WO2019047831A1 - 一种阵列天线校准方法及装置 - Google Patents

一种阵列天线校准方法及装置 Download PDF

Info

Publication number
WO2019047831A1
WO2019047831A1 PCT/CN2018/104029 CN2018104029W WO2019047831A1 WO 2019047831 A1 WO2019047831 A1 WO 2019047831A1 CN 2018104029 W CN2018104029 W CN 2018104029W WO 2019047831 A1 WO2019047831 A1 WO 2019047831A1
Authority
WO
WIPO (PCT)
Prior art keywords
calibrated
array antenna
weight vector
beam direction
antenna
Prior art date
Application number
PCT/CN2018/104029
Other languages
English (en)
French (fr)
Inventor
王世华
段滔
马静艳
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to EP18853726.0A priority Critical patent/EP3683984B1/en
Priority to US16/646,561 priority patent/US11005580B2/en
Priority to JP2020514279A priority patent/JP7022201B2/ja
Priority to KR1020207010506A priority patent/KR102325509B1/ko
Publication of WO2019047831A1 publication Critical patent/WO2019047831A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/12Monitoring; Testing of transmitters for calibration of transmit antennas, e.g. of the amplitude or phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/267Phased-array testing or checking devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/0082Monitoring; Testing using service channels; using auxiliary channels
    • H04B17/0085Monitoring; Testing using service channels; using auxiliary channels using test signal generators

Definitions

  • the present invention relates to the field of mobile communications technologies, and in particular, to an array antenna calibration method and apparatus.
  • Active array antenna is a system that receives or emits electromagnetic waves by direct connection of active circuits and each array element in the antenna array.
  • Shape shaping ability by calibrating each channel corresponding to each array element to ensure the consistency of amplitude and phase, thus ensuring the validity of the shaping function.
  • OTA Over The Air
  • the cost of the anechoic chamber is very expensive. Although the test results are highly accurate, the test efficiency is low. Therefore, the above test method is only applicable to the laboratory development stage. For large-scale mass production, the above-mentioned anechoic chamber-based test method is not Be applicable.
  • Embodiments of the present invention provide an array antenna calibration method and apparatus for calibrating an array antenna in real time in an open calibration environment.
  • an array antenna calibration method includes:
  • the initial beam weight vector corresponds to one beam direction.
  • the initial beam weight vector matrix is calibrated based on the obtained amplitude and phase error to obtain a compensation beam weight vector matrix, including:
  • each group of initial beam weight vectors in the initial beam weight vector matrix is compensated to form a compensation beam weight vector matrix.
  • the method further includes:
  • the current test antenna is used, and the standard beam gain value and the standard signal power corresponding to the test antenna of the standard beam direction are combined, and the to-be-calibrated is performed in the current beam direction.
  • Each channel of the array antenna is calibrated.
  • determining a standard beam gain value of the second calibration signal transmitted by the test antenna that receives the standard beam direction through the respective channels by the array antenna to be calibrated including:
  • each channel of the array antenna to be calibrated respectively has a receiving channel and a transmitting channel
  • the method further includes:
  • each of the updated receiving antennas of the array antenna to be calibrated has a compensation receiving beam weight vector matrix
  • each of the transmitting channels corresponds to a compensated transmit beam weight vector matrix
  • the compensated receive beam weight vector matrix and the compensated transmit beam weight vector matrix are both compensation beam weight vector matrices.
  • the current test antenna is used, and the standard beam gain value and the standard signal power corresponding to the test antenna of the standard beam direction are combined to calibrate each channel of the array antenna to be calibrated in the current beam direction, including:
  • the direction angle of the current beam direction is adjusted correspondingly, and the compensated reception corresponding to the original beam direction is based on the adjusted beam direction.
  • the beam weight vector is updated, and the beam gain value of the second calibration signal is recalculated based on the updated compensated received beam weight vector until an error between the obtained beam gain value and the standard beam gain value is located in the first setting Within the threshold.
  • the method further comprises:
  • the method further includes:
  • the method further includes:
  • the receiving channel calibration alarm signal is sent when it is determined that the respective receiving channels of the array antenna to be calibrated are calibrated more than the preset number of times in the current beam direction.
  • the method further includes:
  • the method further includes:
  • an array antenna calibration apparatus includes:
  • a first processing unit configured to transmit a first calibration signal to the array antenna to be calibrated by using a test antenna of a standard beam direction, and receive a first test antenna transmission of the standard beam direction based on each channel of the array antenna to be calibrated And calibrating signals respectively determining amplitude and phase errors between a first calibration signal received through the central channel and a first calibration signal received through each channel, wherein the central channel is a central array element of the array antenna to be calibrated Corresponding channel;
  • a calibration unit configured to calibrate the initial beam weight vector matrix based on the obtained amplitude and phase error to obtain a compensation beam weight vector matrix, wherein the initial beam weight vector matrix is determined by a preset direction angle of each beam direction Determined, and a set of initial beam weight vectors correspond to one beam direction.
  • the calibration unit is used to:
  • each group of initial beam weight vectors in the initial beam weight vector matrix is compensated to form a compensation beam weight vector matrix.
  • the device further includes a second processing unit, the second processing unit is configured to:
  • the current test antenna is used, and the standard beam gain value and the standard signal power corresponding to the test antenna of the standard beam direction are combined, and the to-be-calibrated is performed in the current beam direction.
  • Each channel of the array antenna is calibrated.
  • the second processing is performed.
  • Unit is used to:
  • each channel of the array antenna to be calibrated respectively has a receiving channel and a transmitting channel
  • the device also includes an update unit, the update unit is configured to:
  • each of the updated receiving antennas of the array antenna to be calibrated has a compensation receiving beam weight vector matrix
  • each of the transmitting channels corresponds to a compensated transmit beam weight vector matrix
  • the compensated receive beam weight vector matrix and the compensated transmit beam weight vector matrix are both compensation beam weight vector matrices.
  • the current test antenna is used, and the standard beam gain value and the standard signal power corresponding to the test antenna of the standard beam direction are used to calibrate each channel of the array antenna to be calibrated in the current beam direction.
  • the second processing unit is used to:
  • the direction angle of the current beam direction is adjusted correspondingly, and the compensated reception corresponding to the original beam direction is based on the adjusted beam direction.
  • the beam weight vector is updated, and the beam gain value of the second calibration signal is recalculated based on the updated compensated received beam weight vector until an error between the obtained beam gain value and the standard beam gain value is located in the first setting Within the threshold;
  • the second processing unit is further configured to:
  • the device further includes a first determining unit, wherein the first determining unit is configured to:
  • the first determining unit is further configured to:
  • the receiving channel calibration alarm signal is sent when it is determined that the respective receiving channels of the array antenna to be calibrated are calibrated more than the preset number of times in the current beam direction.
  • the device further includes a second determining unit, wherein the second determining unit is configured to:
  • the second determining unit is further configured to:
  • an electronic device includes: one or more processors;
  • One or more computer readable medium having stored thereon a program for array antenna calibration, wherein when the program is executed by the one or more processors, implementing any of the first aspects The steps of the method described.
  • a fourth aspect one or more computer readable medium having stored thereon a program for array antenna calibration, wherein when the program is executed by one or more processors, causing the communication device to perform as first The method of any of the aspects.
  • the first calibration signal is transmitted to the array antenna to be calibrated by the test antenna of the standard beam direction, and the first calibration signal received by each channel of the array antenna to be calibrated is determined, and the first received through the center channel is determined.
  • the amplitude error of the calibration signal and the first calibration signal received by each channel of the channel, and the initial beam weight vector matrix is calibrated by the amplitude and phase error to obtain a compensation beam weight vector matrix, wherein the initial beam weight vector matrix is Determined by the preset direction angles of the respective beam directions, and a set of initial beam weight vectors correspond to one beam direction, so that the beamforming of the array antenna can be effectively detected in the open scene, and the amplitude of each channel of the array antenna
  • the phase error is calibrated and can be applied to mass production of array antennas.
  • FIG. 1 is a schematic diagram of a calibration scenario in an embodiment of the present invention
  • FIG. 2 is a flowchart of a method for calibrating an array antenna according to an embodiment of the present invention
  • 3a and 3b are flowcharts of a second method for calibrating an array antenna according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of an array antenna calibration apparatus according to an embodiment of the present invention.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • UMTS Universal Mobile Telecommunication System
  • NR New Radio
  • the user equipment includes but is not limited to a mobile station (Mobile Station, MS), a mobile terminal (Mobile Terminal), a mobile phone (Mobile Telephone), a mobile phone (handset). And portable devices, etc., the user equipment can communicate with one or more core networks via a Radio Access Network (RAN), for example, the user equipment can be a mobile phone (or "cellular"
  • RAN Radio Access Network
  • the user equipment can be a mobile phone (or "cellular"
  • the telephone device, the computer with wireless communication function, etc., the user equipment can also be a mobile device that is portable, pocket-sized, handheld, built-in, or in-vehicle.
  • a base station may refer to a device in an access network that communicates with a wireless terminal over one or more sectors over an air interface.
  • the base station can be used to convert the received air frame to the IP packet as a router between the wireless terminal and the rest of the access network, wherein the remainder of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a Base Transceiver Station (BTS) in GSM or CDMA, or may be a base station (NodeB) in TD-SCDMA or WCDMA, or may be an evolved base station (eNodeB or eNB or e- in LTE).
  • NodeB, evolutional Node B), or a base station (gNB) in 5G NR the present invention is not limited.
  • an array antenna calibration method is redesigned by using a test beam with a standard beam direction to transmit the first antenna array to be calibrated. Calibrating the signal, and determining, according to the first calibration signal transmitted by the test antenna of the standard beam direction, each channel of the array antenna to be calibrated, respectively determining the first calibration signal received through the center channel and the first calibration signal received through each channel. The amplitude and phase errors between the two, and then, based on the obtained amplitude and phase errors, the initial beam weight vector matrix is calibrated to obtain a compensated beam weight vector matrix, wherein the initial beam weight vector matrix is preset by each beam direction The direction angle is determined, and a set of initial beam weight vectors corresponds to one beam direction.
  • a calibration scenario needs to be pre-established, so that the electromagnetic environment is relatively stable and meets the far-field test conditions, and correspondingly, a plurality of test antennas are respectively placed in different beam directions of the array antenna to be calibrated. Or, using at least one test antenna, moving in different beam directions, whichever method is used, is essentially calibrated for each channel corresponding to different beam directions of the array antenna to be calibrated.
  • a calibration scenario in which a plurality of test antennas are correspondingly placed in different beam directions of the array antenna to be calibrated is taken as an example.
  • one test antenna corresponding to one beam direction is placed (hereinafter referred to as a test antenna).
  • the beam direction test antenna), and one beam direction corresponds to one direction angle the direction angle includes at least the azimuth angle on the horizontal plane and the elevation angle on the vertical plane, that is, the test antenna of one beam direction corresponds to a set of azimuth and elevation angles
  • the test antennas of different beam directions have different azimuths and elevation angles respectively.
  • the test antenna connected by a dotted line in FIG. 1 is placed on a horizontal plane (xy), and the angle between the test antenna on the horizontal plane and the array antenna to be calibrated is azimuth.
  • the test antenna connected by a broken line indicates that it is placed on a vertical plane (yz), and the angle between the test antenna on the vertical plane and the array antenna to be calibrated is a pitch angle, which is represented by " ⁇ ".
  • the calibration direction of the array antenna of the embodiment of the present invention includes:
  • Step 200 The first calibration signal is transmitted to the array antenna to be calibrated by using the test antenna of the standard beam direction, and the first calibration signal transmitted by the test antenna that receives the standard beam direction is determined according to each channel of the array antenna to be calibrated, and respectively determined to pass through the central channel.
  • test antenna of the standard beam direction refers to the test antenna on the same horizontal line as the array antenna to be calibrated, that is, in the direction angle corresponding to the beam direction, the azimuth angle is zero, and the pitch angle is zero, and the center channel is
  • the channel corresponding to the central array element of the array antenna to be calibrated is one of the channels.
  • Step 210 Calibrate the initial beam weight vector matrix based on the obtained amplitude and phase error to obtain a compensation beam weight vector matrix, wherein the initial beam weight vector matrix is determined by a preset direction angle of each beam direction, and one The group initial beam weight vector corresponds to one beam direction.
  • a compensation beam weight vector matrix is obtained, that is, a preliminary calibration of the respective channels of the array antenna in the standard beam direction can be realized.
  • an array antenna calibration method is further provided, and the specific process is as follows:
  • Step 300 Determine an initial beam weight vector matrix of the array antenna to be calibrated based on a preset direction angle of each beam direction, where a set of beam weight vectors in the initial beam weight vector matrix corresponds to one beam direction.
  • determining an initial beam weight vector matrix of the array antenna to be calibrated based on a direction angle of each beam direction in the current calibration scenario where a set of initial beam weight vectors of the initial beam weight vector matrix corresponds to one beam direction, and each The direction of a set of beam weight vectors is the corresponding direction angle.
  • the initial beam weight vector matrix W is represented by the following formula:
  • the value vector has a size of 1, the azimuth angle is "0°” in the direction angle, and the pitch angle is also "0°".
  • the array antenna to be calibrated since the array antenna to be calibrated has the function of receiving and transmitting signals, there are a receiving channel and a transmitting channel for the channel of the array antenna to be calibrated, and the receiving channel of the array antenna to be calibrated has an initial receiving beam right in the current calibration scenario.
  • the value vector matrix, the transmission channel of the array antenna to be calibrated has an initial transmit beam weight vector matrix in the current calibration scenario, and the initial receive beam weight vector matrix corresponds to the receive channel, and the initial transmit beam weight vector matrix corresponds to the transmit channel, the present invention
  • the initial received beam weight vector matrix is the same as the initial transmit beam weight vector matrix, and may be an initial beam weight vector matrix.
  • the initial receive beam weight vector matrix W RX of the receive channel and the initial transmit beam weight vector matrix W TX of the transmit channel may be represented by the following formula:
  • Step 301 The first calibration signal is transmitted to the array antenna to be calibrated by using a test beam of a standard beam direction.
  • the test antenna located in the direction of the standard beam is used to transmit the first calibration signal to the array antenna to be calibrated.
  • the standard beam direction means that the direction angle is “0°”, that is, the azimuth angle and The pitch angles are respectively "0°”, and the first calibration signal can be a tone calibration signal.
  • Step 302 Receive a first calibration signal transmitted by a test antenna of a standard beam direction through each channel of the array antenna to be calibrated, and respectively determine a first calibration signal received through the center channel and a first calibration signal received through each channel. Amplitude and phase error between.
  • the array antenna to be calibrated receives the first calibration signal transmitted by the test antenna of the standard beam direction through a plurality of channels, and uses the first calibration signal received by the center channel as a reference to determine the first calibration received through each channel respectively.
  • the first calibration signals received by the array antenna to be calibrated through the N channels are: x 0 (t), x 1 (t), ..., x N-1 (t), and the array antenna to be calibrated
  • the first calibration signal received by the center channel corresponding to the central array element is x 0 (t) and is referenced to x 0 (t).
  • the amplitude and phase error e n between the first calibration signal received by the central channel and the first calibration signal received by any one channel is calculated by using the following formula, wherein any one of the receiving channels includes Central channel:
  • the amplitude and phase error e between the first calibration signal received by the central channel and the first calibration signal received by each channel is:
  • Step 303 calibrate the initial beam weight vector matrix by using the obtained amplitude and phase error to obtain a compensation beam weight vector matrix.
  • the amplitude and phase error of the initial beam weight vector matrix W is compensated by the obtained amplitude and phase error e to obtain a compensated beam weight vector matrix W c .
  • the preferred compensation operation is a point multiplication operation for any set of initial beam weight vectors.
  • the compensation result of the obtained amplitude and phase error e for any of the above initial beam weight vectors is calculated by the following formula:
  • is a point multiplication operation
  • the compensation beam weight vector matrix W c is represented by the following formula:
  • the compensated beam weight vector of the test antenna for the Qth beam direction is the compensated beam weight vector of the test antenna for the Qth beam direction.
  • each channel will have a corresponding amplitude and phase error due to the amplitude and phase error of the channel itself.
  • the test antenna of the standard beam direction is used to transmit the first calibration signal to the array antenna to be calibrated, and then the amplitude and phase error generated by the first calibration signal received by each channel of the array antenna to be calibrated is determined.
  • the initial beam weight vector matrix is compensated by the amplitude error to realize the calibration of the amplitude and phase error of each channel in the standard beam direction of the array antenna to be calibrated.
  • the initial beam weight vector matrix of each channel of the array antenna to be calibrated is updated by using a compensation beam weight vector matrix, wherein each received channel of the updated array antenna to be calibrated has a compensation received beam weight vector matrix, and each transmission
  • the channel corresponding to the compensated transmit beam weight vector matrix, the compensated receive beam weight vector matrix and the compensated transmit beam weight vector matrix are all compensated beam weight vector matrices.
  • the compensated receive beam weight vector matrix W' RX of each receive channel of the array antenna to be calibrated is used, and the compensated transmit beam weight vector matrix W' TX corresponding to each transmit channel is used.
  • Step 304 The second calibration signal of the specified rated power is transmitted to the array antenna to be calibrated by the test antenna of the standard beam direction.
  • the second calibration signal of the specified power rating is transmitted to the array antenna to be calibrated by using the test antenna located in the standard beam direction.
  • the test antenna transmits a second calibration signal to the array antenna to be calibrated at a rated power P 0 .
  • Step 305 Receive, by using a plurality of channels of the array antenna to be calibrated, a second calibration signal transmitted by the test antenna of the standard beam direction, and determine, according to the corresponding compensation beam weight vector, the second calibration signal received by the array antenna to be calibrated through each channel. Standard beam gain value.
  • the array antenna to be calibrated receives the second calibration signal transmitted by the channel antenna through several channels, and is based on the obtained compensation beam weight.
  • a vector matrix, the compensation beam weight vector corresponding to the test antenna of the standard beam direction is determined, and then, based on the compensation beam weight vector, determining a standard beam gain value of the second calibration signal that is currently received by the array antenna to be calibrated through its own channels .
  • Standard calibration signal gain of the second beam power rating of the preferred, embodiments of the present invention is calculated using the following formula to be tested calibration standard array antenna receiving the transmitted beam direction is a value P 0 G RX0:
  • w 1 (0°, 0°) represents the compensation beam weight vector corresponding to the standard beam direction
  • x(t) [x 0 (t), x 1 (t),..., x N-1 (t) ] T
  • x(t) is the second calibration signal transmitted by the test antenna of the standard beam direction received by the array antenna to be calibrated through each channel.
  • the obtained standard beam gain value is the receive beamforming index in the standard beam direction of the array antenna to be calibrated.
  • Step 306 The second calibration signal of the specified rated power is transmitted to the test antenna of the standard beam direction by the array antenna to be calibrated, and the standard signal power of the second calibration signal received by the test antenna of the standard beam direction is determined.
  • a second calibration signal of a specified power rating is transmitted to the test antenna of the standard beam direction through a plurality of channels of the array antenna to be calibrated, and a standard signal power corresponding to the second calibration signal received by the test antenna of the standard beam direction is determined.
  • determining the standard signal power of the second calibration signal received by the test antenna of the standard beam direction may be a prior art means, and no additional description is provided herein.
  • the rated power of the second calibration signal transmitted by the array antenna to be calibrated is P 0
  • the standard signal power corresponding to the second calibration signal received by the test antenna of the standard beam direction is P B .
  • the obtained standard signal power is the transmit beamforming indicator in the standard beam direction of the array antenna to be calibrated.
  • Step 307 Determine test antennas of several other beam directions, and select one test antenna corresponding to the uncalibrated beam direction from among a plurality of beam directions that are not calibrated.
  • the purpose is to calibrate each channel of the array antenna to be calibrated in different beam directions to correct the channel error.
  • the channel (including the receiving channel and the transmitting channel) of the array antenna to be calibrated is first standard.
  • Channel calibration is performed in the beam direction to obtain a compensation beam weight vector matrix corresponding to each channel, and then, according to the standard beam direction, each channel of the array antenna to be calibrated is continuously calibrated in other beam directions.
  • the test antenna corresponding to the uncalibrated beam direction is selected to perform the following operations.
  • Step 308 transmitting a second calibration signal of a specified rated power to the array antenna to be calibrated through the currently determined test antenna.
  • test antenna corresponding to the currently selected beam direction is used to transmit a second calibration signal of a specified power rating to the array antenna to be calibrated.
  • the test antenna transmits a second calibration signal to the array antenna to be calibrated at a rated power P 0 .
  • Step 309 Determine, according to the compensation beam weight vector corresponding to the current test antenna, a beam gain value of the second calibration signal transmitted by the array antenna to be calibrated.
  • the array antenna to be calibrated receives the second calibration signal transmitted by the channel through each channel, and is based on the obtained compensation beam. a weight vector matrix, determining a compensation beam weight vector corresponding to the test antenna of the current beam direction, and then determining, according to the compensation beam weight vector, a beam gain value of the second calibration signal received by the array antenna to be calibrated through the plurality of channels thereof .
  • the following formula is used to calculate that the beam direction of the array antenna to be calibrated corresponds to ⁇ k ,
  • the test transmits a standard beam gain value G RXk of the second calibration signal with a nominal power of P 0 :
  • Step 310 Determine whether the error between the current beam gain value and the standard beam gain value is within the first set threshold. If yes, execute step 311. Otherwise, perform step 312.
  • step 311 determining, according to the currently selected beam direction, a beam gain value corresponding to the second calibration signal received by each receiving channel of the array antenna to be calibrated, and receiving, by using the respective receiving channels of the array antenna to be calibrated in the standard beam direction Whether the error between the standard beam gain values corresponding to the second calibration signal is within the first set threshold, and if so, step 311 is performed; otherwise, step 312 is performed.
  • the test antenna of the currently selected beam direction and the test antenna of the standard beam direction transmit a second calibration signal with the same rated power to the array antenna to be calibrated, in order to determine that the receiving channel of the array antenna to be calibrated receives different beams.
  • Step 311 Determine that calibration of each receiving channel of the array antenna to be calibrated in the current beam direction is completed.
  • the compensated receive beam weight vector corresponding to the beam direction is calibrated.
  • the currently selected beam direction is Then, the corresponding compensated receive beam weight vector in the compensated receive beam weight vector matrix W' RX No further calibration is required.
  • Step 312 Determine whether the number of times of calibration of the array antenna receiving channel to be calibrated in the current beam direction exceeds a preset number of times. If yes, go to step 313. Otherwise, go to step 314.
  • Step 313 Issue a receiving channel calibration alarm signal.
  • the receiving channels of the array antenna to be calibrated in the current beam direction are calibrated for more than a preset number of times, the number of calibrations is too large, and the receiving channel calibration alarm signal may be sent.
  • Step 314 Adjust the direction angle of the current beam direction accordingly, and update the compensated receive beam weight vector corresponding to the original beam direction based on the adjusted direction angle.
  • the number of times of calibration of the array antenna receiving channel to be calibrated in the current beam direction does not exceed a preset number of times, first determine the amplitude phase between the second calibration signal received by the center channel and the second calibration signal received by each channel.
  • the error, and the preset angle adjust the direction angle of the current beam direction accordingly, and then update the compensated receive beam weight vector corresponding to the current beam direction based on obtaining the amplitude and phase error and the adjusted direction angle.
  • the amplitude and phase error e k between the second calibration signal received by the central channel and the second calibration signal received by each channel is determined by using the following formula:
  • the second calibration signals received by the array antenna to be calibrated through the N channels are: y 0 (t), y 1 (t), ..., y N-1 (t), and the array antenna to be calibrated
  • the second calibration signal received by the center channel corresponding to the central array element is y 0 (t) and is referenced to y 0 (t).
  • the amplitude and phase error e n between the second calibration signal received by the central channel and the second calibration signal received by any one channel is calculated by using the following formula, wherein any one of the receiving channels includes Central channel:
  • the direction angle of the current beam direction is adjusted correspondingly by using a preset angle.
  • Adjusted direction angle For example, suppose the preset angle is "2.5°" and the current beam direction corresponds to the direction angle. Adjusted direction angle for:
  • the compensation received beam weight vector corresponding to the original beam direction is updated based on the obtained amplitude and phase error and the adjusted direction angle.
  • the updated compensation receiving is determined by using the following formula.
  • step 309 is performed again.
  • Step 315 transmitting, by the current test antenna, a second calibration signal of a specified power rating to the array antenna to be calibrated, and determining a signal power of the second calibration signal received by the array antenna to be calibrated.
  • the transmitting channel of the array antenna to be calibrated is calibrated in the current beam direction.
  • the test antenna of the current beam direction is applied to the array antenna to be calibrated. Transmitting a second calibration signal of a specified power rating and determining a signal power of a second calibration signal received by the array antenna to be calibrated.
  • the rated power of the second calibration signal transmitted by the array antenna to be calibrated is P 0
  • the standard signal power corresponding to the second calibration signal received by the test antenna of the current beam direction is P C .
  • Step 316 Determine whether the error between the current signal power and the standard signal power is within the second set threshold. If yes, go to step 317. Otherwise, go to step 318.
  • step 317 determining, by the current test antenna, a signal power corresponding to a second calibration signal transmitted by each transmitting channel of the array antenna to be calibrated, and transmitting, by a test antenna of a standard beam direction, each transmitting channel that passes through the array antenna to be calibrated Whether the error between the standard signal powers corresponding to the second calibration signal is within the second set threshold, and if so, step 317 is performed, otherwise, step 318 is performed.
  • Step 317 Determine that the calibration of each transmit channel of the array antenna to be calibrated in the current beam direction is completed.
  • the signal power corresponding to the second calibration signal transmitted by each test channel of the array antenna to be calibrated received by the current test antenna is transmitted by the test antenna received by the test antenna of the standard beam direction through each of the transmit channels of the array antenna to be calibrated.
  • the error between the standard signal powers corresponding to the second calibration signal is within the second set threshold, it is determined that the calibration of each of the transmit channels of the array antenna to be calibrated in the currently selected beam direction is completed, that is, the foregoing is not required.
  • the compensated transmit beam weight vector matrix the compensated transmit beam weight vector corresponding to the beam direction is calibrated.
  • Step 318 Determine whether the number of times of calibration of the array antenna transmission channel to be calibrated in the current beam direction exceeds a preset number of times. If yes, execute step 319; otherwise, return to step 308.
  • Step 319 Issue a transmit channel calibration alarm signal.
  • Step 320 Determine whether there is an uncalibrated beam direction of the array antenna to be calibrated. If yes, go to step 307. Otherwise, go to step 321.
  • the purpose of the present invention is to calibrate each channel of the array antenna to be calibrated in different beam directions. After completing the calibration operation of the array antenna to be calibrated in the current beam direction, it is determined whether there is still an uncalibrated beam direction. If yes, return to step 307 to continue to calibrate the next beam direction; otherwise, perform step 321 .
  • Step 321 Confirm that the calibration of each channel of the array antenna to be calibrated is completed, and save the latest compensation beam weight vector matrix.
  • the calibration of each channel of the array antenna to be calibrated is completed, and the obtained latest compensation beam weight vector matrix is saved.
  • the array antenna calibration apparatus includes at least a first processing unit 41 and a calibration unit 42, wherein
  • a first processing unit 41 configured to transmit a first calibration signal to the array antenna to be calibrated by using a test antenna of a standard beam direction, and transmit a test antenna that is received by the standard beam direction according to each channel of the array antenna to be calibrated a calibration signal for determining a phase-to-phase error between the first calibration signal received through the center channel and the first calibration signal received through each channel, wherein the center channel is a center array of the array antenna to be calibrated The channel corresponding to the element;
  • the calibration unit 42 is configured to calibrate the initial beam weight vector matrix based on the obtained amplitude and phase error to obtain a compensation beam weight vector matrix, wherein the initial beam weight vector matrix is preset by each beam direction The direction angle is determined, and a set of initial beam weight vectors corresponds to one beam direction.
  • the initial beam weight vector matrix is calibrated to obtain a compensated beam weight vector matrix, and the calibration unit 42 is configured to:
  • each group of initial beam weight vectors in the initial beam weight vector matrix is compensated to form a compensation beam weight vector matrix.
  • the device further includes a second processing unit 43 for:
  • the current test antenna is used, and the standard beam gain value and the standard signal power corresponding to the test antenna of the standard beam direction are combined, and the to-be-calibrated is performed in the current beam direction.
  • Each channel of the array antenna is calibrated.
  • Unit 43 is used to:
  • each channel of the array antenna to be calibrated respectively has a receiving channel and a transmitting channel
  • the apparatus also includes an update unit 44, the update unit 44 for:
  • each of the updated receiving antennas of the array antenna to be calibrated has a compensation receiving beam weight vector matrix
  • each of the transmitting channels corresponds to a compensated transmit beam weight vector matrix
  • the compensated receive beam weight vector matrix and the compensated transmit beam weight vector matrix are both compensation beam weight vector matrices.
  • the current test antenna is used, and the standard beam gain value and the standard signal power corresponding to the test antenna of the standard beam direction are used to calibrate each channel of the array antenna to be calibrated in the current beam direction.
  • the second processing unit 43 is configured to:
  • the direction angle of the current beam direction is adjusted correspondingly, and the compensated reception corresponding to the original beam direction is based on the adjusted beam direction.
  • the beam weight vector is updated, and the beam gain value of the second calibration signal is recalculated based on the updated compensated received beam weight vector until an error between the obtained beam gain value and the standard beam gain value is located in the first setting Within the threshold;
  • the second processing unit 43 is further configured to:
  • the device further includes a first determining unit 45, wherein the first determining unit 45 is configured to:
  • the first determining unit 45 is further configured to:
  • the receiving channel calibration alarm signal is sent when it is determined that the respective receiving channels of the array antenna to be calibrated are calibrated more than the preset number of times in the current beam direction.
  • the device further includes a second determining unit 46, and the second determining unit 46 is configured to:
  • the second determining unit 46 is further configured to:
  • the initial beam weight vector matrix of the array antenna to be calibrated is determined, and the test antenna of the standard beam direction is transmitted to the array antenna to be calibrated.
  • a first calibration signal, and a first calibration signal received by each channel of the array antenna to be calibrated determining a phase error of the first calibration signal received through the center channel and the first calibration signal received by each channel of the channel, and
  • the initial beam weight vector matrix is calibrated by using the amplitude and phase error to obtain a compensated beam weight vector matrix;
  • the calibration environment of the array antenna is switched from the anechoic chamber to the open calibration environment, which reduces the requirement standard for the calibration scene, and can effectively detect the beamforming of the array antenna, and
  • the test antennas of the respective beam directions to transmit and receive calibration signals to the array antennas, determining the amplitude and phase errors of the respective channels of the array antennas in different beam directions, and correspondingly compensating for the amplitude and phase errors to achieve channel calibration, thereby ensuring the actual In the production phase, when the array antenna is detected, the integrity of the beamforming capability can be quickly determined.
  • embodiments of the present invention can be provided as a method, system, or computer program product.
  • the present invention can take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware.
  • the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radio Transmission System (AREA)

Abstract

一种阵列天线校准方法及装置,用于在开放校准环境下实时地对阵列天线进行校准,该方法为,基于预设的各个波束方向的方向角,确定待校准阵列天线初始波束权值矢量矩阵,并通过标准波束方向的测试天线向待校准阵列天线发射第一校准信号,及基于待校准阵列天线的各个通道接收到的第一校准信号,确定通过中心通道接收到的第一校准信号与通过各个通道接收到的第一校准信号的幅相误差,并采用幅相误差对初始波束权值矢量矩阵进行校准,获得补偿波束权值矢量矩阵,这样能在开放场景中有效检测到阵列天线的波束赋形,对阵列天线各个通道的幅相误差进行校准。

Description

一种阵列天线校准方法及装置
本申请要求在2017年9月11日提交中国专利局、申请号为201710813631.9、发明名称为“一种阵列天线校准方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及移动通信技术领域,尤其涉及一种阵列天线校准方法及装置。
背景技术
5G通信时代,大规模有源阵列天线技术已成为关键使能技术,有源阵列天线是由有源电路与天线阵列中的每一个阵元直接连接而组成的接收或发射电磁波的系统,具备波束赋形能力,通过对各个阵元对应的各个通道进行校准,以确保幅度和相位的一致性,从而保证赋形功能的有效性。
针对大规模有源阵列天线的校准,现有技术中,基于封闭的电波暗室环境,采用近场及远场相结合的有源(Over The Air,OTA)测试方式,以验证其波束赋形的有效性。
然而,电波暗室的造价十分昂贵,虽然测试结果精度高,但测试效率较低,因此,上述测试方式仅适用于实验室研发阶段,对于大规模的批量生产,上述基于电波暗室的测试方式并不适用。
发明内容
本发明实施例提供一种阵列天线校准方法及装置,用于在开放校准环境下实时地对阵列天线进行校准。
本发明实施例提供的具体技术方案如下:
第一方面,一种阵列天线校准方法,包括:
采用标准波束方向的测试天线向待校准阵列天线发射第一校准信号,并基于所述待校准阵列天线的各个通道接收到所述标准波束方向的测试天线发射的第一校准信号,分别确定通过中心通道接收到的第一校准信号与通过各个通道接收到的第一校准信号之间的幅相误差,其中,所述中心通道为所述待校准阵列天线的中心阵元对应的通道;
基于获得的幅相误差,对初始波束权值矢量矩阵进行校准,获得补偿波束权值矢量矩阵,其中,所述初始波束权值矢量矩阵由预设的各个波束方向的方向角确定,且一组初始 波束权值矢量对应一个波束方向。
较佳的,基于获得的幅相误差,对所述初始波束权值矢量矩阵进行校准,获得补偿波束权值矢量矩阵,包括:
采用获得的幅相误差,分别补偿初始波束权值矢量矩阵中各组初始波束权值矢量,组成补偿波束权值矢量矩阵。
较佳的,基于获得的幅相误差,对所述初始波束权值矢量矩阵进行校准,获得补偿波束权值矢量矩阵之后,进一步包括:
采用所述标准波束方向的测试天线,向所述待校准阵列天线发射指定额定功率的第二校准信号,并基于获得的补偿波束权值矢量矩阵,确定待校准阵列天线通过各个通道接收到所述标准波束方向的测试天线发射的第二校准信号的标准波束增益值;
采用所述待校准阵列天线向所述标准波束方向的测试天线发射指定额定功率的第二校准信号,并确定所述标准波束方向的测试天线接收到所述待校准阵列天线发射的第二校准信号的标准信号功率;
针对每一个其他波束方向的测试天线,执行以下操作:采用当前测试天线,并结合所述标准波束方向的测试天线对应的标准波束增益值和标准信号功率,在当前波束方向下对所述待校准阵列天线的各个通道进行校准。
较佳的,基于获得的补偿波束权值矢量矩阵,确定待校准阵列天线通过各个通道接收到所述标准波束方向的测试天线发射的第二校准信号的标准波束增益值,包括:
基于获得的补偿波束权值矢量矩阵,确定所述标准波束方向的测试天线对应的补偿波束权值矢量;
基于所述补偿波束权值矢量,确定所述待校准阵列天线通过各个通道接收到所述标准波束方向的测试天线发射的第二校准信号的标准波束增益值。
较佳的,所述待校准阵列天线的各个通道各自对应存在接收通道和发射通道;
基于获得的幅相误差,对所述初始波束权值矢量矩阵进行校准,获得补偿波束权值矢量矩阵之后,进一步包括:
采用补偿波束权值矢量矩阵,更新所述待校准阵列天线的各个通道的初始波束权值矢量矩阵,其中,更新后的所述待校准阵列天线的各个接收通道对应存在补偿接收波束权值矢量矩阵,以及各个发射通道对应存在补偿发射波束权值矢量矩阵,所述补偿接收波束权值矢量矩阵和所述补偿发射波束权值矢量矩阵均为补偿波束权值矢量矩阵。
较佳的,采用当前测试天线,并结合所述标准波束方向的测试天线对应的标准波束增益值和标准信号功率,在当前波束方向下对所述待校准阵列天线的各个通道进行校准,包括:
采用当前波束方向的测试天线向所述待校准阵列天线发射指定额定功率的第二校准 信号,并基于所述测试天线对应的补偿波束权值矢量,确定所述待校准阵列天线接收到所述测试天线发射的第二校准信号的波束增益值;
判断所述波束增益值与标准波束增益值之间的误差是否超过第一设定门限;
判定所述波束增益值与标准波束增益值之间的误差超过第一设定门限时,对当前波束方向的方向角进行相应调整,并基于调整后的波束方向,对原波束方向对应的补偿接收波束权值矢量进行更新,以及基于更新后的补偿接收波束权值矢量重新计算第二校准信号的波束增益值,直至所得的波束增益值与标准波束增益值之间的误差位于所述第一设定门限内。
较佳的,进一步包括:
判定所述波束增益值与标准波束增益值之间的误差未超过第一设定门限时,确定所述待校准阵列天线的各个接收通道在当前波束方向的校准完成,并采用所述待校准阵列天线,向当前波束方向的测试天线发射指定额定功率的第二校准信号,并确定所述测试天线接收到所述待校准阵列天线接收到第二校准信号的信号功率,以及判断所述信号功率与标准信号功率之间的误差是否超过第二设定门限;
若是,则重新在当前波束方向下对所述待校准阵列天线的各个接收通道进行校准;
否则,确定所述待校准阵列天线的各个发射通道在当前波束方向的校准完成。
较佳的,判定所述波束增益值与标准波束增益值之间的误差超过第一设定门限之后,对当前波束方向的方向角进行相应调整之前,还包括:
判断在当前波束方向下所述待校准阵列天线的各个接收通道被校准次数是否超过预设次数;
判断在当前波束方向下所述待校准阵列天线的各个接收通道被校准次数是否超过预设次数之后,进一步包括:
判定在当前波束方向下待校准阵列天线的各个接收通道被校准次数未超过预设次数时,对当前波束方向的方向角进行相应调整;
判定在当前波束方向下待校准阵列天线的各个接收通道被校准次数超过预设次数时,发出接收通道校准告警信号。
较佳的,判定所述信号功率与标准信号功率之间的误差超过第二设定门限之后,重新在当前波束方向下对所述待校准阵列天线的各个接收通道进行校准之前,进一步包括:
判断在当前波束方向下所述待校准阵列天线的各个发射通道被校准次数是否超过预设次数;
判断在当前波束方向下所述待校准阵列天线的各个发射通道被校准次数是否超过预设次数之后,进一步包括:
判定在当前波束方向下所述待校准阵列天线的各个发射通道被校准次数未超过预设 次数时,重新在当前波束方向下对所述待校准阵列天线的各个接收通道进行校准;
判定在当前波束方向下所述待校准阵列天线的各个发射通道被校准次数超过预设次数时,发出发射通道校准告警信号。
第二方面,一种阵列天线校准装置,包括:
第一处理单元,用于采用标准波束方向的测试天线向待校准阵列天线发射第一校准信号,并基于所述待校准阵列天线的各个通道接收到所述标准波束方向的测试天线发射的第一校准信号,分别确定通过中心通道接收到的第一校准信号与通过各个通道接收到的第一校准信号之间的幅相误差,其中,所述中心通道为所述待校准阵列天线的中心阵元对应的通道;
校准单元,用于基于获得的幅相误差,对初始波束权值矢量矩阵进行校准,获得补偿波束权值矢量矩阵,其中,所述初始波束权值矢量矩阵由预设的各个波束方向的方向角确定,且一组初始波束权值矢量对应一个波束方向。
较佳的,基于获得的幅相误差,对所述初始波束权值矢量矩阵进行校准,获得补偿波束权值矢量矩阵时,所述校准单元用于:
采用获得的幅相误差,分别补偿初始波束权值矢量矩阵中各组初始波束权值矢量,组成补偿波束权值矢量矩阵。
较佳的,所述装置还包括第二处理单元,所述第二处理单元用于:
基于获得的幅相误差,对所述初始波束权值矢量矩阵进行校准,获得补偿波束权值矢量矩阵之后,执行以下操作:
采用所述标准波束方向的测试天线,向所述待校准阵列天线发射指定额定功率的第二校准信号,并基于获得的补偿波束权值矢量矩阵,确定待校准阵列天线通过各个通道接收到所述标准波束方向的测试天线发射的第二校准信号的标准波束增益值;
采用所述待校准阵列天线向所述标准波束方向的测试天线发射指定额定功率的第二校准信号,并确定所述标准波束方向的测试天线接收到所述待校准阵列天线发射的第二校准信号的标准信号功率;
针对每一个其他波束方向的测试天线,执行以下操作:采用当前测试天线,并结合所述标准波束方向的测试天线对应的标准波束增益值和标准信号功率,在当前波束方向下对所述待校准阵列天线的各个通道进行校准。
较佳的,基于获得的补偿波束权值矢量矩阵,确定待校准阵列天线通过各个通道接收到所述标准波束方向的测试天线发射的第二校准信号的标准波束增益值时,所述第二处理单元用于:
基于获得的补偿波束权值矢量矩阵,确定所述标准波束方向的测试天线对应的补偿波束权值矢量;
基于所述补偿波束权值矢量,确定所述待校准阵列天线通过各个通道接收到所述标准波束方向的测试天线发射的第二校准信号的标准波束增益值。
较佳的,所述待校准阵列天线的各个通道各自对应存在接收通道和发射通道;
所述装置还包括更新单元,所述更新单元用于:
基于获得的幅相误差,对所述初始波束权值矢量矩阵进行校准,获得补偿波束权值矢量矩阵之后,执行以下操作:
采用补偿波束权值矢量矩阵,更新所述待校准阵列天线的各个通道的初始波束权值矢量矩阵,其中,更新后的所述待校准阵列天线的各个接收通道对应存在补偿接收波束权值矢量矩阵,以及各个发射通道对应存在补偿发射波束权值矢量矩阵,所述补偿接收波束权值矢量矩阵和所述补偿发射波束权值矢量矩阵均为补偿波束权值矢量矩阵。
较佳的,采用当前测试天线,并结合所述标准波束方向的测试天线对应的标准波束增益值和标准信号功率,在当前波束方向下对所述待校准阵列天线的各个通道进行校准时,所述第二处理单元用于:
采用当前波束方向的测试天线向所述待校准阵列天线发射指定额定功率的第二校准信号,并基于所述测试天线对应的补偿波束权值矢量,确定所述待校准阵列天线接收到所述测试天线发射的第二校准信号的波束增益值;
判断所述波束增益值与标准波束增益值之间的误差是否超过第一设定门限;
判定所述波束增益值与标准波束增益值之间的误差超过第一设定门限时,对当前波束方向的方向角进行相应调整,并基于调整后的波束方向,对原波束方向对应的补偿接收波束权值矢量进行更新,以及基于更新后的补偿接收波束权值矢量重新计算第二校准信号的波束增益值,直至所得的波束增益值与标准波束增益值之间的误差位于所述第一设定门限内;
较佳的,所述第二处理单元还用于:
判定所述波束增益值与标准波束增益值之间的误差未超过第一设定门限时,确定所述待校准阵列天线的各个接收通道在当前波束方向的校准完成,并采用所述待校准阵列天线,向当前波束方向的测试天线发射指定额定功率的第二校准信号,并确定所述测试天线接收到所述待校准阵列天线接收到第二校准信号的信号功率,以及判断所述信号功率与标准信号功率之间的误差是否超过第二设定门限;
若是,则重新在当前波束方向下对所述待校准阵列天线的各个接收通道进行校准;
否则,确定所述待校准阵列天线的各个发射通道在当前波束方向的校准完成。
较佳的,所述装置还包括第一判断单元,所述第一判断单元用于:
判定所述波束增益值与标准波束增益值之间的误差超过第一设定门限之后,对当前波束方向的方向角进行相应调整之前,执行以下操作:
判断在当前波束方向下所述待校准阵列天线的各个接收通道被校准次数是否超过预设次数;
判断在当前波束方向下所述待校准阵列天线的各个接收通道被校准次数是否超过预设次数之后,所述第一判断单元还用于:
判定在当前波束方向下待校准阵列天线的各个接收通道被校准次数未超过预设次数时,对当前波束方向的方向角进行相应调整;
判定在当前波束方向下待校准阵列天线的各个接收通道被校准次数超过预设次数时,发出接收通道校准告警信号。
较佳的,所述装置还包括第二判断单元,所述第二判断单元用于:
判定所述信号功率与标准信号功率之间的误差超过第二设定门限之后,重新在当前波束方向下对所述待校准阵列天线的各个接收通道进行校准之前,执行以下操作:
判断在当前波束方向下所述待校准阵列天线的各个发射通道被校准次数是否超过预设次数;
判断在当前波束方向下所述待校准阵列天线的各个发射通道被校准次数是否超过预设次数之后,所述第二判断单元还用于:
判定在当前波束方向下所述待校准阵列天线的各个发射通道被校准次数未超过预设次数时,重新在当前波束方向下对所述待校准阵列天线的各个接收通道进行校准;
判定在当前波束方向下所述待校准阵列天线的各个发射通道被校准次数超过预设次数时,发出发射通道校准告警信号。
第三方面,一种电子设备,包括:一个或多个处理器;以及
一个或多个计算机可读介质,所述可读介质上存储有用于阵列天线校准的程序,其中,所述程序被所述一个或多个处理器执行时,实现如第一方面中任一项所述的方法的步骤。
第四方面,一个或多个计算机可读介质,所述可读介质上存储有用于阵列天线校准的程序,其中,所述程序被一个或多个处理器执行时,使得通信设备执行如第一方面中任一项所述的方法。
本发明实施例中,通过标准波束方向的测试天线向待校准阵列天线发射第一校准信号,以及基于待校准阵列天线的各个通道接收到的第一校准信号,确定通过中心通道接收到的第一校准信号与通道各个通道接收到的第一校准信号的幅相误差,并采用幅相误差对初始波束权值矢量矩阵进行校准,获得补偿波束权值矢量矩阵,其中,初始波束权值矢量矩阵是由预设的各个波束方向的方向角确定的,且一组初始波束权值矢量对应一个波束方向,这样,能在开放场景中有效检测到阵列天线的波束赋形,对阵列天线各个通道的幅相误差进行校准,能适用于阵列天线的大规模生产制造。
附图说明
图1为本发明实施例中校准场景示意图;
图2为本发明实施例中第一种阵列天线校准方法流程图;
图3a和图3b为本发明实施例中第二种阵列天线校准方法流程图;
图4为本发明实施例中阵列天线校准装置结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应理解,本发明的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、新空口(New Radio,NR)等。
还应理解,在本发明实施例中,用户设备(User Equipment,UE)包括但不限于移动台(Mobile Station,MS)、移动终端(Mobile Terminal)、移动电话(Mobile Telephone)、手机(handset)及便携设备(portable equipment)等,该用户设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,例如,用户设备可以是移动电话(或称为“蜂窝”电话)、具有无线通信功能的计算机等,用户设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
在本发明实施例中,基站(例如,接入点)可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。基站还可协调对空中接口的属性管理。例如,基站可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是TD-SCDMA或WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(eNodeB或eNB或e-NodeB,evolutional Node B),或者是5G NR中的基站(gNB),本发明并不限定。
为了能在开放校准环境下实时地对阵列天线进行校准,本发明实施例中,重新设计了一种阵列天线校准方法,该方法为,采用标准波束方向的测试天线向待校准阵列天线发射第一校准信号,并基于待校准阵列天线的各个通道接收到标准波束方向的测试天线发射的第一校准信号,分别确定通过中心通道接收到的第一校准信号与通过各个通道接收到的第一校准信号之间的幅相误差,然后,基于获得的幅相误差,对初始波束权值矢量矩阵进行校准,获得补偿波束权值矢量矩阵,其中,初始波束权值矢量矩阵由预设的各个波束方向的方向角确定,且一组初始波束权值矢量对应一个波束方向。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,并不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面将通过具体实施例对本发明的方案进行详细描述,当然,本发明并不限于以下实施例。
本发明实施例中,在对待校准阵列天线进行校准之前,需要预先搭建校准场景,使得电磁环境相对稳定,满足远场测试条件,具体分别在待校准阵列天线的不同波束方向上对应放置若干测试天线,或者,采用至少一个测试天线,在不同波束方向上移动,而无论采用哪一种方式,其本质均是为了对待校准阵列天线的不同波束方向对应的各个通道进行校准。
为了方便描述,本发明实施例中,以在待校准阵列天线的不同波束方向上对应放置若干测试天线的校准场景为例进行说明,具体的,一个波束方向对应放置的一个测试天线(以下简称一个波束方向的测试天线),且一个波束方向对应存在一个方向角,方向角至少包括水平面上的方位角和垂直面上的俯仰角,即,一个波束方向的测试天线对应一组方位角和俯仰角,且不同波束方向的测试天线各自对应的方位角和俯仰角不同。
参阅图1所示,图1中使用点线连接的测试天线,表示放置在水平面(x-y)上,水平面上的测试天线与待校准阵列天线间的角度为方位角,以
Figure PCTCN2018104029-appb-000001
表示,使用虚线连接的测试天线,表示放置在垂直面(y-z上)上,垂直面上的测试天线与待校准阵列天线间的角度为俯仰角,以“θ”表示。
当然,本发明实施例中,并不是每对一个待校准阵列天线执行一次校准就得重新搭建一次校准场景,校准场景是可以重复利用的。
实施例一
如图2所示,本发明实施例的阵列天线的校准方向包括:
步骤200:采用标准波束方向的测试天线向待校准阵列天线发射第一校准信号,并基于待校准阵列天线的各个通道接收到标准波束方向的测试天线发射的第一校准信号,分别 确定通过中心通道接收到的第一校准信号与通过各个通道接收到的第一校准信号之间的幅相误差,其中,中心通道为待校准阵列天线的中心阵元对应的通道。
其中,标准波束方向的测试天线是指与待校准阵列天线处于同一水平线上的测试天线,即,该波束方向对应的方向角中,方位角为零,且俯仰角为零,而中心通道则是指待校准阵列天线的中心阵元对应的通道,是各个通道中的一个通道。
步骤210:基于获得的幅相误差,对初始波束权值矢量矩阵进行校准,获得补偿波束权值矢量矩阵,其中,初始波束权值矢量矩阵由预设的各个波束方向的方向角确定,且一组初始波束权值矢量对应一个波束方向。
通过上述步骤,获得了补偿波束权值矢量矩阵,即可以实现阵列天线的各个通道的在标准波束方向的初步校准。
参阅图3所示,本发明实施例中,还提供一种阵列天线校准方法,具体体流程如下:
步骤300:基于预设的各个波束方向的方向角,确定待校准阵列天线的初始波束权值矢量矩阵,其中,初始波束权值矢量矩阵中的一组波束权值矢量对应一个波束方向。
具体的,基于当前校准场景中各个波束方向的方向角,确定待校准阵列天线的初始波束权值矢量矩阵,其中,初始波束权值矢量矩阵的一组初始波束权值矢量对应一个波束方向,每一组波束权值矢量的方向均为各自对应的方向角。
较佳的,本发明实施例中,采用以下公式表示初始波束权值矢量矩阵W:
Figure PCTCN2018104029-appb-000002
其中,
Figure PCTCN2018104029-appb-000003
表示对应测试天线的方位角;θ表示对应测试天线的俯仰角;Q表示不同波束方向的测试天线的数目;
Figure PCTCN2018104029-appb-000004
为一组波束权值矢量,且
Figure PCTCN2018104029-appb-000005
的维数为待校准阵列天线对应的通道数目N。
例如,对于处于方位角和俯仰角均为“0°”的波束方向的测试天线,对应的波束权值矢量为:w(0°,0°)=1 N×1,即,该组波束权值矢量的大小为1,方向角中方位角为“0°”,俯仰角也为“0°”。
进一步地,由于待校准阵列天线具备接收与发射信号的功能,因此,针对待校准阵列天线的通道,存在接收通道与发射通道,待校准阵列天线的接收通道在当前校准场景下存在初始接收波束权值矢量矩阵,待校准阵列天线的发射通道在当前校准场景下存在初始发射波束权值矢量矩阵,且初始接收波束权值矢量矩阵对应接收通道,初始发射波束权值矢量矩阵对应发射通道,本发明实施例中,初始接收波束权值矢量矩阵与初始发射波束权值矢量矩阵相同,均可为初始波束权值矢量矩阵。
较佳的,本发明实施例中,可以采用以下公式表示接收通道的初始接收波束权值矢量矩阵W RX和发射通道的初始发射波束权值矢量矩阵W TX
W RX=W
W TX=W
步骤301:采用标准波束方向的测试天线向待校准阵列天线发射第一校准信号。
具体的,采用位于标准波束方向的测试天线向待校准阵列天线发射第一校准信号,较佳的,本发明实施例中,标准波束方向是指方向角为“0°”,即,方位角和俯仰角分别为“0°”,且第一校准信号可以为单音校准信号。
步骤302:通过待校准阵列天线的各个通道接收标准波束方向的测试天线发射的第一校准信号,并分别确定通过中心通道接收到的第一校准信号与通过各个通道接收到的第一校准信号之间的幅相误差。
具体的,待校准阵列天线通过若干通道接收上述标准波束方向的测试天线发射的第一校准信号,并以中心通道接收到的第一校准信号为参考,分别确定通过各个通道接收到的第一校准信号与通过中心通道接收到的第一校准信号之间的幅相误差,其中,中心通道为待校准阵列天线的中心阵元对应的通道,包含在上述若干通道之内。
例如,假设待校准阵列天线通过N个通道接收到的第一校准信号分别为:x 0(t),x 1(t),…,x N-1(t),且该待校准阵列天线的中心阵元对应的中心通道接收到的第一校准信号为x 0(t),并以x 0(t)为参考。
较佳的,本发明实施例中,采用以下公式计算中心通道接收到的第一校准信号与任意一个通道接收到的第一校准信号之间的幅相误差e n,其中,任意一个接收通道包含中心通道:
Figure PCTCN2018104029-appb-000006
进一步地,中心通道接收到的第一校准信号与各个通道接收到的第一校准信号之间的幅相误差e:
e=[1,e 1,e 2,…,e N-1] T
其中,“1”表示中心通道与自身对应的幅相误差。
步骤303:采用获得的幅相误差,对初始波束权值矢量矩阵进行校准,获得补偿波束权值矢量矩阵。
具体的,分别确定通过各个通道接收到的第一校准信号与通过中心通道接收到的第一校准信号之间的幅相误差之后,采用获得的幅相误差,分别补偿初始波束权值矢量矩阵中对应的各组初始波束权值矢量,组成补偿波束权值矢量矩阵。
例如,采用获得的幅相误差e对初始波束权值矢量矩阵W进行幅相误差补偿,获得补偿 波束权值矢量矩阵W c
具体的,本发明实施例中,优选的补偿操作为点乘运算,针对任意一组初始波束权值矢量
Figure PCTCN2018104029-appb-000007
采用以下公式计算获得的幅相误差e对上述任意一组初始波束权值矢量的补偿结果:
Figure PCTCN2018104029-appb-000008
其中,“·”为点乘运算;
Figure PCTCN2018104029-appb-000009
为第q个波束方向对应的初始波束权值矢量;
Figure PCTCN2018104029-appb-000010
为第q个波束方向对应的补偿波束权值矢量。
进一步地,本发明实施例中,采用采用以下公式表示补偿波束权值矢量矩阵W c
Figure PCTCN2018104029-appb-000011
其中,
Figure PCTCN2018104029-appb-000012
为第Q个波束方向的测试天线的补偿波束权值矢量。
由于待校准阵列天线的各个通道存在幅相误差,因此,各个通道即便是接收到同一发射对象发射的同一信号,都会因通道本身存在的幅相误差,使得接收到的信号也产生相应的幅相误差,因此,在上述步骤中,首先,采用标准波束方向的测试天线向待校准阵列天线发射第一校准信号,然后,确定待校准阵列天线各个通道接收到的第一校准信号产生的幅相误差,并采用该幅相误差对初始波束权值矢量矩阵进行补偿,以实现待校准阵列天线在标准波束方向上各个通道幅相误差的校准。
采用补偿波束权值矢量矩阵,更新待校准阵列天线的各个通道的初始波束权值矢量矩阵,其中,更新后的待校准阵列天线的各个接收通道对应存在补偿接收波束权值矢量矩阵,以及各个发射通道对应存在补偿发射波束权值矢量矩阵,补偿接收波束权值矢量矩阵和补偿发射波束权值矢量矩阵均为补偿波束权值矢量矩阵。
较佳的,本发明实施例中,采用以下公式表示待校准阵列天线的各个接收通道的补偿接收波束权值矢量矩阵W' RX,以及各个发射通道对应的补偿发射波束权值矢量矩阵W' TX
W' RX=W c
W' TX=W c
步骤304:通过标准波束方向的测试天线向待校准阵列天线发射指定额定功率的第二校准信号。
具体的,在确定待校准阵列天线的通道(包含接收通道和发射通道)的补偿波束权值 矢量矩阵后,采用位于标准波束方向的测试天线向待校准阵列天线发射指定额定功率的第二校准信号。
例如,采用θ q=0°,
Figure PCTCN2018104029-appb-000013
的测试天线以额定功率P 0向待校准阵列天线发射第二校准信号。
步骤305:通过待校准阵列天线的若干通道接收标准波束方向的测试天线发射的第二校准信号,并基于相应补偿波束权值矢量,确定待校准阵列天线通过各个通道接收到的第二校准信号的标准波束增益值。
具体的,标准波束方向的测试天线以预设额定功率向待校准阵列天线发射第二校准信号后,待校准阵列天线通过若干通道接收其发射的第二校准信号,并基于获得的补偿波束权值矢量矩阵,确定该标准波束方向的测试天线对应的补偿波束权值矢量,然后,基于该补偿波束权值矢量,确定当前待校准阵列天线通过自身若干通道接收的第二校准信号的标准波束增益值。
较佳的,本发明实施例中,采用以下公式计算待校准阵列天线接收标准波束方向的测试天线发射的额定功率为P 0的第二校准信号的标准波束增益值G RX0
Figure PCTCN2018104029-appb-000014
其中,w 1(0°,0°)表示标准波束方向对应的补偿波束权值矢量;x(t)=[x 0(t),x 1(t),…,x N-1(t)] T,即,x(t)为待校准阵列天线通过各个通道接收到的标准波束方向的测试天线发射的第二校准信号。
至此,获得的标准波束增益值即为待校准阵列天线,在标准波束方向上的接收波束赋形指标。
步骤306:通过待校准阵列天线向标准波束方向的测试天线发射指定额定功率的第二校准信号,并确定标准波束方向的测试天线接收到的第二校准信号的标准信号功率。
具体的,通过待校准阵列天线的若干通道向标准波束方向的测试天线发射指定额定功率的第二校准信号,并确定标准波束方向的测试天线接收到的第二校准信号对应的标准信号功率。
当然,本发明实施例中,确定标准波束方向的测试天线接收到的第二校准信号的标准信号功率可以为现有技术手段,在此不进行额外说明。
例如,假设待校准阵列天线发射的第二校准信号的额定功率为P 0,标准波束方向的测试天线接收到的第二校准信号对应的标准信号功率为P B
至此,获得的标准信号功率即为待校准阵列天线,在标准波束方向上的发射波束赋形指标。
步骤307:确定若干其他波束方向的测试天线,并从未被校准过的若干波束方向中,选取一个未校准的波束方向对应的测试天线。
本发明实施例中,目的是为了对待校准阵列天线的各个通道在不同波束方向进行校准,以纠正通道误差,在上述步骤中,首先对待校准阵列天线的通道(包含接收通道和发射通道)在标准波束方向上进行通道校准,获得各个通道对应的补偿波束权值矢量矩阵,然后,基于标准波束方向,继续对待校准阵列天线的各个通道在其他波束方向上进行相应校准。
具体的,从各个其他波束方向的测试天线中,选取一个未被校准过的波束方向对应的测试天线执行以下操作。
步骤308:通过当前确定的测试天线向待校准阵列天线发射指定额定功率的第二校准信号。
具体的,采用当前选定的波束方向对应的测试天线,向待校准阵列天线发射指定额定功率的第二校准信号。
例如,采用θ k=15°,
Figure PCTCN2018104029-appb-000015
的测试天线以额定功率P 0向待校准阵列天线发射第二校准信号。
步骤309:基于当前测试天线对应的补偿波束权值矢量,确定待校准阵列天线接收到该测试天线发射的第二校准信号的波束增益值。
具体的,当前选取的波束方向的测试天线以预设额定功率向待校准阵列天线发射第二校准信号后,待校准阵列天线通过各个通道接收其发射的第二校准信号,并基于获得的补偿波束权值矢量矩阵,确定当前波束方向的测试天线对应的补偿波束权值矢量,然后,基于该补偿波束权值矢量,确定该待校准阵列天线通过自身若干通道接收的第二校准信号的波束增益值。
较佳的,本发明实施例中,采用以下公式计算待校准阵列天线接收到波束方向对应为θ k
Figure PCTCN2018104029-appb-000016
的测试发射的额定功率为P 0的第二校准信号的标准波束增益值G RXk
Figure PCTCN2018104029-appb-000017
其中,
Figure PCTCN2018104029-appb-000018
表示波束方向为
Figure PCTCN2018104029-appb-000019
的测试天线对应的补偿波束权值矢量;x(t)=[x 0(t),x 1(t),…,x N-1(t)] T,即,x(t)为待校准阵列天线通过各个通道接收到的 上述波束方向的测试天线发射的第二校准信号。
步骤310:判断当前波束增益值与标准波束增益值之间的误差是否在第一设定门限内,若是,则执行步骤311,否则,执行步骤312。
具体的,判断在当前选取的波束方向上通过待校准阵列天线的各个接收通道接收到的第二校准信号对应的波束增益值,与在标准波束方向上通过待校准阵列天线的各个接收通道接收到的第二校准信号对应的标准波束增益值之间的误差是否在第一设定门限内,若是,则执行步骤311,否则,执行步骤312。
在本步骤中,通过当前选取的波束方向的测试天线与标准波束方向的测试天线向待校准阵列天线发射额定功率相同的第二校准信号,目的是为了确定待校准阵列天线的接收通道接收不同波束方向发射的同一功率的校准信号,对接收到的校准信号增益所产生的误差。
步骤311:确定待校准阵列天线的各个接收通道在当前波束方向的校准完成。
具体的,当在当前选取的波束方向上通过待校准阵列天线的各个接收通道接收到的第二校准信号对应的波束增益值,与在标准波束方向上通过待校准阵列天线的各个接收通道接收到的第二校准信号对应的标准波束增益值之间的误差在设定门限内时,则确定待校准阵列天线的接收通道在当前测试天线的波束方向上的校准完成,即,无需再对前述获得的补偿接收波束权值矢量矩阵中,该波束方向对应的补偿接收波束权值矢量进行校准。
例如,当前选取的波束方向为
Figure PCTCN2018104029-appb-000020
那么,补偿接收波束权值矢量矩阵W' RX中对应的补偿接收波束权值矢量
Figure PCTCN2018104029-appb-000021
无需再进行校准。
步骤312:判断当前波束方向下待校准阵列天线接收通道的被校准次数是否超过预设次数,若是,则执行步骤313,否则,执行步骤314。
步骤313:发出接收通道校准告警信号。
具体的,当前波束方向下待校准阵列天线各个接收通道被校准次数超过预设次数时,则表示校准次数过多,可以发出接收通道校准告警信号。
步骤314:对当前波束方向的方向角进行相应调整,并基于调整后的方向角,对原波束方向对应的补偿接收波束权值矢量进行更新。
具体的,当前波束方向下待校准阵列天线接收通道的被校准次数未超过预设次数时,先确定中心通道接收到的第二校准信号与各个通道接收到的第二校准信号之间的幅相误差,以及采用预设角度,对当前波束方向的方向角进行相应调整,然后,基于获得幅相误差和调整后的方向角,更新当前波束方向对应的补偿接收波束权值矢量。
较佳的,本发明实施例中,采用以下公式确定中心通道接收到的第二校准信号与各个通道接收到的第二校准信号之间的幅相误差e k:
例如,假设待校准阵列天线通过N个通道接收到的第二校准信号分别为:y 0(t),y 1(t),…,y N-1(t),且该待校准阵列天线的中心阵元对应的中心通道接收到的第二校准信号为y 0(t),并以y 0(t)为参考。
较佳的,本发明实施例中,采用以下公式计算中心通道接收到的第二校准信号与任意一个通道接收到的第二校准信号之间的幅相误差e n,其中,任意一个接收通道包含中心通道:
Figure PCTCN2018104029-appb-000022
进一步地,中心通道接收到的第二校准信号与各个通道接收到的第二校准信号之间的幅相误差e k
e k=[1,e 1,e 2,…,e N-1] T
其中,“1”表示中心通道与自身之间的幅相误差。
接着,采用预设角度对当前波束方向的方向角进行相应调整。
例如,假设预设角度为“2.5°”,且当前波束方向对应方向角为
Figure PCTCN2018104029-appb-000023
调整后的方向角
Figure PCTCN2018104029-appb-000024
为:
Figure PCTCN2018104029-appb-000025
最后,采用基于获得的幅相误差和调整后的方向角,对原波束方向对应的补偿接收波束权值矢量进行更新,较佳的,本发明实施例中,采用以下公式确定更新后的补偿接收波束权值矢量
Figure PCTCN2018104029-appb-000026
Figure PCTCN2018104029-appb-000027
其中,
Figure PCTCN2018104029-appb-000028
为调整后的方向角;
Figure PCTCN2018104029-appb-000029
为原波束方向对应的补偿接收波束权值矢量;“·”表示点乘;“÷”表示点除。
对相应补偿接收波束权值矢量进行更新后,重新执行步骤309。
步骤315:通过当前测试天线向待校准阵列天线发射指定额定功率的第二校准信号,以及确定待校准阵列天线接收到第二校准信号的信号功率。
具体的,确定待校准阵列天线的接收通道在当前波束方向上的校准完成后,继续对待校准阵列天线的发射通道在当前波束方向进行校准,首先,通过当前波束方向的测试天线向待校准阵列天线发射指定额定功率的第二校准信号,以及确定待校准阵列天线接收到的第二校准信号的信号功率。
例如,假设待校准阵列天线发射的第二校准信号的额定功率为P 0,当前波束方向的测 试天线接收到的第二校准信号对应的标准信号功率为P C
步骤316:判断当前信号功率与标准信号功率之间的误差是否在第二设定门限内,若是,则执行步骤317,否则,执行步骤318。
具体的,判断当前测试天线接收到的通过待校准阵列天线的各个发射通道发射的第二校准信号对应的信号功率,与标准波束方向的测试天线接收到的通过待校准阵列天线的各个发射通道发射的第二校准信号对应的标准信号功率之间的误差是否在第二设定门限内,若是,则执行步骤317,否则,执行步骤318。
步骤317:确定待校准阵列天线的各个发射通道在当前波束方向的校准完成。
具体的,当前测试天线接收到的通过待校准阵列天线的各个发射通道发射的第二校准信号对应的信号功率,与标准波束方向的测试天线接收到的通过待校准阵列天线的各个发射通道发射的第二校准信号对应的标准信号功率之间的误差在第二设定门限内时,则确定待校准阵列天线的各个发射通道在当前选取的波束方向上的校准完成,即,无需再对前述获得的补偿发射波束权值矢量矩阵中,该波束方向对应的补偿发射波束权值矢量进行校准。
步骤318:判断当前波束方向下待校准阵列天线发射通道的被校准次数是否超过预设次数,若是,则执行步骤319,否则,返回至步骤308。
步骤319:发出发射通道校准告警信号。
具体的,当前波束方向下待校准阵列天线的各个发射通道被校准次数超过预设次数时,则表示校准次数过多,可以发出发射通道校准告警信号。
步骤320:判断待校准阵列天线是否存在未校准的波束方向,若是,则执行步骤307,否则,执行步骤321。
具体的,本发明的目的是使待校准阵列天线的各个通道在不同波束方向上进行校准,当完成待校准阵列天线在当前波束方向上的校准操作后,判断是否还存在未校准的波束方向,若是,则返回至步骤307,继续对下一波束方向进行校准,否则,执行步骤321。
步骤321:确认待校准阵列天线的各个通道的校准完成,并保存最新的补偿波束权值矢量矩阵。
具体的,待校准阵列天线在各个波束方向分别已进行过接收通道和发射通道的校准后,确认待校准阵列天线的各个通道的校准完成,并将获得的最新补偿波束权值矢量矩阵进行保存。
基于上述实施例,参阅图4所示,本发明实施例中,阵列天线校准装置,至少包括第一处理单元41和校准单元42,其中,
第一处理单元41,用于采用标准波束方向的测试天线向待校准阵列天线发射第一校准信号,并基于所述待校准阵列天线的各个通道接收到所述标准波束方向的测试天线发射的 第一校准信号,分别确定通过中心通道接收到的第一校准信号与通过各个通道接收到的第一校准信号之间的幅相误差,其中,所述中心通道为所述待校准阵列天线的中心阵元对应的通道;
校准单元42,用于基于获得的幅相误差,对所述初始波束权值矢量矩阵进行校准,获得补偿波束权值矢量矩阵,其中,所述初始波束权值矢量矩阵由预设的各个波束方向的方向角确定,且一组初始波束权值矢量对应一个波束方向。
较佳的,基于获得的幅相误差,对所述初始波束权值矢量矩阵进行校准,获得补偿波束权值矢量矩阵时,所述校准单元42用于:
采用获得的幅相误差,分别补偿初始波束权值矢量矩阵中各组初始波束权值矢量,组成补偿波束权值矢量矩阵。
较佳的,所述装置还包括第二处理单元43,所述第二处理单元43用于:
基于获得的幅相误差,对所述初始波束权值矢量矩阵进行校准,获得补偿波束权值矢量矩阵之后,执行以下操作:
采用所述标准波束方向的测试天线,向所述待校准阵列天线发射指定额定功率的第二校准信号,并基于获得的补偿波束权值矢量矩阵,确定待校准阵列天线通过各个通道接收到所述标准波束方向的测试天线发射的第二校准信号的标准波束增益值;
采用所述待校准阵列天线向所述标准波束方向的测试天线发射指定额定功率的第二校准信号,并确定所述标准波束方向的测试天线接收到所述待校准阵列天线发射的第二校准信号的标准信号功率;
针对每一个其他波束方向的测试天线,执行以下操作:采用当前测试天线,并结合所述标准波束方向的测试天线对应的标准波束增益值和标准信号功率,在当前波束方向下对所述待校准阵列天线的各个通道进行校准。
较佳的,基于获得的补偿波束权值矢量矩阵,确定待校准阵列天线通过各个通道接收到所述标准波束方向的测试天线发射的第二校准信号的标准波束增益值时,所述第二处理单元43用于:
基于获得的补偿波束权值矢量矩阵,确定所述标准波束方向的测试天线对应的补偿波束权值矢量;
基于所述补偿波束权值矢量,确定所述待校准阵列天线通过各个通道接收到所述标准波束方向的测试天线发射的第二校准信号的标准波束增益值。
较佳的,所述待校准阵列天线的各个通道各自对应存在接收通道和发射通道;
所述装置还包括更新单元44,所述更新单元44用于:
基于获得的幅相误差,对所述初始波束权值矢量矩阵进行校准,获得补偿波束权值矢量矩阵之后,执行以下操作:
采用补偿波束权值矢量矩阵,更新所述待校准阵列天线的各个通道的初始波束权值矢量矩阵,其中,更新后的所述待校准阵列天线的各个接收通道对应存在补偿接收波束权值矢量矩阵,以及各个发射通道对应存在补偿发射波束权值矢量矩阵,所述补偿接收波束权值矢量矩阵和所述补偿发射波束权值矢量矩阵均为补偿波束权值矢量矩阵。
较佳的,采用当前测试天线,并结合所述标准波束方向的测试天线对应的标准波束增益值和标准信号功率,在当前波束方向下对所述待校准阵列天线的各个通道进行校准时,所述第二处理单元43用于:
采用当前波束方向的测试天线向所述待校准阵列天线发射指定额定功率的第二校准信号,并基于所述测试天线对应的补偿波束权值矢量,确定所述待校准阵列天线接收到所述测试天线发射的第二校准信号的波束增益值;
判断所述波束增益值与标准波束增益值之间的误差是否超过第一设定门限;
判定所述波束增益值与标准波束增益值之间的误差超过第一设定门限时,对当前波束方向的方向角进行相应调整,并基于调整后的波束方向,对原波束方向对应的补偿接收波束权值矢量进行更新,以及基于更新后的补偿接收波束权值矢量重新计算第二校准信号的波束增益值,直至所得的波束增益值与标准波束增益值之间的误差位于所述第一设定门限内;
较佳的,所述第二处理单43还用于:
判定所述波束增益值与标准波束增益值之间的误差未超过第一设定门限时,确定所述待校准阵列天线的各个接收通道在当前波束方向的校准完成,并采用所述待校准阵列天线,向当前波束方向的测试天线发射指定额定功率的第二校准信号,并确定所述测试天线接收到所述待校准阵列天线接收到第二校准信号的信号功率,以及判断所述信号功率与标准信号功率之间的误差是否超过第二设定门限;
若是,则重新在当前波束方向下对所述待校准阵列天线的各个接收通道进行校准;
否则,确定所述待校准阵列天线的各个发射通道在当前波束方向的校准完成。
较佳的,所述装置还包括第一判断单元45,所述第一判断单元45用于:
判定所述波束增益值与标准波束增益值之间的误差超过第一设定门限之后,对当前波束方向的方向角进行相应调整之前,执行以下操作:
判断在当前波束方向下所述待校准阵列天线的各个接收通道被校准次数是否超过预设次数;
判断在当前波束方向下所述待校准阵列天线的各个接收通道被校准次数是否超过预设次数之后,所述第一判断单元45还用于:
判定在当前波束方向下待校准阵列天线的各个接收通道被校准次数未超过预设次数时,对当前波束方向的方向角进行相应调整;
判定在当前波束方向下待校准阵列天线的各个接收通道被校准次数超过预设次数时,发出接收通道校准告警信号。
较佳的,所述装置还包括第二判断单元46,所述第二判断单元46用于:
判定所述信号功率与标准信号功率之间的误差超过第二设定门限之后,重新在当前波束方向下对所述待校准阵列天线的各个接收通道进行校准之前,执行以下操作:
判断在当前波束方向下所述待校准阵列天线的各个发射通道被校准次数是否超过预设次数;
判断在当前波束方向下所述待校准阵列天线的各个发射通道被校准次数是否超过预设次数之后,所述第二判断单元46还用于:
判定在当前波束方向下所述待校准阵列天线的各个发射通道被校准次数未超过预设次数时,重新在当前波束方向下对所述待校准阵列天线的各个接收通道进行校准;
判定在当前波束方向下所述待校准阵列天线的各个发射通道被校准次数超过预设次数时,发出发射通道校准告警信号。
综上所述,本发明实施例中,首先,基于预设的各个波束方向的方向角,确定待校准阵列天线初始波束权值矢量矩阵,并通过标准波束方向的测试天线向待校准阵列天线发射第一校准信号,及基于待校准阵列天线的各个通道接收到的第一校准信号,确定通过中心通道接收到的第一校准信号与通道各个通道接收到的第一校准信号的幅相误差,并采用幅相误差对初始波束权值矢量矩阵进行校准,获得补偿波束权值矢量矩阵;
然后,采用标准波束方向的测试天线,向待校准阵列天线发射指定额定功率的第二校准信号,并基于获得的补偿波束权值矢量矩阵,确定待校准阵列天线通过各个通道接收到标准波束方向的测试天线发射的第二校准信号的标准波束增益值;并采用待校准阵列天线向标准波束方向的测试天线发射指定额定功率的第二校准信号,以及确定标准波束方向的测试天线接收到待校准阵列天线发射的第二校准信号的标准信号功率;并针对每一个其他波束方向的测试天线,执行以下操作:采用当前测试天线,并结合标准波束方向的测试天线对应的标准波束增益值和标准信号功率,在当前波束方向下对待校准阵列天线的各个通道进行校准。
通过上述基于OTA的校准方法,将阵列天线的校准环境,由电波暗室转换到开放的校准环境下,降低了对校准场景的要求标准,同时还能有效检测到阵列天线的波束赋形,而且,通过结合各个波束方向的测试天线对阵列天线进行收发校准信号,确定阵列天线的各个通道在不同波束方向的幅相误差,并对幅相误差进行相应补偿,以实现通道校准,从而保证了在实际生产阶段,对阵列天线进行检测时,能快速确定其波束赋形能力的完整性。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实 施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (12)

  1. 一种阵列天线校准方法,其特征在于,包括:
    采用标准波束方向的测试天线向待校准阵列天线发射第一校准信号,并基于所述待校准阵列天线的各个通道接收到所述标准波束方向的测试天线发射的第一校准信号,分别确定通过中心通道接收到的第一校准信号与通过各个通道接收到的第一校准信号之间的幅相误差,其中,所述中心通道为所述待校准阵列天线的中心阵元对应的通道;
    基于获得的幅相误差,对初始波束权值矢量矩阵进行校准,获得补偿波束权值矢量矩阵,其中,所述初始波束权值矢量矩阵由预设的各个波束方向的方向角确定,且一组初始波束权值矢量对应一个波束方向。
  2. 如权利要求1所述的方法,其特征在于,基于获得的幅相误差,对所述初始波束权值矢量矩阵进行校准,获得补偿波束权值矢量矩阵,包括:
    采用获得的幅相误差,分别补偿初始波束权值矢量矩阵中各组初始波束权值矢量,组成补偿波束权值矢量矩阵。
  3. 如权利要求1或2所述的方法,其特征在于,基于获得的幅相误差,对所述初始波束权值矢量矩阵进行校准,获得补偿波束权值矢量矩阵之后,进一步包括:
    采用所述标准波束方向的测试天线,向所述待校准阵列天线发射指定额定功率的第二校准信号,并基于获得的补偿波束权值矢量矩阵,确定待校准阵列天线通过各个通道接收到所述标准波束方向的测试天线发射的第二校准信号的标准波束增益值;
    采用所述待校准阵列天线向所述标准波束方向的测试天线发射指定额定功率的第二校准信号,并确定所述标准波束方向的测试天线接收到所述待校准阵列天线发射的第二校准信号的标准信号功率;
    针对每一个其他波束方向的测试天线,执行以下操作:采用当前测试天线,并结合所述标准波束方向的测试天线对应的标准波束增益值和标准信号功率,在当前波束方向下对所述待校准阵列天线的各个通道进行校准。
  4. 如权利要求3所述的方法,其特征在于,基于获得的补偿波束权值矢量矩阵,确定待校准阵列天线通过各个通道接收到所述标准波束方向的测试天线发射的第二校准信号的标准波束增益值,包括:
    基于获得的补偿波束权值矢量矩阵,确定所述标准波束方向的测试天线对应的补偿波束权值矢量;
    基于所述补偿波束权值矢量,确定所述待校准阵列天线通过各个通道接收到所述标准波束方向的测试天线发射的第二校准信号的标准波束增益值。
  5. 如权利要求4所述的方法,其特征在于,所述待校准阵列天线的各个通道各自对应 存在接收通道和发射通道;
    基于获得的幅相误差,对所述初始波束权值矢量矩阵进行校准,获得补偿波束权值矢量矩阵之后,进一步包括:
    采用补偿波束权值矢量矩阵,更新所述待校准阵列天线的各个通道的初始波束权值矢量矩阵,其中,更新后的所述待校准阵列天线的各个接收通道对应存在补偿接收波束权值矢量矩阵,以及各个发射通道对应存在补偿发射波束权值矢量矩阵,所述补偿接收波束权值矢量矩阵和所述补偿发射波束权值矢量矩阵均为补偿波束权值矢量矩阵。
  6. 如权利要求5所述的方法,其特征在于,采用当前测试天线,并结合所述标准波束方向的测试天线对应的标准波束增益值和标准信号功率,在当前波束方向下对所述待校准阵列天线的各个通道进行校准,包括:
    采用当前波束方向的测试天线向所述待校准阵列天线发射指定额定功率的第二校准信号,并基于所述测试天线对应的补偿波束权值矢量,确定所述待校准阵列天线接收到所述测试天线发射的第二校准信号的波束增益值;
    判断所述波束增益值与标准波束增益值之间的误差是否超过第一设定门限;
    判定所述波束增益值与标准波束增益值之间的误差超过第一设定门限时,对当前波束方向的方向角进行相应调整,并基于调整后的波束方向,对原波束方向对应的补偿接收波束权值矢量进行更新,以及基于更新后的补偿接收波束权值矢量重新计算第二校准信号的波束增益值,直至所得的波束增益值与标准波束增益值之间的误差位于所述第一设定门限内。
  7. 如权利要求6所述的方法,其特征在于,进一步包括:
    判定所述波束增益值与标准波束增益值之间的误差未超过第一设定门限时,确定所述待校准阵列天线的各个接收通道在当前波束方向的校准完成,并采用所述待校准阵列天线,向当前波束方向的测试天线发射指定额定功率的第二校准信号,并确定所述测试天线接收到所述待校准阵列天线接收到第二校准信号的信号功率,以及判断所述信号功率与标准信号功率之间的误差是否超过第二设定门限;
    若是,则重新在当前波束方向下对所述待校准阵列天线的各个接收通道进行校准;
    否则,确定所述待校准阵列天线的各个发射通道在当前波束方向的校准完成。
  8. 如权利要求6所述的方法,其特征在于,判定所述波束增益值与标准波束增益值之间的误差超过第一设定门限之后,对当前波束方向的方向角进行相应调整之前,还包括:
    判断在当前波束方向下所述待校准阵列天线的各个接收通道被校准次数是否超过预设次数;
    判断在当前波束方向下所述待校准阵列天线的各个接收通道被校准次数是否超过预设次数之后,进一步包括:
    判定在当前波束方向下待校准阵列天线的各个接收通道被校准次数未超过预设次数时,对当前波束方向的方向角进行相应调整;
    判定在当前波束方向下待校准阵列天线的各个接收通道被校准次数超过预设次数时,发出接收通道校准告警信号。
  9. 如权利要求7所述的方法,其特征在于,判定所述信号功率与标准信号功率之间的误差超过第二设定门限之后,重新在当前波束方向下对所述待校准阵列天线的各个接收通道进行校准之前,进一步包括:
    判断在当前波束方向下所述待校准阵列天线的各个发射通道被校准次数是否超过预设次数;
    判断在当前波束方向下所述待校准阵列天线的各个发射通道被校准次数是否超过预设次数之后,进一步包括:
    判定在当前波束方向下所述待校准阵列天线的各个发射通道被校准次数未超过预设次数时,重新在当前波束方向下对所述待校准阵列天线的各个接收通道进行校准;
    判定在当前波束方向下所述待校准阵列天线的各个发射通道被校准次数超过预设次数时,发出发射通道校准告警信号。
  10. 一种阵列天线校准装置,其特征在于,包括:
    第一处理单元,用于采用标准波束方向的测试天线向待校准阵列天线发射第一校准信号,并基于所述待校准阵列天线的各个通道接收到所述标准波束方向的测试天线发射的第一校准信号,分别确定通过中心通道接收到的第一校准信号与通过各个通道接收到的第一校准信号之间的幅相误差,其中,所述中心通道为所述待校准阵列天线的中心阵元对应的通道;
    校准单元,用于基于获得的幅相误差,对初始波束权值矢量矩阵进行校准,获得补偿波束权值矢量矩阵,其中,所述初始波束权值矢量矩阵由预设的各个波束方向的方向角确定,且一组初始波束权值矢量对应一个波束方向。
  11. 一种电子设备,其特征在于,包括:一个或多个处理器;以及
    一个或多个计算机可读介质,所述可读介质上存储有用于阵列天线校准的程序,其中,所述程序被所述一个或多个处理器执行时,实现如权利要求1至9中任一项所述的方法的步骤。
  12. 一个或多个计算机可读介质,其特征在于,所述可读介质上存储有用于阵列天线校准的程序,其中,所述程序被一个或多个处理器执行时,使得通信设备执行如权利要求1至9中任一项所述的方法。
PCT/CN2018/104029 2017-09-11 2018-09-04 一种阵列天线校准方法及装置 WO2019047831A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18853726.0A EP3683984B1 (en) 2017-09-11 2018-09-04 Array antenna calibration method and device
US16/646,561 US11005580B2 (en) 2017-09-11 2018-09-04 Array antenna calibration method and device
JP2020514279A JP7022201B2 (ja) 2017-09-11 2018-09-04 アレイアンテナをキャリブレーションする方法および装置
KR1020207010506A KR102325509B1 (ko) 2017-09-11 2018-09-04 어레이 안테나 교정 방법 및 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710813631.9 2017-09-11
CN201710813631.9A CN109495189B (zh) 2017-09-11 2017-09-11 一种阵列天线校准方法及装置

Publications (1)

Publication Number Publication Date
WO2019047831A1 true WO2019047831A1 (zh) 2019-03-14

Family

ID=65634659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/104029 WO2019047831A1 (zh) 2017-09-11 2018-09-04 一种阵列天线校准方法及装置

Country Status (6)

Country Link
US (1) US11005580B2 (zh)
EP (1) EP3683984B1 (zh)
JP (1) JP7022201B2 (zh)
KR (1) KR102325509B1 (zh)
CN (1) CN109495189B (zh)
WO (1) WO2019047831A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021043068A1 (zh) * 2019-09-03 2021-03-11 中兴通讯股份有限公司 数模混合波束赋形多通道的校正装置方法及装置
CN113114390A (zh) * 2021-04-30 2021-07-13 网络通信与安全紫金山实验室 基于宽带信号的阵列ota阵形校准方法及校准系统
EP3832912A4 (en) * 2018-08-02 2021-08-25 Datang Mobile Communications Equipment Co., Ltd. ANTENNA CALIBRATION DEVICE AND METHOD
WO2022008105A1 (en) * 2020-07-08 2022-01-13 Nokia Technologies Oy Calibrating beam orientation errors for improved positioning
CN114079517A (zh) * 2020-08-20 2022-02-22 北京佰才邦技术股份有限公司 一种天线校准的方法、装置及控制设备
JP2022525624A (ja) * 2019-03-15 2022-05-18 大唐移▲動▼通信▲設▼▲備▼有限公司 ハイブリッドビームフォーミングアーキテクチャベースのキャリブレーション補償方法および装置
CN114578144A (zh) * 2022-05-06 2022-06-03 成都瑞迪威科技有限公司 一种高效免对位的天线通道分布检测方法
CN115207629A (zh) * 2022-07-21 2022-10-18 中国信息通信研究院 5g大规模阵列天线的幅相校准方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110518990B (zh) * 2019-08-19 2021-10-22 深圳创维数字技术有限公司 多天线WiFi产品的校准方法、系统及计算机可读存储介质
CN110988786B (zh) * 2019-11-20 2023-09-22 成都大公博创信息技术有限公司 一种阵列测向校准方法
CN112162251B (zh) * 2020-09-15 2024-05-17 北京子兆信息技术有限公司 用于毫米波安检成像的双定标天线射频通道校准方法
CN114252707B (zh) * 2020-09-23 2024-03-15 上海华为技术有限公司 一种阵列天线校准装置、方法及系统
CN112311478B (zh) * 2020-10-19 2023-06-16 上海毫微太科技有限公司 阵列天线的校准方法、装置、设备和存储介质
CN114765852A (zh) * 2021-01-15 2022-07-19 大唐移动通信设备有限公司 定位角度校准方法及装置
CN113114389B (zh) * 2021-04-01 2022-02-01 北京邮电大学 一种基于综合感知的收发器相位模糊的检测和校正方法
CN113381187B (zh) * 2021-05-31 2022-04-12 西南电子技术研究所(中国电子科技集团公司第十研究所) 球面相控阵天线坐标远近场比较修正方法
CN113514793B (zh) * 2021-06-09 2024-09-17 上海铂联通信技术有限公司 一种测向链路校准方法及系统
CN113447730B (zh) * 2021-06-10 2023-12-15 成都华芯天微科技有限公司 一种球面天线近场校准与扫描方法、系统及终端
CN113452456B (zh) * 2021-06-10 2022-08-05 成都华芯天微科技有限公司 一种便携式平面近场测试系统、方法及终端
KR20230003970A (ko) 2021-06-30 2023-01-06 삼성전자주식회사 오정렬 보상 방법 및 장치
JP7565601B2 (ja) * 2021-11-04 2024-10-11 ザインエレクトロニクス株式会社 無線送受信システム
CN114361797B (zh) * 2022-01-21 2023-05-12 北京华镁钛科技有限公司 相控阵天线快速自动校准方法、装置及系统
CN114720781B (zh) * 2022-04-06 2023-03-28 深圳市利和兴股份有限公司 一种便于维护的天线一致性检测平台系统
CN115360518B (zh) * 2022-07-05 2024-08-09 中国电子科技集团公司第三十九研究所 一种相控阵天线的通道幅相标校方法
CN115833972B (zh) * 2023-02-17 2023-04-28 华清瑞达(天津)科技有限公司 对阵列馈电系统输出的目标角位置进行校准的系统及方法
CN116436538B (zh) * 2023-06-12 2023-11-21 西安弘捷电子技术有限公司 多通道tr组件测试自动校准方法及系统
CN117890690B (zh) * 2024-03-18 2024-05-10 成都华兴大地科技有限公司 一种利用差波束的无控幅相控阵校准方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103856272A (zh) * 2012-12-03 2014-06-11 深圳市通用测试系统有限公司 Mimo无线终端的无线性能测试方法
CN105850062A (zh) * 2013-10-29 2016-08-10 亚德诺半导体集团 有源天线系统及测试方法
JP2017152872A (ja) * 2016-02-23 2017-08-31 富士通株式会社 無線通信装置およびキャリブレーション方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9507801A (pt) * 1994-06-03 1998-05-26 Ericsson Telefon Ab L M Processo e sistema para calibrar a transmissão e a recepção de uma formação de antenas para uso num sistema de comunicações de rádio móvel
JP2003264418A (ja) * 1998-07-13 2003-09-19 Ntt Docomo Inc アダプティブアレーアンテナ
CN1258896C (zh) * 2001-06-20 2006-06-07 中兴通讯股份有限公司 一种阵列天线全自适应权值更新方法及其装置
KR100444822B1 (ko) * 2001-08-07 2004-08-18 한국전자통신연구원 적응 배열 안테나 시스템의 오차 보정 장치 및 그 방법
CN100463375C (zh) * 2001-10-20 2009-02-18 中兴通讯股份有限公司 一种智能天线接收方法和装置
KR100675489B1 (ko) * 2004-11-23 2007-01-29 삼성전자주식회사 신호 보정 장치 및 방법을 구현하는 멀티 안테나 통신 시스템
GB0520332D0 (en) * 2005-10-06 2005-11-16 Roke Manor Research Calibration of phased array antennas
WO2008139630A1 (ja) * 2007-05-16 2008-11-20 Fujitsu Limited 無線通信装置および無線通信方法
IL188507A (en) * 2007-12-31 2012-06-28 Elta Systems Ltd Phased array antenna having integral calibration network and method for measuring calibration ratio thereof
CN101887129B (zh) * 2010-04-23 2013-11-06 西安航空电子科技有限公司 北斗卫星用户设备接收抗干扰方法
CN101964449A (zh) * 2010-08-27 2011-02-02 中国科学院上海微系统与信息技术研究所 一种星载相控阵发射天线的在轨校正装置
CN102738551B (zh) * 2012-06-18 2014-10-08 西安空间无线电技术研究所 一种空间功率合成自适应幅相校准方法
US9967081B2 (en) * 2015-12-04 2018-05-08 Hon Hai Precision Industry Co., Ltd. System and method for beamforming wth automatic amplitude and phase error calibration
CN107765104B (zh) * 2017-09-04 2020-02-14 华为技术有限公司 一种相控阵校测的方法以及校测装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103856272A (zh) * 2012-12-03 2014-06-11 深圳市通用测试系统有限公司 Mimo无线终端的无线性能测试方法
CN105850062A (zh) * 2013-10-29 2016-08-10 亚德诺半导体集团 有源天线系统及测试方法
JP2017152872A (ja) * 2016-02-23 2017-08-31 富士通株式会社 無線通信装置およびキャリブレーション方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3683984A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3832912A4 (en) * 2018-08-02 2021-08-25 Datang Mobile Communications Equipment Co., Ltd. ANTENNA CALIBRATION DEVICE AND METHOD
US11171417B2 (en) 2018-08-02 2021-11-09 Datang Mobile Communications Equipment Co., Ltd. Method and apparatus for calibrating antenna
JP2022525624A (ja) * 2019-03-15 2022-05-18 大唐移▲動▼通信▲設▼▲備▼有限公司 ハイブリッドビームフォーミングアーキテクチャベースのキャリブレーション補償方法および装置
JP7361786B2 (ja) 2019-03-15 2023-10-16 大唐移▲動▼通信▲設▼▲備▼有限公司 ハイブリッドビームフォーミングアーキテクチャベースのキャリブレーション補償方法および装置
WO2021043068A1 (zh) * 2019-09-03 2021-03-11 中兴通讯股份有限公司 数模混合波束赋形多通道的校正装置方法及装置
WO2022008105A1 (en) * 2020-07-08 2022-01-13 Nokia Technologies Oy Calibrating beam orientation errors for improved positioning
US11882466B2 (en) 2020-07-08 2024-01-23 Nokia Technologies Oy Calibrating beam orientation errors for improved positioning
CN114079517A (zh) * 2020-08-20 2022-02-22 北京佰才邦技术股份有限公司 一种天线校准的方法、装置及控制设备
CN114079517B (zh) * 2020-08-20 2024-01-26 北京佰才邦技术股份有限公司 一种天线校准的方法、装置及控制设备
CN113114390A (zh) * 2021-04-30 2021-07-13 网络通信与安全紫金山实验室 基于宽带信号的阵列ota阵形校准方法及校准系统
CN114578144A (zh) * 2022-05-06 2022-06-03 成都瑞迪威科技有限公司 一种高效免对位的天线通道分布检测方法
CN115207629A (zh) * 2022-07-21 2022-10-18 中国信息通信研究院 5g大规模阵列天线的幅相校准方法
CN115207629B (zh) * 2022-07-21 2024-04-12 中国信息通信研究院 5g大规模阵列天线的幅相校准方法

Also Published As

Publication number Publication date
CN109495189B (zh) 2020-08-28
CN109495189A (zh) 2019-03-19
KR102325509B1 (ko) 2021-11-12
JP2020533889A (ja) 2020-11-19
KR20200047707A (ko) 2020-05-07
EP3683984A4 (en) 2020-10-21
EP3683984A1 (en) 2020-07-22
EP3683984B1 (en) 2021-10-27
US20200374015A1 (en) 2020-11-26
US11005580B2 (en) 2021-05-11
JP7022201B2 (ja) 2022-02-17

Similar Documents

Publication Publication Date Title
WO2019047831A1 (zh) 一种阵列天线校准方法及装置
US11658726B2 (en) Beam tracking using downlink data reception and motion sensing information
US11917494B2 (en) Positioning method and apparatus
US10673508B2 (en) Channel state information feedback method, user equipment, and base station
EP3565134B1 (en) Antenna correction method and device
KR102341852B1 (ko) 데이터 전송 방법 및 단말 기기
US11411624B2 (en) Systems and methods for correction of beam direction due to self-coupling
WO2015131835A1 (zh) 调节天线的方法、天线和基站控制中心
WO2019062724A1 (zh) 一种确定波束互易性能力当前状态的方法及终端
US20230362867A1 (en) Measurement method and apparatus for positioning, and storage medium
WO2018228356A1 (zh) 通道校正的方法和网络设备
WO2020088549A1 (zh) 一种天线校正方法及装置
WO2020029873A1 (zh) 通信方法、装置和通信系统
WO2022151859A1 (zh) 一种信息处理方法、装置、终端及网络侧设备
WO2020061781A1 (zh) 通信方法、装置及系统
US11962376B2 (en) Multi-channel beamforming method and apparatus, and storage medium
US20220155401A1 (en) Method and device for determining positioning measurement
WO2022205478A1 (zh) 定位测量结果上报方法、装置、通信设备及存储介质
WO2022077409A1 (zh) 天线校准方法、设备、存储介质、通信系统及芯片系统
KR20230134952A (ko) 무선 통신 네트워크에서의 빔 제어 방법 및 장치
CN117156451A (zh) 波束权值调整方法、装置、接入网设备和存储介质
CN114765852A (zh) 定位角度校准方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18853726

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020514279

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207010506

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018853726

Country of ref document: EP

Effective date: 20200414