WO2019049510A1 - Coating liquid for non-aqueous electrolyte battery separator, non-aqueous electrolyte battery separator using same, and non-aqueous electrolyte battery - Google Patents

Coating liquid for non-aqueous electrolyte battery separator, non-aqueous electrolyte battery separator using same, and non-aqueous electrolyte battery Download PDF

Info

Publication number
WO2019049510A1
WO2019049510A1 PCT/JP2018/026535 JP2018026535W WO2019049510A1 WO 2019049510 A1 WO2019049510 A1 WO 2019049510A1 JP 2018026535 W JP2018026535 W JP 2018026535W WO 2019049510 A1 WO2019049510 A1 WO 2019049510A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
coating liquid
mass
electrolyte battery
aqueous electrolyte
Prior art date
Application number
PCT/JP2018/026535
Other languages
French (fr)
Japanese (ja)
Inventor
俊充 田中
有紀 太田
能久 乾
岩崎 秀治
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2019540802A priority Critical patent/JPWO2019049510A1/en
Publication of WO2019049510A1 publication Critical patent/WO2019049510A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a coating solution for a non-aqueous electrolyte battery separator, and a non-aqueous electrolyte battery separator and a non-aqueous electrolyte battery using the same.
  • Nonaqueous electrolyte batteries are often used for secondary batteries used for power supplies of these portable terminals.
  • portable terminals are required to have more comfortable portability, miniaturization, thinning, weight reduction, and high performance have rapidly progressed, and they are used in various places. This trend continues, and batteries used in portable terminals are also required to be smaller, thinner, lighter and higher in performance.
  • a positive electrode and a negative electrode are installed via a separator, and a lithium such as LiPF 6 , LiBF 4 , LiTFSI (lithium (bis trifluoromethyl sulfonyl imide)), Li FSI (lithium (bis fluoro sulfonyl imide)) It has a structure housed in a container together with an electrolytic solution in which a salt is dissolved in an organic liquid such as ethylene carbonate.
  • the risk of smoke and the like increases due to temperature rise due to external heat, overcharge, internal short circuit, external short circuit and the like. These can be prevented to some extent by the external protection circuit.
  • the porous film of the polyolefin resin used as the non-aqueous electrolyte battery separator melts at around 120 ° C., and the holes are closed to block the flow of current or ions, thereby suppressing the temperature rise of the battery. It is also possible. This is called the shutdown function.
  • the battery temperature will rise even if the shutdown function works and the battery temperature reaches 150 ° C or more, The porous film shrinks to cause an internal short circuit, which may cause ignition or the like.
  • Patent Document 3 discloses that a coating solution in which alumina fine particles are dispersed in carboxymethyl cellulose (hereinafter sometimes abbreviated as CMC) is applied to a microporous polyolefin membrane to obtain a battery separator.
  • CMC carboxymethyl cellulose
  • CMC has good adhesion to metal oxides and separators, has thermal stability of about 150 ° C, but has high electrical resistance and high electrical resistance at high rate and repeated charge and discharge, so the temperature rise of the battery And internal short circuits are likely to occur. As a result, there is a problem that the heat is generated more than expected, the CMC is decomposed and it becomes difficult to function as a separator.
  • Patent Document 4 As a resin composition for a non-aqueous electrolyte battery separator having a low electric resistance and a high heat resistance, a resin composition containing a neutralized salt of an ⁇ -olefins-maleic acid copolymer has been proposed ( Patent Document 4).
  • the separator coating liquid for a non-aqueous electrolyte battery having good coatability or adhesiveness to the separator substrate is also provided. The request still existed.
  • the present invention has been made in view of the above problems, and is excellent in coating properties to a separator substrate, and preferably, a non-aqueous electrolyte battery separator having low electric resistance and less short of cells is obtained. It is an object of the present invention to provide a coating solution for a water electrolyte battery separator, and a non-aqueous electrolyte battery separator and a non-aqueous electrolyte battery using the same.
  • the inventors of the present invention conducted intensive studies and found that a coating for a non-aqueous electrolyte battery comprising a neutralized salt of an ⁇ -olefin-maleic acid copolymer obtained by copolymerizing an ⁇ -olefin and a maleic acid, a polyamine and a solvent. It has been found that the above-mentioned problems can be solved by the working fluid, and the present invention has been completed.
  • a coating liquid for a non-aqueous electrolyte battery separator which comprises a neutralized salt of an ⁇ -olefin-maleic acid copolymer obtained by copolymerizing an ⁇ -olefin and a maleic acid, a polyamine and a solvent.
  • the coating liquid for a separator as described in [1] further containing an aqueous emulsion.
  • the aqueous emulsion contains at least one polymer particle selected from the group consisting of an olefin polymer, a diene polymer, an acrylic polymer, and a vinyl aromatic polymer,
  • the coating liquid for a separator as described in.
  • the solid content of the aqueous emulsion in the coating liquid is 0.01 to 50 parts by mass with respect to 100 parts by mass of the neutralized salt of the ⁇ -olefin-maleic acid copolymer.
  • the coating liquid for a separator as described in [3] or [4].
  • a non-aqueous electrolyte battery separator comprising a separator substrate and a separator coating layer formed on the substrate from the coating liquid for a separator according to any one of [1] to [8].
  • the nonaqueous electrolyte battery which has a separator as described in [10] [9].
  • the present invention it is preferable to obtain a non-aqueous electrolyte battery separator having low electric resistance and high heat resistance, and further to provide non-water having good coatability or adhesion to the separator substrate.
  • the coating liquid for electrolyte battery separators can be obtained.
  • the separator for a non-aqueous electrolyte battery obtained from the coating solution for a non-aqueous electrolyte battery according to the present invention preferably has a low electric resistance and a high heat resistance, and further uses the same for non-aqueous electrolyte battery.
  • the improvement of the battery characteristic of a water electrolyte battery can be realized.
  • the coating solution for a non-aqueous electrolyte battery according to the present invention (hereinafter, also simply referred to as a separator coating solution) is a neutralized salt of an ⁇ -olefin-maleic acid copolymer obtained by copolymerizing an ⁇ -olefin and a maleic acid. , Polyamines and a solvent. That is, the separator coating liquid of the present invention contains a polymer composition, preferably a binder composition, and a solvent, which is to be coated on a separator substrate to remove a solvent and to form a coating film.
  • the coating solution for a non-aqueous electrolyte battery separator of the present invention may be a slurry composition.
  • linear random copolymers having a weight average molecular weight of preferably 6,000 to 700,000, more preferably 8,000 to 650,000, more preferably 10,000 to 600,000 are preferred. .
  • a linear random copolymer having a weight average molecular weight of 10,000 to 500,000 is preferred.
  • a unit (A) based on ⁇ -olefins has a general formula —CH 2 CR 1 R 2 — (wherein R 1 and R 2 may be the same or different from each other, hydrogen, Or a constituent unit represented by the alkyl group having 1 to 10 carbon atoms or an alkenyl group).
  • the ⁇ -olefins used in the present embodiment are linear or branched olefins having a carbon-carbon unsaturated double bond at the ⁇ -position. In particular, olefins having 2 to 12 carbon atoms, particularly 2 to 8 carbon atoms, are preferred.
  • olefins that may be used include ethylene, propylene, n-butylene, isobutylene, n-pentene, isoprene, 2-methyl-1-butene, 3-methyl-1-butene, n-hexene, 2- Methyl-1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 2-ethyl-1-butene, 1,3-pentadiene, 1,3-hexadiene, 2,3-dimethylbutadiene, 2 And 5-pentadiene, 1,4-hexadiene, 2,2,4-trimethyl-1-pentene and the like.
  • isobutylene is preferable from the viewpoint of availability, heavy synthesis, and stability of the product.
  • isobutylene also includes a mixture containing isobutylene as a main component, for example, a BB fraction (C4 fraction).
  • BB fraction C4 fraction
  • These olefins may be used alone or in combination of two or more.
  • maleic anhydride As units (B) based on maleic acids, maleic anhydride, maleic acid, maleic acid monoester (eg, methyl maleate, ethyl maleate, propyl maleate, phenyl maleate etc.), maleic acid diester (eg, maleic acid)
  • Maleic anhydride derivatives such as dimethyl acid, diethyl maleate, dipropyl maleate, diphenyl maleate etc., maleinimido or its N-substituted derivatives (eg, maleinimido, N-methylmaleimide, N-ethylmaleimide, N N-substituted alkyl maleimide such as N-propyl maleimide, Nn-butyl maleimide, N-t-butyl maleimide, N-cyclohexyl maleimide, N-phenyl maleimide, N-methyl phenyl maleimide, N-ethyl phenyl maleimide, etc.
  • N-substituted alkoxyphenyl maleimide such as N-methoxyphenyl maleimide, N-ethoxyphenyl maleimide, etc., and further halides thereof (eg N-chlorophenyl maleimide), citraconic anhydride, citraconic acid, citraconic Anhydrides such as acid monoester (eg methyl citraconate, ethyl citraconate, propyl citraconate, phenyl citraconate etc.), citraconic diester (eg dimethyl citraconate, diethyl citraconate, dipropyl citraconate, citraconate diphenyl etc) Citraconic acid derivative, citraconic imide or N-substituted derivative thereof (eg, citraconic imide, 2-methyl-N-methylmaleimide, 2-methyl-N-ethylmaleimide, 2-methyl N-substituted alkyl maleimides 2-methyl
  • 2-methyl-N-substituted alkylphenylmaleimides such as 2-methyl-N-methylphenylmaleimide, 2-methyl-N-ethylphenylmaleimide, etc., or 2-methyl-N-methoxyphenylmaleimide
  • 2-methyl-N- Preferred examples include 2-methyl-N-substituted alkoxyphenyl maleimides such as ethoxyphenyl maleimide and the like, and halides thereof (eg 2-methyl-N-chlorophenyl maleimide).
  • maleic anhydride is preferable.
  • These maleic acids may be used alone or in combination of two or more.
  • Maleic acids are neutralized with alkali salts as described above, and the carboxylic acids and carboxylates formed form the form of 1,2-dicarboxylic acid or its salts. This form has a function of capturing heavy metals eluted from the positive electrode.
  • the content ratio of each structural unit in the ⁇ -olefin-maleic acid copolymer is preferably such that (A) / (B) is in the range of 1/1 to 1/3 in molar ratio. This is because the advantages of hydrophilicity, water solubility, affinity to metals and ions as a high molecular weight soluble in water can be obtained.
  • the molar ratio of (A) / (B) is 1/1 or a value close thereto, in which case a unit based on ⁇ -olefin, ie a unit represented by -CH 2 CR 1 R 2- And a copolymer having a structure in which units based on maleic acids are alternately repeated.
  • the mixing ratio of the ⁇ -olefins and the maleic acid to obtain the ⁇ -olefin-maleic acid copolymer varies depending on the composition of the target copolymer, it is preferably 1 to 3 times the number of moles of the maleic acid.
  • the use of ⁇ -olefins is effective to increase the conversion of maleic acid.
  • the method for producing the ⁇ -olefin-maleic acid copolymer is not particularly limited, and, for example, the copolymer can be obtained by radical polymerization.
  • a polymerization catalyst to be used azo catalysts such as azobisisobutyronitrile, 1,1-azobiscyclohexane-1-carbonitrile, organic peroxide catalysts such as benzothio peroxide, dicumyl peroxide, etc. preferable.
  • the amount of the polymerization catalyst used is usually in the range of 0.1 to 5 mol%, preferably 0.5 to 3 mol%, with respect to the maleic acid.
  • a method of adding the polymerization catalyst and the monomer it may be collectively added at the initial stage of polymerization, but a method of sequentially adding according to the progress of polymerization is preferable.
  • the adjustment of the molecular weight can be appropriately performed mainly depending on the monomer concentration, the amount of the catalyst used, and the polymerization temperature.
  • the polymerization temperature is preferably 40 ° C. to 150 ° C., and more preferably 60 ° C. to 120 ° C. When the polymerization temperature is too high, the resulting copolymer tends to be in the form of a block, and the polymerization pressure may be extremely high.
  • the polymerization time is usually preferably about 1 to 24 hours, and more preferably 2 to 10 hours.
  • the amount of the polymerization solvent to be used is preferably adjusted so that the resulting copolymer concentration is 5 to 40% by mass, more preferably 10 to 30% by mass.
  • the ⁇ -olefin-maleic acid copolymer preferably has a weight average molecular weight of usually 6,000 to 700,000.
  • a more preferable weight average molecular weight is 8,000 to 650,000, and a further preferable weight average molecular weight is 10,000 to 600,000.
  • the weight average molecular weight of the copolymer of the present embodiment is less than 6,000, the crystallinity is high, and the binding strength between particles may be reduced.
  • it exceeds 700,000 the solubility to water and a solvent may become small, and it may precipitate easily.
  • a weight average molecular weight of 250,000 or more is also a preferable embodiment.
  • the weight average molecular weight is preferably 15,000 to 450,000.
  • the weight average molecular weight of the ⁇ -olefin-maleic acid copolymer can be measured, for example, by a light scattering method or a viscosity method.
  • the copolymer preferably has an intrinsic viscosity in the range of 0.05 to 1.5.
  • the copolymer is usually obtained in the form of powder in which particles of about 16 to 60 mesh are aligned.
  • the neutralization salt of the copolymer is one in which the active hydrogen of the carbonyl acid generated from the maleic acid reacts with the basic substance to form a salt to form a neutralization salt.
  • the basic substance containing a monovalent metal and / or ammonia as the basic substance from the viewpoint of coatability.
  • the amount of use of the basic substance containing monovalent metal and / or ammonia is not particularly limited, and may be appropriately selected depending on the purpose of use, etc., but it is usually in the maleic acid copolymer
  • the amount is preferably 0.6 to 2.0 moles per mole of maleic acid unit. With such an amount, the degree of neutralization of the ⁇ -olefin-maleic acid copolymer can be easily adjusted to a predetermined range.
  • the amount of the basic substance containing a monovalent metal used is preferably 0.8 to 1.8 moles per mole of maleic acid unit in the maleic acid copolymer, it is less soluble in alkali and water soluble.
  • the copolymer salt of can be obtained.
  • reaction of the ⁇ -olefin-maleic acid copolymer with the basic substance containing a monovalent metal and / or an amine such as ammonia can be carried out according to a conventional method, but it is carried out in the presence of water and ⁇ -
  • the method of obtaining a neutralized salt of an olefin-maleic acid copolymer as an aqueous solution is convenient and preferred.
  • Examples of usable basic substances containing monovalent metals include hydroxides of alkali metals such as sodium hydroxide, potassium hydroxide and lithium hydroxide; carbonates of alkali metals such as sodium carbonate and potassium carbonate; Examples thereof include acetates of alkali metals such as sodium acetate and potassium acetate; and phosphates of alkali metals such as trisodium phosphate.
  • amines such as ammonia include primary amines such as ammonia, methylamine, ethylamine, butylamine and octylamine, secondary amines such as dimethylamine, diethylamine and dibutylamine, and tertiary amines such as trimethylamine, triethylamine and tributylamine. It can be mentioned. Among these, ammonia, lithium hydroxide, sodium hydroxide and potassium hydroxide are preferable. In particular, use of ammonia and lithium hydroxide is preferable in terms of the coatability to the separator substrate.
  • the basic substance containing a monovalent metal and / or ammonia may be used alone or in combination of two or more.
  • a neutralized substance of an ⁇ -olefin-maleic acid copolymer is additionally used together with a basic substance containing hydroxide of alkali metal such as sodium hydroxide and the like. May be prepared.
  • the degree of neutralization of the carboxylic acid generated from the maleic acid in the copolymer is preferably 0.3 to 1.0. Since the solubility to water or a solvent is favorable in the said neutralization degree being 0.3 or more, it is preferable at the point which can perform coating to a separator base material without precipitation. Further, when the degree of neutralization is 1.0 or less, the basic substance to be neutralized is present in excess in the slurry, which is preferable because there is no risk of becoming a resistance component. More preferably, the neutralization degree is in the range of 0.4 to 0.8.
  • the degree of neutralization can be measured using methods such as titration with a base, infrared spectrum, NMR spectrum, etc., but in order to measure the neutralization point simply and accurately, it is preferable to perform titration with a base.
  • a specific titration method is not particularly limited, but the copolymer is dissolved in water with few impurities such as ion-exchanged water, and lithium hydroxide, sodium hydroxide, potassium hydroxide, etc. are used. It can be carried out by neutralization with a basic substance.
  • the indicator of the neutralization point is not particularly limited, but an indicator such as phenolphthalein which indicates pH with a base may be used, and titration can also be performed using a PH meter.
  • the degree of neutralization of the copolymer may be adjusted, for example, by adjusting the degree of neutralization of the copolymer, or by directly adjusting the degree of neutralization of an aqueous solution in which the copolymer is dissolved. It is also good. Specifically, for example, adjustment of the degree of neutralization is performed by adjusting the amount of addition of the basic substance (ammonia, lithium hydroxide, sodium hydroxide, potassium hydroxide, etc.) containing a monovalent metal as described above. Although it is possible to adjust to the said range by these, it is not limited to it.
  • the basic substance ammonia, lithium hydroxide, sodium hydroxide, potassium hydroxide, etc.
  • the basic substance containing a monovalent metal and / or ammonia is preferably used in an amount of 0.6 to 2.0 moles per mole of maleic acid unit in the maleic acid copolymer. It can adjust to the said range by adding the quantity which becomes. More preferably, the basic substance containing a monovalent metal and / or ammonia is added more surely by adding 0.6 to 1.8 moles per mole of maleic acid unit in the maleic acid copolymer. The above range can be adjusted.
  • the active hydrogen of the carbonyl acid formed by the ring opening of maleic anhydride reacts with the basic substance as described above, It forms and becomes a neutralization thing.
  • the degree of neutralization in this case is not particularly limited, but in view of the reactivity with the electrolytic solution, it is preferably in the range of 0.5 to 1 mole relative to 1 mole of carbonyl acid formed by ring opening. Preferably, it is preferable to use one neutralized in the range of 0.6 to 1 mole. With such a degree of neutralization, there is an advantage that the degree of acidity is low and electrolytic solution decomposition is suppressed.
  • the degree of neutralization of the copolymer when maleic anhydride is used can be measured by the same method as described above.
  • the ring-opening rate of the ⁇ -olefin-maleic acid copolymer represents the hydrolysis rate of the maleic anhydride moiety that is polymerized with the ⁇ -olefin when maleic anhydride is used as the maleic acid.
  • the preferred ring opening ratio is 60 to 100%, more preferably 70% to 100%, still more preferably 80 to 100%. If the ring opening ratio is too low, the structural freedom of the copolymer decreases and the stretchability becomes poor, so that the force for bonding the adjacent electrode material particles may be reduced, which is not preferable. Furthermore, there is a risk of causing problems such as low affinity to water and poor solubility.
  • the ring-opening rate can also be obtained, for example, by determining the ratio by measuring the hydrogen at the ⁇ -position of the ring-opened maleic acid by 1 H-NMR based on the hydrogen located at the ⁇ -position of maleic anhydride It is also possible to obtain the ratio of the carbonyl group of maleic acid and the carbonyl group derived from the ring-opened maleic anhydride by IR measurement.
  • the coating liquid for non-aqueous electrolyte battery separators of this invention contains polyamines.
  • the polyamines can improve the coatability of the separator coating liquid, and the resulting separator can have a low resistance.
  • the separator coating liquid of the present invention has a structure in which the above-described neutralized salt of the ⁇ -olefin-maleic acid copolymer is crosslinked with polyamines.
  • Such polyamines are not particularly limited as long as they are electrochemically stable, and any polyamines may be used.
  • low molecular weight compounds having a molecular weight of less than 300 and / or molecular weights of 300 or more, preferably 500
  • the above-mentioned polyamines high molecular weight body is mentioned.
  • low molecular weight polyamines include aliphatic polyamines, aromatic polyamines, and heterocyclic polyamines.
  • Preferred specific examples thereof include aliphatic polyamines such as ethylene diamine, hexamethylene diamine, diethylene triamine, triethylene tetramine, guanidine and the like; aromatic polyamines such as phenylene diamine; and heterocyclic polyamines such as piperazine and N-aminoethyl piperazine Etc.
  • polyamine polymers include amino group-containing polymers, and preferred specific examples thereof include, for example, polyethyleneimine, polytetramethyleneimine, polyvinylamine, polyallylamine, polydiallylamine, polydimethylallylamine, dicyandiamide-formalin Examples thereof include condensates and dicyandiamide-alkylene (polyamine) condensates. These may be used alone or in any combination of two or more compounds. In view of availability and economy, use of polyethylene imine (PEI), polyallylamine and polydiallylamine is preferred.
  • PEI polyethylene imine
  • polyallylamine and polydiallylamine is preferred.
  • the molecular weight of these polyamines is not particularly limited, and the average molecular weight is preferably in the range of 50 to 200,000, more preferably in the range of 100 to 180,000, still more preferably in the range of 200 to 100,000, still more preferably 500 to 500 It is in the range of 50000, particularly preferably in the range of 1000 to 30000, most preferably in the range of 1500 to 25000.
  • the content of the polyamines in the coating solution for a non-aqueous electrolyte battery separator is not particularly limited, but generally, 100 parts by mass of the neutralized salt (solid content) of the ⁇ -olefin-maleic acid copolymer is used.
  • the amount is usually 0.01 parts by mass or more, preferably 0.02 parts by mass or more, preferably 0.05 to 30 parts by mass, more preferably 0.3 to 10 parts by mass, and further more Preferably it is in the range of 0.5 to 6 parts by weight, most preferably in the range of 0.6 to 5 parts by weight.
  • content of polyamines is the range of 0.05 mass part-30 mass parts, since it is easy to adjust the viscosity of the coating liquid obtained to a desired range, it is preferable. Moreover, when there is too much content of polyamines, it tends to lead to an increase in a resistance component, and when too little, there exists a tendency which can not provide sufficient adhesiveness and the coating property to a separator base material.
  • polyamines can be added simultaneously by reacting an ⁇ -olefin-maleic acid copolymer and a basic substance containing a monovalent metal, or an ⁇ -olefin-maleic acid co-product can be added. It can also be added after reacting the polymer and the basic substance containing a monovalent metal.
  • the temperature for promoting the crosslinking reaction is not particularly limited, but the crosslinking reaction proceeds rapidly by heating generally at 20 ° C. or more, preferably 30 ° C. or more.
  • the time required for the crosslinking reaction convergence is not limited because it depends on the temperature, but the crosslinking reaction usually converges in about 0.1 hour to 2 months.
  • the thermal decomposition temperature of the mixture of the neutralized salt of the copolymer and the polyamine (or the solid content of the separator coating liquid) is preferably 150 ° C. or higher, and is 200 ° C. or higher. Is more preferred. Thus, it is considered that the battery maintains its shape even when the thermal runaway occurs, and the short circuit is suppressed. If the thermal decomposition temperature does not reach a predetermined temperature, the shape of the separator can not be maintained at the time of thermal runaway, and the battery may be easily short-circuited.
  • the thermal decomposition temperature of the mixture (solid content of the separator coating liquid) is usually 380 ° C. or less.
  • thermo decomposition temperature is not specifically limited, For example, it can measure by the method etc. which are described in the below-mentioned Example.
  • the separator coating liquid or the slurry composition preferably further contains an aqueous emulsion.
  • the aqueous emulsion refers to an emulsion in which particulate matter is dispersed in an aqueous solvent.
  • the particulate matter is preferably one having mutual binding property to the active material and / or current collector described later (particulate binder). That is, the coating liquid or slurry composition for a non-aqueous electrolyte battery separator according to one aspect of the present invention is preferably an ⁇ -olefin-maleic acid copolymerized with an ⁇ -olefin and a maleic acid as a binder composition.
  • a particulate binder contains a neutralized salt of an acid copolymer, a polyamine, and a particulate matter, preferably a particulate binder.
  • a suitable particulate-form binder the dispersion-type binder which is excellent in the dispersibility to a dispersion medium is mentioned.
  • a particulate substance preferably as a dispersion type binder, for example, a fluorine based polymer, an olefin based polymer, a diene based polymer, an acrylic based polymer, a vinyl aromatic based polymer such as polystyrene, Polymer compounds such as polyimides, polyamides, polyurethane polymers and the like can be mentioned.
  • the particulate material is preferably at least one selected from the group consisting of an olefin polymer, a diene polymer, an acrylic polymer, and a vinyl aromatic polymer.
  • the olefin polymer is a homopolymer of an olefin compound or a copolymer of two or more components.
  • an olefin compound ethylene, propylene, 1-butene, 2-butene, isobutylene, isobutene, 1-pentene, 4-methyl-1-pentene, 3-methyl-1-pentene, 1-hexene, 1-heptene, 1 -Octene, 1-nonene etc. are mentioned.
  • the olefin polymer may be copolymerized with unsaturated carboxylic acid or its anhydride, (meth) acrylic esters, maleic esters, vinyl esters, (meth) acrylamides, etc. as other constituent components. Good.
  • the olefin polymer is preferably an ethylene polymer or a propylene polymer containing ethylene or propylene.
  • the diene polymer is a homopolymer of conjugated diene or a random or block copolymer containing vinyl aromatic and conjugated diene, or a hydrogenated product thereof.
  • specific examples of the diene polymer include conjugated diene homopolymers such as polybutadiene and polyisoprene; aromatic vinyl / conjugated diene copolymers such as styrene / butadiene copolymer (SBR) that may be carboxy-modified; Examples thereof include vinyl cyanide / conjugated diene copolymers such as acrylonitrile / butadiene copolymer (NBR); hydrogenated products of the aforementioned conjugated diene polymers or copolymers such as hydrogenated SBR and hydrogenated NBR.
  • conjugated diene homopolymers such as polybutadiene and polyisoprene
  • aromatic vinyl / conjugated diene copolymers such as styrene / butadiene cop
  • the acrylic polymer is a homopolymer of acrylic acid ester or methacrylic acid ester or a copolymer with a monomer copolymerizable therewith.
  • the copolymerizable monomers include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid and fumaric acid; two or more such as ethylene glycol dimethacrylate, diethylene glycol dimethacrylate and trimethylolpropane triacrylate Carboxylic esters having a carbon-carbon double bond; styrene, chlorostyrene, vinyltoluene, t-butylstyrene, vinylbenzoic acid, methylvinylbenzoate, vinylnaphthalene, chloromethylstyrene, hydroxymethylstyrene, ⁇ -methylstyrene Styrene-based monomers such as divinylbenzene; amide-based monomers such as acrylamide, N-methylol acrylamide
  • an olefin polymer an acrylic polymer, a conjugated diene polymer, a copolymer or a hydrogenated product thereof, and a propylene polymer, a homopolymer of (meth) acrylic acid ester or It is more preferable to use a copolymer, SBR, NBR, and hydrogenated SBR.
  • aqueous emulsions are commercially available, for example, as TRD 2001 (SBR emulsion, manufactured by JSR), Chemipal X800-H (polypropylene emulsion, manufactured by Mitsui Chemicals).
  • particulate refers to polymer particles obtained by emulsion polymerization of the monomers that mainly constitute the above-mentioned polymer, or emulsification after polymerization, It refers to the properties of the emulsified polymer particles.
  • emulsion polymerization method The conventionally well-known arbitrary emulsion polymerization method is employ
  • the average particle diameter of the aqueous emulsion in which the particulate matter is dispersed is preferably 0.01 to 0.5 ⁇ m, and more preferably 0.01 to 0.3 ⁇ m. If the average particle size is less than 0.01 ⁇ m, the viscosity of the coating liquid or slurry may increase to cause deterioration of the coating property, and the emulsion may be coagulated to reduce the adhesion between the separator and the heat-resistant layer. There is something to do. When the average particle size exceeds 0.5 ⁇ m, the dispersibility of the coating film or the binder on the separator may decrease, and the adhesion may decrease. Also, Li dendrite is generated along with the local increase in resistance. Can increase the risk of short circuiting. In addition, an average particle diameter refers to the volume average particle diameter measured by the laser scattering method here.
  • the content of the particulate matter (solid content) in the aqueous emulsion is preferably 10 to 60 parts by mass, and more preferably 20 to 50 parts by mass with respect to 100 parts by mass of the aqueous emulsion.
  • the solid content (particulate matter) content of the aqueous emulsion in the separator coating liquid is usually 0.01 to 50 parts by mass with respect to 100 parts by mass of the neutralized salt of the ⁇ -olefin-maleic acid copolymer.
  • the amount is preferably 0.01 to 20 parts by mass, more preferably 0.1 to 15 parts by mass, and still more preferably 0.1 to 10 parts by mass.
  • a protective colloid may be added to the aqueous emulsion in order to stabilize the above-mentioned polymer particles.
  • the protective colloid refers to a hydrocolloid added for the purpose of stabilizing the hydrophobic colloid to the electrolyte. It is considered that this stabilization action is due to the fact that the hydrocolloid particles enclose the hydrocolloid particles and the nature of the hydrocolloid appears as a whole.
  • protective colloids examples include polyvinyl alcohol, modified polyvinyl alcohol; water-soluble cellulose derivatives such as methyl cellulose, ethyl cellulose, hydroxymethyl cellulose and hydroxypropyl cellulose; water-soluble salts of (meth) acrylate-unsaturated carboxylic acid copolymers; styrene Maleic anhydride copolymer salt, maleinized polybutadiene salt, naphthalene sulfonate, polyacrylate and the like. These protective colloids can be used alone or in combination of two or more.
  • the protective colloid it is preferable to use a water-soluble salt of (meth) acrylic acid ester-unsaturated carboxylic acid copolymer and / or polyvinyl alcohol, and (meth) acrylic acid ester It is extremely preferable to use a water-soluble salt of an unsaturated carboxylic acid copolymer.
  • the solid content (particulate matter) of the aqueous emulsion in the separator coating liquid is not particularly limited, but ⁇ -olefin-maleic acids
  • the amount is preferably in the range of 1 to 50 parts by mass, more preferably 5 to 30 parts by mass, and still more preferably 7 to 20 parts by mass with respect to 100 parts by mass of the copolymer (solid content). If the amount is too large, the adhesion is lowered, which is not preferable. On the other hand, too small addition amount is not preferable because sufficient binding property can not be provided.
  • the separator coating liquid further contains, if necessary, additives such as inorganic particles, dispersants such as surfactants, thickeners, wetting agents and antifoaming agents. It is also good.
  • any of synthetic products and natural products can be used without particular limitation.
  • examples of inorganic particles include aluminas such as gibbsite, bayerite, boehmite and corundum, silica, titania, zirconia, magnesia, ceria, yttria, oxide ceramics such as zinc oxide and iron oxide, silicon nitride, titanium nitride and nitrided Boron and other nitride-based ceramics, silicon carbide, calcium carbonate, aluminum sulfate, aluminum hydroxide, magnesium hydroxide, potassium titanate, talc, synthetic kaolinite, kaolin clay, kaolinite, fly bondite, steven sites, dickite, nacrite , Halloysite, pyrophyllite, odnightite, montmorillonite, beidellite, nontronite, volkon scoreite, saponite, hectorite, fluorine hectorite, sauco
  • the quantity of the inorganic particle of a separator coating liquid is 10-10000 mass normally with respect to 1 mass part of neutralization salts of the said (alpha) -olefin-maleic acid copolymer. It is preferably part, more preferably 20 to 1000 parts by mass, and still more preferably 25 to 500 parts by mass.
  • the separator coating liquid is preferably added to the polymer composition (preferably the binder composition) that should preferably constitute the coating film, and further, among the above-mentioned inorganic particles, a metal oxide and
  • the slurry composition may contain at least one of metal salts.
  • metal oxides and metal salts are non-water soluble and include, for example, metal oxides of divalent to tetravalent metals or metal salts of divalent to tetravalent metals.
  • metal carbonates such as calcium carbonate, magnesium carbonate and barium carbonate
  • metal sulfates such as barium sulfate
  • metal oxides such as magnesium oxide, zinc oxide, alumina, silica and titanium oxide
  • talc clay, mica And clay minerals such as montmorillonite, and barium titanate.
  • alumina, barium sulfate or barium titanate is preferable, and alumina is particularly preferable, from the viewpoint of being chemically inactive when the laminated porous substrate is incorporated into a battery as a battery separator.
  • alumina ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, pseudo-boehmite and the like can be mentioned, but ⁇ -alumina is preferable from the viewpoint of being chemically inactive.
  • the separator coating liquid (or slurry composition) of the present invention further contains at least one of a metal oxide and a metal salt
  • the separator coating liquid (or slurry composition) is at least one selected from water insoluble metal oxides and metal salts. Viscosity stability when slurrying metal components is improved, and when a coated layer is formed on a porous substrate using the obtained slurry, a laminated porous substrate having excellent surface smoothness is obtained. be able to.
  • the laminated porous substrate can be suitably used as a separator for a non-aqueous electrolyte secondary battery.
  • the coating layer containing the above-mentioned polymer composition (preferably a binder composition) and at least one of a metal oxide and a metal salt is a porous substrate. It may be bound to at least one side.
  • the above-mentioned polymer composition (preferably a binder composition) is usually dissolved or dispersed in water to exhibit a function, and is one or more metals selected from water-insoluble metal oxides and metal salts.
  • It has a function as a viscosity modifier to adjust the viscosity of the slurry containing the components and a function as a dispersant to homogeneously disperse the active material in the solvent, and it binds homogeneously and strongly on the porous substrate Can.
  • the metal oxide and / or metal salt used in the above embodiment preferably has an average particle diameter of 1.0 ⁇ m or more and 3 ⁇ m or less.
  • the metal oxide and / or metal salt has an average particle size of 1.0 ⁇ m or more, the particle size distribution can be controlled without aggregation of the metal oxide and / or metal salt in the slurry, and packing Improves the quality. As a result, the adhesiveness and shape stability at the time of heating of a coating layer improve.
  • the average particle size and volume distribution less than 1.0 ⁇ m can be obtained, for example, by adding a ceramic slurry to water using a laser scattering particle size distribution analyzer (Microtrack Bell (“MT3300EXII” manufactured by Nikkiso Co., Ltd.)) at a flow rate of 45%.
  • the particle diameter (D50) at 50% of the volume-based integrated fraction measured within 10 minutes after circulating for 3 minutes can be obtained as the volume-based integrated amount of particles less than 1.0 ⁇ m in particle diameter.
  • dispersants such as surfactants include anionic surfactants such as sulfate ester type, phosphate ester type, carboxylic acid type and sulfonic acid type, and cationic surfactants such as quaternary ammonium salt type and amidoamine type Agent, amphoteric surfactant such as alkyl betaine type, amido betaine type, amine oxide type, non-ionic surfactant such as ether type, fatty acid ester type, alkyl glucoxide, polyacrylic acid, polyacrylate, polysulfonic acid Various surfactants such as salts, polynaphthalene sulfonates, polyvinyl pyrrolidone, and high molecular type surfactants such as cellulose type can be used. These are used singly or in combination of two or more for the purpose of preventing aggregation of the fillers.
  • the dispersant is not limited as long as the same effect as described above can be obtained.
  • the quantity of the dispersing agent in a separator coating liquid is normally 0.01 with respect to 100 mass parts of neutralization salts of the said (alpha) -olefin-maleic acid copolymer.
  • the amount is preferably 10 parts by mass, more preferably 0.1 to 5 parts by mass.
  • the thickener examples include synthetic polymers such as polyethylene glycol, urethane-modified polyether, polyacrylic acid, polyvinyl alcohol, vinyl methyl ether-maleic anhydride copolymer, carbomethoxy cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose and the like.
  • Cellulose derivatives, natural polysaccharides such as xanthan gum, dayutan gum, welan gum, gellan gum, guar gum, carrageenan gum, starches such as dextrin and pregelatinized starch. These may be used alone or in combination of two or more.
  • the thickener is not limited to the above as long as the same effects as those described above can be obtained.
  • the quantity of the thickener in a separator coating liquid is usually 0 with respect to 100 mass parts of neutralization salts of the said (alpha) -olefin-maleic acids copolymer. It is preferably from 0.1 to 10 parts by mass, more preferably from 0.1 to 5 parts by mass.
  • an aliphatic polyether type nonionic surfactant for example, an aliphatic polyether type nonionic surfactant, a polyoxyalkylene type nonionic surfactant, a modified silicone, a modified polyether, a dimethylsiloxane polyoxyalkylene copolymer can be used. These may be used alone or in combinations of two or more.
  • the wetting agent is not limited as long as the same effect as described above can be obtained.
  • the amount of the wetting agent in the separator coating liquid is usually 0.01, based on 100 parts by mass of the neutralized salt of the ⁇ -olefin-maleic acid copolymer.
  • the amount is preferably 10 parts by mass, more preferably 0.1 to 5 parts by mass.
  • various mineral antifoamers such as a mineral oil type, a silicone type, an acryl type, and a polyether type, can be used, for example. These may be used alone or in combinations of two or more.
  • the antifoaming agent is not limited to the above as long as the same effect as described above can be obtained.
  • the quantity of the antifoamer in the resin composition for separators is usually, With respect to 100 mass parts of neutralization salts of the above-mentioned alpha-olefin-maleic acid copolymer, The amount is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass.
  • the coating solution for a non-aqueous electrolyte battery of the present invention contains a solvent.
  • a solvent which can be used, for example, water, alcohols such as methanol, ethanol, propanol and 2-propanol, cyclic ethers such as tetrahydrofuran and 1,4-dioxane, N, N-dimethyl formamide, N, N- Amides such as dimethylacetamide, cyclic amides such as N-methyl pyrrolidone and N-ethyl pyrrolidone, and sulfoxides such as dimethyl sulfoxide are exemplified.
  • the use of water is preferred from the viewpoint of safety and solubility.
  • the following organic solvents may be used in combination within a range of preferably 20% by mass or less of the whole solvent.
  • an organic solvent one having a boiling point of 100 ° C. or more and 300 ° C.
  • hydrocarbons such as n-dodecane
  • alcohols such as 2-ethyl-1-hexanol, 1-nonanol Esters such as ⁇ -butyrolactone and methyl lactate
  • amides such as N-methylpyrrolidone, N, N-dimethylacetamide and dimethylformamide
  • organic dispersion media such as sulfoxide and sulfones such as dimethylsulfoxide and sulfolane.
  • the amount of the solvent in the separator coating liquid is usually preferably 50 to 250 parts by mass, more preferably 70 to 200 parts by mass with respect to 10 parts by mass of the neutralized salt of the ⁇ -olefin-maleic acid copolymer. It is a mass part. If the amount of the ⁇ -olefin-maleic acid copolymer is too small, the viscosity is lowered and the coatability is lowered, the surface of the separator substrate can not be sufficiently covered, and good battery characteristics such as shorting occur. It may not be expressed.
  • the separator coating liquid (or slurry composition) of the present invention mixes and disperses the polymer composition (preferably a binder composition) to be included in the coating liquid or slurry composition and the solvent, and then, if necessary, It can manufacture by adding and mixing additives, such as dispersing agents, such as metal oxides or metal salts, inorganic particles and surfactants, thickeners, wetting agents and antifoaming agents.
  • additives such as dispersing agents, such as metal oxides or metal salts, inorganic particles and surfactants, thickeners, wetting agents and antifoaming agents.
  • the inorganic filler can be highly dispersed, and the binder resin of the present embodiment, which is water-soluble with the metal oxide and / or metal salt that is water-insoluble in a short time, can be made to blend with each other.
  • Mechanical agitation is preferred in that respect.
  • the order of mixing is not particularly limited, but care should be taken so that the coating liquid or the slurry composition does not have an obstacle such as generation of a precipitate.
  • the present invention also relates to a non-aqueous electrolyte battery separator comprising a separator substrate and a separator coating layer formed on the substrate from the coating solution for the separator.
  • the non-aqueous electrolyte battery separator is formed by applying the above-described separator coating liquid to a separator substrate to form a separator coating layer (coating layer) on the surface of the separator substrate. You can get it.
  • a separator coating layer coating layer
  • the surface of the separator base material is not particularly limited as coating weight of the layer coated with the separator coating solution is preferably 1.0 ⁇ 30g / m 2, further 4.0 ⁇ 20g / m 2 is more preferable.
  • the adhesion amount of the covering layer is less than 1.0 g / m 2 , the surface of the separator substrate can not be sufficiently covered, the pore diameter becomes large, and good battery characteristics do not appear, such as occurrence of short circuit. There is.
  • the adhesion amount of the coated layer exceeds 30 g / m 2 , it may be difficult to thin the separator.
  • the non-aqueous electrolyte battery separator of the present invention can prevent short circuiting of the electrodes in the non-aqueous electrolyte battery without interfering with charging and discharging of the battery.
  • separator substrate for example, a film-like, paper-like, non-woven porous substrate, particularly a porous film or non-woven fabric made of an organic material having fine pores can be used.
  • polyester such as aromatic polyester, wholly aromatic polyester, polyolefin, acrylic, polyacetal, polycarbonate, aliphatic polyketone, Aromatic polyketone, aliphatic polyamide, aromatic polyamide, wholly aromatic polyamide, polyimide, polyamideimide, polyphenylene sulfide, polybenzimidazole, polyetheretherketone, polyethersulfone, poly (para-phenylenebenzobisthiazole), poly ( Para-phenylene-2,6-benzobisoxazole), polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl alcohol, polyurethane and poly salt
  • polyester such as aromatic polyester, wholly aromatic polyester, polyolefin, acrylic, polyacetal, polycarbonate, aliphatic polyketone, Aromatic polyketone, aliphatic polyamide, aromatic polyamide, wholly aromatic polyamide, polyimide, polyamideimide, polyphenylene sulfide, polybenzimidazole, polyetheretherketone,
  • the non-aqueous electrolyte battery separator when the non-aqueous electrolyte battery separator is provided with a porous substrate and a covering layer containing the binder composition and the metal oxide and / or metal salt on at least one side thereof, metal oxidation Since the smoothness of the coating layer formed from the slurry containing the metal and / or the metal salt greatly affects the cell performance, it is preferably in the form of a film.
  • the melting point (softening point) of the resin is preferably 70 to 150 ° C., more preferably 80 to 140 ° C., from the viewpoint of the shutdown function in which the pores are clogged when the charge / discharge reaction is abnormal. And most preferably in the range of 100.degree. To 130.degree.
  • the polyolefin microporous film whose resin which comprises from a viewpoint of heat resistance and air permeability is polyolefin resin is mentioned.
  • a polyethylene microporous membrane in which the resin constituting is a polyethylene resin or a polypropylene microporous membrane in which the constituting resin is a polypropylene resin is preferable.
  • the weight-average molecular weight of the polyolefin resin used as the porous substrate is in view of process workability and mechanical strength (for example, tensile strength, elastic modulus, elongation, puncture strength) that withstands various external pressures generated during winding with the electrode. Therefore, it is preferably at least 300,000, more preferably at least 400,000, and most preferably at least 500,000. Also, from the viewpoint of availability, the weight average molecular weight is preferably 1,000,000 or less. In addition, when using polyolefin resin, it is preferable that 50 mass% or more of the polyolefin component which has a weight average molecular weight of the said range is contained, and it is more preferable that 60 mass% or more is contained.
  • the melt viscosity is low, and the mechanical properties drop when the temperature is raised above the pore blockage temperature, and melting occurs by winding pressure or burrs at the electrode end even near the pore blockage temperature. Membrane rupture may occur.
  • the layer structure of the porous substrate is not particularly limited, a layer structure according to the purpose can be freely provided by the production method.
  • a method for producing a porous substrate there are a foaming method, a phase separation method, a solution recrystallization method, a stretched pore method, a powder sintering method and the like. Separation methods are preferred.
  • the air resistance (JIS-P8117) of the porous substrate is preferably 500 seconds / 100 ccAir or less, more preferably 400 seconds / 100 ccAir or less, further preferably 300 seconds / 100 ccAir or less, and preferably 50 seconds.
  • / 100 ccAir or more more preferably 70 seconds / 100 cc Air or more, still more preferably 100 seconds / 100 cc Air or more.
  • the thickness of the separator substrate is usually 0.5 ⁇ m or more, preferably 1 ⁇ m or more, and usually 40 ⁇ m or less, preferably 30 ⁇ m or less.
  • the resistance by the separator base material in a battery will become small as it is this range, and it is excellent in the workability at the time of battery manufacture.
  • the method for drying the solvent such as water contained in the separator coating liquid after applying it to the separator substrate is not particularly limited.
  • dry drying with warm air, hot air, low humidity air; vacuum drying; infrared rays, far infrared rays, Radiation drying such as electron beam may be mentioned.
  • the solvent is removed as quickly as possible within the range of the drying speed at which the layer coated with the separator coating liquid is cracked due to stress concentration or the layer coated with the separator coating liquid does not peel from the separator You should adjust as you can.
  • a drying temperature 100 degrees C or less is preferable, More preferably, it is 90 degrees C or less, More preferably, it is 80 degrees C or less.
  • the heating and drying time is preferably several seconds to several minutes. When the heating and drying temperature is higher than 100 ° C., the shutdown function of the porous substrate may be developed to deteriorate the battery characteristics.
  • a nonaqueous electrolyte battery separator preferably has a basis weight is 10.0 ⁇ 50.0g / m 2, it is 15.0 ⁇ 40.0g / m 2 More preferable.
  • the thickness of the separator is preferably 10.0 to 50.0 ⁇ m, and more preferably 15.0 to 40.0 ⁇ m.
  • the density of the separator is preferably 0.4 to 1.2 g / cm 3 , and more preferably 0.6 to 1.0 g / cm 3 .
  • the separator coating layer is smoothed by rolling or calendering for the purpose of controlling the surface flatness and thickness of the coating layer (coating layer). It is also good.
  • the present invention also relates to a non-aqueous electrolyte battery comprising the above-mentioned separator, a negative electrode, a positive electrode, and an electrolytic solution.
  • the current collector used for the negative electrode and the positive electrode of the non-aqueous electrolyte battery is not particularly limited as long as it is made of a conductive material, and for example, iron, copper, aluminum, nickel, stainless steel Metal materials such as steel, titanium, tantalum, gold and platinum can be used. One of these may be used alone, or two or more of them may be used in combination at an arbitrary ratio.
  • the material normally used by a non-aqueous electrolyte battery can be used as a negative electrode.
  • a negative electrode Li, Na, C, Mg, Al, Si, P, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Y, Zr, Nb, At least one or more elements selected from the group consisting of Mo, Pd, Ag, Cd, In, Sn, Sb, W, Pb and Bi, alloys using these elements, oxides, chalcogenides or halides, etc. used.
  • carbonaceous materials such as amorphous carbon, graphite, natural graphite, mesocarbon microbeads (MCMB), pitch carbon fibers, etc .
  • conductive polymers such as polyacene
  • complex metal oxides represented by SiOx, SnOx, LiTiOx And other metal oxides and lithium metals such as lithium metal and lithium alloy
  • metal compounds such as TiS 2 and LiTiS 2 .
  • a thickener can be further added as needed.
  • the thickener to be added is not particularly limited, and various alcohols, in particular, polyvinyl alcohol and its modified products, celluloses, polysaccharides such as starch, etc. can be used.
  • the amount of the thickener used is preferably about 0.1 to 4 parts by mass, more preferably 0.3 to 3 parts by mass, and still more preferably 0.5 to 2 parts by mass with respect to 100 parts of the negative electrode active material. It is. If the amount of the thickener is excessively small, the viscosity of the slurry composition containing the negative electrode active material and the solvent (hereinafter, also simply referred to as a negative electrode slurry composition) may be too low and the thickness of the mixed layer may be reduced. An excessive amount of thickener may reduce the discharge capacity.
  • a conductive support agent mix blended as needed with the slurry composition for negative electrodes
  • a metal powder, a conductive polymer, acetylene black etc. are mentioned, for example.
  • the amount of the conductive additive used is usually preferably 0.5 to 10 parts by mass, and more preferably 1 to 7 parts by mass with respect to 100 parts by mass of the negative electrode active material.
  • the negative electrode is a negative electrode active material as described above, a conductive additive, and a binder such as SBR, NBR, acrylic rubber, hydroxyethyl cellulose, carboxymethyl cellulose, polyvinylidene fluoride and the like, and a boiling point of 100 or more at water under normal pressure.
  • the slurry for the negative electrode prepared by mixing in a solvent or the like at a temperature of 300 ° C. to 300 ° C. is applied to the current collector as described above, for example, a negative electrode current collector such as copper, and dried. it can.
  • the positive electrode normally used for a non-aqueous electrolyte battery is used without a restriction
  • a positive electrode active material TiS 2 , TiS 3 , amorphous MoS 3 , Cu 2 V 2 O 3 , amorphous V 2 O-P 2 O 5 , MoO 3 , V 2 O 5, V 6 O 13
  • transition metal oxides such as LiCoO 2 , LiNiO 2 , LiMnO 2 , and lithium-containing composite metal oxides such as LiMn 2 O 4 are used.
  • a positive electrode active material a conductive auxiliary agent similar to that of the above negative electrode, a thickener, and a binder such as SBR, NBR, acrylic rubber, hydroxyethyl cellulose, carboxymethyl cellulose, polyvinylidene fluoride, etc.
  • the slurry composition for a positive electrode prepared by mixing in a solvent or the like at 100 ° C. or more and 300 ° C. or less may be applied to a positive electrode current collector such as aluminum, for example, and the solvent may be dried to form a positive electrode.
  • the method for applying each of the electrode slurry compositions to the current collector is not particularly limited.
  • methods such as a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, an immersion method, and a brush coating method can be mentioned.
  • the application amount is also not particularly limited, but the thickness of the mixed layer containing the active material, the conductive aid, the binder and the thickener, which is formed after the solvent or dispersion medium is removed by a method such as drying, is preferably 0.005 to An amount of 5 mm, more preferably 0.01 to 2 mm is generally used.
  • the drying method of the solvent such as water contained in the slurry composition for electrodes is not particularly limited. For example, through-air drying with warm air, hot air, low humidity air; vacuum drying; irradiation drying of infrared rays, far infrared rays, electron beam, etc. It can be mentioned.
  • the drying conditions may be adjusted so that the solvent can be removed as quickly as possible within the range of a drying rate at which the active material layer is not cracked due to stress concentration or the active material layer does not peel from the current collector.
  • the pressing method include methods such as a die press and a roll press.
  • the electrolyte which dissolved the electrolyte in the solvent can be used for the non-aqueous electrolyte battery of the said embodiment.
  • the electrolytic solution may be liquid or gel as long as it is used in a normal non-aqueous electrolyte battery, and an electrolyte that exhibits the function as a battery may be appropriately selected according to the types of the negative electrode active material and the positive electrode active material. Good.
  • lithium salt for example, conventionally known lithium salt are both available LiClO 4, LiBF 6, LiPF 6 , LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiB 10 Cl 10, LiAlC l4, LiCl, LiBr, LiB ( C 2 H 5) 4, CF 3 SO 3 Li, CH 3 SO 3 Li, LiCF 3 SO 3, LiC 4 F 9 SO 3, Li (CF 3 SO 2) 2 N, lower Examples thereof include lithium aliphatic carboxylic acid.
  • the solvent (electrolyte solution solvent) for dissolving such an electrolyte is not particularly limited. Specific examples thereof include carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate and diethyl carbonate; lactones such as ⁇ -butyl lactone; trimethoxymethane, 1,2-dimethoxyethane, diethyl ether, 2-ethoxy Ethers such as ethane, tetrahydrofuran, 2-methyltetrahydrofuran; sulfoxides such as dimethyl sulfoxide; oxolanes such as 1,3-dioxolane and 4-methyl-1,3-dioxolane; nitrogen-containing compounds such as acetonitrile and nitromethane; Organic acid esters such as methyl formate, methyl acetate, ethyl acetate, butyl acetate, methyl propionate, and ethyl propionate; inorganic acids
  • the nonaqueous electrolyte battery of the above-mentioned embodiment the following manufacturing method is illustrated, for example. That is, the negative electrode and the positive electrode are stacked through the separator of this embodiment described above, wound or folded according to the battery shape, and placed in a battery container, and an electrolytic solution is injected and sealed.
  • the shape of the battery may be any of known coin type, button type, sheet type, cylindrical type, square type, flat type and the like.
  • the non-aqueous electrolyte battery of the embodiment is a battery in which internal short circuiting and resistance increase are unlikely to occur, and is useful for various applications.
  • it is also useful as a battery used for portable terminals that are required to be smaller in size, thinner, lighter, and higher in performance, and also used in large devices such as electric vehicles that require high safety. Very useful.
  • Water-soluble lithium-modified isobutene-maleic anhydride copolymer (average molecular weight 325,000, degree of neutralization 0) as a neutralized salt of ⁇ -olefin-maleic acid copolymer obtained by copolymerizing ⁇ -olefins and maleic acid
  • the degree of neutralization was adjusted by adding 1.0 equivalent (0.160 mol) of lithium hydroxide to the maleic acid unit in the maleic acid copolymer.
  • This lithium-modified isobutene-maleic anhydride copolymer (average molecular weight 325,000, neutralization degree 0.5, ring opening ratio 96%) 10% by mass aqueous solution and polyethyleneimine (PEI, manufactured by Wako Pure Chemical Industries, Ltd., average It mixed so that it might become a mass ratio of 99.9: 0.1 with 10 mass% aqueous solution of molecular weight 10000.
  • PEI polyethyleneimine
  • An aqueous solution containing a neutralized salt of the ⁇ -olefin-maleic acid copolymer thus obtained and a polyamine is diluted with water as a solvent to obtain a coating liquid having a solid content concentration of 5% by mass.
  • ⁇ Preparation of coated separator> A polyvinyl alcohol-based fiber (27 cm ⁇ 25 cm, VPB 033, manufactured by Kuraray) was immersed in the coating liquid. Using an experimental manual mangle (manufactured by Kumagaya Riki Kogyo Co., Ltd.), the separator coated with the diluted solution of the separator base material surface coating solution was subjected to an expression treatment and dried at room temperature for 12 hours. The sheet after drying was pressed by a heat press apparatus (manufactured by Furukawa Seisakusho), and the thickness was adjusted to 20 ⁇ m (roll temperature, room temperature, speed 1 m / min, linear pressure 100 hg / cm). The adhesion amount was 2.1 g / m 2 .
  • the slurry for the electrode was a solid of 48.3 mass% aqueous dispersion of styrene-butadiene rubber (SBR, TRD 2001, JSR) as a binder relative to 94 parts by mass of natural graphite (DMGS, BYD made) as an active material.
  • SBR styrene-butadiene rubber
  • DGS natural graphite
  • the slurry for the electrode contains 5 parts by mass of polyvinylidene fluoride (PVDF) as a binder as a solid content, and 92 parts by mass of nickel cobalt manganese (NCM) as an active material, and a conductive aid (conductivity imparting agent)
  • PVDF polyvinylidene fluoride
  • NCM nickel cobalt manganese
  • a conductive aid conductivity imparting agent
  • ⁇ Evaluation method Coating property> The thickness of arbitrary ten places was measured using the micrometer about the above-mentioned coated separator. The case where the thickness unevenness is in the range of 1 ⁇ m in absolute value (the difference between the thickest portion and the thinnest portion is 1 ⁇ m or less) is ⁇ , and the thickness unevenness exceeds 1 ⁇ m in absolute value is ⁇ .
  • ⁇ Production of positive electrode for battery> The obtained slurry is coated on a current collector aluminum foil (IN30-H, made by Fuji processed paper) using a film applicator (manufactured by Tester Sangyo Co., Ltd.), and a hot air dryer (manufactured by Yamato Scientific Co., Ltd.) for 30 minutes at 80 ° C. After primary drying in 2.), rolling treatment was carried out using a roll press (manufactured by Takasen). Thereafter, after punching out as a battery electrode ( ⁇ 14 mm), a coin battery electrode was manufactured by secondary drying at 120 ° C. for 3 hours under reduced pressure conditions.
  • the coated separator and the battery negative electrode obtained above were transferred to a glove box (manufactured by Miwa Seisakusho) under an argon gas atmosphere.
  • a coin battery (2032 type) was produced using 1).
  • the difference between the initial discharge capacity and the charge capacity was taken as the irreversible capacity, and the percentage of the discharge capacity / charge capacity was taken as the charge / discharge efficiency.
  • the direct current resistance of the coin battery adopted the resistance value after one charge (full charge state). The above results are shown in Tables 1 and 2 below. After the above initial charge and discharge, the coin battery was placed in a thermostat bath at 80 ° C., and 50 cycles of constant current charge and discharge at 10 C were performed in a voltage range of 3.0 to 4.2 V. After the test, the percentage of batteries shorted was calculated. The results are shown in Table 1 below.
  • thermogravimetric measurement is performed using a thermal analyzer (manufactured by Yamato Scientific Co., Ltd.) on the solid content obtained by drying a part of the separator coating liquid.
  • the temperature at which the solid content decreased by 50% or more was defined as the thermal decomposition temperature.
  • the thermal decomposition temperature was 302 ° C. as a result of measurement at a measurement range temperature of 25 ° C. to 600 ° C. and a temperature rising rate of 10 ° C./min.
  • Tables 1 and 2 The results are shown in Tables 1 and 2 below.
  • PEI polyethyleneimine
  • the obtained aqueous solution was diluted to obtain a coating liquid having a concentration of 5% by mass of the neutralized salt in the aqueous solution.
  • a coated separator was produced in the same manner as in Example 1 above.
  • the negative electrode for battery was produced by the method similar to the said Example 1, the coin battery was obtained, and the charge / discharge characteristic test was done.
  • the above results are shown in Tables 1 and 2 below.
  • the thermal decomposition temperature of the solid content of the separator coating liquid was measured in the same manner as in Example 1 above. The results are shown in Tables 1 and 2 below.
  • the mass ratio of a 10% by mass aqueous solution to a 10% by mass aqueous solution of polyethyleneimine (PEI, manufactured by Wako Pure Chemical Industries, Ltd., average molecular weight 10000) is 99: 1 Mixed as.
  • the resulting mixture was warmed to 90 ° C. and stirred for 6 hours with heating.
  • the obtained aqueous solution was diluted to obtain a coating liquid having a solid content concentration of 5% by mass.
  • a coated separator was produced in the same manner as in Example 1 above.
  • the negative electrode for battery was produced by the method similar to the said Example 1, the coin battery was obtained, and the charge / discharge characteristic test was done.
  • the above results are shown in Tables 1 and 2 below.
  • the thermal decomposition temperature of the solid content of the separator coating liquid was measured in the same manner as in Example 1 above. The results are shown in Tables 1 and 2 below.
  • PEI Polyethyleneimine
  • Example 1 A coated separator was produced in the same manner as in Example 1 above. Furthermore, the negative electrode for battery was produced by the method similar to the said Example 1, the coin battery was obtained, and the charge / discharge characteristic test was done. The above results are shown in Tables 1 and 2 below. Further, the thermal decomposition temperature of the solid content of the separator coating liquid was measured in the same manner as in Example 1 above. The results are shown in Tables 1 and 2 below.
  • PEI Polyethyleneimine
  • Example 1 A coated separator was produced in the same manner as in Example 1 above. Furthermore, the negative electrode for battery was produced by the method similar to the said Example 1, the coin battery was obtained, and the charge / discharge characteristic test was done. The above results are shown in Tables 1 and 2 below. Further, the thermal decomposition temperature of the solid content of the separator coating liquid was measured in the same manner as in Example 1 above. The results are shown in Tables 1 and 2 below.
  • PEI polyethyleneimine
  • the obtained aqueous solution was diluted to obtain a coating liquid having a solid content concentration of 5% by mass.
  • a coated separator was produced in the same manner as in Example 1 above.
  • the negative electrode for battery was produced by the method similar to the said Example 1, the coin battery was obtained, and the charge / discharge characteristic test was done.
  • the above results are shown in Tables 1 and 2 below.
  • the thermal decomposition temperature of the solid content of the separator coating liquid was measured in the same manner as in Example 1 above. The results are shown in Tables 1 and 2 below.
  • PEI Polyethyleneimine
  • the obtained aqueous solution was diluted to obtain a coating liquid having a solid content concentration of 5% by mass.
  • a coated separator was produced in the same manner as in Example 1 above.
  • the negative electrode for battery was produced by the method similar to the said Example 1, the coin battery was obtained, and the charge / discharge characteristic test was done.
  • the above results are shown in Tables 1 and 2 below.
  • the thermal decomposition temperature of the solid content of the separator coating liquid was measured in the same manner as in Example 1 above. The results are shown in Tables 1 and 2 below.
  • PEI Polyethyleneimine
  • Example 1 A coated separator was produced in the same manner as in Example 1 above. Furthermore, the negative electrode for battery was produced by the method similar to the said Example 1, the coin battery was obtained, and the charge / discharge characteristic test was done. The above results are shown in Tables 1 and 2 below. Further, the thermal decomposition temperature of the solid content of the separator coating liquid was measured in the same manner as in Example 1 above. The results are shown in Tables 1 and 2 below.
  • PAA polyallylamine
  • the obtained aqueous solution was diluted to obtain a coating liquid having a solid content concentration of 5% by mass.
  • a coated separator was produced in the same manner as in Example 1 above.
  • the negative electrode for battery was produced by the method similar to the said Example 1, the coin battery was obtained, and the charge / discharge characteristic test was done.
  • the above results are shown in Tables 1 and 2 below.
  • the thermal decomposition temperature of the solid content of the separator coating liquid was measured in the same manner as in Example 1 above. The results are shown in Tables 1 and 2 below.
  • PAS polydiallylamine
  • the obtained aqueous solution was diluted to obtain a coating liquid having a solid content concentration of 5% by mass.
  • a coated separator was produced in the same manner as in Example 1 above.
  • the negative electrode for battery was produced by the method similar to the said Example 1, the coin battery was obtained, and the charge / discharge characteristic test was done.
  • the above results are shown in Tables 1 and 2 below.
  • the thermal decomposition temperature of the solid content of the separator coating liquid was measured in the same manner as in Example 1 above. The results are shown in Tables 1 and 2 below.
  • a coated separator was prepared in the same manner as in Example 1 using a 10% by mass aqueous solution as a coating solution. Further, the solid content of the separator coating liquid was measured by the same method as in Example 1 above. The results are shown in Tables 1 and 2 below.
  • Example 4 A coated separator was prepared in the same manner as in Example 1 using a 1.0% by mass aqueous solution of CMC-Na as a coating solution as a resin composition for a separator.
  • the adhesion amount was 2.0 g / m 2 .
  • the negative electrode for battery was produced by the method similar to the said Example 1, the coin battery was obtained, and the charge / discharge characteristic test was done. Further, the thermal decomposition temperature of the solid content of the separator coating liquid was measured in the same manner as in Example 1 above. The results are shown in Tables 1 and 2 below.
  • PEI polyethyleneimine
  • the resulting mixture was warmed to 90 ° C. and stirred for 6 hours with heating.
  • the thermal decomposition temperature was measured similarly to Example 1.
  • the heating solution obtained above is diluted with water so that the solid content concentration becomes 5% by mass, and then the total amount of lithium-modified isobutene-maleic anhydride copolymer and polyethylene imine is TRD 2001 (SBR, as an aqueous emulsion).
  • the average particle size of polymer particles manufactured by JSR: 200 nm) was mixed so that the solid content was 90:10 mass ratio, to obtain a separator coating liquid (solid content concentration: 5.5 mass%).
  • aqueous emulsion is measured using a particle size distribution analyzer (FPAR-1000 _ made by Otsuka Electronics Co., Ltd.) whose measurement principle is based on the dynamic light scattering method, and the value at which the cumulative frequency of the number of particles obtained is 50% is the average of the polymer particles. It was the particle size.
  • FPAR-1000 _ made by Otsuka Electronics Co., Ltd.
  • This separator coating liquid was applied onto a polypropylene-based separator substrate (Celgard # 2400, manufactured by Polypore), and dried at room temperature for 12 hours.
  • the sheet after drying was pressed by a heat press apparatus (manufactured by Furukawa Seisakusho), and the thickness was adjusted to 20 ⁇ m (roll temperature, room temperature, speed 1 m / min, linear pressure 100 hg / cm).
  • the adhesion amount was 1.9 g / m 2 .
  • the slurry for the electrode was a solid component of 48.3 mass% aqueous dispersion of styrene-butadiene rubber (SBR, TRD2001, JSR) as a binder relative to 94 parts by mass of natural graphite (DMGS, BYD) as an active material.
  • SBR styrene-butadiene rubber
  • DGS natural graphite
  • the slurry for the electrode contains 5 parts by mass of polyvinylidene fluoride (PVDF) as a binder and a solid content with respect to 92 parts by mass of nickel-cobalt-manganese (NCM) as an active material, and as a conductive aid (conductive agent)
  • PVDF polyvinylidene fluoride
  • NCM nickel-cobalt-manganese
  • a solid content of 3 parts by mass of Denka black (powdery, manufactured by Denki Kagaku Kogyo Co., Ltd.) was charged into a dedicated container, and was kneaded by using a planetary stirrer (ARE-250, manufactured by Shinky).
  • ⁇ Production of positive electrode for battery> The obtained slurry is coated on a current collector aluminum foil (IN30-H, made by Fuji processed paper) using a film applicator (manufactured by Tester Sangyo Co., Ltd.), and a hot air dryer (manufactured by Yamato Scientific Co., Ltd.) for 30 minutes at 80 ° C. After primary drying in 2.), rolling treatment was carried out using a roll press (manufactured by Takasen). Thereafter, after punching out as a battery electrode ( ⁇ 14 mm), a coin battery electrode was manufactured by secondary drying at 120 ° C. for 3 hours under reduced pressure conditions.
  • the coated separator and the battery negative electrode obtained above were transferred to a glove box (manufactured by Miwa Seisakusho) under an argon gas atmosphere.
  • a coin battery (2032 type) was produced using 1).
  • ⁇ Evaluation method Coating property> The thickness of arbitrary ten places was measured using the micrometer about the above-mentioned coated separator. The case where the thickness unevenness is in the range of 1 ⁇ m in absolute value (the difference between the thickest portion and the thinnest portion is 1 ⁇ m or less) is ⁇ , and the thickness unevenness exceeds 1 ⁇ m in absolute value is ⁇ . The results are shown in Table 4.
  • the difference between the initial discharge capacity and the charge capacity was taken as the irreversible capacity, and the percentage of the discharge capacity / charge capacity was taken as the charge / discharge efficiency.
  • the direct current resistance of the coin battery adopted the resistance value after one charge (full charge state). The results are shown in Tables 3 and 4 below. After the above initial charge and discharge, the coin battery was placed in a thermostat bath at 80 ° C., and 50 cycles of constant current charge and discharge at 10 C were performed in a voltage range of 3.0 to 4.2 V. After the test, the percentage of batteries shorted was calculated. The results are shown in Table 4 below.
  • Adhesion test> The interface strength between the separator and the coat layer was measured for the coated separator obtained above. Specifically, each coated separator is bonded to a stainless steel plate using a double-sided tape (Nichiban double-sided tape), and a 50 N load cell (manufactured by IMADA CO., LTD.), 180 ° peel strength (peel width 10 mm, peel rate 100 mm / min) was measured. The results are shown in Table 4 below.
  • PEI Polyethyleneimine
  • the sheet after drying was pressed by a heat press apparatus (manufactured by Furukawa Seisakusho), and the thickness was adjusted to 20 ⁇ m (roll temperature, room temperature, speed 1 m / min, linear pressure 100 hg / cm).
  • the adhesion amount was 1.9 g / m 2 .
  • a negative electrode for battery was produced by the same method as in Example 11 to obtain a coin battery, and a charge / discharge characteristic test was conducted. Moreover, each measurement was performed by the method similar to the said Example 11.
  • FIG. The results are shown in Tables 3 and 4 below.
  • PEI polyethyleneimine
  • the sheet after drying was pressed by a heat press apparatus (manufactured by Furukawa Seisakusho), and the thickness was adjusted to 20 ⁇ m (roll temperature, room temperature, speed 1 m / min, linear pressure 100 hg / cm).
  • the adhesion amount was 1.9 g / m 2 .
  • the negative electrode for battery was produced by the method similar to the said Example 1, the coin battery was obtained, and the charge / discharge characteristic test was done. Moreover, each measurement was performed by the method similar to the said Example 11.
  • FIG. The results are shown in Tables 3 and 4 below.
  • PEI polyethyleneimine
  • the sheet after drying was pressed by a heat press apparatus (manufactured by Furukawa Seisakusho), and the thickness was adjusted to 20 ⁇ m (roll temperature, room temperature, speed 1 m / min, linear pressure 100 hg / cm).
  • the adhesion amount was 1.9 g / m 2 .
  • the negative electrode for battery was produced by the method similar to the said Example 1, the coin battery was obtained, and the charge / discharge characteristic test was done. Moreover, each measurement was performed by the method similar to the said Example 11.
  • FIG. The results are shown in Tables 3 and 4 below.
  • PEI polyethyleneimine
  • This heating solution is diluted to 5% by mass, and the styrene-vinyl isoprene-styrene triblock copolymer emulsion (manufactured by Chukyo Yushi Co., Ltd., average particles) relative to the total amount of the lithium-modified isobutene-maleic anhydride copolymer and the polyethyleneimine.
  • the diameter: 200 nm was mixed so as to have a mass ratio of 90:10 in terms of solid content, to obtain a separator coating liquid (solid content concentration: 5.5 mass%).
  • This separator coating liquid was applied onto a polypropylene-based separator substrate (Celgard # 2400, manufactured by Polypore), and dried at room temperature for 12 hours.
  • the sheet after drying was pressed by a heat press apparatus (manufactured by Furukawa Seisakusho), and the thickness was adjusted to 20 ⁇ m (roll temperature, room temperature, speed 1 m / min, linear pressure 100 hg / cm).
  • the adhesion amount was 1.9 g / m 2 .
  • the negative electrode for battery was produced by the method similar to the said Example 1, the coin battery was obtained, and the charge / discharge characteristic test was done. Moreover, each measurement was performed by the method similar to the said Example 11.
  • FIG. The results are shown in Tables 3 and 4 below.
  • PEI polyethyleneimine
  • This heating solution is diluted to 5% by mass, and then a polypropylene emulsion (Chemipearl X800-H, Mitsui Chemicals, average particle size: 200 nm) is added to the total amount of lithium-modified isobutene-maleic anhydride copolymer and polyethyleneimine. It mixed so that it might become 90:10 mass ratio in solid content, and the separator coating liquid (solid content density
  • This separator coating liquid was applied onto a polypropylene-based separator substrate (Celgard # 2400, manufactured by Polypore), and dried at room temperature for 12 hours.
  • the sheet after drying was pressed by a heat press apparatus (manufactured by Furukawa Seisakusho), and the thickness was adjusted to 20 ⁇ m (roll temperature, room temperature, speed 1 m / min, linear pressure 100 hg / cm).
  • the adhesion amount was 1.9 g / m 2 .
  • the negative electrode for battery was produced by the method similar to the said Example 1, the coin battery was obtained, and the charge / discharge characteristic test was done. Moreover, each measurement was performed by the method similar to the said Example 11.
  • FIG. The results are shown in Tables 3 and 4 below.
  • PEI polyethyleneimine
  • the sheet after drying was pressed by a heat press apparatus (manufactured by Furukawa Seisakusho), and the thickness was adjusted to 20 ⁇ m (roll temperature, room temperature, speed 1 m / min, linear pressure 100 hg / cm).
  • the adhesion amount was 1.9 g / m 2 .
  • the negative electrode for battery was produced by the method similar to the said Example 1, the coin battery was obtained, and the charge / discharge characteristic test was done. Moreover, each measurement was performed by the method similar to the said Example 11.
  • FIG. The results are shown in Tables 3 and 4 below.
  • PEI polyethyleneimine
  • the mixture was stirred for 10 minutes and then transferred to a pressure homogenizer to carry out emulsification.
  • the obtained dispersed solution was distilled of toluene and water under reduced pressure and heating (60 ° C.) using a rotary evaporator to obtain an aqueous emulsion having an average particle diameter of 0.3 ⁇ m.
  • the binder composition was prepared by mixing the aqueous solution of ⁇ -olefin-maleic anhydride copolymer and the particulate binder at a solid content concentration ratio of 9: 1.
  • the slurry for the separator was prepared by using 0.8 parts by mass of the above binder composition ( ⁇ -olefin-) with respect to 40 parts by mass of VK-BG-613 (boehmite, manufactured by Xuancheng New Materials Co., Ltd.) as a metal oxide. 0.72 parts by mass of maleic anhydride copolymer as aqueous solution solid, 0.08 parts by mass of particulate binder as solid content, and 40 parts by mass of water are charged into a dedicated container, and a planetary stirrer (ARE- It knead
  • ⁇ Preparation of Separator> The slurry for a separator was coated with a thickness of 20 ⁇ m on a polypropylene-based porous substrate (Celgard # 2400, manufactured by Polypore) using a bar coater (T101, manufactured by Matsuo Sangyo). After coating, the coating was dried at 80 ° C. for 30 minutes with a hot air drier to obtain a coating thickness of 10 ⁇ m and a coating amount of 1.6 / cm 2, and then allowed to cool in a desiccator to visually evaluate the state of the coating .
  • the slurry for the electrode was prepared by using 100 parts by mass of DMGS (natural graphite, manufactured by BYD) as an active material for the negative electrode, 2.08 parts by mass of TRD 2001 (manufactured by SBR, JSR) as a solid content as a particulate binder, 1.04 parts by mass of a thickening stabilizer as solid, 1.04 parts by mass of Super-P (manufactured by Timcal) as a conductive aid (conductivity imparting agent) as solid, and charged into a dedicated container The mixture was kneaded using a stirrer (ARE-250, manufactured by Shinky).
  • DMGS natural graphite, manufactured by BYD
  • TRD 2001 manufactured by SBR, JSR
  • Super-P manufactured by Timcal
  • the coated electrode for a battery obtained above was transferred to a glove box (manufactured by Miwa Seisakusho) under an argon gas atmosphere.
  • a metal lithium foil (thickness 0.2 mm, ⁇ 16 mm) was used as the positive electrode.
  • Example 18 was carried out in the same manner as Example 18, except that VL-L100D (alumina, manufactured by Xiancheng Xinyu Material Co., Ltd.) was used as the metal oxide.
  • VL-L100D alumina, manufactured by Xiancheng Xinyu Material Co., Ltd.
  • Example 20 A separator, a negative electrode, and a battery were produced in the same manner as in Example 18 except that TRD2001 (SBR, manufactured by JSR) was used as a particulate binder for separators, and the same evaluation test was performed.
  • TRD2001 SBR, manufactured by JSR
  • the separator, the negative electrode, and the battery were prepared in the same manner as in the above, and the same evaluation test was performed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Separators (AREA)

Abstract

The present invention provides: a coating liquid for a non-aqueous electrolyte battery separator, which exhibits excellent coatability on a separator substrate and with which a non-aqueous electrolyte battery separator having low electrical resistance and few cell short circuits can be advantageously obtained; a non-aqueous electrolyte battery separator using same; and a non-aqueous electrolyte battery. The present invention relates to: a coating liquid for a non-aqueous electrolyte battery separator, which contains a neutral salt of an α-olefin-maleic acid-based copolymer obtained by copolymerizing an α-olefin and a maleic acid compound, a polyamine and a solvent; a non-aqueous electrolyte battery separator; and a non-aqueous electrolyte battery.

Description

非水電解質電池セパレータ用塗工液、並びに、それを用いた非水電解質電池用セパレータ及び非水電解質電池Coating solution for non-aqueous electrolyte battery separator, and non-aqueous electrolyte battery separator and non-aqueous electrolyte battery using the same
 本特許出願は日本国特許出願第2017-173760号(出願日:2017年9月11日)及び同第2018-74176号(出願日:2018年4月6日)についてパリ条約上の優先権を主張するものであり、ここに参照することによって、その全体が本明細書中へ組み込まれるものとする。
 非水電解質電池セパレータ用塗工液、並びに、それを用いた非水電解質電池用セパレータ及び非水電解質電池に関する。
This patent application gives priority over the Paris Convention to Japanese Patent Application No. 2017-173760 (filing date: September 11, 2017) and No. 2018-74176 (filing date: April 6, 2018) And are hereby incorporated by reference in their entirety.
The present invention relates to a coating solution for a non-aqueous electrolyte battery separator, and a non-aqueous electrolyte battery separator and a non-aqueous electrolyte battery using the same.
 近年、携帯電話、ノート型パソコン、パッド型情報端末機器などの携帯端末の普及が著しい。これら携帯端末の電源に用いられている二次電池には、非水電解質電池が多用されている。携帯端末は、より快適な携帯性が求められるため、小型化、薄型化、軽量化、高性能化が急速に進み、様々な場で利用されるようになった。この動向は現在も続いており、携帯端末に使用される電池にも、小型化、薄型化、軽量化、高性能化がさらに要求されている。 In recent years, the spread of mobile terminals such as mobile phones, laptop computers, pad-type information terminals and the like has been remarkable. Nonaqueous electrolyte batteries are often used for secondary batteries used for power supplies of these portable terminals. As portable terminals are required to have more comfortable portability, miniaturization, thinning, weight reduction, and high performance have rapidly progressed, and they are used in various places. This trend continues, and batteries used in portable terminals are also required to be smaller, thinner, lighter and higher in performance.
 また、電気自動車、ハイブリット自動車、電気自動車等の大型機器にも、非水電解質電池を利用する動きが広がっている。そのため、高容量化、大電流での充放電特性といった性能が求められているが、非水電解質電池であるため、水系電池と比較して、発煙、発火、破裂等の危険性が高いことが知られており、安全性の向上が要求されている。 In addition, large-sized devices such as electric vehicles, hybrid vehicles, and electric vehicles are also using non-aqueous electrolyte batteries. Therefore, performance such as high capacity and high current charge / discharge characteristics are required, but because it is a non-aqueous electrolyte battery, it has a high risk of smoke, ignition, rupture, etc. compared to water-based batteries. It is known and safety improvement is required.
 非水電解質電池は、正極と負極とをセパレータを介して設置し、LiPF、LiBF、LiTFSI(リチウム(ビストリフルオロメチルスルホニルイミド))、LiFSI(リチウム(ビスフルオロスルホニルイミド))のようなリチウム塩をエチレンカーボネート等の有機液体に溶解させた電解液と共に容器内に収納した構造を有している。 In a non-aqueous electrolyte battery, a positive electrode and a negative electrode are installed via a separator, and a lithium such as LiPF 6 , LiBF 4 , LiTFSI (lithium (bis trifluoromethyl sulfonyl imide)), Li FSI (lithium (bis fluoro sulfonyl imide)) It has a structure housed in a container together with an electrolytic solution in which a salt is dissolved in an organic liquid such as ethylene carbonate.
 そのため外熱による温度上昇、過充電、内部短絡、外部短絡等によって発煙等の危険性が高まる。これらは、外部保護回路によってある程度防ぐことが可能である。また、非水電解質電池セパレータとして使用されているポリオレフィン系樹脂の多孔質フィルムが120℃付近で溶融し、孔が閉塞して電流やイオンの流れを遮断することによって、電池の温度上昇を抑制することも可能である。これは、シャットダウン機能と呼ばれている。しかし、外熱によって温度が上昇した場合や温度上昇によって電池内部で化学反応が起きた場合には、シャットダウン機能が働いても電池温度は更に上昇し、電池温度が150℃以上にまで達すると、多孔質フィルムが収縮して内部短絡が起こり、発火等が起きることがあった。 Therefore, the risk of smoke and the like increases due to temperature rise due to external heat, overcharge, internal short circuit, external short circuit and the like. These can be prevented to some extent by the external protection circuit. In addition, the porous film of the polyolefin resin used as the non-aqueous electrolyte battery separator melts at around 120 ° C., and the holes are closed to block the flow of current or ions, thereby suppressing the temperature rise of the battery. It is also possible. This is called the shutdown function. However, if the temperature rises due to external heat or if a chemical reaction occurs inside the battery due to the temperature rise, the battery temperature will rise even if the shutdown function works and the battery temperature reaches 150 ° C or more, The porous film shrinks to cause an internal short circuit, which may cause ignition or the like.
 このように、セパレータのシャットダウン機能では電池の発火を抑制することができ難くなっている。また、電池の高容量化に伴って充放電における大電流化も進んでおり、その際に発生するジュール熱を抑制するために、電解液を含浸したセパレータの電気抵抗値そのものを下げることも必要になっている。そのため、ポリオレフィン系樹脂の多孔質フィルムよりも熱収縮温度を上げることによって、内部短絡を起こり難くして電池の発火を抑制すると共に、電気抵抗値を下げることを目的として、金属酸化物を用いたセパレータが開発されている(例えば、特許文献1、2)。 As described above, it is difficult to suppress the firing of the battery by the shutdown function of the separator. Further, with the increase in capacity of batteries, the increase in current in charge and discharge is also in progress, and in order to suppress the Joule heat generated at that time, it is also necessary to lower the electric resistance value itself of the separator impregnated with the electrolyte. It has become. Therefore, by raising the heat shrinkage temperature more than the porous film of the polyolefin resin, internal short circuit is less likely to occur and the ignition of the battery is suppressed, and the metal oxide is used for the purpose of lowering the electric resistance value. Separators have been developed (eg, Patent Documents 1 and 2).
 このようなセパレータにおける耐熱層の形成は、ペースト化された金属酸化物をセパレータの表面に塗工することにより行われている。例えば、特許文献3には、アルミナ微粒子をカルボキシメチルセルロース(以下、CMCと略すことがある)に分散させた塗布液をポリオレフィン微多孔膜に塗布して電池用セパレータを得ることが開示されている。 The formation of the heat-resistant layer in such a separator is performed by applying a paste-formed metal oxide on the surface of the separator. For example, Patent Document 3 discloses that a coating solution in which alumina fine particles are dispersed in carboxymethyl cellulose (hereinafter sometimes abbreviated as CMC) is applied to a microporous polyolefin membrane to obtain a battery separator.
 しかし、CMCは金属酸化物及びセパレータとの接着性が良く、150℃程度の熱安定性はあるものの、電気抵抗が高く、ハイレートや繰り返し充放電時には高い電気抵抗であるがために電池の温度上昇や内部短絡が起こり易くなる。その結果、想定以上に発熱し、CMCが分解しセパレータとして機能し難くなるという問題があった。 However, CMC has good adhesion to metal oxides and separators, has thermal stability of about 150 ° C, but has high electrical resistance and high electrical resistance at high rate and repeated charge and discharge, so the temperature rise of the battery And internal short circuits are likely to occur. As a result, there is a problem that the heat is generated more than expected, the CMC is decomposed and it becomes difficult to function as a separator.
 このような事情を鑑み、電気抵抗が低くかつ、耐熱性が高い非水電解質電池セパレータ用樹脂組成物としてα-オレフィン類-マレイン酸類共重合体の中和塩を含むものが提案されている(特許文献4)。 In view of such circumstances, as a resin composition for a non-aqueous electrolyte battery separator having a low electric resistance and a high heat resistance, a resin composition containing a neutralized salt of an α-olefins-maleic acid copolymer has been proposed ( Patent Document 4).
特表2001-527274号公報Japanese Patent Publication No. 2001-527274 特開2010-021033号公報JP, 2010-021033, A 国際公報2015/029944号パンフレットInternational Publication 2015/029944 Pamphlet 国際公報2017/022845号パンフレットInternational Publication 2017/022845 Pamphlet
 しかし、電気抵抗が低くかつ、耐熱性が高い非水電解質電池用セパレータが得られることに加え、セパレータ基材に対する良好な塗工性ないし接着性を兼ね備えた非水電解質電池用セパレータ塗工液に対する要請がなお存在していた。 However, in addition to obtaining a non-aqueous electrolyte battery separator with low electric resistance and high heat resistance, the separator coating liquid for a non-aqueous electrolyte battery having good coatability or adhesiveness to the separator substrate is also provided. The request still existed.
 本発明は上記課題事情に鑑みてなされたものであり、セパレータ基材への塗工性に優れ、好適には、電気抵抗が低く、セルの短絡が少ない非水電解質電池用セパレータが得られる非水電解質電池セパレータ用塗工液、並びに、それを用いた非水電解質電池用セパレータ及び非水電解質電池を提供することを目的とする。 The present invention has been made in view of the above problems, and is excellent in coating properties to a separator substrate, and preferably, a non-aqueous electrolyte battery separator having low electric resistance and less short of cells is obtained. It is an object of the present invention to provide a coating solution for a water electrolyte battery separator, and a non-aqueous electrolyte battery separator and a non-aqueous electrolyte battery using the same.
 本発明者は鋭意検討した結果、α-オレフィン類とマレイン酸類とが共重合したα-オレフィン-マレイン酸類共重合体の中和塩、ポリアミン類および溶媒を含有する、非水電解質電池セパレータ用塗工液により、上記課題を解決できることを見出し、本発明を完成するに至った。 The inventors of the present invention conducted intensive studies and found that a coating for a non-aqueous electrolyte battery comprising a neutralized salt of an α-olefin-maleic acid copolymer obtained by copolymerizing an α-olefin and a maleic acid, a polyamine and a solvent. It has been found that the above-mentioned problems can be solved by the working fluid, and the present invention has been completed.
 すなわち、本発明は、以下の好適な態様を包含する。
〔1〕α-オレフィン類とマレイン酸類とが共重合したα-オレフィン-マレイン酸類共重合体の中和塩、ポリアミン類および溶媒を含有する、非水電解質電池セパレータ用塗工液。
〔2〕水系エマルションをさらに含有する、〔1〕に記載のセパレータ用塗工液。
〔3〕前記水系エマルションは、オレフィン系重合体、ジエン系重合体、アクリル系重合体、及びビニル芳香族系重合体からなる群から選択される少なくとも1種のポリマー粒子を含有する、〔2〕に記載のセパレータ用塗工液。
〔4〕前記水系エマルションは0.01~0.5μmの平均粒子径を有する、〔2〕又は〔3〕に記載のセパレータ用塗工液。
〔5〕前記塗工液中の前記水系エマルションの固形分の含有量は、前記α-オレフィン-マレイン酸類共重合体の中和塩100質量部に対して0.01~50質量部である、〔3〕又は〔4〕に記載のセパレータ用塗工液。
〔6〕さらに金属酸化物及び金属塩のうち少なくとも1つを含有する、〔1〕~〔5〕のいずれかに記載の非水電解質電池セパレータ用塗工液。
〔7〕溶媒は水である、〔1〕~〔6〕のいずれかに記載の非水電解質電池セパレータ用塗工液。
〔8〕水系エマルションは粒子状結着剤である、〔2〕~〔6〕のいずれかに記載の非水電解質電池セパレータ用塗工液。
〔9〕セパレータ基材と、〔1〕~〔8〕のいずれかに記載のセパレータ用塗工液から該基材上に形成されてなるセパレータ塗膜層を備える、非水電解質電池セパレータ。
〔10〕〔9〕に記載のセパレータを有する、非水電解質電池。
That is, the present invention includes the following preferred embodiments.
[1] A coating liquid for a non-aqueous electrolyte battery separator, which comprises a neutralized salt of an α-olefin-maleic acid copolymer obtained by copolymerizing an α-olefin and a maleic acid, a polyamine and a solvent.
[2] The coating liquid for a separator as described in [1], further containing an aqueous emulsion.
[3] The aqueous emulsion contains at least one polymer particle selected from the group consisting of an olefin polymer, a diene polymer, an acrylic polymer, and a vinyl aromatic polymer, [2] The coating liquid for a separator as described in.
[4] The coating liquid for a separator as described in [2] or [3], wherein the aqueous emulsion has an average particle diameter of 0.01 to 0.5 μm.
[5] The solid content of the aqueous emulsion in the coating liquid is 0.01 to 50 parts by mass with respect to 100 parts by mass of the neutralized salt of the α-olefin-maleic acid copolymer. The coating liquid for a separator as described in [3] or [4].
[6] The coating liquid for nonaqueous electrolyte battery separator according to any one of [1] to [5], further containing at least one of a metal oxide and a metal salt.
[7] The coating liquid for a non-aqueous electrolyte battery separator according to any one of [1] to [6], wherein the solvent is water.
[8] The coating liquid for nonaqueous electrolyte battery separator according to any one of [2] to [6], wherein the aqueous emulsion is a particulate binder.
[9] A non-aqueous electrolyte battery separator comprising a separator substrate and a separator coating layer formed on the substrate from the coating liquid for a separator according to any one of [1] to [8].
The nonaqueous electrolyte battery which has a separator as described in [10] [9].
 本発明によれば、好適には、電気抵抗が低くかつ、耐熱性が高い非水電解質電池用セパレータが得られることに加え、セパレータ基材に対する良好な塗工性ないし接着性を兼ね備えた非水電解質電池セパレータ用塗工液を得ることができる。また本発明の非水電解質電池セパレータ用塗工液から得られる非水電解質電池用セパレータは、好適には、電気抵抗が低くかつ、耐熱性が高いものであって、さらにそれを用いて、非水電解質電池の電池特性の向上を実現することができる。 According to the present invention, it is preferable to obtain a non-aqueous electrolyte battery separator having low electric resistance and high heat resistance, and further to provide non-water having good coatability or adhesion to the separator substrate. The coating liquid for electrolyte battery separators can be obtained. Further, the separator for a non-aqueous electrolyte battery obtained from the coating solution for a non-aqueous electrolyte battery according to the present invention preferably has a low electric resistance and a high heat resistance, and further uses the same for non-aqueous electrolyte battery. The improvement of the battery characteristic of a water electrolyte battery can be realized.
 以下、本発明の実施形態について詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail, but the present invention is not limited thereto.
 本発明の非水電解質電池セパレータ用塗工液(以下、単にセパレータ塗工液とも称する)は、α-オレフィン類とマレイン酸類とが共重合したα-オレフィン-マレイン酸類共重合体の中和塩、ポリアミン類および溶媒を含有することを特徴とする。すなわち、本発明のセパレータ塗工液は、セパレータ基材上に塗工して溶媒を除去して形成される塗膜を構成すべきポリマー組成物、好ましくはバインダー組成物、および溶媒を含有する。本発明の非水電解質電池セパレータ用塗工液は、スラリー組成物であってよい。 The coating solution for a non-aqueous electrolyte battery according to the present invention (hereinafter, also simply referred to as a separator coating solution) is a neutralized salt of an α-olefin-maleic acid copolymer obtained by copolymerizing an α-olefin and a maleic acid. , Polyamines and a solvent. That is, the separator coating liquid of the present invention contains a polymer composition, preferably a binder composition, and a solvent, which is to be coated on a separator substrate to remove a solvent and to form a coating film. The coating solution for a non-aqueous electrolyte battery separator of the present invention may be a slurry composition.
 α-オレフィン類とマレイン酸類とが共重合したα-オレフィン-マレイン酸類共重合体は、α-オレフィン類に基づく単位(A)とマレイン酸類に基づく単位(B)とからなり、(A)および(B)の各成分は(A)/(B)=1/1~1/3(モル比)を満足することが好ましい。また、重量平均分子量が好ましくは6,000~700,000、より好ましくは8,000~650,000、より好ましくは10,000~600,000である線状ランダム共重合体であることが好ましい。ある実施形態では、重量平均分子量が10,000~500,000である線状ランダム共重合体であることが好ましい。 An α-olefin-maleic acid copolymer obtained by copolymerizing an α-olefin and a maleic acid is composed of a unit (A) based on an α-olefin and a unit (B) based on a maleic acid, (A) and It is preferable that each component of (B) satisfy (A) / (B) = 1/1 to 1/3 (molar ratio). In addition, linear random copolymers having a weight average molecular weight of preferably 6,000 to 700,000, more preferably 8,000 to 650,000, more preferably 10,000 to 600,000 are preferred. . In one embodiment, a linear random copolymer having a weight average molecular weight of 10,000 to 500,000 is preferred.
 ここで、α-オレフィン類に基づく単位(A)とは、一般式-CHCR-(式中、RおよびRは同じであっても互いに異なっていてもよく、水素、もしくは炭素数1~10のアルキル基またはアルケニル基を表わす)で示される構成単位を意味する。また本実施形態で使用するα-オレフィン類とは、α位に炭素-炭素不飽和二重結合を有する直鎖状または分岐状のオレフィンである。特に、炭素数2~12とりわけ炭素数2~8のオレフィンが好ましい。使用し得るオレフィンの代表的な例としては、エチレン、プロピレン、n-ブチレン、イソブチレン、n-ペンテン、イソプレン、2-メチル-1-ブテン、3-メチル-1-ブテン、n-ヘキセン、2-メチル-1-ペンテン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、2-エチル-1-ブテン、1,3-ペンタジエン、1,3-ヘキサジエン、2,3-ジメチルブタジエン、2,5-ペンタジエン、1,4-ヘキサジエン、2,2,4-トリメチル-1-ペンテン等が挙げられる。この中でも特に、入手性、重合成、生成物の安定性という観点から、イソブチレンが好ましい。ここでイソブチレンとは、イソブチレンを主成分として含む混合物、例えば、BB留分(C4留分)をも包含する。これ等のオレフィン類は単独で用いても2種以上組合せて用いてもよい。 Here, a unit (A) based on α-olefins has a general formula —CH 2 CR 1 R 2 — (wherein R 1 and R 2 may be the same or different from each other, hydrogen, Or a constituent unit represented by the alkyl group having 1 to 10 carbon atoms or an alkenyl group). The α-olefins used in the present embodiment are linear or branched olefins having a carbon-carbon unsaturated double bond at the α-position. In particular, olefins having 2 to 12 carbon atoms, particularly 2 to 8 carbon atoms, are preferred. Representative examples of olefins that may be used include ethylene, propylene, n-butylene, isobutylene, n-pentene, isoprene, 2-methyl-1-butene, 3-methyl-1-butene, n-hexene, 2- Methyl-1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 2-ethyl-1-butene, 1,3-pentadiene, 1,3-hexadiene, 2,3-dimethylbutadiene, 2 And 5-pentadiene, 1,4-hexadiene, 2,2,4-trimethyl-1-pentene and the like. Among these, isobutylene is preferable from the viewpoint of availability, heavy synthesis, and stability of the product. Here, isobutylene also includes a mixture containing isobutylene as a main component, for example, a BB fraction (C4 fraction). These olefins may be used alone or in combination of two or more.
 マレイン酸類に基づく単位(B)としては、無水マレイン酸、マレイン酸、マレイン酸モノエステル(例えば、マレイン酸メチル、マレイン酸エチル、マレイン酸プロピル、マレイン酸フェニル等)、マレイン酸ジエステル(例えば、マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジプロピル、マレイン酸ジフェニル等)等の無水マレイン酸誘導体、マレイン酸イミドまたはそのN-置換誘導体(例えば、マレイン酸イミド、N-メチルマレイミド、N-エチルマレイミド、N-プロピルマレイミド、N-n-ブチルマレイミド、N-t-ブチルマレイミド、N-シクロヘキシルマレイミド等のN-置換アルキルマレイミド、N-フェニルマレイミド、N-メチルフェニルマレイミド、N-エチルフェニルマレイミド等のN-置換アルキルフェニルマレイミド、あるいはN-メトキシフェニルマレイミド、N-エトキシフェニルマレイミド等のN-置換アルコキシフェニルマレイミド)、更にはこれ等のハロゲン化物(例えばN-クロルフェニルマレイミド)、無水シトラコン酸、シトラコン酸、シトラコン酸モノエステル(例えば、シトラコン酸メチル、シトラコン酸エチル、シトラコン酸プロピル、シトラコン酸フェニル等)、シトラコン酸ジエステル(例えば、シトラコン酸ジメチル、シトラコン酸ジエチル、シトラコン酸ジプロピル、シトラコン酸ジフェニル等)等の無水シトラコン酸誘導体、シトラコン酸イミドまたはそのN-置換誘導体(例えば、シトラコン酸イミド、2-メチル-N-メチルマレイミド、2-メチル-N-エチルマレイミド、2-メチル-N-プロピルマレイミド、2-メチル-N-n-ブチルマレイミド、2-メチル-N-t-ブチルマレイミド、2-メチル-N-シクロヘキシルマレイミド等のN-置換アルキルマレイミド2-メチル-N-フェニルマレイミド、2-メチル-N-メチルフェニルマレイミド、2-メチル-N-エチルフェニルマレイミド等の2-メチル-N-置換アルキルフェニルマレイミド、あるいは2-メチル-N-メトキシフェニルマレイミド、2-メチル-N-エトキシフェニルマレイミド等の2-メチル-N-置換アルコキシフェニルマレイミド)、更にはこれ等のハロゲン化物(例えば2-メチル-N-クロルフェニルマレイミド)が好ましく挙げられる。これらの中では、入手性、重合速度、分子量調整の容易さという観点から、無水マレイン酸の使用が好ましい。また、これらのマレイン酸類は単独で使用しても、複数を混合して使用してもよい。マレイン酸類は、上述のように、アルカリ塩により中和され、生成したカルボン酸およびカルボン酸塩は、1,2-ジカルボン酸またはその塩の形を形成する。この形は、正極から溶出する重金属を補足する機能を有する。 As units (B) based on maleic acids, maleic anhydride, maleic acid, maleic acid monoester (eg, methyl maleate, ethyl maleate, propyl maleate, phenyl maleate etc.), maleic acid diester (eg, maleic acid) Maleic anhydride derivatives such as dimethyl acid, diethyl maleate, dipropyl maleate, diphenyl maleate etc., maleinimido or its N-substituted derivatives (eg, maleinimido, N-methylmaleimide, N-ethylmaleimide, N N-substituted alkyl maleimide such as N-propyl maleimide, Nn-butyl maleimide, N-t-butyl maleimide, N-cyclohexyl maleimide, N-phenyl maleimide, N-methyl phenyl maleimide, N-ethyl phenyl maleimide, etc. Replace Alkylphenyl maleimide, or N-substituted alkoxyphenyl maleimide such as N-methoxyphenyl maleimide, N-ethoxyphenyl maleimide, etc., and further halides thereof (eg N-chlorophenyl maleimide), citraconic anhydride, citraconic acid, citraconic Anhydrides such as acid monoester (eg methyl citraconate, ethyl citraconate, propyl citraconate, phenyl citraconate etc.), citraconic diester (eg dimethyl citraconate, diethyl citraconate, dipropyl citraconate, citraconate diphenyl etc) Citraconic acid derivative, citraconic imide or N-substituted derivative thereof (eg, citraconic imide, 2-methyl-N-methylmaleimide, 2-methyl-N-ethylmaleimide, 2-methyl N-substituted alkyl maleimides 2-methyl-N-phenyl maleimide such as N-propyl maleimide, 2-methyl-Nn-butyl maleimide, 2-methyl-N-t-butyl maleimide, 2-methyl-N-cyclohexyl maleimide, etc. , 2-methyl-N-substituted alkylphenylmaleimides such as 2-methyl-N-methylphenylmaleimide, 2-methyl-N-ethylphenylmaleimide, etc., or 2-methyl-N-methoxyphenylmaleimide, 2-methyl-N- Preferred examples include 2-methyl-N-substituted alkoxyphenyl maleimides such as ethoxyphenyl maleimide and the like, and halides thereof (eg 2-methyl-N-chlorophenyl maleimide). Among these, in view of availability, polymerization rate and ease of molecular weight control, use of maleic anhydride is preferable. These maleic acids may be used alone or in combination of two or more. Maleic acids are neutralized with alkali salts as described above, and the carboxylic acids and carboxylates formed form the form of 1,2-dicarboxylic acid or its salts. This form has a function of capturing heavy metals eluted from the positive electrode.
 α-オレフィン-マレイン酸類共重合体における上記各構造単位の含有割合は、(A)/(B)がモル比で1/1~1/3の範囲内にあるのが望ましい。水に溶解する高分子量体としての親水性、水溶性、金属やイオンへの親和性という利点が得られるからである。特に、(A)/(B)のモル比は1/1またはそれに近い値であることが望ましく、その場合にはα-オレフィンに基づく単位、すなわち-CHCR-で示される単位と、マレイン酸類に基づく単位が交互に繰り返された構造を有する共重合体となる。 The content ratio of each structural unit in the α-olefin-maleic acid copolymer is preferably such that (A) / (B) is in the range of 1/1 to 1/3 in molar ratio. This is because the advantages of hydrophilicity, water solubility, affinity to metals and ions as a high molecular weight soluble in water can be obtained. In particular, it is desirable that the molar ratio of (A) / (B) is 1/1 or a value close thereto, in which case a unit based on α-olefin, ie a unit represented by -CH 2 CR 1 R 2- And a copolymer having a structure in which units based on maleic acids are alternately repeated.
 α-オレフィン-マレイン酸類共重合体を得るための、α-オレフィン類及びマレイン酸類の仕込み混合比は目的とする共重合体の組成により変わるが、マレイン酸類モル数の1~3倍モル数のα-オレフィンを用いるのがマレイン酸類の反応率を高めるために有効である。 Although the mixing ratio of the α-olefins and the maleic acid to obtain the α-olefin-maleic acid copolymer varies depending on the composition of the target copolymer, it is preferably 1 to 3 times the number of moles of the maleic acid. The use of α-olefins is effective to increase the conversion of maleic acid.
 α-オレフィン-マレイン酸類共重合体を製造する方法については、特に限定はなく、例えば、ラジカル重合により該共重合体を得ることができる。その際、使用する重合触媒としてはアゾビスイソブチロニトリル、1,1-アゾビスシクロヘキサン-1-カルボニトリル等のアゾ触媒、ベンンゾイルパーオキサイド、ジクミルパ-オキサイド等の有機過酸化物触媒が好ましい。前記重合触媒の使用量は、マレイン酸類に対し通常0.1~5モル%となる範囲であるが、好ましくは0.5~3モル%である。重合触媒およびモノマーの添加方法として重合初期にまとめて添加してもよいが、重合の進行にあわせて遂次添加する方法が望ましい。 The method for producing the α-olefin-maleic acid copolymer is not particularly limited, and, for example, the copolymer can be obtained by radical polymerization. At that time, as a polymerization catalyst to be used, azo catalysts such as azobisisobutyronitrile, 1,1-azobiscyclohexane-1-carbonitrile, organic peroxide catalysts such as benzothio peroxide, dicumyl peroxide, etc. preferable. The amount of the polymerization catalyst used is usually in the range of 0.1 to 5 mol%, preferably 0.5 to 3 mol%, with respect to the maleic acid. As a method of adding the polymerization catalyst and the monomer, it may be collectively added at the initial stage of polymerization, but a method of sequentially adding according to the progress of polymerization is preferable.
 α-オレフィン-マレイン酸類共重合体の製造方法において、分子量の調節は主にモノマー濃度、触媒使用量、重合温度によって適宜行なうことができる。例えば、分子量を低下させる物質として周期律表第I、IIまたはIII族の金属の塩、水酸化物、第IV族の金属のハロゲン化物、一般式N≡、HN=、HN-もしくはHN-で示されるアミン類、酢酸アンモニウム、尿素等の窒素化合物、あるいはメルカプタン類等を、重合の初期または重合の進行中に添加することによって共重体の分子量を調節することも可能である。重合温度は40℃~150℃であることが好ましく、特に60℃~120℃の範囲であることがより好ましい。重合温度が高すぎると生成する共重合物がブロック状になり易く、また重合圧力が著しく高くなるおそれがある。重合時間は、通常1~24時間程度であることが好ましく、より好ましくは2~10時間である。重合溶媒の使用量は、得られる共重合物濃度が5~40質量%あることが好ましく、より好ましくは10~30質量%となる様に調節することが望ましい。 In the method for producing an α-olefin-maleic acid copolymer, the adjustment of the molecular weight can be appropriately performed mainly depending on the monomer concentration, the amount of the catalyst used, and the polymerization temperature. For example, salts of metals of groups I, II or III of the periodic table, hydroxides, halides of metals of group IV as substances which lower the molecular weight, the general formula N≡, HN =, H 2 N— or H It is also possible to control the molecular weight of the copolymer by adding an amine represented by 4 N-, a nitrogen compound such as ammonium acetate or urea, or a mercaptan during the initial stage of polymerization or during the progress of polymerization. The polymerization temperature is preferably 40 ° C. to 150 ° C., and more preferably 60 ° C. to 120 ° C. When the polymerization temperature is too high, the resulting copolymer tends to be in the form of a block, and the polymerization pressure may be extremely high. The polymerization time is usually preferably about 1 to 24 hours, and more preferably 2 to 10 hours. The amount of the polymerization solvent to be used is preferably adjusted so that the resulting copolymer concentration is 5 to 40% by mass, more preferably 10 to 30% by mass.
 上述したように、α-オレフィン-マレイン酸類共重合体は、通常、6,000~700,000の重量平均分子量を有することが好ましい。より好ましい重量平均分子量は8,000~650,000、さらに好ましい重量平均分子量は10,000~600,000である。本実施形態の共重合体の重量平均分子量が6,000未満となると、結晶性が高く、粒子間の結着強度が小さくなるおそれがある。一方、700,000を超えると、水や溶媒への溶解度が小さくなり、容易に析出する場合がある。また、本発明のセパレータ用塗工液を用いたセパレータの耐熱性向上の観点からは、重量平均分子量が250,000以上であることも好ましい態様である。ある実施形態では、重量平均分子量は15,000~450,000であることが好ましい。 As mentioned above, the α-olefin-maleic acid copolymer preferably has a weight average molecular weight of usually 6,000 to 700,000. A more preferable weight average molecular weight is 8,000 to 650,000, and a further preferable weight average molecular weight is 10,000 to 600,000. When the weight average molecular weight of the copolymer of the present embodiment is less than 6,000, the crystallinity is high, and the binding strength between particles may be reduced. On the other hand, when it exceeds 700,000, the solubility to water and a solvent may become small, and it may precipitate easily. In addition, from the viewpoint of improving the heat resistance of the separator using the coating liquid for a separator of the present invention, a weight average molecular weight of 250,000 or more is also a preferable embodiment. In one embodiment, the weight average molecular weight is preferably 15,000 to 450,000.
 α-オレフィン-マレイン酸類共重合体の重量平均分子量は、例えば、光散乱法や粘度法によって測定することができる。粘度法を用いて、ジメチルホルムアミド中の極限粘度(〔η〕)を測定した場合、該共重合体は極限粘度が0.05~1.5の範囲にあることが好ましい。なお、該共重合体は通常16~60メッシュ程度の粒のそろった粉末状で得られる。 The weight average molecular weight of the α-olefin-maleic acid copolymer can be measured, for example, by a light scattering method or a viscosity method. When the intrinsic viscosity ([η]) in dimethylformamide is measured using a viscosity method, the copolymer preferably has an intrinsic viscosity in the range of 0.05 to 1.5. The copolymer is usually obtained in the form of powder in which particles of about 16 to 60 mesh are aligned.
 本発明の一実施形態において、共重合体の中和塩は、マレイン酸類から生成するカルボニル酸の活性水素が、塩基性物質と反応し、塩を形成して中和塩となっているものであることが好ましい。この実施形態では、塗工性の観点から前記塩基性物質として、一価の金属を含む塩基性物質および/またはアンモニアを使用することが好ましい。 In one embodiment of the present invention, the neutralization salt of the copolymer is one in which the active hydrogen of the carbonyl acid generated from the maleic acid reacts with the basic substance to form a salt to form a neutralization salt. Is preferred. In this embodiment, it is preferable to use a basic substance containing a monovalent metal and / or ammonia as the basic substance from the viewpoint of coatability.
 前記実施形態において、一価の金属を含む塩基性物質および/またはアンモニアの使用量は、特に制限されるものではなく、使用目的等により適宜選択されるが、通常、マレイン酸類共重合体中のマレイン酸単位1モル当り0.6~2.0モルとなる量であることが好ましい。このような使用量であれば、α-オレフィン-マレイン酸類共重合体の中和度を所定の範囲に容易に調整することができる。なお、一価の金属を含む塩基性物質の使用量を、好ましくは、マレイン酸共重合体中のマレイン酸単位1モル当り0.8~1.8モル量とすると、アルカリ残留の少なく水溶性の共重合体塩を得ることができる。 In the above embodiment, the amount of use of the basic substance containing monovalent metal and / or ammonia is not particularly limited, and may be appropriately selected depending on the purpose of use, etc., but it is usually in the maleic acid copolymer The amount is preferably 0.6 to 2.0 moles per mole of maleic acid unit. With such an amount, the degree of neutralization of the α-olefin-maleic acid copolymer can be easily adjusted to a predetermined range. When the amount of the basic substance containing a monovalent metal used is preferably 0.8 to 1.8 moles per mole of maleic acid unit in the maleic acid copolymer, it is less soluble in alkali and water soluble. The copolymer salt of can be obtained.
 α-オレフィン-マレイン酸類共重合体と、一価の金属を含む塩基性物質および/またはアンモニア等のアミン類との反応は、常法に従って実施できるが、水の存在下に実施し、α-オレフィン-マレイン酸類共重合体の中和塩を水溶液として得る方法が簡便であり、好ましい。 The reaction of the α-olefin-maleic acid copolymer with the basic substance containing a monovalent metal and / or an amine such as ammonia can be carried out according to a conventional method, but it is carried out in the presence of water and α- The method of obtaining a neutralized salt of an olefin-maleic acid copolymer as an aqueous solution is convenient and preferred.
 使用可能な一価の金属を含む塩基性物質としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどのアルカリ金属の水酸化物;炭酸ナトリウム、炭酸カリウムなどのアルカリ金属の炭酸塩;酢酸ナトリウム、酢酸カリウムなどのアルカリ金属の酢酸塩;リン酸三ナトリウムなどのアルカリ金属のリン酸塩等が挙げられる。アンモニア等のアミン類としては、アンモニア、メチルアミン、エチルアミン、ブチルアミン、オクチルアミンなどの1級アミン、ジメチルアミン、ジエチルアミン、ジブチルアミンなどの2級アミン、トリメチルアミン、トリエチルアミン、トリブチルアミンなどの3級アミンが挙げられる。これらの中でもアンモニア、水酸化リチウム、水酸化ナトリウム、水酸化カリウムが好ましい。特に、セパレータ基材への塗工性の点で、アンモニア、水酸化リチウムの使用が好ましい。一価の金属を含む塩基性物質および/またはアンモニアは単独で使用してもよいし、2種以上を組み合わせて使用してもよい。また電池性能に悪影響を及ぼさない範囲内であれば、水酸化ナトリウムなどのアルカリ金属の水酸化物などを含有する塩基性物質を併用して、α-オレフィン-マレイン酸類共重合体の中和塩を調製してもよい。 Examples of usable basic substances containing monovalent metals include hydroxides of alkali metals such as sodium hydroxide, potassium hydroxide and lithium hydroxide; carbonates of alkali metals such as sodium carbonate and potassium carbonate; Examples thereof include acetates of alkali metals such as sodium acetate and potassium acetate; and phosphates of alkali metals such as trisodium phosphate. Examples of amines such as ammonia include primary amines such as ammonia, methylamine, ethylamine, butylamine and octylamine, secondary amines such as dimethylamine, diethylamine and dibutylamine, and tertiary amines such as trimethylamine, triethylamine and tributylamine. It can be mentioned. Among these, ammonia, lithium hydroxide, sodium hydroxide and potassium hydroxide are preferable. In particular, use of ammonia and lithium hydroxide is preferable in terms of the coatability to the separator substrate. The basic substance containing a monovalent metal and / or ammonia may be used alone or in combination of two or more. Further, within the range not adversely affecting the battery performance, a neutralized substance of an α-olefin-maleic acid copolymer is additionally used together with a basic substance containing hydroxide of alkali metal such as sodium hydroxide and the like. May be prepared.
 前記共重合体における、マレイン酸類から生成するカルボン酸に対する中和度は0.3~1.0であることが好ましい。前記中和度が0.3以上であると、水や溶媒への溶解度が良好であるため、セパレータ基材への塗工を析出なく行い得る点で好ましい。また、前記中和度が1.0以下であると、中和を行う塩基性物質がスラリー中に過剰に存在することにより抵抗成分となるおそれがないため好ましい。より好ましくは、前記中和度が0.4~0.8の範囲であることが望ましい。 The degree of neutralization of the carboxylic acid generated from the maleic acid in the copolymer is preferably 0.3 to 1.0. Since the solubility to water or a solvent is favorable in the said neutralization degree being 0.3 or more, it is preferable at the point which can perform coating to a separator base material without precipitation. Further, when the degree of neutralization is 1.0 or less, the basic substance to be neutralized is present in excess in the slurry, which is preferable because there is no risk of becoming a resistance component. More preferably, the neutralization degree is in the range of 0.4 to 0.8.
 中和度は、塩基による適定、赤外線スペクトル、NMRスペクトルなどの方法を用いて測定することができるが、簡便且つ正確に中和点を測定するには、塩基による滴定を行うことが好ましい。具体的な滴定の方法としては、特に限定されるものではないが、前記共重合体をイオン交換水等の不純物の少ない水に溶解して、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどの塩基性物質により、中和を行うことによって実施できる。中和点の指示薬としては、特に限定されるものではないが、塩基によりpH指示するフェノールフタレインなどの指示薬を用いてよく、PHメーターを使用して滴定を実施することもできる。 The degree of neutralization can be measured using methods such as titration with a base, infrared spectrum, NMR spectrum, etc., but in order to measure the neutralization point simply and accurately, it is preferable to perform titration with a base. A specific titration method is not particularly limited, but the copolymer is dissolved in water with few impurities such as ion-exchanged water, and lithium hydroxide, sodium hydroxide, potassium hydroxide, etc. are used. It can be carried out by neutralization with a basic substance. The indicator of the neutralization point is not particularly limited, but an indicator such as phenolphthalein which indicates pH with a base may be used, and titration can also be performed using a PH meter.
 前記共重合体の中和度は、例えば、前記共重合体の中和度を調整することで調整してもよいし、前記共重合体を溶解させた水溶液の中和度を直接調整してもよい。具体的には、例えば、中和度の調整は、上述したような一価の金属を含む塩基性物質(アンモニア、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等)の添加量を調整することによって、前記範囲に調整することが可能であるが、それに限定はされない。なお、具体的には、前述の通り、一価の金属を含む塩基性物質および/またはアンモニアを、好ましくは、マレイン酸類共重合体中のマレイン酸単位1モル当り0.6~2.0モルとなる量添加することによって、前記範囲に調整することができる。より好ましくは、一価の金属を含む塩基性物質および/またはアンモニアを、マレイン酸類共重合体中のマレイン酸単位1モル当り0.6~1.8モルとなる量添加することにより、より確実に前記範囲に調整することができる。 The degree of neutralization of the copolymer may be adjusted, for example, by adjusting the degree of neutralization of the copolymer, or by directly adjusting the degree of neutralization of an aqueous solution in which the copolymer is dissolved. It is also good. Specifically, for example, adjustment of the degree of neutralization is performed by adjusting the amount of addition of the basic substance (ammonia, lithium hydroxide, sodium hydroxide, potassium hydroxide, etc.) containing a monovalent metal as described above. Although it is possible to adjust to the said range by these, it is not limited to it. Specifically, as described above, the basic substance containing a monovalent metal and / or ammonia is preferably used in an amount of 0.6 to 2.0 moles per mole of maleic acid unit in the maleic acid copolymer. It can adjust to the said range by adding the quantity which becomes. More preferably, the basic substance containing a monovalent metal and / or ammonia is added more surely by adding 0.6 to 1.8 moles per mole of maleic acid unit in the maleic acid copolymer. The above range can be adjusted.
 また、マレイン酸類が無水マレイン酸である場合、共重合体の中和塩とは、無水マレイン酸の開環で生成したカルボニル酸の活性水素が上述のような塩基性物質と反応し、塩を形成して中和物となっているものである。この場合の中和度としては、特に限定されないが、電解液との反応性を考慮して、開環により生成するカルボニル酸1モルに対し、好ましくは0.5~1モルの範囲で、より好ましくは、0.6~1モルの範囲で、中和されたものを用いることが好ましい。このような中和度であれば、酸性度が低く電解液分解抑制という利点がある。なお、無水マレイン酸を用いた場合の共重合体の中和度は、上述の方法と同様の方法により測定することができる。 Also, when the maleic acid is maleic anhydride, with the neutralized salt of the copolymer, the active hydrogen of the carbonyl acid formed by the ring opening of maleic anhydride reacts with the basic substance as described above, It forms and becomes a neutralization thing. The degree of neutralization in this case is not particularly limited, but in view of the reactivity with the electrolytic solution, it is preferably in the range of 0.5 to 1 mole relative to 1 mole of carbonyl acid formed by ring opening. Preferably, it is preferable to use one neutralized in the range of 0.6 to 1 mole. With such a degree of neutralization, there is an advantage that the degree of acidity is low and electrolytic solution decomposition is suppressed. The degree of neutralization of the copolymer when maleic anhydride is used can be measured by the same method as described above.
 次に、α-オレフィン-マレイン酸類共重合体の開環率は、マレイン酸類として無水マレイン酸を用いた場合の、α-オレフィン類と重合する無水マレイン酸類部位の加水分解率を表す。本発明の一実施形態において、好ましい開環率は、60~100%であり、より好ましくは、70%~100%、更に好ましくは、80~100%である。開環率が低すぎると、共重合体の構造的自由度が小さくなり、伸縮性に乏しくなるため、隣接する極材粒子を接着する力が小さくなるおそれがあり、好ましくない。さらに、水に対する親和性が低く、溶解性が乏しいという問題点を生じるおそれがある。開環率は、例えば、無水マレイン酸のα位に位置する水素を基準として、開環したマレイン酸のα位の水素をH-NMRで測定して比率を求めることにより得ることも出来るし、マレイン酸のカルボニル基と開環した無水マレイン酸に由来するカルボニル基の比率をIR測定によって決定することにより得ることも出来る。 Next, the ring-opening rate of the α-olefin-maleic acid copolymer represents the hydrolysis rate of the maleic anhydride moiety that is polymerized with the α-olefin when maleic anhydride is used as the maleic acid. In one embodiment of the present invention, the preferred ring opening ratio is 60 to 100%, more preferably 70% to 100%, still more preferably 80 to 100%. If the ring opening ratio is too low, the structural freedom of the copolymer decreases and the stretchability becomes poor, so that the force for bonding the adjacent electrode material particles may be reduced, which is not preferable. Furthermore, there is a risk of causing problems such as low affinity to water and poor solubility. The ring-opening rate can also be obtained, for example, by determining the ratio by measuring the hydrogen at the α-position of the ring-opened maleic acid by 1 H-NMR based on the hydrogen located at the α-position of maleic anhydride It is also possible to obtain the ratio of the carbonyl group of maleic acid and the carbonyl group derived from the ring-opened maleic anhydride by IR measurement.
 さらに、本発明の非水電解質電池セパレータ用塗工液は、ポリアミン類を含む。ポリアミン類は塗工液中で架橋剤として作用することにより、セパレータ塗工液の塗工性を向上させ、得られるセパレータを低抵抗とすることができる。そして、本発明のセパレータ塗工液は、上述したようなα-オレフィン-マレイン酸類共重合体の中和塩をポリアミン類で架橋した構造を有している。 Furthermore, the coating liquid for non-aqueous electrolyte battery separators of this invention contains polyamines. By acting as a crosslinking agent in the coating liquid, the polyamines can improve the coatability of the separator coating liquid, and the resulting separator can have a low resistance. The separator coating liquid of the present invention has a structure in which the above-described neutralized salt of the α-olefin-maleic acid copolymer is crosslinked with polyamines.
 このようなポリアミン類としては、電気化学的に安定であれば特に限定されずどのようなポリアミン類でも使用できるが、例えば、分子量300未満の低分子量体または/および分子量300以上、好ましくは分子量500以上のポリアミン類高分子量体が挙げられる。 Such polyamines are not particularly limited as long as they are electrochemically stable, and any polyamines may be used. For example, low molecular weight compounds having a molecular weight of less than 300 and / or molecular weights of 300 or more, preferably 500 The above-mentioned polyamines high molecular weight body is mentioned.
 ポリアミン類低分子量体の具体例としては、脂肪族ポリアミン類、芳香族ポリアミン類、および複素環族ポリアミン類が挙げられる。好ましい具体例として、例えば、エチレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、グアニジン等の脂肪族ポリアミン類;フェニレンジアミン等の芳香族ポリアミン類;ピペラジン、N-アミノエチルピペラジン等の複素環族ポリアミン類等が挙げられる。 Specific examples of low molecular weight polyamines include aliphatic polyamines, aromatic polyamines, and heterocyclic polyamines. Preferred specific examples thereof include aliphatic polyamines such as ethylene diamine, hexamethylene diamine, diethylene triamine, triethylene tetramine, guanidine and the like; aromatic polyamines such as phenylene diamine; and heterocyclic polyamines such as piperazine and N-aminoethyl piperazine Etc.
 ポリアミン類高分子量体の具体例としてはアミノ基含有ポリマーが挙げられ、その好ましい具体例として、例えば、ポリエチレンイミン、ポリテトラメチレンイミン、ポリビニルアミン、ポリアリルアミン、ポリジアリルアミン、ポリジメチルアリルアミン、ジシアンジアミド-ホルマリン縮合物、ジシアンジアミド-アルキレン(ポリアミン)縮合物等が挙げられる。これらは単独で使用しても、2種以上の化合物を任意に組み合わせて使用してもよい。入手性、経済性を考慮して、ポリエチレンイミン(PEI)、ポリアリルアミン、ポリジアリルアミンの使用が好ましい。 Specific examples of polyamine polymers include amino group-containing polymers, and preferred specific examples thereof include, for example, polyethyleneimine, polytetramethyleneimine, polyvinylamine, polyallylamine, polydiallylamine, polydimethylallylamine, dicyandiamide-formalin Examples thereof include condensates and dicyandiamide-alkylene (polyamine) condensates. These may be used alone or in any combination of two or more compounds. In view of availability and economy, use of polyethylene imine (PEI), polyallylamine and polydiallylamine is preferred.
 これらのポリアミン類の分子量は特に限定されるものではなく、平均分子量として好ましくは50~200000の範囲、より好ましくは100~180000の範囲、さらに好ましくは200~100000の範囲、よりさらに好ましくは500~50000の範囲、とりわけ好ましくは1000~30000の範囲、最も好ましくは1500~25000の範囲である。非水電解質電池セパレータ用塗工液におけるポリアミン類の含有量は、特に限定されるものではないが、通常、α-オレフィン-マレイン酸類共重合体の中和塩(固形分)100質量部に対して、通常0.01質量部以上、好ましくは0.02質量部以上であり、好ましくは0.05質量部から30質量部、より好ましくは0.3質量部~10質量部の範囲、よりさらに好ましくは0.5~6質量部の範囲、最も好ましくは0.6~5質量部の範囲である。ポリアミン類の含有量が例えば0.05質量部から30質量部の範囲であれば、得られる塗工液の粘度を所望の範囲に調整しやすいため好ましい。また、ポリアミン類の含有量が多すぎると、抵抗成分の増加に繋がる傾向があり、少なすぎると、十分な接着性及びセパレータ基材への塗工性を付与できない傾向がある。 The molecular weight of these polyamines is not particularly limited, and the average molecular weight is preferably in the range of 50 to 200,000, more preferably in the range of 100 to 180,000, still more preferably in the range of 200 to 100,000, still more preferably 500 to 500 It is in the range of 50000, particularly preferably in the range of 1000 to 30000, most preferably in the range of 1500 to 25000. The content of the polyamines in the coating solution for a non-aqueous electrolyte battery separator is not particularly limited, but generally, 100 parts by mass of the neutralized salt (solid content) of the α-olefin-maleic acid copolymer is used. The amount is usually 0.01 parts by mass or more, preferably 0.02 parts by mass or more, preferably 0.05 to 30 parts by mass, more preferably 0.3 to 10 parts by mass, and further more Preferably it is in the range of 0.5 to 6 parts by weight, most preferably in the range of 0.6 to 5 parts by weight. If content of polyamines is the range of 0.05 mass part-30 mass parts, since it is easy to adjust the viscosity of the coating liquid obtained to a desired range, it is preferable. Moreover, when there is too much content of polyamines, it tends to lead to an increase in a resistance component, and when too little, there exists a tendency which can not provide sufficient adhesiveness and the coating property to a separator base material.
 本発明の一実施形態において、ポリアミン類は、α-オレフィン-マレイン酸類共重合体と一価の金属を含む塩基性物質を反応させると同時に添加することもできるし、α-オレフィン-マレイン酸類共重合体と一価の金属を含む塩基性物質を反応させた後に添加することもできる。架橋反応を促進する温度は特に限定されないが、通常20℃以上、好ましくは30℃以上で加熱することにより架橋反応が速やかに進行する。架橋反応収束に必要な時間は温度に依存するため限定されないが、通常0.1時間から2カ月程度で架橋反応が収束する。 In one embodiment of the present invention, polyamines can be added simultaneously by reacting an α-olefin-maleic acid copolymer and a basic substance containing a monovalent metal, or an α-olefin-maleic acid co-product can be added. It can also be added after reacting the polymer and the basic substance containing a monovalent metal. The temperature for promoting the crosslinking reaction is not particularly limited, but the crosslinking reaction proceeds rapidly by heating generally at 20 ° C. or more, preferably 30 ° C. or more. The time required for the crosslinking reaction convergence is not limited because it depends on the temperature, but the crosslinking reaction usually converges in about 0.1 hour to 2 months.
 本発明の一実施形態において、前記共重合体の中和塩とポリアミン類の混合物(またはセパレータ塗工液の固形分)の熱分解温度は150℃以上であることが好ましく、200℃以上であることがより好ましい。これにより、電池が熱暴走した際にも形状を維持し、短絡を抑制するものと考えられる。熱分解温度が所定温度に満たないと、熱暴走時にセパレータ形状が保てず、電池が容易に短絡する恐れがある。前記混合物(セパレータ塗工液の固形分)の熱分解温度は、通常380℃以下である。 In one embodiment of the present invention, the thermal decomposition temperature of the mixture of the neutralized salt of the copolymer and the polyamine (or the solid content of the separator coating liquid) is preferably 150 ° C. or higher, and is 200 ° C. or higher. Is more preferred. Thus, it is considered that the battery maintains its shape even when the thermal runaway occurs, and the short circuit is suppressed. If the thermal decomposition temperature does not reach a predetermined temperature, the shape of the separator can not be maintained at the time of thermal runaway, and the battery may be easily short-circuited. The thermal decomposition temperature of the mixture (solid content of the separator coating liquid) is usually 380 ° C. or less.
 熱分解温度の測定方法は、特に限定されないが、例えば、後述の実施例に記載の方法等によって測定することができる。 Although the measuring method of thermal decomposition temperature is not specifically limited, For example, it can measure by the method etc. which are described in the below-mentioned Example.
 本発明の一実施形態では、セパレータ塗工液またはスラリー組成物は、さらに水系エマルションを含有することが好ましい。水系エマルションとは、粒子状物質が水系溶媒中で分散してエマルション化したものをいう。この粒子状物質は、後述する活物質及び/又は集電体に対し相互に結着性を有するもの(粒子状結着剤)であることが好ましい。すなわち、本発明の一局面に係る非水電解質電池セパレータ用の塗工液またはスラリー組成物は、好適にはバインダー組成物として、α-オレフィン類とマレイン酸類とが共重合したα-オレフィン-マレイン酸類共重合体の中和塩と、ポリアミン類と、粒子状物質、好ましくは粒子状結着剤とを含有する。好適な粒子状結着剤としては、分散媒への分散性に優れる分散型結着剤が挙げられる。このような粒子状物質、好適には分散型結着剤としては、例えば、フッ素系重合体、オレフィン系重合体、ジエン系重合体、アクリル系重合体、ポリスチレンなどのビニル芳香族系重合体、ポリイミド、ポリアミド、ポリウレタン系重合体等の高分子化合物が挙げられる。粒子状物質としては、オレフィン系重合体、ジエン系重合体、アクリル系重合体、及びビニル芳香族系重合体からなる群から選択される少なくとも1種であることが好ましい。 In one embodiment of the present invention, the separator coating liquid or the slurry composition preferably further contains an aqueous emulsion. The aqueous emulsion refers to an emulsion in which particulate matter is dispersed in an aqueous solvent. The particulate matter is preferably one having mutual binding property to the active material and / or current collector described later (particulate binder). That is, the coating liquid or slurry composition for a non-aqueous electrolyte battery separator according to one aspect of the present invention is preferably an α-olefin-maleic acid copolymerized with an α-olefin and a maleic acid as a binder composition. It contains a neutralized salt of an acid copolymer, a polyamine, and a particulate matter, preferably a particulate binder. As a suitable particulate-form binder, the dispersion-type binder which is excellent in the dispersibility to a dispersion medium is mentioned. As such a particulate substance, preferably as a dispersion type binder, for example, a fluorine based polymer, an olefin based polymer, a diene based polymer, an acrylic based polymer, a vinyl aromatic based polymer such as polystyrene, Polymer compounds such as polyimides, polyamides, polyurethane polymers and the like can be mentioned. The particulate material is preferably at least one selected from the group consisting of an olefin polymer, a diene polymer, an acrylic polymer, and a vinyl aromatic polymer.
 オレフィン系重合体は、オレフィン化合物の単独重合体あるいは2成分以上の共重合体である。オレフィン化合物としては、エチレン、プロピレン、1-ブテン、2-ブテン、イソブチレン、イソブテン、1-ペンテン、4-メチル-1-ペンテン、3-メチル-1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン等が挙げられる。オレフィン系重合体は、その他の構成成分として不飽和カルボン酸またはその無水物、(メタ)アクリル酸エステル類、マレイン酸エステル類、ビニルエステル類、(メタ)アクリルアミド類等が共重合されていてもよい。オレフィン系重合体としては、エチレンまたはプロピレンを含有するエチレン系重合体またはプロピレン系重合体が好ましい。 The olefin polymer is a homopolymer of an olefin compound or a copolymer of two or more components. As an olefin compound, ethylene, propylene, 1-butene, 2-butene, isobutylene, isobutene, 1-pentene, 4-methyl-1-pentene, 3-methyl-1-pentene, 1-hexene, 1-heptene, 1 -Octene, 1-nonene etc. are mentioned. The olefin polymer may be copolymerized with unsaturated carboxylic acid or its anhydride, (meth) acrylic esters, maleic esters, vinyl esters, (meth) acrylamides, etc. as other constituent components. Good. The olefin polymer is preferably an ethylene polymer or a propylene polymer containing ethylene or propylene.
 ジエン系重合体は、共役ジエンの単独重合体もしくはビニル芳香族及び共役ジエンを含むランダムまたはブロック共重合体、またはそれらの水素添加物である。ジエン系重合体の具体例としては、ポリブタジエンやポリイソプレンなどの共役ジエン単独重合体;カルボキシ変性されていてもよいスチレン・ブタジエン共重合体(SBR)などの芳香族ビニル・共役ジエン共重合体;アクリロニトリル・ブタジエン共重合体(NBR)などのシアン化ビニル・共役ジエン共重合体;水素化SBR、水素化NBRなど前記共役ジエン重合体又は共重合体の水添物が挙げられる。 The diene polymer is a homopolymer of conjugated diene or a random or block copolymer containing vinyl aromatic and conjugated diene, or a hydrogenated product thereof. Specific examples of the diene polymer include conjugated diene homopolymers such as polybutadiene and polyisoprene; aromatic vinyl / conjugated diene copolymers such as styrene / butadiene copolymer (SBR) that may be carboxy-modified; Examples thereof include vinyl cyanide / conjugated diene copolymers such as acrylonitrile / butadiene copolymer (NBR); hydrogenated products of the aforementioned conjugated diene polymers or copolymers such as hydrogenated SBR and hydrogenated NBR.
 アクリル系重合体は、アクリル酸エステルもしくはメタクリル酸エステルの単独重合体またはこれらと共重合可能な単量体との共重合体である。前記共重合可能な単量体としては、アクリル酸、メタクリル酸、イタコン酸、フマル酸などの不飽和カルボン酸類;エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリメチロールプロパントリアクリレート等の、2つ以上の炭素-炭素二重結合を有するカルボン酸エステル類;スチレン、クロロスチレン、ビニルトルエン、t-ブチルスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルナフタレン、クロロメチルスチレン、ヒドロキシメチルスチレン、α-メチルスチレン、ジビニルベンゼン等のスチレン系単量体;アクリルアミド、N-メチロールアクリルアミド、アクリルアミド-2-メチルプロパンスルホン酸などのアミド系単量体;アクリロニトリル、メタクリロニトリルなどのα,β-不飽和ニトリル化合物;ブタジエン、イソプレン等のジエン系単量体;塩化ビニル、塩化ビニリデン等のハロゲン原子含有単量体;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、安息香酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル、ブチルビニルエーテル等のビニルエーテル類;メチルビニルケトン、エチルビニルケトン、ブチルビニルケトン、ヘキシルビニルケトン、イソプロペニルビニルケトン等のビニルケトン類;N-ビニルピロリドン、ビニルピリジン、ビニルイミダゾール等の複素環含有ビニル化合物;β-ヒドロキシエチルアクリレート、β-ヒドロキシエチルメタクリレート等のヒドロキシアルキル基含有化合物等が挙げられる。 The acrylic polymer is a homopolymer of acrylic acid ester or methacrylic acid ester or a copolymer with a monomer copolymerizable therewith. Examples of the copolymerizable monomers include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid and fumaric acid; two or more such as ethylene glycol dimethacrylate, diethylene glycol dimethacrylate and trimethylolpropane triacrylate Carboxylic esters having a carbon-carbon double bond; styrene, chlorostyrene, vinyltoluene, t-butylstyrene, vinylbenzoic acid, methylvinylbenzoate, vinylnaphthalene, chloromethylstyrene, hydroxymethylstyrene, α-methylstyrene Styrene-based monomers such as divinylbenzene; amide-based monomers such as acrylamide, N-methylol acrylamide, and acrylamido-2-methylpropane sulfonic acid; α, β-nons such as acrylonitrile and methacrylonitrile Diluted nitrile compounds; Diene monomers such as butadiene and isoprene; Halogen atom-containing monomers such as vinyl chloride and vinylidene chloride; Vinyl esters such as vinyl acetate, vinyl propionate, vinyl butyrate, and vinyl benzoate; Methyl vinyl ether Vinyl ethers such as ethyl vinyl ether and butyl vinyl ether; vinyl ketones such as methyl vinyl ketone, ethyl vinyl ketone, butyl vinyl ketone, hexyl vinyl ketone and isopropenyl vinyl ketone; heterocyclic rings such as N-vinyl pyrrolidone, vinyl pyridine and vinyl imidazole Containing vinyl compounds; and hydroxyalkyl group-containing compounds such as β-hydroxyethyl acrylate and β-hydroxyethyl methacrylate.
 これらのなかでも、オレフィン系重合体、アクリル系重合体、共役ジエン重合体又は共重合体又はその水添物を用いることが好ましく、プロピレン系重合体、(メタ)アクリル酸エステルの単独重合体又は共重合体、SBR、NBR、水素添加SBRを用いることがより好ましい。これらの水系エマルションは、例えば、TRD2001(SBRエマルション、JSR製)、ケミパール X800-H(ポリプロピレン系エマルション、三井化学製)として市販されている。 Among these, it is preferable to use an olefin polymer, an acrylic polymer, a conjugated diene polymer, a copolymer or a hydrogenated product thereof, and a propylene polymer, a homopolymer of (meth) acrylic acid ester or It is more preferable to use a copolymer, SBR, NBR, and hydrogenated SBR. These aqueous emulsions are commercially available, for example, as TRD 2001 (SBR emulsion, manufactured by JSR), Chemipal X800-H (polypropylene emulsion, manufactured by Mitsui Chemicals).
 なお、粒子状物質(または粒子状結着剤)において、「粒子状」とは、主に上述の重合体を構成する単量体を乳化重合して得られるポリマー粒子、または、重合後に乳化、エマルション化したポリマー粒子の性状を指す。乳化重合法としては特に制限は無く、従来公知の任意の乳化重合法が採用される。 In the particulate substance (or particulate binder), “particulate” refers to polymer particles obtained by emulsion polymerization of the monomers that mainly constitute the above-mentioned polymer, or emulsification after polymerization, It refers to the properties of the emulsified polymer particles. There is no restriction | limiting in particular as an emulsion polymerization method, The conventionally well-known arbitrary emulsion polymerization method is employ | adopted.
 粒子状物質が分散した水系エマルションの平均粒子径は0.01~0.5μmが好ましく、0.01~0.3μmが更に好ましい。平均粒子径が0.01μm未満であると、塗工液又はスラリーの粘度増加により塗工性の悪化を招くことがあり、また、エマルションの凝集が生じてセパレータと耐熱層との密着性が低下することがある。また、平均粒子径が0.5μmを超えると、セパレータ上での塗膜又はバインダーの分散性の低下により接着性が低下することがあり、また、局所的な抵抗上昇に伴いLiデンドライトが発生して短絡の危険性が増加することがある。なお、ここで平均粒子径は、レーザー散乱法により測定される体積平均粒子径を指す。 The average particle diameter of the aqueous emulsion in which the particulate matter is dispersed is preferably 0.01 to 0.5 μm, and more preferably 0.01 to 0.3 μm. If the average particle size is less than 0.01 μm, the viscosity of the coating liquid or slurry may increase to cause deterioration of the coating property, and the emulsion may be coagulated to reduce the adhesion between the separator and the heat-resistant layer. There is something to do. When the average particle size exceeds 0.5 μm, the dispersibility of the coating film or the binder on the separator may decrease, and the adhesion may decrease. Also, Li dendrite is generated along with the local increase in resistance. Can increase the risk of short circuiting. In addition, an average particle diameter refers to the volume average particle diameter measured by the laser scattering method here.
 粒子状物質(固形分)の前記水系エマルションにおける含有量は、水系エマルション100質量部に対して10~60質量部であることが好ましく、より好ましくは20~50質量部である。 The content of the particulate matter (solid content) in the aqueous emulsion is preferably 10 to 60 parts by mass, and more preferably 20 to 50 parts by mass with respect to 100 parts by mass of the aqueous emulsion.
 セパレータ塗工液中の前記水系エマルションの固形分(粒子状物質)の含有量は、前記α-オレフィン-マレイン酸類共重合体の中和塩100質量部に対し、通常、0.01~50質量部であり、0.01~20質量部であることが好ましく、より好ましくは0.1~15質量部、さらに好ましくは0.1~10質量部である。 The solid content (particulate matter) content of the aqueous emulsion in the separator coating liquid is usually 0.01 to 50 parts by mass with respect to 100 parts by mass of the neutralized salt of the α-olefin-maleic acid copolymer. The amount is preferably 0.01 to 20 parts by mass, more preferably 0.1 to 15 parts by mass, and still more preferably 0.1 to 10 parts by mass.
 また、本発明の一実施形態では、上述のポリマー微粒子を安定化させるために、水系エマルション中に保護コロイドを添加してもよい。ここで、保護コロイドとは、疎水コロイドを電解質に対して安定化する目的で加えられる親水コロイドをいう。この安定化作用は親水コロイド粒子が疎水コロイド粒子を包んで全体として親水コロイドの性質が表れる為と考えられる。保護コロイドとして、例えばポリビニルアルコール、変性ポリビニルアルコール;メチルセルロース、エチルセルロース、ヒドロキシメチルセルロース、ヒドロキシプロピルセルロースなどの水溶性セルロース誘導体;(メタ)アクリル酸エステル-不飽和カルボン酸系共重合体の水溶性塩;スチレン-無水マレイン酸共重合体塩、マレイン化ポリブタジエン塩、ナフタレンスルホン酸塩、ポリアクリル酸塩などが挙げられる。これらの保護コロイドは1種、または2種以上を用いることもできる。これらの中でも、前記実施形態では、保護コロイドとして、(メタ)アクリル酸エステル-不飽和カルボン酸系共重合体の水溶性塩及び/又はポリビニルアルコールを用いるのが好ましく、(メタ)アクリル酸エステル-不飽和カルボン酸系共重合体の水溶性塩を用いることが極めて好ましい。 Also, in one embodiment of the present invention, a protective colloid may be added to the aqueous emulsion in order to stabilize the above-mentioned polymer particles. Here, the protective colloid refers to a hydrocolloid added for the purpose of stabilizing the hydrophobic colloid to the electrolyte. It is considered that this stabilization action is due to the fact that the hydrocolloid particles enclose the hydrocolloid particles and the nature of the hydrocolloid appears as a whole. Examples of protective colloids include polyvinyl alcohol, modified polyvinyl alcohol; water-soluble cellulose derivatives such as methyl cellulose, ethyl cellulose, hydroxymethyl cellulose and hydroxypropyl cellulose; water-soluble salts of (meth) acrylate-unsaturated carboxylic acid copolymers; styrene Maleic anhydride copolymer salt, maleinized polybutadiene salt, naphthalene sulfonate, polyacrylate and the like. These protective colloids can be used alone or in combination of two or more. Among these, in the embodiment, as the protective colloid, it is preferable to use a water-soluble salt of (meth) acrylic acid ester-unsaturated carboxylic acid copolymer and / or polyvinyl alcohol, and (meth) acrylic acid ester It is extremely preferable to use a water-soluble salt of an unsaturated carboxylic acid copolymer.
 また、本発明の一実施形態では、セパレータ塗工液中の前記水系エマルションの固形分(粒子状物質)、とりわけ粒子状結着剤の含有量は、特に限定されないが、α-オレフィン-マレイン酸類共重合体(固形分)100質量部に対して、好ましくは1質量部~50質量部、より好ましくは5質量部~30質量部、さらに好ましくは7~20質量部の範囲である。多すぎる添加量は、接着性が低下してしまうため好ましくない。一方、少なすぎる添加量は、十分な結着性を付与できないため好ましくない。 In one embodiment of the present invention, the solid content (particulate matter) of the aqueous emulsion in the separator coating liquid, in particular the content of the particulate binder, is not particularly limited, but α-olefin-maleic acids The amount is preferably in the range of 1 to 50 parts by mass, more preferably 5 to 30 parts by mass, and still more preferably 7 to 20 parts by mass with respect to 100 parts by mass of the copolymer (solid content). If the amount is too large, the adhesion is lowered, which is not preferable. On the other hand, too small addition amount is not preferable because sufficient binding property can not be provided.
 本発明の一実施形態では、セパレータ塗工液は、さらに、必要に応じて、無機粒子、界面活性剤等の分散剤、増粘剤、湿潤剤、消泡剤等の添加剤を含んでいてもよい。 In one embodiment of the present invention, the separator coating liquid further contains, if necessary, additives such as inorganic particles, dispersants such as surfactants, thickeners, wetting agents and antifoaming agents. It is also good.
 無機粒子としては、合成品及び天然産物のいずれでも、特に限定なく用いることができる。無機粒子としては、例えば、ギブサイト、バイヤライト、ベーマイト、コランダム等のアルミナ、シリカ、チタニア、ジルコニア、マグネシア、セリア、イットリア、酸化亜鉛及び酸化鉄などの酸化物系セラミックス、窒化ケイ素、窒化チタン及び窒化ホウ素等の窒化物系セラミックス、シリコンカーバイド、炭酸カルシウム、硫酸アルミニウム、水酸化アルミニウム、水酸化マグネシウム、チタン酸カリウム、タルク、合成カオリナイト、カオリンクレー、カオリナイト、フライボンタイト、スチブンサイト、ディカイト、ナクライト、ハロイサイト、パイロフィライト、オーディナイト、モンモリロナイト、バイデライト、ノントロナイト、ボルコンスコアイト、サポナイト、ヘクトライト、フッ素ヘクトライト、ソーコナイト、スインホルダイト、バーミキュライト、フッ素バーミキュライト、バーチェリン、セリサイト、アメサイト、ケリアイト、フレイポナイト、ブリンドリアイト、ベントナイト、ゼオライト、黒雲母、金雲母、フッ素金雲母、鉄雲母、イーストナイト、テニオライト、シデロフィライトテトラフェリ鉄雲母、鱗雲母、フッ素四ケイ素雲母、ポリリシオナイト、白雲母、セラドン石、鉄セラドン石、鉄アルミノセラドン石、アルミノセラドン石、砥部雲母、ソーダ雲母、クリンナイト、木下、ビテ雲母、アナンダ石、真珠雲母、クリノクロア、シャモサイト、ペナンタイト、ニマイト、ベイリクロア、ドンバサイト、クッケアサイト、スドーアイト、ハイドロタルサイト、ケイ酸カルシウム、ケイ酸マグネシウム、ケイ酸アルミニウム、ケイ藻土及びケイ砂等の、セラミックス及びガラス繊維が挙げられる。これらの無機粒子は、1種を単独で又は2種以上を組み合わせて用いられる。 As the inorganic particles, any of synthetic products and natural products can be used without particular limitation. Examples of inorganic particles include aluminas such as gibbsite, bayerite, boehmite and corundum, silica, titania, zirconia, magnesia, ceria, yttria, oxide ceramics such as zinc oxide and iron oxide, silicon nitride, titanium nitride and nitrided Boron and other nitride-based ceramics, silicon carbide, calcium carbonate, aluminum sulfate, aluminum hydroxide, magnesium hydroxide, potassium titanate, talc, synthetic kaolinite, kaolin clay, kaolinite, fly bondite, steven sites, dickite, nacrite , Halloysite, pyrophyllite, odnightite, montmorillonite, beidellite, nontronite, volkon scoreite, saponite, hectorite, fluorine hectorite, sauconite, swin Rudite, vermiculite, fluorine vermiculite, vercerin, sericite, amesite, keriaite, freiponite, blindlyite, bentonite, zeolite, biotite, phlogopite, fluorine phlogopite, iron mica, yeast nightite, teniolite, siderophyllite Tetra-ferrite mica, phlogopite, fluorine tetra silicon mica, polylithionite, muscovite, ceradonite, iron ceradonite, iron aluminoceradonite, aluminoseladonite, abrasive part mica, soda mica, soda mica, Kinoshita, vitreous mica, Ananda stone, pearlite, clinochlora, chamosite, pennantite, nimite, bailicroa, dombasite, kukeasite, sudoite, hydrotalcite, calcium silicate, magnesium silicate, aluminum silicate, diatomaceous earth and kerosene Such as sand, and ceramics and glass fibers. These inorganic particles may be used alone or in combination of two or more.
 前記セパレータ塗工液が無機粒子を含有する場合、セパレータ塗工液の無機粒子の量は、前記α-オレフィン-マレイン酸類共重合体の中和塩1質量部に対し、通常、10~10000質量部であることが好ましく、より好ましくは20~1000質量部であり、さらに好ましくは25~500質量部である。 When the said separator coating liquid contains an inorganic particle, the quantity of the inorganic particle of a separator coating liquid is 10-10000 mass normally with respect to 1 mass part of neutralization salts of the said (alpha) -olefin-maleic acid copolymer. It is preferably part, more preferably 20 to 1000 parts by mass, and still more preferably 25 to 500 parts by mass.
 また、本発明の一実施形態では、セパレータ塗工液は、好適には塗膜を構成すべきポリマー組成物(好ましくはバインダー組成物)に加えて、さらに上記無機粒子の中でも、金属酸化物及び金属塩のうち少なくとも一つを含有するスラリー組成物であってよい。このような金属酸化物及び金属塩は、非水溶性であって、例えば二価~四価の金属の金属酸化物または二価~四価の金属の金属塩が挙げられる。具体的には、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム等の金属炭酸塩;硫酸バリウム等の金属硫酸塩;酸化マグネシウム、酸化亜鉛、アルミナ、シリカ、酸化チタン等の金属酸化物;タルク、クレー、マイカ、モンモリロナイト等の粘土鉱物や、チタン酸バリウム等が挙げられる。これらは1種を用いても、2種以上を組み合わせて用いても構わない。 Moreover, in one embodiment of the present invention, the separator coating liquid is preferably added to the polymer composition (preferably the binder composition) that should preferably constitute the coating film, and further, among the above-mentioned inorganic particles, a metal oxide and The slurry composition may contain at least one of metal salts. Such metal oxides and metal salts are non-water soluble and include, for example, metal oxides of divalent to tetravalent metals or metal salts of divalent to tetravalent metals. Specifically, metal carbonates such as calcium carbonate, magnesium carbonate and barium carbonate; metal sulfates such as barium sulfate; metal oxides such as magnesium oxide, zinc oxide, alumina, silica and titanium oxide; talc, clay, mica And clay minerals such as montmorillonite, and barium titanate. These may be used alone or in combination of two or more.
 これらの中でも、積層多孔質基材を電池用セパレータとして電池に組み込む際に化学的に不活性であるという観点から、アルミナ、硫酸バリウム、又はチタン酸バリウムが好ましく、アルミナが特に好ましい。アルミナとしては、αアルミナ、γアルミナ、θアルミナ、κアルミナ、擬ベーマイト等が挙げられるが、化学的に不活性であるという点からαアルミナが好ましい。 Among these, alumina, barium sulfate or barium titanate is preferable, and alumina is particularly preferable, from the viewpoint of being chemically inactive when the laminated porous substrate is incorporated into a battery as a battery separator. As the alumina, α-alumina, γ-alumina, θ-alumina, κ-alumina, pseudo-boehmite and the like can be mentioned, but α-alumina is preferable from the viewpoint of being chemically inactive.
 本発明のセパレータ塗工液(またはスラリー組成物)はさらに金属酸化物及び金属塩のうち少なくとも一つを含有する場合においても、非水溶性の金属酸化物及び金属塩から選ばれる1種以上の金属成分をスラリー化する際の粘度安定性が向上し、得られたスラリーを用いて多孔質基材上に被覆層を形成した場合に、優れた表面平滑性を有する積層多孔質基材を得ることができる。当該積層多孔質基材は非水電解液二次電池用セパレータとして好適に使用することができる。ここで、非水電解液二次電池用セパレータは、上述のポリマー組成物(好ましくはバインダー組成物)と金属酸化物及び金属塩のうち少なくとも1つとを含有する被覆層が、多孔質基材の少なくとも片面に結着されていてよい。上述のポリマー組成物(好ましくはバインダー組成物)は、通常、水に溶解または分散して機能を発現するものであって、非水溶性の金属酸化物及び金属塩から選ばれる1種以上の金属成分を含むスラリーの粘度を調整する粘度調整剤としての機能と、溶媒中に活物質を均質分散させる分散剤としての機能とを有し、多孔質基材上に均質且つ強固に結着することができる。 Even when the separator coating liquid (or slurry composition) of the present invention further contains at least one of a metal oxide and a metal salt, the separator coating liquid (or slurry composition) is at least one selected from water insoluble metal oxides and metal salts. Viscosity stability when slurrying metal components is improved, and when a coated layer is formed on a porous substrate using the obtained slurry, a laminated porous substrate having excellent surface smoothness is obtained. be able to. The laminated porous substrate can be suitably used as a separator for a non-aqueous electrolyte secondary battery. Here, in the separator for a non-aqueous electrolyte secondary battery, the coating layer containing the above-mentioned polymer composition (preferably a binder composition) and at least one of a metal oxide and a metal salt is a porous substrate. It may be bound to at least one side. The above-mentioned polymer composition (preferably a binder composition) is usually dissolved or dispersed in water to exhibit a function, and is one or more metals selected from water-insoluble metal oxides and metal salts. It has a function as a viscosity modifier to adjust the viscosity of the slurry containing the components and a function as a dispersant to homogeneously disperse the active material in the solvent, and it binds homogeneously and strongly on the porous substrate Can.
 上記の実施形態に用いる金属酸化物および/または金属塩は、平均粒径が1.0μm以上3μm以下であることが好ましい。金属酸化物および/または金属塩は平均粒径が1.0μm以上であると、スラリー中で、金属酸化物およびまたは金属塩が凝集することなく、粒径分布をコントロールすることが可能となり、パッキング性が向上する。その結果、被覆層の加熱時における接着性と形状安定性が向上する。なお、平均粒径および1.0μm未満の体積分布は、例えばレーザー散乱粒度分布計(マイクロトラックベル(旧日機装)社製「MT3300EXII」)を用いて水にセラミックスラリーを添加後、流速45%で3分間循環させた後10分以内に測定した体積基準の積算分率における50%での粒径(D50)及び、粒径1.0μm未満の粒子の体積基準の積算量として求めることができる。 The metal oxide and / or metal salt used in the above embodiment preferably has an average particle diameter of 1.0 μm or more and 3 μm or less. When the metal oxide and / or metal salt has an average particle size of 1.0 μm or more, the particle size distribution can be controlled without aggregation of the metal oxide and / or metal salt in the slurry, and packing Improves the quality. As a result, the adhesiveness and shape stability at the time of heating of a coating layer improve. The average particle size and volume distribution less than 1.0 μm can be obtained, for example, by adding a ceramic slurry to water using a laser scattering particle size distribution analyzer (Microtrack Bell (“MT3300EXII” manufactured by Nikkiso Co., Ltd.)) at a flow rate of 45%. The particle diameter (D50) at 50% of the volume-based integrated fraction measured within 10 minutes after circulating for 3 minutes can be obtained as the volume-based integrated amount of particles less than 1.0 μm in particle diameter.
 界面活性剤等の分散剤としては、例えば、硫酸エステル型、リン酸エステル型、カルボン酸型、スルホン酸型などのアニオン系界面活性剤、第4級アンモニウム塩型、アミドアミン型などのカチオン系活性剤、アルキルベタイン型、アミドベタイン型、アミンオキサイド型などの両性界面活性剤、エーテル型、脂肪酸エステル型、アルキルグルコキシドなどの非イオン系界面活性剤、ポリアクリル酸、ポリアクリル酸塩、ポリスルホン酸塩、ポリナフタレンスルホン酸塩、ポリビニルピロリドン、セルロース型などの高分子型界面活性剤など、各種界面活性剤を用いることができる。フィラー同士の凝集を防ぐ目的で、これらは1種を単独で又は2種以上を組み合わせて用いられる。分散剤は、上述のものと同様の効果が得られるものであれば、それらに限定されるものではない。 Examples of dispersants such as surfactants include anionic surfactants such as sulfate ester type, phosphate ester type, carboxylic acid type and sulfonic acid type, and cationic surfactants such as quaternary ammonium salt type and amidoamine type Agent, amphoteric surfactant such as alkyl betaine type, amido betaine type, amine oxide type, non-ionic surfactant such as ether type, fatty acid ester type, alkyl glucoxide, polyacrylic acid, polyacrylate, polysulfonic acid Various surfactants such as salts, polynaphthalene sulfonates, polyvinyl pyrrolidone, and high molecular type surfactants such as cellulose type can be used. These are used singly or in combination of two or more for the purpose of preventing aggregation of the fillers. The dispersant is not limited as long as the same effect as described above can be obtained.
 前記セパレータ塗工液が分散剤を含有する場合、セパレータ塗工液中の分散剤の量は、前記α-オレフィン-マレイン酸類共重合体の中和塩100質量部に対し、通常、0.01~10質量部であることが好ましく、より好ましくは0.1~5質量部である。 When the said separator coating liquid contains a dispersing agent, the quantity of the dispersing agent in a separator coating liquid is normally 0.01 with respect to 100 mass parts of neutralization salts of the said (alpha) -olefin-maleic acid copolymer. The amount is preferably 10 parts by mass, more preferably 0.1 to 5 parts by mass.
 増粘剤としては、例えば、ポリエチレングリコール、ウレタン変性ポリエーテル、ポリアクリル酸、ポリビニルアルコール、ビニルメチルエーテル-無水マレイン酸共重合体などの合成高分子、カルボメトキシセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースなどのセルロース誘導体、キサンタンガム、ダイユータンガム、ウェランガム、ジェランガム、グアーガム、カラギーナンガムなどの天然多糖類、デキストリン、アルファー化でんぷんなどのでんぷん類が挙げられる。これらは1種を単独で又は2種以上を組み合わせても用いられる。増粘剤は、上述のものと同様の効果が得られるものであれば、それらに限定されるものではない。 Examples of the thickener include synthetic polymers such as polyethylene glycol, urethane-modified polyether, polyacrylic acid, polyvinyl alcohol, vinyl methyl ether-maleic anhydride copolymer, carbomethoxy cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose and the like. Cellulose derivatives, natural polysaccharides such as xanthan gum, dayutan gum, welan gum, gellan gum, guar gum, carrageenan gum, starches such as dextrin and pregelatinized starch. These may be used alone or in combination of two or more. The thickener is not limited to the above as long as the same effects as those described above can be obtained.
 前記セパレータ塗工液が増粘剤を含有する場合、セパレータ塗工液中の増粘剤の量は、前記α-オレフィン-マレイン酸類共重合体の中和塩100質量部に対し、通常、0.01~10質量部であることが好ましく、より好ましくは0.1~5質量部である。 When the said separator coating liquid contains a thickener, the quantity of the thickener in a separator coating liquid is usually 0 with respect to 100 mass parts of neutralization salts of the said (alpha) -olefin-maleic acids copolymer. It is preferably from 0.1 to 10 parts by mass, more preferably from 0.1 to 5 parts by mass.
 湿潤剤としては、例えば、脂肪族ポリエーテル型非イオン界面活性剤、ポリオキシアルキレン型非イオン界面活性剤、変性シリコーン、変性ポリエーテル、ジメチルシロキサンポリオキシアルキレン共重合体を用いることができる。これらは1種を単独で又は2種以上を組み合わせて用いられる。湿潤剤は、上述のものと同様の効果が得られるものであれば、それらに限定されるものではない。 As the wetting agent, for example, an aliphatic polyether type nonionic surfactant, a polyoxyalkylene type nonionic surfactant, a modified silicone, a modified polyether, a dimethylsiloxane polyoxyalkylene copolymer can be used. These may be used alone or in combinations of two or more. The wetting agent is not limited as long as the same effect as described above can be obtained.
 前記セパレータ塗工液が湿潤剤を含有する場合、セパレータ塗工液中の湿潤剤の量は、前記α-オレフィン-マレイン酸類共重合体の中和塩100質量部に対し、通常、0.01~10質量部であることが好ましく、より好ましくは0.1~5質量部である。 When the separator coating liquid contains a wetting agent, the amount of the wetting agent in the separator coating liquid is usually 0.01, based on 100 parts by mass of the neutralized salt of the α-olefin-maleic acid copolymer. The amount is preferably 10 parts by mass, more preferably 0.1 to 5 parts by mass.
 消泡剤としては、例えば、ミネラルオイル系、シリコーン系、アクリル系、ポリエーテル系の各種消泡剤を用いることができる。これらは1種を単独で又は2種以上を組み合わせて用いられる。消泡剤は、上述のものと同様の効果が得られるものであれば、それらに限定されるものではない。 As an antifoamer, various mineral antifoamers, such as a mineral oil type, a silicone type, an acryl type, and a polyether type, can be used, for example. These may be used alone or in combinations of two or more. The antifoaming agent is not limited to the above as long as the same effect as described above can be obtained.
 前記セパレータ塗工液が消泡剤を含有する場合、セパレータ用樹脂組成物中の消泡剤の量は、前記α-オレフィン-マレイン酸類共重合体の中和塩100質量部に対し、通常、0.01~10質量部であることが好ましく、より好ましくは0.1~5質量部である。 When the said separator coating liquid contains an antifoamer, the quantity of the antifoamer in the resin composition for separators is usually, With respect to 100 mass parts of neutralization salts of the above-mentioned alpha-olefin-maleic acid copolymer, The amount is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass.
 本発明の非水電解質電池セパレータ用塗工液は溶媒を含有する。用い得る溶媒としては、例えば、水、メタノール、エタノール、プロパノール、2-プロパノールなどのアルコール類、テトラヒドロフラン、1,4-ジオキサンなどの環状エーテル類、N,N-ジメチルホルミアミド、N,N-ジメチルアセトアミドなどのアミド類、N-メチルピロリドン、N-エチルピロリドンなどの環状アミド類、ジメチルスルホキシドなどのスルホキシド類などが例示される。これらの中では、安全性、溶解性という観点から、水の使用が好ましい。 The coating solution for a non-aqueous electrolyte battery of the present invention contains a solvent. As a solvent which can be used, for example, water, alcohols such as methanol, ethanol, propanol and 2-propanol, cyclic ethers such as tetrahydrofuran and 1,4-dioxane, N, N-dimethyl formamide, N, N- Amides such as dimethylacetamide, cyclic amides such as N-methyl pyrrolidone and N-ethyl pyrrolidone, and sulfoxides such as dimethyl sulfoxide are exemplified. Among these, the use of water is preferred from the viewpoint of safety and solubility.
 本発明の一実施形態において、セパレータ塗工液の溶媒として水を使用する場合、以下に示す有機溶媒を、溶媒全体の好ましくは20質量%以下となる範囲で併用してもよい。そのような有機溶媒としては、常圧における沸点が100℃以上300℃以下のものが好ましく、例えば、n-ドデカンなどの炭化水素類;2-エチル-1-ヘキサノール、1-ノナノールなどのアルコール類;γ-ブチロラクトン、乳酸メチルなどのエステル類;N-メチルピロリドン、N,N-ジメチルアセトアミド、ジメチルホルムアミドなどのアミド類;ジメチルスルホキシド、スルホランなどのスルホキシド・スルホン類などの有機分散媒が挙げられる。 In the embodiment of the present invention, when water is used as a solvent for the separator coating liquid, the following organic solvents may be used in combination within a range of preferably 20% by mass or less of the whole solvent. As such an organic solvent, one having a boiling point of 100 ° C. or more and 300 ° C. or less at normal pressure is preferable, for example, hydrocarbons such as n-dodecane; alcohols such as 2-ethyl-1-hexanol, 1-nonanol Esters such as γ-butyrolactone and methyl lactate; amides such as N-methylpyrrolidone, N, N-dimethylacetamide and dimethylformamide; and organic dispersion media such as sulfoxide and sulfones such as dimethylsulfoxide and sulfolane.
 前記セパレータ塗工液における溶媒の量は、前記α-オレフィン-マレイン酸類共重合体の中和塩10質量部に対し、通常、50~250質量部であることが好ましく、より好ましくは70~200質量部である。α-オレフィン-マレイン酸類共重合体の量が過度に少ないと粘度が低くなり塗工性が低下し、セパレータ基材表面を十分被覆することができず、ショートが発生するなど良好な電池特性が発現しなくなる場合がある。逆に、α-オレフィン-マレイン酸類共重合体の量が過度に多いと粘度が高くなり塗工性が低下し、セパレータ基材表面を十分被覆することができないおそれがあり、また電気抵抗も増大するため放電容量が低下する可能性がある。 The amount of the solvent in the separator coating liquid is usually preferably 50 to 250 parts by mass, more preferably 70 to 200 parts by mass with respect to 10 parts by mass of the neutralized salt of the α-olefin-maleic acid copolymer. It is a mass part. If the amount of the α-olefin-maleic acid copolymer is too small, the viscosity is lowered and the coatability is lowered, the surface of the separator substrate can not be sufficiently covered, and good battery characteristics such as shorting occur. It may not be expressed. On the contrary, if the amount of the α-olefin-maleic acid copolymer is too large, the viscosity becomes high, the coatability may be reduced, the surface of the separator substrate may not be sufficiently coated, and the electric resistance is also increased. Discharge capacity may be reduced.
 本発明のセパレータ塗工液(またはスラリー組成物)は、塗工液またはスラリー組成物を構成すべきポリマー組成物(好ましくはバインダー組成物)並びに溶媒を混合・分散し、その後、必要に応じて、金属酸化物または金属塩、無機粒子、界面活性剤等の分散剤、増粘剤、湿潤剤、消泡剤等の添加剤を加えて混合することにより製造することができる。塗工液またはスラリー組成物を得る方法は特に限定されないが、機械攪拌法、超音波分散法、高圧分散法、メディア分散法などを挙げることができる。なかでも、無機フィラーを高度に分散させることができ、また短時間で非水溶性である金属酸化物および/または金属塩と水溶性である本実施形態のバインダー樹脂をなじませることが可能となるという点で、機械攪拌法が好ましい。混合順序は特に制限されないが、塗工液またはスラリー組成物に沈殿物の発生などの障害が生じないよう留意がなされる。 The separator coating liquid (or slurry composition) of the present invention mixes and disperses the polymer composition (preferably a binder composition) to be included in the coating liquid or slurry composition and the solvent, and then, if necessary, It can manufacture by adding and mixing additives, such as dispersing agents, such as metal oxides or metal salts, inorganic particles and surfactants, thickeners, wetting agents and antifoaming agents. Although the method of obtaining a coating liquid or a slurry composition is not specifically limited, A mechanical stirring method, an ultrasonic dispersion method, a high pressure dispersion method, a media dispersion method etc. can be mentioned. Above all, the inorganic filler can be highly dispersed, and the binder resin of the present embodiment, which is water-soluble with the metal oxide and / or metal salt that is water-insoluble in a short time, can be made to blend with each other. Mechanical agitation is preferred in that respect. The order of mixing is not particularly limited, but care should be taken so that the coating liquid or the slurry composition does not have an obstacle such as generation of a precipitate.
 さらに、本発明は、セパレータ基材と、前記セパレータ用塗工液から該基材上に形成されてなるセパレータ塗膜層を備える、非水電解質電池セパレータにも関する。 Furthermore, the present invention also relates to a non-aqueous electrolyte battery separator comprising a separator substrate and a separator coating layer formed on the substrate from the coating solution for the separator.
 本発明の一実施形態において、非水電解質電池用セパレータは、上述したセパレータ塗工液をセパレータ基材に塗工して、セパレータ基材表面にセパレータ塗膜層(被覆層)を形成することによって得ることができる。セパレータ塗工液をセパレータ基材に塗工する方法に特に制限はなく、例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、浸漬法、ハケ塗り法などの方法が挙げられる。 In one embodiment of the present invention, the non-aqueous electrolyte battery separator is formed by applying the above-described separator coating liquid to a separator substrate to form a separator coating layer (coating layer) on the surface of the separator substrate. You can get it. There is no particular limitation on the method of coating the separator coating liquid on the separator substrate, and, for example, the doctor blade method, dip method, reverse roll method, direct roll method, gravure method, extrusion method, immersion method, brush coating method, etc. Method is mentioned.
 セパレータ基材の表面における、セパレータ塗工液で被覆した層の付着量としては特に制限はないが、1.0~30g/mが好ましく、更に4.0~20g/mがより好ましい。被覆層の付着量が1.0g/m未満であると、セパレータ基材表面を十分被覆することができず、細孔径が大きくなり、ショートが発生するなど良好な電池特性が発現しなくなる場合がある。一方、被覆した層の付着量が30g/mを超えると、セパレータの薄膜化が困難となる場合がある。 The surface of the separator base material is not particularly limited as coating weight of the layer coated with the separator coating solution is preferably 1.0 ~ 30g / m 2, further 4.0 ~ 20g / m 2 is more preferable. When the adhesion amount of the covering layer is less than 1.0 g / m 2 , the surface of the separator substrate can not be sufficiently covered, the pore diameter becomes large, and good battery characteristics do not appear, such as occurrence of short circuit. There is. On the other hand, if the adhesion amount of the coated layer exceeds 30 g / m 2 , it may be difficult to thin the separator.
 本発明の非水電解質電池セパレータは、非水電解質電池において電池の充放電を妨げることなく電極の短絡を防止し得る。 The non-aqueous electrolyte battery separator of the present invention can prevent short circuiting of the electrodes in the non-aqueous electrolyte battery without interfering with charging and discharging of the battery.
 前記実施形態において、セパレータ基材としては、例えば、フィルム状、紙状、不織布状の多孔質基材、とりわけ微細な孔を有する有機材料からなる多孔質フィルムや不織布等を用いることができる。 In the embodiment, as the separator substrate, for example, a film-like, paper-like, non-woven porous substrate, particularly a porous film or non-woven fabric made of an organic material having fine pores can be used.
 より具体的には、セパレータ基材の構成材料としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート及びそれらの誘導体、芳香族ポリエステル、全芳香族ポリエステルなどのポリエステル、ポリオレフィン、アクリル、ポリアセタール、ポリカーボネート、脂肪族ポリケトン、芳香族ポリケトン、脂肪族ポリアミド、芳香族ポリアミド、全芳香族ポリアミド、ポリイミド、ポリアミドイミド、ポリフェニレンスルフィド、ポリベンゾイミダゾール、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリ(パラ-フェニレンベンゾビスチアゾール)、ポリ(パラ-フェニレン-2,6-ベンゾビスオキサゾール)、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリビニルアルコール、ポリウレタン及びポリ塩化ビニルなどの樹脂からなる繊維並びにセルロース繊維などが挙げられる。セパレータ基材として、これらの構成材料の2種以上を組み合わせて含有していても構わない。 More specifically, as a constituent material of the separator substrate, polyethylene terephthalate, polybutylene terephthalate and derivatives thereof, polyester such as aromatic polyester, wholly aromatic polyester, polyolefin, acrylic, polyacetal, polycarbonate, aliphatic polyketone, Aromatic polyketone, aliphatic polyamide, aromatic polyamide, wholly aromatic polyamide, polyimide, polyamideimide, polyphenylene sulfide, polybenzimidazole, polyetheretherketone, polyethersulfone, poly (para-phenylenebenzobisthiazole), poly ( Para-phenylene-2,6-benzobisoxazole), polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl alcohol, polyurethane and poly salt Such fibers and cellulosic fibers made of a resin such as vinyl and the like. As a separator base material, you may contain combining 2 or more types of these structural materials.
 本発明の一実施形態において、非水電解質電池セパレータが、多孔質基材と、その少なくとも片面に上記バインダー組成物と金属酸化物および/または金属塩とを含む被覆層とを備える場合、金属酸化物および/または金属塩を含むスラリーから形成される被覆層の平滑性が電池性能に大きく影響することから、フィルム状であることが好ましい。多孔質基材を構成する樹脂としては、充放電反応の異常時に孔が閉塞するシャットダウン機能の観点から、樹脂の融点(軟化点)が、好ましくは70~150℃、さらに好ましくは80~140℃、最も好ましくは100~130℃の範囲にある樹脂が挙げられる。 In one embodiment of the present invention, when the non-aqueous electrolyte battery separator is provided with a porous substrate and a covering layer containing the binder composition and the metal oxide and / or metal salt on at least one side thereof, metal oxidation Since the smoothness of the coating layer formed from the slurry containing the metal and / or the metal salt greatly affects the cell performance, it is preferably in the form of a film. As the resin constituting the porous substrate, the melting point (softening point) of the resin is preferably 70 to 150 ° C., more preferably 80 to 140 ° C., from the viewpoint of the shutdown function in which the pores are clogged when the charge / discharge reaction is abnormal. And most preferably in the range of 100.degree. To 130.degree.
 好ましい多孔質基材としては、耐熱性と透気性の観点から、構成する樹脂がポリオレフィン系樹脂であるポリオレフィン微多孔膜が挙げられる。特に、電気絶縁性、イオン透過性、又は孔閉塞効果の観点から、構成する樹脂がポリエチレン樹脂であるポリエチレン微多孔膜または構成する樹脂がポリプロピレン樹脂であるポリプロピレン微多孔膜が好ましい。 As a preferable porous base material, the polyolefin microporous film whose resin which comprises from a viewpoint of heat resistance and air permeability is polyolefin resin is mentioned. In particular, from the viewpoint of electrical insulation, ion permeability, or pore blocking effect, a polyethylene microporous membrane in which the resin constituting is a polyethylene resin or a polypropylene microporous membrane in which the constituting resin is a polypropylene resin is preferable.
 多孔質基材として使用するポリオレフィン樹脂の重量平均分子量は、工程作業性や電極との倦回時に生じる様々な外圧に耐える機械強度(例えば、引張強度、弾性率、伸度、突き刺し強度)の観点から、好ましくは30万以上、さらに好ましくは40万以上、最も好ましくは50万以上である。また、入手性の観点から、該重量平均分子量は100万以下であることが好ましい。なお、ポリオレフィン樹脂を用いる際は、上記範囲の重量平均分子量を有するポリオレフィン成分が50質量%以上含有されていることが好ましく、60質量%以上含有されていることがより好ましい。上記範囲よりも含有量が少ない場合、溶融粘度が低いため、孔閉塞温度を越えて昇温した際の機械物性の低下により、孔閉塞温度付近でも倦回圧力や電極端部のバリなどによって溶融破膜が生じることがある。 The weight-average molecular weight of the polyolefin resin used as the porous substrate is in view of process workability and mechanical strength (for example, tensile strength, elastic modulus, elongation, puncture strength) that withstands various external pressures generated during winding with the electrode. Therefore, it is preferably at least 300,000, more preferably at least 400,000, and most preferably at least 500,000. Also, from the viewpoint of availability, the weight average molecular weight is preferably 1,000,000 or less. In addition, when using polyolefin resin, it is preferable that 50 mass% or more of the polyolefin component which has a weight average molecular weight of the said range is contained, and it is more preferable that 60 mass% or more is contained. If the content is less than the above range, the melt viscosity is low, and the mechanical properties drop when the temperature is raised above the pore blockage temperature, and melting occurs by winding pressure or burrs at the electrode end even near the pore blockage temperature. Membrane rupture may occur.
 多孔質基材の層構造は、特に限定されないが、製法により目的に応じた層構造を自由に持たせることができる。多孔質基材の製造方法としては、発泡法、相分離法、溶解再結晶法、延伸開孔法、粉末焼結法などがあり、これらの中では微細孔の均一化、コストの点で相分離法が好ましい。 Although the layer structure of the porous substrate is not particularly limited, a layer structure according to the purpose can be freely provided by the production method. As a method for producing a porous substrate, there are a foaming method, a phase separation method, a solution recrystallization method, a stretched pore method, a powder sintering method and the like. Separation methods are preferred.
 多孔質基材の透気抵抗度(JIS-P8117)は、好ましくは500秒/100ccAir以下、より好ましくは400秒/100ccAir以下、さらに好ましくは300秒/100ccAir以下であり、また、好ましくは50秒/100ccAir以上、より好ましくは70秒/100ccAir以上、さらに好ましくは100秒/100ccAir以上である。 The air resistance (JIS-P8117) of the porous substrate is preferably 500 seconds / 100 ccAir or less, more preferably 400 seconds / 100 ccAir or less, further preferably 300 seconds / 100 ccAir or less, and preferably 50 seconds. / 100 ccAir or more, more preferably 70 seconds / 100 cc Air or more, still more preferably 100 seconds / 100 cc Air or more.
 セパレータ基材の厚みは、通常0.5μm以上、好ましくは1μm以上であり、通常40μm以下、好ましくは30μm以下である。この範囲であると電池内でのセパレータ基材による抵抗が小さくなり、また、電池製造時の作業性に優れる。 The thickness of the separator substrate is usually 0.5 μm or more, preferably 1 μm or more, and usually 40 μm or less, preferably 30 μm or less. The resistance by the separator base material in a battery will become small as it is this range, and it is excellent in the workability at the time of battery manufacture.
 セパレータ塗工液に含まれる水などの溶媒を、セパレータ基材へ塗工した後に乾燥させる方法は特に制限されず、例えば温風、熱風、低湿風による通気乾燥;真空乾燥;赤外線、遠赤外線、電子線などの照射線乾燥などが挙げられる。乾燥条件は、応力集中によってセパレータ用塗工液で被覆した層に亀裂が入ったり、セパレータ用塗工液で被覆した層がセパレータから剥離しない程度の乾燥速度の範囲内で、できるだけ早く溶媒が除去できるように調整するとよい。 The method for drying the solvent such as water contained in the separator coating liquid after applying it to the separator substrate is not particularly limited. For example, dry drying with warm air, hot air, low humidity air; vacuum drying; infrared rays, far infrared rays, Radiation drying such as electron beam may be mentioned. As for the drying conditions, the solvent is removed as quickly as possible within the range of the drying speed at which the layer coated with the separator coating liquid is cracked due to stress concentration or the layer coated with the separator coating liquid does not peel from the separator You should adjust as you can.
 乾燥温度としては、100℃以下が好ましく、より好ましくは90℃以下、さらに好ましくは80℃以下である。加熱乾燥時間は数秒~数分間とすることが好ましい。加熱乾燥温度が100℃より大きい場合、多孔質基材のシャットダウン機能が発現して電池特性が悪化する可能性がある。 As a drying temperature, 100 degrees C or less is preferable, More preferably, it is 90 degrees C or less, More preferably, it is 80 degrees C or less. The heating and drying time is preferably several seconds to several minutes. When the heating and drying temperature is higher than 100 ° C., the shutdown function of the porous substrate may be developed to deteriorate the battery characteristics.
 本発明の一実施形態において、非水電解質電池用セパレータは、その坪量は10.0~50.0g/mであることが好ましく、15.0~40.0g/mであることがより好ましい。また、セパレータの厚みは10.0~50.0μmであることが好ましく、15.0~40.0μmであることがより好ましい。セパレータの密度は0.4~1.2g/cmであることが好ましく、0.6~1.0g/cmであることがより好ましい。 In one embodiment of the present invention, a nonaqueous electrolyte battery separator preferably has a basis weight is 10.0 ~ 50.0g / m 2, it is 15.0 ~ 40.0g / m 2 More preferable. The thickness of the separator is preferably 10.0 to 50.0 μm, and more preferably 15.0 to 40.0 μm. The density of the separator is preferably 0.4 to 1.2 g / cm 3 , and more preferably 0.6 to 1.0 g / cm 3 .
 前記実施形態において、前記セパレータ塗工液を塗工・乾燥後、前記塗膜層(被覆層)表面の平坦化や厚みをコントロールする目的で、圧延やカレンダー処理によりセパレータ塗膜層を平滑化してもよい。 In the above embodiment, after coating and drying the separator coating liquid, the separator coating layer is smoothed by rolling or calendering for the purpose of controlling the surface flatness and thickness of the coating layer (coating layer). It is also good.
 さらに、本発明は、上記セパレータと、負極と、正極と、電解液を備えた、非水電解質電池にも関する。 Furthermore, the present invention also relates to a non-aqueous electrolyte battery comprising the above-mentioned separator, a negative electrode, a positive electrode, and an electrolytic solution.
 本発明の一実施形態において、非水電解質電池の負極及び正極に使用される集電体は、導電性材料からなるものであれば特に制限されないが、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などの金属材料を使用することができる。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 In the embodiment of the present invention, the current collector used for the negative electrode and the positive electrode of the non-aqueous electrolyte battery is not particularly limited as long as it is made of a conductive material, and for example, iron, copper, aluminum, nickel, stainless steel Metal materials such as steel, titanium, tantalum, gold and platinum can be used. One of these may be used alone, or two or more of them may be used in combination at an arbitrary ratio.
 前記実施形態では負極として、非水電解質電池で通常用いられる材料を用いることができる。例えば、Li、Na、C、Mg、Al、Si、P、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Y、Zr、Nb、Mo、Pd、Ag、Cd、In、Sn、Sb、W、Pb及びBiよりなる群から選ばれた少なくとも一種以上の元素、これらの元素を用いた合金、酸化物、カルコゲン化物又はハロゲン化物などが使用される。さらに、例えば、アモルファスカーボン、グラファイト、天然黒鉛、メソカーボンマイクロビーズ(MCMB)、ピッチ系炭素繊維などの炭素質材料;ポリアセン等の導電性高分子;SiOx,SnOx,LiTiOxで表される複合金属酸化物やその他の金属酸化物やリチウム金属、リチウム合金などのリチウム系金属;TiS、LiTiSなどの金属化合物などが例示される。 In the said embodiment, the material normally used by a non-aqueous electrolyte battery can be used as a negative electrode. For example, Li, Na, C, Mg, Al, Si, P, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Y, Zr, Nb, At least one or more elements selected from the group consisting of Mo, Pd, Ag, Cd, In, Sn, Sb, W, Pb and Bi, alloys using these elements, oxides, chalcogenides or halides, etc. used. Furthermore, for example, carbonaceous materials such as amorphous carbon, graphite, natural graphite, mesocarbon microbeads (MCMB), pitch carbon fibers, etc .; conductive polymers such as polyacene; complex metal oxides represented by SiOx, SnOx, LiTiOx And other metal oxides and lithium metals such as lithium metal and lithium alloy; and metal compounds such as TiS 2 and LiTiS 2 .
 前記実施形態では、必要に応じて、さらに増粘剤を添加することができる。添加できる増粘剤としては、特に限定されるものではなく、種々のアルコール類、特に、ポリビニルアルコールおよびその変性物、セルロース類、でんぷんなどの多糖類を使用することができる。 In the said embodiment, a thickener can be further added as needed. The thickener to be added is not particularly limited, and various alcohols, in particular, polyvinyl alcohol and its modified products, celluloses, polysaccharides such as starch, etc. can be used.
 増粘剤の使用量は、負極活物質100部に対し0.1~4質量部程度であることが好ましく、より好ましくは0.3~3質量部、さらに好ましくは0.5~2質量部である。増粘剤が過度に少ないと負極活物質及び溶媒を含むスラリー組成物(以下、単に負極用スラリー組成物とも称する)の粘度が低すぎて混合層の厚みが薄くなる場合があり、逆に、増粘剤が過度に多いと放電容量が低下する場合がある。 The amount of the thickener used is preferably about 0.1 to 4 parts by mass, more preferably 0.3 to 3 parts by mass, and still more preferably 0.5 to 2 parts by mass with respect to 100 parts of the negative electrode active material. It is. If the amount of the thickener is excessively small, the viscosity of the slurry composition containing the negative electrode active material and the solvent (hereinafter, also simply referred to as a negative electrode slurry composition) may be too low and the thickness of the mixed layer may be reduced. An excessive amount of thickener may reduce the discharge capacity.
 また、負極用スラリー組成物に必要に応じて配合される導電助剤としては、例えば、金属粉、導電性ポリマー、アセチレンブラックなどが挙げられる。導電助剤の使用量は、負極活物質100質量部に対し、通常、0.5~10質量部であることが好ましく、より好ましくは1~7質量部である。 Moreover, as a conductive support agent mix | blended as needed with the slurry composition for negative electrodes, a metal powder, a conductive polymer, acetylene black etc. are mentioned, for example. The amount of the conductive additive used is usually preferably 0.5 to 10 parts by mass, and more preferably 1 to 7 parts by mass with respect to 100 parts by mass of the negative electrode active material.
 負極は、上述したような負極活物質を、導電助剤と、SBR、NBR、アクリルゴム、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ポリフッ化ビニリデンなどのバインダー等とを、水や上記の常圧における沸点が100℃以上300℃以下の溶媒などに混合して調製した負極用スラリーを、上述したような集電体、例えば、銅等の負極集電体に塗布して溶媒を乾燥させることにより形成することができる。 The negative electrode is a negative electrode active material as described above, a conductive additive, and a binder such as SBR, NBR, acrylic rubber, hydroxyethyl cellulose, carboxymethyl cellulose, polyvinylidene fluoride and the like, and a boiling point of 100 or more at water under normal pressure. The slurry for the negative electrode prepared by mixing in a solvent or the like at a temperature of 300 ° C. to 300 ° C. is applied to the current collector as described above, for example, a negative electrode current collector such as copper, and dried. it can.
 前記実施形態では、正極として、非水電解質電池に通常使用される正極が特に制限なく使用される。例えば、正極活物質としては、TiS、TiS、非晶質MoS、Cu、非晶質VO-P、MoO、VO5、V13などの遷移金属酸化物やLiCoO、LiNiO、LiMnO、LiMnなどのリチウム含有複合金属酸化物などが使用される。また、正極活物質を、上記負極と同様の導電助剤や増粘剤、SBR、NBR、アクリルゴム、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ポリフッ化ビニリデンなどのバインダーとを、水や上記の常圧における沸点が100℃以上300℃以下の溶媒などに混合して調製した正極用スラリー組成物を、例えば、アルミニウム等の正極集電体に塗布して溶媒を乾燥させて正極とすることができる。 In the said embodiment, the positive electrode normally used for a non-aqueous electrolyte battery is used without a restriction | limiting in particular as a positive electrode. For example, as a positive electrode active material, TiS 2 , TiS 3 , amorphous MoS 3 , Cu 2 V 2 O 3 , amorphous V 2 O-P 2 O 5 , MoO 3 , V 2 O 5, V 6 O 13 And transition metal oxides such as LiCoO 2 , LiNiO 2 , LiMnO 2 , and lithium-containing composite metal oxides such as LiMn 2 O 4 are used. In addition, a positive electrode active material, a conductive auxiliary agent similar to that of the above negative electrode, a thickener, and a binder such as SBR, NBR, acrylic rubber, hydroxyethyl cellulose, carboxymethyl cellulose, polyvinylidene fluoride, etc. The slurry composition for a positive electrode prepared by mixing in a solvent or the like at 100 ° C. or more and 300 ° C. or less may be applied to a positive electrode current collector such as aluminum, for example, and the solvent may be dried to form a positive electrode.
 それぞれの電極用スラリー組成物を集電体へ塗布する方法は、特に制限されない。例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、浸漬法、ハケ塗り法などの方法が挙げられる。塗布する量も特に制限されないが、溶媒または分散媒を乾燥などの方法によって除去した後に形成される活物質、導電助剤、バインダーおよび増粘剤を含む混合層の厚みが好ましくは0.005~5mm、より好ましくは0.01~2mmとなる量が一般的である。 The method for applying each of the electrode slurry compositions to the current collector is not particularly limited. For example, methods such as a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, an immersion method, and a brush coating method can be mentioned. The application amount is also not particularly limited, but the thickness of the mixed layer containing the active material, the conductive aid, the binder and the thickener, which is formed after the solvent or dispersion medium is removed by a method such as drying, is preferably 0.005 to An amount of 5 mm, more preferably 0.01 to 2 mm is generally used.
 電極用スラリー組成物に含まれる水などの溶媒の乾燥方法は特に制限されず、例えば温風、熱風、低湿風による通気乾燥;真空乾燥;赤外線、遠赤外線、電子線などの照射線乾燥などが挙げられる。乾燥条件は、応力集中によって活物質層に亀裂が入ったり、活物質層が集電体から剥離しない程度の乾燥速度の範囲内で、できるだけ早く溶媒が除去できるように調整するとよい。更に、電極の活物質の密度を高めるために、乾燥後の集電体をプレスすることは有効である。プレス方法としては、金型プレスやロールプレスなどの方法が挙げられる。 The drying method of the solvent such as water contained in the slurry composition for electrodes is not particularly limited. For example, through-air drying with warm air, hot air, low humidity air; vacuum drying; irradiation drying of infrared rays, far infrared rays, electron beam, etc. It can be mentioned. The drying conditions may be adjusted so that the solvent can be removed as quickly as possible within the range of a drying rate at which the active material layer is not cracked due to stress concentration or the active material layer does not peel from the current collector. Furthermore, in order to increase the density of the active material of the electrode, it is effective to press the dried current collector. Examples of the pressing method include methods such as a die press and a roll press.
 また、前記実施形態の非水電解質電池には、電解質を溶媒に溶解させた電解液を使用することができる。電解液は、通常の非水電解質電池に用いられるものであれば、液状でもゲル状でもよく、負極活物質、正極活物質の種類に応じて電池としての機能を発揮するものを適宜選択すればよい。具体的な電解質としては、例えば、従来公知のリチウム塩がいずれも使用できLiClO、LiBF、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiB10Cl10、LiAlCl4、LiCl、LiBr、LiB(C、CFSOLi、CHSOLi、LiCFSO、LiCSO、Li(CFSON、低級脂肪族カルボン酸リチウムなどが挙げられる。 Moreover, the electrolyte which dissolved the electrolyte in the solvent can be used for the non-aqueous electrolyte battery of the said embodiment. The electrolytic solution may be liquid or gel as long as it is used in a normal non-aqueous electrolyte battery, and an electrolyte that exhibits the function as a battery may be appropriately selected according to the types of the negative electrode active material and the positive electrode active material. Good. Specific electrolytes, for example, conventionally known lithium salt are both available LiClO 4, LiBF 6, LiPF 6 , LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiB 10 Cl 10, LiAlC l4, LiCl, LiBr, LiB ( C 2 H 5) 4, CF 3 SO 3 Li, CH 3 SO 3 Li, LiCF 3 SO 3, LiC 4 F 9 SO 3, Li (CF 3 SO 2) 2 N, lower Examples thereof include lithium aliphatic carboxylic acid.
 このような電解質を溶解させる溶媒(電解液溶媒)は特に限定されない。具体例としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネートなどのカーボネート類;γ-ブチルラクトンなどのラクトン類;トリメトキシメタン、1,2-ジメトキシエタン、ジエチルエーテル、2-エトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフランなどのエーテル類;ジメチルスルホキシドなどのスルホキシド類;1,3-ジオキソラン、4―メチル-1,3―ジオキソランなどのオキソラン類;アセトニトリルやニトロメタンなどの含窒素化合物類;ギ酸メチル、酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチルなどの有機酸エステル類;リン酸トリエチル、炭酸ジメチル、炭酸ジエチルなどの無機酸エステル類;ジグライム類;トリグライム類;スルホラン類;3-メチル-2-オキサゾリジノンなどのオキサゾリジノン類;1,3-プロパンスルトン、1,4-ブタンスルトン、ナフタスルトンなどのスルトン類などが挙げられ、これらは単独でもしくは二種以上を混合して使用できる。ゲル状の電解液を用いるときは、ゲル化剤としてニトリル系重合体、アクリル系重合体、フッ素系重合体、アルキレンオキサイド系重合体などを加えることができる。 The solvent (electrolyte solution solvent) for dissolving such an electrolyte is not particularly limited. Specific examples thereof include carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate and diethyl carbonate; lactones such as γ-butyl lactone; trimethoxymethane, 1,2-dimethoxyethane, diethyl ether, 2-ethoxy Ethers such as ethane, tetrahydrofuran, 2-methyltetrahydrofuran; sulfoxides such as dimethyl sulfoxide; oxolanes such as 1,3-dioxolane and 4-methyl-1,3-dioxolane; nitrogen-containing compounds such as acetonitrile and nitromethane; Organic acid esters such as methyl formate, methyl acetate, ethyl acetate, butyl acetate, methyl propionate, and ethyl propionate; inorganic acids such as triethyl phosphate, dimethyl carbonate and diethyl carbonate Stils; diglymes; triglymes; sulfolanes; oxazolidinones such as 3-methyl-2-oxazolidinone; sultones such as 1,3-propane sultone, 1,4-butane sultone, naphtha sultone, etc. Or in combination of two or more. When a gel electrolyte solution is used, a nitrile polymer, an acrylic polymer, a fluorine polymer, an alkylene oxide polymer or the like can be added as a gelling agent.
 前記実施形態の非水電解質電池を製造する方法としては、特に限定はないが、例えば、次の製造方法が例示される。すなわち、負極と正極とを、上述した本実施形態のセパレータを介して重ね合わせ、電池形状に応じて巻く、折るなどして、電池容器に入れ、電解液を注入して封口する。電池の形状は、公知のコイン型、ボタン型、シート型、円筒型、角型、扁平型など何れであってもよい。 Although there is no limitation in particular as a method of manufacturing the nonaqueous electrolyte battery of the above-mentioned embodiment, the following manufacturing method is illustrated, for example. That is, the negative electrode and the positive electrode are stacked through the separator of this embodiment described above, wound or folded according to the battery shape, and placed in a battery container, and an electrolytic solution is injected and sealed. The shape of the battery may be any of known coin type, button type, sheet type, cylindrical type, square type, flat type and the like.
 前記実施形態の非水電解質電池は、内部短絡及び抵抗上昇が起こりにくい電池であり、様々な用途に有用である。例えば、小型化、薄型化、軽量化、高性能化の要求される携帯端末に使用される電池としても有用であり、高い安全性が求められる電気自動車等の大型機器に使用される電池としても非常に有用である。 The non-aqueous electrolyte battery of the embodiment is a battery in which internal short circuiting and resistance increase are unlikely to occur, and is useful for various applications. For example, it is also useful as a battery used for portable terminals that are required to be smaller in size, thinner, lighter, and higher in performance, and also used in large devices such as electric vehicles that require high safety. Very useful.
 以下、本発明の実施例について説明するが、本発明はこれらに限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited thereto.
(実施例1)
<セパレータ用塗工液の調製>
 α-オレフィン類とマレイン酸類とが共重合したα-オレフィン-マレイン酸類共重合体の中和塩として水溶性のリチウム変性イソブテン-無水マレイン酸共重合体(平均分子量325,000、中和度0.5、開環率96%、α-オレフィン類に基づく単位(A)とマレイン酸類に基づく単位(B)のモル比(A)/(B)=1/1)25g(0.16mol)を用い、10質量%水溶液を調製して以下の試験で用いた。中和度の調整は、水酸化リチウムをマレイン酸類共重合体中のマレイン酸単位に対し1.0当量(0.160mol)添加することによって行った。このリチウム変性イソブテン-無水マレイン酸共重合体(平均分子量325,000、中和度0.5、開環率96%)10質量%水溶液とポリエチレンイミン(PEI、和光純薬工業株式会社製、平均分子量10000)10質量%水溶液とを99.9:0.1の質量比となるように混合した。得られた混合物を90℃に加温し、6時間加熱攪拌した。
 このようにして得たα-オレフィン-マレイン酸類共重合体の中和塩とポリアミン類とを含有する水溶液を溶媒としての水で希釈し、固形分濃度が5質量%の塗工液とした。
Example 1
<Preparation of Coating Liquid for Separator>
Water-soluble lithium-modified isobutene-maleic anhydride copolymer (average molecular weight 325,000, degree of neutralization 0) as a neutralized salt of α-olefin-maleic acid copolymer obtained by copolymerizing α-olefins and maleic acid .5, ring opening ratio 96%, molar ratio (A) / (B) = 1/1 of unit (A) based on α-olefins and unit (B) based on maleic acid (25) (0.16 mol) A 10% by weight aqueous solution was prepared and used in the following test. The degree of neutralization was adjusted by adding 1.0 equivalent (0.160 mol) of lithium hydroxide to the maleic acid unit in the maleic acid copolymer. This lithium-modified isobutene-maleic anhydride copolymer (average molecular weight 325,000, neutralization degree 0.5, ring opening ratio 96%) 10% by mass aqueous solution and polyethyleneimine (PEI, manufactured by Wako Pure Chemical Industries, Ltd., average It mixed so that it might become a mass ratio of 99.9: 0.1 with 10 mass% aqueous solution of molecular weight 10000. The resulting mixture was warmed to 90 ° C. and stirred for 6 hours with heating.
An aqueous solution containing a neutralized salt of the α-olefin-maleic acid copolymer thus obtained and a polyamine is diluted with water as a solvent to obtain a coating liquid having a solid content concentration of 5% by mass.
<被覆セパレータの作製>
 ポリビニルアルコール主体繊維(27cm×25cm、VPB033、クラレ製)を該塗工液中に浸漬した。実験用手動マングル(熊谷理機工業製)を使用し、上記セパレータ基材表面被覆液の希釈液で被覆されたセパレータを搾液処理後、室温で12時間乾燥した。乾燥後のシートを熱プレス装置(古川製作所製)でプレスし、厚さ20μmに調整した(ロール温度室温、速度1m/min、線圧100hg/cm)。付着量は2.1g/mであった。
<Preparation of coated separator>
A polyvinyl alcohol-based fiber (27 cm × 25 cm, VPB 033, manufactured by Kuraray) was immersed in the coating liquid. Using an experimental manual mangle (manufactured by Kumagaya Riki Kogyo Co., Ltd.), the separator coated with the diluted solution of the separator base material surface coating solution was subjected to an expression treatment and dried at room temperature for 12 hours. The sheet after drying was pressed by a heat press apparatus (manufactured by Furukawa Seisakusho), and the thickness was adjusted to 20 μm (roll temperature, room temperature, speed 1 m / min, linear pressure 100 hg / cm). The adhesion amount was 2.1 g / m 2 .
<負極用スラリーの作製>
 電極用スラリーは、活物質としての天然黒鉛(DMGS、BYD製)94質量部に対して、バインダーとして、スチレン-ブタジエンゴム(SBR、TRD2001、JSR製)の48.3質量%水分散液を固形分として3質量部、およびカルボキシメチルセルロールナトリウム(CMC、セロゲンBSH-6、第一工業製薬製)の1質量%水溶液を固形分として1質量部を、ならびに導電助剤(導電付与剤)としてSuper-P(ティムカル社製)を固形分として2質量部を、専用容器に投入し、遊星攪拌器(ARE-250、シンキー製)を用いて混練することにより作製した。スラリー中の活物質と導電助剤とバインダー(SBR-CMC)の組成比は、固形分として、天然黒鉛:導電助剤:SBR:CMC=94:2:3:1である。
<Preparation of Slurry for Negative Electrode>
The slurry for the electrode was a solid of 48.3 mass% aqueous dispersion of styrene-butadiene rubber (SBR, TRD 2001, JSR) as a binder relative to 94 parts by mass of natural graphite (DMGS, BYD made) as an active material. 1 part by weight of an aqueous solution of sodium carboxymethylcellulose (CMC, Cellogen BSH-6, manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) at 1% by mass as a solid, and as a conductive aid (conductive agent) A solid content of 2 parts by mass of Super-P (manufactured by Timcal) was charged into a dedicated container, and the mixture was kneaded by using a planetary stirrer (ARE-250, manufactured by Shinky). The composition ratio of the active material to the conductive aid and the binder (SBR-CMC) in the slurry is, as a solid content, natural graphite: conductive aid: SBR: CMC = 94: 2: 3: 1.
<電池用負極の作製>
 得られたスラリーを、バーコーター(T101、松尾産業製)を用いて集電体の銅箔(CST8G、福田金属箔粉工業製)上に塗工量が8.1mg/cmとなるように塗工し、80℃で30分間熱風乾燥機(ヤマト科学製)にて一次乾燥後、ロールプレス(宝泉製)を用いて圧延処理を行なった。その後、電池用電極(φ14mm)として打ち抜き後、120℃で3時間減圧条件の二次乾燥によってコイン電池用電極を作製した。
<Fabrication of negative electrode for battery>
The resulting slurry was applied using a bar coater (T101, manufactured by Matsuo Sangyo Co., Ltd.) so that the coating amount was 8.1 mg / cm 2 on the copper foil (CST 8G manufactured by Fukuda Metal Foil Co., Ltd.) of the current collector. After coating and primary drying with a hot air drier (manufactured by Yamato Scientific Co., Ltd.) at 80 ° C. for 30 minutes, rolling treatment was performed using a roll press (manufactured by Takasen). Thereafter, after punching out as a battery electrode (φ 14 mm), a coin battery electrode was manufactured by secondary drying at 120 ° C. for 3 hours under reduced pressure conditions.
<正極用スラリーの作製>
 電極用スラリーは、活物質としてのニッケル・コバルト・マンガン(NCM)92質量部に対して、バインダーとしてポリフッ化ビニリデン(PVDF)を固形分として5質量部を、および導電助剤(導電付与剤)としてデンカブラック(粉状、電気化学工業製)を固形分として3質量部を、専用容器に投入し、遊星攪拌器(ARE-250、シンキー製)を用いて混練することにより作製した。スラリー粘度調整のため、混練時は水を添加して再度混練することによって電極塗工用スラリーを作製した。スラリー中の活物質とバインダーの組成比は、固形分として、黒鉛粉末:導電助剤:バインダー組成物=92:3:5である。
<Preparation of Slurry for Positive Electrode>
The slurry for the electrode contains 5 parts by mass of polyvinylidene fluoride (PVDF) as a binder as a solid content, and 92 parts by mass of nickel cobalt manganese (NCM) as an active material, and a conductive aid (conductivity imparting agent) As a solid content, 3 parts by mass of Denka black (powdery, manufactured by Denki Kagaku Kogyo Co., Ltd.) was charged into a dedicated container, and was kneaded by using a planetary stirrer (ARE-250, manufactured by Shinky). In order to adjust the slurry viscosity, water was added at the time of kneading and kneading was performed again to prepare a slurry for electrode coating. The composition ratio of the active material to the binder in the slurry is, as a solid content, graphite powder: conductive auxiliary agent: binder composition = 92: 3: 5.
<評価方法:塗工性>
 上述の被覆セパレータについて、マイクロメーターを用い任意の10箇所の厚みを測定した。厚みムラが絶対値で1μmの範囲内(最も厚い部分と最も薄い部分の差が1μm以下)の場合を○とし、厚みムラが絶対値で1μmを超える場合を×とした。
<Evaluation method: Coating property>
The thickness of arbitrary ten places was measured using the micrometer about the above-mentioned coated separator. The case where the thickness unevenness is in the range of 1 μm in absolute value (the difference between the thickest portion and the thinnest portion is 1 μm or less) is ○, and the thickness unevenness exceeds 1 μm in absolute value is ×.
<電池用正極の作製>
 得られたスラリーを、フィルムアプリケーター(テスター産業製)を用いて集電体のアルミ箔(IN30-H、冨士加工紙製)上に塗工し、80℃で30分間熱風乾燥機(ヤマト科学製)にて一次乾燥後、ロールプレス(宝泉製)を用いて圧延処理を行なった。その後、電池用電極(φ14mm)として打ち抜き後、120℃で3時間減圧条件の二次乾燥によってコイン電池用電極を作製した。
<Production of positive electrode for battery>
The obtained slurry is coated on a current collector aluminum foil (IN30-H, made by Fuji processed paper) using a film applicator (manufactured by Tester Sangyo Co., Ltd.), and a hot air dryer (manufactured by Yamato Scientific Co., Ltd.) for 30 minutes at 80 ° C. After primary drying in 2.), rolling treatment was carried out using a roll press (manufactured by Takasen). Thereafter, after punching out as a battery electrode (φ 14 mm), a coin battery electrode was manufactured by secondary drying at 120 ° C. for 3 hours under reduced pressure conditions.
 <電池の作製>
 上記で得られた被覆セパレータ及び電池用負極をアルゴンガス雰囲気下のグローブボックス(美和製作所製)に移送した。上記で作製した正極と負極、および電解液は六フッ化リン酸リチウム(LiPF)のエチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート溶液(1mol/L LiPF、EC/DMC/EMC=1/1/1)を用いて、コイン電池(2032タイプ)を作製した。
<Fabrication of battery>
The coated separator and the battery negative electrode obtained above were transferred to a glove box (manufactured by Miwa Seisakusho) under an argon gas atmosphere. The positive electrode, the negative electrode, and the electrolyte prepared above are ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate solution (1 mol / L LiPF 6 , EC / DMC / EMC = 1/1/1) of lithium hexafluorophosphate (LiPF 6 ). A coin battery (2032 type) was produced using 1).
<評価方法:充放電特性試験>
 作製したコイン電池に対して、市販充放電試験機(TOSCAT3100、東洋システム製)を用いて充放電試験を実施した。コイン電池を25℃の恒温槽に置き、電池電圧が4.2Vになるまで0.2C(約0.5mA/cm)の定電流充電を行った。このときの容量を充電容量(mAh)とした。次いで、電池電圧が3Vになるまで0.2C(約0.5mA/cm)の定電流放電を行った。このときの容量を放電容量(mAh)とした。初期放電容量と充電容量差を不可逆容量、放電容量/充電容量の百分率を充放電効率とした。コイン電池の直流抵抗は、1回の充電を行った後(満充電状態)の抵抗値を採用した。上記結果を下記表1および表2に示す。
 上述の初期充放電後、コイン電池を80℃の恒温槽に置き、3.0~4.2Vの電圧範囲で10Cの定電流充電充放電を50サイクル行った。同試験後、短絡した電池の割合を算出した。結果を下記表1に示す。
<Evaluation method: charge and discharge characteristic test>
The charge and discharge test was implemented using the commercially available charge and discharge tester (TOSCAT3100, Toyo System make) with respect to the produced coin battery. The coin battery was placed in a 25 ° C. constant temperature bath, and constant current charging at 0.2 C (about 0.5 mA / cm 2 ) was performed until the battery voltage became 4.2V. The capacity at this time was taken as the charge capacity (mAh). Next, a constant current discharge of 0.2 C (about 0.5 mA / cm 2 ) was performed until the battery voltage was 3 V. The capacity at this time was taken as the discharge capacity (mAh). The difference between the initial discharge capacity and the charge capacity was taken as the irreversible capacity, and the percentage of the discharge capacity / charge capacity was taken as the charge / discharge efficiency. The direct current resistance of the coin battery adopted the resistance value after one charge (full charge state). The above results are shown in Tables 1 and 2 below.
After the above initial charge and discharge, the coin battery was placed in a thermostat bath at 80 ° C., and 50 cycles of constant current charge and discharge at 10 C were performed in a voltage range of 3.0 to 4.2 V. After the test, the percentage of batteries shorted was calculated. The results are shown in Table 1 below.
<評価方法:耐熱性試験>
 上記で得られたセパレータ塗工液の耐熱性について評価するため、セパレータ塗工液の一部を乾燥して得た固形分について熱分析計(ヤマト科学社製)を用いて熱重量測定を行い、固形分が50%以上重量減少した温度を熱分解温度と定めた。測定範囲温度25℃~600℃、昇温速度10℃/分にて測定を行った結果、熱分解温度は302℃であった。結果を下記表1および表2に示す。
<Evaluation method: Heat resistance test>
In order to evaluate the heat resistance of the separator coating liquid obtained above, the thermogravimetric measurement is performed using a thermal analyzer (manufactured by Yamato Scientific Co., Ltd.) on the solid content obtained by drying a part of the separator coating liquid. The temperature at which the solid content decreased by 50% or more was defined as the thermal decomposition temperature. The thermal decomposition temperature was 302 ° C. as a result of measurement at a measurement range temperature of 25 ° C. to 600 ° C. and a temperature rising rate of 10 ° C./min. The results are shown in Tables 1 and 2 below.
(実施例2)
 リチウム変性イソブテン-無水マレイン酸共重合体(平均分子量325,000、中和度0.5、開環率96%、α-オレフィン類に基づく単位(A)とマレイン酸類に基づく単位(B)のモル比(A)/(B)=1/1)10質量%水溶液とポリエチレンイミン(PEI、和光純薬工業株式会社製、平均分子量10000)10質量%水溶液とを99.67:0.33の質量比となるように混合した。得られた混合物を90℃に加温し、6時間加熱攪拌した。得られた水溶液を希釈し、該中和塩の水溶液中濃度が5質量%の塗工液とした。
 被覆セパレータを上記実施例1と同様の方法によって作製した。さらに、上記実施例1と同様の方法によって電池用負極を作製し、コイン電池を得て、充放電特性試験を行った。上記結果を下記表1および表2に示す。また上記実施例1と同様の方法によってセパレータ塗工液の固形分の熱分解温度の測定を行った。結果を下記表1および表2に示す。
(Example 2)
Lithium-modified isobutene-maleic anhydride copolymer (average molecular weight 325,000, neutralization degree 0.5, ring opening rate 96%, unit based on α-olefins (A) and unit based on maleic acid (B) Molar ratio (A) / (B) = 1/1 of 99.67: 0.33 of 10% by weight aqueous solution and polyethyleneimine (PEI, Wako Pure Chemical Industries, Ltd., average molecular weight 10000) 10% by weight aqueous solution It mixed so that it might become mass ratio. The resulting mixture was warmed to 90 ° C. and stirred for 6 hours with heating. The obtained aqueous solution was diluted to obtain a coating liquid having a concentration of 5% by mass of the neutralized salt in the aqueous solution.
A coated separator was produced in the same manner as in Example 1 above. Furthermore, the negative electrode for battery was produced by the method similar to the said Example 1, the coin battery was obtained, and the charge / discharge characteristic test was done. The above results are shown in Tables 1 and 2 below. Further, the thermal decomposition temperature of the solid content of the separator coating liquid was measured in the same manner as in Example 1 above. The results are shown in Tables 1 and 2 below.
(実施例3)
 リチウム変性イソブテン-無水マレイン酸共重合体(平均分子量325,000、中和度0.5、開環率96%、α-オレフィン類に基づく単位(A)とマレイン酸類に基づく単位(B)のモル比(A)/(B)=1/1)10質量%水溶液とポリエチレンイミン(PEI、和光純薬工業株式会社製、平均分子量10000)10質量%水溶液とを99:1の質量比となるように混合した。得られた混合物を90℃に加温し、6時間加熱攪拌した。得られた水溶液を希釈し、固形分濃度が5質量%の塗工液とした。
 被覆セパレータを上記実施例1と同様の方法によって作製した。さらに、上記実施例1と同様の方法によって電池用負極を作製し、コイン電池を得て、充放電特性試験を行った。上記結果を下記表1および表2に示す。また上記実施例1と同様の方法によってセパレータ塗工液の固形分の熱分解温度の測定を行った。結果を下記表1および表2に示す。
(Example 3)
Lithium-modified isobutene-maleic anhydride copolymer (average molecular weight 325,000, neutralization degree 0.5, ring opening rate 96%, unit based on α-olefins (A) and unit based on maleic acid (B) Molar ratio (A) / (B) = 1/1) The mass ratio of a 10% by mass aqueous solution to a 10% by mass aqueous solution of polyethyleneimine (PEI, manufactured by Wako Pure Chemical Industries, Ltd., average molecular weight 10000) is 99: 1 Mixed as. The resulting mixture was warmed to 90 ° C. and stirred for 6 hours with heating. The obtained aqueous solution was diluted to obtain a coating liquid having a solid content concentration of 5% by mass.
A coated separator was produced in the same manner as in Example 1 above. Furthermore, the negative electrode for battery was produced by the method similar to the said Example 1, the coin battery was obtained, and the charge / discharge characteristic test was done. The above results are shown in Tables 1 and 2 below. Further, the thermal decomposition temperature of the solid content of the separator coating liquid was measured in the same manner as in Example 1 above. The results are shown in Tables 1 and 2 below.
(実施例4)
 実施例1と同様の方法で調製したリチウム変性イソブテン-無水マレイン酸共重合体(平均分子量325,000、中和度0.7、開環率95%、α-オレフィン類に基づく単位(A)とマレイン酸類に基づく単位(B)のモル比(A)/(B)=1/1)10質量%水溶液とポリエチレンイミン(PEI、和光純薬工業株式会社製、平均分子量10000)10質量%水溶液とを99.67:0.33の質量比となるように混合した。得られた混合物を90℃に加温し、6時間加熱攪拌した。得られた水溶液を希釈し、固形分濃度が5質量%の塗工液とした。 被覆セパレータを上記実施例1と同様の方法によって作製した。さらに、上記実施例1と同様の方法によって電池用負極を作製し、コイン電池を得て、充放電特性試験を行った。上記結果を下記表1および表2に示す。また上記実施例1と同様の方法によってセパレータ塗工液の固形分の熱分解温度の測定を行った。結果を下記表1および表2に示す。
(Example 4)
Lithium-modified isobutene-maleic anhydride copolymer prepared by the same method as in Example 1 (average molecular weight 325,000, degree of neutralization 0.7, ring opening ratio 95%, unit based on α-olefins (A) Molar ratio (A) / (B) = 1/1 of a unit (B) based on a maleic acid compound and a 10% by weight aqueous solution and a 10% by weight aqueous solution of polyethyleneimine (PEI, Wako Pure Chemical Industries, Ltd., average molecular weight 10000) Were mixed so as to give a mass ratio of 99.67: 0.33. The resulting mixture was warmed to 90 ° C. and stirred for 6 hours with heating. The obtained aqueous solution was diluted to obtain a coating liquid having a solid content concentration of 5% by mass. A coated separator was produced in the same manner as in Example 1 above. Furthermore, the negative electrode for battery was produced by the method similar to the said Example 1, the coin battery was obtained, and the charge / discharge characteristic test was done. The above results are shown in Tables 1 and 2 below. Further, the thermal decomposition temperature of the solid content of the separator coating liquid was measured in the same manner as in Example 1 above. The results are shown in Tables 1 and 2 below.
(実施例5)
 実施例1と同様の方法で調製したリチウム変性イソブテン-無水マレイン酸共重合体(平均分子量325,000、中和度0.4、開環率95%、α-オレフィン類に基づく単位(A)とマレイン酸類に基づく単位(B)のモル比(A)/(B)=1/1)10質量%水溶液とポリエチレンイミン(PEI、和光純薬工業株式会社製、平均分子量10000)10質量%水溶液とを99.67:0.33の質量比となるように混合した。得られた混合物を90℃に加温し、6時間加熱攪拌した。得られた水溶液を希釈し、固形分濃度が5質量%の塗工液とした。
 被覆セパレータを上記実施例1と同様の方法によって作製した。さらに、上記実施例1と同様の方法によって電池用負極を作製し、コイン電池を得て、充放電特性試験を行った。上記結果を下記表1および表2に示す。また上記実施例1と同様の方法によってセパレータ塗工液の固形分の熱分解温度の測定を行った。結果を下記表1および表2に示す。
(Example 5)
Lithium-modified isobutene-maleic anhydride copolymer prepared by the same method as in Example 1 (average molecular weight 325,000, neutralization degree 0.4, ring opening ratio 95%, unit based on α-olefins (A) Molar ratio (A) / (B) = 1/1 of a unit (B) based on a maleic acid compound and a 10% by weight aqueous solution and a 10% by weight aqueous solution of polyethyleneimine (PEI, Wako Pure Chemical Industries, Ltd., average molecular weight 10000) Were mixed so as to give a mass ratio of 99.67: 0.33. The resulting mixture was warmed to 90 ° C. and stirred for 6 hours with heating. The obtained aqueous solution was diluted to obtain a coating liquid having a solid content concentration of 5% by mass.
A coated separator was produced in the same manner as in Example 1 above. Furthermore, the negative electrode for battery was produced by the method similar to the said Example 1, the coin battery was obtained, and the charge / discharge characteristic test was done. The above results are shown in Tables 1 and 2 below. Further, the thermal decomposition temperature of the solid content of the separator coating liquid was measured in the same manner as in Example 1 above. The results are shown in Tables 1 and 2 below.
(実施例6)
 実施例1と同様の方法で調製したリチウム変性メチルビニルエーテル-無水マレイン酸共重合体(平均分子量630,000、中和度0.5、開環率96%、α-オレフィン類に基づく単位(A)とマレイン酸類に基づく単位(B)のモル比(A)/(B)=1/1)10質量%水溶液とポリエチレンイミン(PEI、和光純薬工業株式会社製、平均分子量10000)10質量%水溶液とを99.67:0.33の質量比となるように混合した。得られた混合物を90℃に加温し、6時間加熱攪拌した。得られた水溶液を希釈し、固形分濃度が5質量%の塗工液とした。
 被覆セパレータを上記実施例1と同様の方法によって作製した。さらに、上記実施例1と同様の方法によって電池用負極を作製し、コイン電池を得て、充放電特性試験を行った。上記結果を下記表1および表2に示す。また上記実施例1と同様の方法によってセパレータ塗工液の固形分の熱分解温度の測定を行った。結果を下記表1および表2に示す。
(Example 6)
Lithium-modified methyl vinyl ether-maleic anhydride copolymer (average molecular weight 630,000, neutralization degree 0.5, ring opening ratio 96%, unit based on α-olefins (A), prepared by the same method as Example 1 And a unit (B) molar ratio based on maleic acid (A) / (B) = 1/1) 10% by mass aqueous solution and polyethyleneimine (PEI, manufactured by Wako Pure Chemical Industries, Ltd., average molecular weight 10000) 10% by mass The aqueous solution was mixed at a mass ratio of 99.67: 0.33. The resulting mixture was warmed to 90 ° C. and stirred for 6 hours with heating. The obtained aqueous solution was diluted to obtain a coating liquid having a solid content concentration of 5% by mass.
A coated separator was produced in the same manner as in Example 1 above. Furthermore, the negative electrode for battery was produced by the method similar to the said Example 1, the coin battery was obtained, and the charge / discharge characteristic test was done. The above results are shown in Tables 1 and 2 below. Further, the thermal decomposition temperature of the solid content of the separator coating liquid was measured in the same manner as in Example 1 above. The results are shown in Tables 1 and 2 below.
(実施例7)
 実施例1と同様の方法で調製したリチウム変性エチレン-無水マレイン酸共重合体(平均分子量350,000、中和度0.5、開環率96%、α-オレフィン類に基づく単位(A)とマレイン酸類に基づく単位(B)のモル比(A)/(B)=1/1)10質量%水溶液とポリエチレンイミン(PEI、和光純薬工業株式会社製、平均分子量10000)10質量%水溶液とを99.67:0.33の質量比となるように混合した。得られた混合物を90℃に加温し、6時間加熱攪拌した。得られた水溶液を希釈し、固形分濃度が5質量%の塗工液とした。
 被覆セパレータを上記実施例1と同様の方法によって作製した。さらに、上記実施例1と同様の方法によって電池用負極を作製し、コイン電池を得て、充放電特性試験を行った。上記結果を下記表1および表2に示す。また上記実施例1と同様の方法によってセパレータ塗工液の固形分の熱分解温度の測定を行った。結果を下記表1および表2に示す。
(Example 7)
Lithium-modified ethylene-maleic anhydride copolymer prepared by the same method as in Example 1 (average molecular weight 350,000, degree of neutralization 0.5, ring opening ratio 96%, unit based on α-olefins (A) Molar ratio (A) / (B) = 1/1 of a unit (B) based on a maleic acid compound and a 10% by weight aqueous solution and a 10% by weight aqueous solution of polyethyleneimine (PEI, Wako Pure Chemical Industries, Ltd., average molecular weight 10000) Were mixed so as to give a mass ratio of 99.67: 0.33. The resulting mixture was warmed to 90 ° C. and stirred for 6 hours with heating. The obtained aqueous solution was diluted to obtain a coating liquid having a solid content concentration of 5% by mass.
A coated separator was produced in the same manner as in Example 1 above. Furthermore, the negative electrode for battery was produced by the method similar to the said Example 1, the coin battery was obtained, and the charge / discharge characteristic test was done. The above results are shown in Tables 1 and 2 below. Further, the thermal decomposition temperature of the solid content of the separator coating liquid was measured in the same manner as in Example 1 above. The results are shown in Tables 1 and 2 below.
(実施例8)
 実施例1と同様の方法で調製したリチウム変性スチレン-無水マレイン酸共重合体(平均分子量11,000、中和度0.5、開環率94%、α-オレフィン類に基づく単位(A)とマレイン酸類に基づく単位(B)のモル比(A)/(B)=1/1)10質量%水溶液とポリエチレンイミン(PEI、和光純薬工業株式会社製、平均分子量10000)10質量%水溶液とを99.67:0.33の質量比となるように混合した。得られた混合物を90℃に加温し、6時間加熱攪拌した。得られた水溶液を希釈し、固形分濃度が5質量%の塗工液とした。
 被覆セパレータを上記実施例1と同様の方法によって作製した。さらに、上記実施例1と同様の方法によって電池用負極を作製し、コイン電池を得て、充放電特性試験を行った。上記結果を下記表1および表2に示す。また上記実施例1と同様の方法によってセパレータ塗工液の固形分の熱分解温度の測定を行った。結果を下記表1および表2に示す。
(Example 8)
Lithium-modified styrene-maleic anhydride copolymer prepared by the same method as in Example 1 (average molecular weight 11,000, neutralization degree 0.5, ring opening ratio 94%, unit based on α-olefins (A) Molar ratio (A) / (B) = 1/1 of a unit (B) based on a maleic acid compound and a 10% by weight aqueous solution and a 10% by weight aqueous solution of polyethyleneimine (PEI, Wako Pure Chemical Industries, Ltd., average molecular weight 10000) Were mixed so as to give a mass ratio of 99.67: 0.33. The resulting mixture was warmed to 90 ° C. and stirred for 6 hours with heating. The obtained aqueous solution was diluted to obtain a coating liquid having a solid content concentration of 5% by mass.
A coated separator was produced in the same manner as in Example 1 above. Furthermore, the negative electrode for battery was produced by the method similar to the said Example 1, the coin battery was obtained, and the charge / discharge characteristic test was done. The above results are shown in Tables 1 and 2 below. Further, the thermal decomposition temperature of the solid content of the separator coating liquid was measured in the same manner as in Example 1 above. The results are shown in Tables 1 and 2 below.
(実施例9)
 実施例1と同様の方法で調製したリチウム変性イソブテン-無水マレイン酸共重合体(平均分子量325,000、中和度0.5、開環率96%、α-オレフィン類に基づく単位(A)とマレイン酸類に基づく単位(B)のモル比(A)/(B)=1/1)10質量%水溶液とポリアリルアミン(PAA、ニットーボーメディカル社製、平均分子量3000)10質量%水溶液とを99.67:0.33の質量比となるように混合した。得られた混合物を90℃に加温し、1時間加熱攪拌した。得られた水溶液を希釈し、固形分濃度が5質量%の塗工液とした。
 被覆セパレータを上記実施例1と同様の方法によって作製した。さらに、上記実施例1と同様の方法によって電池用負極を作製し、コイン電池を得て、充放電特性試験を行った。上記結果を下記表1および表2に示す。また上記実施例1と同様の方法によってセパレータ塗工液の固形分の熱分解温度の測定を行った。結果を下記表1および表2に示す。
(Example 9)
Lithium-modified isobutene-maleic anhydride copolymer prepared by the same method as in Example 1 (average molecular weight 325,000, neutralization degree 0.5, ring opening ratio 96%, unit based on α-olefins (A) And a unit (B) molar ratio based on maleic acid (A) / (B) = 1/1 99% aqueous solution of 10% by mass aqueous solution of polyallylamine (PAA, Nittobo Medical, average molecular weight 3000) It mixed so that it might become mass ratio of .67: 0.33. The resulting mixture was heated to 90 ° C. and stirred for 1 hour while heating. The obtained aqueous solution was diluted to obtain a coating liquid having a solid content concentration of 5% by mass.
A coated separator was produced in the same manner as in Example 1 above. Furthermore, the negative electrode for battery was produced by the method similar to the said Example 1, the coin battery was obtained, and the charge / discharge characteristic test was done. The above results are shown in Tables 1 and 2 below. Further, the thermal decomposition temperature of the solid content of the separator coating liquid was measured in the same manner as in Example 1 above. The results are shown in Tables 1 and 2 below.
(実施例10)
 実施例1と同様の方法で調製したリチウム変性イソブテン-無水マレイン酸共重合体(平均分子量325,000、中和度0.5、開環率96%、α-オレフィン類に基づく単位(A)とマレイン酸類に基づく単位(B)のモル比(A)/(B)=1/1)10質量%水溶液とポリジアリルアミン(PAS、ニットーボーメディカル社製、平均分子量5000)10質量%水溶液とを99.67:0.33の質量比となるように混合した。得られた混合物を90℃に加温し、1時間加熱攪拌した。得られた水溶液を希釈し、固形分濃度が5質量%の塗工液とした。
 被覆セパレータを上記実施例1と同様の方法によって作製した。さらに、上記実施例1と同様の方法によって電池用負極を作製し、コイン電池を得て、充放電特性試験を行った。上記結果を下記表1および表2に示す。また上記実施例1と同様の方法によってセパレータ塗工液の固形分の熱分解温度の測定を行った。結果を下記表1および表2に示す。
(Example 10)
Lithium-modified isobutene-maleic anhydride copolymer prepared by the same method as in Example 1 (average molecular weight 325,000, neutralization degree 0.5, ring opening ratio 96%, unit based on α-olefins (A) And a unit (B) molar ratio based on maleic acid (A) / (B) = 1/1 99% aqueous solution of 10% by weight aqueous solution of polydiallylamine (PAS, manufactured by Nittobo Medical, average molecular weight 5000) It mixed so that it might become mass ratio of .67: 0.33. The resulting mixture was heated to 90 ° C. and stirred for 1 hour while heating. The obtained aqueous solution was diluted to obtain a coating liquid having a solid content concentration of 5% by mass.
A coated separator was produced in the same manner as in Example 1 above. Furthermore, the negative electrode for battery was produced by the method similar to the said Example 1, the coin battery was obtained, and the charge / discharge characteristic test was done. The above results are shown in Tables 1 and 2 below. Further, the thermal decomposition temperature of the solid content of the separator coating liquid was measured in the same manner as in Example 1 above. The results are shown in Tables 1 and 2 below.
(比較例1)
 実施例1と同様の方法で調製したリチウム変性イソブテン-無水マレイン酸共重合体(平均分子量325,000、中和度0.5、開環率96%、α-オレフィン類に基づく単位(A)とマレイン酸類に基づく単位(B)のモル比(A)/(B)=1/1)10質量%水溶液を塗工液として用い、被覆セパレータを上記実施例1と同様の方法によって作製した。また上記実施例1と同様の方法によってセパレータ塗工液の固形分の測定を行った。結果を下記表1および表2に示す。
(Comparative example 1)
Lithium-modified isobutene-maleic anhydride copolymer prepared by the same method as in Example 1 (average molecular weight 325,000, neutralization degree 0.5, ring opening ratio 96%, unit based on α-olefins (A) And a unit (B) molar ratio based on maleic acid (A) / (B) = 1/1) A coated separator was prepared in the same manner as in Example 1 using a 10% by mass aqueous solution as a coating solution. Further, the solid content of the separator coating liquid was measured by the same method as in Example 1 above. The results are shown in Tables 1 and 2 below.
(比較例2)
 実施例1と同様の方法で調製したリチウム変性メチルビニルエーテル-無水マレイン酸共重合体(平均分子量630,000、中和度0.5、開環率96%、α-オレフィン類に基づく単位(A)とマレイン酸類に基づく単位(B)のモル比(A)/(B)=1/1)10質量%水溶液を塗工液として用い、被覆セパレータを上記実施例1と同様の方法によって作製した。また上記実施例1と同様の方法によってセパレータ塗工液の固形分の熱分解温度の測定を行った。結果を下記表1および表2に示す。
(Comparative example 2)
Lithium-modified methyl vinyl ether-maleic anhydride copolymer (average molecular weight 630,000, neutralization degree 0.5, ring opening ratio 96%, unit based on α-olefins (A), prepared by the same method as Example 1 Molar ratio (A) / (B) = 1/1 of a unit (B) based on maleic acid group) and a 10% by mass aqueous solution were used as a coating solution, and a coated separator was prepared by the same method as in Example 1 above . Further, the thermal decomposition temperature of the solid content of the separator coating liquid was measured in the same manner as in Example 1 above. The results are shown in Tables 1 and 2 below.
(比較例3)
 実施例1と同様の方法で調製したリチウム変性スチレン-無水マレイン酸共重合体(平均分子量11,000、中和度0.5、開環率94%、α-オレフィン類に基づく単位(A)とマレイン酸類に基づく単位(B)のモル比(A)/(B)=4/1)10質量%水溶液を塗工液として用い、被覆セパレータを上記実施例1と同様の方法によって作製した。また上記実施例1と同様の方法によってセパレータ塗工液の固形分の熱分解温度の測定を行った。結果を下記表1および表2に示す。
(Comparative example 3)
Lithium-modified styrene-maleic anhydride copolymer prepared by the same method as in Example 1 (average molecular weight 11,000, neutralization degree 0.5, ring opening ratio 94%, unit based on α-olefins (A) And a unit (B) molar ratio based on maleic acid (A) / (B) = 4/1) Using a 10% by mass aqueous solution as a coating solution, a coated separator was produced by the same method as in Example 1 above. Further, the thermal decomposition temperature of the solid content of the separator coating liquid was measured in the same manner as in Example 1 above. The results are shown in Tables 1 and 2 below.
(比較例4)
 セパレータ用樹脂組成物としてCMC-Na1.0質量%水溶液を塗工液として用い、被覆セパレータを上記実施例1と同様の方法によって作製した。付着量は2.0g/mであった。さらに、上記実施例1と同様の方法によって電池用負極を作製し、コイン電池を得て、充放電特性試験を行った。また上記実施例1と同様の方法によってセパレータ塗工液の固形分の熱分解温度の測定を行った。結果を下記表1および表2に示す。
(Comparative example 4)
A coated separator was prepared in the same manner as in Example 1 using a 1.0% by mass aqueous solution of CMC-Na as a coating solution as a resin composition for a separator. The adhesion amount was 2.0 g / m 2 . Furthermore, the negative electrode for battery was produced by the method similar to the said Example 1, the coin battery was obtained, and the charge / discharge characteristic test was done. Further, the thermal decomposition temperature of the solid content of the separator coating liquid was measured in the same manner as in Example 1 above. The results are shown in Tables 1 and 2 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(実施例11)
<セパレータ塗工液の調製>
 実施例1と同様の方法で調製したリチウム変性イソブテン-無水マレイン酸共重合体(平均分子量325,000、中和度0.5、開環率96%、α-オレフィン類に基づく単位(A)とマレイン酸類に基づく単位(B)のモル比(A)/(B)=1/1)10質量%水溶液とポリエチレンイミン(PEI、和光純薬工業株式会社製、平均分子量1800)10質量%水溶液とを99.67:0.33の質量比となるように混合した。得られた混合物を90℃に加温し、6時間加熱攪拌した。この加熱溶液の一部を乾燥させて得られた固形分について、実施例1と同様に熱分解温度を測定した。
 上記で得られた加熱溶液を固形分濃度5質量%となるように水で希釈した後、リチウム変性イソブテン-無水マレイン酸共重合体とポリエチレンイミンの合計量に対し、水系エマルションとしてTRD2001(SBR、JSR製、ポリマー粒子の平均粒子径:200nm)を固形分で90:10の質量比となるよう混合し、セパレータ塗工液(固形分濃度5.5質量%)を得た。
(Example 11)
<Preparation of Separator Coating Liquid>
Lithium-modified isobutene-maleic anhydride copolymer prepared by the same method as in Example 1 (average molecular weight 325,000, neutralization degree 0.5, ring opening ratio 96%, unit based on α-olefins (A) Molar ratio (A) / (B) = 1/1 of a unit (B) based on maleic acid compounds and a 10% by weight aqueous solution and a 10% by weight aqueous solution of polyethyleneimine (PEI, manufactured by Wako Pure Chemical Industries, Ltd., average molecular weight 1800) Were mixed so as to give a mass ratio of 99.67: 0.33. The resulting mixture was warmed to 90 ° C. and stirred for 6 hours with heating. About the solid content obtained by drying a part of this heating solution, the thermal decomposition temperature was measured similarly to Example 1.
The heating solution obtained above is diluted with water so that the solid content concentration becomes 5% by mass, and then the total amount of lithium-modified isobutene-maleic anhydride copolymer and polyethylene imine is TRD 2001 (SBR, as an aqueous emulsion). The average particle size of polymer particles manufactured by JSR: 200 nm) was mixed so that the solid content was 90:10 mass ratio, to obtain a separator coating liquid (solid content concentration: 5.5 mass%).
<ポリマー粒子の粒径測定方法>
 動的光散乱法を測定原理とする粒度分布測定装置(FPAR-1000_大塚電子製)を用いて水系エマルションを測定し、得られる粒子数の累積度数が50%となる値をポリマー粒子の平均粒子径とした。
<Method for measuring particle size of polymer particles>
The aqueous emulsion is measured using a particle size distribution analyzer (FPAR-1000 _ made by Otsuka Electronics Co., Ltd.) whose measurement principle is based on the dynamic light scattering method, and the value at which the cumulative frequency of the number of particles obtained is 50% is the average of the polymer particles. It was the particle size.
<被覆セパレータの作製>
 このセパレータ塗工液を、ポリプロピレン系セパレータ基材(セルガード#2400、ポリポア製)上に塗工、室温で12時間乾燥した。乾燥後のシートを熱プレス装置(古川製作所製)でプレスし、厚さ20μmに調整した(ロール温度室温、速度1m/min、線圧100hg/cm)。付着量は1.9g/mであった。
<Preparation of coated separator>
This separator coating liquid was applied onto a polypropylene-based separator substrate (Celgard # 2400, manufactured by Polypore), and dried at room temperature for 12 hours. The sheet after drying was pressed by a heat press apparatus (manufactured by Furukawa Seisakusho), and the thickness was adjusted to 20 μm (roll temperature, room temperature, speed 1 m / min, linear pressure 100 hg / cm). The adhesion amount was 1.9 g / m 2 .
<負極用スラリーの作製>
 電極用スラリーは、活物質として天然黒鉛(DMGS、BYD製)94質量部に対して、バインダーとして、スチレン-ブタジエンゴム(SBR、TRD2001、JSR製)の48.3質量%水分散液を固形分として3質量部、およびカルボキシメチルセルロールナトリウム(CMC、セロゲンBSH-6、第一工業製薬製)の1質量%水溶液を固形分として1質量部を、ならびに導電助剤(導電付与剤)としてSuper-P(ティムカル社製)を固形分として2質量部を、専用容器に投入し、遊星攪拌器(ARE-250、シンキー製)を用いて混練することにより作製した。スラリー中の活物質と導電助剤とバインダー(SBR-CMC)の組成比は固形分として、天然黒鉛:導電助剤:SBR:CMC=94:2:3:1である。
<Preparation of Slurry for Negative Electrode>
The slurry for the electrode was a solid component of 48.3 mass% aqueous dispersion of styrene-butadiene rubber (SBR, TRD2001, JSR) as a binder relative to 94 parts by mass of natural graphite (DMGS, BYD) as an active material. 3 parts by mass, and 1 part by mass of a 1% by mass aqueous solution of sodium carboxymethylcellulose (CMC, Cellogen BSH-6, manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) as a solid, and Super as a conduction aid (conductivity imparting agent) A solid content of 2 parts by mass of -P (manufactured by Timcal) was charged into a dedicated container, and the mixture was kneaded by using a planetary stirrer (ARE-250, manufactured by Shinky). The composition ratio of the active material to the conductive aid and the binder (SBR-CMC) in the slurry is, as a solid content, natural graphite: conductive aid: SBR: CMC = 94: 2: 3: 1.
<電池用負極の作製>
 得られたスラリーを、バーコーター(T101、松尾産業製)を用いて集電体の銅箔(CST8G、福田金属箔粉工業製)上に塗工量が8.1mg/cmとなるように塗工し、80℃で30分間熱風乾燥機(ヤマト科学製)にて一次乾燥後、ロールプレス(宝泉製)を用いて圧延処理を行なった。その後、電池用電極(φ14mm)として打ち抜き後、120℃で3時間減圧条件の二次乾燥によってコイン電池用電極を作製した。
<Fabrication of negative electrode for battery>
The resulting slurry was applied using a bar coater (T101, manufactured by Matsuo Sangyo Co., Ltd.) so that the coating amount was 8.1 mg / cm 2 on the copper foil (CST 8G manufactured by Fukuda Metal Foil Co., Ltd.) of the current collector. After coating and primary drying with a hot air drier (manufactured by Yamato Scientific Co., Ltd.) at 80 ° C. for 30 minutes, rolling treatment was performed using a roll press (manufactured by Takasen). Thereafter, after punching out as a battery electrode (φ 14 mm), a coin battery electrode was manufactured by secondary drying at 120 ° C. for 3 hours under reduced pressure conditions.
<正極用スラリーの作製>
 電極用スラリーは、活物質としてニッケル・コバルト・マンガン(NCM)92質量部に対して、バインダーとしてポリフッ化ビニリデン(PVDF)を固形分として5質量部を、および導電助剤(導電付与剤)としてデンカブラック(粉状、電気化学工業製)を固形分として3質量部を、専用容器に投入し、遊星攪拌器(ARE-250、シンキー製)を用いて混練することにより作製した。スラリー粘度調整のため、混練時は水を添加して再度混練することによって電極塗工用スラリーを作製した。スラリー中の活物質とバインダーの組成比は固形分として、黒鉛粉末:導電助剤:バインダー組成物=92:3:5である。
<Preparation of Slurry for Positive Electrode>
The slurry for the electrode contains 5 parts by mass of polyvinylidene fluoride (PVDF) as a binder and a solid content with respect to 92 parts by mass of nickel-cobalt-manganese (NCM) as an active material, and as a conductive aid (conductive agent) A solid content of 3 parts by mass of Denka black (powdery, manufactured by Denki Kagaku Kogyo Co., Ltd.) was charged into a dedicated container, and was kneaded by using a planetary stirrer (ARE-250, manufactured by Shinky). In order to adjust the slurry viscosity, water was added at the time of kneading and kneading was performed again to prepare a slurry for electrode coating. The composition ratio of the active material to the binder in the slurry is, as solid content, graphite powder: conductive auxiliary agent: binder composition = 92: 3: 5.
<電池用正極の作製>
 得られたスラリーを、フィルムアプリケーター(テスター産業製)を用いて集電体のアルミ箔(IN30-H、冨士加工紙製)上に塗工し、80℃で30分間熱風乾燥機(ヤマト科学製)にて一次乾燥後、ロールプレス(宝泉製)を用いて圧延処理を行なった。その後、電池用電極(φ14mm)として打ち抜き後、120℃で3時間減圧条件の二次乾燥によってコイン電池用電極を作製した。
<Production of positive electrode for battery>
The obtained slurry is coated on a current collector aluminum foil (IN30-H, made by Fuji processed paper) using a film applicator (manufactured by Tester Sangyo Co., Ltd.), and a hot air dryer (manufactured by Yamato Scientific Co., Ltd.) for 30 minutes at 80 ° C. After primary drying in 2.), rolling treatment was carried out using a roll press (manufactured by Takasen). Thereafter, after punching out as a battery electrode (φ 14 mm), a coin battery electrode was manufactured by secondary drying at 120 ° C. for 3 hours under reduced pressure conditions.
<電池の作製>
 上記で得られた被覆セパレータ及び電池用負極をアルゴンガス雰囲気下のグローブボックス(美和製作所製)に移送した。上記で作製した正極と負極、および電解液は六フッ化リン酸リチウム(LiPF)のエチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート溶液(1mol/L LiPF、EC/DMC/EMC=1/1/1)を用いて、コイン電池(2032タイプ)を作製した。
<Fabrication of battery>
The coated separator and the battery negative electrode obtained above were transferred to a glove box (manufactured by Miwa Seisakusho) under an argon gas atmosphere. The positive electrode, the negative electrode, and the electrolyte prepared above are ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate solution (1 mol / L LiPF 6 , EC / DMC / EMC = 1/1/1) of lithium hexafluorophosphate (LiPF 6 ). A coin battery (2032 type) was produced using 1).
<評価方法:塗工性>
 上述の被覆セパレータについて、マイクロメーターを用い任意の10箇所の厚みを測定した。厚みムラが絶対値で1μmの範囲内(最も厚い部分と最も薄い部分の差が1μm以下)の場合を○とし、厚みムラが絶対値で1μmを超える場合を×とした。結果を表4に示す。
<Evaluation method: Coating property>
The thickness of arbitrary ten places was measured using the micrometer about the above-mentioned coated separator. The case where the thickness unevenness is in the range of 1 μm in absolute value (the difference between the thickest portion and the thinnest portion is 1 μm or less) is ○, and the thickness unevenness exceeds 1 μm in absolute value is ×. The results are shown in Table 4.
<評価方法:充放電特性試験>
 作製したコイン電池に対して、市販充放電試験機(TOSCAT3100、東洋システム製)を用いて充放電試験を実施した。コイン電池を25℃の恒温槽に置き、電池電圧が4.2Vになるまで0.2C(約0.5mA/cm)の定電流充電を行った。このときの容量を充電容量(mAh)とした。次いで、電池電圧が3Vになるまで0.2C(約0.5mA/cm)の定電流放電を行った。このときの容量を放電容量(mAh)とした。初期放電容量と充電容量差を不可逆容量、放電容量/充電容量の百分率を充放電効率とした。コイン電池の直流抵抗は、1回の充電を行った後(満充電状態)の抵抗値を採用した。上記結果を下記表3および表4に示す。上述の初期充放電後、コイン電池を80℃の恒温槽に置き、3.0~4.2Vの電圧範囲で10Cの定電流充電充放電を50サイクル行った。同試験後、短絡した電池の割合を算出した。結果を下記表4に示す。
<Evaluation method: charge and discharge characteristic test>
The charge and discharge test was implemented using the commercially available charge and discharge tester (TOSCAT3100, Toyo System make) with respect to the produced coin battery. The coin battery was placed in a 25 ° C. constant temperature bath, and constant current charging at 0.2 C (about 0.5 mA / cm 2 ) was performed until the battery voltage became 4.2V. The capacity at this time was taken as the charge capacity (mAh). Next, a constant current discharge of 0.2 C (about 0.5 mA / cm 2 ) was performed until the battery voltage was 3 V. The capacity at this time was taken as the discharge capacity (mAh). The difference between the initial discharge capacity and the charge capacity was taken as the irreversible capacity, and the percentage of the discharge capacity / charge capacity was taken as the charge / discharge efficiency. The direct current resistance of the coin battery adopted the resistance value after one charge (full charge state). The results are shown in Tables 3 and 4 below. After the above initial charge and discharge, the coin battery was placed in a thermostat bath at 80 ° C., and 50 cycles of constant current charge and discharge at 10 C were performed in a voltage range of 3.0 to 4.2 V. After the test, the percentage of batteries shorted was calculated. The results are shown in Table 4 below.
<評価方法:収縮性試験>
 上記で得られた被覆セパレータを5cm四方に切り取った後、140℃で3時間真空乾燥を行った。乾燥終了後、取り出したセパレータの面積を収縮前の面積で割り返し、100からの差分を求めることで収縮率を算出した。結果を下記表4に示す。
<Evaluation method: contractility test>
The coated separator obtained above was cut into 5 cm squares and vacuum dried at 140 ° C. for 3 hours. After completion of drying, the area of the taken out separator was divided by the area before contraction, and the contraction rate was calculated by finding the difference from 100. The results are shown in Table 4 below.
 <評価方法:接着性試験>
 上記で得られた被覆セパレータについて、セパレータとコート層との界面強度を測定した。具体的には、各被覆セパレータをステンレス板に両面テープ(ニチバン製両面テープ)を用いて貼り合わせ、50Nのロードセル(株式会社イマダ製)を用いて、180°剥離強度(剥離幅10mm、剥離速度100mm/min)を測定した。結果を下記表4に示す。
<Evaluation method: Adhesion test>
The interface strength between the separator and the coat layer was measured for the coated separator obtained above. Specifically, each coated separator is bonded to a stainless steel plate using a double-sided tape (Nichiban double-sided tape), and a 50 N load cell (manufactured by IMADA CO., LTD.), 180 ° peel strength (peel width 10 mm, peel rate 100 mm / min) was measured. The results are shown in Table 4 below.
(実施例12)
 実施例11と同様の方法で調製したリチウム変性イソブテン-無水マレイン酸共重合体(平均分子量325,000、中和度0.5、開環率96%、α-オレフィン類に基づく単位(A)とマレイン酸類に基づく単位(B)のモル比(A)/(B)=1/1)10質量%水溶液とポリエチレンイミン(PEI、和光純薬工業株式会社製、平均分子量10000)10質量%水溶液とを99.67:0.33の質量比となるように混合した。得られた混合物を90℃に加温し、6時間加熱攪拌した。
 この加熱溶液を5質量%に希釈した後、リチウム変性イソブテン-無水マレイン酸共重合体とポリエチレンイミンの合計量に対し、水系エマルションとしてTRD2001(SBR、JSR製、平均粒子径:200nm)を固形分で90:10の質量比となるよう混合して、セパレータ塗工液(固形分濃度5.5質量%)を得た。このセパレータ塗工液を、ポリプロピレン系セパレータ基材(セルガード#2400、ポリポア製)上に塗工し、室温で12時間乾燥した。乾燥後のシートを熱プレス装置(古川製作所製)でプレスし、厚さ20μmに調整した(ロール温度室温、速度1m/min、線圧100hg/cm)。付着量は1.9g/mであった。さらに、上記実施例11と同様の方法によって電池用負極を作製し、コイン電池を得て、充放電特性試験を行った。また上記実施例11と同様の方法によって各測定を行った。結果を下記表3および表4に示す。
(Example 12)
Lithium-modified isobutene-maleic anhydride copolymer prepared by the same method as in Example 11 (average molecular weight 325,000, neutralization degree 0.5, ring opening ratio 96%, unit based on α-olefins (A) Molar ratio (A) / (B) = 1/1 of a unit (B) based on a maleic acid compound and a 10% by weight aqueous solution and a 10% by weight aqueous solution of polyethyleneimine (PEI, Wako Pure Chemical Industries, Ltd., average molecular weight 10000) Were mixed so as to give a mass ratio of 99.67: 0.33. The resulting mixture was warmed to 90 ° C. and stirred for 6 hours with heating.
After diluting this heating solution to 5 mass%, solid content of TRD 2001 (SBR, manufactured by JSR, average particle diameter: 200 nm) as an aqueous emulsion relative to the total amount of lithium-modified isobutene-maleic anhydride copolymer and polyethylene imine The mixture was mixed to give a mass ratio of 90:10 to obtain a separator coating liquid (solid content concentration 5.5 mass%). This separator coating liquid was applied onto a polypropylene-based separator substrate (Celgard # 2400, manufactured by Polypore), and dried at room temperature for 12 hours. The sheet after drying was pressed by a heat press apparatus (manufactured by Furukawa Seisakusho), and the thickness was adjusted to 20 μm (roll temperature, room temperature, speed 1 m / min, linear pressure 100 hg / cm). The adhesion amount was 1.9 g / m 2 . Furthermore, a negative electrode for battery was produced by the same method as in Example 11 to obtain a coin battery, and a charge / discharge characteristic test was conducted. Moreover, each measurement was performed by the method similar to the said Example 11. FIG. The results are shown in Tables 3 and 4 below.
(実施例13)
 実施例11と同様の方法で調製したリチウム変性イソブテン-無水マレイン酸共重合体(平均分子量325,000、中和度0.5、開環率96%、α-オレフィン類に基づく単位(A)とマレイン酸類に基づく単位(B)のモル比(A)/(B)=1/1)10質量%水溶液とポリエチレンイミン(PEI、和光純薬工業株式会社製、平均分子量1800)10質量%水溶液とを99.67:0.33の質量比となるように混合した。得られた混合物を90℃に加温し、6時間加熱攪拌した。
 この加熱溶液を5質量%に希釈した後、リチウム変性イソブテン-無水マレイン酸共重合体とポリエチレンイミンの合計量に対し、スチレン-水添イソプレン-スチレントリブロック共重合体エマルション(中京油脂製、平均粒子径:300nm)を固形分で90:10の質量比となるよう混合して、セパレータ塗工液(固形分濃度5.5質量%)を得た。このセパレータ塗工液を、ポリプロピレン系セパレータ基材(セルガード#2400、ポリポア製)上に塗工、室温で12時間乾燥した。乾燥後のシートを熱プレス装置(古川製作所製)でプレスし、厚さ20μmに調整した(ロール温度室温、速度1m/min、線圧100hg/cm)。付着量は1.9g/mであった。さらに、上記実施例1と同様の方法によって電池用負極を作製し、コイン電池を得て、充放電特性試験を行った。また上記実施例11と同様の方法によって各測定を行った。結果を下記表3および表4に示す。
(Example 13)
Lithium-modified isobutene-maleic anhydride copolymer prepared by the same method as in Example 11 (average molecular weight 325,000, neutralization degree 0.5, ring opening ratio 96%, unit based on α-olefins (A) Molar ratio (A) / (B) = 1/1 of a unit (B) based on maleic acid compounds and a 10% by weight aqueous solution and a 10% by weight aqueous solution of polyethyleneimine (PEI, manufactured by Wako Pure Chemical Industries, Ltd., average molecular weight 1800) Were mixed so as to give a mass ratio of 99.67: 0.33. The resulting mixture was warmed to 90 ° C. and stirred for 6 hours with heating.
After diluting this heating solution to 5% by mass, styrene-hydrogenated isoprene-styrene triblock copolymer emulsion (manufactured by Chukyo Yushi Co., Ltd., average) relative to the total amount of lithium-modified isobutene-maleic anhydride copolymer and polyethyleneimine The particle diameter: 300 nm) was mixed so that the solid content was a mass ratio of 90:10, to obtain a separator coating liquid (solid content concentration: 5.5% by mass). This separator coating liquid was applied onto a polypropylene-based separator substrate (Celgard # 2400, manufactured by Polypore), and dried at room temperature for 12 hours. The sheet after drying was pressed by a heat press apparatus (manufactured by Furukawa Seisakusho), and the thickness was adjusted to 20 μm (roll temperature, room temperature, speed 1 m / min, linear pressure 100 hg / cm). The adhesion amount was 1.9 g / m 2 . Furthermore, the negative electrode for battery was produced by the method similar to the said Example 1, the coin battery was obtained, and the charge / discharge characteristic test was done. Moreover, each measurement was performed by the method similar to the said Example 11. FIG. The results are shown in Tables 3 and 4 below.
(実施例14)
 実施例11と同様の方法で調製したリチウム変性イソブテン-無水マレイン酸共重合体(平均分子量325,000、中和度0.5、開環率96%、α-オレフィン類に基づく単位(A)とマレイン酸類に基づく単位(B)のモル比(A)/(B)=1/1)10質量%水溶液とポリエチレンイミン(PEI、和光純薬工業株式会社製、平均分子量1800)10質量%水溶液とを99:1の質量比となるように混合した。得られた混合物を90℃に加温し、6時間加熱攪拌した。
 この加熱溶液を5質量%に希釈した後、リチウム変性イソブテン-無水マレイン酸共重合体とポリエチレンイミンの合計量に対し、スチレン-水添イソプレン-スチレントリブロック共重合体エマルション(中京油脂製、平均粒子径:300nm)を固形分で90:10の質量比となるよう混合して、セパレータ塗工液(固形分濃度5.5質量%)を得た。このセパレータ塗工液を、ポリプロピレン系セパレータ基材(セルガード#2400、ポリポア製)上に塗工、室温で12時間乾燥した。乾燥後のシートを熱プレス装置(古川製作所製)でプレスし、厚さ20μmに調整した(ロール温度室温、速度1m/min、線圧100hg/cm)。付着量は1.9g/mであった。さらに、上記実施例1と同様の方法によって電池用負極を作製し、コイン電池を得て、充放電特性試験を行った。また上記実施例11と同様の方法によって各測定を行った。結果を下記表3および表4に示す。
(Example 14)
Lithium-modified isobutene-maleic anhydride copolymer prepared by the same method as in Example 11 (average molecular weight 325,000, neutralization degree 0.5, ring opening ratio 96%, unit based on α-olefins (A) Molar ratio (A) / (B) = 1/1 of a unit (B) based on maleic acid compounds and a 10% by weight aqueous solution and a 10% by weight aqueous solution of polyethyleneimine (PEI, manufactured by Wako Pure Chemical Industries, Ltd., average molecular weight 1800) And were mixed so as to give a mass ratio of 99: 1. The resulting mixture was warmed to 90 ° C. and stirred for 6 hours with heating.
After diluting this heating solution to 5% by mass, styrene-hydrogenated isoprene-styrene triblock copolymer emulsion (manufactured by Chukyo Yushi Co., Ltd., average) relative to the total amount of lithium-modified isobutene-maleic anhydride copolymer and polyethyleneimine The particle diameter: 300 nm) was mixed so that the solid content was a mass ratio of 90:10, to obtain a separator coating liquid (solid content concentration: 5.5% by mass). This separator coating liquid was applied onto a polypropylene-based separator substrate (Celgard # 2400, manufactured by Polypore), and dried at room temperature for 12 hours. The sheet after drying was pressed by a heat press apparatus (manufactured by Furukawa Seisakusho), and the thickness was adjusted to 20 μm (roll temperature, room temperature, speed 1 m / min, linear pressure 100 hg / cm). The adhesion amount was 1.9 g / m 2 . Furthermore, the negative electrode for battery was produced by the method similar to the said Example 1, the coin battery was obtained, and the charge / discharge characteristic test was done. Moreover, each measurement was performed by the method similar to the said Example 11. FIG. The results are shown in Tables 3 and 4 below.
(実施例15)
 実施例11と同様の方法で調製したリチウム変性イソブテン-無水マレイン酸共重合体(平均分子量325,000、中和度0.5、開環率96%、α-オレフィン類に基づく単位(A)とマレイン酸類に基づく単位(B)のモル比(A)/(B)=1/1)10質量%水溶液とポリエチレンイミン(PEI、和光純薬工業株式会社製、平均分子量1800)10質量%水溶液とを99.67:0.33の質量比となるように混合した。得られた混合物を90℃に加温し、6時間加熱攪拌した。
 この加熱溶液を5質量%に希釈した後、リチウム変性イソブテン-無水マレイン酸共重合体とポリエチレンイミンの合計量に対し、スチレン-ビニルイソプレン-スチレントリブロック共重合体エマルション(中京油脂製、平均粒子径:200nm)を固形分で90:10の質量比となるよう混合して、セパレータ塗工液(固形分濃度5.5質量%)を得た。このセパレータ塗工液を、ポリプロピレン系セパレータ基材(セルガード#2400、ポリポア製)上に塗工、室温で12時間乾燥した。乾燥後のシートを熱プレス装置(古川製作所製)でプレスし、厚さ20μmに調整した(ロール温度室温、速度1m/min、線圧100hg/cm)。付着量は1.9g/mであった。さらに、上記実施例1と同様の方法によって電池用負極を作製し、コイン電池を得て、充放電特性試験を行った。また上記実施例11と同様の方法によって各測定を行った。結果を下記表3および表4に示す。
(Example 15)
Lithium-modified isobutene-maleic anhydride copolymer prepared by the same method as in Example 11 (average molecular weight 325,000, neutralization degree 0.5, ring opening ratio 96%, unit based on α-olefins (A) Molar ratio (A) / (B) = 1/1 of a unit (B) based on maleic acid compounds and a 10% by weight aqueous solution and a 10% by weight aqueous solution of polyethyleneimine (PEI, manufactured by Wako Pure Chemical Industries, Ltd., average molecular weight 1800) Were mixed so as to give a mass ratio of 99.67: 0.33. The resulting mixture was warmed to 90 ° C. and stirred for 6 hours with heating.
This heating solution is diluted to 5% by mass, and the styrene-vinyl isoprene-styrene triblock copolymer emulsion (manufactured by Chukyo Yushi Co., Ltd., average particles) relative to the total amount of the lithium-modified isobutene-maleic anhydride copolymer and the polyethyleneimine. The diameter: 200 nm) was mixed so as to have a mass ratio of 90:10 in terms of solid content, to obtain a separator coating liquid (solid content concentration: 5.5 mass%). This separator coating liquid was applied onto a polypropylene-based separator substrate (Celgard # 2400, manufactured by Polypore), and dried at room temperature for 12 hours. The sheet after drying was pressed by a heat press apparatus (manufactured by Furukawa Seisakusho), and the thickness was adjusted to 20 μm (roll temperature, room temperature, speed 1 m / min, linear pressure 100 hg / cm). The adhesion amount was 1.9 g / m 2 . Furthermore, the negative electrode for battery was produced by the method similar to the said Example 1, the coin battery was obtained, and the charge / discharge characteristic test was done. Moreover, each measurement was performed by the method similar to the said Example 11. FIG. The results are shown in Tables 3 and 4 below.
(実施例16)
 実施例11と同様の方法で調製したリチウム変性イソブテン-無水マレイン酸共重合体(平均分子量325,000、中和度0.5、開環率96%、α-オレフィン類に基づく単位(A)とマレイン酸類に基づく単位(B)のモル比(A)/(B)=1/1)10質量%水溶液とポリエチレンイミン(PEI、和光純薬工業株式会社製、平均分子量1800)10質量%水溶液とを99.67:0.33の質量比となるように混合した。得られた混合物を90℃に加温し、6時間加熱攪拌した。
 この加熱溶液を5質量%に希釈した後、リチウム変性イソブテン-無水マレイン酸共重合体とポリエチレンイミンの合計量に対しポリプロピレン系エマルション(ケミパールX800-H、三井化学製、平均粒子径:200nm)を固形分で90:10の質量比となるよう混合して、セパレータ塗工液(固形分濃度5.5質量%)を得た。このセパレータ塗工液を、ポリプロピレン系セパレータ基材(セルガード#2400、ポリポア製)上に塗工、室温で12時間乾燥した。乾燥後のシートを熱プレス装置(古川製作所製)でプレスし、厚さ20μmに調整した(ロール温度室温、速度1m/min、線圧100hg/cm)。付着量は1.9g/mであった。さらに、上記実施例1と同様の方法によって電池用負極を作製し、コイン電池を得て、充放電特性試験を行った。また上記実施例11と同様の方法によって各測定を行った。結果を下記表3および表4に示す。
(Example 16)
Lithium-modified isobutene-maleic anhydride copolymer prepared by the same method as in Example 11 (average molecular weight 325,000, neutralization degree 0.5, ring opening ratio 96%, unit based on α-olefins (A) Molar ratio (A) / (B) = 1/1 of a unit (B) based on maleic acid compounds and a 10% by weight aqueous solution and a 10% by weight aqueous solution of polyethyleneimine (PEI, manufactured by Wako Pure Chemical Industries, Ltd., average molecular weight 1800) Were mixed so as to give a mass ratio of 99.67: 0.33. The resulting mixture was warmed to 90 ° C. and stirred for 6 hours with heating.
This heating solution is diluted to 5% by mass, and then a polypropylene emulsion (Chemipearl X800-H, Mitsui Chemicals, average particle size: 200 nm) is added to the total amount of lithium-modified isobutene-maleic anhydride copolymer and polyethyleneimine. It mixed so that it might become 90:10 mass ratio in solid content, and the separator coating liquid (solid content density | concentration 5.5 mass%) was obtained. This separator coating liquid was applied onto a polypropylene-based separator substrate (Celgard # 2400, manufactured by Polypore), and dried at room temperature for 12 hours. The sheet after drying was pressed by a heat press apparatus (manufactured by Furukawa Seisakusho), and the thickness was adjusted to 20 μm (roll temperature, room temperature, speed 1 m / min, linear pressure 100 hg / cm). The adhesion amount was 1.9 g / m 2 . Furthermore, the negative electrode for battery was produced by the method similar to the said Example 1, the coin battery was obtained, and the charge / discharge characteristic test was done. Moreover, each measurement was performed by the method similar to the said Example 11. FIG. The results are shown in Tables 3 and 4 below.
(実施例17)
 実施例11と同様の方法で調製したリチウム変性メチルビニルエーテル-無水マレイン酸共重合体(平均分子量630,000、中和度0.5、開環率96%、α-オレフィン類に基づく単位(A)とマレイン酸類に基づく単位(B)のモル比(A)/(B)=1/1)10質量%水溶液とポリエチレンイミン(PEI、和光純薬工業株式会社製、平均分子量10000)10質量%水溶液とを99.67:0.33の質量比となるように混合した。得られた混合物を90℃に加温し、6時間加熱攪拌した。
 この加熱溶液を5質量%に希釈した後、リチウム変性イソブテン-無水マレイン酸共重合体とポリエチレンイミンの合計量に対し、水系エマルションとしてTRD2001(SBR、JSR製、平均粒子径:200nm)を固形分で90:10の質量比となるよう混合して、セパレータ塗工液(固形分濃度5.5質量%)を得た。このセパレータ塗工液を、ポリプロフィレン系(セルガード#2400、ポリポア製)上に塗工、室温で12時間乾燥した。乾燥後のシートを熱プレス装置(古川製作所製)でプレスし、厚さ20μmに調整した(ロール温度室温、速度1m/min、線圧100hg/cm)。付着量は1.9g/mであった。さらに、上記実施例1と同様の方法によって電池用負極を作製し、コイン電池を得て、充放電特性試験を行った。また上記実施例11と同様の方法によって各測定を行った。結果を下記表3および表4に示す。
(Example 17)
Lithium-modified methyl vinyl ether-maleic anhydride copolymer prepared by the same method as in Example 11 (average molecular weight 630,000, degree of neutralization 0.5, ring opening ratio 96%, unit based on α-olefins (A And a unit (B) molar ratio based on maleic acid (A) / (B) = 1/1) 10% by mass aqueous solution and polyethyleneimine (PEI, manufactured by Wako Pure Chemical Industries, Ltd., average molecular weight 10000) 10% by mass The aqueous solution was mixed at a mass ratio of 99.67: 0.33. The resulting mixture was warmed to 90 ° C. and stirred for 6 hours with heating.
After diluting this heating solution to 5 mass%, solid content of TRD 2001 (SBR, manufactured by JSR, average particle diameter: 200 nm) as an aqueous emulsion relative to the total amount of lithium-modified isobutene-maleic anhydride copolymer and polyethylene imine The mixture was mixed to give a mass ratio of 90:10 to obtain a separator coating liquid (solid content concentration 5.5 mass%). This separator coating liquid was applied on a polypropylene resin (Celgard # 2400, manufactured by Polypore) and dried at room temperature for 12 hours. The sheet after drying was pressed by a heat press apparatus (manufactured by Furukawa Seisakusho), and the thickness was adjusted to 20 μm (roll temperature, room temperature, speed 1 m / min, linear pressure 100 hg / cm). The adhesion amount was 1.9 g / m 2 . Furthermore, the negative electrode for battery was produced by the method similar to the said Example 1, the coin battery was obtained, and the charge / discharge characteristic test was done. Moreover, each measurement was performed by the method similar to the said Example 11. FIG. The results are shown in Tables 3 and 4 below.
(比較例5)
 実施例11と同様の方法で調製したリチウム変性イソブテン-無水マレイン酸共重合体(平均分子量325,000、中和度0.5、開環率96%、α-オレフィン類に基づく単位(A)とマレイン酸類に基づく単位(B)のモル比(A)/(B)=1/1)10質量%水溶液を5wt%に希釈した後、水系エマルションとしてTRD2001(SBR、JSR製、平均粒子径:200nm)を固形分で90:10の質量比となるよう混合した(固形分濃度5.5質量%)。そして被覆セパレータを上記実施例11と同様の方法によって作製した。また上記実施例11と同様の方法によって各測定を行った。結果を下記表3および表4に示す。
(Comparative example 5)
Lithium-modified isobutene-maleic anhydride copolymer prepared by the same method as in Example 11 (average molecular weight 325,000, neutralization degree 0.5, ring opening ratio 96%, unit based on α-olefins (A) A molar ratio (A) / (B) = 1/1 of a unit (B) based on a maleic acid compound to a 10% by weight aqueous solution is diluted to 5 wt% and then TRD 2001 (SBR, manufactured by JSR, average particle size: 200 nm) was mixed so as to give a mass ratio of 90:10 in terms of solid content (solid content concentration 5.5 mass%). Then, a coated separator was produced by the same method as in Example 11 above. Moreover, each measurement was performed by the method similar to the said Example 11. FIG. The results are shown in Tables 3 and 4 below.
(比較例6)
 セパレータ塗工液として、CMC-Na1.0質量%水溶液に、CMC-Naに対し、水系エマルションとしてTRD2001(SBR、JSR製、平均粒子径:200nm)を固形分で90:10の質量比となるよう混合した溶液を用いた。被覆セパレータを上記実施例11と同様の方法によって作製した。付着量は2.0g/mであった。さらに、上記実施例1と同様の方法によって電池用負極を作製し、コイン電池を得て、充放電特性試験を行った。また上記実施例11と同様の方法によって各測定を行った。結果を下記表3および表4に示す。
(Comparative example 6)
As a separator coating liquid, CMC-Na 1.0 mass% aqueous solution to CMC-Na, TRD 2001 (SBR, manufactured by JSR, average particle diameter: 200 nm) as an aqueous emulsion has a mass ratio of 90:10 in solid content The mixed solution was used. A coated separator was produced in the same manner as in Example 11 above. The adhesion amount was 2.0 g / m 2 . Furthermore, the negative electrode for battery was produced by the method similar to the said Example 1, the coin battery was obtained, and the charge / discharge characteristic test was done. Moreover, each measurement was performed by the method similar to the said Example 11. FIG. The results are shown in Tables 3 and 4 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(考察1)
 本発明のセパレータ塗工液を用いたセパレータ基材表面被覆液で被覆したセパレータを用いた各実施例では、架橋剤未添加のα―オレフィン-マレイン酸共重合体、CMC-Naに比べ耐熱性が高く、熱暴走時の短絡防止機能が向上した。また、電流効率が改善していた。これはポリアミンを含有することで共重合体中のカルボン酸基部分で架橋構造が形成され、Liイオンをトラップするカルボン酸基が減少することによるものと推測される。また、水系エマルションを含有する実施例11~17では、乾燥時の熱収縮を抑制し、セパレータ基材への密着性に優れていた。
(Discussion 1)
In each of the examples using the separator coated with the separator base material surface coating liquid using the separator coating liquid of the present invention, the α-olefin-maleic acid copolymer with no crosslinking agent added and heat resistance compared to CMC-Na High, the short circuit prevention function at the time of thermal runaway was improved. Also, the current efficiency was improved. This is presumed to be due to the formation of a cross-linked structure at the carboxylic acid moiety in the copolymer by containing the polyamine, and the decrease in the carboxylic acid groups that trap Li ions. Further, in Examples 11 to 17 containing an aqueous emulsion, the thermal shrinkage during drying was suppressed, and the adhesion to the separator substrate was excellent.
(実施例18)
<α-オレフィン-無水マレイン酸共重合物水溶液>
 リチウム変性イソブテン-無水マレイン酸共重合樹脂(平均分子量325,000、中和度0.5、開環率96%)10質量%水溶液とポリエチレンイミン(PEI、和光純薬工業株式会社製、平均分子量10000)10質量%水溶液とを99:1(固形分として樹脂:PEI=6.387:0.065)の質量比となるように混合した。得られた混合物を90℃に加温し、2時間加熱攪拌した。その後得られた混合液を固形分濃度5.5質量%になるように水を加え、ミキサーミルを用いて、回転数3600rpmにて2時間均質攪拌し、α-オレフィン-無水マレイン酸共重合物水溶液を得た。
(Example 18)
<Α-olefin-maleic anhydride copolymer aqueous solution>
Lithium-modified isobutene-maleic anhydride copolymer resin (average molecular weight 325,000, neutralization degree 0.5, ring opening ratio 96%) 10% by mass aqueous solution and polyethyleneimine (PEI, Wako Pure Chemical Industries, Ltd., average molecular weight 10000) It mixed with 10 mass% aqueous solution so that it might become a mass ratio of 99: 1 (resin: PEI = 6.387: 0.065 as solid content). The resulting mixture was warmed to 90 ° C. and stirred for 2 hours with heating. After that, water is added so that the resulting mixed solution has a solid content concentration of 5.5% by mass, and the mixture is uniformly stirred at a rotation number of 3600 rpm for 2 hours using a mixer mill, α-olefin-maleic anhydride copolymer An aqueous solution was obtained.
<粒子状結着剤>
 1L容量のホモミキサー付き攪拌槽にポリビニルアルコール(商品名、株式会社クラレ製、ポバール405(重合度500、ケン化度81.5%))15g、トルエン300gに溶解させた水添ブロック共重合体(セプトン2002(商品名、株式会社クラレ製、スチレン-イソプレン-スチレントリブロック共重合体の水素添加物、スチレン含量30%))150g、水500gを順次加え、室温にて15000r.p.m.×10分攪拌し、さらに加圧式ホモジナイザーに移して、乳化を行った。得られた分散溶液を、ロータリーエバポレーターを用い、減圧-加温(60℃)下にて、トルエン及び水を留去して、平均粒子径0.3μmの水系エマルションを得た。
<Particulate binder>
Hydrogenated block copolymer dissolved in 15 g of polyvinyl alcohol (trade name, manufactured by Kuraray Co., Ltd., POVAL 405 (polymerization degree 500, degree of saponification 81.5%)) and 300 g of toluene in a stirring tank with a homo mixer of 1 L capacity (Septone 2002 (trade name, manufactured by Kuraray Co., Ltd., a hydrogenated product of styrene-isoprene-styrene triblock copolymer, styrene content: 30%)) 150 g of water and 500 g of water were sequentially added, and 15000 r. p. m. The mixture was stirred for 10 minutes and then transferred to a pressure homogenizer to carry out emulsification. The obtained dispersed solution was distilled of toluene and water under reduced pressure and heating (60 ° C.) using a rotary evaporator to obtain an aqueous emulsion having an average particle diameter of 0.3 μm.
<バインダー組成物>
 バインダー組成物の作製は、上記α-オレフィン-無水マレイン酸共重合物水溶液と上記粒子状結着剤を固形分濃度比として9:1で混合してバインダー組成物とした。
<Binder composition>
The binder composition was prepared by mixing the aqueous solution of α-olefin-maleic anhydride copolymer and the particulate binder at a solid content concentration ratio of 9: 1.
<セパレータ用スラリー(塗工液)の作製>
 セパレータ用スラリーの作製は、金属酸化物としてVK-BG-613(ベーマイト、宣城晶瑞新材料有限公司製)40質量部に対して、上記バインダー組成物0.8質量部(α-オレフィン-無水マレイン酸共重合物を水溶液固形分として0.72質量部、粒子状結着剤を固形分として0.08質量部)、水40質量部を専用容器に投入し、遊星攪拌器(ARE-250、シンキー製)を用いて混練した。
<Preparation of Slurry (Coating Liquid) for Separator>
The slurry for the separator was prepared by using 0.8 parts by mass of the above binder composition (α-olefin-) with respect to 40 parts by mass of VK-BG-613 (boehmite, manufactured by Xuancheng New Materials Co., Ltd.) as a metal oxide. 0.72 parts by mass of maleic anhydride copolymer as aqueous solution solid, 0.08 parts by mass of particulate binder as solid content, and 40 parts by mass of water are charged into a dedicated container, and a planetary stirrer (ARE- It knead | mixed using 250, Shinky made).
<セパレータの作製>
 ポリプロピレン系多孔質基材(セルガード#2400、ポリポア製)にバーコーター(T101、松尾産業製)を用いて、上記セパレータ用スラリーを厚さ20μmで塗工した。塗工後、熱風乾燥機で80℃30分乾燥し、塗工厚10μm、塗工量1.6/cmとした後、デシケータ内にて、放冷し、塗膜の状態を目視評価した。
<Preparation of Separator>
The slurry for a separator was coated with a thickness of 20 μm on a polypropylene-based porous substrate (Celgard # 2400, manufactured by Polypore) using a bar coater (T101, manufactured by Matsuo Sangyo). After coating, the coating was dried at 80 ° C. for 30 minutes with a hot air drier to obtain a coating thickness of 10 μm and a coating amount of 1.6 / cm 2, and then allowed to cool in a desiccator to visually evaluate the state of the coating .
・塗工液分散性
   A:沈降・相分離を目視で観察されない
   B:気液界面に目視で沈降・相分離を観測する
-Coating liquid dispersibility A: No sedimentation or phase separation visually observed B: Observation of sedimentation or phase separation visually at the gas-liquid interface
・塗工性
   A:はじきなし
   B:はじきあり
・ Applicability A: No repelling B: No repelling
・塗工状態
   A:均一に塗工されている
   B:斑を観測する
・ Coated state A: Uniformly coated B: Observe spots
<セパレータの接着性>
 ポリプロピレン系多孔質基材から塗工膜を剥離したときの強度を測定した。当該剥離強度は、50Nのロードセル(株式会社イマダ製)を用いて180°剥離強度を測定した。上記で得られた電池用塗工電極のスラリー塗布面とステンレス板とを両面テープ(ニチバン製両面テープ)を用いて貼り合わせ、180°剥離強度(剥離幅10mm、剥離速度100mm/分)を測定した。上記結果を下記表5に示す。なお、比較例7においてはスラリーが膜にならず、接着性を測定することはできなかった。
<Adhesiveness of Separator>
The strength when the coating film was peeled off from the polypropylene-based porous substrate was measured. The said peeling strength measured 180 degree peeling strength using the load cell (made by Imada Co., Ltd.) of 50N. The slurry-coated surface of the coated electrode for a battery obtained above is bonded to a stainless steel plate using a double-sided tape (Nichiban double-sided tape) to measure 180 ° peel strength (peel width: 10 mm, peel rate: 100 mm / min) did. The results are shown in Table 5 below. In Comparative Example 7, the slurry did not form a film, and the adhesion could not be measured.
<負極用スラリーの作製>
 電極用スラリー作製は負極用活物質としてDMGS(天然黒鉛、BYD製)100質量部に対して、粒子状結着剤としてTRD2001(SBR、JSR製)を固形分として2.08質量部、上述の増粘安定剤を固形分として1.04質量部、さらに、導電助剤(導電付与剤)としてSuper-P(ティムカル社製)を固形分として1.04質量部を専用容器に投入し、遊星攪拌器(ARE-250、シンキー製)を用いて混練した。スラリー粘度調整のため、混練時は水を添加して再度混練することによって電極塗工用スラリーを作製した。スラリー中の活物質とバインダーの組成比は固形分として、黒鉛粉末:導電助剤:バインダー組成物=100:1.04:3.12である。
<Preparation of Slurry for Negative Electrode>
The slurry for the electrode was prepared by using 100 parts by mass of DMGS (natural graphite, manufactured by BYD) as an active material for the negative electrode, 2.08 parts by mass of TRD 2001 (manufactured by SBR, JSR) as a solid content as a particulate binder, 1.04 parts by mass of a thickening stabilizer as solid, 1.04 parts by mass of Super-P (manufactured by Timcal) as a conductive aid (conductivity imparting agent) as solid, and charged into a dedicated container The mixture was kneaded using a stirrer (ARE-250, manufactured by Shinky). In order to adjust the slurry viscosity, water was added at the time of kneading and kneading was performed again to prepare a slurry for electrode coating. The composition ratio of the active material to the binder in the slurry is, as a solid content, graphite powder: conductive auxiliary agent: binder composition = 100: 1.04: 3.12.
<電池用負極の作製>
 得られたスラリーを、バーコーター(T101、松尾産業製)を用いて集電体の銅箔(CST8G、福田金属箔粉工業製)上に塗工し、80℃で30分間熱風乾燥機(ヤマト科学製)にて一次乾燥後、ロールプレス(宝泉製)を用いて圧延処理を行なった。その後、電池用電極(φ14mm)として打ち抜き後、120℃で3時間減圧条件の二次乾燥によってコイン電池用電極を作製した。
<Fabrication of negative electrode for battery>
The obtained slurry is coated on copper foil (CST8G, Fukuda metal foil powder industry) of a current collector using a bar coater (T101, manufactured by Matsuo Sangyo), and heated at 80 ° C. for 30 minutes with a hot air dryer (Yamato) After primary drying in Science, a rolling process was performed using a roll press (manufactured by Takasen). Thereafter, after punching out as a battery electrode (φ 14 mm), a coin battery electrode was manufactured by secondary drying at 120 ° C. for 3 hours under reduced pressure conditions.
<電池の作製>
 上記で得られた電池用塗工電極をアルゴンガス雰囲気下のグローブボックス(美和製作所製)に移送した。正極には金属リチウム箔(厚さ0.2mm、φ16mm)を用いた。また、セパレータとして上記で得られた塗工セパレータを使用して、電解液は六フッ化リン酸リチウム(LiPF6)のエチレンカーボネート(EC)とエチルメチルカーボネート(EMC)にビニレンカーボネート(VC)を添加した混合溶媒系(1M-LiPF6、EC/EMC=3/7vol%、VC2質量%)を用いて注入し、コイン電池(2032タイプ)を作製した。
<Fabrication of battery>
The coated electrode for a battery obtained above was transferred to a glove box (manufactured by Miwa Seisakusho) under an argon gas atmosphere. A metal lithium foil (thickness 0.2 mm, φ16 mm) was used as the positive electrode. In addition, using the coated separator obtained above as the separator, the electrolytic solution is prepared by adding vinylene carbonate (VC) to ethylene carbonate (EC) and ethyl methyl carbonate (EMC) of lithium hexafluorophosphate (LiPF6) It injected using the mixed solvent system (1M-LiPF6, EC / EMC = 3/7 vol%, VC 2 mass%), and the coin battery (2032 type) was produced.
<評価方法:充放電特性試験>
 作製したコイン電池は、市販充放電試験機(TOSCAT3100、東洋システム製)を用いて充放電試験を実施した。コイン電池を25℃の恒温槽に置き、充電はリチウム電位に対して0Vになるまで活物質量に対して0.1C(約0.5mA/cm)の定電流充電を行い、更にリチウム電位に対して0.02mAの電流まで0Vの定電圧充電を実施した。このときの容量を充電容量(mAh/g)とした。次いで、リチウム電位に対して0.1C(約0.5mA/cm)の定電流放電を1.5Vまで行い、このときの容量を放電容量(mAh/g)とした。初期放電容量と充電容量差を不可逆容量、放電容量/充電容量の百分率を充放電効率とした。コイン電池の直流抵抗は、1回の充電を行った後(満充電状態)の抵抗値を採用した。上記結果を下記表5に示す。
<Evaluation method: charge and discharge characteristic test>
The produced coin battery carried out the charge / discharge test using a commercially available charge / discharge tester (TOSCAT 3100, manufactured by Toyo System Co., Ltd.). Place the coin battery in a 25 ° C constant temperature bath, perform constant current charge of 0.1 C (about 0.5 mA / cm 2 ) to the active material mass until charging becomes 0 V with respect to lithium potential, and further lithium potential Constant voltage charging at 0 V to a current of 0.02 mA. The capacity at this time was taken as the charge capacity (mAh / g). Next, a constant current discharge of 0.1 C (about 0.5 mA / cm 2 ) was performed to 1.5 V with respect to the lithium potential, and the capacity at this time was defined as a discharge capacity (mAh / g). The difference between the initial discharge capacity and the charge capacity was taken as the irreversible capacity, and the percentage of the discharge capacity / charge capacity was taken as the charge / discharge efficiency. The direct current resistance of the coin battery adopted the resistance value after one charge (full charge state). The results are shown in Table 5 below.
(実施例19)
 金属酸化物として、VL-L100D(アルミナ、宣城晶瑞新材料有限公司製)を使用した以外は、実施例18と同様に行った。
(Example 19)
Example 18 was carried out in the same manner as Example 18, except that VL-L100D (alumina, manufactured by Xiancheng Xinyu Material Co., Ltd.) was used as the metal oxide.
(実施例20)
 セパレータ用粒子結着剤に粒子状結着剤としてTRD2001(SBR、JSR製)を使用した以外は、実施例18と同様にセパレータ、負極、および電池を作製し、同様の評価試験を行った。
Example 20
A separator, a negative electrode, and a battery were produced in the same manner as in Example 18 except that TRD2001 (SBR, manufactured by JSR) was used as a particulate binder for separators, and the same evaluation test was performed.
(実施例21)
 セパレータ用バインダー組成物として、リチウム変性メチルビニルエーテル-無水マレイン酸共重合樹脂(平均分子量630,000、中和度0.5、開環率98%)10質量%水溶液とポリエチレンイミン(PEI、和光純薬工業株式会社製、平均分子量10000)10質量%水溶液とを99:1(固形分として樹脂:PEI=6.387:0.065)の質量比となる混合物を使用した以外は、実施例18と同様にセパレータ、負極、および電池を作製し、同様の評価試験を行った。
(Example 21)
Lithium-modified methyl vinyl ether-maleic anhydride copolymer resin (average molecular weight 630,000, neutralization degree 0.5, ring opening rate 98%) 10 mass% aqueous solution and polyethyleneimine (PEI, Wako pure) as a binder composition for a separator Example 18 except using a mixture having a mass ratio of 99: 1 (solid content: resin: PEI = 6.387: 0.065) with a 10% by weight aqueous solution manufactured by Yakuhin Kogyo Co., Ltd., average molecular weight 10000. The separator, the negative electrode, and the battery were prepared in the same manner as in the above, and the same evaluation test was performed.
(比較例7)
 セパレータ用バインダー組成物において、ポリエチレンイミンを添加しなかった以外は、実施例18と同様にセパレータ、負極、および電池を作製し、同様の評価試験を行った。
(Comparative example 7)
In the binder composition for a separator, a separator, a negative electrode, and a battery were produced in the same manner as in Example 18 except that polyethyleneimine was not added, and the same evaluation test was performed.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
(考察2)
 実施例18~21では、セパレータ用バインダー組成物にポリアミン未添加の比較例7に比べ、セパレータにおける多孔質膜の多孔質基材への接着性が強く、安定した造膜を行うことができた。すなわち、表面平滑性に優れる非水電解質電池セパレータを得られた。これは、セパレータ用バインダー組成物において、ポリアミン添加によって金属成分を含むスラリーの安定性が向上したことと、粒子状結着剤によって多孔質基材への接着がより良好になったことによるものと推測される。
 これに対し、比較例7ではポリアミン未添加であったためスラリーが安定せず膜が作製できなかった。
(Discussion 2)
In Examples 18 to 21, compared with Comparative Example 7 in which the polyamine for the separator was not added to the binder composition for a separator, the adhesion of the porous film to the porous substrate in the separator was strong, and a stable film formation could be performed. . That is, a non-aqueous electrolyte battery separator excellent in surface smoothness was obtained. This is because, in the binder composition for a separator, the stability of the slurry containing the metal component is improved by the addition of the polyamine, and the adhesion to the porous substrate is improved by the particulate binder. It is guessed.
On the other hand, in Comparative Example 7, since the polyamine was not added, the slurry was not stable and a film could not be produced.

Claims (10)

  1.  α-オレフィン類とマレイン酸類とが共重合したα-オレフィン-マレイン酸類共重合体の中和塩、ポリアミン類および溶媒を含有する、非水電解質電池セパレータ用塗工液。 A coating liquid for a non-aqueous electrolyte battery separator, which comprises a neutralized salt of an α-olefin-maleic acid copolymer obtained by copolymerizing an α-olefin and a maleic acid, a polyamine and a solvent.
  2.  水系エマルションをさらに含有する、請求項1に記載のセパレータ用塗工液。 The coating liquid for a separator according to claim 1, further comprising an aqueous emulsion.
  3.  前記水系エマルションは、オレフィン系重合体、ジエン系重合体、アクリル系重合体、及びビニル芳香族系重合体からなる群から選択される少なくとも1種のポリマー粒子を含有する、請求項2に記載のセパレータ用塗工液。 The aqueous emulsion according to claim 2, wherein the aqueous emulsion contains at least one polymer particle selected from the group consisting of an olefin polymer, a diene polymer, an acrylic polymer, and a vinyl aromatic polymer. Coating fluid for separators.
  4.  前記水系エマルションは0.01~0.5μmの平均粒子径を有する、請求項2又は3に記載のセパレータ用塗工液。 The coating liquid for a separator according to claim 2 or 3, wherein the aqueous emulsion has an average particle size of 0.01 to 0.5 μm.
  5.  前記塗工液中の前記水系エマルションの固形分の含有量は、前記α-オレフィン-マレイン酸類共重合体の中和塩100質量部に対して0.01~50質量部である、請求項3又は4に記載のセパレータ用塗工液。 The solid content of the aqueous emulsion in the coating liquid is 0.01 to 50 parts by mass with respect to 100 parts by mass of the neutralized salt of the α-olefin-maleic acid copolymer. Or the coating liquid for separators as described in 4.
  6.  さらに金属酸化物及び金属塩のうち少なくとも1つを含有する、請求項1~5のいずれかに記載の非水電解質電池セパレータ用塗工液。 The coating liquid for nonaqueous electrolyte battery separator according to any one of claims 1 to 5, further comprising at least one of a metal oxide and a metal salt.
  7.  溶媒は水である、請求項1~6のいずれかに記載の非水電解質電池セパレータ用塗工液。 The coating solution for nonaqueous electrolyte battery separator according to any one of claims 1 to 6, wherein the solvent is water.
  8.  水系エマルションは粒子状結着剤が水系溶媒中で分散してエマルション化したものである、請求項2~6のいずれかに記載の非水電解質電池セパレータ用塗工液。 The coating solution for a non-aqueous electrolyte battery separator according to any one of claims 2 to 6, wherein the aqueous emulsion is obtained by dispersing and emulsifying a particulate binder in an aqueous solvent.
  9.  セパレータ基材と、請求項1~8のいずれかに記載のセパレータ用塗工液から該基材上に形成されてなるセパレータ塗膜層とを備える、非水電解質電池セパレータ。 A non-aqueous electrolyte battery separator comprising a separator substrate and a separator coating layer formed on the substrate from the coating liquid for a separator according to any one of claims 1 to 8.
  10.  請求項9に記載のセパレータを有する、非水電解質電池。 A non-aqueous electrolyte battery comprising the separator according to claim 9.
PCT/JP2018/026535 2017-09-11 2018-07-13 Coating liquid for non-aqueous electrolyte battery separator, non-aqueous electrolyte battery separator using same, and non-aqueous electrolyte battery WO2019049510A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019540802A JPWO2019049510A1 (en) 2017-09-11 2018-07-13 Coating liquid for non-aqueous electrolyte battery separator, and non-aqueous electrolyte battery separator and non-aqueous electrolyte battery using it

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-173760 2017-09-11
JP2017173760 2017-09-11
JP2018-074176 2018-04-06
JP2018074176 2018-04-06

Publications (1)

Publication Number Publication Date
WO2019049510A1 true WO2019049510A1 (en) 2019-03-14

Family

ID=65633816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026535 WO2019049510A1 (en) 2017-09-11 2018-07-13 Coating liquid for non-aqueous electrolyte battery separator, non-aqueous electrolyte battery separator using same, and non-aqueous electrolyte battery

Country Status (3)

Country Link
JP (1) JPWO2019049510A1 (en)
TW (1) TW201912736A (en)
WO (1) WO2019049510A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021153652A1 (en) * 2020-01-29 2021-08-05 マクセルホールディングス株式会社 Separator for nonaqueous electrolyte batteries, method for producing same, nonaqueous electrolyte battery, and method for producing said nonaqueous electrolyte battery
CN114039167A (en) * 2021-11-09 2022-02-11 惠州市旭然新能源有限公司 Porous lithium ion battery diaphragm, preparation method thereof and lithium ion battery
WO2024085735A1 (en) * 2022-10-21 2024-04-25 주식회사 엘지에너지솔루션 Separator for secondary battery, method for manufacturing same, and secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111916624B (en) * 2019-05-08 2022-02-01 宁德新能源科技有限公司 Separator and electrochemical device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014051043A1 (en) * 2012-09-28 2014-04-03 日本ゼオン株式会社 Conductive adhesive composition for electrochemical element electrode, collector with adhesive layer, and electrode for electrochemical element
WO2017022845A1 (en) * 2015-08-06 2017-02-09 株式会社クラレ Resin composition for nonaqueous electrolyte battery separator, and separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery using same
WO2017026475A1 (en) * 2015-08-10 2017-02-16 株式会社クラレ Nonaqueous electrolyte battery binder composition, and nonaqueous electrolyte battery slurry composition, nonaqueous electrolyte battery negative electrode, and nonaqueous electrolyte battery using same
WO2017122617A1 (en) * 2016-01-12 2017-07-20 日本ゼオン株式会社 Method for producing thermoplastic elastomer composition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2903055T3 (en) * 2012-09-28 2018-04-30 Zeon Corporation Porous membrane separator for secondary batteries, method for producing same, and secondary battery
CN104995765B (en) * 2013-02-05 2017-12-05 三菱制纸株式会社 Lithium rechargeable battery separator non-woven fabrics base material and lithium rechargeable battery separator
JP2014197541A (en) * 2013-03-05 2014-10-16 ユニチカ株式会社 Coating material for lithium ion secondary battery separator, lithium ion secondary battery separator, and lithium ion secondary battery
JP6431688B2 (en) * 2014-04-30 2018-11-28 ユニチカ株式会社 Coating material for separator, slurry, separator, and secondary battery
JP6494273B2 (en) * 2014-12-22 2019-04-03 三星エスディアイ株式会社Samsung SDI Co., Ltd. Non-aqueous electrolyte secondary battery electrode winding element, non-aqueous electrolyte secondary battery using the same, and non-aqueous electrolyte secondary battery electrode winding element manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014051043A1 (en) * 2012-09-28 2014-04-03 日本ゼオン株式会社 Conductive adhesive composition for electrochemical element electrode, collector with adhesive layer, and electrode for electrochemical element
WO2017022845A1 (en) * 2015-08-06 2017-02-09 株式会社クラレ Resin composition for nonaqueous electrolyte battery separator, and separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery using same
WO2017026475A1 (en) * 2015-08-10 2017-02-16 株式会社クラレ Nonaqueous electrolyte battery binder composition, and nonaqueous electrolyte battery slurry composition, nonaqueous electrolyte battery negative electrode, and nonaqueous electrolyte battery using same
WO2017122617A1 (en) * 2016-01-12 2017-07-20 日本ゼオン株式会社 Method for producing thermoplastic elastomer composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021153652A1 (en) * 2020-01-29 2021-08-05 マクセルホールディングス株式会社 Separator for nonaqueous electrolyte batteries, method for producing same, nonaqueous electrolyte battery, and method for producing said nonaqueous electrolyte battery
CN114039167A (en) * 2021-11-09 2022-02-11 惠州市旭然新能源有限公司 Porous lithium ion battery diaphragm, preparation method thereof and lithium ion battery
CN114039167B (en) * 2021-11-09 2023-10-03 惠州市旭然新能源有限公司 Porous lithium ion battery diaphragm, preparation method and lithium ion battery
WO2024085735A1 (en) * 2022-10-21 2024-04-25 주식회사 엘지에너지솔루션 Separator for secondary battery, method for manufacturing same, and secondary battery

Also Published As

Publication number Publication date
TW201912736A (en) 2019-04-01
JPWO2019049510A1 (en) 2020-10-15

Similar Documents

Publication Publication Date Title
JP6451732B2 (en) Binder composition for secondary battery porous membrane, slurry for secondary battery porous membrane, porous membrane for secondary battery, and secondary battery
JP6417943B2 (en) Slurry for positive electrode of lithium ion secondary battery
JP6361655B2 (en) Binder composition for lithium ion secondary battery electrode, slurry composition for lithium ion secondary battery electrode, electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6191597B2 (en) Secondary battery separator
US9917287B2 (en) Secondary-battery porous membrane composition, secondary-battery porous membrane and secondary battery
WO2019049510A1 (en) Coating liquid for non-aqueous electrolyte battery separator, non-aqueous electrolyte battery separator using same, and non-aqueous electrolyte battery
CN104685673A (en) Method for producing positive electrode for secondary battery, secondary battery, and method for producing stack for secondary battery
JP2014149936A (en) Secondary battery separator, method for manufacturing secondary battery separator, and secondary battery
WO2013062088A1 (en) Conductive adhesive composition, collector with adhesive layer, and electrochemical element electrode
JP2014149935A (en) Secondary battery separator, method for manufacturing secondary battery separator, and secondary battery
JP6413242B2 (en) Method for producing slurry for secondary battery positive electrode, method for producing positive electrode for secondary battery, and method for producing secondary battery
WO2014021401A1 (en) Slurry composition for lithium ion secondary battery electrodes, electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP6020209B2 (en) Method for producing slurry composition for secondary battery negative electrode
JP5978837B2 (en) Slurry composition for lithium ion secondary battery electrode, electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6233131B2 (en) Secondary battery porous membrane composition, secondary battery porous membrane and secondary battery
WO2015111663A1 (en) Electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6543007B2 (en) Thickening stabilizer for non-aqueous electrolyte battery electrode, and binder composition containing the same, slurry composition for non-aqueous electrolyte battery electrode, non-aqueous electrolyte battery electrode, and non-aqueous electrolyte battery
JP6869888B2 (en) A resin composition for a non-aqueous electrolyte battery separator, and a separator for a non-aqueous electrolyte battery and a non-aqueous electrolyte battery using the same.
JP6340826B2 (en) Secondary battery porous membrane slurry, manufacturing method, secondary battery porous membrane, and secondary battery
JP6217460B2 (en) Non-aqueous secondary battery electrode binder resin, non-aqueous secondary battery electrode binder resin composition, non-aqueous secondary battery electrode slurry composition, non-aqueous secondary battery electrode, and non-aqueous secondary battery
JP2021089833A (en) Dispersant composition for power storage device slurry, and use thereof
TWI605634B (en) Slurry composition for electrode of non-aqueous electrolyte battery, and non-aqueous electrolyte battery anode and non-aqueous electrolyte battery using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18853107

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019540802

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18853107

Country of ref document: EP

Kind code of ref document: A1