is a block diagram schematically showing an electromagnetic wave sensor according to embodiments of the present invention.
  • FIG. 10 is a graph showing the electromagnetic wave sensing characteristics of the electromagnetic wave sensor according to the embodiment described with reference to FIG. 9, and shows a change in sensing characteristics according to the direction of the bias voltage. For the sake of simplicity, a detailed description of the redundant configuration may be omitted.
  • an electromagnetic sensor includes a first electrode 140a connected to a first material layer 120 and a second electrode 140b connected to a second material layer 130 can do.
  • the controller 200 may be connected to the first electrode 140a and the second electrode 140b.
  • the controller 200, the first electrode 140a, the first material layer 120, the second material layer 130, and the second electrode 140b may be arranged vertically to form a closed circuit.
  • the controller 200 may apply a bias voltage to the electromagnetic wave sensor in the first current direction Ia or the second current direction Ib.
  • the vanadium oxide in the second material layer 130 may have holes as a majority carrier.
  • the first material layer 120 and the second material layer 130 may function as a diode by forming a PN junction.
  • the first material layer 120 and the second material layer 130 may generate photovoltaic power corresponding to the received electromagnetic waves L and the bias voltages Ia and Ib.
  • the electromagnetic wave sensing signal output by the electromagnetic wave sensor may include a photo-electromotive force.
  • a silicon thin film doped with an n-type dopant at a concentration of about 1.0 x 10 18 cm -3 was formed on the substrate.
  • a vanadium oxide thin film was formed on the silicon thin film under the same conditions as in Experimental Example 1. [ An electrode was formed on the silicon thin film and the vanadium oxide thin film, respectively, and a bias voltage was applied to the electrodes. The output current value was measured while varying the magnitude and direction of the bias voltage and is shown in FIG.
  • the sensing characteristic of the electromagnetic wave changes according to the direction of the bias voltage even if the same voltage is applied.
  • FIG. 11 is a perspective view of an electromagnetic wave sensor according to embodiments of the present invention. For the sake of simplicity, a detailed description of the redundant configuration may be omitted.
  • the electromagnetic sensor may include a capping layer 115 covering the second material layer 130.
  • Capping layer 115 is, for example, may comprise silicon oxide (SiO 2), silicon nitride (SiN) or silicon oxynitride (SiON).
  • the capping layer 115 may transmit electromagnetic waves in the visible light region and the ultraviolet light region.
  • FIG. 12 is a perspective view showing an electromagnetic wave sensor package according to embodiments of the present invention. For the sake of simplicity, a detailed description of the redundant configuration may be omitted.
  • the electromagnetic wave sensor package may include a support substrate 110, an electromagnetic wave sensor, wires 145, terminals 160, and an encapsulation layer 150.
  • the support substrate 110 may have a circular plate shape.
  • the support substrate 110 may comprise an insulator.
  • a first material layer 120 and a second material layer 130 may be deposited on the support substrate 110.
  • Two electrodes 140 may be spaced apart from each other on the second material layer 130.
  • the first material layer 120, the second material layer 130, and the electrode 140 may be similar / similar to those described with reference to FIGS.
  • the terminals 160 may penetrate the support substrate 110 up / down.
  • the upper portion of the terminals 160 may be exposed on the upper surface of the supporting substrate 110.
  • the lower portion of the terminals 160 can be exposed under the lower surface of the supporting substrate 110.
  • Terminals 160 may include pins connected to a printed circuit board (PCB) (not shown) when mounting the sensor on a printed circuit board
  • Wirings 145 may connect the terminals 160 and the electrodes 140.
  • the sealing layer 150 may cover the supporting substrate 110, the electromagnetic wave sensor, the terminals 160, and the wirings 145.
  • the sealing layer 150 may comprise, for example, a transparent resin.
  • the sealing layer 150 can transmit electromagnetic waves in the visible light region and ultraviolet region.
  • the sealing layer 150 may have a hemispherical shape so as to concentrate electromagnetic waves incident from the outside of the electromagnetic wave sensor package to the inside of the electromagnetic wave sensor package.
  • FIG. 13 is a perspective view showing an electromagnetic wave sensor package according to embodiments of the present invention. For the sake of simplicity, a detailed description of the redundant configuration may be omitted.
  • the sealing layer 150 may include a first layer 150a and a second layer 150b on the first layer 150a.
  • the second layer 150b may include a material having a higher refractive index than the first layer 150a.
  • the second layer 150b may have the shape of a convex lens.
  • FIG. 14 is a cross-sectional view showing an electromagnetic wave sensor package according to embodiments of the present invention. For the sake of simplicity, a detailed description of the redundant configuration may be omitted.
  • the electromagnetic wave sensor package may be a diode type electromagnetic wave sensor package in which a first material layer 120 and a second material layer 130 are connected in series.
  • a conductive epoxy 117 may be disposed between the support substrate 110 and the first material layer 120.
  • the supporting substrate 110 may include a conductive material.
  • the support substrate 110 may comprise, for example, copper or aluminum.
  • the support substrate 110 may function as an electrode electrically connected to the first material layer 120.
  • the first terminal 160a may penetrate the supporting substrate 110.
  • the first terminal 160a may be electrically connected to the electrode 140 on the second material layer 130 through the wiring 145.
  • An insulating pattern 165 may be disposed between the first terminal 160a and the supporting substrate 110.
  • the first terminal 160a and the supporting substrate 110 may be electrically separated by an insulating pattern 165.
  • the second terminal 160b can penetrate through the support substrate 110.
  • the second terminal 160b may be electrically connected to the support substrate 110.
  • 15 is a plan view showing an electromagnetic wave sensor package according to embodiments of the present invention. For the sake of simplicity, a detailed description of the redundant configuration may be omitted.
  • Electromagnetic sensors 10 may be disposed in one electromagnetic sensor package. Electromagnetic sensors 10 may include a first material layer 120, a second material layer 130 on the first material layer 120 and electrodes 230 on the second material layer 130, (140). The electromagnetic sensors 10 may be connected to each other in series or in parallel. The electromagnetic sensors 10 may be electrically connected to the terminals 160 passing through the supporting substrate 110 through the wirings 145. [
  • 16 is a cross-sectional view showing an electromagnetic wave sensor package according to embodiments of the present invention. For the sake of simplicity, a detailed description of the redundant configuration may be omitted.
  • the electromagnetic wave sensor package may include a PCB substrate 112 and an electromagnetic wave sensor mounted on the PCB substrate 112.
  • the PCB substrate 112 may include exposed conductive pads 114 on its top surface. Electrodes 140 of the electromagnetic wave sensor may be connected to the conductive pads 114 through the wirings 145.
  • 17 is a block diagram for explaining an electromagnetic sensor system according to embodiments of the present invention.
  • the electromagnetic sensor system may include a sensor unit 100, a controller 200, and a communication unit 300.
  • the sensor unit 100 may include the electromagnetic wave sensor 10 or the electromagnetic wave sensor package described with reference to FIGS. That is, the sensor unit 100 may include first and second material layers 120 and 130 stacked in turn, as shown in FIG.
  • the sensor unit 100 can receive electromagnetic waves from the outside of the electromagnetic sensor system.
  • the sensor unit 100 absorbs electromagnetic waves of a wavelength range of 100 nm to 700 nm among the received electromagnetic waves, and outputs a detection signal to the control unit 200.
  • the controller 200 may include a signal generator 240, an amplifier 210, a digital converter 220, and a signal processor 230.
  • the signal generator 240 may input a control signal to the sensor unit 100.
  • the control signal may comprise, for example, a bias voltage.
  • the sensor unit 100 may generate a control signal and a sensing signal corresponding to the absorbed electromagnetic wave and output the sensing signal to the amplifier 210.
  • the amplifier 210 amplifies the sensing signal and transmits the amplified sensing signal to the digital converter 220.
  • Digital converter 220 converts the amplified detection signal received from the amplifier 210 into a digital signal processible by the processor and outputs the digital signal to the signal processor 230.
  • the signal processor 230 may select and process the digital signal received from the digital converter 220 to generate electromagnetic wave sensing data.
  • the signal processor 230 may provide the electromagnetic wave sensing data to the communication unit 300.
  • the communication unit 300 may include wired or wireless communication means.
  • the communication unit 300 may output the electromagnetic wave sensed data received from the control unit 200 by wire or wirelessly.
  • 18 and 19 are circuit diagrams of an electromagnetic wave sensor amplification system showing an electromagnetic wave sensor and an amplifier according to embodiments of the present invention.
  • the amplifier 210 may include a transistor having a base, a collector, and an emitter.
  • the electromagnetic sensor 10 according to the embodiments of the present invention can be connected to the base of the transistor.
  • the amplifier 210 may include a field effect transistor.
  • the amplifier 210 includes a wheatstone bridge for measuring resistance values of the first and second material layers 120 and 130, and a differential amplifier for amplifying the output voltage of the Wheatstone bridge. .
  • the Wheatstone bridge can amplify a very small sense signal. Specifically, the potential difference between the first point (A) and the second point (B) of the Wheatstone bridge can be adjusted to zero by adjusting the variable resistor (R1). Subsequently, when the resistance (R2) of the electromagnetic wave sensor changes, a potential difference occurs between points A and B, and the potential difference can be amplified by the differential amplifier 180.
  • 20 is a diagram showing a method of measuring electromagnetic waves using an electromagnetic wave sensor according to embodiments of the present invention.
  • 21 is a diagram illustrating a current measurement method using an electromagnetic wave sensor according to embodiments of the present invention.
  • the electromagnetic wave sensor 10 can measure thermal infrared rays generated by the magnetic field and heat generated by the conductive wire 190.
  • the lead 190 may have the shape of a portion of a circle.
  • thermal infrared and magnetic field 192 may be concentrated at center portion CP defined by lead 190.
  • the electromagnetic wave sensor 10 (see FIG. 2) is disposed at the center portion CP, the electromagnetic wave sensor 10 can measure the infrared ray and the magnetic field 192.
  • the conductive line 190 may have a shape of a part of a circle, and a metal plate 194 may be disposed between the conductive lines 190.
  • the metal plate 194 can connect the lead 190. That is, the current 191 may flow through the metal plate 194.
  • the electromagnetic wave sensor 10 can measure the line of the magnetic field force generated by the current 191 flowing to the metal plate 194. Therefore, the electromagnetic wave sensor according to the embodiments of the present invention can also be used as a current sensor.
  • the electromagnetic wave sensor 10 may further include external electrodes 141 electrically connected to the electrodes.
  • the present invention is applicable to a sensor field for selectively sensing electromagnetic waves in a specific wavelength range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

산소 리치 바나듐산화물 전자파 센서 및 그 시스템이 제공된다. 본 발명의 실시예에 따른 산소 리치 바나듐산화물 전자파 센서는 n형의 도펀트로 도핑된 실리콘을 포함하는 제1 물질 층; 상기 제1 물질 층 상에 배치되고, 분자식 VxOy로 표시되는 바나듐 산화물을 포함하는 제2 물질 층; 상기 제2 물질 층 상의 제1 전극; 및 상기 제1 물질 층 또는 상기 제2 물질 층 상의 제2 전극을 포함하되, 상기 제1 물질 층의 도펀트 농도는 1.0 x 1015 cm-3 보다 크고 1.0 x 1019 cm-3 보다 작고, 상기 분자식에서 x에 대한 y의 비는 2 보다 크고 2.5보다 작을 수 있다.

Description

산소 리치 바나듐산화물 전자파 센서 및 그 시스템
본 발명은 산소 리치 바나듐산화물 전자파 센서 및 그 시스템에 관한 것으로 보다 상세하게는, 차례로 적층된 제1 및 제2 물질 층들을 포함하는 산소 리치 바나듐산화물 전자파 센서 및 그 시스템에 관한 것이다.
외부 환경 에너지 변화를 감지하여 일정한 신호로 알려주는 것을 센서라고 한다. 센서에는 온도센서, 전자파센서, 화학센서, 자기센서 등 많은 종류가 있다. 외부에너지를 양자역학적 에너지로 환산할 때 그 모든 에너지는 진동수 또는 파장의 함수로 표현될 수 있다. 진동수 또는 파장의 함수로 표현된 에너지는 전자파(또는 전자기파, Electromagnetic)로 분류될 수 있다.
전자파 센서는 빛 자체 또는 빛에 포함되는 정보를 전기신호로 변환하여 감지하는 소자이다. 전자파 센서의 검출 대상으로는 가시광선, 자외선 및 적외선이 있다. 도핑되지 않은 실리콘은 800nm 내지 1000nm의 근적외선 빛의 파장에서 가장 큰 흡수계수를 가진다. 따라서, 실리콘을 포함하는 전자파 센서는 근적외선 영역의 전자파에 대한 흡수특성을 가진다. 특히, 실리콘을 감지층으로 사용하는 전자파 센서의 흡수 피크는 근적외선 영역에 형성된다. 이러한 전자파 센서는 가시광 영역 중, 특히 파장 500nm 근방의 빛에 대한 흡수계수가 낮다.
근적외선이 사람의 피부에 닿는 경우, 근적외선과 인체내부의 전자파 간의 공진현상에 의한 강한 열작용으로 인체의 세포가 파괴될 수 있다. 따라서, 미국 산업위생전문가협의회 (American Conference of Government Industrial Hygienist, ACGIH)는 근적외선을 인체에 유해한 전자파로 분류하고 있다. Si 센서에서 근적외선 영역의 빛의 감지를 제거하기 위해 필터가 필요하다. 필터를 이용하여 감지 파장 영역을 제어하는 방식의 전자파 센서는 제조비용 및 검출 감도에 있어서 불리하다. 새로운 물질 및 단순한 구조를 이용하여 가시광선 및 자외선 영역의 전자파를 선택적으로 감지할 수 있는 전자파 센서의 개발이 요구된다.
한편, 사람의 존재의 유무를 판단하는 파이로일렉트릭 재료로 만들어진 동작감지 센서가 있다. 파이로일렉트릭 재료 기반의 동작감지 센서는 사람의 움직임에 기초하여 그 내부에 작은 용량의 캐패시터가 형성되는 원리를 이용하여 사람의 동작을 감지한다 그러나, 파이로일렉트릭 재료 기반의 동작감지 센서는 캐패시터에 충전된 전하가 방전되면 사람을 감지하지 못한다. 동작감지 센서에 계속적으로 인식되기 위해서는 사람이 계속 움직여야 하는 불편함이 있다. 이 때 사람의 인체에서 나오는 적외선을 감지하면 사람이 움직이지 않아도 된다. 움직이지 않아도 사람을 인식할 수 있는 인체적외선 감지 센서가 필요하다.
추가로, 150oC 이상의 고온을 측정하는 써미스터는 제조가 어려워서 고가이다. 박막형 재료를 이용하면 간단하게 만들 수 있는데 그런 재료의 개발이 요구되어 왔다.
본원 발명이 해결하고자 하는 기술적 과제는 특정 파장 영역의 전자파를 선택적으로 감지할 수 있는 산소 리치 바나듐 산화물 전자파 센서를 제공하는데 있다.
상기 과제를 해결하기 위한 본 발명의 실시예들에 따른 전자파 센서는 n형의 도펀트로 도핑된 실리콘을 포함하는 제1 물질 층; 상기 제1 물질 층 상에 배치되고, 분자식 VxOy로 표시되는 바나듐 산화물을 포함하는 제2 물질 층; 상기 제2 물질 층 상의 제1 전극; 및 상기 제1 물질 층 또는 상기 제2 물질 층 상의 제2 전극을 포함하되, 상기 제1 물질 층의 도펀트 농도는 1.0 x 1015 cm- 3 보다 크고 1.0 x 1019 cm-3 보다 작고, 상기 분자식에서 x에 대한 y의 비는 2 보다 크고 2.5보다 작을 수 있다.
실시예들에 따르면, 상기 제2 전극은 상기 제2 물질 층 상에 배치되고, 상기 제1 전극과 이격될 수 있다.
실시예들에 따르면, 상기 제2 물질 층은 제1 파장의 전자파에 대하여 가장 높은 흡수 계수를 갖되, 상기 제1 파장은 100nm 내지 700nm 사이의 값을 가질 수 있다.
실시예들에 따르면, 상기 제1 물질 층은 1Ωcm 내지 10Ωcm 비저항을 가질 수 있다.
실시예들에 따르면, 상기 바나듐 산화물의 밴드갭은 2.30eV 내지 2.40eV일 수 있다.
실시예들에 따르면, 상기 분자식에서 x에 대한 y의 비는 2.3일 수 있다.
실시예들에 따르면, 상기 제1 물질 층은 상기 제2 물질 층에 비해 낮은 비저항을 가질 수 있다.
실시예들에 따르면, 상기 제2 물질 층은 상기 제1 물질 층과 직접 접촉할 수 있다.
실시예들에 따르면, 상기 제1 물질 층은 상기 제2 물질 층과 PN 접합을 이룰 수 있다.
실시예들에 따르면, 상기 제2 전극은 상기 제1 물질 층 상에 배치될 수 있다.
실시예들에 따르면, 상기 전자파 센서는 2μm 내지 20μm 사이의 전자파에 대하여 흡수 계수를 가질 수 있다.
상기 과제를 해결하기 위한 본 발명의 실시예들에 따른 전자파 센서 시스템은 차례로 적층된 제1 및 제2 물질 층들; 상기 제1 및 제2 물질 층들 상의 전극들; 및 상기 전극들과 연결되어 상기 제1 및 제2 물질 층들로부터 수신된 감지 신호를 증폭하는 증폭기를 포함하되, 상기 제1 물질 층은 n형의 도펀트로 도핑된 실리콘을 포함하고, 상기 제1 물질 층의 도펀트 농도는 1.0 x 1015 cm- 3 보다 크고 1.0 x 1019 cm-3 보다 작고, 상기 제2 물질 층은 분자식 VxOy로 표시되는 바나듐 산화물을 포함하고, 상기 분자식에서 x에 대한 y의 비는 2 보다 크고 2.5보다 작을 수 있다.
실시예들에 따르면, 상기 증폭기로부터 수신된 증폭된 감지 신호를 디지털 신호로 변환하는 디지털 변환기를 포함할 수 있다.
실시예들에 따르면, 상기 증폭기는 상기 제1 및 제2 물질 층들의 저항값을 측정하는 휘스톤 브릿지 및 상기 휘스톤 브릿지의 출력 전압을 증폭시키기 위한 차동 증폭기를 포함할 수 있다.
본 발명의 실시예들에 따르면, 열 적외선(Thermal Infrared), 가시광 및 자외선 영역의 전자파에 대한 감도가 향상되고, 적외선 영역의 전자파에 영향을 받지 않는 산소 리치 바나듐산화물 전자파 센서가 제공될 수 있다.
도 1은 본 발명의 실시예들에 따른 전자파 센서를 나타낸 블록도이다.
도 2는 본 발명의 실시예들에 따른 전자파 센서를 나타낸 사시도이다.
도 3은 본 발명의 실시예들에 따른 바나듐 산화물 박막에 대하여, 바나듐 및 산소의 원자 퍼센트(atomic percent)를 측정하여 나타낸 그래프이다.
도 4는 본 발명의 실시예들에 따른 바나듐 산화물 박막에 대하여, 파장에 따른 흡수 계수를 측정하여 나타낸 그래프이다.
도 5는 도 4의 그래프에서 450nm 내지 800nm 파장 영역을 확대한 그래프이다.
도 6은 본 발명의 실시예들에 따른 전자파 센서의 조도에 따른 전자파 감지 특성을 나타내는 그래프이다.
도 7은 본 발명의 실시예들에 따른 전자파 센서의 감도의 온도 의존성을 나타내는 그래프이다.
도 8은 본 발명의 실시예들에 따른 전자파 센서의 열 적외선에 노출되었을 때의 흡수 스펙트럼을 나타내는 그래프이다.
도 9는 본 발명의 실시예들에 따른 전자파 센서를 개략적으로 나타낸 블록도이다.
도 10은 바이어스 전압의 방향에 따른 전자파 센서의 전자파 감지 특성을 나타내는 그래프이다.
도 11은 본 발명의 실시예들에 따른 전자파 센서의 사시도이다.
도 12는 본 발명의 실시예들에 따른 전자파 센서 패키지의 사시도이다.
도 13 및 도 14는 본 발명의 실시예들에 따른 전자파 센서 패키지의 사시도이다.
도 15는 본 발명의 실시예들에 따른 전자파 센서 패키지의 평면도이다.
도 16은 본 발명의 실시예들에 따른 전자파 센서 패키지의 단면도이다.
도 17은 본 발명의 실시예들에 따른 전자파 센서 시스템을 나타낸 블록도이다.
도 18 및 19는 본 발명의 실시예들에 따른 전자파 센서와 증폭기를 나타내는 회로도이다.
도 20은 본 발명의 실시예들에 따른, 전자파 센서를 이용한 전자파 측정 방법을 나타낸 도면이다.
도 21은 본 발명의 실시예들에 따른, 전자파 센서를 이용한 전류 측정 방법을 나타낸 도면이다.
본 발명의 구성 및 효과를 충분히 이해하기 위하여, 첨부한 도면을 참조하여 본 발명의 바람직한 실시 예들을 설명한다. 그러나 본 발명은, 이하에서 개시되는 실시예들에 한정되는 것이 아니라, 여러 가지 형태로 구현될 수 있고 다양한 변경을 가할 수 있다. 단지, 본 실시예들의 설명을 통해 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술 분야의 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위하여 제공되는 것이다. 당해 기술분야에서 통상의 기술을 가진 자는 본 발명의 개념이 어떤 적합한 환경에서 수행될 수 있다는 것을 이해할 것이다.
본 명세서에서 사용된 용어는 실시 예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 ‘포함한다(comprises)’ 및/또는 ‘포함하는(comprising)’은 언급된 구성요소, 단계, 동작 및/또는 소자는 하나 이상의 다른 구성요소, 단계, 동작 및/또는 소자의 존재 또는 추가를 배제하지 않는다.
본 명세서에서, 어떤 구성요소가 다른 구성요소 상에 있다고 언급되는 경우에 그것은 다른 구성요소 상에 직접 형성(접촉)될 수 있거나 또는 그들 사이에 제 3의 구성요소가 개재될 수도 있다는 것을 의미한다. 또한, 예를 들어, 제1 막이 제2 막 상에 있다고 언급된 경우, 제1 막은: 제2 막의 상면, 제2 막의 하면 또는 제2 막의 또 다른 표면 상에 형성될 수 있다는 것을 의미한다. 즉, '상'에 있다는 표현은 어떤 구성이 또 다른 구성의 '위'에 있다는 의미로 제한되지 않는다.
본 명세서의 다양한 실시예들에서 제1, 제2 등의 용어가 다양한 영역, 막들(또는 층들) 등을 기술하기 위해서 사용되었지만, 이들 영역, 막들이 이 같은 용어들에 의해서 한정되어서는 안 된다. 이들 용어들은 단지 어느 소정 영역 또는 막(또는 층)을 다른 영역 또는 막(또는 층)과 구별시키기 위해서 사용되었을 뿐이다. 여기에 설명되고 예시되는 각 실시 예는 그것의 상보적인 실시예도 포함한다. 명세서 전체에 걸쳐서 동일한 참조번호로 표시된 부분들은 동일한 구성요소들을 나타낸다.
본 발명의 실시예들에서 사용되는 용어들은 다르게 정의되지 않는 한, 해당 기술 분야에서 통상의 지식을 가진 자에게 통상적으로 알려진 의미로 해석될 수 있다.
이하, 도면들을 참조하여 본 발명의 실시예들에 따른 전자파 센서에 대해 상세히 설명한다.
도 1은 본 발명의 실시예들에 따른 전자파 센서를 나타낸 블록도이다. 도 2는 본 발명의 실시예들에 따른 전자파 센서를 나타낸 사시도이다.
도 1을 참조하면, 본 발명의 실시예들에 따른 바나듐 산화물 전자파 센서는 제1 물질 층(120), 제1 물질 층(120) 상의 제2 물질 층(130) 및 제2 물질 층(130) 상의 전극들(140)을 포함할 수 있다. 제1 물질 층(120) 및 제2 물질 층(130)은 전자파 센서의 외부로부터 전자파(L)을 수신하고, 전극들(140)을 통하여 전자파 감지 신호(Sld)를 출력할 수 있다.
일 예에 따르면, 제어부(200)가 전극들(140)과 연결될 수 있다. 제어부(200)는 전극들(140)을 통하여 제2 물질 층(130)에 제어 신호(Sc)를 인가할 수 있다. 제어 신호(Sc)는 바이어스 전압을 포함할 수 있다. 제1 물질 층(120) 및 제2 물질 층(130)은 외부로부터 수신된 전자파(L) 중 특정 파장 영역의 전자파에 반응하여, 제2 물질 층(130)의 저항을 변화시킬 수 있다. 제1 물질 층(120) 및 제2 물질 층(130)은 제어 신호(Sc) 및, 특정 파장의 영역의 전자파에 대응하여 제어부(200)로 전자파 감지 신호(Sld)를 출력할 수 있다. 전자파 감지 신호(Sld)는 전자파 센서와 제어부(200)가 이루는 폐회로 내의 전류의 변화량을 포함할 수 있다.
상세하게, 도 1 및 도 2를 참조하면, 제1 물질 층(120)이 절연성의 지지 기판(110) 상에 배치될 수 있다. 제1 물질 층(120)은 반도체 물질을 포함할 수 있다. 반도체 물질은 실리콘(Si)일 수 있다. 제1 물질 층(120)은 n형의 도전형 도펀트로 도핑된 n형 반도체 층일 수 있다. 제1 물질 층(120)이 실리콘(Si)을 포함하는 경우, n형의 도전형 도펀트는, 예컨대, 5족 원소일 수 있다. 상기 5족 원소는, 예컨대, 인(P) 또는 비소(As)일 수 있다. 제1 물질 층(120)은 지지 기판(110)의 상면의 일부를 덮을 수 있다. 제1 물질 층(120)은 그의 일단으로부터 타단에 이르기 까지 일정한 두께를 가질 수 있다. 제1 물질 층(120)의 두께는, 예컨대, 500nm 내지 1μm일 수 있다.
제1 물질 층(120)은 후술될 제2 물질 층(130)이 특정 파장 영역의 전자파에 대하여 민감하게 반응할 수 있도록 제2 물질 층(130)과 상호작용할 수 있다. 일 예로, 제1 물질 층(120)은 제2 물질 층(130)에 캐리어(예컨대, 정공 또는 전자)를 제공할 수 있다. 다른 예로, 제1 물질 층(120)은 제2 물질 층(130)과 PN 접합을 형성할 수 있다. 제1 물질 층(120)의 n형 도펀트 농도는 1.0 x 1015 cm- 3 보다 크고 1.0 x 1019 cm- 3 보다 작을 수 있다. 제1 물질 층(120)의 n형 도펀트 농도가 1.0 x 1019 cm-3 이상인 경우, 제1 물질 층(120)은 도체로써 기능하여, 제2 물질 층(130)의 저항 변화가 감지되지 못할 수 있다. 제1 물질 층(120)의 n형 도펀트 농도가 1.0 x 1015 cm-3 이하인 경우, 제1 물질 층(120) 내의 전자(electron)는 다수 캐리어로써 기능하지 못할 수 있다. 즉, 제1 물질 층(120) 내의 n형 도펀트 농도가 1.0 x 1015 cm-3 이하인 경우, 제1 물질 층(120)은 제2 물질 층(130)이 특정 파장대역의 전자파에 반응하는 것을 돕지 못할 수 있다. 상술한 효과들은 아래에서 표 1 및 실험 예들을 참조하여 보다 구체적으로 설명된다.
나아가, 제1 물질 층(120)은 n형의 도전형을 갖고, 그리고, 1.0 x 1015 cm- 3 보다 크고1.0 x 1019 cm- 3 보다 작은 도펀트 농도를 가짐으로써, 가시광 영역에 전자파에 대한 반응성이 낮아질 수 있다. 이로써, 제1 물질 층(120)이 불필요하게 전자파를 흡수하여, 전자파 감지 신호(Sld)에 노이즈가 포함되는 것이 방지될 수 있다. 제1 물질 층(120)이 실리콘(Si)을 포함하는 경우, 상기의 n형 도펀트 농도(1.0 x 1015 cm-3 초과 1.0 x 1019 cm-3 미만)를 갖는 제1 물질 층(120)은 1Ωcm 내지 10Ωcm의 비저항을 가질 수 있다. 제1 물질 층(120)은 제2 물질 층(130)에 비해 낮은 비저항을 가질 수 있다. 1Ωcm 내지 10Ωcm의 비저항을 갖는 제1 물질 층(120)은 제2 물질 층(130)의 저항 변화가 측정되는 것을 방해하지 않으면서, 특정 파장의 영역의 전자파 대한 제2 물질 층(130)의 반응성을 향상시킬 수 있다. 실시예들에 따르면, 제1 물질 층(120)을 형성하는 것은 실리콘 층 상에 이온 임플란트 공정 및 급속 열처리 공정을 수행하는 것을 포함할 수 있다.
제2 물질 층(130)이 제1 물질 층(120) 상에 배치될 수 있다. 제2 물질 층(130)은 제1 물질 층(120)의 상면을 완전히 덮을 수 있다. 또한 제2 물질 층(130)은 제1 물질 층(120)과 직접 접촉할 수 있다. 제2 물질 층(130)의 두께는 그의 일단으로부터 타단에 이르기 까지 일정할 수 있다. 제2 물질 층(130)의 두께는 예컨대, 500nm내지 1μm일 수 있다. 일 예에 따르면, 제2 물질 층(130)은 제1 물질 층(120) 상에 직접 배치될 수 있다. 제2 물질 층(130)은 분자식 VxOy로 표시되는 바나듐 산화물을 포함할 수 있다. 상기 분자식에서, x에 대한 y의 비는 2 보다 크고 2.5보다 작을 수 있다. 다시 말해서, 상기 바나듐 산화물 내의 바나듐(V)에 대한 산소(O)의 원자 비(Atomic ratio)는 2 보다 크고 2.5보다 작을 수 있다. 제2 물질 층(130) 내에서 바나듐의 원자 퍼센트(Atomic percent)와 산소의 원자 퍼센트의 비는 제2 물질 층(130)의 상면으로부터 제2 물질 층(130)의 하면에 이르기까지 일정할 수 있다(도3 참조). 상기 바나듐 산화물은 2.30eV 내지 2.40eV의 밴드갭을 가질 수 있다. 제2 물질 층(130)은 제1 파장의 전자파에 대하여 가장 높은 흡수 계수를 갖되, 상기 제1 파장은 100nm 내지 700nm 사이의 값을 가질 수 있다. 본 발명의 전자파 센서는 2μm 내지 20μm 사이의 전자파에 대하여 흡수 계수를 가질 수 있다. 일 예로, 제2 물질 층(130)은 2μm 내지 20μm 사이의 전자파에 대하여 흡수 계수를 가질 수 있다. 제2 물질 층(130)은 가시광 영역 및 자외선 영역의 빛을 선택적으로 흡수할 수 있으며, 적외선 영역의 빛의 대부분을 반사하거나 또는 투과시킬 수 있다. 실시예들에 따르면, 전자파 센서는 특정 파장 영역의 전자파를 흡수하기 위한 필터를 더 포함할 수 있다.
실시예들에 따르면, 제2 물질 층(130)을 형성하는 것은 제1 물질 층(120) 상에 증착 공정을 수행하여 바나듐 산화물을 성장시키는 것을 포함할 수 있다. 상기 증착 공정은 펄스 레이저 증착법 (pulse laser deposition, PLD), 스퍼터링(Sputtering) 졸겔(Sol-gel)법 및 원자층 증착법(atomic layer deposition, ALD)을 포함할 수 있다. 제2 물질 층(130)은 산소가 많은 분위기에서 형성될 수 있다. 예컨대, 원자층 증착법을 이용하여 제2 물질 층(130)을 형성하는 경우, 바나듐을 표면포화흡착(surface saturation adsorption)하는 시간에 비해 산소 전구체를 이용하여 표면포화반응(surface saturation reaction)시키는 시간이 클 수 있다. 실시예들에 따르면, 제2 물질 층(130)을 형성하는 것은 제1 물질 층(120) 상에 바나듐 산화물을 성장시킨 이후, 바나듐 산화물을 산소 분위기에서 어닐링하는 것을 더 포함할 수 있다.
전극들(140)이 제1 및 제2 물질 층(120, 130) 상에 배치될 수 있다. 전자파 센서(10)는 서로 이격된 두 전극들(140)을 포함하는 2단자 소자일 수 있다. 구체적으로, 도 2에 도시된 바와 같이, 전극들(140)은 제2 물질 층(130) 상에 서로 이격되어 배치될 수 있다. 전극들(140)의 각각은 제2 물질 층(130)의 일단 및 일단과 대향하는 타단 상에 배치될 수 있다. 예컨대, 전극들(140)의 각각은 제2 물질 층의 상면을 가로지르는 막대의 형태를 가질 수 있다. 전극들(140)은, 예컨대, 알루미늄(Al) 또는 구리(Cu)를 포함할 수 있다.
도 3은 본 발명의 실시예들에 따른 바나듐 산화물 박막에 대하여, 바나듐 및 산소의 원자 퍼센트(atomic percent)를 측정하여 나타낸 그래프이다. 도 4는 본 발명의 실시예들에 따른 바나듐 산화물 박막에 대하여, 파장에 따른 흡수 계수를 측정하여 나타낸 그래프이다. 도 5는 도 4의 그래프에서 450nm 내지 800nm 파장 영역을 확대한 그래프이다. 도 6은 본 발명의 실시예들에 따른 전자파 센서의 조도에 따른 전자파 감지 특성을 나타내는 그래프이다. 도 7은 본 발명의 실시예들에 따른 전자파 센서의 감도의 온도 의존성을 나타내는 그래프이다. 도 8은 본 발명의 실시예들에 따른 전자파 센서의 열 적외선에 노출되었을 때의 흡수 스펙트럼을 나타내는 그래프이다
<실험예 1>
기판 상에 예비 바나듐 산화물 박막을 증착하고, 증착된 예비 바나듐 산화물 박막을 산소 분위기에서 소정의 시간 동안 어닐링하여 산소의 원자 퍼센트(Atomic percent)가 조절된 바나듐 산화물 박막을 형성하였다.
상기 바나듐 산화물 박막을 식각 하면서, x선 분광법(X-ray photoelectron spectroscopy, XPS)을 이용하여, 바나듐 산화물 박막 내의 바나듐과 산소의 원자 퍼센트(Atomic percent)를 측정하였다. 측정 결과를 도 3에 나타내었다.
도 3의 그래프에서, 카본에 의한 스캐터링에 의해 바인딩 에너지(Binding energy) 측정에 오차가 생길 수 있는 구간을 제외하면, 바나듐 산화물(VxOy)의 x에 대한 y의 비는 2 보다 크고 2.5보다 작음을 알 수 있다.
<실험예 2>
실험예 1과 동일한 조건에서 바나듐 산화물 박막을 형성하였다. 즉, 실험예 2에 사용된 바나듐 산화물 박막은 분자식 VxOy로 표시되는 바나듐 산화물을 포함하고, 분자식에서 x에 대한 y의 비는 2 보다 크고 2.5보다 작을 수 있다.
유브이 스펙트로메터(UV Spectrometer)를 이용하여 상온에서의 상기 바나듐 산화물 박막의 UV-Vis 흡수 스펙트럼을 측정하여 도 4 및 도 5에 나타내었다. 실험예 1과 같은 원자 퍼센트(Atomic percent)를 갖는 바나듐 산화물의 경우, 100nm 내지 700nm 의 파장의 전자파에 대한 흡수 특성을 갖는 것을 알 수 있다. 또한, 상기 바나듐 산화물 박막이 가장 높은 흡수 계수(Absorption Coefficient)를 갖는 전자파의 파장은 100nm 내지 700nm 사이의 값을 가짐을 알 수 있다.
도 5를 참조하면, 상기 바나듐 산화물 박막에 대한 파장-흡수 그래프의 변곡점이 약 700nm 에서 형성되므로, 상기 바나듐 산화물 박막을 이용한 전자파 센서는 700nm 이하의 파장을 선택적으로 감지할 수 있음을 알 수 있다. 이로써, 근적외선 영역의 파장의 전자파가 전자파 센서의 감지 영역에서 제외될 수 있다.
<실험예 3>
기판 상에 n형 또는 p형 도펀트로 도핑된 실리콘 층을 형성하고, 실리콘 층 상에 실험예 1과 동일한 조건에서 바나듐 산화물 박막을 형성하였다. 400Lux 세기의 전자파원에 노출된 바나듐 산화물 박막의 저항과, 전자파원에 노출되지 않은 바나듐 산화물 박막의 저항을 각각 측정하여 아래의 표 1에 나타내었다.
도핑된 실리콘 층의도펀트 타입 도펀트 농도 (cm-3) 400 Lux의 전자파원에서 바나듐 산화물 박막의 저항(MΩ) 전자파원이 없는 상태 에서 바나듐 산화물 박막의 저항(MΩ) 평가
N 1 x 1016 0.9 5.00 변화 큼
N 1 x 1017 0.79 2.63 변화 큼
N 1 x 1018 0.65 1.86 변화 큼
N 1 x 1019 0.15 0.15 변화 없음
P 1 x 1017 1.74 1.79 변화 매우 작음
표 1을 참조하면, n형 도펀트로 도핑된 실리콘 층 상의 바나듐 산화물 박막은 P형의 도펀트로 도핑된 실리콘 층 상의 바나듐 산화물 박막에 비해 전자파에 민감하게 반응하는 것을 알 수 있다. 또한, N형 도펀트 농도가 1.0 x 1015 cm- 3 보다 크고 1.0 x 1019 cm- 3 작을 때, 바나듐 산화물 박막의 저항 변화가 나타남을 알 수 있다.<실험예 4>기판 상에 n형의 도펀트가 약 1.0 x 1018 cm-3의 농도로 도핑된 실리콘 박막을 형성하였다. 실리콘 박막 상에 실험예 1과 동일한 조건에서 바나듐 산화물 박막을 형성하였다. 조도를 변화시키면서 바나듐 산화물 박막의 저항을 측정하여 도 6에 나타내었다.
도 6을 참조하면, 본 발명의 실시예들에 따른 전자파 센서는 0 Lux 내지 1000 Lux 범위의 조도에서 전자파를 감지할 수 있음을 알 수 있다.
<실험예 5>
기판 상에 n형 도펀트로 도핑된 실리콘 층을 형성하고, 실리콘 층 상에 실험예 1과 동일한 조건에서 바나듐 산화물 박막을 형성하였다. 이어서, 바나듐 산화물 박막 상에 서로 이격된 전극들을 형성하여 전자파 센서를 제조하였다. 온도를 변화시키면서 전극들 사이의 저항을 측정하였다. 백색광을 실리콘 층 및 바나듐 산화물 박막 상에 조사하고, 온도를 변화시키면서 전극들 사이의 저항을 다시 측정하였다.
도 7을 참조하면, 본 발명의 실시예들에 따른 전자파 센서는 온도를 함께 감지할 수 있는 것을 알 수 있다. 본 발명의 실시예들에 따른 전자파 센서는 백색광이 없는 경우, 온도에 대한 민감성이 증가하는 것을 알 수 있다.
<실험예 6>
기판 상에 n형 도펀트로 도핑된 실리콘 층을 형성하고, 실리콘 층 상에 실험예 1과 동일한 조건에서 바나듐 산화물 박막을 형성하였다. 이어서, 바나듐 산화물 박막 상에 서로 이격된 전극들을 형성하여 전자파 센서를 제조하였다.
2μm 내지 25μm 범위의 파장의 전자파를 발생시키고 및 측정하는 FTIR(Fourier Transform InfraRed) 장비로 흡수계수를 측정하여 그 결과를 도 8에 나타내었다.
2μm 내지 25μm 범위의 파장의 전자파는 중간 적외선(mid-infrared) 영역에 속한다. 본 발명의 실시예들에 따른 전자파 센서는 인체온도영역(human body reion) 근방에서 작은 흡수 피크를 보인다. 또한 본 발명의 실시예들에 따른 전자파 센서는 800도까지 지속적으로 흡수 계수가 증가하고 있는 모습을 보여준다. 이것은 본 발명의 실시예들에 따른 전자파 센서가 인체온도뿐만 아니라 800도 까지 온도를 측정할 수 있다는 것을 의미한다. 따라서 본 발명의 실시예들에 따른 전자파 센서는 인체온도 감지 센서 및 써미스터로도 사용될 수 있다.
도 9는 본 발명의 실시예들에 따른 전자파 센서를 개략적으로 나타낸 블록도이다. 도 10은 도 9를 참조하여 설명한 실시예에 따른 전자파 센서의 전자파 감지 특성을 타나내는 그래프로, 바이어스 전압의 방향에 따른 감지 특성의 변화를 나타낸다. 설명의 간소화를 위하여 중복된 구성에 대한 상세한 설명은 생략될 수 있다.
도 9를 참조하면, 본 발명의 실시예들에 따른 전자파 센서는 제1 물질 층(120)과 연결된 제1 전극(140a) 및 제2 물질 층(130)과 연결된 제2 전극(140b)을 포함할 수 있다. 제어부(200)가 제1 전극(140a) 및 제2 전극(140b)과 연결될 수 있다. 제어부(200), 제1 전극(140a), 제1 물질 층(120), 제2 물질 층(130) 및 제2 전극(140b)은 수직적으로 배치되어 폐 회로를 구성할 수 있다.
제어부(200)는 전자파 센서에 제1 전류 방향(Ia) 또는 제2 전류 방향(Ib)으로 바이어스 전압을 인가할 수 있다. 제2 물질 층(130) 내의 바나듐 산화물은 정공(hole)을 다수 캐리어로써 가질 수 있다. 제1 물질 층(120)이 n형 도펀트로 도핑되는 경우, 제1 물질 층(120) 및 제2 물질 층(130)은 PN 접합을 형성하여 다이오드로 기능할 수 있다. 일 예에 따르면, 제1 물질 층(120) 및 제2 물질 층(130)은 수신된 전자파(L) 및 바이어스 전압(Ia, Ib)에 대응하여 광 기전력을 발생시킬 수 있다. 본 예에 따르면, 전자파 센서가 출력하는 전자파 감지 신호는 광 기전력을 포함할 수 있다.
<실험예 5>
기판 상에 n형의 도펀트가 약 1.0 x 1018 cm-3의 농도로 도핑된 실리콘 박막을 형성하였다. 실리콘 박막 상에 실험예 1과 동일한 조건에서 바나듐 산화물 박막을 형성하였다. 실리콘 박막과 바나듐 산화물 박막 상에 전극을 각각 형성하고, 전극들에 바이어스 전압을 인가하였다. 바이어스 전압의 크기 및 방향을 변화시키면서, 출력되는 전류값을 측정하여 도 10에 나타내었다.
도 10을 참조하면, 동일한 크기의 전압이 인가되더라도, 바이어스 전압의 방향에 따라 전자파의 감지 특성이 달라짐을 알 수 있다.
도 11은 본 발명의 실시예들에 따른 전자파 센서의 사시도이다. 설명의 간소화를 위하여 중복된 구성에 대한 상세한 설명은 생략될 수 있다.
도 11을 참조하면, 전자파 센서는 제2 물질 층(130)을 덮는 캡핑층(115)을 포함할 수 있다. 캡핑층(115)은, 예컨대, 실리콘 산화물(SiO2), 실리콘 질화물(SiN) 또는 실리콘 산질화물(SiON)을 포함할 수 있다. 캡핑층(115)은 가시광 영역 및 자외선 영역의 전자파를 투과시킬 수 있다.
도 12는 본 발명의 실시예들에 따른 전자파 센서 패키지를 나타내는 사시도이다. 설명의 간소화를 위하여 중복된 구성에 대한 상세한 설명은 생략될 수 있다.
도 12을 참조하면, 전자파 센서 패키지는 지지 기판(110), 전자파 센서, 배선들(145) 단자들(160) 및 봉지층(encapsulation layer, 150)을 포함할 수 있다.
지지 기판(110)은 원형 평판 형상을 가질 수 있다. 지지 기판(110)은 절연체를 포함할 수 있다.
제1 물질 층(120) 및 제2 물질 층(130)이 지지 기판(110) 상에 적층될 수 있다. 두 개의 전극들(140)이 제2 물질 층(130) 상에서 서로 이격되어 배치될 수 있다. 제1 물질 층(120), 제2 물질 층(130) 및 전극(140)은 도 1 내지 도 9를 참조하여 설명한 것과 동일/유사할 수 있다.
단자들(160)이 지지 기판(110)을 상/하로 관통할 수 있다. 단자들(160)의 상부가 지지 기판(110)의 상면 상에 노출될 수 있다. 단자들(160)의 하부가 지지 기판(110)의 하면의 아래에 노출될 수 있다. 단자들(160)은 센서를 인쇄 회로 기판에 실장할 때 인쇄회로 기판(PCB, 미도시)과 연결되는 핀을 포함할 수 있다
배선들(145) 이 단자들(160)과 전극들(140)을 연결할 수 있다.
봉지층(150)이 지지 기판(110), 전자파 센서, 단자들(160) 및 배선들(145)을 덮을 수 있다. 봉지층(150)은, 예컨대, 투명한 수지를 포함할 수 있다. 봉지층(150)은 가시광 영역 및 자외선 영역의 전자파를 투과시킬 수 있다. 봉지층(150)은, 전자파 센서 패키지의 외부로부터 전자파 센서 패키지의 내부로 입사하는 전자파를 집중시킬 수 있도록, 반구의 형상을 가질 수 있다.
도 13은 본 발명의 실시예들에 따른 전자파 센서 패키지를 나타내는 사시도이다. 설명의 간소화를 위하여 중복된 구성에 대한 상세한 설명은 생략될 수 있다.
도 13을 참조하면, 봉지층(150)은 제1 층(150a) 및 제1 층(150a) 상의 제2 층(150b)을 포함할 수 있다. 제2 층(150b)은 제1 층(150a)에 비해 굴절률이 높은 물질을 포함할 수 있다. 제2 층(150b)은 볼록 렌즈의 형상을 가질 수 있다.
도 14는 본 발명의 실시예들에 따른 전자파 센서 패키지를 나타내는 단면도이다. 설명의 간소화를 위하여 중복된 구성에 대한 상세한 설명은 생략될 수 있다.
도 14를 참조하면, 전자파 센서 패키지는 제1 물질 층(120) 및 제2 물질 층(130)이 직렬로 연결된 다이오드형 전자파 센서 패키지일 수 있다.
지지 기판(110) 및 제1 물질 층(120) 사이에 전도성 에폭시(117)가 배치될 수 있다. 이때, 지지 기판(110)은 도전성 물질을 포함할 수 있다. 지지 기판(110)은, 예컨대, 구리 또는 알루미늄을 포함할 수 있다. 지지 기판(110)은 제1 물질 층(120)과 전기적으로 연결된 전극으로 기능할 수 있다.
제1 단자(160a)가 지지 기판(110)을 관통할 수 있다. 제1 단자(160a)는 배선(145)을 통하여 제2 물질 층(130) 상의 전극(140)과 전기적으로 연결될 수 있다. 제1 단자(160a)와 지지 기판(110)의 사이에 절연 패턴(165)이 배치될 수 있다. 제1 단자(160a) 및 지지 기판(110)은 절연 패턴(165)에 의해 전기적으로 분리될 수 있다. 제2 단자(160b)가 지지 기판(110)을 관통할 수 있다. 제2 단자(160b)는 지지 기판(110)과 전기적으로 연결될 수 있다.
도 15는 본 발명의 실시예들에 따른 전자파 센서 패키지를 나타내는 평면도이다. 설명의 간소화를 위하여 중복된 구성에 대한 상세한 설명은 생략될 수 있다.
도 15를 참조하면, 하나의 전자파 센서 패키지 내에 복수개의 전자파 센서들(10)이 배치될 수 있다. 전자파 센서들(10)은, 도 2에 도시된 바와 같이, 제1 물질 층(120), 제1 물질 층(120) 상의 제2 물질 층(130) 및 제2 물질 층(130) 상의 전극들(140)을 포함할 수 있다. 전자파 센서들(10)은 직렬 또는 병렬로 서로 연결될 수 있다. 전자파 센서들(10)은 배선들(145)을 통하여 지지 기판(110)을 관통하는 단자들(160)과 전기적으로 연결될 수 있다.
도 16은 본 발명의 실시예들에 따른 전자파 센서 패키지를 나타내는 단면도이다. 설명의 간소화를 위하여 중복된 구성에 대한 상세한 설명은 생략될 수 있다.
도 16을 참조하면, 전자파 센서 패키지는 PCB 기판(112) 및 PCB 기판(112) 상에 실장된 전자파 센서를 포함할 수 있다. PCB 기판(112)은 그의 상면 상에 노출된 도전성 패드들(114)을 포함할 수 있다. 전자파 센서의 전극들(140)은 배선들(145)을 통하여 도전성 패드들(114)과 연결될 수 있다.
도 17은 본 발명의 실시예들에 따른 전자파 센서 시스템을 설명하기 위한 블록도이다.
도 17를 참조하면 전자파 센서 시스템은 센서부(100), 제어부(200) 및 통신부(300)를 포함할 수 있다.
센서부(100)는 도 1 내지 도 16을 참조하여 설명한 전자파 센서(10) 또는 전자파 센서 패키지를 포함할 수 있다. 즉, 센서부(100)는, 도 2에 도시된 바와 같이, 차례로 적층된 제1 및 제2 물질 층(120, 130)을 포함할 수 있다. 센서부(100)는 전자파 센서 시스템의 외부로부터 전자파를 수신할 수 있다. 센서부(100)는 수신된 전자파 중 100nm 내지 700nm 파장 영역의 전자파를 흡수하여, 제어부(200)로 감지 신호를 출력할 수 있다.
제어부(200)는 신호 생성기(240), 증폭기(210), 디지털 변환기(220) 및 신호 처리기(230)를 포함할 수 있다. 신호 생성기(240)는 센서부(100)에 제어 신호를 입력할 수 있다. 제어 신호는, 예컨대, 바이어스 전압을 포함할 수 있다. 센서부(100)는 제어 신호 및 흡수된 전자파에 대응하는 감지 신호를 생성하여 증폭기(210)로 출력할 수 있다. 증폭기(210)는 감지 신호를 증폭하여 디지털 변환기(220)에 전달할 수 있다. 디지털 변환기(220)는 증폭기(210)로부터 전달받은 증폭된 감지 신호를 프로세서가 처리 가능한 디지털 신호로 변환하여 신호 처리기(230)로 출력할 수 있다. 신호 처리기(230)는 디지털 변환기(220)로부터 수신된 디지털 신호를 선별 및 처리하여 전자파 감지 데이터를 생성할 수 있다. 신호 처리기(230)는 전자파 감지 데이터를 통신부(300)에 제공할 수 있다.
통신부(300)는 유선 또는 무선 통신수단을 포함할 수 있다. 통신부(300)는 제어부(200)로부터 수신된 전자파 감지 데이터를 유선 또는 무선으로 출력할 수 있다.
도 18 및 19는 본 발명의 실시예들에 따른 전자파 센서와 증폭기를 나타내는 전자파 센서 증폭 시스템의 회로도이다.
도 18을 참조하면, 증폭기(210)는 베이스, 콜렉터 및 이미터를 갖는 트랜지스터를 포함할 수 있다. 본 발명의 실시예들에 따른 전자파 센서(10)는 트랜지스터의 베이스와 연결될 수 있다. 실시예들에 따르면, 증폭기(210)는 전계효과 트랜지스터를 포함할 수도 있다.
도 19를 참조하면, 증폭기(210)는 제1 및 제2 물질 층들(120, 130)의 저항값을 측정하는 휘스톤 브릿지(wheatstone bridge) 및 휘스톤 브릿지의 출력 전압을 증폭시키기 위한 차동 증폭기를 포함할 수 있다. 휘스톤 브릿지 매우 작은 감지 신호를 증폭할 수 있다. 구체적으로, 휘스톤 브릿지의 제1 지점(A)과 제2 지점(B)의 전위차를 가변저항(R1)으로 조정하여 0으로 만들 수 있다. 이어서, 전자파 센서의 저항(R2)이 변하면 A와 B 지점의 전위차가 생기고, 그 전위차를 차동증폭기(180)가 증폭할 수 있다.
도 20은 본 발명의 실시예들에 따른, 전자파 센서를 이용한 전자파의 측정 방법을 나타내는 도면이다. 도 21은 본 발명의 실시예들에 따른, 전자파 센서를 이용한 전류 측정 방법을 나타내는 도면이다.
도 20을 참조하면, 본 발명의 실시예들에 따른 전자파 센서(10)는 자기장 및 도선(190)의 발열에 의해 생기는 열 적외선을 측정할 수 있다. 구체적으로, 도선(190)은 원의 일부의 형상을 가질 수 있다. 도선(190)에 전류(191)가 흐르는 경우, 도선(190)에 의해 정의되는 중심부분(CP)에 열 적외선 및 자기장(192)이 집중될 수 있다. 전자파 센서(10, 도2 참조)가 중심부분(CP)에 배치되는 경우, 전자파 센서(10)는 열 적외선 및 자기장(192)을 측정할 수 있다.
도 21을 참조하면, 도선(190)은 원의 일부의 형상을 가질 수 있으며, 도선(190)의 사이에 금속판(194)이 배치될 수 있다. 금속판(194)은 도선(190)을 연결할 수 있다. 즉, 금속판(194)에는 전류(191)가 흐를 수 있다. 금속판 상에 전자파 센서(10)가 배치되는 경우, 전자파 센서(10)는 금속판(194)으로 흐르는 전류(191)에 의해 발생되는 열 자기력선을 측정할 수 있다. 따라서 본 발명의 실시예들에 따른 전자파 센서는 전류 센서로도 사용될 수 있다. 전자파 센서(10)는 전극들과 전기적으로 연결된 외부 전극들(141)을 더 포함할 수 있다.
이상, 첨부된 도면들을 참조하여 본 발명의 실시 예들을 설명하였지만, 본 발명은 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수도 있다. 그러므로 이상에서 기술한 실시 예들에는 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야 한다.
본 발명의 특정 파장 영역의 전자파를 선택적으로 감지하는 센서 분야에 적용 가능하다.

Claims (8)

  1. n형의 도펀트로 도핑된 실리콘을 포함하는 제1 물질 층;
    상기 제1 물질 층 상에 배치되고, 분자식 VxOy로 표시되는 바나듐 산화물을 포함하는 제2 물질 층;
    상기 제2 물질 층 상의 제1 전극; 및
    상기 제1 물질 층 또는 상기 제2 물질 층 상의 제2 전극을 포함하되,
    상기 제1 물질 층의 도펀트 농도는 1.0 x 1015 cm- 3 보다 크고 1.0 x 1019 cm- 3 보다 작고,
    상기 분자식에서 x에 대한 y의 비는 2 보다 크고 2.5보다 작은 전자파 센서.
  2. 제1 항에 있어서,
    상기 제2 전극은 상기 제2 물질 층 상에 배치되고, 상기 제1 전극과 이격되는 전자파 센서.
  3. 제1 항에 있어서,
    상기 제2 전극은 상기 제1 물질 층 상에 배치되는 전자파 센서.
  4. 제1 항에 있어서,
    상기 제2 물질 층은 제1 파장의 전자파에 대하여 가장 높은 흡수 계수를 갖되, 상기 제1 파장은 100nm 내지 700nm 사이의 값을 갖는 전자파 센서.
  5. 제1 항에 있어서,
    상기 전자파 센서는 2μm 내지 20μm 사이의 전자파에 대하여 흡수 계수를 갖는 전자파 센서.
  6. 차례로 적층된 제1 및 제2 물질 층들;
    상기 제1 및 제2 물질 층들 상의 전극들; 및
    상기 전극들과 연결되어 상기 제1 및 제2 물질 층들로부터 수신된 감지 신호를 증폭하는 증폭기를 포함하되,
    상기 제1 물질 층은 n형의 도펀트로 도핑된 실리콘을 포함하고, 상기 제1 물질 층의 도펀트 농도는 1.0 x 1015 cm-3 보다 크고 1.0 x 1019 cm-3 보다 작고,
    상기 제2 물질 층은 분자식 VxOy로 표시되는 바나듐 산화물을 포함하고, 상기 분자식에서 x에 대한 y의 비는 2 보다 크고 2.5보다 작은 전자파 센서 증폭 시스템.
  7. 제6 항에 있어서,
    상기 증폭기로부터 수신된 증폭된 감지 신호를 디지털 신호로 변환하는 디지털 변환기를 포함하는 전자파 센서 증폭 시스템.
  8. 제6 항에 있어서,
    상기 증폭기는 상기 제1 및 제2 물질 층들의 저항값을 측정하는 휘스톤 브릿지 및 상기 휘스톤 브릿지의 출력 전압을 증폭시키기 위한 차동 증폭기를 포함하는 전자파 센서 증폭 시스템.
PCT/KR2018/010216 2017-09-05 2018-09-03 산소 리치 바나듐산화물 전자파 센서 및 그 시스템 WO2019050233A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0113574 2017-09-05
KR20170113574 2017-09-05
KR1020180096337A KR101942094B1 (ko) 2017-09-05 2018-08-17 산소 리치 바나듐산화물 전자파 센서 및 그 시스템
KR10-2018-0096337 2018-08-17

Publications (1)

Publication Number Publication Date
WO2019050233A1 true WO2019050233A1 (ko) 2019-03-14

Family

ID=65277410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/010216 WO2019050233A1 (ko) 2017-09-05 2018-09-03 산소 리치 바나듐산화물 전자파 센서 및 그 시스템

Country Status (3)

Country Link
US (1) US10243093B1 (ko)
KR (1) KR101942094B1 (ko)
WO (1) WO2019050233A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114485949B (zh) * 2022-01-27 2024-05-28 鸿海精密工业股份有限公司 微测辐射热计和其制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100308638B1 (ko) * 1998-08-25 2002-04-24 김춘호 밀리미터파감지장치및감지센서의제조방법
KR101290590B1 (ko) * 2011-06-01 2013-07-30 주홍렬 단일 금속-절연체 전이 상 경계를 갖는 이산화바나듐
KR20160145040A (ko) * 2014-04-11 2016-12-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치, 반도체 장치의 구동 방법, 및 전자 기기의 구동 방법

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5801383A (en) * 1995-11-22 1998-09-01 Masahiro Ota, Director General, Technical Research And Development Institute, Japan Defense Agency VOX film, wherein X is greater than 1.875 and less than 2.0, and a bolometer-type infrared sensor comprising the VOX film
US20020166968A1 (en) * 2001-05-11 2002-11-14 Bradley Martin G. Apparatus and method of measuring bolometric resistance changes in an uncooled and thermally unstabilized focal plane array over a wide temperature range
KR100467480B1 (ko) * 2002-03-12 2005-01-24 한국과학기술연구원 적외선 감지소자용 고특성 나노 박막의 제조방법
JP4205674B2 (ja) 2003-03-07 2009-01-07 富士通株式会社 電磁放射線センサ及びその製造方法
US8379875B2 (en) 2003-12-24 2013-02-19 Nokia Corporation Method for efficient beamforming using a complementary noise separation filter
KR100609699B1 (ko) 2004-07-15 2006-08-08 한국전자통신연구원 급격한 금속-절연체 전이 반도체 물질을 이용한 2단자반도체 소자 및 그 제조 방법
KR100927598B1 (ko) 2007-10-05 2009-11-23 한국전자통신연구원 광 게이팅 스위치 시스템
KR100906152B1 (ko) 2007-12-07 2009-07-03 한국전자통신연구원 마이크로 볼로미터용 저항재료, 이의 제조방법 및 이를포함한 마이크로 볼로미터
JP5318851B2 (ja) 2008-03-03 2013-10-16 パナソニック株式会社 近接場光検出素子及び情報記録媒体の再生方法
US8847160B2 (en) * 2008-11-13 2014-09-30 Hanvision Co., Ltd. Semiconductor for sensing infrared radiation and method thereof
KR100983818B1 (ko) 2009-09-02 2010-09-27 한국전자통신연구원 볼로미터용 저항재료, 이를 이용한 적외선 검출기용 볼로미터, 및 이의 제조방법
KR102054312B1 (ko) 2012-07-17 2019-12-10 한국전자통신연구원 인체 적외선 감지소자 및 그를 구비한 전자장치
KR20140049917A (ko) 2012-10-18 2014-04-28 한국전자통신연구원 금속-절연체 전이 현상 기반의 조도센서
GB2517400A (en) * 2013-06-24 2015-02-25 Cordex Instr Ltd Apparatus and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100308638B1 (ko) * 1998-08-25 2002-04-24 김춘호 밀리미터파감지장치및감지센서의제조방법
KR101290590B1 (ko) * 2011-06-01 2013-07-30 주홍렬 단일 금속-절연체 전이 상 경계를 갖는 이산화바나듐
KR20160145040A (ko) * 2014-04-11 2016-12-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치, 반도체 장치의 구동 방법, 및 전자 기기의 구동 방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GERLING, LUIS G . ET AL.: "Characterization of Transition Metal Oxide/Silicon Heterojunctions for Solar Cell Applications", APPLIED SCIENCES, vol. 5, 10 October 2015 (2015-10-10), pages 695 - 705, XP055262574, DOI: doi:10.3390/app5040695 *
JOUSHAGHANI, ARASH ET AL.: "Wavelength-size Hybrid Si-V02 Waveguide Electtoabsoiption Optical Switches and Photodetectors", OPTICS EXPRESS, DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING, vol. 23, no. 3, 5 February 2015 (2015-02-05), pages 3657 - 3668, XP055581656, DOI: 10.1364/OE.23.003657 *

Also Published As

Publication number Publication date
KR101942094B1 (ko) 2019-01-24
US10243093B1 (en) 2019-03-26
US20190074392A1 (en) 2019-03-07

Similar Documents

Publication Publication Date Title
TWI261934B (en) Infrared sensing IC, infrared sensor and method for producing the same
WO2014109444A1 (ko) 광검출 소자
CA1269164A (en) Photosensitive diode with hydrogenated amorphous silicon layer
US20040061152A1 (en) Semiconductor photosensor device
US6897081B2 (en) Method for fabricating a monolithic chip including pH, temperature and photo-intensity multi-sensors and a readout circuit
US20220037408A1 (en) Infrared detection with intrinsically conductive conjugated polymers
WO2020009294A1 (ko) Uv led를 이용한 가스센서
WO2020022590A1 (ko) Uv led를 이용한 가스센서
WO2019050233A1 (ko) 산소 리치 바나듐산화물 전자파 센서 및 그 시스템
Vieira et al. Improvement of the deep UV sensor performance of a β-ga 2 o 3 photodiode by coupling of two planar diodes
WO2017209349A1 (ko) 비접촉식 적외선 온도 센서 모듈
WO2023033264A1 (ko) Uv led를 이용한 가스센서
WO2016064222A1 (ko) 단위 화소 및 el 지문인식센서
US4941029A (en) High resistance optical shield for visible sensors
WO2013137519A1 (ko) 일체형 듀얼 센서
WO2017043704A1 (ko) 자외선 포토 디텍터 및 그 제조방법
Li et al. Operation of suspended lateral SOI PIN photodiode with aluminum back gate
JPS63102380A (ja) 光センサ
Camargo et al. Miniaturized InSb photovoltaic infrared sensor operating at room temperature
André et al. Wide band study of silicon-on-insulator photodiodes on suspended micro-hotplates platforms
WO2017043871A1 (ko) X선 디텍터
CN111947792B (zh) 一种基于二硒化钯/超薄硅/二硒化钯肖特基结的颜色探测系统及其制备方法
Guo et al. Current kink and capacitance frequency dispersion in silicon PIN photodiodes
EP4375630A1 (en) Pyroelectric infrared detector device
WO2023249347A1 (ko) 변전 효과를 이용한 광센서 및 이를 구비하는 바이오 진단 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18854039

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18854039

Country of ref document: EP

Kind code of ref document: A1