WO2019048313A1 - Combinaisons synergiques d'agents ignifuges pour compositions polymères et leur utilisation - Google Patents

Combinaisons synergiques d'agents ignifuges pour compositions polymères et leur utilisation Download PDF

Info

Publication number
WO2019048313A1
WO2019048313A1 PCT/EP2018/073236 EP2018073236W WO2019048313A1 WO 2019048313 A1 WO2019048313 A1 WO 2019048313A1 EP 2018073236 W EP2018073236 W EP 2018073236W WO 2019048313 A1 WO2019048313 A1 WO 2019048313A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
proportion
weight
acid
polymer compositions
Prior art date
Application number
PCT/EP2018/073236
Other languages
German (de)
English (en)
Inventor
Harald Bauer
Sebastian HÖROLD
Martin Sicken
Original Assignee
Clariant Plastics & Coatings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clariant Plastics & Coatings Ltd filed Critical Clariant Plastics & Coatings Ltd
Priority to EP18762272.5A priority Critical patent/EP3679095A1/fr
Publication of WO2019048313A1 publication Critical patent/WO2019048313A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5313Phosphinic compounds, e.g. R2=P(:O)OR'
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/04Ingredients characterised by their shape and organic or inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34922Melamine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34924Triazines containing cyanurate groups; Tautomers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34928Salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/5205Salts of P-acids with N-bases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5317Phosphonic compounds, e.g. R—P(:O)(OR')2
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5317Phosphonic compounds, e.g. R—P(:O)(OR')2
    • C08K5/5333Esters of phosphonic acids
    • C08K5/5337Esters of phosphonic acids containing also halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0066Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant

Definitions

  • the present invention relates to novel synergistic combinations of flame retardants and polymer compositions containing these and their use.
  • Flammable plastics generally have to be equipped with flame retardants in order to achieve the high flame retardance requirements demanded by plastics processors and in part by the legislature. Preference - also for ecological reasons - are non-halogenated
  • phosphinates the salts of phosphinic acids (phosphinates) have proven to be particularly effective for thermoplastic polymers (DE 2 252 258 A and DE 2 447 727 A).
  • dialkylphosphinates containing a small amount of selected telomers are suitable as flame retardants for polymers, the polymer only undergoing very little degradation upon incorporation of the flame retardant into the polymer matrix.
  • Flame retardants must often be added in high dosages in order to ensure a sufficient flame retardancy of the plastic according to international standards. Due to their chemical reactivity, which for the Flame retardancy at high temperatures is required
  • Flame retardants especially at higher dosages, affect the processing stability of plastics. It can lead to increased polymer degradation, crosslinking reactions, outgassing or discoloration.
  • X-ray reflections of high-temperature modifications of aluminum salts of phosphinic acids are known from WO 98/03515 A1. These phosphinic acid salts are produced at high temperature. From WO 2014/135256 A1 polyamide molding compositions are known which have a significantly improved thermal stability, a reduced tendency to migrate and good electrical and mechanical properties.
  • Glow wire resistance is known, which in addition to phosphinates nitrogen-containing
  • Synergists contain as flame retardants.
  • the invention provides flame retardant combinations containing
  • Phosphinic acid salt of the formula (I) as component A Phosphinic acid salt of the formula (I) as component A.
  • Ri and R2 are ethyl
  • M is Al, Fe, TiOp or Zn
  • n 2 to 3, preferably 2 or 3
  • R 3 is ethyl
  • Met is Al, Fe, TiOq or Zn
  • n 2 to 3, preferably 2 or 3
  • the proportion of component A is usually 5 to 85 wt .-%, preferably 10 to 60 wt .-%.
  • the proportion of component B is usually 0.01 to 10 wt .-%, preferably 0.1 to 2.5 wt .-%.
  • the proportion of component C is usually 0.01 to 10 wt .-%, preferably 0.1 to 2.5 wt .-%.
  • the proportion of component D is usually from 5 to 50% by weight, preferably from 10 to 30% by weight.
  • the proportion of component E is usually 5 to 50 wt .-%, preferably 10 to 30 wt .-%.
  • the percentages for the proportions of components A to E refer to the total amount of Flamschutzstoffkombinationen.
  • the proportion of component A is from 5 to 85% by weight
  • the proportion of component B is from 0.01 to 10% by weight
  • the proportion of component C is from 0.01 to 10% by weight
  • the proportion of component D is from 5 to 50% by weight
  • the proportion of component E is 5 to 50% by weight
  • the proportion of component A is from 10 to 60% by weight
  • the proportion of component B is from 0.1 to 2.5% by weight
  • the proportion of component C is from 0.1 to 2.5% by weight
  • the proportion of component D is 10 to 30% by weight
  • the proportion of component E is 10 to 30% by weight
  • Preferred salts of component A are those in which M m + Zn 2+ , Fe 3+ or in particular Al 3+ .
  • Preferably used salts of component B are zinc, iron or
  • salts of component C are those in which Met n + Zn 2+ , Fe 3+ or in particular Al 3+ .
  • Diethylphosphoric acid are known flame retardants for polymeric molding compositions.
  • Salts of diethylphosphinic acid with fractions of the phosphinic and phosphonic acid salts used according to the invention as components B and C are known flame retardants.
  • the preparation of this combination of substances is z. B. in US 7,420,007 B2 described.
  • Component A may contain small amounts of salts of component B and of salts of component C, for example up to 10% by weight
  • Component B preferably 0.01 to 6 wt .-%, and in particular 0.2 to 2.5 wt .-% thereof, and up to 10 wt .-% of component C, preferably 0.01 to 6 wt. %, and in particular 0.2 to 2.5 wt .-% thereof based on the amount of components A, B and C.
  • Ethylphosphonic acid are as additives to diethylphosphinates in
  • Flame retardants for polymeric molding compositions also known, for example from WO 2016/065971 A1.
  • DE 10 2005 016 195 A1 discloses a stabilized flame retardant containing 99 to 1% by weight.
  • Phosphinic acid and / or a phosphinic acid salt can be combined.
  • Preferred flame retardant combinations according to the invention comprise as component D a melamine polyphosphate whose average
  • Condensation degree 20 to 200 in particular from 40 to 150, is.
  • the average is
  • Further preferred flame retardant combinations according to the invention contain as component D a melamine polyphosphate which has a
  • Decomposition temperature of greater than or equal to 320 ° C, in particular greater than or equal to 360 ° C and most preferably greater than or equal to 400 ° C.
  • melamine polyphosphates which are known from WO 2006/027340 A1 (corresponding to EP 1 789 475 B1) and WO 2000/002869 A1 (corresponding to EP 1 095 030 B1). Preference is given to using melamine polyphosphates whose average degree of condensation is between 20 and 200, in particular between 40 and 150, and whose melamine content is 1.1 to 2.0 mol, in particular 1.2 to 1.8 mol, per mole of phosphorus atom.
  • melamine polyphosphates whose mean condensation ridge (number average) is> 20 whose decomposition temperature is greater than 320 ° C., the molar ratio of 1,3,5-triazine compound to phosphorus being less than 1, 1, in particular 0.8 to 1, Is 0 and the pH of a 10% slurry in water at 25 ° C is 5 or higher, preferably 5.1 to 6.9.
  • component E is likewise known as synergist in conjunction with diethyl phosphates in flame retardants for polymeric molding compositions, for example from WO 97/39053 A1).
  • components A, B, C, D and E are in particulate form, the average particle size (dso) being 1 to 100 ⁇ m.
  • Component F The use of the invention used as component F.
  • the inorganic phosphonate (component F) preferably corresponds to the general formulas (IV) or (V) [(HO) PO 2 ] 2 -p / 2 cat P + (IV)
  • Kat is a p-valent cation, in particular a cation of an alkali metal, alkaline earth metal, an ammonium cation and / or a cation of Fe, Zn or particular AI including the cation AI ( OH) or Al (OH) 2, and p is 1, 2, 3 or 4.
  • the inorganic phosphonate (component F) is preferably aluminum phosphite [Al (H2PO3) 3], secondary aluminum phosphite [Al2 (H PO3) 3], basic aluminum phosphite [Al (OH) (H2PO3) 2 * 2aq],
  • the inorganic phosphonate (component F) is preferably also aluminum phosphites of the formulas (VI), (VII) and / or (VIII)
  • Aluminum phosphite tetrahydrate [Al 2 (HPO 3) 3 * 4aq] to give aluminum phosphonate, Al 7 (HPO 3 ) 9 (OH) 6 (1,6-hexanediamine) i, 5 * 12H 2 O, Al 2 (HPO 3 ) 3 * xAl 2 O 3 * nH 2 O where x 2.27 - 1 and / or AUHePieOis.
  • Preferred inorganic phosphonates are water-insoluble or sparingly soluble salts.
  • Particularly preferred inorganic phosphonates are aluminum, calcium and zinc salts.
  • component F is a
  • Reaction product of phosphorous acid and an aluminum compound is Reaction product of phosphorous acid and an aluminum compound.
  • Particularly preferred components F are aluminum phosphites with the
  • the preparation of the preferably used aluminum phosphites is carried out by reacting an aluminum source with a phosphorus source and optionally a template in a solvent at 20-200 ° C for a period of up to 4 days.
  • the aluminum source and the phosphorus source are mixed for 1 to 4 hours, heated under hydrothermal conditions or at reflux, filtered off, washed and z. B. at 1 10 ° C dried.
  • Preferred aluminum sources are aluminum isopropoxide, aluminum nitrate, aluminum chloride, aluminum hydroxide (eg pseudoboehmite).
  • Preferred sources of phosphorus are phosphorous acid, (acidic)
  • Preferred alkali metal phosphites are disodium phosphite, disodium phosphite hydrate, trisodium phosphite, potassium hydrogen phosphite
  • Preferred Dinatriumphosphithydrat is Brüggolen ® H10 of the company. Brüggemann.
  • Preferred templates are 1, 6-hexanediamine, guanidine carbonate or ammonia.
  • Preferred alkaline earth metal phosphite is calcium phosphite.
  • the preferred ratio of aluminum to phosphorus to solvent is 1: 1: 3.7 to 1: 2.2: 100 mol.
  • the ratio of aluminum to template is 1: 0 to 1: 17 mol.
  • the preferred pH of the reaction solution is 3 to 9.
  • Preferred solvent is water.
  • the same salt of phosphinic acid as the phosphorous acid is used in the application, so z.
  • Me is Fe, TiOr, Zn or in particular Al,
  • o is 2 to 3, preferably 2 or 3
  • Preferred compounds of the formula (III) are those in which Me 0+ denotes Zn 2 ' Fe 3+ or in particular Al 3+ .
  • Component F is preferably in an amount of 0.01 to 10 wt .-%, in particular in an amount of 0.1 to 2.5 wt .-%, based on the
  • the invention also relates to the use of the invention
  • thermoplastic and thermosetting polymers as well as with these
  • Thermoplastic and / or thermosetting polymers (hereinafter component G) containing the inventive flame retardant combinations and optionally fillers and reinforcing agents and / or other additives, as below , are hereinafter referred to as polymer compositions.
  • Flame retardant combinations can be effectively used, it is amorphous thermoplastic polymers or semi-crystalline
  • thermoplastic polymers having a melting point of less than or equal to 290 ° C, preferably less than or equal to 280 ° C, and most preferably less than or equal to 250 ° C. Such polymers have already been described in detail in the literature and are known to the person skilled in the art.
  • thermoplastic polymers used according to the invention are determined by means of differential scanning caloimetry (DSC) at a heating rate of 10 K / second.
  • thermoplastic polymers used according to the invention include, for example
  • HDPE-UHMW high density polyethylene
  • MDPE medium density polyethylene
  • LDPE Low density polyethylene
  • LLDPE linear low density polyethylene
  • VLDPE branched low density polyethylene
  • PP / HDPE PP / LDP
  • blends of various types of polyethylene such as LDPE / HDPE.
  • Low density polyethylene and blends thereof with low density polyethylene (LDPE), propylene-butene-1 copolymers, propylene-isobutylene copolymers, ethylene-butene-1 copolymers, etc.
  • LDPE / ethylene-acrylic acid copolymers LLDPE / ethylene-vinyl acetate copolymers, LLDPE / ethylene-acrylic acid copolymers, and alternating or random polyalkylene / carbon monoxide copolymers and mixtures thereof with other polymers such.
  • Acrylic derivatives such as. Styrene-butadiene, styrene-acrylonitrile, styrene-alkyl methacrylate, styrene-butadiene-alkyl acrylate and methacrylate, styrene-maleic anhydride, styrene-acrylonitrile methacrylate; Blends of high impact strength of styrene copolymers and another polymer, such as. A polyacrylate, a diene polymer or an ethylene-propylene-diene terpolymer; as well as block copolymers of styrene such.
  • Styrene-butadiene-styrene styrene-isoprene-styrene
  • styrene-ethylene / butylene-styrene styrene-ethylene / propylene-styrene.
  • Graft copolymers of styrene or alpha-methylstyrene such as.
  • Styrene on polybutadiene styrene on polybutadiene-styrene or polybutadiene-acrylonitrile copolymers, styrene and acrylonitrile (or methacrylonitrile) on polybutadiene; Styrene, acrylonitrile and methyl methacrylate on polybutadiene; Styrene and Maleic anhydride on polybutadiene; Styrene, Acrylnitnl and
  • Polymers such as. B. known as so-called ABS, MBS, ASA or AES polymers.
  • Halogen-containing polymers such as. As polychloroprene, chlorinated rubber, chlorinated and brominated copolymer of isobutylene-isoprene
  • Halobutyl rubber chlorinated or chlorosulfonated polyethylene, copolymers of ethylene and chlorinated ethylene, Epichlorhydrinhomo- and copolymers, especially polymers of halogen-containing polyethylene
  • Vinyl compounds such as. As polyvinyl chloride, polyvinylidene chloride,
  • Vinyl chloride-vinylidene chloride vinyl chloride-vinyl acetate or vinylidene chloride-vinyl acetate.
  • acrylonitrile-butadiene copolymers For example, acrylonitrile-butadiene copolymers, acrylonitrile-alkyl acrylate copolymers, acrylonitrile alkoxyalkyl acrylate copolymers, acrylonitrile-vinyl halide copolymers or acrylonitrile-alkyl methacrylate-butadiene terpolymers.
  • Polyacetals, such as polyoxymethylene, as well as those polyoxymethylenes, the comonomers, such as. B. contain ethylene oxide; Polyacetals modified with thermoplastic polyurethanes, acrylates or MBS. Polyphenylene oxides and sulfides and mixtures thereof with styrene polymers or polyamides.
  • Polyamides and copolyamides derived from diamines and dicarboxylic acids and / or aminocarboxylic acids or the corresponding lactams such as polyamide 4, polyamide 6, polyamide 6/6, 6/10, 6/9, 6/12, 4/6, 12 / 12, polyamide 1 1, polyamide 12; Block copolymers of the aforementioned polyamides with polyolefins, olefin copolymers, ionomers, or chemically bonded or grafted elastomers; or with polyethers, such as. B. with polyethylene glycol, polypropylene glycol or
  • IM polyamide systems Polyureas, polyimides, polyamideimides, polyetherimides, polyesterimides, polyhydantoins and polybenzimidazoles. Polyesters which are derived from dicarboxylic acids and dialcohols and / or from hydroxycarboxylic acids or the corresponding lactones, such as polyethylene terephthalate, polybutylene terephthalate, poly-1,4-dimethylolcyclohexane terephthalate, and block polyether esters derived from hydroxyl-terminated polyethers; also with polycarbonates or MBS modified polyester.
  • mixtures (polyblends) of the aforementioned polymers such as. PP / EPDM, polyamide / EPDM or ABS, PVC / EVA, PVC / ABS, PVC / MBS, PC / ABS,
  • TPE Thermoplastic elastomers
  • block copolymers based on styrene styrene-butadiene block copolymers, styrene-isoprene-styrene block copolymers, styrene-ethylene-butylene-styrene block copolymers
  • TPEs are elastomer blends, such as thermoplastic olefins containing polypropylene, polyethylene block copolymers; Polypropylene, ethylene-propylene rubber, ethylene-octene copolymers, styrene-ethylene-butadiene-styrene,
  • TPE thermoplastic vulcanizates, eg. B. ethylene-propylene-diene rubber particles in a matrix of polypropylene.
  • thermosetting polymers in which the inventive thermosetting polymers are thermosetting thermosetting polymers in which the inventive thermosetting polymers
  • thermosetting polymers are preferably unsaturated polyester resins (UP resins) which are more saturated and more stable to copolyesters
  • UP resins are cured by free-radical polymerization with initiators (eg peroxides) and accelerators.
  • Preferred unsaturated dicarboxylic acids and derivatives for the preparation of the UP resins are maleic anhydride and fumaric acid.
  • Preferred saturated dicarboxylic acids are phthalic acid, isophthalic acid,
  • Terephthalic acid Terephthalic acid, tetrahydrophthalic acid, adipic acid.
  • Preferred diols are 1, 2 propanediol, ethylene glycol, diethylene glycol and
  • Neopentyl glycol Neopentyl glycol, neopentyl glycol, ethoxylated or propoxylated bisphenol A.
  • Preferred vinyl compound for crosslinking is styrene.
  • Preferred hardener systems are peroxides and metal co-initiators, e.g. B.
  • Preferred hydroperoxides are di-tert-butyl peroxide, tert-butyl peroctoate, tert-butyl perpivalate, tert-butyl per-2-ethylhexanoate, tert-butyl permalate, tert-butyl perisobutyrate, benzoyl peroxide, diacetyl peroxide, succinyl peroxide, p-chlorobenzoyl peroxide and dicyclohexyl peroxide dicarbonate ,
  • Preferred metal co-initiators are cobalt, manganese, iron, vanadium, nickel or lead compounds.
  • Preferred aromatic amines are dimethylaniline, dimethyl-p-toluene, diethylaniline and phenyldiethanolamine.
  • Further preferred thermosetting polymers are epoxy resins which are aliphatic, cycloaliphatic, heterocyclic or aromatic
  • Accelerators are networked.
  • Suitable glycidyl compounds are bisphenol A diglycidyl esters, bisphenol F diglycidyl esters, polyglycidyl esters of phenol formaldehyde resins and cresol formaldehyde resins, polyglycidyl esters of pthalthalene, isophthalic and
  • Suitable hardeners are aliphatic, cycloaliphatic, aromatic and
  • heterocyclic amines or polyamines such as ethylenediamine, diethylenetriamine
  • Triethylenetetramine propane-1,3-diamine, hexamethylenediamine, aminoethylpiperazine, isophoronediamine, polyamidoamine, diaminodiphenylmethane, diaminodiphenyl ether, diaminodiphenol sulfones, aniline-formaldehyde resins, 2,2,4-trimethylhexane-1,6-diamine, m-xylylenediamine, bis ( 4-aminocyclohexyl) methane, 2,2-bis (4-aminocyclohexyl) propane, 3-aminomethyl-3,5,5-trimethylcyclohexylamine
  • Methylhexahydrophthal Acidanhydrid and phenols such.
  • Phenol aralkyl resin Phenol aralkyl resin, phenoltrimethylolmethane resin, tetraphenylolethane resin, naphthol novolak resin, naphthol-phenol kocondensate resin, naphthol cresol kocondensate resin, biphenol-modified phenol resin, and aminotriazine-modified phenol resin.
  • the hardeners can be used alone or in combination
  • Polymerization are tertiary amines, benzyldimethylamine, N-alkylpyridines, imidazole, 1-methylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-heptadecylimidazole, metal salts of organic acids, Lewis acids and amine complex salts.
  • thermoset polymers are preferably those which are derived from aldehydes on the one hand and phenols, urea or melamine on the other hand, such as phenol-formaldehyde, urea-formaldehyde and melamine-formaldehyde resins.
  • thermosetting polymers are to
  • Acrylic resins derived from substituted acrylic acid esters such as. As of epoxy acrylates, urethane acrylates or polyester acrylates.
  • thermoset polymers are alkyd resins
  • thermoset polymers are polyurethanes or polyureas obtained by reacting polyisocyanates or ureas with polyols or polyamines.
  • Preferred polyols are alkene oxide adducts of ethylene glycol, 1, 2-propanediol, bisphenol A, trimethylolpropane, glycerol, pentaerythrol, sorbitol, sugar or degraded starch. It is also possible to use polyester polyols. These can be obtained by polycondensation of a polyalcohol such as ethylene glycol,
  • Dextrose and / or sorbitol with a dibasic acid such as oxalic acid, malonic acid, succinic acid, tartaric acid, adipic acid, sebacic acid,
  • Suitable polyisocyanates are aromatic, alicyclic or aliphatic
  • Polyisocyanates having not less than two isocyanate groups and mixtures thereof Preference is given to aromatic polyisocyanates, such as tolyl diisocyanate,
  • alicyclic polyisocyanates such as methylene diphenyl diisocyanate, tolylene diisocyanate; aliphatic polyisocyanates, and hexamethylene diisocyanate, isophorone diisocyanate, Demeryldiisocyanat, 1, 1-methylenebis (4-isocyanatocyclohexane-4,4'-diisocyanato dicyclohexylmethane isomer mixture, 1, 4-cyclohexyl diisocyanate, Desmodur ® - types (Bayer) and lysine diisocyanate and mixtures thereof.
  • Suitable polyisocyanates are also modified products obtained by reaction of polyisocyanate with polyol, urea, carbodiimide and / or biuret.
  • thermoplastic polymers particularly preferably polystyrene HI, polyphenylene ethers, polyamides, polyesters, polycarbonates and blends or polymer blends of the type ABS (acrylonitrile-butadiene-styrene) or PC / ABS (polycarbonate / acrylonitrile-butadiene-styrene) or PPE / HIPS
  • Polystyrene HI is a polystyrene with increased impact strength.
  • Particularly preferred thermoplastic polymers used are polyamides, polyesters and PPE / HIPS blends.
  • the flame retardant combinations used according to the invention stabilize the polymers (component G) very well against thermal degradation. This is evidenced by the change in the specific viscosity of thermoplastic polymers during compounding and shaping of the polymer compositions according to the invention.
  • the resulting thermal stress has a partial degradation of the polymer chains result, resulting in a reduction of average molecular weight and associated therewith expresses a reduction in the viscosity of a polymer solution.
  • the content of the component G is usually 25 to 95% by weight, preferably 25 to 75% by weight.
  • the proportion of the component G is usually 25 to 95% by weight, preferably 25 to 75% by weight.
  • Component A usually 1 to 35 wt .-%, preferably 5 to 20 wt .-%.
  • the proportion of component B is usually 0.01 to 3 wt .-%, preferably 0.05 to 1, 5 wt .-%.
  • the proportion of component C is usually 0.001 to 1% by weight, preferably 0.01 to
  • the proportion of component D is usually 1 to 25 wt .-%, preferably 4 to 10 wt .-%.
  • the proportion of component E is usually 1 to 25 wt .-%, preferably 4 to 10 wt .-%.
  • the proportion of component F is usually 0 to 10 wt .-%, preferably 1 to 8 wt .-%.
  • the percentages for the proportions of components A to G are based on the total amount of the polymer composition. Preference is given to flame-retardant according to the invention
  • Polymer compositions achieve a rating of V0 to UL-94, especially measured on moldings of 3.2 mm to 0.4 mm thickness.
  • Polymer compositions have a Glow Wire Flammability Index according to IEC-60695-2-12 greater than or equal to 960 ° C, in particular measured on molded parts of 0.75 - 3 mm thickness.
  • the particularly preferred polyamides of component G are generally homo- or copolyamides derived from (cyclo) aliphatic
  • Aminocarboxylic acids or their polyamide-forming derivatives, such as their salts derived are examples of aminocarboxylic acids or their polyamide-forming derivatives, such as their salts derived.
  • polyamides according to the invention used as component A can be prepared by various methods and synthesized from very different building blocks and in a specific application alone or in combination with processing aids, stabilizers or polymeric alloying partners, preferably elastomers, to materials equipped with specially selected property combinations.
  • processing aids e.g., acetylene glycol, ethylene glycol dimethacrylate, ethylene glycol dimethacrylate, ethylene glycol dimethacrylate, ethylene glycol dimethacrylate, polystyrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrenethacrylate, polystyrenethacrylate, polystyrenethacrylate, polystyrenethacrylate, polystyrenethacrylate
  • Monomerbausteine various chain regulators for setting a desired molecular weight or monomers with reactive groups for later intended post-treatments can be used.
  • polyamides to be used as component G are preferably partially crystalline aliphatic polyamides having a melting point of less than or equal to 290 ° C., preferably less than or equal to 280 ° C. These can be based on
  • cycloaliphatic lactams with at least 5 ring members or corresponding amino acids.
  • Suitable starting materials are aliphatic dicarboxylic acids, preferably adipic acid, 2,2,4- and 2,4,4-trimethyladipic acid, azelaic acid and / or sebacic acid, aliphatic diamines, preferably tetramethylenediamine, hexamethylenediamine, 1, 9-nonanediamine, 2,2,4- and 2,4,4-trimethylhexamethylenediamine, the isomeric diaminodicyclohexylmethanes, diaminodicyclohexylpropanes, bisaminomethylcyclohexane,
  • Aminocarboxylic acids preferably aminocaproic acid or the corresponding lactams into consideration.
  • Copolyamides of several of the monomers mentioned are included. Particularly preferred are caprolactams, most preferably ⁇ -caprolactam is used.
  • the aliphatic homo- or copolyamides used according to the invention are preferably polyamide 12, polyamide 4, polyamide 4.6, polyamide 6, polyamide 6.6, polyamide 6.9, polyamide 6.10, polyamide 6.12, polyamide 6.66, polyamide 7.7, polyamide 8.8, polyamide 9.9, polyamide 10.9, polyamide 10.10, polyamide 11 or polyamide 12.
  • polyamide 12 polyamide 4
  • polyamide 4.6 polyamide 6
  • polyamide 6.6 polyamide 6.9
  • polyamide 6.10 polyamide 6.12
  • polyamide 6.66 polyamide 7.7, polyamide 8.8, polyamide 9.9, polyamide 10.9, polyamide 10.10, polyamide 11 or polyamide 12.
  • These are known, for example, under the trade names Nylon® , Fa. DuPont, Ultramid ®, Fa. BASF, Akulon ® K122, Fa. DSM, Zytel ® 7301,
  • PA6 PA6.6
  • other aliphatic homo- or copolyamide-based compounds in which a
  • Polyamide group in the polymer chain 3 to 1 1 come methylene groups.
  • Flame retardant polyamide compositions in which one or more polyamides is selected as component G from the group consisting of PA 6, PA 6.6, PA 4.6, PA 12, PA 6.10 are preferably used. Flame-retardant polyamide compositions in which polyamide 6.6 or polymer blends of polyamide 6.6 and polyamide 6 are used as component G are particularly preferred.
  • the particularly preferred polyesters of component G are generally (cyclo) aliphatic or aromatic-aliphatic polyesters derived from (cyclo) aliphatic and / or aromatic dicarboxylic acids or their polyester-forming derivatives, such as their dialkyl esters or anhydrides, and of (cyclo) aliphatic and / or araliphatic diols or of (cyclo) aliphatic and / or aromatic hydroxycarboxylic acids or their polyester-forming derivatives, such as their alkyl esters or anhydrides.
  • thermoplastic polyesters of component G are preferably selected from the group of polyalkylene esters of aromatic and / or aliphatic dicarboxylic acids or their dialkyl esters.
  • Preferably used components G are aromatic-aliphatic
  • thermoplastic polyesters and preferably thermoplastic polyesters derived by reacting aromatic dicarboxylic acids or their polyester-forming derivatives with aliphatic C 2 -C 10 -diols, in particular with C 2 -C 4 -diols.
  • preferably used components G are
  • Polyalkylene enterephthalates and particularly preferably polyethylene terephthalates or polybutylene terephthalates.
  • Polyalkylene terephthalates preferably contain at least 80 mol%, in particular 90 mol%, based on the dicarboxylic acid, units derived from terephthalic acid.
  • polyalkylene terephthalates may contain up to 20 mol% of radicals of other aromatic dicarboxylic acids having 8 to 14 carbon atoms or radicals of aliphatic dicarboxylic acids having 4 to 12 carbon atoms, such as radicals of phthalic acid, isophthalic acid, naphthalene-2,6-dicarboxylic acid, 4 , 4'-diphenyldicarboxylic acid, succinic, adipic, sebacic or azelaic acid, cyclohexanediacetic acid or cyclohexanedicarboxylic acid.
  • radicals of other aromatic dicarboxylic acids having 8 to 14 carbon atoms or radicals of aliphatic dicarboxylic acids having 4 to 12 carbon atoms such as radicals of phthalic acid, isophthalic acid, naphthalene-2,6-dicarboxylic acid, 4 , 4'-diphenyldicarboxylic acid, succinic, a
  • Polyalkylene terephthalates can be prepared by incorporation of relatively small amounts of trihydric or trihydric alcohols or tribasic or tetrabasic carboxylic acids, as described, for example, in US Pat. As described in DE-A-19 00 270 are branched. Examples of preferred branching agents are trimesic acid, trimellitic acid, trimethylolethane and propane and pentaerythritol. Particularly preferred components G are polyalkylene terephthalates which are prepared solely from terephthalic acid and its reactive derivatives (eg.,
  • Dialkyl esters and ethylene glycol and / or propanediol-1, 3 and / or butanediol-1, 4 are prepared (polyethylene and Polytrimethylen- and
  • Polybutylene terephthalate and mixtures of these polyalkylene terephthalates.
  • Preferred polybutylene terephthalates contain at least 80 mol%
  • the preferred polybutylene terephthalates may further contain, in addition to 1,4-butanediol radicals, up to 20 mol% of other aliphatic diols having 2 to 12 carbon atoms or cycloaliphatic diols having 6 to 21 carbon atoms, e.g. B. residues of
  • Polyalkylene terephthalates are also copolyesters which are prepared from at least two of the abovementioned acid components and / or from at least two of the abovementioned alcohol components and / or butanediol-1,4.
  • thermoplastic component used as component G according to the invention is thermoplastic component used as component G according to the invention.
  • Polyesters may also be used in admixture with other polyesters and / or other polymers.
  • the polymer compositions according to the invention may contain as component H further additives.
  • Preferred components H in the sense of present invention are antioxidants, UV stabilizers,
  • Gamma ray stabilizers for antioxidants, antistatic agents, emulsifiers, nucleating agents, plasticizers, processing aids, impact modifiers, dyes, pigments,
  • Fillers, reinforcing agents and / or other flame retardants that differ from components A, B, C, D, E and F.
  • phosphates such as melamine poly (metal phosphates).
  • metal phosphates such as melamine poly (metal phosphates).
  • Preferred metals for this purpose are the elements of FIG. 2.
  • Main group the 3rd main group, the 2nd subgroup, the 4th subgroup and the subgroup Villa of the Periodic Table and cerium and / or lanthanum.
  • Melamine poly (metal phosphates) are preferably melamine poly (zinc phosphates), melamine poly (magnesium phosphates) and / or melamine poly (calcium phosphates).
  • melamine poly (metal phosphates) which are known as
  • melamine-intercalated aluminum, zinc or magnesium salts of condensed phosphates very particular preference is given to bis-melamine-zinc-diphosphate and / or bis-melamine-alumotriphosphate.
  • Polyphosphates Preference is given to aluminum phosphates, aluminum monophosphates; Aluminum orthophosphates (AIPO4), aluminum hydrogen phosphate (Al2 (HPO4) 3) and / or aluminum dihydrogen phosphate
  • calcium phosphate zinc phosphate, titanium phosphate and / or iron phosphate
  • Calcium dihydrogen pyrophosphate, magnesium pyrophosphate zinc pyrophosphate and / or aluminum pyrophosphate are examples of magnesium pyrophosphate and / or aluminum pyrophosphate.
  • Polymer composition is usually up to 60 wt .-%, preferably between 10 and 50 wt .-%, based on the total amount of
  • Polymer composition Particular preference is given to polymer compositions according to the invention which contain fillers and / or in particular reinforcing materials, preferably glass fibers. It can also be mixtures of two or more
  • Preferred fillers are mineral particulate fillers based on talc, mica, silicate, quartz, titanium dioxide, wollastonite, kaolin, amorphous silicas, nanoscale minerals, particularly preferably montmorillonites or nano-boehmites, magnesium carbonate, chalk, feldspar, glass beads and / or barium sulfate. Particular preference is given to mineral particulate fillers based on talc, wollastonite and / or kaolin.
  • needle-shaped mineral fillers are also particularly preferably used. Under needle-shaped mineral fillers is understood according to the invention a mineral filler with pronounced needle-like character. Preferred are needle-shaped wollastonites.
  • the mineral has a length to diameter ratio of 2: 1 to 35: 1, more preferably from 3: 1 to 19: 1, particularly preferably from 4: 1 to 12: 1.
  • the average particle size of the acicular mineral fillers used according to the invention as component B is preferably less than 20 ⁇ m, more preferably less than 15 ⁇ m, particularly preferably less than 10 ⁇ m, determined using a CILAS granulometer.
  • the reinforcing materials preferably used according to the invention may be carbon fibers and / or glass fibers.
  • the filler and / or reinforcing material may in a preferred
  • Be surface-modified embodiment preferably with a
  • Adhesive or a primer system particularly preferably on
  • Silane In particular when glass fibers are used, in addition to silanes, polymer dispersions, film formers, branching agents and / or
  • the glass fibers preferably used according to the invention may be short glass fibers and / or long glass fibers. As a short or
  • Long glass fibers can be used cut fibers.
  • Short glass fibers can also be used in the form of ground glass fibers.
  • glass fibers can also be used in the form of continuous fibers, for example in the form of rovings, monofilaments, filament yarns or twines, or glass fibers can be used in the form of textile fabrics, for example as a glass fabric, as a glass braid or as a glass mat.
  • Polyamide matrix range from 0.05 to 10 mm, preferably from 0.1 to 5 mm. After incorporation into the polyamide matrix, the length of the glass fibers has decreased. Typical fiber lengths for short glass fibers after the
  • Incorporation into the polyamide matrix ranges from 0.01 to 2 mm, preferably from 0.02 to 1 mm.
  • the diameters of the individual fibers can vary within wide ranges. Typical diameters of the individual fibers range from 5 to 20 ⁇ m.
  • the glass fibers can have any cross-sectional shapes, for example round, elliptical, n-cornered or irregular cross-sections. Glass fibers with mono- or multilobal cross-sections can be used.
  • Glass fibers can be used as continuous fibers or as cut or ground glass fibers.
  • the glass fibers themselves regardless of their cross-sectional area and their length, can be selected, for example, from the group of E-glass fibers, A-glass fibers, C-glass fibers, D-glass fibers, M-glass fibers, S-glass fibers,
  • the glass fibers are preferably provided with a size which preferably contains polyurethane as film former and aminosilane as adhesion promoter.
  • Particularly preferably used E glass fibers have the following chemical
  • R glass fibers have the following chemical composition: S1O2 50-65%; AI2O3 20-30%; CaO 6-16%; MgO 5-20%; Na 2 O 0.3-0.5%; K2O 0.05-0.2%; Fe 2 Os 0.2-0.4%, T1O2 0.1-0.3%.
  • ECR glass fibers have the following chemical composition: S1O2 57.5-58.5%; AI2O3 17.5-19.0%; CaO 11, 5-13.0%; MgO 9.5-1 1, 5.
  • the proportion of fillers and / or reinforcing materials in the polymer composition according to the invention is usually 1 to 45 wt .-%, preferably 20 to 40 wt .-%.
  • the further additives H are known per se as additives to polymer compositions and can be used alone or mixed or in the form of masterbatches.
  • the abovementioned components A, B, C, D, E, G and, if appropriate, F and / or H can be processed in a wide variety of combinations with the flameproofed polymer composition according to the invention. It is thus possible to mix the components into the polymer melt already at the beginning or at the end of the polycondensation or in a subsequent compounding process. Furthermore, there are processing processes in which individual
  • Drying process possibly warm up warm polymer granules.
  • two or more of the components of the polymer compositions of the present invention may be combined by mixing prior to incorporation into the polymer matrix.
  • conventional mixing units can be used, in which the components in a suitable mixer, for. B. 0.01 to 10 hours at 0 to 300 ° C mixed. From two or more of the components of the invention
  • Polymer compositions can also be prepared granules, which can then be introduced into the polymer matrix.
  • Polymer composition with granulation and / or binder in a suitable mixer or a granulating are processed into granules.
  • the initially formed crude product can be dried in a suitable dryer or tempered for further grain buildup.
  • the polymer composition according to the invention or two or more components thereof may be prepared by roll compaction in one embodiment.
  • the polymer composition according to the invention or two or more components thereof may be prepared by roll compaction in one embodiment.
  • the polymer composition according to the invention or two or more components thereof may be prepared by roll compaction in one embodiment.
  • components thereof may be prepared by mixing, extruding, chopping (or breaking) the ingredients.
  • the polymer composition according to the invention or two or more components thereof can be prepared in one embodiment by spray granulation.
  • the flame-retardant polymer composition according to the invention is preferably in granular form, eg. B. as an extrudate or as a compound before.
  • the granules preferably have cylindrical shape with circular, elliptical or irregular
  • Base spherical shape, cushion shape, cube shape, cuboid shape, prism shape.
  • Typical length to diameter ratio of the granules are 1 to 50 to 50 to 1, preferably 1 to 5 to 5 to 1.
  • the granules preferably have a diameter of 0.5 to 15 mm, more preferably of 2 to 3 mm and preferably a length of 0.5 to 15 mm, particularly preferably 2 to 5 mm.
  • thermosetting polymer compositions When using polymers or precursors thereof, which are processed into thermosetting polymer compositions, different manufacturing processes can be used.
  • Flammschutzmittelkombination invention comprising the above-defined components A, B, C, D, E and optionally F and optionally with other flame retardants, synergists, stabilizers, additives and fillers or
  • thermosetting resin with a flame retardant combination comprising the above-defined components A, B, C, D, E and optionally F and optionally with other flame retardants, synergists, stabilizers, Additives and fillers or
  • the invention also relates to moldings produced from the above-described flame-retardant polymer composition comprising the components A, B, C, D, E and G and optionally the components F and / or H.
  • the moldings according to the invention may be any desired formations. Examples of these are fibers, films or moldings obtainable from the novel flame-retardant polymer molding compositions by any desired molding processes, in particular by injection molding or extrusion.
  • the preparation of the flame-retardant polymer moldings according to the invention can be carried out by any molding process. Examples include injection molding, pressing, foam injection, gas injection molding, blow molding,
  • the molded parts are preferably injection-molded parts or extruded parts.
  • the flame-retardant polymer compositions according to the invention are suitable for the production of fibers, films and moldings, in particular for applications in the electrical and electronics sector.
  • the invention preferably relates to the use of the flame-retardant polymer compositions according to the invention in or for connectors, current-carrying parts in power distributors (Fl protection), circuit boards, potting compounds, power connectors, circuit breakers, lamp housings, LED housings,
  • Capacitor housings Capacitor housings, bobbins and fans, protective contacts, Plugs, in / on boards, housings for plugs, cables, flexible circuit boards, charging cables for mobile phones, engine covers or textile coatings.
  • the invention also preferably relates to the use of the flame-retardant Polynnerzusannnnenianaen invention for the production of molded articles in the form of components for the electrical / electronics sector, in particular for parts of printed circuit boards, housings, foils, cables, switches, distributors, relays, resistors, capacitors, coils, lamps , Diodes, LEDs, transistors, connectors, regulators, memories and sensors, in the form of large-area components, in particular of housing parts for control cabinets and in the form of elaborately designed components with sophisticated geometry.
  • the wall thickness of the shaped bodies according to the invention can typically be up to 10 mm. Particularly suitable are moldings with less than 1.5 mm wall thickness, more preferably less than 1 mm wall thickness and particularly preferably less than 0.5 mm wall thickness.
  • Flame retardant FM 3 (components A, B and C): Aluminum salt of diethylphosphinic acid containing 0.9 mol% of aluminum ethyl butylphosphorate and 0.5 mol% of aluminum ethylphosphonate prepared according to Example 3 of US Pat. No. 7,420,007 B2 flame retardant FM 4 (components A, B and C):
  • Polyamide 6.6 PA 6.6-GV; melting range of 255-260 ° C): Ultramid ® A27 (BASF) Polyamide 6 (melting range of 217-222 ° C): Durethan ® B29 (Lanxess)
  • Polyamide 6T / 6.6 (melting range 310-320 ° C): Vestamid ® HAT plus 1000 (Evonik)
  • PBT Polybutylene terephthalate
  • BASF Ultradur ® 4500 (BASF) glass fibers
  • the flame retardant components were mixed in the proportions shown in the tables and on the side feeder of a twin-screw extruder (Leistritz ZSE 27 / 44D) at temperatures of 260 to 310 ° C in PA 6.6 and at 250 to 275 ° C in PA 6 resp at 310 to 330 ° C PA 6T / 6.6 incorporated.
  • the glass fibers were over a second side feed
  • Injection molding machine type Arburg 320 C Allrounder
  • mass temperatures 250 to 320 ° C to test specimens processed and based on the UL 94 test
  • the Comparative Tracking Index of the molded parts was determined according to the International Electrotechnical Commission Standard IEC-601 12/3.
  • the Glow Wire Flammability Index (GWIT Index) has been determined in accordance with standard IEC-60695-2-12.
  • Injection molding machine was carried out at melt temperatures of 260 to 280 ° C.
  • polyamide compositions according to the invention of Examples 1 to 5 are molding compositions which reach the fire classification UL 94 V-0 at 0.4 mm and at the same time CTI 600 volts, GWFI 960 ° C and GWIT 800 ° C and 825 ° C.
  • the addition of component F in Example 5 leads to a repeated
  • the GWFI values corresponded to the values for the moldings containing component E.
  • the CTI values decreased in comparison to the moldings containing component E.
  • the polyamide compositions according to the invention of Examples 7 to 10 are molding compositions which reach the fire classification UL 94 V-0 at 0.4 mm, while having CTI 600 volts, GWFI 960 ° C and GWIT 800 ° C and 825 ° C, respectively.
  • the addition of component F in Example 10 leads to a further improvement of the flame retardancy expressed by a reduced afterburning time and to an improvement of the GWIT value.
  • the GWFI values corresponded to the values for the moldings containing component E.
  • the CTI values decreased in comparison to the moldings containing component E.
  • polyester molding composition including the flame retardants and reinforcing agents.
  • polyester compositions according to the invention of Examples 1 1 to 15 are molding compositions which reach the fire classification UL 94 V-0 at 0.4 mm and at the same time CTI 600 volts, GWFI 960 ° C and GWIT 775 ° C and 800 ° C.
  • the addition of component F in Example 15 leads to a repeated
  • the GWFI values corresponded to the values for the moldings containing component E.
  • the CTI values decreased in comparison to the moldings containing component E.
  • Test specimens are produced because the PA molding compounds as not processable proved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

L'invention concerne des combinaisons d'agents ignifuges contenant un sel d'acide phosphinique de formule (I) en tant que constituant A, où R1 et R2 sont éthyle, M est Al, Fe, TiOp ou Zn, m vaut de 2 à 3 et p = (4 - m) / 2 ; un composé choisi dans le groupe des sels d'Al, de Fe, de TiOp ou de Zn de l'acide éthylbutylphosphinique, de l'acide dibutylphosphinique, de l'acide éthylhexylphosphinique, de l'acide butylhexylphosphinique et/ou de l'acide dihexylphosphinique en tant que constituant B ; un sel d'acide phosphonique de formule II en tant que constituant C, où R3 est éthyle, Met est Al, Fe, TiOq ou Zn, n vaut de 2 à 3 et q = (4 - n) / 2 ; du polyphosphate de mélamine ayant un degré de condensation moyen de 2 à 200 en tant que constituant D ; et du cyanurate de mélamine en tant que constituant E. Les compositions polymères peuvent être employées pour la production de fibres, de films et de corps moulés, notamment pour des applications dans les domaines électrique et électronique.
PCT/EP2018/073236 2017-09-07 2018-08-29 Combinaisons synergiques d'agents ignifuges pour compositions polymères et leur utilisation WO2019048313A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18762272.5A EP3679095A1 (fr) 2017-09-07 2018-08-29 Combinaisons synergiques d'agents ignifuges pour compositions polymères et leur utilisation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017215780.1 2017-09-07
DE102017215780.1A DE102017215780A1 (de) 2017-09-07 2017-09-07 Synergistische Flammschutzmittelkombinationen für Polymerzusammensetzungen und deren Verwendung

Publications (1)

Publication Number Publication Date
WO2019048313A1 true WO2019048313A1 (fr) 2019-03-14

Family

ID=63442631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/073236 WO2019048313A1 (fr) 2017-09-07 2018-08-29 Combinaisons synergiques d'agents ignifuges pour compositions polymères et leur utilisation

Country Status (5)

Country Link
EP (1) EP3679095A1 (fr)
CN (1) CN109467747B (fr)
DE (1) DE102017215780A1 (fr)
TW (1) TW201912771A (fr)
WO (1) WO2019048313A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115605431A (zh) * 2020-04-24 2023-01-13 J.M.休伯有限公司(Us) 用于连续聚合磷酸盐化合物以形成多磷酸盐组合物的方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018220696A1 (de) 2018-11-30 2020-06-04 Clariant Plastics & Coatings Ltd Flammschutzmittelmischungen, flammhemmende Polymerzusammensetzungen, damit ausgerüstete Kabel und deren Verwendung
DE102019201824A1 (de) * 2019-02-12 2020-08-13 Clariant Plastics & Coatings Ltd Flammschutzmittelmischungen, flammhemmende Polymerzusammensetzungen, damit ausgerüstete Kabel und deren Verwendung
EP3926002A1 (fr) * 2020-06-15 2021-12-22 Clariant International Ltd Combinaison de stabilisateur et d'agent ignifuge pour polymères thermoplastiques
CN112812366B (zh) * 2020-12-30 2022-08-09 浙江新化化工股份有限公司 阻燃组合物及其应用、pbt复合材料及其制备方法
CN113956621B (zh) * 2021-09-27 2023-04-11 金发科技股份有限公司 一种阻燃pbt组合物及其制备方法和应用

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1900270A1 (de) 1968-01-04 1969-11-06 Rhodiaceta Neue thermoplastische Formmassen
DE2252258A1 (de) 1972-10-25 1974-05-09 Hoechst Ag Schwerentflammbare thermoplastische polyester
DE2447727A1 (de) 1974-10-07 1976-04-08 Hoechst Ag Schwerentflammbare polyamidformmassen
DE19607635A1 (de) 1996-02-29 1997-09-04 Hoechst Ag Schwerentflammbare Polyamidformmassen
WO1997039053A1 (fr) 1996-04-12 1997-10-23 Clariant Gmbh Combinaison synergique d'agents antifeu pour polymeres thermoplastiques
WO1998003515A1 (fr) 1996-07-22 1998-01-29 Ticona Gmbh Sels d'aluminium d'acides phosphiniques
DE19734437A1 (de) 1997-08-08 1999-02-11 Clariant Gmbh Synergistische Flammschutzmittel-Kombination für Polymere
DE19737727A1 (de) 1997-08-29 1999-07-08 Clariant Gmbh Synergistische Flammschutzmittel-Kombination für Kunststoffe
WO2000002869A1 (fr) 1998-07-08 2000-01-20 Dsm N.V. Sel polyphosphate d'un compose 1,3,5-triazine avec un degre eleve d'ions de condensat et son utilisation comme charge ignifugeante dans des compositions polymeres
WO2002028953A1 (fr) 2000-10-05 2002-04-11 Ciba Specialty Chemicals Holding Inc. Composition ignifuge exempte d'halogene et composition polyamidique ignifuge
JP2004204194A (ja) 2002-12-26 2004-07-22 Polyplastics Co 難燃性樹脂組成物
EP1544206A1 (fr) * 2003-12-19 2005-06-22 Clariant GmbH Sels d'acides dialkylphosphiniques
WO2006027340A1 (fr) 2004-09-04 2006-03-16 Chemische Fabrik Budenheim Kg Derive de polyphosphate a partir d'un compose de triazine 1,3,5, procede de production et d'utilisation associe
DE102005016195A1 (de) 2005-04-08 2006-10-12 Clariant Produkte (Deutschland) Gmbh Stabilisiertes Flammschutzmittel
DE102005041966A1 (de) 2005-09-03 2007-03-08 Clariant Produkte (Deutschland) Gmbh Polymere Formmassen auf Basis von thermoplastischen Polyamiden
DE102007036465A1 (de) 2007-08-01 2009-02-05 Catena Additives Gmbh & Co. Kg Phosphorhaltige Triazin-Verbindungen als Flammschutzmittel
WO2012045414A1 (fr) 2010-10-09 2012-04-12 Clariant International Ltd Combinaison ignifugeant/stabilisateur pour polymères thermoplastiques
DE102011120218A1 (de) 2011-12-05 2013-06-06 Clariant International Ltd. Alkali-Aliminium-Mischphosphite, Verfahren zur ihrer Herstellung sowie deren Verwendung
WO2014135256A1 (fr) 2013-03-08 2014-09-12 Clariant International Ltd Composition de polyamide ignifuge
DE102014001222A1 (de) 2014-01-29 2015-07-30 Clariant lnternational Ltd Halogenfreie feste Flammschutzmittelmischung und ihre Verwendung
WO2016065971A1 (fr) 2014-10-29 2016-05-06 广州金凯新材料有限公司 Composition d'additif pour polymère et son procédé de préparation et matière à mouler de type polymère thermoplastique ignifuge la contenant
EP3133112A1 (fr) 2015-03-09 2017-02-22 LANXESS Deutschland GmbH Matières à mouler thermoplastiques

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1239615C (zh) * 2000-08-30 2006-02-01 旭化成株式会社 可固化树脂组合物
DE102011120190A1 (de) * 2011-12-05 2013-06-06 Clariant International Limited Mischungen von Aluminium-Hydrogenphosphiten mit Aluminiumsalzen, Verfahren zu ihrer Herstellung sowie ihre Verwendung
KR102113191B1 (ko) * 2013-12-16 2020-05-20 엘지이노텍 주식회사 열전도성 수지 조성물 및 이를 이용하는 힛 싱크
CN105924651B (zh) * 2016-05-09 2018-08-21 东华大学 一种高聚合度的三聚氰胺聚磷酸盐的制备方法

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1900270A1 (de) 1968-01-04 1969-11-06 Rhodiaceta Neue thermoplastische Formmassen
DE2252258A1 (de) 1972-10-25 1974-05-09 Hoechst Ag Schwerentflammbare thermoplastische polyester
DE2447727A1 (de) 1974-10-07 1976-04-08 Hoechst Ag Schwerentflammbare polyamidformmassen
DE19607635A1 (de) 1996-02-29 1997-09-04 Hoechst Ag Schwerentflammbare Polyamidformmassen
WO1997039053A1 (fr) 1996-04-12 1997-10-23 Clariant Gmbh Combinaison synergique d'agents antifeu pour polymeres thermoplastiques
WO1998003515A1 (fr) 1996-07-22 1998-01-29 Ticona Gmbh Sels d'aluminium d'acides phosphiniques
DE19734437A1 (de) 1997-08-08 1999-02-11 Clariant Gmbh Synergistische Flammschutzmittel-Kombination für Polymere
DE19737727A1 (de) 1997-08-29 1999-07-08 Clariant Gmbh Synergistische Flammschutzmittel-Kombination für Kunststoffe
WO2000002869A1 (fr) 1998-07-08 2000-01-20 Dsm N.V. Sel polyphosphate d'un compose 1,3,5-triazine avec un degre eleve d'ions de condensat et son utilisation comme charge ignifugeante dans des compositions polymeres
EP1095030B1 (fr) 1998-07-08 2007-08-22 Ciba SC Holding AG Sel polyphosphate d'un compose 1,3,5-triazine avec un degre eleve d'ions de condensation et son utilisation comme charge ignifugeante dans des compositions polymeres
WO2002028953A1 (fr) 2000-10-05 2002-04-11 Ciba Specialty Chemicals Holding Inc. Composition ignifuge exempte d'halogene et composition polyamidique ignifuge
JP2004204194A (ja) 2002-12-26 2004-07-22 Polyplastics Co 難燃性樹脂組成物
EP1544206A1 (fr) * 2003-12-19 2005-06-22 Clariant GmbH Sels d'acides dialkylphosphiniques
US7420007B2 (en) 2003-12-19 2008-09-02 Clariant Produkte (Deutschland) Gmbh Dialkylphosphinic salts
WO2006027340A1 (fr) 2004-09-04 2006-03-16 Chemische Fabrik Budenheim Kg Derive de polyphosphate a partir d'un compose de triazine 1,3,5, procede de production et d'utilisation associe
EP1789475B1 (fr) 2004-09-04 2010-07-14 Chemische Fabrik Budenheim KG Derive de polyphosphate a partir d'un compose de triazine 1,3,5, procede de production et d'utilisation associe
DE102005016195A1 (de) 2005-04-08 2006-10-12 Clariant Produkte (Deutschland) Gmbh Stabilisiertes Flammschutzmittel
DE102005041966A1 (de) 2005-09-03 2007-03-08 Clariant Produkte (Deutschland) Gmbh Polymere Formmassen auf Basis von thermoplastischen Polyamiden
DE102007036465A1 (de) 2007-08-01 2009-02-05 Catena Additives Gmbh & Co. Kg Phosphorhaltige Triazin-Verbindungen als Flammschutzmittel
WO2012045414A1 (fr) 2010-10-09 2012-04-12 Clariant International Ltd Combinaison ignifugeant/stabilisateur pour polymères thermoplastiques
DE102011120218A1 (de) 2011-12-05 2013-06-06 Clariant International Ltd. Alkali-Aliminium-Mischphosphite, Verfahren zur ihrer Herstellung sowie deren Verwendung
WO2014135256A1 (fr) 2013-03-08 2014-09-12 Clariant International Ltd Composition de polyamide ignifuge
DE102014001222A1 (de) 2014-01-29 2015-07-30 Clariant lnternational Ltd Halogenfreie feste Flammschutzmittelmischung und ihre Verwendung
WO2016065971A1 (fr) 2014-10-29 2016-05-06 广州金凯新材料有限公司 Composition d'additif pour polymère et son procédé de préparation et matière à mouler de type polymère thermoplastique ignifuge la contenant
EP3133112A1 (fr) 2015-03-09 2017-02-22 LANXESS Deutschland GmbH Matières à mouler thermoplastiques

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115605431A (zh) * 2020-04-24 2023-01-13 J.M.休伯有限公司(Us) 用于连续聚合磷酸盐化合物以形成多磷酸盐组合物的方法

Also Published As

Publication number Publication date
DE102017215780A1 (de) 2019-03-07
CN109467747A (zh) 2019-03-15
TW201912771A (zh) 2019-04-01
CN109467747B (zh) 2021-07-06
EP3679095A1 (fr) 2020-07-15

Similar Documents

Publication Publication Date Title
EP3505597B1 (fr) Mélange d'agent ignifuge solide sans halogène et son utilisation
EP3487957B1 (fr) Mélanges ignifuges, leur préparation et leur utilisation
WO2019048313A1 (fr) Combinaisons synergiques d'agents ignifuges pour compositions polymères et leur utilisation
EP3652245B1 (fr) Mélanges d'additifs pour matières plastiques, compositions polymères marquables au laser les contenant et leur utilisation
EP1945708A1 (fr) Polyester thermoplastique ignifuge ne contenant pas d halogene
EP3487956A1 (fr) Mélanges ignifuges, leur préparation et leur utilisation
EP3665220A1 (fr) Compositions de polyamide ignifuges ayant une température d'inflammation de filament élevée et leur utilisation
WO2019030251A1 (fr) Compositions ignifuges de polyamide et leur utilisation
WO2019048309A1 (fr) Compositions de polyester ignifuges et leur utilisation
WO2019048307A1 (fr) Compositions de polyester ignifuges et leur utilisation
WO2019048312A1 (fr) Combinaisons d'agents ignifuges pour compositions polymères et leur utilisation
EP3679093A1 (fr) Combinaisons d'agents ignifuges pour compositions polymères et leur utilisation
EP3652242B1 (fr) Compositions de polyamide ignifuges ayant une résistance à la déformation à chaud élevée et leur utilisation
EP3679092A1 (fr) Compositions de polyamide ignifuges ayant une résistance à la déformation à chaud élevée et leur utilisation
DE102017214051B4 (de) Flammhemmende Polyamidzusammensetzungen mit hoher Wärmeformbeständigkeit und deren Verwendung
WO2019011791A1 (fr) Mélanges d'additifs pour matières plastiques, compositions polymères marquables au laser les contenant et leur utilisation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18762272

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018762272

Country of ref document: EP

Effective date: 20200407