WO2017022845A1 - Resin composition for nonaqueous electrolyte battery separator, and separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery using same - Google Patents

Resin composition for nonaqueous electrolyte battery separator, and separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery using same Download PDF

Info

Publication number
WO2017022845A1
WO2017022845A1 PCT/JP2016/073048 JP2016073048W WO2017022845A1 WO 2017022845 A1 WO2017022845 A1 WO 2017022845A1 JP 2016073048 W JP2016073048 W JP 2016073048W WO 2017022845 A1 WO2017022845 A1 WO 2017022845A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
electrolyte battery
resin composition
nonaqueous electrolyte
battery
Prior art date
Application number
PCT/JP2016/073048
Other languages
French (fr)
Japanese (ja)
Inventor
有紀 太田
俊充 田中
準治 藤岡
俊相 趙
岩崎 秀治
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2017533132A priority Critical patent/JP6869888B2/en
Publication of WO2017022845A1 publication Critical patent/WO2017022845A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a resin composition for a non-aqueous electrolyte battery separator, and a separator for a non-aqueous electrolyte battery and a non-aqueous electrolyte battery using the same.
  • Non-aqueous electrolyte batteries are frequently used as secondary batteries used as power sources for these portable terminals. Since portable terminals are required to have more comfortable portability, miniaturization, thinning, weight reduction, and high performance have rapidly progressed, and have come to be used in various places. This trend continues today, and batteries used in mobile terminals are further required to be smaller, thinner, lighter, and higher in performance.
  • non-aqueous electrolyte batteries are spreading to large equipment such as electric cars, hybrid cars, and electric cars. Therefore, performance such as high capacity and charge / discharge characteristics at a large current is required, but because it is a non-aqueous electrolyte battery, there is a high risk of smoke, ignition, rupture, etc. compared to an aqueous battery. There is a demand for improved safety.
  • a nonaqueous electrolyte battery has a positive electrode and a negative electrode installed via a separator, and a lithium salt such as LiPF 6 , LiBF 4 LiTFSI (lithium (bistrifluoromethylsulfonylimide)), LiFSI (lithium (bisfluorosulfonylimide)). Is stored in a container together with an electrolytic solution in which an organic liquid such as ethylene carbonate is dissolved.
  • a lithium salt such as LiPF 6 , LiBF 4 LiTFSI (lithium (bistrifluoromethylsulfonylimide)), LiFSI (lithium (bisfluorosulfonylimide)
  • the risk of fuming increases due to temperature rise due to external heat, overcharge, internal short circuit, external short circuit, etc. These can be prevented to some extent by an external protection circuit.
  • the polyolefin resin porous film used as a non-aqueous electrolyte battery separator melts at around 120 ° C., and the pores are blocked to block the flow of current and ions, thereby suppressing the temperature rise of the battery. It is also possible. This is called a shutdown function.
  • the formation of the heat-resistant layer in such a separator is performed by applying a pasted metal oxide on the surface of the separator, and as a thickener or dispersant when pasting the metal oxide,
  • a pasted metal oxide on the surface of the separator, and as a thickener or dispersant when pasting the metal oxide
  • CMC carboxymethyl cellulose
  • Patent Document 3 Patent Document 3
  • CMC has good adhesion to metal oxides and separators and has thermal stability of about 150 ° C.
  • CMC has high electrical resistance and high electrical resistance during high rate and repeated charge / discharge. Short circuit easily occurs. As a result, there was a problem that heat was generated more than expected, and CMC was decomposed and it became difficult to function as a separator.
  • the present invention has been made in view of the above-mentioned problems, and has a low electrical resistance and a high heat resistance resin composition for a nonaqueous electrolyte battery separator, and a nonaqueous electrolyte battery separator and a nonaqueous solution using the same.
  • An object is to provide an electrolyte battery.
  • the present inventors have used the non-aqueous electrolyte battery separator resin composition having the following constitution (hereinafter also simply referred to as a separator resin composition) to achieve the above object.
  • the present invention has been completed by finding out to be achieved and further study based on this finding.
  • the separator resin composition according to one aspect of the present invention includes a neutralized salt of an ⁇ -olefin-maleic acid copolymer obtained by copolymerizing an ⁇ -olefin and a maleic acid, and the copolymer.
  • the degree of neutralization with respect to carboxylic acid produced from maleic acids in is from 0.3 to 1.0.
  • the water solubility of the composition is improved, the viscosity is increased, and the adhesion to the current collector foil and the binding property between molecules are increased. As a result, there is an advantage that it is not necessary to use a thickener or a dispersant.
  • a separator for a non-aqueous electrolyte battery according to still another aspect of the present invention includes a coating layer made of the above-described separator resin composition.
  • a nonaqueous electrolyte battery according to still another aspect of the present invention is characterized by including the separator.
  • the present invention it is possible to obtain a separator that is heat resistant, has few short circuits, and is excellent in productivity. Further, it can be used to improve battery characteristics of a nonaqueous electrolyte battery.
  • the resin composition for a separator of this embodiment includes a neutralized salt of an ⁇ -olefin-maleic acid copolymer obtained by copolymerizing an ⁇ -olefin and maleic acid, and has a neutralization degree in the copolymer. It is 0.3 to 1.0.
  • an ⁇ -olefin-maleic acid copolymer obtained by copolymerizing an ⁇ -olefin and maleic acid is composed of a unit (A) based on ⁇ -olefin and a unit (B) based on maleic acid,
  • the unit (A) based on ⁇ -olefins is represented by the general formula —CH 2 CR 1 R 2 — (wherein R 1 and R 2 may be the same or different from each other, and hydrogen, carbon Represents an alkyl group or an alkenyl group having a number of 1 to 10.
  • the ⁇ -olefin used in this embodiment is a linear or branched olefin having a carbon-carbon unsaturated double bond at the ⁇ -position. In particular, olefins having 2 to 12 carbon atoms, particularly 2 to 8 carbon atoms are preferred.
  • isobutylene is particularly preferable from the viewpoints of availability, polysynthesis, and product stability.
  • the isobutylene includes a mixture containing isobutylene as a main component, for example, a BB fraction (C4 fraction).
  • maleic anhydride maleic acid, maleic acid monoester (for example, methyl maleate, ethyl maleate, propyl maleate, phenyl maleate, etc.), maleic acid, as the unit (B) based on maleic acids
  • Maleic anhydride derivatives such as diesters (eg dimethyl maleate, diethyl maleate, dipropyl maleate, diphenyl maleate etc.), maleic imides or N-substituted derivatives thereof (eg maleic imide, N-methylmaleimide, N N-substituted alkylmaleimides such as ethylmaleimide, N-propylmaleimide, Nn-butylmaleimide, Nt-butylmaleimide, N-cyclohexylmaleimide, N-phenylmaleimide, N-ethyl Phenyl male N-substituted alkylphenylmaleimide such as imide, or N-substi
  • maleic anhydride is preferable from the viewpoint of availability, polymerization rate, and ease of molecular weight adjustment.
  • These maleic acids may be used alone or in combination.
  • Maleic acids are neutralized with alkali salts as described above, and the resulting carboxylic acid and carboxylic acid salt form a 1,2-dicarboxylic acid or salt form. This form has a function of capturing heavy metals eluted from the positive electrode.
  • the content ratio of each structural unit in the copolymer of the present embodiment is preferably such that (A) / (B) is in the range of 1/1 to 1/3 in terms of molar ratio. This is because the advantages of hydrophilicity, water solubility, and affinity for metals and ions as a high molecular weight substance that dissolves in water can be obtained. Particularly, it is desirable that the molar ratio of (A) / (B) is 1/1 or a value close thereto, in which case the unit based on ⁇ -olefin, that is, —CH 2 CR 1 R 2 — A copolymer having a structure in which the units shown and units based on maleic acids are alternately repeated is obtained.
  • the mixing ratio of ⁇ -olefins and maleic acids to obtain the copolymer of the present embodiment varies depending on the composition of the target copolymer, but ⁇ -olefin of 1 to 3 times the number of moles of maleic acids.
  • Use of olefin is effective for increasing the reaction rate of maleic acids.
  • the method for producing the copolymer of the present embodiment is not particularly limited, and for example, the copolymer can be obtained by radical polymerization.
  • the polymerization catalyst used is an azo catalyst such as azobisisobutyronitrile, 1,1-azobiscyclohexane-1-carbonitrile, or an organic peroxide catalyst such as benzoyl peroxide or dicumyl peroxide. preferable.
  • the amount of the polymerization catalyst used is required to be in the range of 0.1 to 5 mol%, preferably 0.5 to 3 mol% with respect to maleic acids.
  • As a method for adding the polymerization catalyst and the monomer they may be added all at the beginning of the polymerization, but it is desirable to add them sequentially as the polymerization proceeds.
  • the molecular weight can be appropriately adjusted mainly depending on the monomer concentration, the amount of catalyst used, and the polymerization temperature.
  • the polymerization temperature is preferably 40 ° C.
  • the polymerization time is usually preferably about 1 to 24 hours, more preferably 2 to 10 hours.
  • the amount of the polymerization solvent used is preferably adjusted so that the concentration of the obtained copolymer is 5 to 40% by weight, more preferably 10 to 30% by weight.
  • the weight average molecular weight of the copolymer of the present embodiment can be measured by, for example, a light scattering method or a viscosity method.
  • the copolymer of this embodiment preferably has an intrinsic viscosity in the range of 0.05 to 1.5.
  • the copolymer of this embodiment is usually obtained in the form of a powder having a grain size of about 16 to 60 mesh.
  • the neutralized salt of the copolymer means that the active hydrogen of carbonyl acid generated from maleic acid reacts with a basic substance to form a salt to become a neutralized salt.
  • a basic substance containing a monovalent metal and / or ammonia is used as the basic substance from the viewpoint of coating properties. It is preferable.
  • the amount of the basic substance containing monovalent metal and / or ammonia is not particularly limited and is appropriately selected depending on the purpose of use and the like, but usually in the maleic acid copolymer.
  • the amount is preferably 0.6 to 2.0 mol per mol of maleic acid unit. If it is such usage-amount, it will be possible to adjust the neutralization degree of the binder composition of this embodiment to a predetermined range.
  • the amount of the basic substance containing a monovalent metal is preferably 0.8 to 1.8 moles per mole of maleic acid units in the maleic acid copolymer, so that there is little residual alkali and water solubility.
  • the copolymer salt can be obtained.
  • Examples of basic substances containing monovalent metals that can be used in the present embodiment include hydroxides of alkali metals such as sodium hydroxide, potassium hydroxide, and lithium hydroxide; alkali metals such as sodium carbonate and potassium carbonate. Carbonates of alkali metals such as sodium acetate and potassium acetate; phosphates of alkali metals such as trisodium phosphate, and the like.
  • ammonia, lithium hydroxide, sodium hydroxide, and potassium hydroxide are preferable.
  • ammonia or lithium hydroxide as a binder for a lithium ion secondary battery.
  • the basic substance containing monovalent metal and / or ammonia may be used alone or in combination of two or more.
  • a neutralized salt of an ⁇ -olefin-maleic acid copolymer is used in combination with a basic substance containing an alkali metal hydroxide such as sodium hydroxide as long as the battery performance is not adversely affected. May be prepared.
  • the degree of neutralization can be determined by a method such as titration with a base, an infrared spectrum, or an NMR spectrum.
  • titration with a base can be performed.
  • the specific titration method is not particularly limited, but it can be dissolved in water with little impurities such as ion-exchanged water, and a basic substance such as lithium hydroxide, sodium hydroxide, potassium hydroxide, It can be carried out by neutralization.
  • the indicator for the neutralization point is not particularly limited, but an indicator such as phenolphthalein indicating pH with a base, and a PH meter can be used.
  • the basic substance containing monovalent metal and / or ammonia is preferably used in an amount of preferably 0.6 to 2.0 mol per mol of maleic acid unit in the maleic acid copolymer. Can be adjusted to the above range. More preferably, the basic substance containing a monovalent metal and / or ammonia is added more reliably by adding 0.6 to 1.8 moles per mole of maleic acid units in the maleic acid copolymer. It is possible to adjust to the above range.
  • the ring-opening rate of the copolymer represents the hydrolysis rate of the site of maleic anhydride that is polymerized with ⁇ -olefins when maleic anhydride is used as the maleic acid.
  • a preferable ring opening rate is 60 to 100%, more preferably 70% to 100%, and still more preferably 80 to 100%.
  • the structural freedom of the copolymer becomes small and the stretchability becomes poor, so that the force for adhering adjacent electrode material particles may be reduced, which is not preferable. Furthermore, there is a possibility that problems such as low affinity for water and poor solubility may occur.
  • the ring-opening rate can be determined, for example, by measuring the hydrogen at the ⁇ -position of the maleic acid opened by 1H-NMR with reference to the hydrogen at the ⁇ -position of maleic anhydride.
  • the ratio of the carbonyl group derived from the carbonyl group and the ring-opened maleic anhydride can also be determined by IR measurement.
  • the mass reduction rate of the ⁇ -olefin-maleic acid copolymer at 150 ° C. is preferably less than 4%, and the mass reduction rate is more preferably less than 2%. If the mass reduction rate is 4% or more, there is a possibility that the capacity is reduced by heat generated when charging and discharging are repeated.
  • the mass reduction rate is not particularly limited, but can be measured by, for example, a method described in Examples described later.
  • the separator resin composition of the present embodiment may contain the ⁇ -olefin-maleic acid copolymer alone, and if necessary, a dispersing agent such as inorganic particles and surfactant. , Thickeners, wetting agents, antifoaming agents, and the like.
  • Nitride ceramics such as boron, silicon carbide, calcium carbonate, aluminum sulfate, aluminum hydroxide, magnesium hydroxide, potassium titanate, talc, synthetic kaolinite, kaolin clay, kaolinite, flybontite, stevensite, dickite, nacrite , Halloysite, pyrophyllite, audnite, montmorillonite, beidellite, nontronite, bolcon score, saponite, hectorite, fluorine hectorite, soconite, swin Rudite, vermiculite, fluorine vermiculite, burcerin, sericite, amesite, keriaite, fraponite, brindriaite, bentonite, zeolite, biotite, phlogopite, fluorophlogopite, iron mica, yeastite, teniolite, siderophyllite Tetraferri iron mica, scale mica, fluorosilica mica,
  • dispersant such as a surfactant
  • anionic surfactants such as sulfate ester type, phosphate ester type, carboxylic acid type and sulfonic acid type
  • cation type activities such as quaternary ammonium salt type and amidoamine type.
  • amphoteric surfactants such as alkyl betaine type, amide betaine type and amine oxide type, nonionic surfactants such as ether type, fatty acid ester type and alkyl glucooxide, polyacrylic acid, polyacrylic acid salt, polysulfonic acid
  • Various surfactants such as salts, polynaphthalene sulfonates, polyalkylene polyamine alkylene oxides, polyalkylene polyimine alkylene oxides, polyvinyl pyrrolidone, and cellulose type polymer surfactants can be used.
  • these may be used alone or in combination of two or more.
  • the dispersant is not limited to these as long as the same effects as those described above can be obtained.
  • the amount of the dispersant in the separator resin composition is usually 0.01 to 10 with respect to 100 parts by weight of the ⁇ -olefin-maleic acid copolymer.
  • the amount is preferably parts by weight, more preferably 0.1 to 5 parts by weight.
  • the thickener examples include synthetic polymers such as polyethylene glycol, urethane-modified polyether, polyacrylic acid, polyvinyl alcohol, vinyl methyl ether-maleic anhydride copolymer, carbomethoxy cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, etc. Natural polysaccharides such as cellulose derivatives, xanthan gum, dieutan gum, welan gum, gellan gum, guar gum, carrageenan gum, and starches such as dextrin and pregelatinized starch. These may be used alone or in combination of two or more.
  • the thickener is not limited to those as long as the same effects as those described above can be obtained.
  • the amount of the thickener in the separator resin composition is usually 0.01 with respect to 100 parts by weight of the ⁇ -olefin-maleic acid copolymer. It is preferably ⁇ 10 parts by weight, more preferably 0.1 to 5 parts by weight.
  • an aliphatic polyether type nonionic surfactant for example, an aliphatic polyether type nonionic surfactant, a polyoxyalkylene type nonionic surfactant, a modified silicone, a modified polyether, or a dimethylsiloxane polyoxyalkylene copolymer can be used. These are used singly or in combination of two or more.
  • the wetting agent is not limited to these as long as the same effects as those described above can be obtained.
  • the amount of the wetting agent in the separator resin composition is usually 0.01 to 10 with respect to 100 parts by weight of the ⁇ -olefin-maleic acid copolymer.
  • the amount is preferably parts by weight, more preferably 0.1 to 5 parts by weight.
  • antifoaming agent for example, various defoaming agents of mineral oil type, silicone type, acrylic type and polyether type can be used. These are used singly or in combination of two or more.
  • the antifoaming agent is not limited to these as long as the same effects as those described above can be obtained.
  • the amount of the antifoaming agent in the separator resin composition is usually 0.01 with respect to 100 parts by weight of the ⁇ -olefin-maleic acid copolymer. It is preferably ⁇ 10 parts by weight, more preferably 0.1 to 5 parts by weight.
  • Examples of the solvent in the separator resin composition of the present embodiment include water, alcohols such as methanol, ethanol, propanol, and 2-propanol, cyclic ethers such as tetrahydrofuran and 1,4-dioxane, N, N-dimethyl, and the like.
  • Examples include amides such as formamide and N, N-dimethylacetamide, cyclic amides such as N-methylpyrrolidone and N-ethylpyrrolidone, and sulfoxides such as dimethylsulfoxide.
  • use of water is preferable from a viewpoint of safety
  • Esters such as ⁇ -butyrolactone and methyl lactate; amides such as N-methylpyrrolidone, N, N-dimethylacetamide and dimethylformamide; and organic dispersion media such as sulfoxides and sulfones such as dimethyl sulfoxide and sulfolane.
  • the amount of the solvent in the separator resin composition is usually preferably 40 to 150 parts by weight, more preferably 70 to 130 parts by weight with respect to 10 parts by weight of the ⁇ -olefin-maleic acid copolymer. is there. If the amount of the ⁇ -olefin-maleic acid copolymer is excessively small, the viscosity becomes low, the coating property is lowered, the separator substrate surface cannot be sufficiently covered, and a short circuit occurs. It may not develop. On the contrary, if the amount of ⁇ -olefin-maleic acid copolymer is excessively large, the viscosity becomes high and the coating property may be lowered, and the separator substrate surface may not be sufficiently coated, and the electrical resistance also increases. Therefore, the discharge capacity may be reduced.
  • the present invention includes a separator for a non-aqueous electrolyte battery provided with a coating layer made of the separator resin composition.
  • the amount of adhered layers coated with separator resin composition preferably 1.0 ⁇ 30g / m 2, further 4.0 ⁇ 20g / m 2 is more preferable.
  • the adhesion amount of the coating layer is less than 1.0 g / m 2 , the separator base material surface cannot be sufficiently coated, the pore diameter becomes large, short circuit occurs, and good battery characteristics do not appear. There is.
  • the adhesion amount of the coated layer exceeds 30 g / m 2 , it may be difficult to reduce the thickness of the separator.
  • the resin composition for a separator of the present embodiment can be used as an optional member as a separator base material that can prevent short-circuiting of electrodes in a nonaqueous electrolyte battery without hindering charging / discharging of the battery.
  • separator substrate for example, a porous film or a nonwoven fabric made of an organic material having fine pores can be used.
  • the thickness of the separator substrate is usually 0.5 ⁇ m or more, preferably 1 ⁇ m or more, and usually 40 ⁇ m or less, preferably 30 ⁇ m or less. Within this range, the resistance due to the separator substrate in the battery is reduced, and the workability during battery production is excellent.
  • the method of drying after applying a solvent such as water contained in the resin composition for a separator to the separator base material is not particularly limited.
  • aeration drying with hot air, hot air, or low-humidity air for example, aeration drying with hot air, hot air, or low-humidity air; ; Irradiation drying of infrared rays, far infrared rays, electron beams, and the like.
  • the drying conditions are as fast as possible while the layer covered with the separator resin composition cracks due to stress concentration or the layer covered with the separator resin composition does not peel from the separator. It is good to adjust as possible.
  • the basis weight of the separator is preferably from 10.0 ⁇ 50.0g / m 2, more preferably 15.0 ⁇ 40.0g / m 2.
  • the thickness of the separator is preferably 10.0 to 50.0 ⁇ m, and more preferably 15.0 to 40.0 ⁇ m.
  • the separator coating layer may be smoothed by calendaring for the purpose of controlling the flattening and thickness of the coating layer surface.
  • the current collector used for the negative electrode and the positive electrode of the nonaqueous electrolyte battery of the present embodiment is not particularly limited as long as it is made of a conductive material.
  • a conductive material For example, iron, copper, aluminum, nickel, stainless steel, titanium, Metal materials such as tantalum, gold, and platinum can be used. One of these may be used alone, or two or more of these may be used in combination at any ratio.
  • carbonaceous materials such as amorphous carbon, graphite, natural graphite, mesocarbon microbeads (MCMB), pitch-based carbon fibers; conductive polymers such as polyacene; composite metal oxidation represented by SiOx, SnOx, LiTiOx And metal compounds such as TiS 2 , LiTiS 2, and the like.
  • the amount of thickener used is preferably about 0.1 to 4 parts by weight, more preferably 0.3 to 3 parts by weight, and still more preferably 0.5 to 2 parts by weight with respect to 100 parts of the negative electrode active material. It is. If the thickener is excessively small, the viscosity of the slurry composition containing the negative electrode active material and the solvent (hereinafter, also simply referred to as the negative electrode slurry composition) may be too low and the thickness of the mixed layer may be reduced. If there is too much thickener, the discharge capacity may decrease.
  • examples of the conductive auxiliary compounded in the negative electrode slurry composition as needed include metal powder, conductive polymer, acetylene black, and the like.
  • the amount of the conductive aid used is usually preferably 0.5 to 10 parts by weight, more preferably 1 to 7 parts by weight with respect to 100 parts by weight of the negative electrode active material.
  • the negative electrode is prepared by mixing the negative electrode active material as described above with a conductive assistant and a binder such as SBR, NBR, acrylic rubber, hydroxyethyl cellulose, carboxymethyl cellulose, and polyvinylidene fluoride in a solvent.
  • a conductive assistant such as SBR, NBR, acrylic rubber, hydroxyethyl cellulose, carboxymethyl cellulose, and polyvinylidene fluoride
  • the negative electrode slurry thus prepared can be applied to a current collector as described above, for example, a negative electrode current collector such as copper, and the solvent can be dried to obtain a negative electrode.
  • the positive electrode a positive electrode usually used for a nonaqueous electrolyte battery is used without any particular limitation.
  • the positive electrode active material TiS 2 , TiS 3 , amorphous MoS 3 , Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , MoO 3 , V 2 O 5, V 6 O 13 Transition metal oxides such as LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 and other lithium-containing composite metal oxides are used.
  • the positive electrode active material is mixed with the same conductive assistant and thickener as the negative electrode, a binder such as SBR, NBR, acrylic rubber, hydroxyethyl cellulose, carboxymethyl cellulose, and polyvinylidene fluoride, and the boiling point at normal pressure described above.
  • a binder such as SBR, NBR, acrylic rubber, hydroxyethyl cellulose, carboxymethyl cellulose, and polyvinylidene fluoride, and the boiling point at normal pressure described above.
  • a positive electrode current collector such as aluminum, and the solvent is dried to form a positive electrode.
  • the method for drying a solvent such as water contained in the slurry composition is not particularly limited, and examples thereof include aeration drying with hot air, hot air, and low-humidity air; vacuum drying; drying with infrared rays, far infrared rays, electron beams, and the like. .
  • the drying conditions are preferably adjusted so that the solvent can be removed as soon as possible while the active material layer is cracked by stress concentration or the active material layer does not peel from the current collector.
  • the pressing method include a die press and a roll press.
  • an electrolytic solution in which an electrolyte is dissolved in a solvent can be used.
  • the electrolyte solution may be liquid or gel as long as it is used for a normal non-aqueous electrolyte battery, and if it appropriately selects a battery that functions as a battery depending on the type of the negative electrode active material and the positive electrode active material. Good.
  • the solvent for dissolving such an electrolyte is not particularly limited. Specific examples include carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, and diethyl carbonate; lactones such as ⁇ -butyllactone; trimethoxymethane, 1,2-dimethoxyethane, diethyl ether, and 2-ethoxyethane.
  • Ethers such as tetrahydrofuran, 2-methyltetrahydrofuran; sulfoxides such as dimethyl sulfoxide; oxolanes such as 1,3-dioxolane, 4-methyl-1,3-dioxolane; nitrogen-containing compounds such as acetonitrile and nitromethane; formic acid Organic acid esters such as methyl, methyl acetate, ethyl acetate, butyl acetate, methyl propionate and ethyl propionate; inorganic acid esters such as triethyl phosphate, dimethyl carbonate and diethyl carbonate Terigres; diglymes; triglymes; sulfolanes; oxazolidinones such as 3-methyl-2-oxazolidinone; sultones such as 1,3-propane sultone, 1,4-butane sultone, naphtha sultone, etc.
  • a gel electrolyte a nitrile polymer, an acrylic polymer, a fluorine polymer, an alkylene oxide polymer, or the like can be added as a gelling agent.
  • the method for producing the non-aqueous electrolyte battery of the present embodiment is not particularly limited, and for example, the following production method is exemplified. That is, the negative electrode and the positive electrode are overlapped via the separator of the present embodiment described above, wound or folded according to the shape of the battery, put into a battery container, injected with an electrolyte, and sealed.
  • the shape of the battery may be any known coin type, button type, sheet type, cylindrical type, square type, flat type, and the like.
  • the nonaqueous electrolyte battery of the present embodiment is a battery that is less prone to internal short circuit and resistance rise, and is useful for various applications. For example, it is useful as a battery used in portable terminals that are required to be reduced in size, thickness, weight, and performance, and as a battery used in large equipment such as an electric vehicle that requires high safety. Very useful.
  • the separator resin composition according to one aspect of the present invention includes a neutralized salt of an ⁇ -olefin-maleic acid copolymer obtained by copolymerizing an ⁇ -olefin and a maleic acid, and the copolymer.
  • the degree of neutralization with respect to carboxylic acid produced from maleic acids in is from 0.3 to 1.0.
  • the coating property is very good. There is an advantage that it is excellent.
  • the water solubility of the composition is improved, the viscosity is increased, and the adhesion to the current collector foil and the binding property between molecules are increased. As a result, there is an advantage that it is not necessary to use a thickener or a dispersant.
  • a separator for a non-aqueous electrolyte battery according to still another aspect of the present invention includes a coating layer made of the above-described separator resin composition.
  • Example 1 ⁇ Resin composition for separator> 25 g (0.16 mol) of a water-soluble lithium-modified isobutene-maleic anhydride copolymer resin (average molecular weight 325,000, neutralization degree 1.0, ring opening rate 100%) is used as the resin composition for the separator, % Aqueous solution was prepared and used in the following tests. The degree of neutralization was adjusted by adding 2.0 equivalents (0.320 mol) of lithium hydroxide to the maleic acid unit in the maleic acid copolymer.
  • the 10% by weight separator resin composition was diluted to 5% by weight as a separator substrate surface coating solution, and a separator (27 cm ⁇ 25 cm, non-woven fabric) was immersed in the diluted solution.
  • a manual mangle for experiment manufactured by Kumagai Riki Kogyo Co., Ltd.
  • the separator coated with the diluent for the separator substrate surface coating solution was squeezed and then dried at room temperature for 12 hours.
  • the dried sheet was pressed with a hot press (manufactured by Furukawa Seisakusho) and adjusted to a thickness of 20 ⁇ m (roll temperature room temperature, speed 1 m / min, linear pressure 100 hg / cm).
  • the adhesion amount was 2.1 g / m 2 .
  • the slurry for the electrode was prepared by using a solid dispersion of a 48.3 wt% aqueous dispersion of styrene-butadiene rubber (SBR, TRD2001, manufactured by JSR) as a binder with respect to 94 parts by weight of natural graphite (DMGS, manufactured by BYD) as an active material.
  • SBR styrene-butadiene rubber
  • DGS natural graphite
  • the slurry for the electrode is made of 92 parts by weight of nickel / cobalt / manganese (NCM) as an active material, 5 parts by weight of polyvinylidene fluoride (PVDF) as a solid as a binder, and Denka as a conductive additive (conductivity imparting agent). 3 parts by weight of black (powder, manufactured by Denki Kagaku Kogyo Co., Ltd.) as a solid was put into a special container and kneaded using a planetary stirrer (ARE-250, manufactured by Shinky Corporation).
  • NCM nickel / cobalt / manganese
  • PVDF polyvinylidene fluoride
  • Denka a conductive additive
  • ⁇ Preparation of positive electrode for battery> The obtained slurry was coated on a current collector aluminum foil (IN30-H, manufactured by Fujishi Paper) using a film applicator (manufactured by Tester Sangyo), and hot air dryer (manufactured by Yamato Scientific) for 30 minutes at 80 ° C. After the primary drying, rolling was performed using a roll press (made by Hosen). Then, after punching out as a battery electrode ( ⁇ 14 mm), a coin battery electrode was produced by secondary drying under reduced pressure conditions at 120 ° C. for 3 hours.
  • Example 3 As a resin composition for a separator, a coated separator was formed as in Example 1 above using 50% Na salt of a 51.2 w% aqueous solution of polyacrylic acid (average molecular weight 187,000, degree of neutralization 0.5, manufactured by Aldrich) as a solid content. It produced by the same method. The adhesion amount was 2.1 g / m 2 . Further, a negative electrode for a battery was prepared by the same method as in Example 1 to obtain a coin battery, and a charge / discharge characteristic test was performed. The results are shown in Table 1 below.
  • the separator coated with the separator substrate surface coating solution was equivalent to the case where a separator not coated with electrical resistance was used, but when SBR / CMC-Na used for general purpose was used (Comparative Example) 1) It has been shown that resistance increases and battery performance also decreases. It is considered that the neutralized salt of the ⁇ -olefin-maleic acid copolymer constituting the separator substrate surface coating solution improves ion transmission in the battery. Furthermore, in Comparative Example 3 using polyacrylic acid, which is also an ordinary product, it can be seen that the DC resistance is high despite having a carboxylic acid moiety as in the present invention.
  • the present invention has wide industrial applicability in the technical field of non-aqueous electrolyte batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Separators (AREA)

Abstract

The present invention relates to: a resin composition for a nonaqueous electrolyte battery separator, the composition characterized in comprising a neutral salt of an α-olefin-maleic acid copolymer obtained by copolymerization of α-olefins and maleic acids, and in that the degree of neutralization of the carboxylic acid generated from the maleic acids in the copolymer is 0.3 to 1.0; a separator for a nonaqueous electrolyte battery; and a nonaqueous electrolyte battery.

Description

非水電解質電池セパレータ用樹脂組成物、並びに、それを用いた非水電解質電池用セパレータ及び非水電解質電池Non-aqueous electrolyte battery separator resin composition, and non-aqueous electrolyte battery separator and non-aqueous electrolyte battery using the same
 本発明は、非水電解質電池セパレータ用樹脂組成物、並びに、それを用いた非水電解質電池用セパレータ及び非水電解質電池に関する。 The present invention relates to a resin composition for a non-aqueous electrolyte battery separator, and a separator for a non-aqueous electrolyte battery and a non-aqueous electrolyte battery using the same.
 近年、携帯電話、ノート型パソコン、パッド型情報端末機器などの携帯端末の普及が著しい。これら携帯端末の電源に用いられている二次電池には、非水電解質電池が多用されている。携帯端末は、より快適な携帯性が求められるため、小型化、薄型化、軽量化、高性能化が急速に進み、様々な場で利用されるようになった。この動向は現在も続いており、携帯端末に使用される電池にも、小型化、薄型化、軽量化、高性能化がさらに要求されている。 In recent years, mobile terminals such as mobile phones, notebook computers, pad-type information terminal devices have been widely used. Non-aqueous electrolyte batteries are frequently used as secondary batteries used as power sources for these portable terminals. Since portable terminals are required to have more comfortable portability, miniaturization, thinning, weight reduction, and high performance have rapidly progressed, and have come to be used in various places. This trend continues today, and batteries used in mobile terminals are further required to be smaller, thinner, lighter, and higher in performance.
 また、電気自動車、ハイブリット自動車、電気自動車等の大型機器にも、非水電解質電池を利用する動きが広がっている。そのため、高容量化、大電流での充放電特性といった性能が求められているが、非水電解質電池であるため、水系電池と比較して、発煙、発火、破裂等の危険性が高いことが知られており、安全性の向上要求されている。 Also, the movement to use non-aqueous electrolyte batteries is spreading to large equipment such as electric cars, hybrid cars, and electric cars. Therefore, performance such as high capacity and charge / discharge characteristics at a large current is required, but because it is a non-aqueous electrolyte battery, there is a high risk of smoke, ignition, rupture, etc. compared to an aqueous battery. There is a demand for improved safety.
 非水電解質電池は、正極と負極とをセパレータを介して設置し、LiPF、LiBF LiTFSI(リチウム(ビストリフルオロメチルスルホニルイミド))、LiFSI(リチウム(ビスフルオロスルホニルイミド))のようなリチウム塩をエチレンカーボネート等の有機液体に溶解させた電解液と共に容器内に収納した構造を有している。 A nonaqueous electrolyte battery has a positive electrode and a negative electrode installed via a separator, and a lithium salt such as LiPF 6 , LiBF 4 LiTFSI (lithium (bistrifluoromethylsulfonylimide)), LiFSI (lithium (bisfluorosulfonylimide)). Is stored in a container together with an electrolytic solution in which an organic liquid such as ethylene carbonate is dissolved.
 そのため外熱による温度上昇、過充電、内部短絡、外部短絡等によって発煙等の危険性が高まる。これらは、外部保護回路によってある程度防ぐことが可能である。また、非水電解質電池セパレータとして使用されているポリオレフィン系樹脂の多孔質フィルムが120℃付近で溶融し、孔が閉塞して電流やイオンの流れを遮断することによって、電池の温度上昇を抑制することも可能である。これは、シャットダウン機能と呼ばれている。しかし、外熱によって温度が上昇した場合や温度上昇によって電池内部で化学反応が起きた場合には、シャットダウン機能が働いても電池温度は更に上昇し、電池温度が150℃以上にまで達すると、多孔質フィルムが収縮して内部短絡が起こり、発火等が起きることがあった。 Therefore, the risk of fuming increases due to temperature rise due to external heat, overcharge, internal short circuit, external short circuit, etc. These can be prevented to some extent by an external protection circuit. In addition, the polyolefin resin porous film used as a non-aqueous electrolyte battery separator melts at around 120 ° C., and the pores are blocked to block the flow of current and ions, thereby suppressing the temperature rise of the battery. It is also possible. This is called a shutdown function. However, when the temperature rises due to external heat or when a chemical reaction occurs inside the battery due to the temperature rise, the battery temperature further rises even if the shutdown function works, and when the battery temperature reaches 150 ° C or higher, The porous film contracted, causing an internal short circuit, which could cause ignition.
 このように、セパレータのシャットダウン機能では電池の発火を抑制することができ難くなっている。また、電池の高容量化に伴って充放電における大電流化も進んでおり、その際に発生するジュール熱を抑制するために、電解液を含浸したセパレータの電気抵抗値そのものを下げることも必要になっている。そのため、ポリオレフィン系樹脂の多孔質フィルムよりも熱収縮温度を上げることによって、内部短絡を起こり難くして電池の発火を抑制すると共に、電気抵抗値を下げることを目的として、金属酸化物を用いたセパレータが開発されている(例えば、特許文献1、2)。 As described above, it is difficult to suppress the ignition of the battery by the shutdown function of the separator. In addition, with the increase in capacity of batteries, the increase in current during charging and discharging is also progressing, and in order to suppress the Joule heat generated at that time, it is also necessary to lower the electrical resistance value itself of the separator impregnated with the electrolytic solution It has become. Therefore, a metal oxide was used for the purpose of reducing the electrical resistance value while suppressing the ignition of the battery by increasing the heat shrinkage temperature more than the polyolefin resin porous film, thereby preventing the internal short circuit. Separators have been developed (for example, Patent Documents 1 and 2).
 このようなセパレータにおける耐熱層の形成は、ペースト化された金属酸化物をセパレータの表面に塗工することにより行われており、金属酸化物をペースト化する際の増粘剤もしくは分散剤として、一般的にカルボキシメチルセルロース(以下、CMCと略すことがある)がバインダーとして多く利用されている(例えば、特許文献3)。 The formation of the heat-resistant layer in such a separator is performed by applying a pasted metal oxide on the surface of the separator, and as a thickener or dispersant when pasting the metal oxide, In general, carboxymethyl cellulose (hereinafter sometimes abbreviated as CMC) is often used as a binder (for example, Patent Document 3).
 CMCは金属酸化物及びセパレータとの接着性が良く、150℃程度の熱安定性はあるものの、電気抵抗が高く、ハイレートや繰り返し充放電時には高い電気抵抗であるがために電池の温度上昇や内部短絡が起こり易くなる。その結果、想定以上に発熱し、CMCが分解しセパレータとして機能し難くなるという問題があった。 CMC has good adhesion to metal oxides and separators and has thermal stability of about 150 ° C. However, CMC has high electrical resistance and high electrical resistance during high rate and repeated charge / discharge. Short circuit easily occurs. As a result, there was a problem that heat was generated more than expected, and CMC was decomposed and it became difficult to function as a separator.
 本発明は上記課題事情に鑑みてなされたものであり、電気抵抗が低くかつ、耐熱性が高い非水電解質電池セパレータ用樹脂組成物、並びに、それを用いた非水電解質電池用セパレータ及び非水電解質電池を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and has a low electrical resistance and a high heat resistance resin composition for a nonaqueous electrolyte battery separator, and a nonaqueous electrolyte battery separator and a nonaqueous solution using the same. An object is to provide an electrolyte battery.
特表2001-527274号公報JP-T-2001-527274 特開2010-021033号公報JP 2010-021033 A 国際公報2015/029944号パンフレットInternational Publication No. 2015/029944 Pamphlet
 本発明者らは、上記課題を解決すべく鋭意研究した結果、下記構成の非水電解質電池セパレータ用樹脂組成物(以下、単にセパレータ用樹脂組成物とも称す)を使用することで、上記目的を達することを見出し、この知見に基づいて更に検討を重ねることによって本発明を完成した。 As a result of earnest research to solve the above-mentioned problems, the present inventors have used the non-aqueous electrolyte battery separator resin composition having the following constitution (hereinafter also simply referred to as a separator resin composition) to achieve the above object. The present invention has been completed by finding out to be achieved and further study based on this finding.
 すなわち、本発明の一局面に係るセパレータ用樹脂組成物は、α-オレフィン類とマレイン酸類とが共重合したα-オレフィン-マレイン酸類共重合体の中和塩を含み、かつ、前記共重合体におけるマレイン酸類から生成するカルボン酸に対する中和度が0.3~1.0であることを特徴とする。 That is, the separator resin composition according to one aspect of the present invention includes a neutralized salt of an α-olefin-maleic acid copolymer obtained by copolymerizing an α-olefin and a maleic acid, and the copolymer. The degree of neutralization with respect to carboxylic acid produced from maleic acids in is from 0.3 to 1.0.
 このような組成物を使用することにより、耐熱性が高く、電気抵抗を抑制することができるセパレータを提供できると考えられる。 By using such a composition, it is considered that a separator having high heat resistance and capable of suppressing electric resistance can be provided.
 特に、前記セパレータ用樹脂組成物において、前記α-オレフィン-マレイン酸類共重合体のマレイン酸類から生成するカルボン酸に対する中和度が0.3~1.0であることにより、塗工性に非常に優れるという利点がある。 In particular, in the resin composition for a separator, since the degree of neutralization of the α-olefin-maleic acid copolymer with respect to the carboxylic acid produced from the maleic acid is 0.3 to 1.0, the coating property is very good. There is an advantage that it is excellent.
 さらに組成物の水溶性が向上するために、増粘し、集電箔との接着性や分子同士の結着性が高くなる。結果的に、増粘剤や分散剤などを使用する必要がなくなるという利点をも有する。 Furthermore, since the water solubility of the composition is improved, the viscosity is increased, and the adhesion to the current collector foil and the binding property between molecules are increased. As a result, there is an advantage that it is not necessary to use a thickener or a dispersant.
 本発明のさらに他の局面に係る非水電解質電池用セパレータは、上記セパレータ用樹脂組成物からなる被覆層を含むことを特徴とする。 A separator for a non-aqueous electrolyte battery according to still another aspect of the present invention includes a coating layer made of the above-described separator resin composition.
 また、本発明のさらに他の局面に係る非水電解質電池は、上記セパレータを備えることを特徴とする。 Further, a nonaqueous electrolyte battery according to still another aspect of the present invention is characterized by including the separator.
 本発明によれば、耐熱性があり短絡が少なく生産性に優れたセパレータを得ることができ、さらにそれを用いて、非水電解質電池の電池特性の向上を実現することができる。 According to the present invention, it is possible to obtain a separator that is heat resistant, has few short circuits, and is excellent in productivity. Further, it can be used to improve battery characteristics of a nonaqueous electrolyte battery.
 以下、本発明の実施形態について詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail, but the present invention is not limited thereto.
 本実施形態のセパレータ用樹脂組成物は、α-オレフィン類とマレイン酸類とが共重合したα-オレフィン-マレイン酸類共重合体の中和塩を含み、かつ、前記共重合体における中和度が0.3~1.0であることを特徴とする。 The resin composition for a separator of this embodiment includes a neutralized salt of an α-olefin-maleic acid copolymer obtained by copolymerizing an α-olefin and maleic acid, and has a neutralization degree in the copolymer. It is 0.3 to 1.0.
 本実施形態において、α-オレフィン類とマレイン酸類とが共重合したα-オレフィン-マレイン酸類共重合体は、α-オレフィンに基づく単位(A)とマレイン酸類に基づく単位(B)とからなり、(A)および(B)の各成分は(A)/(B)=1/1~1/3(モル比)を満足することが好ましい。また、重量平均分子量が10,000~500,000である線状ランダム共重合体であることが好ましい。 In this embodiment, an α-olefin-maleic acid copolymer obtained by copolymerizing an α-olefin and maleic acid is composed of a unit (A) based on α-olefin and a unit (B) based on maleic acid, The components (A) and (B) preferably satisfy (A) / (B) = 1/1 to 1/3 (molar ratio). Further, it is preferably a linear random copolymer having a weight average molecular weight of 10,000 to 500,000.
 本実施形態において、α-オレフィン類に基づく単位(A)とは一般式-CH2CR-(式中、RおよびRは同じであっても互いに異なっていてもよく、水素、炭素数1~10のアルキル基またはアルケニル基を表わす)で示される構成を意味する。また本実施形態で使用するα-オレフィンとは、α位に炭素-炭素不飽和二重結合を有する直鎖状または分岐状のオレフィンである。特に、炭素数2~12とりわけ2~8のオレフィンが好ましい。使用し得る代表的な例としては、エチレン、プロピレン、n-ブチレン、イソブチレン、n-ペンテン、イソプレン、2-メチル-1-ブテン、3-メチル-1-ブテン、n-ヘキセン、2-メチル-1-ペンテン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、2-エチル-1-ブテン、1,3-ペンタジエン、1,3-ヘキサジエン、2,3-ジメチルブタジエン、2,5-ペンタジエン、1,4-ヘキサジエン、2,2,4-トリメチル-1-ペンテン等が挙げられる。この中でも特に、入手性、重合成、生成物の安定性という観点から、イソブチレンが好ましい。ここでイソブチレンとは、イソブチレンを主成分として含む混合物、例えば、BB留分(C4留分)をも包含する。これ等のオレフィン類は単独で用いても2種以上組合せて用いても良い。 In the present embodiment, the unit (A) based on α-olefins is represented by the general formula —CH 2 CR 1 R 2 — (wherein R 1 and R 2 may be the same or different from each other, and hydrogen, carbon Represents an alkyl group or an alkenyl group having a number of 1 to 10. The α-olefin used in this embodiment is a linear or branched olefin having a carbon-carbon unsaturated double bond at the α-position. In particular, olefins having 2 to 12 carbon atoms, particularly 2 to 8 carbon atoms are preferred. Representative examples that can be used include ethylene, propylene, n-butylene, isobutylene, n-pentene, isoprene, 2-methyl-1-butene, 3-methyl-1-butene, n-hexene, 2-methyl- 1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 2-ethyl-1-butene, 1,3-pentadiene, 1,3-hexadiene, 2,3-dimethylbutadiene, 2,5 -Pentadiene, 1,4-hexadiene, 2,2,4-trimethyl-1-pentene and the like. Among these, isobutylene is particularly preferable from the viewpoints of availability, polysynthesis, and product stability. Here, the isobutylene includes a mixture containing isobutylene as a main component, for example, a BB fraction (C4 fraction). These olefins may be used alone or in combination of two or more.
 本実施形態において、マレイン酸類に基づく単位(B)としては、無水マレイン酸、マレイン酸、マレイン酸モノエステル(例えば、マレイン酸メチル、マレイン酸エチル、マレイン酸プロピル、マレイン酸フェニル等)、マレイン酸ジエステル(例えば、マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジプロピル、マレイン酸ジフェニル等)等の無水マレイン酸誘導体、マレイン酸イミドまたはそのN-置換誘導体(例えば、マレイン酸イミド、N-メチルマレイミド、N-エチルマレイミド、N-プロピルマレイミド、N-n-ブチルマレイミド、N-t-ブチルマレイミド、N-シクロヘキシルマレイミド等のN-置換アルキルマレイミドN-フエニルマレイミド、N-メチルフエニルマレイミド、N-エチルフエニルマレイミド等のN-置換アルキルフエニルマレイミド、あるいはN-メトキシフエニルマレイミド、N-エトキシフエニルマレイミド等のN-置換アルコキシフエニルマレイミド)、更にはこれ等のハロゲン化物(例えばN-クロルフエニルマレイミド)、無水シトラコン酸、シトラコン酸、シトラコン酸モノエステル(例えば、シトラコン酸メチル、シトラコン酸エチル、シトラコン酸プロピル、シトラコン酸フェニル等)、シトラコン酸ジエステル(例えば、シトラコン酸ジメチル、シトラコン酸ジエチル、シトラコン酸ジプロピル、シトラコン酸ジフェニル等)等の無水シトラコン酸誘導体、シトラコン酸イミドまたはそのN-置換誘導体(例えば、シトラコン酸イミド、2-メチル-N-メチルマレイミド、2-メチル-N-エチルマレイミド、2-メチル-N-プロピルマレイミド、2-メチル-N-n-ブチルマレイミド、2-メチル-N-t-ブチルマレイミド、2-メチル-N-シクロヘキシルマレイミド等のN-置換アルキルマレイミド2-メチル-N-フエニルマレイミド、2-メチル-N-メチルフエニルマレイミド、2-メチル-N-エチルフエニルマレイミド等の2-メチル-N-置換アルキルフエニルマレイミド、あるいは2-メチル-N-メトキシフエニルマレイミド、2-メチル-N-エトキシフエニルマレイミド等の2-メチル-N-置換アルコキシフエニルマレイミド)、更にはこれ等のハロゲン化物(例えば2-メチル-N-クロルフエニルマレイミド)が好ましく挙げられる。これらの中では、入手性、重合速度、分子量調整の容易さという観点から、無水マレイン酸の使用が好ましい。また、これらのマレイン酸類は単独で使用しても、複数を混合して使用してもよい。マレイン酸類は、上述のように、アルカリ塩により中和され、生成したカルボン酸およびカルボン酸塩は、1,2-ジカルボン酸または塩の形を形成する。この形は、正極より溶出する重金属を補足する機能を有する。 In the present embodiment, maleic anhydride, maleic acid, maleic acid monoester (for example, methyl maleate, ethyl maleate, propyl maleate, phenyl maleate, etc.), maleic acid, as the unit (B) based on maleic acids Maleic anhydride derivatives such as diesters (eg dimethyl maleate, diethyl maleate, dipropyl maleate, diphenyl maleate etc.), maleic imides or N-substituted derivatives thereof (eg maleic imide, N-methylmaleimide, N N-substituted alkylmaleimides such as ethylmaleimide, N-propylmaleimide, Nn-butylmaleimide, Nt-butylmaleimide, N-cyclohexylmaleimide, N-phenylmaleimide, N-ethyl Phenyl male N-substituted alkylphenylmaleimide such as imide, or N-substituted alkoxyphenylmaleimide such as N-methoxyphenylmaleimide and N-ethoxyphenylmaleimide), and further halides thereof (for example, N-chlorophenyl) Maleimide), citraconic anhydride, citraconic acid, citraconic acid monoester (eg, methyl citraconic acid, ethyl citraconic acid, propyl citraconic acid, phenyl citraconic acid, etc.), citraconic acid diester (eg, dimethyl citraconic acid, diethyl citraconic acid, citraconic acid) Citraconic anhydride derivatives such as dipropyl acid, diphenyl citraconic acid, etc.), citraconic acid imide or N-substituted derivatives thereof (for example, citraconic acid imide, 2-methyl-N-methylmaleimide, 2-methyl-N-ethylmale) N-substituted alkylmaleimides such as 2-methyl-N-propylmaleimide, 2-methyl-Nn-butylmaleimide, 2-methyl-Nt-butylmaleimide, 2-methyl-N-cyclohexylmaleimide 2-methyl-N-substituted alkylphenylmaleimide such as methyl-N-phenylmaleimide, 2-methyl-N-methylphenylmaleimide, 2-methyl-N-ethylphenylmaleimide, or 2-methyl-N- 2-methyl-N-substituted alkoxyphenylmaleimides such as methoxyphenylmaleimide and 2-methyl-N-ethoxyphenylmaleimide), and further halides thereof (eg 2-methyl-N-chlorophenylmaleimide) Is preferred. Among these, use of maleic anhydride is preferable from the viewpoint of availability, polymerization rate, and ease of molecular weight adjustment. These maleic acids may be used alone or in combination. Maleic acids are neutralized with alkali salts as described above, and the resulting carboxylic acid and carboxylic acid salt form a 1,2-dicarboxylic acid or salt form. This form has a function of capturing heavy metals eluted from the positive electrode.
 本実施形態の共重合体における上記各構造単位の含有割合は、(A)/(B)がモル比で1/1~1/3の範囲内にあるのが望ましい。水に溶解する高分子量体としての親水性、水溶性、金属やイオンへの親和性という利点が得られるからである。特に、(A)/(B)のモル比にあっては1/1またはそれに近い値であることが望ましく、その場合にはα-オレフィンに基づく単位、すなわち-CHCR-で示される単位と、マレイン酸類に基づく単位が交互に繰り返された構造を有する共重合体となる。 The content ratio of each structural unit in the copolymer of the present embodiment is preferably such that (A) / (B) is in the range of 1/1 to 1/3 in terms of molar ratio. This is because the advantages of hydrophilicity, water solubility, and affinity for metals and ions as a high molecular weight substance that dissolves in water can be obtained. Particularly, it is desirable that the molar ratio of (A) / (B) is 1/1 or a value close thereto, in which case the unit based on α-olefin, that is, —CH 2 CR 1 R 2 — A copolymer having a structure in which the units shown and units based on maleic acids are alternately repeated is obtained.
 本実施形態の共重合体を得るための、α-オレフィン類及びマレイン酸類の仕込み混合比は目的とする共重合体の組成により変わるが、マレイン酸類モル数の1~3倍モル数のα-オレフィンを用いるのがマレイン酸類の反応率を高めるために有効である。 The mixing ratio of α-olefins and maleic acids to obtain the copolymer of the present embodiment varies depending on the composition of the target copolymer, but α-olefin of 1 to 3 times the number of moles of maleic acids. Use of olefin is effective for increasing the reaction rate of maleic acids.
 本実施形態の共重合体を製造する方法については、特に限定はなく、例えば、ラジカル重合により共重合体を得ることができる。その際、使用する重合触媒としてはアゾビスイソブチロニトリル、1,1-アゾビスシクロヘキサン-1-カルボニトリル等のアゾ触媒、ベンンゾイルパーオキサイド、ジクミルパ-オキサイド等の有機過酸化物触媒が好ましい。前記重合触媒の使用量は、マレイン酸類に対し0.1~5モル%となる範囲を必要とするが、好ましくは0.5~3モル%である。重合触媒およびモノマーの添加方法として重合初期にまとめて添加しても良いが、重合の進行にあわせて遂次添加する方法が望ましい。 The method for producing the copolymer of the present embodiment is not particularly limited, and for example, the copolymer can be obtained by radical polymerization. In this case, the polymerization catalyst used is an azo catalyst such as azobisisobutyronitrile, 1,1-azobiscyclohexane-1-carbonitrile, or an organic peroxide catalyst such as benzoyl peroxide or dicumyl peroxide. preferable. The amount of the polymerization catalyst used is required to be in the range of 0.1 to 5 mol%, preferably 0.5 to 3 mol% with respect to maleic acids. As a method for adding the polymerization catalyst and the monomer, they may be added all at the beginning of the polymerization, but it is desirable to add them sequentially as the polymerization proceeds.
 本実施形態の共重合体の製造方法において、分子量の調節は主にモノマー濃度、触媒使用量、重合温度によって適宜行なうことができる。例えば、分子量を低下させる物質として周期律表第I、IIまたはIII族の金属の塩、水酸化物、第IV族の金属のハロゲン化物、一般式N≡、HN=、HN-もしくはHN-で示されるアミン類、酢酸アンモニウム、尿素等の窒素化合物、あるいはメルカプタン類等を、重合の初期または重合の進行中に添加することによって共重体の分子量を調節することも可能である。重合温度は40℃~150℃であることが好ましく、特に60℃~120℃の範囲であることがより好ましい。重合温度が高すぎると生成する共重合物がブロック状になり易く、また重合圧力が著しく高くなるおそれがある。重合時間は、通常1~24時間程度であることが好ましく、より好ましくは2~10時間である。重合溶媒の使用量は、得られる共重合物濃度が5~40重量%あることが好ましく、より好ましくは10~30重量%となる様に調節することが望ましい。 In the method for producing a copolymer of this embodiment, the molecular weight can be appropriately adjusted mainly depending on the monomer concentration, the amount of catalyst used, and the polymerization temperature. For example, as a substance for reducing the molecular weight, a metal salt of Group I, II or III of the periodic table, a hydroxide, a halide of a Group IV metal, a general formula N≡, HN =, H 2 N— or H It is also possible to adjust the molecular weight of the copolymer by adding an amine represented by 4 N-, a nitrogen compound such as ammonium acetate or urea, or a mercaptan during the polymerization or during the polymerization. The polymerization temperature is preferably 40 ° C. to 150 ° C., more preferably 60 ° C. to 120 ° C. If the polymerization temperature is too high, the resulting copolymer tends to be in a block form, and the polymerization pressure may be significantly increased. The polymerization time is usually preferably about 1 to 24 hours, more preferably 2 to 10 hours. The amount of the polymerization solvent used is preferably adjusted so that the concentration of the obtained copolymer is 5 to 40% by weight, more preferably 10 to 30% by weight.
 上述したように、本実施形態の共重合体は、通常、10,000~500,000の重量平均分子量を有することが好ましい。より好ましい重量平均分子量は、15,000~450,000である。本実施形態の共重合体の重量平均分子量が10,000未満となると、結晶性が高く、粒子間の結着強度が小さくなるおそれがある。一方、500,000を超えると、水や溶媒への溶解度が小さくなり、容易に析出する場合がある。 As described above, it is preferable that the copolymer of the present embodiment usually has a weight average molecular weight of 10,000 to 500,000. A more preferred weight average molecular weight is 15,000 to 450,000. When the weight average molecular weight of the copolymer of this embodiment is less than 10,000, the crystallinity is high and the binding strength between particles may be low. On the other hand, when it exceeds 500,000, the solubility in water or a solvent becomes small, and it may precipitate easily.
 本実施形態の共重合体の重量平均分子量は、例えば、光散乱法や粘度法によって測定することができる。粘度法を用いて、ジメチルホルムアミド中の極限粘度(〔η〕)を測定した場合、本実施形態の共重合体は極限粘度が0.05~1.5の範囲にあることが好ましい。なお、本実施形態の共重合体は通常16~60メッシュ程度の粒のそろった粉末状で得られる。 The weight average molecular weight of the copolymer of the present embodiment can be measured by, for example, a light scattering method or a viscosity method. When the intrinsic viscosity ([η]) in dimethylformamide is measured using a viscosity method, the copolymer of this embodiment preferably has an intrinsic viscosity in the range of 0.05 to 1.5. The copolymer of this embodiment is usually obtained in the form of a powder having a grain size of about 16 to 60 mesh.
 本実施形態において、共重合体の中和塩とは、マレイン酸類から生成するカルボニル酸の活性水素が、塩基性物質と反応し、塩を形成して中和塩となっているものであることが好ましい。本実施形態で使用するα-オレフィン-マレイン酸類共重合体の中和塩においては、塗工性の観点から前記塩基性物質として、一価の金属を含む塩基性物質および/またはアンモニアを使用することが好ましい。 In the present embodiment, the neutralized salt of the copolymer means that the active hydrogen of carbonyl acid generated from maleic acid reacts with a basic substance to form a salt to become a neutralized salt. Is preferred. In the neutralized salt of α-olefin-maleic acid copolymer used in the present embodiment, a basic substance containing a monovalent metal and / or ammonia is used as the basic substance from the viewpoint of coating properties. It is preferable.
 本実施形態において、一価の金属を含む塩基性物質および/またはアンモニアの使用量は、特に制限されるものではなく、使用目的等により適宜選択されるが、通常、マレイン酸類共重合体中のマレイン酸単位1モル当り0.6~2.0モルとなる量であることが好ましい。このような使用量であれば、本実施形態のバインダー組成物の中和度を所定の範囲に調整することが可能となると考えられる。なお、一価の金属を含む塩基性物質の使用量を、好ましくは、マレイン酸共重合体中のマレイン酸単位1モル当り0.8~1.8モル量とすると、アルカリ残留の少なく水溶性の共重合体塩を得ることができる。 In the present embodiment, the amount of the basic substance containing monovalent metal and / or ammonia is not particularly limited and is appropriately selected depending on the purpose of use and the like, but usually in the maleic acid copolymer. The amount is preferably 0.6 to 2.0 mol per mol of maleic acid unit. If it is such usage-amount, it will be possible to adjust the neutralization degree of the binder composition of this embodiment to a predetermined range. The amount of the basic substance containing a monovalent metal is preferably 0.8 to 1.8 moles per mole of maleic acid units in the maleic acid copolymer, so that there is little residual alkali and water solubility. The copolymer salt can be obtained.
 α-オレフィン-マレイン酸類共重合体と、一価の金属を含む塩基性物質および/またはアンモニア等のアミン類との反応は、常法に従って実施できるが、水の存在下に実施し、α-オレフィン-マレイン酸類共重合体の中和塩を水溶液として得る方法が簡便であり、好ましい。 The reaction of the α-olefin-maleic acid copolymer with a basic substance containing a monovalent metal and / or an amine such as ammonia can be carried out according to a conventional method, but is carried out in the presence of water, and α- A method for obtaining a neutralized salt of an olefin-maleic acid copolymer as an aqueous solution is simple and preferable.
 本実施形態で使用可能な一価の金属を含む塩基性物質としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどのアルカリ金属の水酸化物;炭酸ナトリウム、炭酸カリウムなどのアルカリ金属の炭酸塩;酢酸ナトリウム、酢酸カリウムなどのアルカリ金属の酢酸塩;リン酸三ナトリウムなどのアルカリ金属のリン酸塩等が挙げられる。アンモニア等のアミン類としては、アンモニア、メチルアミン、エチルアミン、ブチルアミン、オクチルアミンなどの1級アミン、ジメチルアミン、ジエチルアミン、ジブチルアミンなどの2級アミン、トリメチルアミン、トリエチルアミン、トリブチルアミンなどの3級アミン、エチレンジアミン、ブチレンジアミン、ジエチレンイミン、トリエチレンイミン、ポリエチレンイミンなどのポリアミン等が挙げられる。これらの中でもアンモニア、水酸化リチウム、水酸化ナトリウム、水酸化カリウムが好ましい。特に、リチウムイオン二次電池用のバインダーとしては、アンモニア、水酸化リチウムの使用が好ましい。一価の金属を含む塩基性物質および/またはアンモニアは単独で使用してもよいし、2種以上を組み合わせて使用してもよい。また電池性能に悪影響を及ぼさない範囲内であれば、水酸化ナトリウムなどのアルカリ金属の水酸化物などを含有する塩基性物質を併用して、α-オレフィン-マレイン酸類共重合体の中和塩を調製してもよい。 Examples of basic substances containing monovalent metals that can be used in the present embodiment include hydroxides of alkali metals such as sodium hydroxide, potassium hydroxide, and lithium hydroxide; alkali metals such as sodium carbonate and potassium carbonate. Carbonates of alkali metals such as sodium acetate and potassium acetate; phosphates of alkali metals such as trisodium phosphate, and the like. Examples of amines such as ammonia include primary amines such as ammonia, methylamine, ethylamine, butylamine and octylamine, secondary amines such as dimethylamine, diethylamine and dibutylamine, tertiary amines such as trimethylamine, triethylamine and tributylamine, And polyamines such as ethylenediamine, butylenediamine, diethyleneimine, triethyleneimine, and polyethyleneimine. Among these, ammonia, lithium hydroxide, sodium hydroxide, and potassium hydroxide are preferable. In particular, it is preferable to use ammonia or lithium hydroxide as a binder for a lithium ion secondary battery. The basic substance containing monovalent metal and / or ammonia may be used alone or in combination of two or more. In addition, a neutralized salt of an α-olefin-maleic acid copolymer is used in combination with a basic substance containing an alkali metal hydroxide such as sodium hydroxide as long as the battery performance is not adversely affected. May be prepared.
 次に、本実施形態において、前記共重合体における、マレイン酸類から生成するカルボン酸に対する中和度は0.3~1.0である。前記中和度が0.3未満になると、水や溶媒への溶解度が小さくなり容易に析出し、スラリー塗工が困難となる。また、前記中和度が1.0を超えると、中和を行う塩基性物質がスラリー中に過剰に存在することになるため、抵抗成分となるおそれがある。より好ましくは、前記中和度が0.4~0.8の範囲であることが望ましい。それにより、より塗工性に優れたスラリー組成物を得ることができる。 Next, in the present embodiment, the degree of neutralization of the copolymer with respect to the carboxylic acid produced from maleic acid is 0.3 to 1.0. When the neutralization degree is less than 0.3, the solubility in water or a solvent becomes small, and it easily precipitates, making slurry coating difficult. On the other hand, when the degree of neutralization exceeds 1.0, the basic substance to be neutralized is excessively present in the slurry, which may become a resistance component. More preferably, the neutralization degree is in the range of 0.4 to 0.8. Thereby, the slurry composition which was excellent in applicability | paintability can be obtained.
 本実施形態において、中和度は、塩基による適定、赤外線スペクトル、NMRスペクトルなどの方法を用いることができるが、簡便且つ正確に中和点を測定するには、塩基による滴定を行うことが好ましい。具体的な滴定の方法としては、特に限定されるものではないが、イオン交換水等の不純物の少ない水に溶解して、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどの塩基性物質により、中和を行うことによって実施できる。中和点の指示薬としては、特に限定するものではないが、塩基によりpH指示するフェノールフタレインなどの指示薬、PHメーターを使用することが出来る。 In this embodiment, the degree of neutralization can be determined by a method such as titration with a base, an infrared spectrum, or an NMR spectrum. To measure the neutralization point simply and accurately, titration with a base can be performed. preferable. The specific titration method is not particularly limited, but it can be dissolved in water with little impurities such as ion-exchanged water, and a basic substance such as lithium hydroxide, sodium hydroxide, potassium hydroxide, It can be carried out by neutralization. The indicator for the neutralization point is not particularly limited, but an indicator such as phenolphthalein indicating pH with a base, and a PH meter can be used.
 本実施形態において、前記共重合体における中和度は、例えば、前記共重合体の中和度を調整することで調整してもよいし、前記共重合体を溶解させた水溶液の中和度を直接調整してもよい。具体的には、例えば、中和度の調整は、上述したような一価の金属を含む塩基性物質(アンモニア、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等)の添加量を調整することによって、前記範囲に調整することが可能であるが、それに限定はされない。なお、具体的には、前述の通り、一価の金属を含む塩基性物質および/またはアンモニアを、好ましくは、マレイン酸類共重合体中のマレイン酸単位1モル当り0.6~2.0モルとなる量添加することによって、前記範囲に調整することができる。より好ましくは、一価の金属を含む塩基性物質および/またはアンモニアを、マレイン酸類共重合体中のマレイン酸単位1モル当り0.6~1.8モルとなる量添加することにより、より確実に前記範囲に調整することができる。 In this embodiment, the degree of neutralization in the copolymer may be adjusted, for example, by adjusting the degree of neutralization of the copolymer, or the degree of neutralization of an aqueous solution in which the copolymer is dissolved. May be adjusted directly. Specifically, for example, the degree of neutralization is adjusted by adjusting the addition amount of a basic substance (ammonia, lithium hydroxide, sodium hydroxide, potassium hydroxide, etc.) containing a monovalent metal as described above. Although it is possible to adjust to the said range, it is not limited to it. Specifically, as described above, the basic substance containing monovalent metal and / or ammonia is preferably used in an amount of preferably 0.6 to 2.0 mol per mol of maleic acid unit in the maleic acid copolymer. Can be adjusted to the above range. More preferably, the basic substance containing a monovalent metal and / or ammonia is added more reliably by adding 0.6 to 1.8 moles per mole of maleic acid units in the maleic acid copolymer. It is possible to adjust to the above range.
 次に、本実施形態において、共重合体の開環率は、マレイン酸類として無水マレイン酸を用いた場合の、α-オレフィン類と重合する無水マレイン酸類部位の加水分解率を表す。本実施形態の共重合体において、好ましい開環率は、60~100%であり、より好ましくは、70%~100%、更に好ましくは、80~100%である。開環率が低すぎると、共重合体の構造的自由度が小さくなり、伸縮性に乏しくなるため、隣接する極材粒子を接着する力が小さくなるおそれがあり、好ましくない。さらに、水に対する親和性が低く、溶解性が乏しいという問題点を生じるおそれがある。開環率は、例えば、無水マレイン酸のα位に位置する水素を基準として、開環したマレイン酸のα位の水素を1H-NMRで測定して比率を求めることも出来るし、マレイン酸のカルボニル基と開環した無水マレイン酸に由来するカルボニル基をIR測定によって比率を決定することも出来る。 Next, in this embodiment, the ring-opening rate of the copolymer represents the hydrolysis rate of the site of maleic anhydride that is polymerized with α-olefins when maleic anhydride is used as the maleic acid. In the copolymer of the present embodiment, a preferable ring opening rate is 60 to 100%, more preferably 70% to 100%, and still more preferably 80 to 100%. When the ring-opening rate is too low, the structural freedom of the copolymer becomes small and the stretchability becomes poor, so that the force for adhering adjacent electrode material particles may be reduced, which is not preferable. Furthermore, there is a possibility that problems such as low affinity for water and poor solubility may occur. The ring-opening rate can be determined, for example, by measuring the hydrogen at the α-position of the maleic acid opened by 1H-NMR with reference to the hydrogen at the α-position of maleic anhydride. The ratio of the carbonyl group derived from the carbonyl group and the ring-opened maleic anhydride can also be determined by IR measurement.
 次に、本実施形態において、150℃における前記α-オレフィン-マレイン酸類共重合体の質量減少率は4%未満が望ましく、前記質量減少率は2%未満であることがより好ましい。質量減少率が4%以上であると、繰り返し充放電したときに生じた熱によって容量が低下する可能性がある。 Next, in this embodiment, the mass reduction rate of the α-olefin-maleic acid copolymer at 150 ° C. is preferably less than 4%, and the mass reduction rate is more preferably less than 2%. If the mass reduction rate is 4% or more, there is a possibility that the capacity is reduced by heat generated when charging and discharging are repeated.
 本実施形態において、前記質量減少率は、例えば、前記セパレータ用樹脂組成物に含有される前記共重合体の中和度を調整することによって、前記範囲に調整することが可能であるが、それに限定はされない。また、中和度が一定以上(中和度=1)である場合には、前記共重合体の分子量を調節することによってさらに調整することもできる。 In the present embodiment, the mass reduction rate can be adjusted to the above range by adjusting the degree of neutralization of the copolymer contained in the separator resin composition, for example. There is no limitation. Further, when the degree of neutralization is a certain level (neutralization degree = 1), it can be further adjusted by adjusting the molecular weight of the copolymer.
 本実施形態において、前記質量減少率は、特に限定はされないが、例えば、後述の実施例に記載の方法等によって、測定することができる。 In the present embodiment, the mass reduction rate is not particularly limited, but can be measured by, for example, a method described in Examples described later.
 本実施形態のセパレータ用樹脂組成物は、前記α-オレフィン-マレイン酸類共重合体を単独で含むものであってもよいし、さらに、必要に応じて、無機粒子、界面活性剤等の分散剤、増粘剤、湿潤剤、消泡剤等を含んでいてもよい。 The separator resin composition of the present embodiment may contain the α-olefin-maleic acid copolymer alone, and if necessary, a dispersing agent such as inorganic particles and surfactant. , Thickeners, wetting agents, antifoaming agents, and the like.
 無機粒子としては、合成品及び天然産物のいずれでも、特に限定なく用いることができる。無機粒子としては、例えば、ギブサイト、バイヤライト、ベーマイト、コランダム等のアルミナ、シリカ、チタニア、ジルコニア、マグネシア、セリア、イットリア、酸化亜鉛及び酸化鉄などの酸化物系セラミックス、窒化ケイ素、窒化チタン及び窒化ホウ素等の窒化物系セラミックス、シリコンカーバイド、炭酸カルシウム、硫酸アルミニウム、水酸化アルミニウム、水酸化マグネシウム、チタン酸カリウム、タルク、合成カオリナイト、カオリンクレー、カオリナイト、フライボンタイト、スチブンサイト、ディカイト、ナクライト、ハロイサイト、パイロフィライト、オーディナイト、モンモリロナイト、バイデライト、ノントロナイト、ボルコンスコアイト、サポナイト、ヘクトライト、フッ素ヘクトライト、ソーコナイト、スインホルダイト、バーミキュライト、フッ素バーミキュライト、バーチェリン、セリサイト、アメサイト、ケリアイト、フレイポナイト、ブリンドリアイト、ベントナイト、ゼオライト、黒雲母、金雲母、フッ素金雲母、鉄雲母、イーストナイト、テニオライト、シデロフィライトテトラフェリ鉄雲母、鱗雲母、フッ素四ケイ素雲母、ポリリシオナイト、白雲母、セラドン石、鉄セラドン石、鉄アルミノセラドン石、アルミノセラドン石、砥部雲母、ソーダ雲母、クリンナイト、木下、ビテ雲母、アナンダ石、真珠雲母、クリノクロア、シャモサイト、ペナンタイト、ニマイト、ベイリクロア、ドンバサイト、クッケアサイト、スドーアイト、ハイドロタルサイト、ケイ酸カルシウム、ケイ酸マグネシウム、ケイ酸アルミニウム、ケイ藻土及びケイ砂等の、セラミックス及びガラス繊維が挙げられる。これらの無機粒子は、1種を単独で又は2種以上を組み合わせて用いられる。 As the inorganic particles, any of synthetic products and natural products can be used without particular limitation. Examples of inorganic particles include alumina such as gibbsite, bayerite, boehmite and corundum, silica, titania, zirconia, magnesia, ceria, yttria, oxide ceramics such as zinc oxide and iron oxide, silicon nitride, titanium nitride and nitride. Nitride ceramics such as boron, silicon carbide, calcium carbonate, aluminum sulfate, aluminum hydroxide, magnesium hydroxide, potassium titanate, talc, synthetic kaolinite, kaolin clay, kaolinite, flybontite, stevensite, dickite, nacrite , Halloysite, pyrophyllite, audnite, montmorillonite, beidellite, nontronite, bolcon score, saponite, hectorite, fluorine hectorite, soconite, swin Rudite, vermiculite, fluorine vermiculite, burcerin, sericite, amesite, keriaite, fraponite, brindriaite, bentonite, zeolite, biotite, phlogopite, fluorophlogopite, iron mica, yeastite, teniolite, siderophyllite Tetraferri iron mica, scale mica, fluorosilica mica, polyriccionite, muscovite, celadon stone, iron ceradon stone, iron alumino ceradon stone, alumino ceradon stone, Tobe mica, soda mica, clinnite, kinoshita, bite mica, Ananda stone, pearl mica, clinochlore, chamosite, penantite, nimite, bailicroa, dombasite, kukeasite, suedoite, hydrotalcite, calcium silicate, magnesium silicate, aluminum silicate, diatomaceous earth and ke Such as sand, and ceramics and glass fibers. These inorganic particles are used alone or in combination of two or more.
 前記セパレータ用樹脂組成物が無機微粒子を含有する場合、セパレータ用樹脂組成物中の無機微粒子の量は、前記α-オレフィン-マレイン酸類共重合体1重量部に対し、通常、10~10000重量部であることが好ましく、より好ましくは20~1000重量部である。 When the separator resin composition contains inorganic fine particles, the amount of the inorganic fine particles in the separator resin composition is usually 10 to 10,000 parts by weight with respect to 1 part by weight of the α-olefin-maleic acid copolymer. The amount is preferably 20 to 1000 parts by weight.
 界面活性剤等の分散剤としては、例えば、硫酸エステル型、リン酸エステル型、カルボン酸型、スルホン酸型などのアニオン系界面活性剤、第4級アンモニウム塩型、アミドアミン型などのカチオン系活性剤、アルキルベタイン型、アミドベタイン型、アミンオキサイド型などの両性界面活性剤、エーテル型、脂肪酸エステル型、アルキルグルコキシドなどの非イオン系界面活性剤、ポリアクリル酸、ポリアクリル酸塩、ポリスルホン酸塩、ポリナフタレンスルホン酸塩、ポリアルキレンポリアミンアルキレンオキシド、ポリアルキレンポリイミンアルキレンオキシド、ポリビニルピロリドン、セルロース型などの高分子型界面活性剤など、各種界面活性剤を用いることができる。フィラー同士の凝集を防ぐ目的で、これらは1種を単独で又は2種以上を組み合わせて用いられる。分散剤は、上述のものと同様の効果が得られるものであれば、それらに限定されるものではない。  Examples of the dispersant such as a surfactant include anionic surfactants such as sulfate ester type, phosphate ester type, carboxylic acid type and sulfonic acid type, and cation type activities such as quaternary ammonium salt type and amidoamine type. Agents, amphoteric surfactants such as alkyl betaine type, amide betaine type and amine oxide type, nonionic surfactants such as ether type, fatty acid ester type and alkyl glucooxide, polyacrylic acid, polyacrylic acid salt, polysulfonic acid Various surfactants such as salts, polynaphthalene sulfonates, polyalkylene polyamine alkylene oxides, polyalkylene polyimine alkylene oxides, polyvinyl pyrrolidone, and cellulose type polymer surfactants can be used. For the purpose of preventing aggregation between fillers, these may be used alone or in combination of two or more. The dispersant is not limited to these as long as the same effects as those described above can be obtained.
 前記セパレータ用樹脂組成物が分散剤を含有する場合、セパレータ用樹脂組成物中の分散剤の量は、前記α-オレフィン-マレイン酸類共重合体100重量部に対し、通常、0.01~10重量部であることが好ましく、より好ましくは0.1~5重量部である。 When the separator resin composition contains a dispersant, the amount of the dispersant in the separator resin composition is usually 0.01 to 10 with respect to 100 parts by weight of the α-olefin-maleic acid copolymer. The amount is preferably parts by weight, more preferably 0.1 to 5 parts by weight.
 増粘剤としては、例えば、ポリエチレングリコール、ウレタン変性ポリエーテル、ポリアクリル酸、ポリビニルアルコール、ビニルメチルエーテル-無水マレイン酸共重合体などの合成高分子、カルボメトキシセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースなどのセルロース誘導体、キサンタンガム、ダイユータンガム、ウェランガム、ジェランガム、グアーガム、カラギーナンガムなどの天然多糖類、デキストリン、アルファー化でんぷんなどのでんぷん類が挙げられる。これらは1種を単独で又は2種以上を組み合わせても用いられる。増粘剤は、上述のものと同様の効果が得られるものであれば、それらに限定されるものではない。  Examples of the thickener include synthetic polymers such as polyethylene glycol, urethane-modified polyether, polyacrylic acid, polyvinyl alcohol, vinyl methyl ether-maleic anhydride copolymer, carbomethoxy cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, etc. Natural polysaccharides such as cellulose derivatives, xanthan gum, dieutan gum, welan gum, gellan gum, guar gum, carrageenan gum, and starches such as dextrin and pregelatinized starch. These may be used alone or in combination of two or more. The thickener is not limited to those as long as the same effects as those described above can be obtained.
 前記セパレータ用樹脂組成物が増粘剤を含有する場合、セパレータ用樹脂組成物中の増粘剤の量は、前記α-オレフィン-マレイン酸類共重合体100重量部に対し、通常、0.01~10重量部であることが好ましく、より好ましくは0.1~5重量部である。 When the separator resin composition contains a thickener, the amount of the thickener in the separator resin composition is usually 0.01 with respect to 100 parts by weight of the α-olefin-maleic acid copolymer. It is preferably ˜10 parts by weight, more preferably 0.1 to 5 parts by weight.
 湿潤剤としては、例えば、脂肪族ポリエーテル型非イオン界面活性剤、ポリオキシアルキレン型非イオン界面活性剤、変性シリコーン、変性ポリエーテル、ジメチルシロキサンポリオキシアルキレン共重合体を用いることができる。これらは1種を単独で又は2種以上を組み合わせて用いられる。湿潤剤は、上述のものと同様の効果が得られるものであれば、それらに限定されるものではない。  As the wetting agent, for example, an aliphatic polyether type nonionic surfactant, a polyoxyalkylene type nonionic surfactant, a modified silicone, a modified polyether, or a dimethylsiloxane polyoxyalkylene copolymer can be used. These are used singly or in combination of two or more. The wetting agent is not limited to these as long as the same effects as those described above can be obtained.
 前記セパレータ用樹脂組成物が湿潤剤を含有する場合、セパレータ用樹脂組成物中の湿潤剤の量は、前記α-オレフィン-マレイン酸類共重合体100重量部に対し、通常、0.01~10重量部であることが好ましく、より好ましくは0.1~5重量部である。 When the separator resin composition contains a wetting agent, the amount of the wetting agent in the separator resin composition is usually 0.01 to 10 with respect to 100 parts by weight of the α-olefin-maleic acid copolymer. The amount is preferably parts by weight, more preferably 0.1 to 5 parts by weight.
 消泡剤としては、例えば、ミネラルオイル系、シリコーン系、アクリル系、ポリエーテル系の各種消泡剤を用いることができる。これらは1種を単独で又は2種以上を組み合わせて用いられる。消泡剤は、上述のものと同様の効果が得られるものであれば、それらに限定されるものではない。  As the antifoaming agent, for example, various defoaming agents of mineral oil type, silicone type, acrylic type and polyether type can be used. These are used singly or in combination of two or more. The antifoaming agent is not limited to these as long as the same effects as those described above can be obtained.
 前記セパレータ用樹脂組成物が消泡剤を含有する場合、セパレータ用樹脂組成物中の消泡剤の量は、前記α-オレフィン-マレイン酸類共重合体100重量部に対し、通常、0.01~10重量部であることが好ましく、より好ましくは0.1~5重量部である。 When the separator resin composition contains an antifoaming agent, the amount of the antifoaming agent in the separator resin composition is usually 0.01 with respect to 100 parts by weight of the α-olefin-maleic acid copolymer. It is preferably ˜10 parts by weight, more preferably 0.1 to 5 parts by weight.
 本実施形態のセパレータ用樹脂組成物における溶媒としては、例えば、水、メタノール、エタノール、プロパノール、2-プロパノールなどのアルコール類、テトラヒドロフラン、1,4-ジオキサンなどの環状エーテル類、N,N-ジメチルホルミアミド、N,N-ジメチルアセトアミドなどのアミド類、N-メチルピロリドン、N-エチルピロリドンなどの環状アミド類、ジメチルスルホキシドなどのスルホキシド類などが例示される。これらの中では、安全性、溶解性という観点から、水の使用が好ましい。 Examples of the solvent in the separator resin composition of the present embodiment include water, alcohols such as methanol, ethanol, propanol, and 2-propanol, cyclic ethers such as tetrahydrofuran and 1,4-dioxane, N, N-dimethyl, and the like. Examples include amides such as formamide and N, N-dimethylacetamide, cyclic amides such as N-methylpyrrolidone and N-ethylpyrrolidone, and sulfoxides such as dimethylsulfoxide. In these, use of water is preferable from a viewpoint of safety | security and solubility.
 また、本実施形態のセパレータ用樹脂組成物の溶媒として水を使用する場合、以下に示す有機溶媒を、溶媒全体の好ましくは20重量%以下となる範囲で併用しても良い。そのような有機溶媒としては、常圧における沸点が100℃以上300℃以下のものが好ましく、例えば、n-ドデカンなどの炭化水素類;2-エチル-1-ヘキサノール、1-ノナノールなどのアルコール類;γ-ブチロラクトン、乳酸メチルなどのエステル類;N-メチルピロリドン、N,N-ジメチルアセトアミド、ジメチルホルムアミドなどのアミド類;ジメチルスルホキシド、スルホランなどのスルホキシド・スルホン類などの有機分散媒が挙げられる。 Moreover, when water is used as the solvent of the resin composition for a separator of the present embodiment, the organic solvents shown below may be used in combination within a range of preferably 20% by weight or less of the entire solvent. Such an organic solvent preferably has a boiling point at normal pressure of 100 ° C. or higher and 300 ° C. or lower, for example, hydrocarbons such as n-dodecane; alcohols such as 2-ethyl-1-hexanol and 1-nonanol. Esters such as γ-butyrolactone and methyl lactate; amides such as N-methylpyrrolidone, N, N-dimethylacetamide and dimethylformamide; and organic dispersion media such as sulfoxides and sulfones such as dimethyl sulfoxide and sulfolane.
 前記セパレータ用樹脂組成物における溶媒の量は、前記α-オレフィン-マレイン酸類共重合体10重量部に対し、通常、40~150重量部であることが好ましく、より好ましくは70~130重量部である。α-オレフィン-マレイン酸類共重合体の量が過度に少ないと粘度が低くなり塗工性が低下し、セパレータ基材表面を十分被覆することができず、ショートが発生するなど良好な電池特性が発現しなくなる場合がある。逆に、α-オレフィン-マレイン酸類共重合体の量が過度に多いと粘度が高くなり塗工性が低下し、セパレータ基材表面を十分被覆することができないおそれがあり、また電気抵抗も増大するため放電容量が低下する可能性がある。 The amount of the solvent in the separator resin composition is usually preferably 40 to 150 parts by weight, more preferably 70 to 130 parts by weight with respect to 10 parts by weight of the α-olefin-maleic acid copolymer. is there. If the amount of the α-olefin-maleic acid copolymer is excessively small, the viscosity becomes low, the coating property is lowered, the separator substrate surface cannot be sufficiently covered, and a short circuit occurs. It may not develop. On the contrary, if the amount of α-olefin-maleic acid copolymer is excessively large, the viscosity becomes high and the coating property may be lowered, and the separator substrate surface may not be sufficiently coated, and the electrical resistance also increases. Therefore, the discharge capacity may be reduced.
 さらに、本発明には、上記セパレータ用樹脂組成物からなる被覆層を備える非水電解質電池用セパレータが包含される。 Furthermore, the present invention includes a separator for a non-aqueous electrolyte battery provided with a coating layer made of the separator resin composition.
 本実施形態の非水電解質電池用セパレータは、上述したセパレータ用樹脂組成物をセパレータ基材に塗工して、セパレータ基剤表面に被覆層を形成することによって得ることができる。セパレータ用樹脂組成物をセパレータ基材に塗工する方法に特に制限はなく、例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、浸漬法、ハケ塗り法などの方法が挙げられる。 The separator for a nonaqueous electrolyte battery of the present embodiment can be obtained by coating the separator resin composition described above on a separator base material and forming a coating layer on the surface of the separator base. There is no particular limitation on the method for coating the separator resin composition on the separator substrate. For example, doctor blade method, dipping method, reverse roll method, direct roll method, gravure method, extrusion method, dipping method, brush coating method And the like.
 本実施形態において、セパレータ用樹脂組成物で被覆した層の付着量としては特に制限はないが、1.0~30g/mが好ましく、更に4.0~20g/mがより好ましい。被覆層の付着量が1.0g/m未満であると、セパレータ基材表面を十分被覆することができず、細孔径が大きくなり、ショートが発生するなど良好な電池特性が発現しなくなる場合がある。一方、被覆した層の付着量が30g/mを超えると、セパレータの薄膜化が困難となる場合がある。 In the present embodiment, there is no particular limitation on the amount of adhered layers coated with separator resin composition, preferably 1.0 ~ 30g / m 2, further 4.0 ~ 20g / m 2 is more preferable. When the adhesion amount of the coating layer is less than 1.0 g / m 2 , the separator base material surface cannot be sufficiently coated, the pore diameter becomes large, short circuit occurs, and good battery characteristics do not appear. There is. On the other hand, when the adhesion amount of the coated layer exceeds 30 g / m 2 , it may be difficult to reduce the thickness of the separator.
 本実施形態のセパレータ用樹脂組成物は、非水電解質電池において電池の充放電を妨げることなく電極の短絡を防止しうるセパレータ基材として任意の部材に使用することができる。 The resin composition for a separator of the present embodiment can be used as an optional member as a separator base material that can prevent short-circuiting of electrodes in a nonaqueous electrolyte battery without hindering charging / discharging of the battery.
 本実施形態において、セパレータ基材としては、例えば、微細な孔を有する有機材料からなる多孔質フィルムや不織布等を用いることができる。 In this embodiment, as the separator substrate, for example, a porous film or a nonwoven fabric made of an organic material having fine pores can be used.
 より具体的には、セパレータ基材の構成材料としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート及びそれらの誘導体、芳香族ポリエステル、全芳香族ポリエステルなどのポリエステル、ポリオレフィン、アクリル、ポリアセタール、ポリカーボネート、脂肪族ポリケトン、芳香族ポリケトン、脂肪族ポリアミド、芳香族ポリアミド、全芳香族ポリアミド、ポリイミド、ポリアミドイミド、ポリフェニレンスルフィド、ポリベンゾイミダゾール、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリ(パラ-フェニレンベンゾビスチアゾール)、ポリ(パラ-フェニレン-2,6-ベンゾビスオキサゾール)、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリビニルアルコール、ポリウレタン及びポリ塩化ビニルなどの樹脂からなる繊維並びにセルロース繊維などが挙げられる。本実施形態のセパレータ基材は、これらの構成材料の2種以上を含有していても構わない。 More specifically, as a constituent material of the separator substrate, polyethylene terephthalate, polybutylene terephthalate and derivatives thereof, aromatic polyester, polyester such as wholly aromatic polyester, polyolefin, acrylic, polyacetal, polycarbonate, aliphatic polyketone, Aromatic polyketone, aliphatic polyamide, aromatic polyamide, wholly aromatic polyamide, polyimide, polyamideimide, polyphenylene sulfide, polybenzimidazole, polyetheretherketone, polyethersulfone, poly (para-phenylenebenzobisthiazole), poly ( Para-phenylene-2,6-benzobisoxazole), polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl alcohol, polyurethane and poly salts Such fibers and cellulosic fibers made of a resin such as vinyl and the like. The separator substrate of this embodiment may contain two or more of these constituent materials.
 セパレータ基材の厚みは、通常0.5μm以上、このましくは1μm以上であり、通常40μm以下、好ましくは30μm以下である。この範囲であると電池内でのセパレータ基材による抵抗が小さくなり、また、電池製造時の作業性に優れる。 The thickness of the separator substrate is usually 0.5 μm or more, preferably 1 μm or more, and usually 40 μm or less, preferably 30 μm or less. Within this range, the resistance due to the separator substrate in the battery is reduced, and the workability during battery production is excellent.
 本実施形態において、セパレータ用樹脂組成物に含まれる水などの溶媒を、セパレータ基材へ塗工した後に乾燥させる方法は特に制限されず、例えば温風、熱風、低湿風による通気乾燥;真空乾燥;赤外線、遠赤外線、電子線などの照射線乾燥などが挙げられる。乾燥条件は、応力集中によってセパレータ用樹脂組成物で被覆した層に亀裂が入ったり、セパレータ用樹脂組成物で被覆した層がセパレータから剥離しない程度の速度範囲となる中で、できるだけ早く溶媒が除去できるように調整するとよい。 In this embodiment, the method of drying after applying a solvent such as water contained in the resin composition for a separator to the separator base material is not particularly limited. For example, aeration drying with hot air, hot air, or low-humidity air; ; Irradiation drying of infrared rays, far infrared rays, electron beams, and the like. The drying conditions are as fast as possible while the layer covered with the separator resin composition cracks due to stress concentration or the layer covered with the separator resin composition does not peel from the separator. It is good to adjust as possible.
 本実施形態の非水電解質電池用セパレータにおいて、セパレータの坪量は10.0~50.0g/mが好ましく、15.0~40.0g/mがより好ましい。また、セパレータの厚みは10.0~50.0μmが好ましく、15.0~40.0μmがより好ましい。セパレータの密度としては0.4~1.2g/cmが好ましく、0.6~1.0g/cmがより好ましい。 In the non-aqueous electrolyte battery separator of the present embodiment, the basis weight of the separator is preferably from 10.0 ~ 50.0g / m 2, more preferably 15.0 ~ 40.0g / m 2. The thickness of the separator is preferably 10.0 to 50.0 μm, and more preferably 15.0 to 40.0 μm. Preferably 0.4 ~ 1.2g / cm 3 as the density of the separator, more preferably 0.6 ~ 1.0g / cm 3.
 本実施形態において、前記樹脂組成物を塗工・乾燥後、前記被覆層表面の平坦化や厚みをコントロールする目的で、カレンダー処理によりセパレータ被覆層を平滑化してもよい。 In this embodiment, after coating and drying the resin composition, the separator coating layer may be smoothed by calendaring for the purpose of controlling the flattening and thickness of the coating layer surface.
 さらに、本発明には、上記セパレータと、負極と、正極と、電解液を備えた、非水電解質電池も包含される。 Furthermore, the present invention also includes a nonaqueous electrolyte battery including the separator, the negative electrode, the positive electrode, and an electrolytic solution.
 本実施形態の非水電解質電池の負極及び正極に使用される集電体は、導電性材料からなるものであれば特に制限されないが、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などの金属材料を使用することができる。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The current collector used for the negative electrode and the positive electrode of the nonaqueous electrolyte battery of the present embodiment is not particularly limited as long as it is made of a conductive material. For example, iron, copper, aluminum, nickel, stainless steel, titanium, Metal materials such as tantalum, gold, and platinum can be used. One of these may be used alone, or two or more of these may be used in combination at any ratio.
 本実施形態では負極として、非水電解質電池で通常用いられる材料を用いることができる。例えば、Li、Na、C、Mg、Al、Si、P、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Y、Zr、Nb、Mo、Pd、Ag、Cd、In、Sn、Sb、W、Pb及びBiよりなる群から選ばれた少なくとも一種以上の元素、これらの元素を用いた合金、酸化物、カルコゲン化物又はハロゲン化物などが使用される。さらに、例えば、アモルファスカーボン、グラファイト、天然黒鉛、メソカーボンマイクロビーズ(MCMB)、ピッチ系炭素繊維などの炭素質材料;ポリアセン等の導電性高分子;SiOx,SnOx,LiTiOxで表される複合金属酸化物やその他の金属酸化物やリチウム金属、リチウム合金などのリチウム系金属;TiS、LiTiSなどの金属化合物などが例示される。 In this embodiment, a material usually used in a nonaqueous electrolyte battery can be used as the negative electrode. For example, Li, Na, C, Mg, Al, Si, P, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Y, Zr, Nb, At least one element selected from the group consisting of Mo, Pd, Ag, Cd, In, Sn, Sb, W, Pb, and Bi, an alloy, oxide, chalcogenide, or halide using these elements. used. Further, for example, carbonaceous materials such as amorphous carbon, graphite, natural graphite, mesocarbon microbeads (MCMB), pitch-based carbon fibers; conductive polymers such as polyacene; composite metal oxidation represented by SiOx, SnOx, LiTiOx And metal compounds such as TiS 2 , LiTiS 2, and the like.
 本実施形態では、必要に応じて、さらに増粘剤を添加することができる。添加できる増粘剤としては、特に限定されるものではなく、種々のアルコール類、特に、ポリビニルアルコールおよびその変性物、セルロース類、でんぷんなどの多糖類を使用することができる。 In this embodiment, a thickener can be further added as necessary. The thickener that can be added is not particularly limited, and various alcohols, in particular, polyvinyl alcohol and modified products thereof, celluloses, starches, and other polysaccharides can be used.
 増粘剤の使用量は、負極活物質100部に対し0.1~4重量部程度であることが好ましく、より好ましくは0.3~3重量部、さらに好ましくは0.5~2重量部である。増粘剤が過度に少ないと負極活物質及び溶媒を含むスラリー組成物(以下、単に負極用スラリー組成物とも称する)の粘度が低すぎて混合層の厚みが薄くなる場合があり、逆に、増粘剤が過度に多いと放電容量が低下する場合がある。 The amount of thickener used is preferably about 0.1 to 4 parts by weight, more preferably 0.3 to 3 parts by weight, and still more preferably 0.5 to 2 parts by weight with respect to 100 parts of the negative electrode active material. It is. If the thickener is excessively small, the viscosity of the slurry composition containing the negative electrode active material and the solvent (hereinafter, also simply referred to as the negative electrode slurry composition) may be too low and the thickness of the mixed layer may be reduced. If there is too much thickener, the discharge capacity may decrease.
 また、負極用スラリー組成物に必要に応じて配合される導電助剤としては、例えば、金属粉、導電性ポリマー、アセチレンブラックなどが挙げられる。導電助剤の使用量は、負極活物質100重量部に対し、通常、0.5~10重量部であることが好ましく、より好ましくは1~7重量部である。 Further, examples of the conductive auxiliary compounded in the negative electrode slurry composition as needed include metal powder, conductive polymer, acetylene black, and the like. The amount of the conductive aid used is usually preferably 0.5 to 10 parts by weight, more preferably 1 to 7 parts by weight with respect to 100 parts by weight of the negative electrode active material.
 本実施形態において、負極は、上述したような負極活物質を、導電助剤と、SBR、NBR、アクリルゴム、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ポリフッ化ビニリデンなどのバインダー等とを、溶媒などに混合して調製した負極用スラリーを、上述したような集電体、例えば、銅等の負極集電体に塗布して溶媒を乾燥させて負極とすることができる。 In the present embodiment, the negative electrode is prepared by mixing the negative electrode active material as described above with a conductive assistant and a binder such as SBR, NBR, acrylic rubber, hydroxyethyl cellulose, carboxymethyl cellulose, and polyvinylidene fluoride in a solvent. The negative electrode slurry thus prepared can be applied to a current collector as described above, for example, a negative electrode current collector such as copper, and the solvent can be dried to obtain a negative electrode.
 本実施形態では、正極は、非水電解質電池に通常使用される正極が特に制限なく使用される。例えば、正極活物質としては、TiS、TiS、非晶質MoS、Cu、非晶質VO-P、MoO、VO5、V13などの遷移金属酸化物やLiCoO、LiNiO、LiMnO、LiMnなどのリチウム含有複合金属酸化物などが使用される。また、正極活物質を、上記負極と同様の導電助剤や増粘剤、SBR、NBR、アクリルゴム、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ポリフッ化ビニリデンなどのバインダーとを、水や上記の常圧における沸点が100℃以上300℃以下の溶媒などに混合して調製した正極用スラリー組成物を、例えば、アルミニウム等の正極集電体に塗布して溶媒を乾燥させて正極とすることができる。 In the present embodiment, as the positive electrode, a positive electrode usually used for a nonaqueous electrolyte battery is used without any particular limitation. For example, as the positive electrode active material, TiS 2 , TiS 3 , amorphous MoS 3 , Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , MoO 3 , V 2 O 5, V 6 O 13 Transition metal oxides such as LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 and other lithium-containing composite metal oxides are used. Further, the positive electrode active material is mixed with the same conductive assistant and thickener as the negative electrode, a binder such as SBR, NBR, acrylic rubber, hydroxyethyl cellulose, carboxymethyl cellulose, and polyvinylidene fluoride, and the boiling point at normal pressure described above. Can be applied to a positive electrode current collector such as aluminum, and the solvent is dried to form a positive electrode.
 それぞれの電極用スラリー組成物を集電体へ塗布する方法は、特に制限されない。例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、浸漬法、ハケ塗り法などの方法が挙げられる。塗布する量も特に制限されないが、溶媒または分散媒を乾燥などの方法によって除去した後に形成される活物質、導電助剤、バインダーおよび増粘剤を含む混合層の厚みが好ましくは0.005~5mm、より好ましくは0.01~2mmとなる量が一般的である。 The method for applying each electrode slurry composition to the current collector is not particularly limited. Examples thereof include a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a dipping method, and a brush coating method. The amount to be applied is not particularly limited, but the thickness of the mixed layer containing the active material, conductive additive, binder and thickener formed after removing the solvent or dispersion medium by a method such as drying is preferably 0.005 to An amount of 5 mm, more preferably 0.01 to 2 mm is common.
 スラリー組成物に含まれる水などの溶媒の乾燥方法は特に制限されず、例えば温風、熱風、低湿風による通気乾燥;真空乾燥;赤外線、遠赤外線、電子線などの照射線乾燥などが挙げられる。乾燥条件は、応力集中によって活物質層に亀裂が入ったり、活物質層が集電体から剥離しない程度の速度範囲となる中で、できるだけ早く溶媒が除去できるように調整するとよい。更に、電極の活物質の密度を高めるために、乾燥後の集電体をプレスすることは有効である。プレス方法としては、金型プレスやロールプレスなどの方法が挙げられる。 The method for drying a solvent such as water contained in the slurry composition is not particularly limited, and examples thereof include aeration drying with hot air, hot air, and low-humidity air; vacuum drying; drying with infrared rays, far infrared rays, electron beams, and the like. . The drying conditions are preferably adjusted so that the solvent can be removed as soon as possible while the active material layer is cracked by stress concentration or the active material layer does not peel from the current collector. Furthermore, in order to increase the density of the active material of the electrode, it is effective to press the current collector after drying. Examples of the pressing method include a die press and a roll press.
 また、本実施形態の非水電解質電池には、電解質を溶媒に溶解させた電解液を使用することができる。電解液は、通常の非水電解質電池に用いられるものであれば、液状でもゲル状でもよく、負極活物質、正極活物質の種類に応じて電池としての機能を発揮するものを適宜選択すればよい。具体的な電解質としては、例えば、従来より公知のリチウム塩がいずれも使用できLiClO、LiBF、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiB10Cl10、LiAlCl4、LiCl、LiBr、LiB(C)4、CFSOLi、CHSOLi、LiCFSO、LiCSO、Li(CFSON、低級脂肪族カルボン酸リチウムなどが挙げられる。 In the nonaqueous electrolyte battery of this embodiment, an electrolytic solution in which an electrolyte is dissolved in a solvent can be used. The electrolyte solution may be liquid or gel as long as it is used for a normal non-aqueous electrolyte battery, and if it appropriately selects a battery that functions as a battery depending on the type of the negative electrode active material and the positive electrode active material. Good. Specific electrolytes, for example, also known lithium salt is any conventionally available LiClO 4, LiBF 6, LiPF 6 , LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiB 10 Cl 10, LiAlC l4, LiCl, LiBr, LiB (C 2 H 5) 4, CF 3 SO 3 Li, CH 3 SO 3 Li, LiCF 3 SO 3, LiC 4 F 9 SO 3, Li (CF 3 SO 2) 2 N, And lower aliphatic lithium carboxylates.
 このような電解質を溶解させる溶媒(電解液溶媒)は特に限定されるものではない。具体例としてはプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネートなどのカーボネート類;γ-ブチルラクトンなどのラクトン類;トリメトキシメタン、1,2-ジメトキシエタン、ジエチルエーテル、2-エトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフランなどのエーテル類;ジメチルスルホキシドなどのスルホキシド類;1,3-ジオキソラン、4―メチル-1,3―ジオキソランなどのオキソラン類;アセトニトリルやニトロメタンなどの含窒素化合物類;ギ酸メチル、酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチルなどの有機酸エステル類;リン酸トリエチル、炭酸ジメチル、炭酸ジエチルなどの無機酸エステル類;ジグライム類;トリグライム類;スルホラン類;3-メチル-2-オキサゾリジノンなどのオキサゾリジノン類;1,3-プロパンスルトン、1,4-ブタンスルトン、ナフタスルトンなどのスルトン類などが挙げられ、これらは単独もしくは二種以上混合して使用できる。ゲル状の電解液を用いるときは、ゲル化剤としてニトリル系重合体、アクリル系重合体、フッ素系重合体、アルキレンオキサイド系重合体などを加えることができる。 The solvent for dissolving such an electrolyte (electrolytic solution solvent) is not particularly limited. Specific examples include carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, and diethyl carbonate; lactones such as γ-butyllactone; trimethoxymethane, 1,2-dimethoxyethane, diethyl ether, and 2-ethoxyethane. Ethers such as tetrahydrofuran, 2-methyltetrahydrofuran; sulfoxides such as dimethyl sulfoxide; oxolanes such as 1,3-dioxolane, 4-methyl-1,3-dioxolane; nitrogen-containing compounds such as acetonitrile and nitromethane; formic acid Organic acid esters such as methyl, methyl acetate, ethyl acetate, butyl acetate, methyl propionate and ethyl propionate; inorganic acid esters such as triethyl phosphate, dimethyl carbonate and diethyl carbonate Terigres; diglymes; triglymes; sulfolanes; oxazolidinones such as 3-methyl-2-oxazolidinone; sultones such as 1,3-propane sultone, 1,4-butane sultone, naphtha sultone, etc. Alternatively, two or more kinds can be mixed and used. When a gel electrolyte is used, a nitrile polymer, an acrylic polymer, a fluorine polymer, an alkylene oxide polymer, or the like can be added as a gelling agent.
 本実施形態の非水電解質電池を製造する方法としては、特に限定はないが、例えば、次の製造方法が例示される。すなわち、負極と正極とを、上述した本実施形態のセパレータを介して重ね合わせ、電池形状に応じて巻く、折るなどして、電池容器に入れ、電解液を注入して封口する。電池の形状は、公知のコイン型、ボタン型、シート型、円筒型、角型、扁平型など何れであってもよい。 The method for producing the non-aqueous electrolyte battery of the present embodiment is not particularly limited, and for example, the following production method is exemplified. That is, the negative electrode and the positive electrode are overlapped via the separator of the present embodiment described above, wound or folded according to the shape of the battery, put into a battery container, injected with an electrolyte, and sealed. The shape of the battery may be any known coin type, button type, sheet type, cylindrical type, square type, flat type, and the like.
 本実施形態の非水電解質電池は、内部短絡及び抵抗上昇が起こりにくい電池であり、様々な用途に有用である。例えば、小型化、薄型化、軽量化、高性能化の要求される携帯端末に使用される電池としても有用であり、高い安全性が求められる電気自動車等の大型機器に使用される電池としても非常に有用である。 The nonaqueous electrolyte battery of the present embodiment is a battery that is less prone to internal short circuit and resistance rise, and is useful for various applications. For example, it is useful as a battery used in portable terminals that are required to be reduced in size, thickness, weight, and performance, and as a battery used in large equipment such as an electric vehicle that requires high safety. Very useful.
 本明細書は、上述したように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various modes of technology as described above, and the main technologies are summarized below.
 すなわち、本発明の一局面に係るセパレータ用樹脂組成物は、α-オレフィン類とマレイン酸類とが共重合したα-オレフィン-マレイン酸類共重合体の中和塩を含み、かつ、前記共重合体におけるマレイン酸類から生成するカルボン酸に対する中和度が0.3~1.0であることを特徴とする。 That is, the separator resin composition according to one aspect of the present invention includes a neutralized salt of an α-olefin-maleic acid copolymer obtained by copolymerizing an α-olefin and a maleic acid, and the copolymer. The degree of neutralization with respect to carboxylic acid produced from maleic acids in is from 0.3 to 1.0.
 このような組成物を使用することにより、耐熱性が高く、電気抵抗を抑制することができるセパレータを提供できると考えられる。 By using such a composition, it is considered that a separator having high heat resistance and capable of suppressing electric resistance can be provided.
 特に、前記セパレータ用樹脂組成物において、前記α-オレフィン-マレイン酸類共重合体のマレイン酸類から生成するカルボン酸に対する中和度が0.3~1.0であることにより、塗工性に非常に優れるという利点がある。 In particular, in the resin composition for a separator, since the degree of neutralization of the α-olefin-maleic acid copolymer with respect to the carboxylic acid produced from the maleic acid is 0.3 to 1.0, the coating property is very good. There is an advantage that it is excellent.
 さらに組成物の水溶性が向上するために、増粘し、集電箔との接着性や分子同士の結着性が高くなる。結果的に、増粘剤や分散剤などを使用する必要がなくなるという利点をも有する。 Furthermore, since the water solubility of the composition is improved, the viscosity is increased, and the adhesion to the current collector foil and the binding property between molecules are increased. As a result, there is an advantage that it is not necessary to use a thickener or a dispersant.
 本発明のさらに他の局面に係る非水電解質電池用セパレータは、上記セパレータ用樹脂組成物からなる被覆層を含むことを特徴とする。 A separator for a non-aqueous electrolyte battery according to still another aspect of the present invention includes a coating layer made of the above-described separator resin composition.
 また、本発明のさらに他の局面に係る非水電解質電池は、上記セパレータを備えることを特徴とする。 Further, a nonaqueous electrolyte battery according to still another aspect of the present invention is characterized by including the separator.
 以下、本発明の実施例について説明するが、本発明はこれらに限定されるものではない。 Hereinafter, examples of the present invention will be described, but the present invention is not limited thereto.
 (実施例1)
 <セパレータ用樹脂組成物>
 セパレータ用樹脂組成物として水溶性のリチウム変性イソブテン-無水マレイン酸共重合樹脂(平均分子量325,000、中和度1.0、開環率100%)25g(0.16mol)を用い、10重量%水溶液を調整して以下の試験で用いた。中和度の調整は、水酸化リチウムをマレイン酸類共重合体中のマレイン酸単位に対し2.0当量(0.320mol)添加することによって行った。
Example 1
<Resin composition for separator>
25 g (0.16 mol) of a water-soluble lithium-modified isobutene-maleic anhydride copolymer resin (average molecular weight 325,000, neutralization degree 1.0, ring opening rate 100%) is used as the resin composition for the separator, % Aqueous solution was prepared and used in the following tests. The degree of neutralization was adjusted by adding 2.0 equivalents (0.320 mol) of lithium hydroxide to the maleic acid unit in the maleic acid copolymer.
 <質量減少率の測定>
 熱分析計(ヤマト科学社製)を用いて上記α-オレフィン‐マレイン酸類共重合体の熱
重量測定を行った。測定温度範囲50℃~1000℃、昇温速度20℃/分にて測定を行った結果、150℃での質量減少率は0.3%であった。結果を下記表1に示す。
<Measurement of mass reduction rate>
Thermogravimetry of the α-olefin-maleic acid copolymer was performed using a thermal analyzer (manufactured by Yamato Kagaku Co., Ltd.). As a result of measurement at a measurement temperature range of 50 ° C. to 1000 ° C. and a heating rate of 20 ° C./min, the mass reduction rate at 150 ° C. was 0.3%. The results are shown in Table 1 below.
 <被覆セパレータの作製>
 上記10重量%のセパレータ用樹脂組成物をセパレータ基材表面被覆液として5重量%に希釈し、セパレータ(27cm×25cm、不織布)を該希釈液に浸漬した。実験用手動マングル(熊谷理機工業製)を使用し、上記セパレータ基材表面被覆液の希釈液で被覆されたセパレータを搾液処理後、室温で12時間乾燥した。乾燥後のシートを熱プレス装置(古川製作所製)でプレスし、厚さ20μmに調整した(ロール温度室温、速度1m/min、線圧100hg/cm)。付着量は2.1g/mであった。
<Production of coated separator>
The 10% by weight separator resin composition was diluted to 5% by weight as a separator substrate surface coating solution, and a separator (27 cm × 25 cm, non-woven fabric) was immersed in the diluted solution. Using a manual mangle for experiment (manufactured by Kumagai Riki Kogyo Co., Ltd.), the separator coated with the diluent for the separator substrate surface coating solution was squeezed and then dried at room temperature for 12 hours. The dried sheet was pressed with a hot press (manufactured by Furukawa Seisakusho) and adjusted to a thickness of 20 μm (roll temperature room temperature, speed 1 m / min, linear pressure 100 hg / cm). The adhesion amount was 2.1 g / m 2 .
 <負極用スラリーの作製>
 電極用スラリー作製は活物質として天然黒鉛(DMGS、BYD製)94重量部に対して、バインダーとして、スチレン-ブタジエンゴム(SBR、TRD2001、JSR製)の48.3重量%水分散液を固形分として3重量部、カルボキシメチルセルロールナトリウム(CMC、セロゲンBSH-6、第一工業製薬製)の1重量%水溶液を固形分として1重量部、および導電助剤(導電付与剤)としてSuper-P(ティムカル社製)を固形分として2重量部を専用容器に投入し、遊星攪拌器(ARE-250、シンキー製)を用いて混練した。スラリー中の活物質と導電助剤とバインダー(SBR-CMC)の組成比は固形分として、天然黒鉛:導電助剤:SBR:CMC=94:2:3:1である。
<Preparation of slurry for negative electrode>
The slurry for the electrode was prepared by using a solid dispersion of a 48.3 wt% aqueous dispersion of styrene-butadiene rubber (SBR, TRD2001, manufactured by JSR) as a binder with respect to 94 parts by weight of natural graphite (DMGS, manufactured by BYD) as an active material. 3 parts by weight, 1 part by weight of a 1% by weight aqueous solution of carboxymethylcellulose sodium (CMC, Cellogen BSH-6, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), and Super-P as a conductive auxiliary agent (conducting agent) 2 parts by weight (made by Timcal Co.) as a solid content was put into a special container and kneaded using a planetary stirrer (ARE-250, manufactured by Sinky). The composition ratio of the active material, the conductive additive and the binder (SBR-CMC) in the slurry is, as a solid content, natural graphite: conductive auxiliary agent: SBR: CMC = 94: 2: 3: 1.
 <電池用負極の作製>
 得られたスラリーをバーコーター(T101、松尾産業製)を用いて集電体の銅箔(CST8G、福田金属箔粉工業製)上に塗工量が8.1mg/cmとなるように塗工し、80℃で30分間熱風乾燥機(ヤマト科学製)にて一次乾燥後、ロールプレス(宝泉製)を用いて圧延処理を行なった。その後、電池用電極(φ14mm)として打ち抜き後、120℃で3時間減圧条件の二次乾燥によってコイン電池用電極を作製した。
<Preparation of negative electrode for battery>
The obtained slurry was coated on a current collector copper foil (CST8G, manufactured by Fukuda Metal Foil Co., Ltd.) using a bar coater (T101, manufactured by Matsuo Sangyo Co., Ltd.) so that the coating amount was 8.1 mg / cm 2. After the primary drying with a hot air dryer (manufactured by Yamato Kagaku) at 80 ° C. for 30 minutes, rolling was performed using a roll press (manufactured by Hosen). Then, after punching out as a battery electrode (φ14 mm), a coin battery electrode was produced by secondary drying under reduced pressure conditions at 120 ° C. for 3 hours.
 <正極用スラリーの作製>
 電極用スラリー作製は活物質としてニッケル・コバルト・マンガン(NCM)92重量部に対して、バインダーとしてポリフッ化ビニリデン(PVDF)を固形分として5重量部、および導電助剤(導電付与剤)としてデンカブラック(粉状、電気化学工業製)を固形分として3重量部を専用容器に投入し、遊星攪拌器(ARE-250、シンキー製)を用いて混練した。スラリー粘度調整のため、混練時は水を添加して再度混練することによって電極塗工用スラリーを作製した。スラリー中の活物質とバインダーの組成比は固形分として、黒鉛粉末:導電助剤:バインダー組成物=92:3:5である。
<Preparation of slurry for positive electrode>
The slurry for the electrode is made of 92 parts by weight of nickel / cobalt / manganese (NCM) as an active material, 5 parts by weight of polyvinylidene fluoride (PVDF) as a solid as a binder, and Denka as a conductive additive (conductivity imparting agent). 3 parts by weight of black (powder, manufactured by Denki Kagaku Kogyo Co., Ltd.) as a solid was put into a special container and kneaded using a planetary stirrer (ARE-250, manufactured by Shinky Corporation). In order to adjust the viscosity of the slurry, an electrode coating slurry was prepared by adding water at the time of kneading and kneading again. The composition ratio of the active material and the binder in the slurry is, as a solid content, graphite powder: conductive aid: binder composition = 92: 3: 5.
 <電池用正極の作製>
 得られたスラリーをフィルムアプリケーター(テスター産業製)を用いて集電体のアルミ箔(IN30-H、冨士加工紙製)上に塗工し、80℃で30分間熱風乾燥機(ヤマト科学製)にて一次乾燥後、ロールプレス(宝泉製)を用いて圧延処理を行なった。その後、電池用電極(φ14mm)として打ち抜き後、120℃で3時間減圧条件の二次乾燥によってコイン電池用電極を作製した。
<Preparation of positive electrode for battery>
The obtained slurry was coated on a current collector aluminum foil (IN30-H, manufactured by Fujishi Paper) using a film applicator (manufactured by Tester Sangyo), and hot air dryer (manufactured by Yamato Scientific) for 30 minutes at 80 ° C. After the primary drying, rolling was performed using a roll press (made by Hosen). Then, after punching out as a battery electrode (φ14 mm), a coin battery electrode was produced by secondary drying under reduced pressure conditions at 120 ° C. for 3 hours.
 <電池の作製>
 上記で得られた被覆セパレータ及び電池用負極をアルゴンガス雰囲気下のグローブボックス(美和製作所製)に移送した。上記で作製した正極と負極、および電解液は六フッ化リン酸リチウム(LiPF)のエチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート溶液(1mol/L LiPF、EC/DMC/EMC=1/1/1)を用いて、コイン電池(2032タイプ)を作製した。
<Production of battery>
The coated separator and battery negative electrode obtained above were transferred to a glove box (Miwa Seisakusho) under an argon gas atmosphere. The positive electrode, negative electrode, and electrolyte prepared above were lithium hexafluorophosphate (LiPF 6 ) ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate solution (1 mol / L LiPF 6 , EC / DMC / EMC = 1/1 / A coin battery (2032 type) was produced using 1).
 <評価方法:充放電特性試験>
 作製したコイン電池は、市販充放電試験機(TOSCAT3100、東洋システム製)を用いて充放電試験を実施した。コイン電池を25℃の恒温槽に置き、電池電圧が4.2Vになるまで0.2C(約0.5mA/cm)の定電流充電を行った。このときの容量を充電容量(mAh)とした。次いで、電池電圧が3Vになるまで0.2C(約0.5mA/cm)の定電流放電を行った。このときの容量を放電容量(mAh)とした。初期放電容量と充電容量差を不可逆容量、放電容量/充電容量の百分率を充放電効率とした。コイン電池の直流抵抗は、1回の充電を行った後(満充電状態)の抵抗値を採用した。上記結果を下記表1に示す。
<Evaluation method: charge / discharge characteristic test>
The produced coin battery was subjected to a charge / discharge test using a commercially available charge / discharge tester (TOSCAT3100, manufactured by Toyo System). The coin battery was placed in a constant temperature bath at 25 ° C., and constant current charging at 0.2 C (about 0.5 mA / cm 2 ) was performed until the battery voltage reached 4.2V. The capacity at this time was defined as a charging capacity (mAh). Next, constant current discharge of 0.2 C (about 0.5 mA / cm 2 ) was performed until the battery voltage reached 3V. The capacity at this time was defined as a discharge capacity (mAh). The difference between the initial discharge capacity and the charge capacity was taken as the irreversible capacity, and the percentage of the discharge capacity / charge capacity was taken as the charge / discharge efficiency. As the direct current resistance of the coin battery, a resistance value after being charged once (fully charged state) was adopted. The results are shown in Table 1 below.
 上記作製方法で作製したコイン電池を20個作製した内、短絡したコイン電池は2個であった。結果を下記表1に示す。 Among 20 coin batteries produced by the above production method, 2 coin batteries were short-circuited. The results are shown in Table 1 below.
 (実施例2)
 セパレータ用樹脂組成物として水溶性のリチウム変性イソブテン-無水マレイン酸共重合樹脂(平均分子量325,000、中和度0.5、開環率96%)の10重量%水溶液を調整した。中和度の調整は、水酸化リチウムをマレイン酸類共重合体中のマレイン酸単位に対し1.0当量(0.160mol)添加することによって行った。被覆セパレータを上記実施例1と同様の方法によって作製した。付着量は1.8g/mであった。さらに、上記実施例1と同様の方法によって電池用負極を作製し、コイン電池を得て、充放電特性試験を行った。上記結果を下記表1に示す。
(Example 2)
A 10% by weight aqueous solution of a water-soluble lithium-modified isobutene-maleic anhydride copolymer resin (average molecular weight 325,000, neutralization degree 0.5, ring opening rate 96%) was prepared as a resin composition for a separator. The neutralization degree was adjusted by adding 1.0 equivalent (0.160 mol) of lithium hydroxide to the maleic acid unit in the maleic acid copolymer. A coated separator was produced in the same manner as in Example 1 above. The adhesion amount was 1.8 g / m 2 . Further, a negative electrode for a battery was prepared by the same method as in Example 1 to obtain a coin battery, and a charge / discharge characteristic test was performed. The results are shown in Table 1 below.
 上記実施例1と同様の方法によってα-オレフィン-マレイン酸類共重合体の質量減少率の測定を行った結果、150℃での質量減少率は0.5%であった。結果を下記表1に示す。 As a result of measuring the mass reduction rate of the α-olefin-maleic acid copolymer by the same method as in Example 1, the mass reduction rate at 150 ° C. was 0.5%. The results are shown in Table 1 below.
 (実施例3)
 セパレータ用樹脂組成物として水溶性のリチウム変性イソブテン-無水マレイン酸共重合樹脂(平均分子量325,000、中和度0.3、開環率82%)の10重量%水溶液を調整した。中和度の調整は、水酸化リチウムをマレイン酸類共重合体中のマレイン酸単位に対し0.60当量(0.096mol)添加することによって行った。被覆セパレータを上記実施例1と同様の方法によって作製した。付着量は1.9g/mであった。さらに、上記実施例1と同様の方法によって電池用負極を作製し、コイン電池を得て、充放電特性試験を行った。上記結果を下記表1に示す。
(Example 3)
A 10% by weight aqueous solution of a water-soluble lithium-modified isobutene-maleic anhydride copolymer resin (average molecular weight 325,000, neutralization degree 0.3, ring opening rate 82%) was prepared as a resin composition for a separator. The degree of neutralization was adjusted by adding 0.60 equivalent (0.096 mol) of lithium hydroxide to the maleic acid unit in the maleic acid copolymer. A coated separator was produced in the same manner as in Example 1 above. The adhesion amount was 1.9 g / m 2 . Further, a negative electrode for a battery was prepared by the same method as in Example 1 to obtain a coin battery, and a charge / discharge characteristic test was performed. The results are shown in Table 1 below.
 上記実施例1と同様の方法によってα-オレフィン-マレイン酸類共重合体の質量減少率の測定を行った結果、150℃での質量減少率は1.2%であった。結果を下記表1に示す。 As a result of measuring the mass reduction rate of the α-olefin-maleic acid copolymer by the same method as in Example 1, the mass reduction rate at 150 ° C. was 1.2%. The results are shown in Table 1 below.
 (比較例1)
 セパレータ用樹脂組成物として48.3重量%水溶液のSBRを固形分として4重量部、および1.0重量%水溶液のCMC-Naを固形分として1重量部を用い、被覆セパレータを上記実施例1と同様の方法によって作製した。付着量は1.9g/mであった。さらに、上記実施例1と同様の方法によって電池用負極を作製し、コイン電池を得て、充放電特性試験を行った。上記結果を下記表1に示す。
(Comparative Example 1)
As a resin composition for a separator, 4 parts by weight of SBR of a 48.3% by weight aqueous solution as a solid content and 1 part by weight of a 1.0% by weight aqueous solution of CMC-Na as a solid content were used. It was produced by the same method. The adhesion amount was 1.9 g / m 2 . Further, a negative electrode for a battery was prepared by the same method as in Example 1 to obtain a coin battery, and a charge / discharge characteristic test was performed. The results are shown in Table 1 below.
 上記実施例1と同様の方法によってカルボキシメチルセルロース・ナトリウム塩(CMC-Na)の質量減少率の測定を行った結果、150℃での質量減少率は7.1%であった。結果を下記表1に示す。 As a result of measuring the mass reduction rate of carboxymethylcellulose sodium salt (CMC-Na) by the same method as in Example 1, the mass reduction rate at 150 ° C. was 7.1%. The results are shown in Table 1 below.
 (比較例2)
 セパレータ基材表面被覆液を用いることなく、上記実施例1と同様の方法によって塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。上記結果を下記表1に示す。
(Comparative Example 2)
A coated negative electrode was produced by the same method as in Example 1 without using a separator substrate surface coating solution, to obtain a coin battery, and a charge / discharge characteristic test was performed. The results are shown in Table 1 below.
 (比較例3)
 セパレータ用樹脂組成物としてポリアクリル酸(平均分子量187,000、中和度0.5、アルドリッチ製)の51.2w%水溶液の50%Na塩を固形分として、被覆セパレータを上記実施例1と同様の方法によって作製した。付着量は2.1g/mであった。さらに、上記実施例1と同様の方法によって電池用負極を作製し、コイン電池を得て、充放電特性試験を行った。上記結果を下記表1に示す。
(Comparative Example 3)
As a resin composition for a separator, a coated separator was formed as in Example 1 above using 50% Na salt of a 51.2 w% aqueous solution of polyacrylic acid (average molecular weight 187,000, degree of neutralization 0.5, manufactured by Aldrich) as a solid content. It produced by the same method. The adhesion amount was 2.1 g / m 2 . Further, a negative electrode for a battery was prepared by the same method as in Example 1 to obtain a coin battery, and a charge / discharge characteristic test was performed. The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (考察)
 本発明のセパレータ用樹脂組成物を用いたセパレータ基材表面被覆液で被覆したセパレータを用いた実施例1~3は、α-オレフィン-マレイン酸類共重合体がセパレータの欠陥を補完し短絡が少なく、歩留まりが向上した結果が得られた。一方、被覆をしなかったセパレータ(比較例2)については、短絡し易かった。
(Discussion)
In Examples 1 to 3 using the separator coated with the separator substrate surface coating solution using the separator resin composition of the present invention, the α-olefin-maleic acid copolymer compensates for the defects of the separator and reduces short-circuiting. As a result, the yield was improved. On the other hand, it was easy to short-circuit about the separator (Comparative Example 2) which was not coat | covered.
 当該セパレータ基材表面被覆液で被覆したセパレータは電気抵抗が被覆しなかったセパレータを用いた場合と同等であったが、汎用的に用いられているSBR/CMC-Naを用いた場合(比較例1)、抵抗が上昇し、電池性能も低下することが示された。当該セパレータ基材表面被覆液を構成するα-オレフィン-マレイン酸類共重合体の中和塩が電池内のイオン伝達を向上していると考えられる。
 さらに、同じく凡用品であるポリアクリル酸を用いた比較例3では、カルボン酸部位を本発明同様に有するにも関わらず、直流抵抗が高くなっていることが解る。
The separator coated with the separator substrate surface coating solution was equivalent to the case where a separator not coated with electrical resistance was used, but when SBR / CMC-Na used for general purpose was used (Comparative Example) 1) It has been shown that resistance increases and battery performance also decreases. It is considered that the neutralized salt of the α-olefin-maleic acid copolymer constituting the separator substrate surface coating solution improves ion transmission in the battery.
Furthermore, in Comparative Example 3 using polyacrylic acid, which is also an ordinary product, it can be seen that the DC resistance is high despite having a carboxylic acid moiety as in the present invention.
 この出願は、2015年8月6日に出願された日本国特許出願特願2015-156188を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2015-156188 filed on August 6, 2015, the contents of which are included in this application.
 本発明を表現するために、前述において図面等を参照しながら実施形態を通して本発明を適切かつ十分に説明したが、当業者であれば前述の実施形態を変更及び/又は改良することは容易になし得ることであると認識すべきである。したがって、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態又は当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been described appropriately and sufficiently through the embodiments with reference to the drawings and the like. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that it can be done. Therefore, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not limited to the scope of the claims. To be construed as inclusive.
 本発明は、非水電解質電池の技術分野において、広範な産業上の利用可能性を有する。 The present invention has wide industrial applicability in the technical field of non-aqueous electrolyte batteries.

Claims (3)

  1.  α-オレフィン類とマレイン酸類とが共重合したα-オレフィン-マレイン酸類共重合体の中和塩を含み、かつ、前記共重合体におけるマレイン酸類から生成するカルボン酸に対する中和度が0.3~1.0であることを特徴とする、非水電解質電池セパレータ用樹脂組成物。 a neutralized salt of an α-olefin-maleic acid copolymer obtained by copolymerization of an α-olefin and maleic acid, and the degree of neutralization of the carboxylic acid generated from the maleic acid in the copolymer is 0.3. A resin composition for a non-aqueous electrolyte battery separator, wherein the resin composition is 1.0 to 1.0.
  2.  請求項1に記載のセパレータ用樹脂組成物からなる被覆層を備える、非水電解質電池用セパレータ。 A separator for a nonaqueous electrolyte battery comprising a coating layer made of the resin composition for a separator according to claim 1.
  3.  請求項2に記載のセパレータを有する、非水電解質電池。 A nonaqueous electrolyte battery comprising the separator according to claim 2.
PCT/JP2016/073048 2015-08-06 2016-08-05 Resin composition for nonaqueous electrolyte battery separator, and separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery using same WO2017022845A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017533132A JP6869888B2 (en) 2015-08-06 2016-08-05 A resin composition for a non-aqueous electrolyte battery separator, and a separator for a non-aqueous electrolyte battery and a non-aqueous electrolyte battery using the same.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-156188 2015-08-06
JP2015156188 2015-08-06

Publications (1)

Publication Number Publication Date
WO2017022845A1 true WO2017022845A1 (en) 2017-02-09

Family

ID=57943387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073048 WO2017022845A1 (en) 2015-08-06 2016-08-05 Resin composition for nonaqueous electrolyte battery separator, and separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery using same

Country Status (3)

Country Link
JP (1) JP6869888B2 (en)
TW (1) TWI602340B (en)
WO (1) WO2017022845A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019049510A1 (en) * 2017-09-11 2019-03-14 株式会社クラレ Coating liquid for non-aqueous electrolyte battery separator, non-aqueous electrolyte battery separator using same, and non-aqueous electrolyte battery
CN111052445A (en) * 2017-07-24 2020-04-21 株式会社可乐丽 Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery using same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001176483A (en) * 1999-12-21 2001-06-29 Mitsubishi Paper Mills Ltd Battery separator and battery
JP2003031199A (en) * 2001-07-12 2003-01-31 Showa Denko Kk Separator for zinc secondary cell and zinc secondary cell using above
JP2013251205A (en) * 2012-06-01 2013-12-12 Mitsubishi Paper Mills Ltd Coating liquid for lithium ion battery separator and lithium ion battery separator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010146960A (en) * 2008-12-22 2010-07-01 Mitsubishi Chemicals Corp Nonaqueous electrolytic liquid secondary battery and positive and negative electrode for the same
JP2010146961A (en) * 2008-12-22 2010-07-01 Mitsubishi Chemicals Corp Nonaqueous electrolytic liquid secondary battery and separator for the same
JP5998622B2 (en) * 2012-05-11 2016-09-28 住友化学株式会社 Resin composition, separator for non-aqueous electrolyte secondary battery and method for producing the same, and non-aqueous electrolyte secondary battery
CN104662707B (en) * 2012-09-28 2017-03-08 日本瑞翁株式会社 Secondary cell perforated membrane dividing plate and its manufacture method and secondary cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001176483A (en) * 1999-12-21 2001-06-29 Mitsubishi Paper Mills Ltd Battery separator and battery
JP2003031199A (en) * 2001-07-12 2003-01-31 Showa Denko Kk Separator for zinc secondary cell and zinc secondary cell using above
JP2013251205A (en) * 2012-06-01 2013-12-12 Mitsubishi Paper Mills Ltd Coating liquid for lithium ion battery separator and lithium ion battery separator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111052445A (en) * 2017-07-24 2020-04-21 株式会社可乐丽 Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery using same
WO2019049510A1 (en) * 2017-09-11 2019-03-14 株式会社クラレ Coating liquid for non-aqueous electrolyte battery separator, non-aqueous electrolyte battery separator using same, and non-aqueous electrolyte battery
JPWO2019049510A1 (en) * 2017-09-11 2020-10-15 株式会社クラレ Coating liquid for non-aqueous electrolyte battery separator, and non-aqueous electrolyte battery separator and non-aqueous electrolyte battery using it

Also Published As

Publication number Publication date
JPWO2017022845A1 (en) 2018-05-24
TW201719953A (en) 2017-06-01
TWI602340B (en) 2017-10-11
JP6869888B2 (en) 2021-05-12

Similar Documents

Publication Publication Date Title
JP6138383B1 (en) Binder composition for non-aqueous electrolyte battery, slurry composition for non-aqueous electrolyte battery using the same, non-aqueous electrolyte battery negative electrode, and non-aqueous electrolyte battery
WO2016067843A1 (en) Binder composition for lithium ion secondary battery negative electrode, and slurry composition for lithium ion secondary battery negative electrode, lithium ion secondary battery negative electrode, and lithium ion secondary battery using same
TW201912736A (en) Coating liquid for separator for non-aqueous electrolyte battery, and separator for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
JP6543007B2 (en) Thickening stabilizer for non-aqueous electrolyte battery electrode, and binder composition containing the same, slurry composition for non-aqueous electrolyte battery electrode, non-aqueous electrolyte battery electrode, and non-aqueous electrolyte battery
JP6869888B2 (en) A resin composition for a non-aqueous electrolyte battery separator, and a separator for a non-aqueous electrolyte battery and a non-aqueous electrolyte battery using the same.
JP2016189253A (en) Binder composition for lithium ion secondary battery electrode, and slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery negative electrode and lithium ion secondary battery using the same
JP2019071233A (en) Binder composition for nonaqueous electrolyte battery, binder aqueous solution for nonaqueous electrolyte battery using the same, slurry composition for nonaqueous electrolyte battery, nonaqueous electrolyte battery negative electrode, and nonaqueous electrolyte battery
JP2018063799A (en) Nonaqueous electrolyte battery electrode binder composition, nonaqueous electrolyte battery electrode slurry composition arranged by use thereof, nonaqueous electrolyte battery negative electrode, and nonaqueous electrolyte battery
WO2017022844A1 (en) Slurry composition for non aqueous electrolyte battery electrode, and non aqueous electrolyte battery positive electrode and non aqueous electrolyte battery using same
JP6138382B1 (en) Binder composition for non-aqueous electrolyte battery, slurry composition for non-aqueous electrolyte battery using the same, non-aqueous electrolyte battery negative electrode, and non-aqueous electrolyte battery
JP2017069162A (en) Binder composition for nonaqueous electrolyte secondary battery, slurry composition for nonaqueous electrolyte secondary battery arranged by use thereof, nonaqueous electrolyte secondary battery negative electrode, and nonaqueous electrolyte secondary battery
WO2018101134A1 (en) Binder composition for nonaqueous electrolyte battery electrode, hydrogel using binder composition as raw material, slurry composition for nonaqueous electrolyte battery electrode using same, nonaqueous electrolyte battery negative electrode, and nonaqueous electrolyte battery
WO2016158637A1 (en) Binder composition for nonaqueous electrolyte battery electrodes, slurry composition for nonaqueous electrolyte battery electrodes using same, negative electrode of nonaqueous electrolyte battery, and nonaqueous electrolyte battery
TWI605634B (en) Slurry composition for electrode of non-aqueous electrolyte battery, and non-aqueous electrolyte battery anode and non-aqueous electrolyte battery using the same
JP2016189255A (en) Slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery negative electrode, and lithium ion secondary battery
JP2016189252A (en) Binder composition for lithium ion secondary battery electrode, and slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery negative electrode and lithium ion secondary battery using the same
JP2016189257A (en) Slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery negative electrode, and lithium ion secondary battery
JP2016189251A (en) Binder composition for lithium ion secondary battery electrode, and slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery negative electrode and lithium ion secondary battery using the same
WO2017022843A1 (en) Slurry composition for non aqueous electrolyte battery electrode, and non aqueous electrolyte battery negative electrode and non aqueous electrolyte battery using same
JP2017033904A (en) Slurry composition for nonaqueous electrolyte battery electrode, and nonaqueous electrolyte battery negative electrode and nonaqueous electrolyte battery using the same
JP2017117576A (en) Binder composition for nonaqueous electrolyte battery, binder aqueous solution for nonaqueous electrolyte battery, slurry composition for nonaqueous electrolyte battery, nonaqueous electrolyte battery negative electrode and nonaqueous electrolyte battery
JP2016189254A (en) Binder composition for lithium ion secondary battery electrode, and slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery negative electrode and lithium ion secondary battery using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16833124

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017533132

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16833124

Country of ref document: EP

Kind code of ref document: A1