WO2021153652A1 - Separator for nonaqueous electrolyte batteries, method for producing same, nonaqueous electrolyte battery, and method for producing said nonaqueous electrolyte battery - Google Patents

Separator for nonaqueous electrolyte batteries, method for producing same, nonaqueous electrolyte battery, and method for producing said nonaqueous electrolyte battery Download PDF

Info

Publication number
WO2021153652A1
WO2021153652A1 PCT/JP2021/002975 JP2021002975W WO2021153652A1 WO 2021153652 A1 WO2021153652 A1 WO 2021153652A1 JP 2021002975 W JP2021002975 W JP 2021002975W WO 2021153652 A1 WO2021153652 A1 WO 2021153652A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
particle layer
inorganic particle
amine compound
electrolyte battery
Prior art date
Application number
PCT/JP2021/002975
Other languages
French (fr)
Japanese (ja)
Inventor
若奈 正本
松本 修明
片山 秀昭
Original Assignee
マクセルホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセルホールディングス株式会社 filed Critical マクセルホールディングス株式会社
Publication of WO2021153652A1 publication Critical patent/WO2021153652A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a separator for constructing a non-aqueous electrolyte battery which is excellent in safety and reliability against an internal short circuit and which can suppress deterioration of characteristics at high temperatures, a method for producing the same, and a non-aqueous electrolyte battery having the separator. It relates to the manufacturing method.
  • Non-aqueous electrolyte batteries represented by lithium secondary batteries are widely used as power sources for mobile devices and the like. Particularly in recent years, the application of non-aqueous electrolyte batteries to applications exposed to high temperatures has been progressing, and it is necessary to improve safety and reliability.
  • a lithium-containing composite oxide containing a transition metal is generally used as a positive electrode active material, but in a non-aqueous electrolyte battery having such a positive electrode active material, a positive electrode is used particularly in a high temperature environment. Transition metal ions elute into the non-aqueous electrolyte and cause a decrease in the capacity of the positive electrode, eluted metal ions precipitate at the negative electrode and cause deterioration of the negative electrode, and react with the non-aqueous electrolyte to generate gas. As a result, the characteristics of the battery may be impaired.
  • Patent Document 1 discloses a separator containing fine particles having a specific average particle size in which a specific polyamine group having a function of trapping metal ions is fixed on the surface by surface treatment using a coupling agent. Therefore, a non-aqueous electrolyte battery has been proposed, which is excellent in safety and reliability against internal short circuits, and can suppress deterioration of characteristics during high-temperature storage.
  • Patent Document 2 describes a separator in which heat shrinkage at a high temperature is suppressed, in which a coating layer containing a filler and a resin binder is provided on at least one surface of a polyolefin-based resin porous film. It is disclosed that by containing an adhesive such as an amine compound, the adhesion between the resin porous film and the coating layer can be improved, the content of the resin binder can be reduced, and a separator having excellent properties can be provided. Regarding the adhesive, Patent Document 2 describes an example using polyethyleneimine, and also exemplifies an amine compound containing a polyamine group described in Patent Document 1 such as polyalkylene polyamine. It is disclosed that the adhesive reacts with a polyolefin resin or a resin binder to enhance the adhesiveness.
  • an adhesive such as an amine compound
  • a polyolefin-based resin porous film contains a coating layer containing a filler (alumina) and a resin binder (polyvinyl alcohol) in a weight ratio of 39.4: 0.6 (98.5% by mass: 1.5% by mass).
  • the peeling strength of the separator of Comparative Example 1 formed above was 0.9 (N / 15 mm), whereas the filler, the resin binder, and the adhesive (polyethylene imine) were added at 39.4: 0.6 :.
  • Patent Document 2 by incorporating an adhesive in the coating layer containing the filler and the resin binder, the adhesion between the resin porous film and the coating layer can be improved, and the adhesive can be improved.
  • an adhesive When is an amine compound, it is possible to retain many polyamine groups in the coating layer by adjusting the addition amount thereof.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is a separator for constructing a non-aqueous electrolyte battery which is excellent in safety and reliability against an internal short circuit and can suppress deterioration of characteristics at a high temperature. And a method for producing the same, and a non-aqueous electrolyte battery having the separator and a method for producing the same.
  • the separator for a non-aqueous electrolyte battery of the present invention has an inorganic particle layer containing inorganic particles and a binder, and the inorganic particle layer contains an amine compound (a) represented by the following general formula (1).
  • the content of the binder in the inorganic particle layer is 2% by mass or more, and the content of the amine compound (a) is 0.5 to 7% by mass.
  • R 1 -H or -C x H 2x NH 2 (x is an integer of 2 to 6), R 2 : -C y H 2y- (y is 2 to 2 to 6). (An integer of 6), m is an integer of 1 to 6, and R 1 may be different from each other when m is 2 or more.
  • a composition containing inorganic particles, a binder and an amine compound (a) represented by the general formula (1) is applied onto a resin microporous film or an electrode.
  • the step of forming the inorganic particle layer on the film or the electrode is performed, and the ratio of the binder to the total amount of the inorganic particles, the binder and the amine compound (a) contained in the composition is 2% by mass. % Or more, and the proportion of the amine compound (a) is 0.5 to 7% by mass.
  • a composition containing inorganic particles and a binder is applied onto a resin microporous film or an electrode, and the composition is applied onto the film or the electrode. It has a step of forming an inorganic particle layer and a step of applying an amine compound on the inorganic particle layer, and the amine compound is an amine compound represented by the general formula (1) or the following general formula (2).
  • An amine compound having a functional group and a hydrolyzing group represented by is used, and the coating amount of the amine compound is 0.03 to 0.7 g / m 2 per unit area of the inorganic particle layer.
  • n is an integer of any of 2 to 6.
  • the non-aqueous electrolyte battery of the present invention is characterized by having a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode, and the non-aqueous electrolyte battery separator of the present invention is provided as the separator. Is to be.
  • the method for manufacturing a non-aqueous electrolyte battery of the present invention is characterized in that a separator for a non-aqueous electrolyte battery manufactured by any of the above manufacturing methods is used as a separator.
  • a separator for forming a non-aqueous electrolyte battery which is excellent in safety and reliability against an internal short circuit and can suppress deterioration of characteristics at a high temperature a method for producing the same, and a non-aqueous electrolyte having the separator.
  • a battery and a method for manufacturing the battery can be provided. That is, the non-aqueous electrolyte battery of the present invention and the non-aqueous electrolyte battery produced by the production method of the present invention are excellent in safety and reliability against internal short circuits, and can suppress deterioration of characteristics at high temperatures.
  • the separator described in Patent Document 1 includes, for example, a separator made of a porous film using fine particles containing a specific polyamine group and a binder, or a porous layer containing the fine particles and a binder made of polyolefin. It includes those made of a multilayer porous membrane formed on the surface of a porous substrate such as a porous membrane.
  • the porous membrane itself containing the fine particles and the layer containing the fine particles do not easily shrink due to heat, and therefore the heat resistance of the separator is improved.
  • Patent Document 2 is an adhesive that enhances the adhesion between the inorganic particle layer containing inorganic particles (filler) and binder and a porous substrate such as a microporous film made of polyolefin.
  • the present inventors have made extensive studies, and while effectively exerting the metal ion trapping function of the specific amine compound, the configuration suppresses the deterioration of the adhesion between the inorganic particle layer and the porous base material or the electrode.
  • the present invention has been completed by making it possible to provide a non-aqueous electrolyte battery which is excellent in safety and reliability against internal short circuit and can suppress deterioration of characteristics at high temperature.
  • the separator for a non-aqueous electrolyte battery of the present invention (hereinafter, may be simply referred to as "separator”) has an inorganic particle layer containing inorganic particles and a binder, and has a plurality of amino groups as a trapping agent for metal ions.
  • a linear or branched amine compound having a structure in which the nitrogen atoms of the amino group are bonded to each other via a hydrocarbon chain having two or more carbon atoms is used.
  • the amine compound (a) represented by the following general formula (1) is used.
  • R 1 -H or -C x H 2x NH 2 (x is an integer of 2 to 6), R 2 : -C y H 2y- (y is 2 to 2 to 6). (An integer of 6), m is an integer of 1 to 6, and R 1 may be different from each other when m is 2 or more.
  • amine compounds (a) specific examples of the amine compound represented by the general formula (1) and having a linear structure include ethylenediamine (1,2-diaminoethane), 1,3-diaminopropane, and 1 , 4-Diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, diethylenetriamine, triethylenetotetramine, 3,3-diaminodipropylamine, tetraethylenepentamine and the like.
  • amine compounds (a) specific examples of the amine compound represented by the general formula (1) and having a branched structure include tris (2-aminoethyl) amine.
  • the amount of adsorbed water in the separator can be suppressed to a low level. Since the water content brought into the battery using this can be reduced as much as possible, an amine compound having a linear structure is preferably used, and the number of carbon atoms of the hydrocarbon chain that bonds the nitrogen atoms of the amino group is high. More preferably, it is 2 or 3.
  • R 1 is preferably -H, more preferably x and y are each 2 or 3, diethylenetriamine, triethylenetetramine preparative tetramine, 3,3-diamino-dipropylamine Is even more preferable.
  • a plurality of R 1s may be different from each other, at least one may be ⁇ C x H 2 ⁇ NH 2 , and the rest may be ⁇ H.
  • the amine compound (a) used in the separator has an excellent trapping function for metal ions, but when it is contained in a composition for forming an inorganic particle layer containing inorganic particles and a binder, it becomes an inorganic particle layer. Adhesion to the resin porous film or electrode tends to decrease. In addition, the binding property between the inorganic particles is also reduced.
  • the separator of the present invention in order to prevent the amine compound (a) from inhibiting the binding action of the binder and to secure the adhesive strength between the inorganic particle layer and the resin porous film or the electrode, the above-mentioned
  • the binder content in the inorganic particle layer is 2% by mass or more, and the content of the amine compound (a) is 7% by mass or less.
  • the content of the amine compound (a) in the inorganic particle layer is set to 0.5% by mass or more.
  • the binder content in the inorganic particle layer is 2% by mass or more, preferably 3% by mass or more, from the viewpoint of enhancing the heat resistance of the separator.
  • the binder content in the inorganic particle layer is preferably 10% by mass or less, and more preferably 5% by mass or less.
  • the content of the amine compound (a) in the inorganic particle layer shall be 7% by mass or less and 5% by mass or less. Is preferable.
  • the amount of the amine compound (a) contained in the inorganic particle layer is preferably 0.5% by mass or more and preferably 1% by mass or more.
  • a composition containing inorganic particles, a binder and the amine compound (a) is applied onto a resin microporous film or an electrode (an electrode for a non-aqueous electrolyte battery; the same applies hereinafter). It can be produced by a step of forming an inorganic particle layer on the film or the electrode (hereinafter, referred to as Embodiment 1), and an inorganic particle layer containing inorganic particles and a binder in advance is formed on a resin microporous film or on a resin microporous film. It can also be produced through a step of forming on the electrode and further applying the amine compound (a) on the inorganic particle layer (hereinafter referred to as Embodiment 2).
  • amine compound (a) represented by the general formula (1) in addition to the amine compound (a) represented by the general formula (1), a functional group represented by the following general formula (2) is used.
  • An amine compound (b) having a hydrolyzing group can also be used.
  • n is an integer of any of 2 to 6.
  • the amine compound (b) such as a coupling agent having a functional group represented by the general formula (2) and a hydrolyzing group is previously contained in a composition containing inorganic particles and a binder for forming an inorganic particle layer. When it is contained, it chemically binds to the surface of the inorganic particles and becomes a factor of lowering the binding property of the binder. However, this problem can be prevented by using the step of the second embodiment.
  • amine compound (b) having a functional group represented by the general formula (2) and a hydrolyzing group include coupling agents such as silane coupling agents, zirconeate coupling agents, and titanate coupling agents.
  • coupling agents such as silane coupling agents, zirconeate coupling agents, and titanate coupling agents.
  • those having a functional group represented by the above formula (2) can be mentioned.
  • hydrolyzing group of the compound examples include an alkoxy group that can be transformed into a functional group that can react with the -OH group existing on the surface of the inorganic particles by causing hydrolysis.
  • the coupling agent having a hydrolyzing group chemically binds to the inorganic particles when it is dried after being applied to the inorganic particle layer, so that elution into the non-aqueous electrolytic solution is suppressed.
  • amine compound (b) having a functional group represented by the general formula (2) and a hydrolyzing group include H 2 NCH 2 CH 2 NHCH 2 CHCH 2 X (OCH 3 ) 3 and H 2 NCH.
  • 2 CH 2 NHCH 2 CH 2 CH 2 X (OCH 3 ) 3 H 2 NCH 2 CH 2 NHCH 2 CH 2 CH 2 X (OC 2 H 5 ) 3 , H 2 NCH 2 CH 2 NHCH 2 PhCH 2 CH 2 X (OCH 3 ) 3 , H 2 NCH 2 CH 2 NH (CH 2 ) 11 X (OCH 3 ) 3 , H 2 NC 2 H 4 NHC 2 H 4 OXO [CH (CH 3 ) CH 3 ] 3 , H 2 NC 2 H 4 NHC 3 H 6 SiCH 3 (OCH 3 ) 2 , H 2 NC 2 H 4 NHC 3 H 6 Si (OCH 3) 3 , H 2 NC 2 H 4 NHC 3 H 6 Si (OC 2 H 5 ) 3 (Note that
  • an amine compound for example, on the surface portion of the inorganic particle layer opposite to the resin porous film or the electrode, an amine compound [amine compound (a) and / or amine compound (b). Unless otherwise specified, the same applies to the amine compound in the second embodiment. ] Is formed in the trap layer (A).
  • the trap layer (A) may be formed on the surface of the inorganic particle layer (upper surface of the inorganic particle layer), or may be formed by containing the amine compound in a pore portion near the surface of the inorganic particle layer. good.
  • the trap layer (A) can be formed through a step of applying the amine compound on an inorganic particle layer formed on a resin porous film or an electrode. At this time, if the amine compound does not invade the pores of the inorganic particle layer, the trap layer (A) is formed on the surface of the inorganic particle layer (upper surface of the inorganic particle layer). On the other hand, when the amine compound is applied onto the inorganic particle layer, when the amine compound invades the pores of the inorganic particles, the vicinity of the surface of the inorganic particle layer (the surface layer portion of the inorganic particle layer) becomes a trap layer (A). ). Further, the trap layer (A) may be formed from above the inorganic particle layer to the vicinity of the surface of the inorganic particle layer.
  • the amine compound When the amine compound is present at the interface between the inorganic particle layer and the resin porous film or the electrode, the adhesion between them tends to decrease.
  • the trap layer (A) is formed through the step of applying the amine compound on the inorganic particle layer, the amine compound is on the surface side of the inorganic particle layer (opposite side of the interface with the resin film or the electrode). It becomes easy to be unevenly distributed. Therefore, as compared with the method of the first embodiment in which the amine compound is dispersed throughout the inside of the inorganic particle layer, it becomes easier to suppress a decrease in the adhesion between the inorganic particle layer and the resin porous film or the electrode. Therefore, by producing the separator by the method of the second embodiment, it is possible to satisfactorily trap the metal ions that may be generated in the battery, and it becomes easy to obtain a separator having excellent heat resistance.
  • the amine compound [the amine compound (a) represented by the general formula (1) and the general formula (2))
  • the amine compound (b) having a functional group represented by and a hydrolyzing group is used in combination, the total amount thereof. same as below. ] May be 0.03 g / m 2 or more per unit area of the inorganic particle layer, and preferably 0.07 g / m 2 or more.
  • the amount of the amine compound in the inorganic particle layer is too large, even if the trap layer (A) is formed after the formation of the inorganic particle layer, the binder binding property is hindered and the heat of the separator is increased. Shrinkage tends to increase. Therefore, from the viewpoint of not lowering the heat resistance of the separator, the amount of the amine compound applied to the inorganic particle layer is 0.7 g / m 2 or less per unit area of the inorganic particle layer, preferably 0. It is desirable to form the trap layer (A) so that the content is 3 g / m 2 or less.
  • the adhesion between the inorganic particle layer and the resin porous film or the electrode is less likely to decrease as compared with the method of the first embodiment.
  • the content of the binder in the inorganic particle layer containing the obtained amine compound does not necessarily have to be 2% by mass or more, and it is possible to secure the required adhesion with a content smaller than that.
  • the inorganic particles used in the inorganic particle layer of the separator are not particularly limited as long as they are electrochemically stable and electrically insulating, but they preferably have heat resistance.
  • the heat resistance of the inorganic particles is more preferably 200 ° C. or higher.
  • the heat resistant temperature of the inorganic particles is 200 ° C. or higher, it means that no shape change such as deformation is visually confirmed at at least 200 ° C.
  • the heat resistant temperature of the inorganic particles is more preferably 300 ° C. or higher.
  • the inorganic particles of iron oxide Fe x O y; FeO, such Fe 2 O 3
  • inorganic oxides such as ZrO 2
  • Inorganic nitrides such as; sparingly soluble ionic crystals such as calcium fluoride, barium fluoride, barium sulfate, calcium carbonate; covalent crystals such as silicon and diamond; clay such as montmorillonite; and the like.
  • the inorganic oxide may be a substance derived from mineral resources such as boehmite, zeolite, apatite, kaolin, mullite, spinel, olivine, mica, or an artificial product thereof.
  • a conductive material exemplified by a metal, a conductive oxide such as SnO 2 , tin-indium oxide (ITO), or a carbonaceous material such as carbon black or graphite is provided with a material having electrical insulation (a material having electrical insulation ().
  • the particles may be coated with the above-mentioned inorganic oxide or the like to provide electrical insulation.
  • the above-mentioned inorganic particles may be used alone or in combination of two or more.
  • Al 2 O 3 , SiO 2 and boehmite are particularly preferably used.
  • the shape of the inorganic particles may be, for example, a shape close to a spherical shape or a plate shape, but from the viewpoint of better preventing short circuits (particularly short circuits due to dendrites), plate-shaped particles are used. It is preferable to have.
  • Typical examples of the plate-shaped particles include plate-shaped Al 2 O 3 and plate-shaped boehmite, and these may be used alone or in combination of two or more.
  • the inorganic particles are preferably in the form of secondary particles in which primary particles are connected.
  • the aspect ratio is 5 or more, more preferably 10 or more, and 100 or less, more preferably 50 or less.
  • the average value of the ratio of the length in the major axis direction to the length in the minor axis direction (length in the major axis direction / length in the minor axis direction) of the flat plate surface of the particles is 3 or less, more preferably 2 or less, which is close to 1. It is desirable that it is a value.
  • the average value of the ratio of the length in the major axis direction to the length in the minor axis direction of the flat plate surface in the plate-shaped particles can be obtained by, for example, image analysis of an image taken by a scanning electron microscope (SEM). can. Further, the aspect ratio of the plate-shaped particles can also be obtained by image analysis of the image taken by SEM.
  • SEM scanning electron microscope
  • the flat plate surface of the plate-shaped particles in the separator is substantially parallel to the surface of the separator, and more specifically, the plate-shaped particles in the inorganic particle layer have the flat plate surface.
  • the average angle with the separator surface is preferably 30 ° or less [most preferably, the average angle is 0 °, that is, the plate-shaped flat plate surface in the inorganic particle layer of the separator is parallel to the surface of the separator. be ⁇ .
  • the average particle size of the inorganic particles is 0.01 ⁇ m or more. It is preferably 0.1 ⁇ m or more, and more preferably 0.1 ⁇ m or more. However, if the particle size of the inorganic particles is too large, the separator (inorganic particle layer) may become too thick and the energy density of the battery may decrease. Therefore, the average particle size of the inorganic particles is 15 ⁇ m or less. It is preferably 5 ⁇ m or less, and more preferably 5 ⁇ m or less.
  • a laser scattering particle size distribution meter for example, "LA-920" manufactured by HORIBA
  • the inorganic particles are placed in a medium that does not dissolve them.
  • the secondary particle-like particles mean the average particle diameter of the secondary particles.
  • the binder used for the inorganic particle layer includes ethylene-vinyl acetate copolymer (EVA, which has a structural unit derived from vinyl acetate of 20 to 35 mol%) and ethylene-acrylic acid such as ethylene-ethyl acrylate copolymer.
  • EVA ethylene-vinyl acetate copolymer
  • the binder one of the above-exemplified binders may be used alone, or two or more kinds of binders may be used in combination.
  • highly flexible binders such as EVA, ethylene-acrylic acid copolymer, fluorinated rubber, and SBR are preferable.
  • highly flexible binders include Mitsui DuPont Polychemical's "Evaflex Series (EVA)", Nippon Unicar's EVA, and Mitsui DuPont Polychemical's "Evaflex-EEA Series (Ethylene-”.
  • Acrylic acid copolymer ”, EEA of Nippon Unicar Co., Ltd., Daikin Industries Co., Ltd.“ Daiel Latex Series (Fluororubber) ”, JSR Corporation“ TRD-2001 (SBR) ”, Nippon Zeon Co., Ltd.“ BM-400B ( SBR) ”and the like.
  • the inorganic particles are the main constituents thereof, and the amount of the inorganic particles in the inorganic particle layer is preferably 50% by mass or more, preferably 80% by mass or more, based on the total amount of the constituent components of the inorganic particle layer. It is more preferable that the amount is 90% by mass or more.
  • the amount of the inorganic particles in the inorganic particle layer is 99 out of the total amount of the constituent components of the inorganic particle layer. It is preferably 9% by mass or less, more preferably 98% by mass or less, and particularly preferably 94% by mass or less.
  • the separator is produced by the method of the first embodiment, it is contained in the composition when the composition containing the inorganic particles, the binder and the amine compound is applied onto the resin microporous film or the electrode.
  • the amount of the inorganic particles is determined so that the proportion of the binder is 2% by mass or more and the proportion of the amine compound is 0.5 to 7% by mass in the total amount of the solid content (inorganic particles, binder and amine compound). good.
  • the inorganic particle layer functions as a separator by itself, but it is preferable to form a separator together with a resin microporous film in order to have a shutdown function or the like.
  • the resin microporous film used for the separator was composed of one or more of polyolefins such as polyethylene (PE) such as low density polyethylene, high density polyethylene and ultrahigh molecular weight polyethylene; polypropylene (PP); It is preferable that it is made of.
  • polyolefins are thermoplastic resins having a melting temperature of 80 to 180 ° C. measured using a differential scanning calorimeter (DSC) in accordance with the provisions of JIS K7121, and the separator is composed of such polyolefins.
  • DSC differential scanning calorimeter
  • the resin porous film is an ion-permeable porous film having a large number of pores formed by a conventionally known solvent extraction method, a dry method, a wet stretching method, or the like (microporous, which is widely used as a battery separator). Membrane) can be used.
  • the resin porous film is a porous film made of polyolefin (microporous film), for example, it may be one using only PE or only PP, or a microporous film made of PE. It may be a laminate with a microporous film made of PP (for example, a PP / PE / PP three-layer laminate).
  • the resin porous film may contain a filler or the like.
  • a filler include various inorganic particles exemplified above as those that can be used for the inorganic particle layer.
  • the amount of the main resin in the total product of the constituent components is preferably 50% by volume or more, more preferably 70% by volume or more.
  • the resin porous film may be composed of only resin, and in that case, the amount of resin in the total product of the constituent components in the resin porous film is 100% by volume.
  • the resin porous membrane film is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, for example, from the viewpoint of improving the strength of the separator. Further, from the viewpoint of reducing the total thickness of the separator and further improving the capacity and output density of the battery, the thickness of the resin porous film is preferably 35 ⁇ m or less, more preferably 20 ⁇ m or less.
  • the resin porous film may be used by being superposed on the inorganic particle layer formed on the electrode, or the inorganic particle layer may be formed on one side or both sides and used integrally with the inorganic particle layer. May be good.
  • the surface of the resin porous film can be modified in order to improve the adhesiveness with the inorganic particle layer.
  • a porous film made of polyolefin generally does not have high surface adhesiveness, so that surface modification is often effective.
  • Examples of the surface modification method for the resin porous film include corona discharge treatment, plasma discharge treatment, and ultraviolet irradiation treatment. From the viewpoint of dealing with environmental problems, for example, it is more desirable to use water as the solvent of the composition for forming the inorganic particle layer, and from this, especially when a porous polyolefin film is used, the surface is used. It is very preferable to increase the hydrophilicity of the surface by modification.
  • the inorganic particle layer is formed by applying a composition containing inorganic particles and a binder (composition for forming an inorganic particle layer) onto a resin porous film or on at least one electrode selected from a positive electrode and a negative electrode. ..
  • a slurry or paste prepared by dispersing inorganic particles and a binder in a solvent such as water or an organic solvent (the binder may be dissolved in the solvent) can be used. can.
  • the amine compound (a) is also contained in the composition for forming an inorganic particle layer.
  • the composition for forming an inorganic particle layer on the surface of the resin porous film or the electrode for example, a known coating device such as a blade coater, a roll coater, a die coater, a spray coater, or a gravure coater can be used.
  • a known coating device such as a blade coater, a roll coater, a die coater, a spray coater, or a gravure coater can be used.
  • the coated composition for forming the inorganic particle layer should be shared from the viewpoint of enhancing the orientation of the plate-shaped particles in the separator. Is preferable.
  • a coating device such as a blade coater or a die coater that can apply a share to the composition for forming an inorganic particle layer at the time of coating is used. Is preferable.
  • the solvent used in the composition for forming the inorganic particle layer may be any solvent as long as it can uniformly disperse inorganic particles and the like, and can uniformly dissolve or disperse the binder.
  • aromatic hydrocarbons such as toluene and tetrahydrofuran.
  • Common organic solvents such as furans such as furan, methyl ethyl ketone, and ketones such as methyl isobutyl ketone are preferably used.
  • Alcohol ethylene glycol, propylene glycol, etc.
  • various propylene oxide-based glycol ethers such as monomethyl acetate may be appropriately added to these solvents for the purpose of controlling the interfacial tension.
  • the binder when the binder is water-soluble or used as an emulsion, water may be used as a solvent as described above, and in this case as well, alcohols (methyl alcohol, ethyl alcohol, isopropyl alcohol, ethylene glycol, etc.) and various types are used. It is also possible to control the interfacial tension by appropriately adding a surfactant.
  • the content of the solid content (components excluding the solvent) of the composition for forming the inorganic particle layer is preferably 10 to 80% by mass, for example.
  • the composition for forming an inorganic particle layer After applying the composition for forming an inorganic particle layer to a resin porous film or an electrode, it is usually dried.
  • a method and conditions that can satisfactorily remove the solvent of the composition for forming the inorganic particle layer and do not deteriorate the inorganic particle layer, the resin porous film, or the electrode may be adopted.
  • a method of drying for about 0.1 to 10 minutes using warm air of the above can be mentioned.
  • the inorganic particle layer may be formed on only one side of the resin porous film or the electrode, or may be formed on both sides, if necessary.
  • the thickness of the inorganic particle layer (if the separator has a plurality of inorganic particle layers, the total thickness.
  • the thickness of the inorganic particle layer is the same below) controls the thermal shrinkage of the separator and is derived from foreign substances and positive electrodes mixed in. From the viewpoint of adsorbing the eluted metal ions, preventing internal short circuits and improving the reliability of the battery, the thickness is 2 ⁇ m or more, more preferably 3 ⁇ m or more. However, if the thickness of the inorganic particle layer is too thick, Li involved in charging / discharging may be adsorbed, or the total thickness of the separator may become large, which may cause deterioration of the load characteristics of the battery. Therefore, the thickness of the inorganic particle layer is preferably 10 ⁇ m or less, and more preferably 5 ⁇ m or less.
  • the separator of the present invention can be obtained by forming an inorganic particle layer containing the amine compound (a) on the resin porous film or the electrode as described above by the method for producing the separator according to the first embodiment. can.
  • the separator of the present invention is an amine compound on the inorganic particle layer of the laminate of the inorganic particle layer obtained as described above and the resin porous film or the electrode by the method for producing the separator of the second embodiment [the above.
  • the compound When the amine compound is applied onto the inorganic particle layer, in the case of a compound that is liquid at room temperature, the compound can be used as it is for application, but usually, a solution dissolved in a solvent is used for application.
  • a solvent for dissolving the amine compound include water; organic solvents such as alcohols [ethanol, isopropanol (IPA), etc.] and N-methyl-2-pyrrolidone (NMP).
  • the concentration of the amine compound in the solution in which the amine compound is dissolved in a solvent is preferably 0.1 to 20% by mass.
  • drying for example, a method and conditions that do not deteriorate the inorganic particle layer, the resin porous film, or the electrode may be adopted.
  • the drying is performed for about 0.1 to 20 minutes using warm air of about 20 to 100 ° C. The method etc. can be mentioned.
  • the thickness of the separator is preferably 0.5 ⁇ m or more when the inorganic particle layer is used alone, such as when the inorganic particle layer is formed on the electrode, and is preferably 1 ⁇ m.
  • the above is more preferable, and when the inorganic particle layer and the resin porous film are combined to form a separator, it is preferably 10 ⁇ m or more, and more preferably 15 ⁇ m or more.
  • the thickness of the separator is preferably 6 ⁇ m or less, and preferably 4 ⁇ m or less.
  • the thickness is preferably 40 ⁇ m or less, and more preferably 25 ⁇ m or less.
  • the porosity of the separator is preferably 30% or more, and preferably 70% or less when the separator is dry. If the porosity of the separator is too small, the movement of ions in the separator may be hindered, and if this is too large, the strength of the separator may decrease.
  • the porosity of the separator referred to in the present specification is a value calculated by calculating the sum of each component i using the following formula (3) from the thickness of the separator, the mass per area, and the density of the constituent components. be.
  • ai the ratio of the component i expressed in% by mass
  • ⁇ i the density of the component i (g / cm 3 )
  • m the mass per unit area of the separator (g / cm 2 ).
  • T Thickness (cm) of the separator.
  • the separator has an air permeability represented by a Garley value specified in JIS P 8117, preferably 50 seconds or more, more preferably 100 seconds or more, and preferably 600 seconds or less. More preferably, it is 300 seconds or less. If the Garley value is too small, lithium dendrite crystals and the like can easily penetrate, and the effect of suppressing internal short circuits may be small. If the Garley value is too large, the ionic conductivity becomes too low and the internal resistance of the battery becomes large. Therefore, there is a risk that the load characteristics will deteriorate.
  • a Garley value specified in JIS P 8117 preferably 50 seconds or more, more preferably 100 seconds or more, and preferably 600 seconds or less. More preferably, it is 300 seconds or less. If the Garley value is too small, lithium dendrite crystals and the like can easily penetrate, and the effect of suppressing internal short circuits may be small. If the Garley value is too large, the ionic conductivity becomes too low and the internal resistance of the battery becomes large. Therefore, there is
  • the separator preferably has a maximum pore diameter measured by the bubble point method specified in JIS K 3832 (hereinafter, simply referred to as "maximum pore diameter") of 0.01 ⁇ m or more and 1 ⁇ m or less. If the maximum pore diameter of the separator is too small, the pore diameter of the separator is too small, the ion permeability is deteriorated, and the internal resistance of the battery may become too large. On the other hand, if the maximum pore size of the separator is too large, the pore size of the separator becomes too large, and short circuits due to direct contact between the positive electrode and the negative electrode are likely to occur, or the effect of suppressing internal short circuits by lithium dendrite crystals is reduced. There is a risk of
  • the Garley value and the maximum pore diameter of the separator can be set to the above values by adopting the configurations described in detail so far.
  • the non-aqueous electrolyte battery of the present invention is composed of a positive electrode, a negative electrode, and a separator of the present invention interposed between the positive electrode and the negative electrode.
  • the positive electrode is not particularly limited as long as it is a positive electrode used in a conventionally known non-aqueous electrolyte battery, that is, a positive electrode containing an active material capable of occluding and releasing Li ions.
  • the positive electrode active material LiM x Mn 2-x O 4 (where M is Li, B, Mg, Ca, Sr, Ba, Ti, V, Cr, Fe, Co, Ni, Cu, Al, Spinel-type lithium manganese represented by 0.01 ⁇ x ⁇ 0.5), which is at least one element selected from the group consisting of Sn, Sb, In, Nb, Mo, W, Y, Ru and Rh.
  • Li x Mn (1-y -x) Ni y M z O (2-k) F l (although, M is, Co, Mg, Al, B , Ti, V, Cr, Fe, Cu, It is at least one element selected from the group consisting of Zn, Zr, Mo, Sn, Ca, Sr and W, and is 0.8 ⁇ x ⁇ 1.2, 0 ⁇ y ⁇ 0.5, 0 ⁇ z ⁇ .
  • Lithium-cobalt composite oxide represented by, LiNi 1-x M x O 2 (where M is Al, Mg, Ti, Zr, Fe, Co, Cu, Zn, Ga, Ge, Nb, Mo, Sn, At least one element selected from the group consisting of Sb and Ba, a lithium nickel composite oxide represented by 0 ⁇ x ⁇ 0.5), LiM 1-x N x O 2 (where M is. At least one element selected from the group consisting of Fe, Mn and Co, where N is from Al, Mg, Ti, Zr, Ni, Cu, Zn, Ga, Ge, Nb, Mo, Sn, Sb and Ba. It is at least one element selected from the above group, and examples thereof include an olivine type composite oxide represented by 0 ⁇ x ⁇ 0.5), and only one of these elements may be used. Seeds or more may be used together.
  • non-aqueous electrolyte battery of the present invention metal ions that elute from the positive electrode and precipitate on the negative electrode to deteriorate the battery characteristics or cause a short circuit are effectively trapped by the action of the amine compound contained in the separator. can do. Therefore, in the non-aqueous electrolyte battery of the present invention, when a lithium manganese composite oxide, a lithium nickel cobalt manganese composite oxide, or the like containing Mn easily eluted in the electrolytic solution as a constituent element is used as the positive electrode active material, the present invention is used. The effect is particularly remarkable.
  • the positive electrode one having a structure in which the positive electrode mixture layer containing the above-mentioned positive electrode active material and a conductive auxiliary agent or a binder is formed on one side or both sides of the current collector can be used.
  • binder of the positive electrode for example, a fluororesin such as polyvinylidene fluoride (PVDF) is used, and as the conductive auxiliary agent of the positive electrode, for example, a carbon material such as carbon black is used.
  • PVDF polyvinylidene fluoride
  • a metal foil such as aluminum, a punching metal, a net, an expanded metal or the like can be used, but usually, an aluminum foil having a thickness of 10 to 30 ⁇ m is preferably used.
  • the lead portion on the positive electrode side is usually provided by leaving an exposed portion of the current collector without forming a positive electrode mixture layer on a part of the current collector at the time of producing the positive electrode and using this as the lead portion.
  • the lead portion is not necessarily required to be integrated with the current collector from the beginning, and may be provided by connecting an aluminum foil or the like to the current collector later.
  • the negative electrode is not particularly limited as long as it is a negative electrode used in a conventionally known non-aqueous electrolyte battery, that is, a negative electrode containing an active material capable of occluding and releasing Li ions.
  • an active material capable of occluding and releasing Li ions for example, carbons capable of storing and releasing lithium such as graphite, pyrolytic carbons, cokes, glassy carbons, calcined organic polymer compounds, mesocarbon microbeads (MCMB), and carbon fibers as active materials.
  • MCMB mesocarbon microbeads
  • One or a mixture of two or more of the system materials is used.
  • Lithium / aluminum alloys, and Ti oxides such as those represented by Li 4 Ti 5 O 12 can also be used as the negative electrode active material.
  • a negative electrode mixture in which a conductive auxiliary agent (carbon material such as carbon black) or a binder such as PVDF is appropriately added to these negative electrode active materials is finished into a molded body (negative electrode mixture layer) using a current collector as a core material.
  • various alloys or lithium metal foils are used alone or laminated on a current collector as a negative electrode active material layer.
  • the current collector When a current collector is used for the negative electrode, copper or nickel foil, punching metal, net, expanded metal, etc. can be used as the current collector, but copper foil is usually used.
  • the upper limit of the thickness is preferably 30 ⁇ m, and the lower limit is preferably 5 ⁇ m.
  • the lead portion on the negative electrode side may be formed in the same manner as the lead portion on the positive electrode side.
  • the positive electrode and the negative electrode are formed into an electrode body such as a laminated electrode body laminated via a separator or a wound electrode body wound around the same, and these electrode bodies are enclosed together with a non-aqueous electrolyte in the exterior body. Then, a non-aqueous electrolyte battery can be obtained.
  • non-aqueous electrolyte solution a solution in which a lithium salt is dissolved in an organic solvent (non-aqueous electrolyte solution) can be used.
  • the lithium salt of the non-aqueous electrolyte solution is not particularly limited as long as it dissociates in a solvent to form Li + ions and does not easily cause side reactions such as decomposition in the voltage range used as a battery.
  • inorganic lithium salts such as LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 ; LiCF 3 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiN (CF 3 SO 2).
  • Rf is a fluoroalkyl group
  • other organic lithium salts can.
  • the organic solvent used in the non-aqueous electrolyte solution is not particularly limited as long as it dissolves the above-mentioned lithium salt and does not cause side reactions such as decomposition in the voltage range used as a battery.
  • cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate
  • chain carbonates such as dimethyl carbonate, diethyl carbonate and methyl ethyl carbonate
  • chain esters such as methyl propionate
  • cyclic esters such as ⁇ -butyrolactone
  • Chain ethers such as dimethoxyethane, diethyl ether, 1,3-dioxolane, diglime, triglime, tetraglyme
  • cyclic ethers such as dioxane, tetrahydrofuran, 2-methyltetrax
  • nitriles such as acetonitrile, propionitrile, methoxypropionitrile Classes
  • the concentration of this lithium salt in the non-aqueous electrolytic solution is preferably 0.5 to 1.5 mol / l, more preferably 0.9 to 1.25 mol / l.
  • a gel-like electrolyte obtained by adding a known gelling agent to the non-aqueous electrolyte solution may be used as the non-aqueous electrolyte.
  • non-aqueous electrolyte battery examples include a tubular shape (square tubular shape, cylindrical shape, etc.) using a steel can, an aluminum can, or the like as an outer can. Further, a soft package battery having a laminated film on which metal is vapor-deposited as an exterior body can also be used.
  • Example 1 ⁇ Making a separator> Plate-shaped boehmite (average particle size 1 ⁇ m, aspect ratio 10): 1000 g is dispersed in 1000 g of water, and 120 g of a dispersion liquid of SBR latex (solid content ratio 40% by mass) is added as a binder to uniformly disperse the inorganic particles. A layer-forming composition (slurry) was prepared.
  • the thickness after drying using a die coater on one side of a microporous polyolefin film (thickness 20 ⁇ m, porosity 40%) formed by laminating the above slurry in the order of PP layer, PE layer, and PP layer.
  • Diethylenetriamine [amine compound (a)] was dissolved in water to prepare a solution having a diethylenetriamine concentration of 10% by mass. This solution is applied onto the inorganic particle layer of the laminate of the inorganic particle layer and the resin porous film obtained as described above using a spray coater, dried, and the trap layer (A) is formed. A separator having was obtained.
  • the coating amount of diethylenetriamine was 0.13 g / m 2 per unit area of the inorganic particle layer, and the content of diethylenetriamine in the formed trap layer (A) was the inorganic particles and binder of the entire inorganic particle layer and the above. It was 2% by mass in the total amount with the amine compound.
  • a paste containing a negative electrode mixture was prepared by mixing 95 parts by mass of graphite as a negative electrode active material and 5 parts by mass of PVDF as a binder so as to be uniform using NMP as a solvent.
  • This negative electrode mixture-containing paste is intermittently applied to both sides of a 10 ⁇ m-thick current collector made of copper foil so that the coating length is 320 mm on the front surface and 260 mm on the back surface.
  • the thickness of the negative electrode mixture layer was adjusted to 142 ⁇ m, and the negative electrode mixture layer was cut to a width of 45 mm to prepare a negative electrode having a length of 330 mm and a width of 45 mm. Further, a tab was welded to the exposed portion of the copper foil of the negative electrode to form a lead portion.
  • LiMn 1.5 Ni 0.5 O 4 85 parts by mass, which is a positive electrode active material, acetylene black: 10 parts by mass, which is a conductive additive, and PVDF: 5 parts by mass, which is a binder, are made uniform using NMP as a solvent.
  • a positive electrode mixture-containing paste This paste is intermittently applied to both sides of an aluminum foil having a thickness of 15 ⁇ m as a current collector so that the coating length is 320 mm on the front surface and 260 mm on the back surface, and after drying, a calendar treatment is performed to bring the total thickness to 150 ⁇ m.
  • the thickness of the positive electrode mixture layer was adjusted so as to be so that the positive electrode was cut so as to have a width of 43 mm to prepare a positive electrode having a length of 330 mm and a width of 43 mm. Further, a tab was welded to the exposed portion of the aluminum foil of the positive electrode to form a lead portion.
  • ⁇ Battery assembly> The negative electrode, the positive electrode, and the separator were superposed so that the positive electrode was arranged on the inorganic particle layer side of the separator, and wound in a spiral shape to prepare a wound electrode body.
  • This wound electrode body is crushed to make it flat, loaded in a battery container, and 1.2 mol / mol / mol of LiPF 6 is added to a solvent in which a non-aqueous electrolyte solution (ethylene carbonate and ethyl methyl carbonate are mixed at a volume ratio of 1: 2).
  • a solution dissolved at a concentration of l) was injected into the battery container and then sealed to obtain a non-aqueous electrolyte battery.
  • Example 2 A separator was prepared in the same manner as in Example 1 except that triethylenetetramine was used instead of diethylenetriamine, and a non-aqueous electrolyte battery was prepared in the same manner as in Example 1 except that this separator was used.
  • Example 3 A separator was prepared in the same manner as in Example 1 except that 3,3-diaminodipropylamine was used instead of diethylenetriamine, and a non-aqueous electrolyte battery was prepared in the same manner as in Example 1 except that this separator was used. ..
  • Example 4 A separator was prepared in the same manner as in Example 1 except that tris (2-aminoethyl) amine was used instead of diethylenetriamine, and a non-aqueous electrolyte battery was prepared in the same manner as in Example 1 except that this separator was used. ..
  • Example 5 Plate-shaped boehmite (average particle size 1 ⁇ m, aspect ratio 10): 1000 g is dispersed in 1000 g of water, and 120 g of SBR latex dispersion (solid content ratio 40% by mass) and diethylenetriamine: 50 g are added as binders to make it uniform.
  • a composition (slurry) for forming an inorganic particle layer was prepared. The slurry was applied to one side of the same polyolefin microporous film (thickness 20 ⁇ m, porosity 40%) as in Example 1 using a die coater, and dried to form an inorganic particle layer having a thickness of 5 ⁇ m.
  • a separator having a total thickness of 25 ⁇ m and made of a laminate of an inorganic particle layer and a resin porous film was obtained.
  • the binder content in the inorganic particle layer was 4.4% by mass, and the amine compound content was 4.6% by mass.
  • Comparative Example 1 A non-aqueous electrolyte battery was produced in the same manner as in Example 1 except that the laminate of the inorganic particle layer and the resin porous film was used as it was as a separator without applying diethylenetriamine.
  • Comparative Example 2 A separator was prepared in the same manner as in Example 1 except that the coating amount of diethylenetriamine was 0.98 g / m 2 per unit area of the inorganic particle layer, and the separator was not used in the same manner as in Example 1 except that this separator was used. A water electrolyte battery was prepared.
  • the content of diethylenetriamine in the trap layer (A) of the prepared separator was 13.1% by mass based on the total amount of the inorganic particles and binder of the entire inorganic particle layer and the amine compound.
  • Comparative Example 3 When preparing the composition (slurry) for forming the inorganic particle layer, a separator was prepared in the same manner as in Example 5 except that the amount of the dispersion liquid of SBR latex added was 50 g, and Example 1 except that this separator was used. A non-aqueous electrolyte battery was produced in the same manner as in the above.
  • the binder content was 1.9% by mass and the amine compound content was 4.7% by mass in the inorganic particle layer of the prepared separator.
  • Comparative Example 4 When preparing the composition (slurry) for forming an inorganic particle layer, a separator was prepared in the same manner as in Example 5 except that the amount of diethylenetriamine added was 80 g, and the same as in Example 1 except that this separator was used. A non-aqueous electrolyte battery was prepared.
  • the binder content was 4.3% by mass and the amine compound content was 7.1% by mass in the inorganic particle layer of the prepared separator.
  • MX Murexide
  • Dojin Chemical Research Institute was used as a metal indicator.
  • MX is a dark reddish purple powder that produces a stable chelate compound with Ca, Ni, Co, Cu, etc. and turns yellow.
  • it can be used as a metal indicator because it can be restored to its original color by a chelating agent.
  • Kirest MZ-8 an organic solvent-soluble chelating agent “Kirest MZ-8" (trade name) manufactured by Kirest Co., Ltd. was used. However, since Kirest MZ-8 alone is insoluble in DEC and EC, Kirest MZ-8 was dissolved in ethanol to a concentration of 10% by mass to prepare a DEC / EC mixed solvent-soluble chelating agent.
  • the amount of metal ion adsorbed per unit mass of the inorganic filler was calculated from the amount of the dropped chelating agent and the mass of the inorganic particles applied to the separator.
  • Each of the above-mentioned measurement samples is hung in a constant temperature bath set at 150 ° C., and after 1 hour, the length of the straight line in the vertical and horizontal directions of each measurement sample is measured, and the length of the straight line before being hung in the constant temperature bath is measured.
  • the amount of change from the above was obtained, and the ratio of these changes to the length of the straight line before hanging in the constant temperature bath was expressed as a percentage and used as the heat shrinkage in the vertical and horizontal directions. Then, the larger value of the heat shrinkage in the vertical direction and the heat shrinkage in the horizontal direction of each measurement sample was taken as the heat shrinkage of each separator.
  • each battery after the initial capacity measurement is charged under the same conditions as described above, then stored at a high temperature of 80 ° C. for 24 hours, allowed to cool to room temperature, and then reaches 3 V at a current value of 0.5 C.
  • the discharge capacity was determined by discharging to, the capacity retention rate was determined by comparison with the charge capacity before high temperature storage, and the state of self-discharge considered to be caused by eluted ions was evaluated.
  • Capacity retention rate (%) (Discharge capacity after high temperature storage) / (Charge capacity before high temperature storage) x 100
  • Capacity recovery rate (%) (Discharge capacity in the second cycle after high temperature storage) / (Initial capacity) x 100
  • a battery with little deterioration recovers its capacity after several charging and discharging, and the capacity recovery rate increases. Therefore, the degree of deterioration of the battery can be evaluated from that value.
  • Table 1 shows the configurations of the separators of Examples and Comparative Examples
  • Table 2 shows the evaluation results
  • Table 3 shows the evaluation results of the batteries of Examples and Comparative Examples.
  • the values in parentheses in Table 1 are the average values of the content ratios of the respective components in the total amount of the inorganic particles, the binder and the amine compound (a) contained in the entire inorganic particle layer and the trap layer (A). Show that you did.
  • the separators of Examples 1 to 5 produced by the method for producing the separator of the first or second embodiment are eluted by the action of the specific amine compound (a).
  • the metal can be sufficiently adsorbed, the action of the amine compound to reduce the binder binding property of the inorganic particle layer is suppressed, the heat shrinkage is small, and the amount of adsorbed water content due to the amine compound (a) is also increased. It was suppressed. Therefore, the non-aqueous electrolyte batteries using the separators of Examples 1 to 5 have low self-discharge and little deterioration of the battery due to high temperature storage.
  • the amount of the amine compound (a) applied on the inorganic particle layer is too large, and in the method for producing the separator of the comparative example 2 and the separator of the first embodiment, the inorganic particle layer is formed.
  • Example 6 ⁇ Making a separator> A separator was prepared in the same manner as in Example 4 except that the amount of tris (2-aminoethyl) amine applied was 0.33 g / m 2 per unit area of the inorganic particle layer.
  • the content of tris (2-aminoethyl) amine in the trap layer (A) formed in the inorganic particle layer is 4.8% by mass based on the total amount of the inorganic particles and binder of the entire inorganic particle layer and the amine compound. Met.
  • LiNi 0.5 Co 0.2 Mn 0.3 O 2 92 parts by mass, which is a positive electrode active material, acetylene black: 5 parts by mass, which is a conductive additive, and PVDF: 3 parts by mass, which is a binder, are mixed. Further, an appropriate amount of NMP was added, and mixing and dispersion were carried out using a planetary mixer to prepare a slurry for forming a positive electrode mixture layer.
  • the slurry for forming the positive electrode mixture layer is applied to both sides of an aluminum foil having a thickness of 15 ⁇ m as a current collector so that the coating amount after drying is 15 mg / cm 2, and the coating length is 280 mm on the front surface and 210 mm on the back surface.
  • a calendar treatment and a heat treatment at 120 ° C. for 8 hours were performed to adjust the thickness of the positive electrode mixture layer so that the total thickness was 110 ⁇ m. This was cut to a width of 43 mm to prepare a positive electrode.
  • an aluminum lead piece for extracting an electric current was welded to the exposed portion of the aluminum foil to obtain a positive electrode with a lead.
  • the paste for forming the negative electrode mixture layer is applied to both sides of a 10 ⁇ m-thick current collector made of copper foil so that the coating amount is 9 mg / m 2 after drying, and the coating length is 290 mm on the front surface and 230 mm on the back surface.
  • calendar treatment and heat treatment at 120 ° C. for 8 hours were performed to adjust the thickness of the negative electrode mixture layer so that the total thickness was 126 ⁇ m. This was cut to a width of 45 mm to prepare a negative electrode.
  • a nickel lead piece for extracting an electric current was welded to the exposed portion of the copper foil to obtain a negative electrode with a lead.
  • ⁇ Battery assembly> The negative electrode, the positive electrode, and the separator were superposed so that the positive electrode was arranged on the inorganic particle layer side of the separator, and wound in a spiral shape to prepare a wound electrode body.
  • This wound electrode body is crushed to make it flat, loaded in a battery container, and 1.2 mol / mol / mol of LiPF 6 is added to a solvent in which a non-aqueous electrolyte solution (ethylene carbonate and ethyl methyl carbonate are mixed at a volume ratio of 1: 2).
  • a solution prepared by dissolving at a concentration of 1 l and adding 3% by mass of vinylene carbonate) was injected into the battery container, and then sealed to obtain a non-aqueous electrolyte battery.
  • Comparative Example 5 A non-aqueous electrolyte battery was produced in the same manner as in Example 6 except that the same separator as in Comparative Example 1 was used.
  • Charging was constant current charging up to 4.2V with a current value of 1C and constant voltage charging at 4.2V, and the total charging time from the start of constant current charging to the end of constant voltage charging was 3 hours.
  • the discharge was a constant current discharge up to 2.5 V with a current value of 1C.
  • the non-aqueous electrolyte battery of Example 6 was able to improve the charge / discharge cycle characteristics as compared with the non-aqueous electrolyte battery of Comparative Example 5 because the separator trapped the metal eluted from the positive electrode.
  • Example 7 ⁇ Making a separator> Plate-shaped boehmite (average particle size 1 ⁇ m, aspect ratio 10): 1000 parts by mass is dispersed in 1000 parts by mass of water, and 120 parts by mass of SBR latex (solid content ratio 40% by mass) is added as a binder to uniformly disperse. Prepared a slurry for forming an inorganic particle layer.
  • the thickness after drying using a die coater on one side of a microporous polyolefin film (thickness 20 ⁇ m, porosity 40%) formed by laminating the above slurry in the order of PE layer, PP layer, and PE layer.
  • the amount of the silane coupling agent applied was 0.13 g / m 2 per unit area of the inorganic particle layer.
  • a non-aqueous electrolyte battery was produced in the same manner as in Example 1 except that the above separator was used.
  • Example 8 A silane coupling agent having a functional group represented by the formula (2) and a hydrolyzing group (3-trimethoxysilylpropyl) diethylenetriamine [amine compound (b)]: 4 parts by mass, 96 parts by mass.
  • a solution having a concentration of 4% by mass of the silane coupling agent was prepared by dissolving it in water, and (3-trimethoxysilylpropyl) diethylenetriamine: 4 parts by mass with respect to 100 parts by mass of plate-shaped boehmite in the inorganic particle layer.
  • a separator was prepared in the same manner as in Example 7 except that the solution was applied in such an amount, and a non-aqueous electrolyte battery was prepared in the same manner as in Example 7 except that this separator was used.
  • the amount of the silane coupling agent applied was 0.33 g / m 2 per unit area of the inorganic particle layer.
  • Comparative Example 6 20 parts by mass of (3-trimethoxysilylpropyl) diethylenetriamine was placed in 80 parts by mass of water and stirred to uniformly dissolve the solution to prepare a silane coupling agent solution.
  • the above-mentioned silane coupling agent solution was added at a certain ratio, and the treatment was carried out for 60 minutes while stirring with a three-one motor.
  • the treated plate-shaped boehmite was filtered off and dried to obtain a plate-shaped boehmite on which the reaction product of (3-trimethoxysilylpropyl) diethylenetriamine was applied to the surface. Then, from the laminate of the inorganic particle layer and the resin microporous film in the same manner as in Example 7 except that the plate-shaped boehmite having the reaction product of (3-trimethoxysilylpropyl) diethylenetriamine applied to the surface was used. A non-aqueous electrolyte battery was produced in the same manner as in Example 7 except that this separator was used.
  • Comparative Example 7 A non-aqueous electrolyte battery was produced in the same manner as in Example 1 except that the solution of the silane coupling agent was not applied to the laminate of the inorganic particle layer and the resin porous film and used as it was as a separator.
  • the metal ion adsorption amount and the heat shrinkage rate of the separator were measured by the same method as the separator of Example 1, and compared with Examples 7 to 8.
  • the non-aqueous electrolyte batteries produced in Examples 6 to 7 have the same characteristics (initial capacity, capacity retention rate after high temperature storage, and capacity recovery rate after high temperature storage) in the same manner as the non-aqueous electrolyte battery of Example 1. Evaluation was performed.
  • Table 5 shows the results of each of the above evaluations of the separator
  • Table 6 shows the results of each of the above evaluations of the non-aqueous electrolyte battery.
  • the shape retention of the inorganic particle layer was improved as compared with Comparative Example 6, so that the heat shrinkage rate could be lowered, the heat resistance could be improved, and the adsorption of metal ions could be improved.
  • the amount could be equal to or higher than that of Comparative Example 6.
  • the separator of the example was provided with an inorganic particle layer having excellent adsorption of metal ions, so that deterioration of the battery could be suppressed as compared with Comparative Example 7.
  • the present invention can be implemented in forms other than the above, as long as the gist of the present invention is not deviated.
  • the embodiments disclosed in the present application are examples, and the present invention is not limited to these embodiments.
  • the scope of the present invention shall be construed in preference to the description of the appended claims over the description of the specification above, and all modifications within the scope of the claims shall be within the scope of the claims. included.
  • the non-aqueous electrolyte battery of the present invention can be applied to the same applications as various uses in which conventionally known non-aqueous electrolyte batteries are used.

Abstract

The present invention provides: a separator for constituting a nonaqueous electrolyte battery which has excellent safety and excellent reliability in terms of internal short circuit, while being able to be suppressed in deterioration of the characteristics at high temperatures; a method for producing this separator; a nonaqueous electrolyte battery which comprises this separator; and a method for producing this nonaqueous electrolyte battery. A separator for nonaqueous electrolyte batteries according to the present invention is characterized in that: the separator comprises an inorganic particle layer that contains inorganic particles and a binder; the inorganic particle layer contains an amine compound (a) that is represented by general formula (1); the content of the binder in the inorganic particle layer is 2% by mass or more; and the content of the amine compound (a) is from 0.5% by mass to 7% by mass. (In the formula, R1 represents –H or –CxH2xNH2 (wherein x represents an integer from 2 to 6); R2 represents –CyH2y- (wherein y represents an integer from 2 to 6); m represents an integer from 1 to 6; and in cases where m is 2 or more, the R1 moieties may be different from each other.)

Description

非水電解質電池用セパレータ、その製造方法、非水電解質電池およびその製造方法Separator for non-aqueous electrolyte battery, its manufacturing method, non-aqueous electrolyte battery and its manufacturing method
 本発明は、安全性および内部短絡に対する信頼性に優れ、かつ高温での特性低下を抑制し得る非水電解質電池を構成するためのセパレータとその製造方法、および前記セパレータを有する非水電解質電池とその製造方法に関するものである。 The present invention relates to a separator for constructing a non-aqueous electrolyte battery which is excellent in safety and reliability against an internal short circuit and which can suppress deterioration of characteristics at high temperatures, a method for producing the same, and a non-aqueous electrolyte battery having the separator. It relates to the manufacturing method.
 リチウム二次電池に代表される非水電解質電池は、携帯機器などの電源用途をはじめとして広く利用されている。特に近年では、高温下に曝されるような用途への非水電解質電池の適用も進んでおり、安全性や信頼性の向上も必要となっている。 Non-aqueous electrolyte batteries represented by lithium secondary batteries are widely used as power sources for mobile devices and the like. Particularly in recent years, the application of non-aqueous electrolyte batteries to applications exposed to high temperatures has been progressing, and it is necessary to improve safety and reliability.
 また、非水電解質電池では、正極活物質として遷移金属を含むリチウム含有複合酸化物が一般に使用されているが、このような正極活物質を有する非水電解質電池では、特に高温環境下において、正極から遷移金属のイオンが非水電解質中に溶出して正極の容量低下を引き起こしたり、溶出した金属イオンが負極で析出して負極の劣化を招いたり、非水電解質と反応してガス発生を起こしたりして、電池の特性を損なう虞がある。 Further, in a non-aqueous electrolyte battery, a lithium-containing composite oxide containing a transition metal is generally used as a positive electrode active material, but in a non-aqueous electrolyte battery having such a positive electrode active material, a positive electrode is used particularly in a high temperature environment. Transition metal ions elute into the non-aqueous electrolyte and cause a decrease in the capacity of the positive electrode, eluted metal ions precipitate at the negative electrode and cause deterioration of the negative electrode, and react with the non-aqueous electrolyte to generate gas. As a result, the characteristics of the battery may be impaired.
 一方、これらの問題の解決を図る技術の開発も行われている。例えば、特許文献1には、カップリング剤を用いた表面処理により、金属イオンをトラップする機能を有する特定のポリアミン基が表面に固定され、特定の平均粒子径を有する微粒子を含むセパレータが開示されており、安全性および内部短絡に対する信頼性に優れ、かつ高温貯蔵時の特性低下を抑制し得る非水電解質電池が提案されている。 On the other hand, technology is being developed to solve these problems. For example, Patent Document 1 discloses a separator containing fine particles having a specific average particle size in which a specific polyamine group having a function of trapping metal ions is fixed on the surface by surface treatment using a coupling agent. Therefore, a non-aqueous electrolyte battery has been proposed, which is excellent in safety and reliability against internal short circuits, and can suppress deterioration of characteristics during high-temperature storage.
 また、特許文献2には、ポリオレフィン系樹脂多孔フィルムの少なくとも片面に、フィラーと樹脂バインダとを含む被覆層を備えた、高温での熱収縮が抑制されたセパレータにおいて、前記被覆層にイミン化合物やアミン化合物などの密着剤を含有させることにより、樹脂多孔フィルムと被覆層との密着性を向上させ、樹脂バインダの含有量を低減して優れた特性を有するセパレータを提供できることが開示されている。特許文献2には、前記密着剤に関しては、ポリエチレンイミンを使用した実施例が記載されているほかに、ポリアルキレンポリアミンなどの特許文献1に記載されたポリアミン基を含有するアミン化合物の例示もあり、前記密着剤は、ポリオレフィン系樹脂または樹脂バインダと反応して密着性を高めることが開示されている。 Further, Patent Document 2 describes a separator in which heat shrinkage at a high temperature is suppressed, in which a coating layer containing a filler and a resin binder is provided on at least one surface of a polyolefin-based resin porous film. It is disclosed that by containing an adhesive such as an amine compound, the adhesion between the resin porous film and the coating layer can be improved, the content of the resin binder can be reduced, and a separator having excellent properties can be provided. Regarding the adhesive, Patent Document 2 describes an example using polyethyleneimine, and also exemplifies an amine compound containing a polyamine group described in Patent Document 1 such as polyalkylene polyamine. It is disclosed that the adhesive reacts with a polyolefin resin or a resin binder to enhance the adhesiveness.
 具体的には、フィラー(アルミナ)と樹脂バインダ(ポリビニルアルコール)を39.4:0.6の重量比(98.5質量%:1.5質量%)で含む被覆層をポリオレフィン系樹脂多孔フィルム上に形成した比較例1のセパレータの引き剥がし強度が0.9(N/15mm)であるのに対し、前記フィラーと前記樹脂バインダと密着剤(ポリエチレンイミン)を39.4:0.6:0.003~0.6の重量比(98.493質量%:1.500質量%:0.007質量%~97.0質量%:1.5質量%:1.5質量%)で含む被覆層をポリオレフィン系樹脂多孔フィルム上に形成した実施例1~7のセパレータの引き剥がし強度は2.0~4.0(N/15mm)となり、密着性を大幅に向上できることが示されている。 Specifically, a polyolefin-based resin porous film contains a coating layer containing a filler (alumina) and a resin binder (polyvinyl alcohol) in a weight ratio of 39.4: 0.6 (98.5% by mass: 1.5% by mass). The peeling strength of the separator of Comparative Example 1 formed above was 0.9 (N / 15 mm), whereas the filler, the resin binder, and the adhesive (polyethylene imine) were added at 39.4: 0.6 :. Coating containing with a weight ratio of 0.003 to 0.6 (98.493% by mass: 1.500% by mass: 0.007% by weight to 97.0% by weight: 1.5% by mass: 1.5% by mass) The peeling strength of the separators of Examples 1 to 7 in which the layer was formed on the polyolefin-based resin porous film was 2.0 to 4.0 (N / 15 mm), and it was shown that the adhesiveness could be significantly improved.
特開2012-14994号公報Japanese Unexamined Patent Publication No. 2012-14994 国際公開第2012/42965号International Publication No. 2012/42965
 ところで、最近は、非水電解質電池が適用される環境がより過酷となっており、自動車用途などのように、高温下に比較的長時間置かれる用途への適用が進んでいる。例えば特許文献1に記載のセパレータにおいて、このような用途においても十分な量の金属イオンをトラップできるようにするためには、セパレータを構成する微粒子により多くのポリアミン基を導入することが考えられる。 By the way, recently, the environment in which non-aqueous electrolyte batteries are applied has become more severe, and the application to applications such as automobile applications where the batteries are placed in a high temperature for a relatively long time is progressing. For example, in the separator described in Patent Document 1, in order to be able to trap a sufficient amount of metal ions even in such an application, it is conceivable to introduce more polyamine groups into the fine particles constituting the separator.
 ところが、特許文献1に記載されているようなカップリング剤による表面処理では、微粒子の表面に担持できるポリアミン基の量に限りがあり、トラップできるイオンの量が制限されてしまうだけでなく、樹脂バインダの結着性を阻害する要因となる。 However, in the surface treatment with a coupling agent as described in Patent Document 1, the amount of polyamine groups that can be supported on the surface of the fine particles is limited, and not only the amount of ions that can be trapped is limited, but also the resin. It becomes a factor that hinders the binding property of the binder.
 また、特許文献2に記載されているように、フィラーと樹脂バインダとを含む被覆層に密着剤を含有させることにより、樹脂多孔フィルムと被覆層との密着性を向上させることができ、密着剤がアミン化合物である場合には、その添加量を調整することにより、被覆層内に多くのポリアミン基を保持することも可能となる。 Further, as described in Patent Document 2, by incorporating an adhesive in the coating layer containing the filler and the resin binder, the adhesion between the resin porous film and the coating layer can be improved, and the adhesive can be improved. When is an amine compound, it is possible to retain many polyamine groups in the coating layer by adjusting the addition amount thereof.
 ところが、密着剤として特定の構造を有するアミン化合物を用いた場合には、樹脂バインダの結着作用を阻害してしまい、セパレータの熱収縮性が増大して高温下での電池の安全性や信頼性確保の点で不利になることが、本発明者らの検討によって明らかとなった。 However, when an amine compound having a specific structure is used as the adhesive, the binding action of the resin binder is hindered, the heat shrinkage of the separator is increased, and the safety and reliability of the battery at high temperatures are increased. It has been clarified by the examination by the present inventors that it is disadvantageous in terms of ensuring sex.
 本発明は、前記事情に鑑みてなされたものであり、その目的は、安全性および内部短絡に対する信頼性に優れ、かつ高温での特性低下を抑制し得る非水電解質電池を構成するためのセパレータとその製造方法、および前記セパレータを有する非水電解質電池とその製造方法を提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is a separator for constructing a non-aqueous electrolyte battery which is excellent in safety and reliability against an internal short circuit and can suppress deterioration of characteristics at a high temperature. And a method for producing the same, and a non-aqueous electrolyte battery having the separator and a method for producing the same.
 本発明の非水電解質電池用セパレータは、無機粒子とバインダとを含む無機粒子層を有し、前記無機粒子層が、下記一般式(1)で表されるアミン化合物(a)を含有し、前記無機粒子層における前記バインダの含有量が2質量%以上であり、かつ前記アミン化合物(a)の含有量が、0.5~7質量%であることを特徴とするものである。
Figure JPOXMLDOC01-appb-C000005
The separator for a non-aqueous electrolyte battery of the present invention has an inorganic particle layer containing inorganic particles and a binder, and the inorganic particle layer contains an amine compound (a) represented by the following general formula (1). The content of the binder in the inorganic particle layer is 2% by mass or more, and the content of the amine compound (a) is 0.5 to 7% by mass.
Figure JPOXMLDOC01-appb-C000005
 前記一般式(1)中、R:-Hまたは-C2xNH(xは、2~6のいずれかの整数)、R:-C2y-(yは、2~6のいずれかの整数)であって、mは1~6のいずれかの整数であり、mが2以上の場合にRは互いに異なってもよい。 In the general formula (1), R 1 : -H or -C x H 2x NH 2 (x is an integer of 2 to 6), R 2 : -C y H 2y- (y is 2 to 2 to 6). (An integer of 6), m is an integer of 1 to 6, and R 1 may be different from each other when m is 2 or more.
 本発明の非水電解質電池用セパレータの製造方法は、無機粒子とバインダと前記一般式(1)で表されるアミン化合物(a)とを含む組成物を樹脂微多孔フィルム上または電極上に塗布し、前記フィルム上または前記電極上に無機粒子層を形成する工程を有し、前記組成物に含有される無機粒子、バインダおよびアミン化合物(a)の全量中で、前記バインダの割合を2質量%以上とし、前記アミン化合物(a)の割合を0.5~7質量%とすることを特徴とする。 In the method for producing a separator for a non-aqueous electrolyte battery of the present invention, a composition containing inorganic particles, a binder and an amine compound (a) represented by the general formula (1) is applied onto a resin microporous film or an electrode. The step of forming the inorganic particle layer on the film or the electrode is performed, and the ratio of the binder to the total amount of the inorganic particles, the binder and the amine compound (a) contained in the composition is 2% by mass. % Or more, and the proportion of the amine compound (a) is 0.5 to 7% by mass.
 また、本発明の非水電解質電池用セパレータの製造方法の別の態様は、無機粒子とバインダとを含む組成物を樹脂微多孔フィルム上または電極上に塗布し、前記フィルム上または前記電極上に無機粒子層を形成する工程と、アミン化合物を前記無機粒子層上に塗布する工程とを有し、前記アミン化合物として、前記一般式(1)で表されるアミン化合物または下記一般式(2)で表される官能基と加水分解基とを有するアミン化合物を使用し、前記アミン化合物の塗布量を、前記無機粒子層の単位面積当たり0.03~0.7g/mとすることを特徴とする。 Further, in another aspect of the method for producing a separator for a non-aqueous electrolyte battery of the present invention, a composition containing inorganic particles and a binder is applied onto a resin microporous film or an electrode, and the composition is applied onto the film or the electrode. It has a step of forming an inorganic particle layer and a step of applying an amine compound on the inorganic particle layer, and the amine compound is an amine compound represented by the general formula (1) or the following general formula (2). An amine compound having a functional group and a hydrolyzing group represented by is used, and the coating amount of the amine compound is 0.03 to 0.7 g / m 2 per unit area of the inorganic particle layer. And.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 前記一般式(2)中、nは2~6のいずれかの整数である。 In the general formula (2), n is an integer of any of 2 to 6.
 さらに、本発明の非水電解質電池は、正極、負極、および前記正極と前記負極との間に介在するセパレータを有し、前記セパレータとして、本発明の非水電解質電池用セパレータを有することを特徴とするものである。 Further, the non-aqueous electrolyte battery of the present invention is characterized by having a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode, and the non-aqueous electrolyte battery separator of the present invention is provided as the separator. Is to be.
 また、本発明の非水電解質電池の製造方法は、前記の製造方法のいずれかで製造された非水電解質電池用セパレータを、セパレータとして使用することを特徴とする。 Further, the method for manufacturing a non-aqueous electrolyte battery of the present invention is characterized in that a separator for a non-aqueous electrolyte battery manufactured by any of the above manufacturing methods is used as a separator.
 本発明によれば、安全性および内部短絡に対する信頼性に優れ、かつ高温での特性低下を抑制し得る非水電解質電池を構成するためのセパレータとその製造方法、および前記セパレータを有する非水電解質電池とその製造方法を提供することができる。すなわち、本発明の非水電解質電池および本発明の製造方法によって製造される非水電解質電池は、安全性および内部短絡に対する信頼性に優れ、かつ高温での特性低下を抑制することができる。 According to the present invention, a separator for forming a non-aqueous electrolyte battery which is excellent in safety and reliability against an internal short circuit and can suppress deterioration of characteristics at a high temperature, a method for producing the same, and a non-aqueous electrolyte having the separator. A battery and a method for manufacturing the battery can be provided. That is, the non-aqueous electrolyte battery of the present invention and the non-aqueous electrolyte battery produced by the production method of the present invention are excellent in safety and reliability against internal short circuits, and can suppress deterioration of characteristics at high temperatures.
 特許文献1に記載のセパレータには、例えば、特定のポリアミン基を含有する微粒子と、バインダとを用いた多孔質膜からなるものや、前記微粒子とバインダとを含む多孔質層をポリオレフィン製の微多孔膜などの多孔質基材の表面に形成した多層多孔質膜からなるものなどが含まれる。特許文献1に記載のセパレータにおいては、前記微粒子を含有する多孔質膜自体や前記微粒子を含有する層が熱収縮し難く、そのためにセパレータの耐熱性が向上する。 The separator described in Patent Document 1 includes, for example, a separator made of a porous film using fine particles containing a specific polyamine group and a binder, or a porous layer containing the fine particles and a binder made of polyolefin. It includes those made of a multilayer porous membrane formed on the surface of a porous substrate such as a porous membrane. In the separator described in Patent Document 1, the porous membrane itself containing the fine particles and the layer containing the fine particles do not easily shrink due to heat, and therefore the heat resistance of the separator is improved.
 ところが、特許文献1に記載の方法では、微粒子の表面に担持できるポリアミン基の割合が限られるため、金属イオンのトラップ機能を高めることが難しいだけでなく、カップリング剤で微粒子が表面処理されることにより、前記微粒子とともに使用するバインダの結着性が低下し、前記微粒子を含有する多孔質層が熱収縮しやすくなって、表面処理されていない微粒子を用いた場合と比べ、セパレータの耐熱性が低下する。 However, in the method described in Patent Document 1, since the proportion of polyamine groups that can be supported on the surface of the fine particles is limited, it is difficult not only to enhance the trapping function of metal ions, but also the fine particles are surface-treated with a coupling agent. As a result, the binding property of the binder used together with the fine particles is lowered, the porous layer containing the fine particles is easily heat-shrinked, and the heat resistance of the separator is higher than that when the fine particles not surface-treated are used. Decreases.
 また、ポリアルキレンポリアミンについては、前記の通り、無機粒子(フィラー)およびバインダを含む無機粒子層と、ポリオレフィン製の微多孔膜などの多孔質基材との密着性を高める密着剤として特許文献2に例示されているものの、実際には、無機粒子層と多孔質基材との密着性を損なう作用を有することが、本発明者らの検討によって明らかとなった。 As for polyalkylene polyamine, as described above, Patent Document 2 is an adhesive that enhances the adhesion between the inorganic particle layer containing inorganic particles (filler) and binder and a porous substrate such as a microporous film made of polyolefin. Although it is illustrated in the above, it has been clarified by the studies by the present inventors that it actually has an action of impairing the adhesion between the inorganic particle layer and the porous substrate.
 そこで、本発明者らは鋭意検討を重ね、特定のアミン化合物が有する金属イオンのトラップ機能を有効に発揮させながら、無機粒子層と多孔質基材や電極との密着性の低下を抑制する構成を採用することで、安全性および内部短絡に対する信頼性に優れ、かつ高温での特性低下を抑制できる非水電解質電池の提供を可能として、本発明を完成させるに至った。 Therefore, the present inventors have made extensive studies, and while effectively exerting the metal ion trapping function of the specific amine compound, the configuration suppresses the deterioration of the adhesion between the inorganic particle layer and the porous base material or the electrode. By adopting the above, the present invention has been completed by making it possible to provide a non-aqueous electrolyte battery which is excellent in safety and reliability against internal short circuit and can suppress deterioration of characteristics at high temperature.
 本発明の非水電解質電池用セパレータ(以下、単に「セパレータ」という場合がある)は、無機粒子およびバインダを含有する無機粒子層を有しており、金属イオンのトラップ剤として、複数のアミノ基を有し、炭素数が2以上の炭化水素鎖を介して前記アミノ基の窒素原子同士が結合した構造を有する直鎖状または分岐状のアミン化合物を使用する。 The separator for a non-aqueous electrolyte battery of the present invention (hereinafter, may be simply referred to as "separator") has an inorganic particle layer containing inorganic particles and a binder, and has a plurality of amino groups as a trapping agent for metal ions. A linear or branched amine compound having a structure in which the nitrogen atoms of the amino group are bonded to each other via a hydrocarbon chain having two or more carbon atoms is used.
 具体的には、前記アミン化合物として、下記一般式(1)で表されるアミン化合物(a)を使用する。 Specifically, as the amine compound, the amine compound (a) represented by the following general formula (1) is used.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 前記一般式(1)中、R:-Hまたは-C2xNH(xは、2~6のいずれかの整数)、R:-C2y-(yは、2~6のいずれかの整数)であって、mは1~6のいずれかの整数であり、mが2以上の場合にRは互いに異なってもよい。 In the general formula (1), R 1 : -H or -C x H 2x NH 2 (x is an integer of 2 to 6), R 2 : -C y H 2y- (y is 2 to 2 to 6). (An integer of 6), m is an integer of 1 to 6, and R 1 may be different from each other when m is 2 or more.
 アミン化合物(a)のうち、前記一般式(1)で表され直鎖状の構造を有するアミン化合物の具体例としては、エチレンジアミン(1,2-ジアミノエタン)、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、ジエチレントリアミン、トリエチレントテトラミン、3,3-ジアミノジプロピルアミン、テトラエチレンペンタミンなどが挙げられる。 Among the amine compounds (a), specific examples of the amine compound represented by the general formula (1) and having a linear structure include ethylenediamine (1,2-diaminoethane), 1,3-diaminopropane, and 1 , 4-Diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, diethylenetriamine, triethylenetotetramine, 3,3-diaminodipropylamine, tetraethylenepentamine and the like.
 アミン化合物(a)のうち、前記一般式(1)で表され分岐状の構造を有するアミン化合物の具体例としては、トリス(2-アミノエチル)アミンなどが挙げられる。 Among the amine compounds (a), specific examples of the amine compound represented by the general formula (1) and having a branched structure include tris (2-aminoethyl) amine.
 前記例示の各アミン化合物の中でも、無機粒子層と樹脂多孔質フィルムなどの多孔質基材や電極との密着性を低下させ難いことに加えて、セパレータの吸着水分量を低く抑えることができ、これを用いた電池内に持ち込まれる水分を可及的に減らし得ることから、直鎖状の構造を有するアミン化合物が好ましく用いられ、アミノ基の窒素原子同士を結合する炭化水素鎖の炭素数は2または3であることがより好ましい。 Among the above-exemplified amine compounds, in addition to being difficult to reduce the adhesion between the inorganic particle layer and a porous base material such as a resin porous film or an electrode, the amount of adsorbed water in the separator can be suppressed to a low level. Since the water content brought into the battery using this can be reduced as much as possible, an amine compound having a linear structure is preferably used, and the number of carbon atoms of the hydrocarbon chain that bonds the nitrogen atoms of the amino group is high. More preferably, it is 2 or 3.
 すなわち、前記一般式(1)において、R:-Hであることが好ましく、xおよびyがそれぞれ2または3であることがより好ましく、ジエチレントリアミン、トリエチレントテトラミン、3,3-ジアミノジプロピルアミンがさらに好ましい。 That is, in the general formula (1), R 1: is preferably -H, more preferably x and y are each 2 or 3, diethylenetriamine, triethylenetetramine preparative tetramine, 3,3-diamino-dipropylamine Is even more preferable.
 なお、mが2以上の場合に複数存在するRは互いに異なってもよく、少なくとも1つが-C2xNHであり、残りが-Hであってもよい。 When m is 2 or more, a plurality of R 1s may be different from each other, at least one may be −C x H 2 × NH 2 , and the rest may be −H.
 セパレータで使用する前記アミン化合物(a)は、金属イオンのトラップ機能に優れる一方で、無機粒子およびバインダを含む無機粒子層の形成用の組成物中に含有させた場合には、無機粒子層と樹脂多孔質フィルムまたは電極との密着性が低下しやすくなる。また、無機粒子同士の結着性も低下する。 The amine compound (a) used in the separator has an excellent trapping function for metal ions, but when it is contained in a composition for forming an inorganic particle layer containing inorganic particles and a binder, it becomes an inorganic particle layer. Adhesion to the resin porous film or electrode tends to decrease. In addition, the binding property between the inorganic particles is also reduced.
 そこで、本発明のセパレータにおいては、前記アミン化合物(a)がバインダの結着作用を阻害するのを抑制して、無機粒子層と樹脂多孔質フィルムまたは電極との接着強度を確保するため、前記無機粒子層におけるバインダの含有量を2質量%以上とし、かつ前記アミン化合物(a)の含有量を7質量%以下とする。さらに、前記無機粒子層に金属イオンの優れたトラップ機能を付与するため、前記無機粒子層における前記アミン化合物(a)の含有量を0.5質量%以上とする。 Therefore, in the separator of the present invention, in order to prevent the amine compound (a) from inhibiting the binding action of the binder and to secure the adhesive strength between the inorganic particle layer and the resin porous film or the electrode, the above-mentioned The binder content in the inorganic particle layer is 2% by mass or more, and the content of the amine compound (a) is 7% by mass or less. Further, in order to impart an excellent trap function of metal ions to the inorganic particle layer, the content of the amine compound (a) in the inorganic particle layer is set to 0.5% by mass or more.
 本発明のセパレータにおいて、無機粒子層におけるバインダの含有量は、セパレータの耐熱性を高める観点から、2質量%以上であり、3質量%以上であることが好ましい。ただし、無機粒子層中のバインダの量が多すぎると、セパレータをリチウムイオンが通過し難くなって、電池特性が低下する虞がある。よって、より良好な特性の電池を構成できるようにする観点から、無機粒子層におけるバインダの含有量は、10質量%以下であることが好ましく、5質量%以下であることがより好ましい。 In the separator of the present invention, the binder content in the inorganic particle layer is 2% by mass or more, preferably 3% by mass or more, from the viewpoint of enhancing the heat resistance of the separator. However, if the amount of the binder in the inorganic particle layer is too large, it becomes difficult for lithium ions to pass through the separator, which may deteriorate the battery characteristics. Therefore, from the viewpoint of enabling the formation of a battery having better characteristics, the binder content in the inorganic particle layer is preferably 10% by mass or less, and more preferably 5% by mass or less.
 また、アミン化合物(a)が前記バインダの結着作用を阻害するのを防ぐため、無機粒子層における前記アミン化合物(a)の含有量は、7質量%以下とし、5質量%以下であることが好ましい。一方、金属イオンのトラップ機能を良好にする観点から、無機粒子層が含有する前記アミン化合物(a)の量は、0.5質量%以上とし、1質量%以上であることが好ましい。 Further, in order to prevent the amine compound (a) from inhibiting the binding action of the binder, the content of the amine compound (a) in the inorganic particle layer shall be 7% by mass or less and 5% by mass or less. Is preferable. On the other hand, from the viewpoint of improving the trapping function of metal ions, the amount of the amine compound (a) contained in the inorganic particle layer is preferably 0.5% by mass or more and preferably 1% by mass or more.
 また、本発明のセパレータは、無機粒子とバインダと前記アミン化合物(a)とを含む組成物を樹脂微多孔フィルム上または電極上(非水電解質電池用の電極。以下同じ。)に塗布し、前記フィルム上または前記電極上に無機粒子層を形成する工程により作製する(以下、実施態様1とする)ことができるほか、あらかじめ無機粒子とバインダとを含む無機粒子層を樹脂微多孔フィルム上または前記電極上に形成し、さらに前記無機粒子層上に前記アミン化合物(a)を塗布する工程を経て作製する(以下、実施態様2とする)ことも可能である。 Further, in the separator of the present invention, a composition containing inorganic particles, a binder and the amine compound (a) is applied onto a resin microporous film or an electrode (an electrode for a non-aqueous electrolyte battery; the same applies hereinafter). It can be produced by a step of forming an inorganic particle layer on the film or the electrode (hereinafter, referred to as Embodiment 1), and an inorganic particle layer containing inorganic particles and a binder in advance is formed on a resin microporous film or on a resin microporous film. It can also be produced through a step of forming on the electrode and further applying the amine compound (a) on the inorganic particle layer (hereinafter referred to as Embodiment 2).
 実施態様2の工程によりセパレータを作製する場合には、アミン化合物として、前記一般式(1)で表されるアミン化合物(a)のほかに、下記一般式(2)で表される官能基と加水分解基とを有するアミン化合物(b)を用いることもできる。 When the separator is produced by the step of the second embodiment, as the amine compound, in addition to the amine compound (a) represented by the general formula (1), a functional group represented by the following general formula (2) is used. An amine compound (b) having a hydrolyzing group can also be used.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 前記一般式(2)中、nは2~6のいずれかの整数である。 In the general formula (2), n is an integer of any of 2 to 6.
 一般式(2)で表される官能基と加水分解基とを有するカップリング剤などのアミン化合物(b)は、無機粒子層を形成するための無機粒子とバインダとを含む組成物中にあらかじめ含有させた場合には、無機粒子の表面に化学的に結合し、バインダの結着性を低下させる要因となる。しかし、実施態様2の工程を用いることにより、この問題を防ぐことができる。 The amine compound (b) such as a coupling agent having a functional group represented by the general formula (2) and a hydrolyzing group is previously contained in a composition containing inorganic particles and a binder for forming an inorganic particle layer. When it is contained, it chemically binds to the surface of the inorganic particles and becomes a factor of lowering the binding property of the binder. However, this problem can be prevented by using the step of the second embodiment.
 前記一般式(2)で表される官能基と加水分解基とを有するアミン化合物(b)の具体例としては、シランカップリング剤、ジルコネートカップリング剤、チタネートカップリング剤などのカップリング剤との名称で流通している各種化合物のうちの、前記式(2)で表される官能基を有するものが挙げられる。 Specific examples of the amine compound (b) having a functional group represented by the general formula (2) and a hydrolyzing group include coupling agents such as silane coupling agents, zirconeate coupling agents, and titanate coupling agents. Among the various compounds distributed under the name of, those having a functional group represented by the above formula (2) can be mentioned.
 前記化合物の加水分解基には、加水分解を生じることにより、無機粒子の表面に存在する-OH基と反応可能な官能基に変化することのできる、アルコキシ基などが例示される。 Examples of the hydrolyzing group of the compound include an alkoxy group that can be transformed into a functional group that can react with the -OH group existing on the surface of the inorganic particles by causing hydrolysis.
 前記加水分解基を有するカップリング剤は、無機粒子層に塗布された後、乾燥の際などに、無機粒子と化学的に結合するため、非水電解液中への溶出が抑制される。 The coupling agent having a hydrolyzing group chemically binds to the inorganic particles when it is dried after being applied to the inorganic particle layer, so that elution into the non-aqueous electrolytic solution is suppressed.
 前記一般式(2)で表される官能基と加水分解基とを有するアミン化合物(b)の具体例としては、HNCHCHNHCHCHCHX(OCH、HNCHCHNHCHCHCHX(OCH、HNCHCHNHCHCHCHX(OC、HNCHCHNHCHPhCHCHX(OCH、HNCHCHNH(CH11X(OCH、HNCNHCOXO〔CH(CH)CH、HNCNHCSiCH(OCH、HNCNHCSi(OCH3)3、HNCNHCSi(OCなどのカップリング剤が挙げられる(なお、例示のカップリング剤を表す前記の各式中、XはSi、ZrまたはTiを表し、Phはフェニレンを表す)。 Specific examples of the amine compound (b) having a functional group represented by the general formula (2) and a hydrolyzing group include H 2 NCH 2 CH 2 NHCH 2 CHCH 2 X (OCH 3 ) 3 and H 2 NCH. 2 CH 2 NHCH 2 CH 2 CH 2 X (OCH 3 ) 3 , H 2 NCH 2 CH 2 NHCH 2 CH 2 CH 2 X (OC 2 H 5 ) 3 , H 2 NCH 2 CH 2 NHCH 2 PhCH 2 CH 2 X (OCH 3 ) 3 , H 2 NCH 2 CH 2 NH (CH 2 ) 11 X (OCH 3 ) 3 , H 2 NC 2 H 4 NHC 2 H 4 OXO [CH (CH 3 ) CH 3 ] 3 , H 2 NC 2 H 4 NHC 3 H 6 SiCH 3 (OCH 3 ) 2 , H 2 NC 2 H 4 NHC 3 H 6 Si (OCH 3) 3 , H 2 NC 2 H 4 NHC 3 H 6 Si (OC 2 H 5 ) 3 (Note that, in each of the above formulas representing the exemplary coupling agent, X represents Si, Zr or Ti, and Ph represents phenylene).
 実施態様2の場合には、例えば、無機粒子層の、樹脂多孔質フィルムまたは電極とは反対側の表面部分に、アミン化合物〔アミン化合物(a)および/またはアミン化合物(b)。実施態様2におけるアミン化合物について、特に断らない限り、以下同じ。〕を含有するトラップ層(A)を形成する。 In the case of the second embodiment, for example, on the surface portion of the inorganic particle layer opposite to the resin porous film or the electrode, an amine compound [amine compound (a) and / or amine compound (b). Unless otherwise specified, the same applies to the amine compound in the second embodiment. ] Is formed in the trap layer (A).
 前記トラップ層(A)は、無機粒子層の表面(無機粒子層の上面)に形成してもよく、無機粒子層の表面近傍の空孔部分に前記アミン化合物を含有させることで形成してもよい。 The trap layer (A) may be formed on the surface of the inorganic particle layer (upper surface of the inorganic particle layer), or may be formed by containing the amine compound in a pore portion near the surface of the inorganic particle layer. good.
 前記トラップ層(A)は、樹脂多孔質フィルム上または電極上に形成した無機粒子層上に、前記アミン化合物を塗布する工程を経て形成できる。このとき、前記アミン化合物が無機粒子層の空孔部分に侵入しない場合には、無機粒子層の表面(無機粒子層の上面)にトラップ層(A)が形成される。他方、前記無機粒子層上に前記アミン化合物を塗布したときに、前記アミン化合物が無機粒子の空孔部分に侵入すると、無機粒子層の表面近傍(無機粒子層の表層部分)がトラップ層(A)となる。また、トラップ層(A)は、無機粒子層上から、無機粒子層の表面近傍にわたって形成されていてもよい。 The trap layer (A) can be formed through a step of applying the amine compound on an inorganic particle layer formed on a resin porous film or an electrode. At this time, if the amine compound does not invade the pores of the inorganic particle layer, the trap layer (A) is formed on the surface of the inorganic particle layer (upper surface of the inorganic particle layer). On the other hand, when the amine compound is applied onto the inorganic particle layer, when the amine compound invades the pores of the inorganic particles, the vicinity of the surface of the inorganic particle layer (the surface layer portion of the inorganic particle layer) becomes a trap layer (A). ). Further, the trap layer (A) may be formed from above the inorganic particle layer to the vicinity of the surface of the inorganic particle layer.
 前記アミン化合物は、無機粒子層と樹脂多孔質フィルムまたは電極との界面部分に存在すると、これらの間の密着性が低下しやすくなる。しかしながら、無機粒子層上に前記アミン化合物を塗布する工程を経てトラップ層(A)を形成した場合には、前記アミン化合物が無機粒子層の表面側(樹脂フィルムまたは電極との界面の反対側)に偏在しやすくなる。このため、無機粒子層の内部全体に前記アミン化合物を分散させる実施態様1の方法に比べ、無機粒子層と樹脂多孔質フィルムまたは電極との密着性の低下を抑制しやすくなる。よって、実施態様2の方法によってセパレータを作製することにより、電池内で生じ得る金属イオンを良好にトラップすることができ、耐熱性に優れたセパレータが得られやすくなる。 When the amine compound is present at the interface between the inorganic particle layer and the resin porous film or the electrode, the adhesion between them tends to decrease. However, when the trap layer (A) is formed through the step of applying the amine compound on the inorganic particle layer, the amine compound is on the surface side of the inorganic particle layer (opposite side of the interface with the resin film or the electrode). It becomes easy to be unevenly distributed. Therefore, as compared with the method of the first embodiment in which the amine compound is dispersed throughout the inside of the inorganic particle layer, it becomes easier to suppress a decrease in the adhesion between the inorganic particle layer and the resin porous film or the electrode. Therefore, by producing the separator by the method of the second embodiment, it is possible to satisfactorily trap the metal ions that may be generated in the battery, and it becomes easy to obtain a separator having excellent heat resistance.
 実施態様2のセパレータの製造方法において、金属イオンのトラップ機能を良好に確保する観点から、前記アミン化合物〔前記一般式(1)で表されるアミン化合物(a)と、前記一般式(2)で表される官能基と加水分解基とを有するアミン化合物(b)とを併用する場合は、それらの合計量。以下同じ。〕の塗布量は、前記無機粒子層の単位面積当たり0.03g/m以上とすればよく、0.07g/m以上とすることが好ましい。ただし、前記アミン化合物の無機粒子層中の量が多すぎると、無機粒子層の形成後にトラップ層(A)が形成される場合であっても、バインダの結着性が阻害されてセパレータの熱収縮が増大しやすくなる。よって、セパレータの耐熱性をより低下させないようにする観点からは、前記アミン化合物の無機粒子層への塗布量は、無機粒子層の単位面積当たり0.7g/m以下とし、好ましくは0.3g/m以下となるように、トラップ層(A)を形成することが望ましい。 In the method for producing a separator according to the second embodiment, from the viewpoint of ensuring a good trapping function for metal ions, the amine compound [the amine compound (a) represented by the general formula (1) and the general formula (2)) When the amine compound (b) having a functional group represented by and a hydrolyzing group is used in combination, the total amount thereof. same as below. ] May be 0.03 g / m 2 or more per unit area of the inorganic particle layer, and preferably 0.07 g / m 2 or more. However, if the amount of the amine compound in the inorganic particle layer is too large, even if the trap layer (A) is formed after the formation of the inorganic particle layer, the binder binding property is hindered and the heat of the separator is increased. Shrinkage tends to increase. Therefore, from the viewpoint of not lowering the heat resistance of the separator, the amount of the amine compound applied to the inorganic particle layer is 0.7 g / m 2 or less per unit area of the inorganic particle layer, preferably 0. It is desirable to form the trap layer (A) so that the content is 3 g / m 2 or less.
 なお、実施態様2の方法によりセパレータを作製する場合、実施態様1の方法に比べ、無機粒子層と樹脂多孔質フィルムまたは電極との密着性が低下し難くなるため、無機粒子とバインダと、塗布されたアミン化合物とを含む無機粒子層における前記バインダの含有量は、必ずしも2質量%以上でなくともよく、それよりも少ない含有量で必要な密着性を確保することも可能である。 When the separator is produced by the method of the second embodiment, the adhesion between the inorganic particle layer and the resin porous film or the electrode is less likely to decrease as compared with the method of the first embodiment. The content of the binder in the inorganic particle layer containing the obtained amine compound does not necessarily have to be 2% by mass or more, and it is possible to secure the required adhesion with a content smaller than that.
 セパレータの無機粒子層に使用する無機粒子は、電気化学的に安定で、かつ電気絶縁性であれば特に制限はないが、耐熱性を有していることが好ましい。無機粒子の耐熱性は、耐熱温度が200℃以上であることがより好ましい。無機粒子の耐熱温度が200℃以上とは、少なくとも200℃において変形などの形状変化が目視で確認されないことを意味している。無機粒子の耐熱温度は、300℃以上であることがさらに好ましい。 The inorganic particles used in the inorganic particle layer of the separator are not particularly limited as long as they are electrochemically stable and electrically insulating, but they preferably have heat resistance. The heat resistance of the inorganic particles is more preferably 200 ° C. or higher. When the heat resistant temperature of the inorganic particles is 200 ° C. or higher, it means that no shape change such as deformation is visually confirmed at at least 200 ° C. The heat resistant temperature of the inorganic particles is more preferably 300 ° C. or higher.
 例えば、無機粒子としては酸化鉄(Fe;FeO、Feなど)、SiO、Al、TiO、BaTiO、ZrOなどの無機酸化物;窒化アルミニウム、窒化ケイ素などの無機窒化物;フッ化カルシウム、フッ化バリウム、硫酸バリウム、炭酸カルシウムなどの難溶性のイオン結晶;シリコン、ダイヤモンドなどの共有結合性結晶;モンモリロナイトなどの粘土;などが挙げられる。ここで、前記無機酸化物は、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、マイカなどの鉱物資源由来物質またはこれらの人造物などであってもよい。また、金属、SnO、スズ-インジウム酸化物(ITO)などの導電性酸化物、カーボンブラック、グラファイトなどの炭素質材料などで例示される導電性材料の表面を、電気絶縁性を有する材料(例えば、前記の無機酸化物など)で被覆することにより電気絶縁性を持たせた粒子であってもよい。前記の無機粒子は、1種単独で用いてもよく、2種以上を併用してもよい。前記の無機酸化物の中でも、Al、SiOおよびベーマイトが特に好ましく用いられる。 For example, the inorganic particles of iron oxide (Fe x O y; FeO, such Fe 2 O 3), SiO 2 , Al 2 O 3, TiO 2, BaTiO 3, inorganic oxides such as ZrO 2; aluminum nitride, silicon nitride Inorganic nitrides such as; sparingly soluble ionic crystals such as calcium fluoride, barium fluoride, barium sulfate, calcium carbonate; covalent crystals such as silicon and diamond; clay such as montmorillonite; and the like. Here, the inorganic oxide may be a substance derived from mineral resources such as boehmite, zeolite, apatite, kaolin, mullite, spinel, olivine, mica, or an artificial product thereof. Further, the surface of a conductive material exemplified by a metal, a conductive oxide such as SnO 2 , tin-indium oxide (ITO), or a carbonaceous material such as carbon black or graphite is provided with a material having electrical insulation (a material having electrical insulation (). For example, the particles may be coated with the above-mentioned inorganic oxide or the like to provide electrical insulation. The above-mentioned inorganic particles may be used alone or in combination of two or more. Among the above-mentioned inorganic oxides, Al 2 O 3 , SiO 2 and boehmite are particularly preferably used.
 無機粒子の形状としては、例えば、球状に近い形状であってもよく、板状であってもよいが、短絡(特にデンドライトによる短絡)をより良好に防止する観点からは、板状の粒子であることが好ましい。板状粒子の代表的なものとしては、板状のAlや板状のベーマイトなどが挙げられ、これらを1種単独で使用してもよく、2種以上を併用してもよい。また、セパレータ全体の熱収縮を抑制する作用をより高める観点から、無機粒子は、一次粒子が連なった二次粒子状であることが好ましい。 The shape of the inorganic particles may be, for example, a shape close to a spherical shape or a plate shape, but from the viewpoint of better preventing short circuits (particularly short circuits due to dendrites), plate-shaped particles are used. It is preferable to have. Typical examples of the plate-shaped particles include plate-shaped Al 2 O 3 and plate-shaped boehmite, and these may be used alone or in combination of two or more. Further, from the viewpoint of further enhancing the action of suppressing the heat shrinkage of the entire separator, the inorganic particles are preferably in the form of secondary particles in which primary particles are connected.
 板状粒子の形態としては、アスペクト比が、5以上、より好ましくは10以上であって、100以下、より好ましくは50以下であることが望ましい。また、粒子の平板面の長軸方向長さと短軸方向長さの比(長軸方向長さ/短軸方向長さ)の平均値は、3以下、より好ましくは2以下で、1に近い値であることが望ましい。 As for the form of the plate-like particles, it is desirable that the aspect ratio is 5 or more, more preferably 10 or more, and 100 or less, more preferably 50 or less. Further, the average value of the ratio of the length in the major axis direction to the length in the minor axis direction (length in the major axis direction / length in the minor axis direction) of the flat plate surface of the particles is 3 or less, more preferably 2 or less, which is close to 1. It is desirable that it is a value.
 なお、板状粒子における前記の平板面の長軸方向長さと短軸方向長さの比の平均値は、例えば、走査型電子顕微鏡(SEM)により撮影した画像を画像解析することにより求めることができる。更に板状粒子における前記のアスペクト比も、SEMにより撮影した画像を、画像解析することにより求めることができる。 The average value of the ratio of the length in the major axis direction to the length in the minor axis direction of the flat plate surface in the plate-shaped particles can be obtained by, for example, image analysis of an image taken by a scanning electron microscope (SEM). can. Further, the aspect ratio of the plate-shaped particles can also be obtained by image analysis of the image taken by SEM.
 また、セパレータ中での板状粒子の存在形態は、平板面がセパレータの面に対して略平行であることが好ましく、より具体的には、無機粒子層における板状粒子について、その平板面とセパレータ面との平均角度が30°以下であることが好ましい〔最も好ましくは、当該平均角度が0°、すなわち、セパレータの無機粒子層における板状の平板面が、セパレータの面に対して平行である〕。 Further, it is preferable that the flat plate surface of the plate-shaped particles in the separator is substantially parallel to the surface of the separator, and more specifically, the plate-shaped particles in the inorganic particle layer have the flat plate surface. The average angle with the separator surface is preferably 30 ° or less [most preferably, the average angle is 0 °, that is, the plate-shaped flat plate surface in the inorganic particle layer of the separator is parallel to the surface of the separator. be〕.
 無機粒子の平均粒子径は、小さすぎると、セパレータ(無機粒子層)の孔径が小さくなりすぎて、リチウムイオンなどのイオン透過性が低下する虞があることから、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましい。ただし、無機粒子の粒径が大きすぎると、セパレータ(無機粒子層)が厚くなりすぎて、電池としたときのエネルギー密度が低下する虞があることから、無機粒子の平均粒子径は、15μm以下であることが好ましく、5μm以下であることがより好ましい。 If the average particle size of the inorganic particles is too small, the pore size of the separator (inorganic particle layer) may become too small and the permeability of ions such as lithium ions may decrease. Therefore, the average particle size may be 0.01 μm or more. It is preferably 0.1 μm or more, and more preferably 0.1 μm or more. However, if the particle size of the inorganic particles is too large, the separator (inorganic particle layer) may become too thick and the energy density of the battery may decrease. Therefore, the average particle size of the inorganic particles is 15 μm or less. It is preferably 5 μm or less, and more preferably 5 μm or less.
 本明細書でいう無機粒子の平均粒子径は、例えば、レーザー散乱粒度分布計(例えば、HORIBA社製「LA-920」)を用い、無機粒子の場合にはこれらを溶解しない媒体に、無機粒子を分散させて測定した数平均粒子径として規定することができ、特に断らない限り、二次粒子状の粒子については、二次粒子の平均粒子径を意味している。 For the average particle size of the inorganic particles referred to in the present specification, for example, a laser scattering particle size distribution meter (for example, "LA-920" manufactured by HORIBA) is used, and in the case of inorganic particles, the inorganic particles are placed in a medium that does not dissolve them. Can be specified as the number average particle diameter measured by dispersing the particles, and unless otherwise specified, the secondary particle-like particles mean the average particle diameter of the secondary particles.
 無機粒子層に使用するバインダとしては、エチレン-酢酸ビニル共重合体(EVA、酢酸ビニル由来の構造単位が20~35モル%のもの)、エチレン-エチルアクリレート共重合体などのエチレン-アクリル酸共重合体、フッ素系ゴム、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース(HEC)、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、ポリビニルピロリドン(PVP)、架橋アクリル樹脂、ポリウレタン、エポキシ樹脂などが挙げられるが、特に、150℃以上の耐熱温度を有する耐熱性のバインダが好ましく用いられる。バインダは、前記例示のものを1種単独で用いてもよく、2種以上を併用してもよい。 The binder used for the inorganic particle layer includes ethylene-vinyl acetate copolymer (EVA, which has a structural unit derived from vinyl acetate of 20 to 35 mol%) and ethylene-acrylic acid such as ethylene-ethyl acrylate copolymer. Polymer, fluororubber, styrene butadiene rubber (SBR), carboxymethyl cellulose (CMC), hydroxyethyl cellulose (HEC), polyvinyl alcohol (PVA), polyvinyl butyral (PVB), polyvinylpyrrolidone (PVP), crosslinked acrylic resin, polyurethane, Examples thereof include an epoxy resin, and in particular, a heat-resistant binder having a heat-resistant temperature of 150 ° C. or higher is preferably used. As the binder, one of the above-exemplified binders may be used alone, or two or more kinds of binders may be used in combination.
 前記例示のバインダの中でも、EVA、エチレン-アクリル酸共重合体、フッ素系ゴム、SBRなどの柔軟性の高いバインダが好ましい。このような柔軟性の高いバインダの具体例としては、三井デュポンポリケミカル社の「エバフレックスシリーズ(EVA)」、日本ユニカー社のEVA、三井デュポンポリケミカル社の「エバフレックス-EEAシリーズ(エチレン-アクリル酸共重合体)」、日本ユニカー社のEEA、ダイキン工業社の「ダイエルラテックスシリーズ(フッ素ゴム)」、JSR社の「TRD-2001(SBR)」、日本ゼオン社の「BM-400B(SBR)」などが挙げられる。 Among the above-exemplified binders, highly flexible binders such as EVA, ethylene-acrylic acid copolymer, fluorinated rubber, and SBR are preferable. Specific examples of such highly flexible binders include Mitsui DuPont Polychemical's "Evaflex Series (EVA)", Nippon Unicar's EVA, and Mitsui DuPont Polychemical's "Evaflex-EEA Series (Ethylene-". Acrylic acid copolymer) ”, EEA of Nippon Unicar Co., Ltd., Daikin Industries Co., Ltd.“ Daiel Latex Series (Fluororubber) ”, JSR Corporation“ TRD-2001 (SBR) ”, Nippon Zeon Co., Ltd.“ BM-400B ( SBR) ”and the like.
 無機粒子層において、無機粒子はその主体をなすもので、無機粒子層における無機粒子の量は、無機粒子層の構成成分の全量中、50質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。 In the inorganic particle layer, the inorganic particles are the main constituents thereof, and the amount of the inorganic particles in the inorganic particle layer is preferably 50% by mass or more, preferably 80% by mass or more, based on the total amount of the constituent components of the inorganic particle layer. It is more preferable that the amount is 90% by mass or more.
 また、無機粒子層には、前記の通り、無機粒子同士の結着などのためにバインダを含有させることから、無機粒子層における無機粒子の量は、無機粒子層の構成成分の全量中、99質量%以下であることが好ましく、98質量%以下であることがより好ましく、94質量%以下であることが特に好ましい。なお、実施態様1の方法によってセパレータを作製する場合には、無機粒子とバインダと前記アミン化合物とを含む組成物を樹脂微多孔フィルム上または電極上に塗布するにあたり、前記組成物に含有される固形分(無機粒子、バインダおよびアミン化合物)の全量中で、前記バインダの割合が2質量%以上となり、前記アミン化合物の割合が0.5~7質量%となるよう無機粒子の量を決めればよい。 Further, as described above, since the inorganic particle layer contains a binder for binding the inorganic particles to each other, the amount of the inorganic particles in the inorganic particle layer is 99 out of the total amount of the constituent components of the inorganic particle layer. It is preferably 9% by mass or less, more preferably 98% by mass or less, and particularly preferably 94% by mass or less. When the separator is produced by the method of the first embodiment, it is contained in the composition when the composition containing the inorganic particles, the binder and the amine compound is applied onto the resin microporous film or the electrode. If the amount of the inorganic particles is determined so that the proportion of the binder is 2% by mass or more and the proportion of the amine compound is 0.5 to 7% by mass in the total amount of the solid content (inorganic particles, binder and amine compound). good.
 前記無機粒子層は、それ単独でセパレータとして機能するものであるが、シャットダウン機能などを持たせるために、樹脂微多孔フィルムとともにセパレータを構成することが好ましい。 The inorganic particle layer functions as a separator by itself, but it is preferable to form a separator together with a resin microporous film in order to have a shutdown function or the like.
 セパレータに使用する樹脂微多孔フィルムは、低密度ポリエチレン、高密度ポリエチレン、超高分子量ポリエチレンなどのポリエチレン(PE);ポリプロピレン(PP);などのポリオレフィンのうちの1種または2種以上で構成されたものであることが好ましい。これらのポリオレフィンは、JIS K 7121の規定に準じて、示差走査熱量計(DSC)を用いて測定される融解温度が80~180℃の熱可塑性樹脂であり、セパレータが、このようなポリオレフィンで構成された多孔質膜を有していることで、電池内が高温となった際にポリオレフィンが軟化してセパレータの空孔が閉塞される、いわゆるシャットダウン特性を確保することができる。 The resin microporous film used for the separator was composed of one or more of polyolefins such as polyethylene (PE) such as low density polyethylene, high density polyethylene and ultrahigh molecular weight polyethylene; polypropylene (PP); It is preferable that it is made of. These polyolefins are thermoplastic resins having a melting temperature of 80 to 180 ° C. measured using a differential scanning calorimeter (DSC) in accordance with the provisions of JIS K7121, and the separator is composed of such polyolefins. By having the porous film, it is possible to secure the so-called shutdown characteristic in which the polyolefin softens when the temperature inside the battery becomes high and the pores of the separator are closed.
 樹脂多孔質フィルムには、従来から知られている溶剤抽出法や、乾式または湿式延伸法などにより形成された孔を多数有するイオン透過性の多孔質膜(電池のセパレータとして汎用されている微多孔膜)を用いることができる。 The resin porous film is an ion-permeable porous film having a large number of pores formed by a conventionally known solvent extraction method, a dry method, a wet stretching method, or the like (microporous, which is widely used as a battery separator). Membrane) can be used.
 樹脂多孔質フィルムがポリオレフィン製の多孔質膜(微多孔膜)である場合、例えば、PEのみを使用したものやPPのみを使用したものであってもよく、また、PE製の微多孔膜とPP製の微多孔膜との積層体(例えば、PP/PE/PP三層積層体など)などであってもよい。 When the resin porous film is a porous film made of polyolefin (microporous film), for example, it may be one using only PE or only PP, or a microporous film made of PE. It may be a laminate with a microporous film made of PP (for example, a PP / PE / PP three-layer laminate).
 樹脂多孔質フィルムは、フィラーなどを含有していてもよい。このようなフィラーとしては、例えば、無機粒子層に使用し得るものとして先に例示した各種無機粒子が挙げられる。 The resin porous film may contain a filler or the like. Examples of such a filler include various inorganic particles exemplified above as those that can be used for the inorganic particle layer.
 樹脂多孔質フィルムにおいては、その構成成分の全体積中、主体となる樹脂の量は、50体積%以上であることが好ましく、70体積%以上であることがより好ましい。なお、樹脂多孔質フィルムは樹脂のみで構成してもよく、その場合の樹脂多孔質フィルムにおける構成成分の全体積中の樹脂の量は、100体積%となる。 In the resin porous film, the amount of the main resin in the total product of the constituent components is preferably 50% by volume or more, more preferably 70% by volume or more. The resin porous film may be composed of only resin, and in that case, the amount of resin in the total product of the constituent components in the resin porous film is 100% by volume.
 樹脂多孔質膜フィルムは、例えばセパレータの強度を良好にする観点から、5μm以上であることが好ましく、10μm以上であることがより好ましい。また、セパレータの全厚みを小さくして、電池の容量や出力密度をより向上させる観点から、樹脂多孔質フィルムの厚みは、35μm以下であることが好ましく、20μm以下であることがより好ましい。 The resin porous membrane film is preferably 5 μm or more, more preferably 10 μm or more, for example, from the viewpoint of improving the strength of the separator. Further, from the viewpoint of reducing the total thickness of the separator and further improving the capacity and output density of the battery, the thickness of the resin porous film is preferably 35 μm or less, more preferably 20 μm or less.
 樹脂多孔質膜フィルムは、電極上に形成された無機粒子層と重ねて用いるのであってもよく、また、片面または両面に無機粒子層を形成し、無機粒子層と一体化して用いるのであってもよい。 The resin porous film may be used by being superposed on the inorganic particle layer formed on the electrode, or the inorganic particle layer may be formed on one side or both sides and used integrally with the inorganic particle layer. May be good.
 樹脂多孔質フィルムには、無機粒子層との接着性を高めるために、表面改質を行うことができる。特にポリオレフィン製の多孔質フィルムは、表面の接着性が一般に高くないため、表面改質が有効であることが多い。 The surface of the resin porous film can be modified in order to improve the adhesiveness with the inorganic particle layer. In particular, a porous film made of polyolefin generally does not have high surface adhesiveness, so that surface modification is often effective.
 樹脂多孔質フィルムの表面改質方法としては、例えば、コロナ放電処理、プラズマ放電処理、紫外線照射処理などが挙げられる。なお、環境問題への対応の観点から、例えば無機粒子層形成用組成物の溶媒には水を用いることがより望ましく、このことからも、特にポリオレフィン製多孔質フィルムを使用する場合には、表面改質によって表面の親水性を高めておくことが非常に好ましい。 Examples of the surface modification method for the resin porous film include corona discharge treatment, plasma discharge treatment, and ultraviolet irradiation treatment. From the viewpoint of dealing with environmental problems, for example, it is more desirable to use water as the solvent of the composition for forming the inorganic particle layer, and from this, especially when a porous polyolefin film is used, the surface is used. It is very preferable to increase the hydrophilicity of the surface by modification.
 無機粒子層は、無機粒子とバインダとを含む組成物(無機粒子層形成用組成物)を、樹脂多孔質フィルム上、または正極および負極より選択される少なくとも一方の電極上に塗布して形成する。 The inorganic particle layer is formed by applying a composition containing inorganic particles and a binder (composition for forming an inorganic particle layer) onto a resin porous film or on at least one electrode selected from a positive electrode and a negative electrode. ..
 無機粒子層形成用組成物には、無機粒子およびバインダなどを、水や有機溶媒といった溶媒に分散させて(バインダは、溶媒に溶解していてもよい)調製したスラリーやペーストを使用することができる。 For the composition for forming the inorganic particle layer, a slurry or paste prepared by dispersing inorganic particles and a binder in a solvent such as water or an organic solvent (the binder may be dissolved in the solvent) can be used. can.
 なお、実施態様1のセパレータの製造方法では、無機粒子層形成用組成物にアミン化合物(a)も含有させる。 In the method for producing a separator according to the first embodiment, the amine compound (a) is also contained in the composition for forming an inorganic particle layer.
 樹脂多孔質フィルムまたは電極の表面への無機粒子層形成用組成物の塗布には、例えば、ブレードコーター、ロールコーター、ダイコーター、スプレーコーター、グラビアコーターなどの公知の塗布装置を用いることができる。なお、無機粒子層が含有する無機粒子に板状粒子を用いた場合に、セパレータ中での板状粒子の配向性を高める観点からは、塗布した無機粒子層形成用組成物にシェアをかけることが好ましい。そのため、無機粒子に板状粒子を用いる場合には、前記の塗布装置の中でも、ブレードコーターやダイコーターなどのように、塗布時に無機粒子層形成用組成物にシェアをかけ得る塗布装置を使用することが好ましい。 For coating the composition for forming an inorganic particle layer on the surface of the resin porous film or the electrode, for example, a known coating device such as a blade coater, a roll coater, a die coater, a spray coater, or a gravure coater can be used. When plate-shaped particles are used as the inorganic particles contained in the inorganic particle layer, the coated composition for forming the inorganic particle layer should be shared from the viewpoint of enhancing the orientation of the plate-shaped particles in the separator. Is preferable. Therefore, when plate-shaped particles are used as the inorganic particles, among the above-mentioned coating devices, a coating device such as a blade coater or a die coater that can apply a share to the composition for forming an inorganic particle layer at the time of coating is used. Is preferable.
 無機粒子層形成用組成物に用いられる溶媒は、無機粒子などを均一に分散でき、また、バインダを均一に溶解または分散できるものであればよいが、例えば、トルエンなどの芳香族炭化水素、テトラヒドロフランなどのフラン類、メチルエチルケトン、メチルイソブチルケトンなどのケトン類など、一般的な有機溶媒が好適に用いられる。尚、これらの溶媒に、界面張力を制御する目的で、アルコール(エチレングリコール、プロピレングリコールなど)、または、モノメチルアセテートなどの各種プロピレンオキサイド系グリコールエーテルなどを適宜添加してもよい。また、バインダが水溶性である場合、エマルジョンとして使用する場合などでは、前記の通り水を溶媒としてもよく、この際にもアルコール類(メチルアルコール、エチルアルコール、イソプロピルアルコール、エチレングリコールなど)や各種界面活性剤を適宜加えて界面張力を制御することもできる。 The solvent used in the composition for forming the inorganic particle layer may be any solvent as long as it can uniformly disperse inorganic particles and the like, and can uniformly dissolve or disperse the binder. For example, aromatic hydrocarbons such as toluene and tetrahydrofuran. Common organic solvents such as furans such as furan, methyl ethyl ketone, and ketones such as methyl isobutyl ketone are preferably used. Alcohol (ethylene glycol, propylene glycol, etc.) or various propylene oxide-based glycol ethers such as monomethyl acetate may be appropriately added to these solvents for the purpose of controlling the interfacial tension. Further, when the binder is water-soluble or used as an emulsion, water may be used as a solvent as described above, and in this case as well, alcohols (methyl alcohol, ethyl alcohol, isopropyl alcohol, ethylene glycol, etc.) and various types are used. It is also possible to control the interfacial tension by appropriately adding a surfactant.
 無機粒子層形成用組成物は、その固形分(溶媒を除く成分)の含量を、例えば10~80質量%とすることが好ましい。 The content of the solid content (components excluding the solvent) of the composition for forming the inorganic particle layer is preferably 10 to 80% by mass, for example.
 無機粒子層形成用組成物を樹脂多孔質フィルムまたは電極に塗布した後には、通常、乾燥する。乾燥は、無機粒子層形成用組成物の溶媒を良好に除去でき、かつ無機粒子層や樹脂多孔質フィルムや電極を劣化させないような方法および条件を採用すればよく、例えば、20~100℃程度の温風を用いて、0.1~10分程度乾燥する方法などが挙げられる。 After applying the composition for forming an inorganic particle layer to a resin porous film or an electrode, it is usually dried. For drying, a method and conditions that can satisfactorily remove the solvent of the composition for forming the inorganic particle layer and do not deteriorate the inorganic particle layer, the resin porous film, or the electrode may be adopted. For example, about 20 to 100 ° C. A method of drying for about 0.1 to 10 minutes using warm air of the above can be mentioned.
 無機粒子層は、必要に応じて、樹脂多孔質フィルムまたは電極の片面のみに形成してもよく、両面に形成してもよい。 The inorganic particle layer may be formed on only one side of the resin porous film or the electrode, or may be formed on both sides, if necessary.
 無機粒子層の厚み(セパレータが無機粒子層を複数有する場合には、その合計厚み。無機粒子層の厚みについて、以下同じ。)は、セパレータの熱収縮を制御し、かつ混入した異物や正極から溶出した金属イオンを吸着し、内部短絡を防止して電池の信頼性をより良好に高める観点から、2μm以上であり、3μm以上であることがより好ましい。ただし、無機粒子層の厚みが厚すぎると、充放電に関与するLiを吸着したり、またセパレータの全厚みが大きくなってしまい、電池の負荷特性の低下を引き起こしたりする虞がある。よって、無機粒子層の厚みは、10μm以下であることが好ましく、5μm以下であることがより好ましい。 The thickness of the inorganic particle layer (if the separator has a plurality of inorganic particle layers, the total thickness. The thickness of the inorganic particle layer is the same below) controls the thermal shrinkage of the separator and is derived from foreign substances and positive electrodes mixed in. From the viewpoint of adsorbing the eluted metal ions, preventing internal short circuits and improving the reliability of the battery, the thickness is 2 μm or more, more preferably 3 μm or more. However, if the thickness of the inorganic particle layer is too thick, Li involved in charging / discharging may be adsorbed, or the total thickness of the separator may become large, which may cause deterioration of the load characteristics of the battery. Therefore, the thickness of the inorganic particle layer is preferably 10 μm or less, and more preferably 5 μm or less.
 本発明のセパレータは、実施態様1のセパレータの製造方法により、前記のようにして樹脂多孔質フィルム上または電極上に、アミン化合物(a)を含有する無機粒子層を形成することで得ることができる。 The separator of the present invention can be obtained by forming an inorganic particle layer containing the amine compound (a) on the resin porous film or the electrode as described above by the method for producing the separator according to the first embodiment. can.
 他方、本発明のセパレータは、実施態様2のセパレータの製造方法により、前記のようにして得られる無機粒子層と樹脂多孔質フィルムまたは電極との積層体の、無機粒子層上にアミン化合物〔前記一般式(1)で表されるアミン化合物(a)、または、前記一般式(2)で表される官能基と加水分解基とを有するアミン化合物(b)〕を塗布する工程を経て、製造することもできる。 On the other hand, the separator of the present invention is an amine compound on the inorganic particle layer of the laminate of the inorganic particle layer obtained as described above and the resin porous film or the electrode by the method for producing the separator of the second embodiment [the above. Manufactured through a step of applying an amine compound (a) represented by the general formula (1) or an amine compound (b) having a functional group and a hydrolyzing group represented by the general formula (2). You can also do it.
 前記アミン化合物を無機粒子層上に塗布するに際しては、常温で液体の化合物の場合は、その化合物をそのまま塗布に使用できるが、通常は、溶媒に溶かした溶液を塗布に使用する。前記アミン化合物を溶解させる溶媒としては、水;アルコール類〔エタノール、イソプロパノール(IPA)など〕、N-メチル-2-ピロリドン(NMP)などの有機溶媒;が挙げられる。 When the amine compound is applied onto the inorganic particle layer, in the case of a compound that is liquid at room temperature, the compound can be used as it is for application, but usually, a solution dissolved in a solvent is used for application. Examples of the solvent for dissolving the amine compound include water; organic solvents such as alcohols [ethanol, isopropanol (IPA), etc.] and N-methyl-2-pyrrolidone (NMP).
 前記アミン化合物を溶媒に溶解させた溶液の、前記アミン化合物の濃度は、0.1~20質量%であることが好ましい。 The concentration of the amine compound in the solution in which the amine compound is dissolved in a solvent is preferably 0.1 to 20% by mass.
 前記アミン化合物(またはその溶液)を無機粒子層上に塗布した後には、通常、乾燥を行ってセパレータを得る。 After applying the amine compound (or a solution thereof) on the inorganic particle layer, it is usually dried to obtain a separator.
 乾燥は、例えば無機粒子層や樹脂多孔質フィルムまたは電極を劣化させないような方法および条件を採用すればよく、例えば20~100℃程度の温風を用いて、0.1~20分程度乾燥する方法などが挙げられる。 For drying, for example, a method and conditions that do not deteriorate the inorganic particle layer, the resin porous film, or the electrode may be adopted. For example, the drying is performed for about 0.1 to 20 minutes using warm air of about 20 to 100 ° C. The method etc. can be mentioned.
 セパレータの厚みは、十分な強度を確保する観点から、無機粒子層を電極上に形成する場合などのように無機粒子層を単独で用いる場合には、0.5μm以上であることが好ましく、1μm以上であることがより好ましく、無機粒子層と樹脂多孔質フィルムとを併せてセパレータとする場合には、10μm以上であることが好ましく、15μm以上であることがより好ましい。ただし、セパレータが厚すぎると、電池の出力特性が低下する虞があることから、セパレータの厚みは、無機粒子層を単独で用いる場合には、6μm以下であることが好ましく、4μm以下であることがより好ましく、無機粒子層と樹脂多孔質フィルムとを併せてセパレータとする場合には、40μm以下であることが好ましく、25μm以下であることがより好ましい。 From the viewpoint of ensuring sufficient strength, the thickness of the separator is preferably 0.5 μm or more when the inorganic particle layer is used alone, such as when the inorganic particle layer is formed on the electrode, and is preferably 1 μm. The above is more preferable, and when the inorganic particle layer and the resin porous film are combined to form a separator, it is preferably 10 μm or more, and more preferably 15 μm or more. However, if the separator is too thick, the output characteristics of the battery may deteriorate. Therefore, when the inorganic particle layer is used alone, the thickness of the separator is preferably 6 μm or less, and preferably 4 μm or less. When the inorganic particle layer and the resin porous film are combined to form a separator, the thickness is preferably 40 μm or less, and more preferably 25 μm or less.
 セパレータの空孔率は、セパレータが乾燥した状態で、30%以上であることが好ましく、また、70%以下であることが好ましい。セパレータの空孔率が小さすぎると、セパレータ中のイオンの移動が妨げられる虞があり、これが大きすぎると、セパレータの強度が低下する虞がある。 The porosity of the separator is preferably 30% or more, and preferably 70% or less when the separator is dry. If the porosity of the separator is too small, the movement of ions in the separator may be hindered, and if this is too large, the strength of the separator may decrease.
 本明細書でいうセパレータの空孔率は、セパレータの厚み、面積あたりの質量、構成成分の密度から、下記式(3)を用いて各成分iについての総和を求めることにより計算される値である。 The porosity of the separator referred to in the present specification is a value calculated by calculating the sum of each component i using the following formula (3) from the thickness of the separator, the mass per area, and the density of the constituent components. be.
 P = 100-(Σai/ρi)×(m/t)  (3) P = 100- (Σai / ρi) x (m / t) (3)
 ここで、前記式(3)中、ai:質量%で表した成分iの比率、ρi:成分iの密度(g/cm)、m:セパレータの単位面積あたりの質量(g/cm)、t:セパレータの厚み(cm)である。 Here, in the above formula (3), ai: the ratio of the component i expressed in% by mass, ρi: the density of the component i (g / cm 3 ), m: the mass per unit area of the separator (g / cm 2 ). , T: Thickness (cm) of the separator.
 セパレータは、JIS P 8117に規定のガーレー値で表される透気度が、50秒以上であることが好ましく、100秒以上であることがより好ましく、また、600秒以下であることが好ましく、300秒以下であることがより好ましい。ガーレー値が小さすぎると、リチウムのデンドライト結晶などが貫通しやすく、内部短絡の抑制効果が小さくなる虞があり、ガーレー値が大きすぎると、イオン伝導性が低くなりすぎて電池の内部抵抗が大きくなり、負荷特性が悪くなる虞がある。 The separator has an air permeability represented by a Garley value specified in JIS P 8117, preferably 50 seconds or more, more preferably 100 seconds or more, and preferably 600 seconds or less. More preferably, it is 300 seconds or less. If the Garley value is too small, lithium dendrite crystals and the like can easily penetrate, and the effect of suppressing internal short circuits may be small. If the Garley value is too large, the ionic conductivity becomes too low and the internal resistance of the battery becomes large. Therefore, there is a risk that the load characteristics will deteriorate.
 また、セパレータは、JIS K 3832に規定のバブルポイント法により測定される最大孔径(以下、単に「最大孔径」という)が、0.01μm以上1μm下であることが好ましい。セパレータの最大孔径が小さすぎる場合には、セパレータの孔径が小さすぎてイオンの透過性が悪くなり、電池の内部抵抗が大きくなりすぎる虞がある。一方、セパレータの最大孔径が大きすぎると、セパレータの孔径が大きくなりすぎて、正極と負極との直接接触による短絡が発生しやすくなったり、リチウムのデンドライト結晶による内部短絡の抑制効果が小さくなったりする虞がある。 Further, the separator preferably has a maximum pore diameter measured by the bubble point method specified in JIS K 3832 (hereinafter, simply referred to as "maximum pore diameter") of 0.01 μm or more and 1 μm or less. If the maximum pore diameter of the separator is too small, the pore diameter of the separator is too small, the ion permeability is deteriorated, and the internal resistance of the battery may become too large. On the other hand, if the maximum pore size of the separator is too large, the pore size of the separator becomes too large, and short circuits due to direct contact between the positive electrode and the negative electrode are likely to occur, or the effect of suppressing internal short circuits by lithium dendrite crystals is reduced. There is a risk of
 なお、セパレータのガーレー値および最大孔径は、これまでに詳述してきた構成を採用することで前記の値とすることができる。 The Garley value and the maximum pore diameter of the separator can be set to the above values by adopting the configurations described in detail so far.
 本発明の非水電解質電池は、正極、負極、および前記正極と前記負極との間に介在させた本発明のセパレータにより構成される。 The non-aqueous electrolyte battery of the present invention is composed of a positive electrode, a negative electrode, and a separator of the present invention interposed between the positive electrode and the negative electrode.
 正極としては、従来から知られている非水電解質電池に用いられている正極、すなわち、Liイオンを吸蔵放出可能な活物質を含有する正極であれば特に制限はない。例えば、正極活物質としては、LiMMn2-x(ただし、Mは、Li、B、Mg、Ca、Sr、Ba、Ti、V、Cr、Fe、Co、Ni、Cu、Al、Sn、Sb、In、Nb、Mo、W、Y、RuおよびRhよりなる群から選択される少なくとも1種の元素であり、0.01≦x≦0.5)で表されるスピネル型リチウムマンガン複合酸化物、LiMn(1-y-x)Ni(2-k)(ただし、Mは、Co、Mg、Al、B、Ti、V、Cr、Fe、Cu、Zn、Zr、Mo、Sn、Ca、SrおよびWよりなる群から選択される少なくとも1種の元素であり、0.8≦x≦1.2、0<y<0.5、0≦z≦0.5、k+l<1、-0.1≦k≦0.2、0≦l≦0.1)で表される層状化合物、LiCo1-x(ただし、Mは、Al、Mg、Ti、Zr、Fe、Ni、Cu、Zn、Ga、Ge、Nb、Mo、Sn、SbおよびBaよりなる群から選択される少なくとも1種の元素であり、0≦x≦0.5)で表されるリチウムコバルト複合酸化物、LiNi1-x(ただし、Mは、Al、Mg、Ti、Zr、Fe、Co、Cu、Zn、Ga、Ge、Nb、Mo、Sn、SbおよびBaよりなる群から選択される少なくとも1種の元素であり、0≦x≦0.5)で表されるリチウムニッケル複合酸化物、LiM1-x(ただし、Mは、Fe、MnおよびCoよりなる群から選択される少なくとも1種の元素で、Nは、Al、Mg、Ti、Zr、Ni、Cu、Zn、Ga、Ge、Nb、Mo、Sn、SbおよびBaよりなる群から選択される少なくとも1種の元素であり、0≦x≦0.5)で表されるオリビン型複合酸化物などが挙げられ、これらのうちの1種のみを用いてもよく、2種以上を併用してもよい。 The positive electrode is not particularly limited as long as it is a positive electrode used in a conventionally known non-aqueous electrolyte battery, that is, a positive electrode containing an active material capable of occluding and releasing Li ions. For example, as the positive electrode active material, LiM x Mn 2-x O 4 (where M is Li, B, Mg, Ca, Sr, Ba, Ti, V, Cr, Fe, Co, Ni, Cu, Al, Spinel-type lithium manganese represented by 0.01 ≦ x ≦ 0.5), which is at least one element selected from the group consisting of Sn, Sb, In, Nb, Mo, W, Y, Ru and Rh. composite oxides, Li x Mn (1-y -x) Ni y M z O (2-k) F l ( although, M is, Co, Mg, Al, B , Ti, V, Cr, Fe, Cu, It is at least one element selected from the group consisting of Zn, Zr, Mo, Sn, Ca, Sr and W, and is 0.8 ≦ x ≦ 1.2, 0 <y <0.5, 0 ≦ z ≦. A layered compound represented by 0.5, k + l <1, −0.1 ≦ k ≦ 0.2, 0 ≦ l ≦ 0.1), LiCo 1-x M x O 2 (where M is Al, It is at least one element selected from the group consisting of Mg, Ti, Zr, Fe, Ni, Cu, Zn, Ga, Ge, Nb, Mo, Sn, Sb and Ba, and is 0 ≦ x ≦ 0.5). Lithium-cobalt composite oxide represented by, LiNi 1-x M x O 2 (where M is Al, Mg, Ti, Zr, Fe, Co, Cu, Zn, Ga, Ge, Nb, Mo, Sn, At least one element selected from the group consisting of Sb and Ba, a lithium nickel composite oxide represented by 0 ≦ x ≦ 0.5), LiM 1-x N x O 2 (where M is. At least one element selected from the group consisting of Fe, Mn and Co, where N is from Al, Mg, Ti, Zr, Ni, Cu, Zn, Ga, Ge, Nb, Mo, Sn, Sb and Ba. It is at least one element selected from the above group, and examples thereof include an olivine type composite oxide represented by 0 ≦ x ≦ 0.5), and only one of these elements may be used. Seeds or more may be used together.
 なお、本発明の非水電解質電池は、正極から溶出し、負極に析出することで電池特性を低下させたり短絡を引き起こしたりする金属イオンを、セパレータが有する前記アミン化合物の作用によって効果的にトラップすることができる。そのため、本発明の非水電解質電池においては、電解液に溶出しやすいMnを構成元素として含有するリチウムマンガン複合酸化物、リチウムニッケルコバルトマンガン複合酸化物などを正極活物質に用いた場合に、その効果が特に顕著となる。 In the non-aqueous electrolyte battery of the present invention, metal ions that elute from the positive electrode and precipitate on the negative electrode to deteriorate the battery characteristics or cause a short circuit are effectively trapped by the action of the amine compound contained in the separator. can do. Therefore, in the non-aqueous electrolyte battery of the present invention, when a lithium manganese composite oxide, a lithium nickel cobalt manganese composite oxide, or the like containing Mn easily eluted in the electrolytic solution as a constituent element is used as the positive electrode active material, the present invention is used. The effect is particularly remarkable.
 正極には、前記の正極活物質と、導電助剤やバインダとを含有する正極合剤層を、集電体の片面または両面に形成した構造のものを使用することができる。 As the positive electrode, one having a structure in which the positive electrode mixture layer containing the above-mentioned positive electrode active material and a conductive auxiliary agent or a binder is formed on one side or both sides of the current collector can be used.
 正極のバインダとしては、例えば、ポリフッ化ビニリデン(PVDF)などフッ素樹脂などが、また、正極の導電助剤としては、例えば、カーボンブラックなどの炭素材料などが使用される。 As the binder of the positive electrode, for example, a fluororesin such as polyvinylidene fluoride (PVDF) is used, and as the conductive auxiliary agent of the positive electrode, for example, a carbon material such as carbon black is used.
 また、正極の集電体としては、アルミニウムなどの金属の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、厚みが10~30μmのアルミニウム箔が好適に用いられる。 Further, as the current collector of the positive electrode, a metal foil such as aluminum, a punching metal, a net, an expanded metal or the like can be used, but usually, an aluminum foil having a thickness of 10 to 30 μm is preferably used.
 正極側のリード部は、通常、正極作製時に、集電体の一部に正極合剤層を形成せずに集電体の露出部を残し、そこをリード部とすることによって設けられる。ただし、リード部は必ずしも当初から集電体と一体化されたものであることは要求されず、集電体にアルミニウム製の箔などを後から接続することによって設けてもよい。 The lead portion on the positive electrode side is usually provided by leaving an exposed portion of the current collector without forming a positive electrode mixture layer on a part of the current collector at the time of producing the positive electrode and using this as the lead portion. However, the lead portion is not necessarily required to be integrated with the current collector from the beginning, and may be provided by connecting an aluminum foil or the like to the current collector later.
 負極としては、従来から知られている非水電解質電池に用いられている負極、すなわち、Liイオンを吸蔵放出可能な活物質を含有する負極であれば特に制限はない。例えば、活物質として、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ(MCMB)、炭素繊維などの、リチウムを吸蔵、放出可能な炭素系材料の1種または2種以上の混合物が用いられる。また、Si、Sn、Ge、Bi、Sb、Inなどの元素を含む単体、化合物およびその合金、リチウム含有窒化物、または酸化物などのリチウム金属に近い低電圧で充放電できる化合物、もしくはリチウム金属やリチウム/アルミニウム合金、更にはLiTi12で表されるようなTi酸化物も負極活物質として用いることができる。これらの負極活物質に導電助剤(カーボンブラックなどの炭素材料など)やPVDFなどのバインダなどを適宜添加した負極合剤を、集電体を芯材として成形体(負極合剤層)に仕上げたもの、または前記の各種合金やリチウム金属の箔を単独、もしくは集電体上に負極活物質層として積層したものなどが用いられる。 The negative electrode is not particularly limited as long as it is a negative electrode used in a conventionally known non-aqueous electrolyte battery, that is, a negative electrode containing an active material capable of occluding and releasing Li ions. For example, carbons capable of storing and releasing lithium such as graphite, pyrolytic carbons, cokes, glassy carbons, calcined organic polymer compounds, mesocarbon microbeads (MCMB), and carbon fibers as active materials. One or a mixture of two or more of the system materials is used. Further, a simple substance containing elements such as Si, Sn, Ge, Bi, Sb, and In, a compound and an alloy thereof, a lithium-containing nitride, a compound that can be charged and discharged at a low voltage close to that of a lithium metal such as an oxide, or a lithium metal. , Lithium / aluminum alloys, and Ti oxides such as those represented by Li 4 Ti 5 O 12 can also be used as the negative electrode active material. A negative electrode mixture in which a conductive auxiliary agent (carbon material such as carbon black) or a binder such as PVDF is appropriately added to these negative electrode active materials is finished into a molded body (negative electrode mixture layer) using a current collector as a core material. Or the above-mentioned various alloys or lithium metal foils are used alone or laminated on a current collector as a negative electrode active material layer.
 負極に集電体を用いる場合には、集電体としては、銅製やニッケル製の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、銅箔が用いられる。この負極集電体は、高エネルギー密度の電池を得るために負極全体の厚みを薄くする場合、厚みの上限は30μmであることが好ましく、下限は5μmであることが望ましい。また、負極側のリード部は、正極側のリード部と同様にして形成すればよい。 When a current collector is used for the negative electrode, copper or nickel foil, punching metal, net, expanded metal, etc. can be used as the current collector, but copper foil is usually used. When the thickness of the entire negative electrode of this negative electrode current collector is reduced in order to obtain a battery having a high energy density, the upper limit of the thickness is preferably 30 μm, and the lower limit is preferably 5 μm. Further, the lead portion on the negative electrode side may be formed in the same manner as the lead portion on the positive electrode side.
 前記の正極と前記の負極とは、セパレータを介して積層した積層電極体や、更にこれを巻回した巻回電極体などの電極体とし、これらの電極体を非水電解質と共に外装体内に封入して、非水電解質電池を得ることができる。 The positive electrode and the negative electrode are formed into an electrode body such as a laminated electrode body laminated via a separator or a wound electrode body wound around the same, and these electrode bodies are enclosed together with a non-aqueous electrolyte in the exterior body. Then, a non-aqueous electrolyte battery can be obtained.
 非水電解質電池に係る非水電解質には、リチウム塩を有機溶媒に溶解した溶液(非水電解液)を使用することができる。 As the non-aqueous electrolyte related to the non-aqueous electrolyte battery, a solution in which a lithium salt is dissolved in an organic solvent (non-aqueous electrolyte solution) can be used.
 非水電解液のリチウム塩としては、溶媒中で解離してLiイオンを形成し、電池として使用される電圧範囲で分解などの副反応を起こしにくいものであれば特に制限はない。例えば、LiClO、LiPF、LiBF、LiAsF、LiSbFなどの無機リチウム塩;LiCFSO、LiCFCO、Li(SO、LiN(CFSO、LiC(CFSO、LiC2n+1SO(n≧2)、LiN(RfOSO〔ここでRfはフルオロアルキル基〕などの有機リチウム塩;などを用いることができる。 The lithium salt of the non-aqueous electrolyte solution is not particularly limited as long as it dissociates in a solvent to form Li + ions and does not easily cause side reactions such as decomposition in the voltage range used as a battery. For example, inorganic lithium salts such as LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 ; LiCF 3 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiN (CF 3 SO 2). ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (n ≧ 2), LiN (RfOSO 2 ) 2 [Here, Rf is a fluoroalkyl group] and other organic lithium salts; can.
 非水電解液に用いる有機溶媒としては、前記のリチウム塩を溶解し、電池として使用される電圧範囲で分解などの副反応を起こさないものであれば特に限定されない。例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどの環状カーボネート;ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートなどの鎖状カーボネート;プロピオン酸メチルなどの鎖状エステル;γ-ブチロラクトンなどの環状エステル;ジメトキシエタン、ジエチルエーテル、1,3-ジオキソラン、ジグライム、トリグライム、テトラグライムなどの鎖状エーテル;ジオキサン、テトラヒドロフラン、2-メチルテトラヒドロフランなどの環状エーテル;アセトニトリル、プロピオニトリル、メトキシプロピオニトリルなどのニトリル類;エチレングリコールサルファイトなどの亜硫酸エステル類;などが挙げられ、これらは2種以上混合して用いることもできる。 The organic solvent used in the non-aqueous electrolyte solution is not particularly limited as long as it dissolves the above-mentioned lithium salt and does not cause side reactions such as decomposition in the voltage range used as a battery. For example, cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate and methyl ethyl carbonate; chain esters such as methyl propionate; cyclic esters such as γ-butyrolactone; Chain ethers such as dimethoxyethane, diethyl ether, 1,3-dioxolane, diglime, triglime, tetraglyme; cyclic ethers such as dioxane, tetrahydrofuran, 2-methyltetrax; nitriles such as acetonitrile, propionitrile, methoxypropionitrile Classes; sulfite esters such as ethylene glycol sulfite; and the like; these can also be used by mixing two or more kinds.
 このリチウム塩の非水電解液中の濃度としては、0.5~1.5mol/lとすることが好ましく、0.9~1.25mol/lとすることがより好ましい。 The concentration of this lithium salt in the non-aqueous electrolytic solution is preferably 0.5 to 1.5 mol / l, more preferably 0.9 to 1.25 mol / l.
 また、前記の非水電解液に公知のゲル化剤を加えてゲル状としたもの(ゲル状電解質)を、非水電解質として使用してもよい。 Further, a gel-like electrolyte (gel-like electrolyte) obtained by adding a known gelling agent to the non-aqueous electrolyte solution may be used as the non-aqueous electrolyte.
 非水電解質電池の形態としては、スチール缶やアルミニウム缶などを外装缶として使用した筒形(角筒形や円筒形など)などが挙げられる。また、金属を蒸着したラミネートフィルムを外装体としたソフトパッケージ電池とすることもできる。 Examples of the non-aqueous electrolyte battery include a tubular shape (square tubular shape, cylindrical shape, etc.) using a steel can, an aluminum can, or the like as an outer can. Further, a soft package battery having a laminated film on which metal is vapor-deposited as an exterior body can also be used.
 以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は本発明を制限するものではない。 Hereinafter, the present invention will be described in detail based on Examples. However, the following examples do not limit the present invention.
実施例1
<セパレータの作製>
 板状ベーマイト(平均粒子径1μm、アスペクト比10):1000gを1000gの水中に分散させ、更にバインダとしてSBRラテックスの分散液(固形分比率40質量%)120gを加えて均一に分散させて無機粒子層形成用組成物(スラリー)を調製した。
Example 1
<Making a separator>
Plate-shaped boehmite (average particle size 1 μm, aspect ratio 10): 1000 g is dispersed in 1000 g of water, and 120 g of a dispersion liquid of SBR latex (solid content ratio 40% by mass) is added as a binder to uniformly disperse the inorganic particles. A layer-forming composition (slurry) was prepared.
 前記のスラリーを、PP層、PE層、PP層の順に積層されて構成されたポリオレフィン製微多孔膜(厚み20μm、空孔率40%)の片面に、ダイコーターを用いて、乾燥後の厚みが5μmとなるように塗布し、乾燥して、総厚みが25μmの、無機粒子層と樹脂多孔質フィルムとの積層体を得た。 The thickness after drying using a die coater on one side of a microporous polyolefin film (thickness 20 μm, porosity 40%) formed by laminating the above slurry in the order of PP layer, PE layer, and PP layer. Was applied to a thickness of 5 μm and dried to obtain a laminate of an inorganic particle layer and a resin porous film having a total thickness of 25 μm.
 ジエチレントリアミン〔アミン化合物(a)〕を水に溶解させて、ジエチレントリアミンの濃度が10質量%の溶液とした。この溶液を、前記のようにして得られた無機粒子層と樹脂多孔質フィルムとの積層体の、無機粒子層上に、スプレーコーターを用いて塗布し、乾燥して、トラップ層(A)を有するセパレータを得た。なお、ジエチレントリアミンの塗布量は、無機粒子層の単位面積当たり0.13g/mとし、形成されたトラップ層(A)におけるジエチレントリアミンの含有量は、無機粒子層全体の無機粒子およびバインダと、前記アミン化合物との総量中、2質量%であった。 Diethylenetriamine [amine compound (a)] was dissolved in water to prepare a solution having a diethylenetriamine concentration of 10% by mass. This solution is applied onto the inorganic particle layer of the laminate of the inorganic particle layer and the resin porous film obtained as described above using a spray coater, dried, and the trap layer (A) is formed. A separator having was obtained. The coating amount of diethylenetriamine was 0.13 g / m 2 per unit area of the inorganic particle layer, and the content of diethylenetriamine in the formed trap layer (A) was the inorganic particles and binder of the entire inorganic particle layer and the above. It was 2% by mass in the total amount with the amine compound.
<負極の作製>
 負極活物質である黒鉛:95質量部と、バインダであるPVDF:5質量部とを、NMPを溶剤として均一になるように混合して負極合剤含有ペーストを調製した。この負極合剤含有ペーストを、銅箔からなる厚さ10μmの集電体の両面に、塗布長が表面320mm、裏面260mmになるように間欠塗布し、乾燥した後、カレンダー処理を行って全厚が142μmになるように負極合剤層の厚みを調整し、幅45mmになるように切断して、長さ330mm、幅45mmの負極を作製した。更にこの負極の銅箔の露出部にタブを溶接してリード部を形成した。
<Manufacturing of negative electrode>
A paste containing a negative electrode mixture was prepared by mixing 95 parts by mass of graphite as a negative electrode active material and 5 parts by mass of PVDF as a binder so as to be uniform using NMP as a solvent. This negative electrode mixture-containing paste is intermittently applied to both sides of a 10 μm-thick current collector made of copper foil so that the coating length is 320 mm on the front surface and 260 mm on the back surface. The thickness of the negative electrode mixture layer was adjusted to 142 μm, and the negative electrode mixture layer was cut to a width of 45 mm to prepare a negative electrode having a length of 330 mm and a width of 45 mm. Further, a tab was welded to the exposed portion of the copper foil of the negative electrode to form a lead portion.
<正極の作製>
 正極活物質であるLiMn1.5Ni0.5:85質量部、導電助剤であるアセチレンブラック:10質量部、およびバインダであるPVDF:5質量部を、NMPを溶剤として均一になるように混合して、正極合剤含有ペーストを調製した。このペーストを、集電体となる厚さ15μmのアルミニウム箔の両面に、塗布長が表面320mm、裏面260mmになるように間欠塗布し、乾燥した後、カレンダー処理を行って、全厚が150μmになるように正極合剤層の厚みを調整し、幅43mmになるように切断して、長さ330mm、幅43mmの正極を作製した。更にこの正極のアルミニウム箔の露出部にタブを溶接してリード部を形成した。
<Preparation of positive electrode>
LiMn 1.5 Ni 0.5 O 4 : 85 parts by mass, which is a positive electrode active material, acetylene black: 10 parts by mass, which is a conductive additive, and PVDF: 5 parts by mass, which is a binder, are made uniform using NMP as a solvent. To prepare a positive electrode mixture-containing paste. This paste is intermittently applied to both sides of an aluminum foil having a thickness of 15 μm as a current collector so that the coating length is 320 mm on the front surface and 260 mm on the back surface, and after drying, a calendar treatment is performed to bring the total thickness to 150 μm. The thickness of the positive electrode mixture layer was adjusted so as to be so that the positive electrode was cut so as to have a width of 43 mm to prepare a positive electrode having a length of 330 mm and a width of 43 mm. Further, a tab was welded to the exposed portion of the aluminum foil of the positive electrode to form a lead portion.
<電池の組み立て>
 前記負極と前記正極と前記セパレータとを、正極が前記セパレータの無機粒子層側に配置されるようにして重ね合わせ、渦巻状に巻回して巻回電極体を作製した。この巻回電極体を押し潰して扁平状にし、電池容器内に装填して、非水電解液(エチレンカーボネートとエチルメチルカーボネートを体積比1:2で混合した溶媒にLiPFを1.2mol/lの濃度で溶解させた溶液)を電池容器内に注入した後、封止を行って非水電解質電池を得た。
<Battery assembly>
The negative electrode, the positive electrode, and the separator were superposed so that the positive electrode was arranged on the inorganic particle layer side of the separator, and wound in a spiral shape to prepare a wound electrode body. This wound electrode body is crushed to make it flat, loaded in a battery container, and 1.2 mol / mol / mol of LiPF 6 is added to a solvent in which a non-aqueous electrolyte solution (ethylene carbonate and ethyl methyl carbonate are mixed at a volume ratio of 1: 2). A solution dissolved at a concentration of l) was injected into the battery container and then sealed to obtain a non-aqueous electrolyte battery.
実施例2
 ジエチレントリアミンに代えてトリエチレンテトラミンを用いた以外は実施例1と同様にしてセパレータを作製し、このセパレータを用いた以外は実施例1と同様にして非水電解質電池を作製した。
Example 2
A separator was prepared in the same manner as in Example 1 except that triethylenetetramine was used instead of diethylenetriamine, and a non-aqueous electrolyte battery was prepared in the same manner as in Example 1 except that this separator was used.
実施例3
 ジエチレントリアミンに代えて3,3-ジアミノジプロピルアミンを用いた以外は実施例1と同様にしてセパレータを作製し、このセパレータを用いた以外は実施例1と同様にして非水電解質電池を作製した。
Example 3
A separator was prepared in the same manner as in Example 1 except that 3,3-diaminodipropylamine was used instead of diethylenetriamine, and a non-aqueous electrolyte battery was prepared in the same manner as in Example 1 except that this separator was used. ..
実施例4
 ジエチレントリアミンに代えてトリス(2-アミノエチル)アミンを用いた以外は実施例1と同様にしてセパレータを作製し、このセパレータを用いた以外は実施例1と同様にして非水電解質電池を作製した。
Example 4
A separator was prepared in the same manner as in Example 1 except that tris (2-aminoethyl) amine was used instead of diethylenetriamine, and a non-aqueous electrolyte battery was prepared in the same manner as in Example 1 except that this separator was used. ..
実施例5
 板状ベーマイト(平均粒子径1μm、アスペクト比10):1000gを1000gの水中に分散させ、更にバインダとしてSBRラテックスの分散液(固形分比率40質量%)120gと、ジエチレントリアミン:50gとを加えて均一に分散させ、無機粒子層形成用組成物(スラリー)を調製した。前記スラリーを、実施例1と同じポリオレフィン製微多孔膜(厚み20μm、空孔率40%)の片面に、ダイコーターを用いて塗布し、乾燥して厚みが5μmの無機粒子層を形成し、総厚みが25μmの、無機粒子層と樹脂多孔質フィルムとの積層体よりなるセパレータを得た。前記無機粒子層中、バインダの含有量は4.4質量%であり、アミン化合物の含有量は4.6質量%であった。
Example 5
Plate-shaped boehmite (average particle size 1 μm, aspect ratio 10): 1000 g is dispersed in 1000 g of water, and 120 g of SBR latex dispersion (solid content ratio 40% by mass) and diethylenetriamine: 50 g are added as binders to make it uniform. A composition (slurry) for forming an inorganic particle layer was prepared. The slurry was applied to one side of the same polyolefin microporous film (thickness 20 μm, porosity 40%) as in Example 1 using a die coater, and dried to form an inorganic particle layer having a thickness of 5 μm. A separator having a total thickness of 25 μm and made of a laminate of an inorganic particle layer and a resin porous film was obtained. The binder content in the inorganic particle layer was 4.4% by mass, and the amine compound content was 4.6% by mass.
 そして、このセパレータを用いた以外は実施例1と同様にして非水電解質電池を作製した。 Then, a non-aqueous electrolyte battery was produced in the same manner as in Example 1 except that this separator was used.
比較例1
 ジエチレントリアミンを塗布せず、無機粒子層と樹脂多孔質フィルムとの積層体をそのままセパレータとして用いた以外は、実施例1と同様にして非水電解質電池を作製した。
Comparative Example 1
A non-aqueous electrolyte battery was produced in the same manner as in Example 1 except that the laminate of the inorganic particle layer and the resin porous film was used as it was as a separator without applying diethylenetriamine.
比較例2
 ジエチレントリアミンの塗布量を、無機粒子層の単位面積当たり0.98g/mとした以外は実施例1と同様にしてセパレータを作製し、このセパレータを用いた以外は実施例1と同様にして非水電解質電池を作製した。
Comparative Example 2
A separator was prepared in the same manner as in Example 1 except that the coating amount of diethylenetriamine was 0.98 g / m 2 per unit area of the inorganic particle layer, and the separator was not used in the same manner as in Example 1 except that this separator was used. A water electrolyte battery was prepared.
 作製したセパレータのトラップ層(A)におけるジエチレントリアミンの含有量は、無機粒子層全体の無機粒子およびバインダと、前記アミン化合物との総量中、13.1質量%であった。 The content of diethylenetriamine in the trap layer (A) of the prepared separator was 13.1% by mass based on the total amount of the inorganic particles and binder of the entire inorganic particle layer and the amine compound.
比較例3
 無機粒子層形成用組成物(スラリー)の調製に際し、SBRラテックスの分散液の添加量を50gとした以外は実施例5と同様にしてセパレータを作製し、このセパレータを用いた以外は実施例1と同様にして非水電解質電池を作製した。
Comparative Example 3
When preparing the composition (slurry) for forming the inorganic particle layer, a separator was prepared in the same manner as in Example 5 except that the amount of the dispersion liquid of SBR latex added was 50 g, and Example 1 except that this separator was used. A non-aqueous electrolyte battery was produced in the same manner as in the above.
 作製したセパレータの無機粒子層中、バインダの含有量は1.9質量%であり、アミン化合物の含有量は4.7質量%であった。 The binder content was 1.9% by mass and the amine compound content was 4.7% by mass in the inorganic particle layer of the prepared separator.
比較例4
 無機粒子層形成用組成物(スラリー)の調製に際し、ジエチレントリアミンの添加量を80gとした以外は実施例5と同様にしてセパレータを作製し、このセパレータを用いた以外は実施例1と同様にして非水電解質電池を作製した。
Comparative Example 4
When preparing the composition (slurry) for forming an inorganic particle layer, a separator was prepared in the same manner as in Example 5 except that the amount of diethylenetriamine added was 80 g, and the same as in Example 1 except that this separator was used. A non-aqueous electrolyte battery was prepared.
 作製したセパレータの無機粒子層中、バインダの含有量は4.3質量%であり、アミン化合物の含有量は7.1質量%であった。 The binder content was 4.3% by mass and the amine compound content was 7.1% by mass in the inorganic particle layer of the prepared separator.
 実施例、並びに比較例で作製したセパレータおよび非水電解質電池について、下記の各評価を行った。 The following evaluations were performed on the separators and non-aqueous electrolyte batteries produced in Examples and Comparative Examples.
<セパレータの金属イオン吸着量測定>
 DEC(ジエチルカーボネート)およびEC(エチレンカーボネート)を体積比で1:1となるように混合して、混合溶媒を調製した。CoCl・xHOを、濃度が0.003mol/Lとなるように前記混合溶媒に溶かして、実験用Co溶液を調製した。調製したCo溶液を標準溶液とし、このCo溶液5mLをガラス瓶に入れ、この中に100cmのセパレータを投入して24時間以上静置した後、上澄み液を採取して試料溶液とした。
<Measurement of metal ion adsorption amount of separator>
DEC (diethyl carbonate) and EC (ethylene carbonate) were mixed in a volume ratio of 1: 1 to prepare a mixed solvent. CoCl 2 · xH 2 O was dissolved in the mixed solvent so as to have a concentration of 0.003 mol / L to prepare an experimental Co solution. The prepared Co solution was used as a standard solution, 5 mL of this Co solution was placed in a glass bottle, a 100 cm 2 separator was placed therein, and the mixture was allowed to stand for 24 hours or more, and then the supernatant was collected and used as a sample solution.
 金属指示薬として、同仁化学研究所製のムレキシド(以下、「MX」と記載する)を用いた。MXは暗赤紫色の粉末で、Ca、Ni、Co、Cuなどと安定なキレート化合物を生成し黄色に変色する。またキレート剤によってもとの色に復色することができることから、金属指示薬として使用できる。 Murexide (hereinafter referred to as "MX") manufactured by Dojin Chemical Research Institute was used as a metal indicator. MX is a dark reddish purple powder that produces a stable chelate compound with Ca, Ni, Co, Cu, etc. and turns yellow. In addition, it can be used as a metal indicator because it can be restored to its original color by a chelating agent.
 キレート剤は、キレスト社製の有機溶媒可溶型キレート剤「キレストMZ-8」(商品名)を用いた。ただし、キレストMZ-8単体ではDECおよびECに不溶であるため、キレストMZ-8を10質量%の濃度となるようにエタノールに溶かし、DEC/EC混合溶媒可溶型キレート剤とした。 As the chelating agent, an organic solvent-soluble chelating agent "Kirest MZ-8" (trade name) manufactured by Kirest Co., Ltd. was used. However, since Kirest MZ-8 alone is insoluble in DEC and EC, Kirest MZ-8 was dissolved in ethanol to a concentration of 10% by mass to prepare a DEC / EC mixed solvent-soluble chelating agent.
 滴下したキレート剤の量と、セパレータに塗布された無機粒子の質量から、無機フィラーの単位質量当たりの金属イオン吸着量を算出した。 The amount of metal ion adsorbed per unit mass of the inorganic filler was calculated from the amount of the dropped chelating agent and the mass of the inorganic particles applied to the separator.
<セパレータの熱収縮率測定>
 実施例および比較例で作製したセパレータを縦5cm、横10cmの長方形に切り取り、黒インクで縦方向に平行に3cm、横方向に平行に3cmの十字線を描いて測定試料を作製した。なお、セパレータを長方形に切り取るに当たっては、その縦方向が、セパレータの微多孔膜の機械方向MD:Machine Directionとなるようにし、前記十字線は、その交点が、セパレータ片の中心となるようにした。前記の各測定試料を150℃に設定した恒温槽中に吊るし、1時間経過後に各測定試料の縦方向および横方向の直線の長さを測定して、恒温槽中に吊るす前の直線の長さからの変化量を求め、これらの変化量の、恒温槽中に吊るす前の直線の長さに対する比率を百分率で表して、縦方向および横方向の熱収縮率とした。そして、各測定試料の縦方向の熱収縮率と横方向の熱収縮率のうち、より値の大きい方を、各セパレータの熱収縮率とした。
<Measurement of heat shrinkage of separator>
The separators prepared in Examples and Comparative Examples were cut into rectangles having a length of 5 cm and a width of 10 cm, and a cross line of 3 cm in the vertical direction and 3 cm in the horizontal direction was drawn with black ink to prepare a measurement sample. When cutting the separator into a rectangle, the vertical direction of the separator was set to be the mechanical direction MD: Machine Direction of the microporous membrane of the separator, and the intersection of the crosshairs was set to be the center of the separator piece. .. Each of the above-mentioned measurement samples is hung in a constant temperature bath set at 150 ° C., and after 1 hour, the length of the straight line in the vertical and horizontal directions of each measurement sample is measured, and the length of the straight line before being hung in the constant temperature bath is measured. The amount of change from the above was obtained, and the ratio of these changes to the length of the straight line before hanging in the constant temperature bath was expressed as a percentage and used as the heat shrinkage in the vertical and horizontal directions. Then, the larger value of the heat shrinkage in the vertical direction and the heat shrinkage in the horizontal direction of each measurement sample was taken as the heat shrinkage of each separator.
<セパレータの水分量測定>
 セパレータをA4サイズに切り出し、ドライルームにおいて12時間以上静置して水分測定用サンプルとした。自動加熱気化水分測定システム:AQS-22010A(平沼産業株式会社製)を用い、150ml/分の窒素気流中で前記サンプルを150℃に加熱し、吸着した水分量を測定した。
<Measurement of water content of separator>
The separator was cut into A4 size and left to stand in a dry room for 12 hours or more to prepare a sample for moisture measurement. Using an automatic heating vaporization moisture measurement system: AQS-22010A (manufactured by Hiranuma Sangyo Co., Ltd.), the sample was heated to 150 ° C. in a nitrogen stream of 150 ml / min, and the amount of adsorbed moisture was measured.
<電池の特性評価>
 実施例および比較例の各電池について、設計容量に対して0.5Cの電流値で4.2Vまで充電し、0.5Cの電流値で3Vになるまで放電する操作を2回繰り返し、2サイクル目の放電容量を測定し、各電池の初期容量とした。
<Battery characterization>
For each of the batteries of the examples and the comparative examples, the operation of charging to 4.2 V at a current value of 0.5 C with respect to the design capacity and discharging to 3 V at a current value of 0.5 C is repeated twice for two cycles. The discharge capacity of the eyes was measured and used as the initial capacity of each battery.
 また、初期容量測定後の各電池について、前記と同じ条件で充電を行い、その後、80℃で24時間の高温貯蔵を行い、室温まで放冷させた後に0.5Cの電流値で3Vになるまで放電して放電容量を求め、高温貯蔵前の充電容量との比較により容量維持率を求め、溶出イオンにより生じると考えられる自己放電の状態を評価した。
 容量維持率(%)=(高温貯蔵後の放電容量)/(高温貯蔵前の充電容量)×100
Further, each battery after the initial capacity measurement is charged under the same conditions as described above, then stored at a high temperature of 80 ° C. for 24 hours, allowed to cool to room temperature, and then reaches 3 V at a current value of 0.5 C. The discharge capacity was determined by discharging to, the capacity retention rate was determined by comparison with the charge capacity before high temperature storage, and the state of self-discharge considered to be caused by eluted ions was evaluated.
Capacity retention rate (%) = (Discharge capacity after high temperature storage) / (Charge capacity before high temperature storage) x 100
 前記評価を行った各電池について、さらに前記と同じ条件で充放電サイクルを2回繰り返し、2サイクル目の放電容量を求めた。このサイクル2回目の放電容量と、前記初期容量から、下記式に従って容量回復率(%)を求め、これにより各電池の劣化の程度を評価した。
 容量回復率(%)=(高温貯蔵後2サイクル目の放電容量)/(初期容量)×100
For each of the evaluated batteries, the charge / discharge cycle was further repeated twice under the same conditions as described above, and the discharge capacity of the second cycle was determined. From the discharge capacity of the second cycle and the initial capacity, the capacity recovery rate (%) was calculated according to the following formula, and the degree of deterioration of each battery was evaluated by this.
Capacity recovery rate (%) = (Discharge capacity in the second cycle after high temperature storage) / (Initial capacity) x 100
 劣化が少ない電池は数回の充放電で容量が回復し、容量回復率が大きくなるため、その値により電池の劣化の程度を評価することができる。 A battery with little deterioration recovers its capacity after several charging and discharging, and the capacity recovery rate increases. Therefore, the degree of deterioration of the battery can be evaluated from that value.
 実施例および比較例のセパレータの構成を表1に、その評価結果を表2に、また実施例および比較例の電池の評価結果を表3にそれぞれ示す。なお、表1における括弧内の数値は、無機粒子層およびトラップ層(A)の全体に含まれる無機粒子、バインダおよびアミン化合物(a)の総量中、それぞれの成分の含有割合を平均値として表したことを示す。 Table 1 shows the configurations of the separators of Examples and Comparative Examples, Table 2 shows the evaluation results, and Table 3 shows the evaluation results of the batteries of Examples and Comparative Examples. The values in parentheses in Table 1 are the average values of the content ratios of the respective components in the total amount of the inorganic particles, the binder and the amine compound (a) contained in the entire inorganic particle layer and the trap layer (A). Show that you did.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表1~3に示す結果から明らかなように、実施態様1または実施態様2のセパレータの製造方法により作製された、実施例1~5のセパレータは、特定のアミン化合物(a)の作用により溶出金属を十分に吸着することができるとともに、アミン化合物が無機粒子層のバインダの結着性を低下させる作用が抑制され、熱収縮が小さく、また、アミン化合物(a)による吸着水分量の増加も抑制されていた。このため、実施例1~5のセパレータを用いた非水電解質電池は、自己放電が小さく、また高温貯蔵による電池の劣化も少なかった。 As is clear from the results shown in Tables 1 to 3, the separators of Examples 1 to 5 produced by the method for producing the separator of the first or second embodiment are eluted by the action of the specific amine compound (a). The metal can be sufficiently adsorbed, the action of the amine compound to reduce the binder binding property of the inorganic particle layer is suppressed, the heat shrinkage is small, and the amount of adsorbed water content due to the amine compound (a) is also increased. It was suppressed. Therefore, the non-aqueous electrolyte batteries using the separators of Examples 1 to 5 have low self-discharge and little deterioration of the battery due to high temperature storage.
 一方、無機粒子層にアミン化合物(a)を含有させなかった比較例1の非水電解質電池では、無機粒子(ベーマイト)がわずかに溶出金属を吸着する以外は、セパレータに溶出金属を吸着する機能が備わっていないため、自己放電が多く、また高温貯蔵による電池の劣化が大きくなった。 On the other hand, in the non-aqueous electrolyte battery of Comparative Example 1 in which the inorganic particle layer did not contain the amine compound (a), the function of adsorbing the eluted metal to the separator except that the inorganic particles (bemite) slightly adsorbed the eluted metal. Because it is not equipped with, there is a lot of self-discharge, and the deterioration of the battery due to high temperature storage is large.
 さらに、実施態様2のセパレータの製造方法において、無機粒子層上に塗布するアミン化合物(a)の量が多すぎる比較例2のセパレータ、実施態様1のセパレータの製造方法において、無機粒子層を形成する組成物に含有される無機粒子、バインダおよびアミン化合物(a)の全量中で、バインダの割合が少なすぎる比較例3のセパレータ、並びにアミン化合物(a)の割合が多すぎる比較例4のセパレータは、いずれも無機粒子層の結着性が低下したため、熱収縮率が大きくなり、耐熱性が低下する結果となった。 Further, in the method for producing the separator of the second embodiment, the amount of the amine compound (a) applied on the inorganic particle layer is too large, and in the method for producing the separator of the comparative example 2 and the separator of the first embodiment, the inorganic particle layer is formed. The separator of Comparative Example 3 in which the proportion of the binder is too small and the separator of Comparative Example 4 in which the proportion of the amine compound (a) is too large in the total amount of the inorganic particles, the binder and the amine compound (a) contained in the composition. In each case, the binding property of the inorganic particle layer was lowered, so that the heat shrinkage rate was increased and the heat resistance was lowered.
 また、無機粒子層におけるアミン化合物(a)の含有量が実施例のセパレータよりも多い比較例2および比較例4のセパレータだけでなく、バインダの含有量の低下によりバインダとアミン化合物(a)との相互作用が低減した比較例3のセパレータについても、アミン化合物により吸着水分量が大幅に増加したため、これらのセパレータを用いた非水電解質電池は、自己放電が多く、また高温貯蔵による電池の劣化が大きくなった。 Further, not only the separators of Comparative Example 2 and Comparative Example 4 in which the content of the amine compound (a) in the inorganic particle layer is higher than that of the separator of the example, but also the binder and the amine compound (a) due to the decrease in the binder content. As for the separator of Comparative Example 3 in which the interaction between the two was reduced, the amount of adsorbed water was significantly increased by the amine compound, so that the non-aqueous electrolyte battery using these separators had a lot of self-discharge and the battery deteriorated due to high temperature storage. Has grown.
実施例6
<セパレータの作製>
 トリス(2-アミノエチル)アミンの塗布量を、無機粒子層の単位面積当たり0.33g/mとした以外は実施例4と同様にしてセパレータを作製した。無機粒子層に形成されたトラップ層(A)におけるトリス(2-アミノエチル)アミンの含有量は、無機粒子層全体の無機粒子およびバインダと、前記アミン化合物との総量中、4.8質量%であった。
Example 6
<Making a separator>
A separator was prepared in the same manner as in Example 4 except that the amount of tris (2-aminoethyl) amine applied was 0.33 g / m 2 per unit area of the inorganic particle layer. The content of tris (2-aminoethyl) amine in the trap layer (A) formed in the inorganic particle layer is 4.8% by mass based on the total amount of the inorganic particles and binder of the entire inorganic particle layer and the amine compound. Met.
<正極の作製>
 正極活物質であるLiNi0.5Co0.2Mn0.3:92質量部と、導電助剤であるアセチレンブラック:5質量部と、バインダであるPVDF:3質量部とを混合し、更に適量のNMPを添加し、プラネタリーミキサーを用いて混合・分散を行って、正極合剤層形成用スラリーを調製した。
<Preparation of positive electrode>
LiNi 0.5 Co 0.2 Mn 0.3 O 2 : 92 parts by mass, which is a positive electrode active material, acetylene black: 5 parts by mass, which is a conductive additive, and PVDF: 3 parts by mass, which is a binder, are mixed. Further, an appropriate amount of NMP was added, and mixing and dispersion were carried out using a planetary mixer to prepare a slurry for forming a positive electrode mixture layer.
 次に、この正極合剤層形成用スラリーを乾燥後塗布量が15mg/cmになるように集電体となる厚さ15μmのアルミニウム箔の両面に、塗布長が表面280mm、裏面210mmになるように間欠塗布し、乾燥した後、カレンダー処理および120℃で8時間の熱処理を行って、全厚が110μmになるように正極合剤層の厚みを調整した。これを幅43mmになるように切断して正極を作製した。更に、電流を取り出すためのアルミニウム製リード片をアルミニウム箔の露出部に溶接し、リード付き正極を得た。 Next, the slurry for forming the positive electrode mixture layer is applied to both sides of an aluminum foil having a thickness of 15 μm as a current collector so that the coating amount after drying is 15 mg / cm 2, and the coating length is 280 mm on the front surface and 210 mm on the back surface. After intermittent coating and drying, a calendar treatment and a heat treatment at 120 ° C. for 8 hours were performed to adjust the thickness of the positive electrode mixture layer so that the total thickness was 110 μm. This was cut to a width of 43 mm to prepare a positive electrode. Further, an aluminum lead piece for extracting an electric current was welded to the exposed portion of the aluminum foil to obtain a positive electrode with a lead.
<負極の作製>
 負極活物質である黒鉛(平均粒子径:10μm):97質量部、およびバインダであるCMC:1.5質量部およびSBR:1.5質量部からなる負極合剤に、適量のイオン交換水を添加し、十分に混合して負極合剤層形成用ペーストを調製した。
<Manufacturing of negative electrode>
Add an appropriate amount of ion-exchanged water to the negative electrode mixture consisting of graphite (average particle size: 10 μm): 97 parts by mass, which is the negative electrode active material, and CMC: 1.5 parts by mass and SBR: 1.5 parts by mass, which are binders. It was added and mixed well to prepare a paste for forming a negative electrode mixture layer.
 次に、この負極合剤層形成用ペーストを乾燥後塗布量が9mg/mになるように銅箔からなる厚さ10μmの集電体の両面に、塗布長が表面290mm、裏面230mmになるように間欠塗布し、乾燥した後、カレンダー処理および120℃で8時間の熱処理を行って、全厚が126μmになるように負極合剤層の厚みを調整した。これを幅45mmになるように切断して負極を作製した。更に、電流を取り出すためのニッケル製リード片を銅箔の露出部に溶接し、リード付き負極を得た。 Next, the paste for forming the negative electrode mixture layer is applied to both sides of a 10 μm-thick current collector made of copper foil so that the coating amount is 9 mg / m 2 after drying, and the coating length is 290 mm on the front surface and 230 mm on the back surface. After intermittent coating and drying, calendar treatment and heat treatment at 120 ° C. for 8 hours were performed to adjust the thickness of the negative electrode mixture layer so that the total thickness was 126 μm. This was cut to a width of 45 mm to prepare a negative electrode. Further, a nickel lead piece for extracting an electric current was welded to the exposed portion of the copper foil to obtain a negative electrode with a lead.
<電池の組み立て>
 前記負極と前記正極と前記セパレータを、正極が前記セパレータの無機粒子層側に配置されるようにして重ね合わせ、渦巻状に巻回して巻回電極体を作製した。この巻回電極体を押し潰して扁平状にし、電池容器内に装填して、非水電解液(エチレンカーボネートとエチルメチルカーボネートを体積比1:2で混合した溶媒にLiPFを1.2mol/lの濃度で溶解させ、ビニレンカーボネートを3質量%添加した溶液)を電池容器内に注入した後、封止を行って非水電解質電池を得た。
<Battery assembly>
The negative electrode, the positive electrode, and the separator were superposed so that the positive electrode was arranged on the inorganic particle layer side of the separator, and wound in a spiral shape to prepare a wound electrode body. This wound electrode body is crushed to make it flat, loaded in a battery container, and 1.2 mol / mol / mol of LiPF 6 is added to a solvent in which a non-aqueous electrolyte solution (ethylene carbonate and ethyl methyl carbonate are mixed at a volume ratio of 1: 2). A solution prepared by dissolving at a concentration of 1 l and adding 3% by mass of vinylene carbonate) was injected into the battery container, and then sealed to obtain a non-aqueous electrolyte battery.
比較例5
 比較例1と同じセパレータを用いた以外は、実施例6と同様にして非水電解質電池を作製した。
Comparative Example 5
A non-aqueous electrolyte battery was produced in the same manner as in Example 6 except that the same separator as in Comparative Example 1 was used.
<充放電サイクル特性の評価>
 実施例6および比較例5の非水電解質電池に対し、45℃の温度環境下で、以下の条件で充放電サイクル試験を行った。
<Evaluation of charge / discharge cycle characteristics>
The non-aqueous electrolyte batteries of Example 6 and Comparative Example 5 were subjected to a charge / discharge cycle test under the following conditions under a temperature environment of 45 ° C.
 充電は、1Cの電流値で4.2Vまでの定電流充電と、4.2Vでの定電圧充電とし、定電流充電開始から定電圧充電終了までの総充電時間は3時間とした。放電は、1Cの電流値で2.5Vまでの定電流放電とした。 Charging was constant current charging up to 4.2V with a current value of 1C and constant voltage charging at 4.2V, and the total charging time from the start of constant current charging to the end of constant voltage charging was 3 hours. The discharge was a constant current discharge up to 2.5 V with a current value of 1C.
 前記条件での充放電サイクルを繰り返し、放電容量が初期の70%に低下するまでのサイクル数で充放電サイクル特性を評価した。得られた結果を表4に示す。 The charge / discharge cycle under the above conditions was repeated, and the charge / discharge cycle characteristics were evaluated by the number of cycles until the discharge capacity decreased to 70% of the initial value. The results obtained are shown in Table 4.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 実施例6の非水電解質電池は、正極から溶出した金属をセパレータがトラップしたことにより、比較例5の非水電解質電池よりも充放電サイクル特性を向上させることができた。 The non-aqueous electrolyte battery of Example 6 was able to improve the charge / discharge cycle characteristics as compared with the non-aqueous electrolyte battery of Comparative Example 5 because the separator trapped the metal eluted from the positive electrode.
実施例7
<セパレータの作製>
 板状ベーマイト(平均粒子径1μm、アスペクト比10):1000質量部を1000質量部の水中に分散させ、更にバインダとしてSBRラテックス(固形分比率40質量%)120質量部を加えて均一に分散させて無機粒子層形成用スラリーを調製した。
Example 7
<Making a separator>
Plate-shaped boehmite (average particle size 1 μm, aspect ratio 10): 1000 parts by mass is dispersed in 1000 parts by mass of water, and 120 parts by mass of SBR latex (solid content ratio 40% by mass) is added as a binder to uniformly disperse. Prepared a slurry for forming an inorganic particle layer.
 前記のスラリーを、PE層、PP層、PE層の順に積層されて構成されたポリオレフィン製微多孔膜(厚み20μm、空孔率40%)の片面に、ダイコーターを用いて、乾燥後の厚みが5μmとなるように塗布し、乾燥して、総厚みが25μmの、無機粒子層と樹脂多孔質フィルムとの積層体を得た。 The thickness after drying using a die coater on one side of a microporous polyolefin film (thickness 20 μm, porosity 40%) formed by laminating the above slurry in the order of PE layer, PP layer, and PE layer. Was applied to a thickness of 5 μm and dried to obtain a laminate of an inorganic particle layer and a resin porous film having a total thickness of 25 μm.
 前記式(2)で表される官能基と加水分解基とを有するシランカップリング剤である3-(2-アミノエチルアミノ)プロピルトリメトキシシラン〔アミン化合物(b)〕:2質量部を、98質量部の水(溶媒)に溶解させて、前記シランカップリング剤の濃度が2質量%の溶液とした。前記のようにして得られた無機粒子層と樹脂多孔質フィルムとの積層体の、無機粒子層上に、スプレーコーターを用いて、無機粒子層中の板状ベーマイト:100質量部に対し3-(2-アミノエチルアミノ)プロピルトリメトキシシラン:2質量部となる量で前記溶液を塗布し、乾燥してセパレータを得た。 3- (2-Aminoethylamino) propyltrimethoxysilane [amine compound (b)], which is a silane coupling agent having a functional group represented by the formula (2) and a hydrolyzing group: 2 parts by mass. It was dissolved in 98 parts by mass of water (solvent) to prepare a solution having a concentration of the silane coupling agent of 2% by mass. Using a spray coater on the inorganic particle layer of the laminate of the inorganic particle layer and the resin porous film obtained as described above, plate-like boehmite in the inorganic particle layer: 3-based on 100 parts by mass. (2-Aminoethylamino) Propyltrimethoxysilane: The solution was applied in an amount of 2 parts by mass and dried to obtain a separator.
 なお、前記シランカップリング剤の塗布量は、無機粒子層の単位面積当たり0.13g/mであった。 The amount of the silane coupling agent applied was 0.13 g / m 2 per unit area of the inorganic particle layer.
 前記のセパレータを用いた以外は、実施例1と同様にして非水電解質電池を作製した。 A non-aqueous electrolyte battery was produced in the same manner as in Example 1 except that the above separator was used.
実施例8
 前記式(2)で表される官能基と加水分解基とを有するシランカップリング剤である(3-トリメトキシシリルプロピル)ジエチレントリアミン〔アミン化合物(b)〕:4質量部を、96質量部の水に溶解させて、前記シランカップリング剤の濃度が4質量%の溶液を調製し、無機粒子層中の板状ベーマイト:100質量部に対し(3-トリメトキシシリルプロピル)ジエチレントリアミン:4質量部となる量で前記溶液を塗布した以外は実施例7と同様にしてセパレータを作製し、このセパレータを用いた以外は実施例7と同様にして非水電解質電池を作製した。
Example 8
A silane coupling agent having a functional group represented by the formula (2) and a hydrolyzing group (3-trimethoxysilylpropyl) diethylenetriamine [amine compound (b)]: 4 parts by mass, 96 parts by mass. A solution having a concentration of 4% by mass of the silane coupling agent was prepared by dissolving it in water, and (3-trimethoxysilylpropyl) diethylenetriamine: 4 parts by mass with respect to 100 parts by mass of plate-shaped boehmite in the inorganic particle layer. A separator was prepared in the same manner as in Example 7 except that the solution was applied in such an amount, and a non-aqueous electrolyte battery was prepared in the same manner as in Example 7 except that this separator was used.
 なお、前記シランカップリング剤の塗布量は、無機粒子層の単位面積当たり0.33g/mであった。 The amount of the silane coupling agent applied was 0.33 g / m 2 per unit area of the inorganic particle layer.
比較例6
 (3-トリメトキシシリルプロピル)ジエチレントリアミン:20質量部を、水:80質量部中に入れて攪拌し、均一に溶解させてシランカップリング剤溶液を調製した。実施例7で用いたものと同じ板状ベーマイト:100質量部を水:900質量部中に分散させて調製したスラリーに、板状ベーマイト:100質量部に対しシランカップリング剤:1質量部となる割合で前記のシランカップリング剤溶液を添加し、スリーワンモーターで攪拌しながら60分間処理した。処理後の板状ベーマイトを濾別し、乾燥させて、(3-トリメトキシシリルプロピル)ジエチレントリアミンの反応生成物を表面に付与した板状ベーマイトを得た。そして、この(3-トリメトキシシリルプロピル)ジエチレントリアミンの反応生成物を表面に付与した板状ベーマイトを用いた以外は実施例7と同様にして、無機粒子層と樹脂微多孔フィルムとの積層体よりなるセパレータを作製し、このセパレータを用いた以外は実施例7と同様にして非水電解質電池を作製した。
Comparative Example 6
20 parts by mass of (3-trimethoxysilylpropyl) diethylenetriamine was placed in 80 parts by mass of water and stirred to uniformly dissolve the solution to prepare a silane coupling agent solution. The same plate-shaped boehmite as used in Example 7: 100 parts by mass was dispersed in water: 900 parts by mass, and the slurry was prepared. The above-mentioned silane coupling agent solution was added at a certain ratio, and the treatment was carried out for 60 minutes while stirring with a three-one motor. The treated plate-shaped boehmite was filtered off and dried to obtain a plate-shaped boehmite on which the reaction product of (3-trimethoxysilylpropyl) diethylenetriamine was applied to the surface. Then, from the laminate of the inorganic particle layer and the resin microporous film in the same manner as in Example 7 except that the plate-shaped boehmite having the reaction product of (3-trimethoxysilylpropyl) diethylenetriamine applied to the surface was used. A non-aqueous electrolyte battery was produced in the same manner as in Example 7 except that this separator was used.
比較例7
 無機粒子層と樹脂多孔質フィルムとの積層体にシランカップリング剤の溶液を塗布せず、そのままセパレータとして用いた以外は、実施例1と同様にして非水電解質電池を作製した。
Comparative Example 7
A non-aqueous electrolyte battery was produced in the same manner as in Example 1 except that the solution of the silane coupling agent was not applied to the laminate of the inorganic particle layer and the resin porous film and used as it was as a separator.
 実施例7~8および比較例6~7で作製したセパレータについて、実施例1のセパレータなどと同じ方法で、セパレータの金属イオン吸着量および熱収縮率を測定すると共に、実施例7~8および比較例6~7で作製した非水電解質電池について、実施例1の非水電解質電池などと同じ方法で、特性(初期容量、高温貯蔵後の容量維持率、および高温貯蔵後の容量回復率)の評価を行った。 For the separators produced in Examples 7 to 8 and Comparative Examples 6 to 7, the metal ion adsorption amount and the heat shrinkage rate of the separator were measured by the same method as the separator of Example 1, and compared with Examples 7 to 8. The non-aqueous electrolyte batteries produced in Examples 6 to 7 have the same characteristics (initial capacity, capacity retention rate after high temperature storage, and capacity recovery rate after high temperature storage) in the same manner as the non-aqueous electrolyte battery of Example 1. Evaluation was performed.
 セパレータにおける前記の各評価結果を表5に示し、非水電解質電池における前記の各評価結果を表6に示す。 Table 5 shows the results of each of the above evaluations of the separator, and Table 6 shows the results of each of the above evaluations of the non-aqueous electrolyte battery.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表5に示す通り、実施例のセパレータでは、比較例6に比べて無機粒子層の形状維持性が向上したため、熱収縮率が低下し、耐熱性を向上させることができるとともに、金属イオンの吸着量を比較例6と同等以上とすることができた。 As shown in Table 5, in the separator of the example, the shape retention of the inorganic particle layer was improved as compared with Comparative Example 6, so that the heat shrinkage rate could be lowered, the heat resistance could be improved, and the adsorption of metal ions could be improved. The amount could be equal to or higher than that of Comparative Example 6.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表6に示す通り、実施例のセパレータでは、金属イオンの吸着性に優れた無機粒子層を備えたことにより、比較例7に比べて電池の劣化を抑制することができた。 As shown in Table 6, the separator of the example was provided with an inorganic particle layer having excellent adsorption of metal ions, so that deterioration of the battery could be suppressed as compared with Comparative Example 7.
 本発明は、その趣旨を逸脱しない範囲で、前記以外の形態としても実施が可能である。本出願に開示された実施形態は一例であって、本発明は、これらの実施形態には限定されない。本発明の範囲は、前記の明細書の記載よりも、添付されている請求の範囲の記載を優先して解釈され、請求の範囲と均等の範囲内での全ての変更は、請求の範囲に含まれる。 The present invention can be implemented in forms other than the above, as long as the gist of the present invention is not deviated. The embodiments disclosed in the present application are examples, and the present invention is not limited to these embodiments. The scope of the present invention shall be construed in preference to the description of the appended claims over the description of the specification above, and all modifications within the scope of the claims shall be within the scope of the claims. included.
 本発明の非水電解質電池は、従来から知られている非水電解質電池が用いられている各種用途と同じ用途に適用することができる。 The non-aqueous electrolyte battery of the present invention can be applied to the same applications as various uses in which conventionally known non-aqueous electrolyte batteries are used.

Claims (7)

  1.  無機粒子とバインダとを含む無機粒子層を有する非水電解質電池用セパレータであって、
     前記無機粒子層が、下記一般式(1)で表されるアミン化合物(a)を含有し、前記無機粒子層における前記バインダの含有量が2質量%以上であり、かつ前記アミン化合物(a)の含有量が、0.5~7質量%であることを特徴とする非水電解質電池用セパレータ。
    Figure JPOXMLDOC01-appb-C000001
    〔ただし、R:-Hまたは-C2xNH(xは、2~6のいずれかの整数)、R:-C2y-(yは、2~6のいずれかの整数)であって、mは1~6のいずれかの整数であり、mが2以上の場合にRは互いに異なってもよい〕
    A separator for a non-aqueous electrolyte battery having an inorganic particle layer containing inorganic particles and a binder.
    The inorganic particle layer contains an amine compound (a) represented by the following general formula (1), the binder content in the inorganic particle layer is 2% by mass or more, and the amine compound (a). A separator for a non-aqueous electrolyte battery, characterized in that the content of the particles is 0.5 to 7% by mass.
    Figure JPOXMLDOC01-appb-C000001
    [However, R 1 : -H or -C x H 2x NH 2 (x is an integer of 2 to 6), R 2 : -C y H 2y- (y is any of 2 to 6). Integer), where m is an integer of 1 to 6, and when m is 2 or more, R 1 may be different from each other.]
  2.  前記一般式(1)において、xおよびyが2または3である請求項1に記載の非水電解質電池用セパレータ。 The separator for a non-aqueous electrolyte battery according to claim 1, wherein x and y are 2 or 3 in the general formula (1).
  3.  前記一般式(1)において、R:-Hである請求項1または2に記載の非水電解質電池用セパレータ。 In Formula (1), R 1: a separator for a nonaqueous electrolyte battery according to claim 1 or 2 is -H.
  4.  無機粒子とバインダと下記一般式(1)で表されるアミン化合物(a)とを含む組成物を樹脂微多孔フィルム上または電極上に塗布し、前記フィルム上または前記電極上に無機粒子層を形成する工程を有し、前記組成物に含有される無機粒子、バインダおよびアミン化合物(a)の全量中で、前記バインダの割合を2質量%以上とし、前記アミン化合物(a)の割合を0.5~7質量%とすることを特徴とする非水電解質電池用セパレータの製造方法。
    Figure JPOXMLDOC01-appb-C000002
    〔ただし、R:-Hまたは-C2xNH(xは、2~6のいずれかの整数)、R:-C2y-(yは、2~6のいずれかの整数)であって、mは1~6のいずれかの整数であり、mが2以上の場合にRは互いに異なってもよい〕
    A composition containing inorganic particles, a binder, and an amine compound (a) represented by the following general formula (1) is applied onto a resin microporous film or an electrode, and an inorganic particle layer is formed on the film or the electrode. It has a step of forming, the ratio of the binder is 2% by mass or more, and the ratio of the amine compound (a) is 0 in the total amount of the inorganic particles, the binder and the amine compound (a) contained in the composition. .. A method for producing a separator for a non-aqueous electrolyte battery, which comprises 5 to 7% by mass.
    Figure JPOXMLDOC01-appb-C000002
    [However, R 1 : -H or -C x H 2x NH 2 (x is an integer of 2 to 6), R 2 : -C y H 2y- (y is any of 2 to 6). Integer), where m is an integer of 1 to 6, and when m is 2 or more, R 1 may be different from each other.]
  5.  無機粒子とバインダとを含む組成物を樹脂微多孔フィルム上または電極上に塗布し、前記フィルム上または前記電極上に無機粒子層を形成する工程と、
     アミン化合物を前記無機粒子層上に塗布する工程とを有し、
     前記アミン化合物として、下記一般式(1)で表されるアミン化合物(a)、または下記一般式(2)で表される官能基と加水分解基とを有するアミン化合物(b)を使用し、
     前記アミン化合物の塗布量を、前記無機粒子層の単位面積当たり0.03~0.7g/mとすることを特徴とする非水電解質電池用セパレータの製造方法。
    Figure JPOXMLDOC01-appb-C000003
    〔ただし、R:-Hまたは-C2xNH(xは、2~6のいずれかの整数)、R:-C2y-(yは、2~6のいずれかの整数)であって、mは1~6のいずれかの整数であり、mが2以上の場合にRは互いに異なってもよい〕
    Figure JPOXMLDOC01-appb-C000004
    〔ただし、nは2~6のいずれかの整数である〕
    A step of applying a composition containing inorganic particles and a binder onto a resin microporous film or an electrode to form an inorganic particle layer on the film or the electrode.
    It has a step of applying an amine compound on the inorganic particle layer, and has a step of applying the amine compound.
    As the amine compound, an amine compound (a) represented by the following general formula (1) or an amine compound (b) having a functional group and a hydrolyzing group represented by the following general formula (2) is used.
    A method for producing a separator for a non-aqueous electrolyte battery, wherein the coating amount of the amine compound is 0.03 to 0.7 g / m 2 per unit area of the inorganic particle layer.
    Figure JPOXMLDOC01-appb-C000003
    [However, R 1 : -H or -C x H 2x NH 2 (x is an integer of 2 to 6), R 2 : -C y H 2y- (y is any of 2 to 6). Integer), where m is an integer of 1 to 6, and when m is 2 or more, R 1 may be different from each other.]
    Figure JPOXMLDOC01-appb-C000004
    [However, n is an integer of 2 to 6]
  6.  正極、負極、および前記正極と前記負極との間に介在するセパレータを有する非水電解質電池であって、
     前記セパレータとして、請求項1~3のいずれかに記載の非水電解質電池用セパレータを有することを特徴とする非水電解質電池。
    A non-aqueous electrolyte battery having a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode.
    A non-aqueous electrolyte battery comprising the separator for a non-aqueous electrolyte battery according to any one of claims 1 to 3 as the separator.
  7.  正極、負極、および前記正極と前記負極との間に介在するセパレータを有する非水電解質電池を製造する方法であって、
     前記セパレータとして、請求項4または5に記載の製造方法で製造された非水電解質電池用セパレータを使用することを特徴とする非水電解質電池の製造方法。
    A method for manufacturing a non-aqueous electrolyte battery having a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode.
    A method for producing a non-aqueous electrolyte battery, which comprises using a separator for a non-aqueous electrolyte battery produced by the production method according to claim 4 or 5 as the separator.
PCT/JP2021/002975 2020-01-29 2021-01-28 Separator for nonaqueous electrolyte batteries, method for producing same, nonaqueous electrolyte battery, and method for producing said nonaqueous electrolyte battery WO2021153652A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-012504 2020-01-29
JP2020012504 2020-01-29
JP2020-035584 2020-03-03
JP2020035584 2020-03-03

Publications (1)

Publication Number Publication Date
WO2021153652A1 true WO2021153652A1 (en) 2021-08-05

Family

ID=77079911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002975 WO2021153652A1 (en) 2020-01-29 2021-01-28 Separator for nonaqueous electrolyte batteries, method for producing same, nonaqueous electrolyte battery, and method for producing said nonaqueous electrolyte battery

Country Status (1)

Country Link
WO (1) WO2021153652A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024463A (en) * 2009-11-04 2010-02-04 Teijin Solfill Kk Method for producing polyolefin microporous film, and method for manufacturing separator for battery
JP2012014994A (en) * 2010-07-02 2012-01-19 Hitachi Maxell Ltd Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP2016124926A (en) * 2014-12-26 2016-07-11 トヨタ自動車株式会社 Photopolymerizable composition, separator for nonaqueous electrolyte secondary battery and method for manufacturing the same, and nonaqueous electrolyte secondary battery
JP2016124925A (en) * 2014-12-26 2016-07-11 トヨタ自動車株式会社 Monofunctional photopolymerizable monomer, photopolymerizable composition, separator for nonaqueous electrolyte secondary battery and method for manufacturing the same, and nonaqueous electrolyte secondary battery
JP2016194990A (en) * 2015-03-31 2016-11-17 日本碍子株式会社 Separator for zinc secondary battery and zinc secondary battery
WO2019049510A1 (en) * 2017-09-11 2019-03-14 株式会社クラレ Coating liquid for non-aqueous electrolyte battery separator, non-aqueous electrolyte battery separator using same, and non-aqueous electrolyte battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024463A (en) * 2009-11-04 2010-02-04 Teijin Solfill Kk Method for producing polyolefin microporous film, and method for manufacturing separator for battery
JP2012014994A (en) * 2010-07-02 2012-01-19 Hitachi Maxell Ltd Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP2016124926A (en) * 2014-12-26 2016-07-11 トヨタ自動車株式会社 Photopolymerizable composition, separator for nonaqueous electrolyte secondary battery and method for manufacturing the same, and nonaqueous electrolyte secondary battery
JP2016124925A (en) * 2014-12-26 2016-07-11 トヨタ自動車株式会社 Monofunctional photopolymerizable monomer, photopolymerizable composition, separator for nonaqueous electrolyte secondary battery and method for manufacturing the same, and nonaqueous electrolyte secondary battery
JP2016194990A (en) * 2015-03-31 2016-11-17 日本碍子株式会社 Separator for zinc secondary battery and zinc secondary battery
WO2019049510A1 (en) * 2017-09-11 2019-03-14 株式会社クラレ Coating liquid for non-aqueous electrolyte battery separator, non-aqueous electrolyte battery separator using same, and non-aqueous electrolyte battery

Similar Documents

Publication Publication Date Title
CN101662015B (en) Porous protective film layer-provided electrode, non-aqueous electrolyte secondary battery and method for manufacturing porous protective film layer-provided electrode
US9166250B2 (en) Separator for battery, method for manufacturing the same, and lithium secondary battery
JP5144651B2 (en) Battery separator and non-aqueous electrolyte battery
TWI553947B (en) Cathode for lithium-sulfur battery and method of preparing the same
TWI382571B (en) Non-aqueous electrolyte secondary battery and producing method of electrode
JP5568023B2 (en) Non-aqueous electrolyte battery
KR101407651B1 (en) Battery separator and battery
KR102115599B1 (en) Seperator and Lithium sulfur battery comprising the same
JP2005293950A (en) Lithium ion secondary battery and charging method of lithium ion secondary battery
CN110710030A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2013153619A1 (en) Nonaqueous electrolyte secondary battery
CN109075291A (en) Partition including porous adhesive layer and the lithium secondary battery using the partition
US11757084B2 (en) Non-aqueous electrolyte secondary battery
JP4992203B2 (en) Lithium ion secondary battery
JP2018147769A (en) Separator for electrochemical element and nonaqueous electrolyte battery
JP6974930B2 (en) Non-aqueous electrolyte secondary battery
JP5545650B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
WO2021240926A1 (en) Power storage device and electrode or separator used for same
WO2021039242A1 (en) Lithium secondary battery
JP2014022051A (en) Separator for electrochemical element and electrochemical element
JP2013114983A (en) Nonaqueous electrolyte battery
JP2019046560A (en) Positive electrode for lithium ion secondary battery
WO2021153652A1 (en) Separator for nonaqueous electrolyte batteries, method for producing same, nonaqueous electrolyte battery, and method for producing said nonaqueous electrolyte battery
JP5756361B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JP2016062849A (en) Separator for electrochemical device and electrochemical device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21748226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 21748226

Country of ref document: EP

Kind code of ref document: A1