CN107765104B - 一种相控阵校测的方法以及校测装置 - Google Patents

一种相控阵校测的方法以及校测装置 Download PDF

Info

Publication number
CN107765104B
CN107765104B CN201710786716.2A CN201710786716A CN107765104B CN 107765104 B CN107765104 B CN 107765104B CN 201710786716 A CN201710786716 A CN 201710786716A CN 107765104 B CN107765104 B CN 107765104B
Authority
CN
China
Prior art keywords
channel
coefficient
amplitude
phased array
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710786716.2A
Other languages
English (en)
Other versions
CN107765104A (zh
Inventor
葛广顶
赵旭波
赵德双
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Priority to CN201710786716.2A priority Critical patent/CN107765104B/zh
Publication of CN107765104A publication Critical patent/CN107765104A/zh
Priority to PCT/CN2018/085202 priority patent/WO2019041868A1/zh
Priority to CN201880004203.4A priority patent/CN109952513B/zh
Priority to EP18851018.4A priority patent/EP3671233B1/en
Application granted granted Critical
Publication of CN107765104B publication Critical patent/CN107765104B/zh
Priority to US16/806,769 priority patent/US11121464B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/267Phased-array testing or checking devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/10Radiation diagrams of antennas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0864Measuring electromagnetic field characteristics characterised by constructional or functional features
    • G01R29/0871Complete apparatus or systems; circuits, e.g. receivers or amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2605Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays
    • H01Q3/2611Means for null steering; Adaptive interference nulling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2682Time delay steered arrays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/12Monitoring; Testing of transmitters for calibration of transmit antennas, e.g. of the amplitude or phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/06Testing, supervising or monitoring using simulated traffic

Abstract

本申请公开了一种相控阵校测的方法,该方法应用于校测装置,包含第一相控阵和第二相控阵,第一相控阵包含第一射频RF通道,第二相控阵包含第二RF通道,第一RF通道的拓扑结构与第二RF通道的拓扑结构具有镜像对称关系,第二相控阵与第一相控阵间隔亚波长距离,通过第二RF通道接收通过第一RF通道发送的耦合信号;根据耦合信号确定第一RF通道对应的幅度偏差值以及相位偏差值;若满足预设误差校正条件,则对第一RF通道所对应的幅度系数与相位系数进行校正;采用目标幅度系数以及目标相位系数测量第一相控阵的性能指标参数。本申请公开了一种校测装置。本申请可以对待测相控阵的全部RF通道进行快速幅相校正,提升检测效率,减小占地面积,降低成本。

Description

一种相控阵校测的方法以及校测装置
技术领域
本申请涉及通信领域,尤其涉及一种相控阵校测的方法以及校测装置。
背景技术
相控阵基本原理是采用单元天线辐射波形的叠加和相位变化,以实现功率合成和波束扫描,它的辐射性能主要由单元天线和波束控制系统决定,并由远场方向图表征。相控阵天线由于其天线单元之间的间距小且互耦强,从而导致天线增益下降,副瓣电平抬高,严重时不仅无法实现波束准确扫描,而且可能出现波束严重畸变。影响相控阵性能因素众多,其中包括通道误差中的器件不一致、制造公差、装配误差、环境变化、阵元互耦、位置偏差以及通道失效等,因此,在相控阵中进行校正、故障判断及定位、性能评估、维护校正与测试都是十分重要的。
在相控阵天线的测试中,测量和校正是相辅相成的。目前,常用的相控阵天线测试方法为远场测试方法,具体为,将被测天线装置放置在三维旋转的转台上,将测试探头放置在被测天线的远场位置,通过转台的转动,并且采用扫频的方式将天线装置的各类指标测试齐全。
然而,采用远场测试方法通常需要较大的测试空间,这样便对测试场地造成了限制,不利于测试的便利性。与此同时,如果面临大批量的天线装置,则需要消耗大量的时间对这些天线装置中每个单元进行测试,从而导致测试效率低下。
发明内容
本申请实施例提供了一种相控阵校测的方法以及校测装置,可以提升检测效率,减小占地面积,降低成本低,从而大幅度地缩减相控阵校正所需时间以及提升相控阵产品的检测效率。
有鉴于此,本申请实施例的第一方面提供一种相控阵校测的方法,在该方法中主要采用包含第一相控阵和第二相控阵的校测装置,其中,第一相控阵即为待检测的相控阵,具体可以是待检测的相控阵天线。第二相控阵即为镜像校正测试阵列。第一相控阵包含至少一个第一RF通道,第二相控阵包含至少一个第二RF通道,第二相控阵中第二RF通道的数量需要大于或等于第一RF通道的数量,这样才能使得每个第一RF通道的拓扑结构都能与第二RF通道的拓扑结构对应上,且两者呈镜像对称,即第一RF通道与第二RF通道为面对面耦合。其中,这里的拓扑结构是指硬件上的结构,例如第一RF通道与第二RF通道之间的间距,以及第一RF通道和第二RF通道数量。如果第二RF通道的数量大于第一RF通道的数量,那么就会有多余的第二RF通道不与第一RF通道呈镜像对称。可以理解的是,第一相控阵与第二相控阵之间间隔亚波长距离,亚波长的量级为纳米,因此亚波长比波长更小。
首先校测装置通过第二相控阵的第二RF通道接收来自于第一相控阵中第一RF通道发送的耦合信号,然后可以根据该耦合信号确定第一RF通道的幅度值和相位值,接着根据幅度值相位值以及标准计量数据,计算得到第一RF通道所对应的幅度偏差值以及相位偏差值。
如果计算得到的幅度偏差值和相位偏差值满足预设误差条件,也就是说,如果幅度偏差值的绝对值在预设幅度误差范围内,而且相位偏差值的绝对值也在预设相位误差范围内,那么确定满足预设误差条件,这个时候,校测装置需要对所有第一RF通道对应的幅度系数与相位系数进行校正,并且得到校正后的目标幅度系数以及目标相位系数。
校测装置可以利用目标幅度系数以及目标相位系数对第一相控阵进行测试,并得到第一相控阵对应的各个性能指标参数,如等效全向辐射功率、误差向量幅度和误码率。
本申请实施例中,提供了一种相控阵校测的方法,该方法主要应用于校测装置,校测装置包含第一相控阵和第二相控阵,第一相控阵包含第一射频RF通道,第二相控阵包含第二RF通道,第一RF通道与第二RF通道具有对应关系,且第二相控阵与第一相控阵之间间隔亚波长距离。首先校测装置通过第二RF通道接收通过第一RF通道发送的耦合信号,然后根据耦合信号确定第一RF通道所对应的幅度偏差值以及相位偏差值,如果幅度偏差值和相位偏差值满足预设误差校正条件,则校测装置需要对第一RF通道所对应的幅度系数与相位系数进行校正,以得到目标幅度系数以及目标相位系数,最后校测装置可以采用目标幅度系数以及目标相位系数测量第一相控阵的性能指标参数。通过上述方式,由一个标定好的镜像相控阵,以亚波长距离与待测相控阵面对面放置,通过阵元天线之间的紧贴直通耦合机理,对待测相控阵的全部RF通道进行快速幅相校正,从而提升检测效率,减小占地面积,降低成本低,可以大幅度地缩减相控阵校正所需时间以及提升相控阵产品的检测效率。
在一种可能的设计中,在本申请实施例的第一方面的第一种实现方式中,第一相控阵包含了多个第一RF通道,且第二相控阵包含了多个第二RF通道,于是,通过第二相控阵的第二RF通道接收通过第一RF通道发送的耦合信号,可以包括如下几个步骤:
将第二相控阵进行严格地精密校正之后,安装在固定的流水线检测平台上,作为第一相控阵的标准校测设备。首先,校测装置的第二相控阵中所有与第一RF通道直通耦合的第二RF通道处于关闭状态,其中,第二相控阵的每个第二RF通道由开关矩阵进行通断控制,开关矩阵中包含了多个开关,一个开关连接一个第二RF通道,此外,每个开关处还具有衰减器,衰减器可以防止功率过大。
接下来,可以按照一定的顺序逐一开启第二RF通道,举个例子,假设现在第一相控阵中有9个第一RF通道,且第二相控阵也有9个第二RF通道,按照顺序,这9个第二RF通道依次编号为1至9号。一开始,9个第二RF通道都是处于关闭状态的,于是,先开启1号第二RF通道,然后通过1号第二RF通道接收通过与之对应的1号第一RF通道发送的耦合信号,再关闭1号第二RF通道,接着开启2号第二RF通道,通过2号第二RF通道接收通过与之对应的2号第一RF通道发送的耦合信号,以此类推,直到来自9个第一RF通道的耦合信号都被接收。
可见,本申请实施例中,首先关闭与第一RF通道对应的所有第二RF通道,然后依次开启这些第二RF通道中的每个RF通道,最后通过每个第二RF通道接收每个第一RF通道发送过来的耦合信号。通过上述方式,能够逐一地对待检测的相控阵进行幅相的校正和测量,即可以对每个第一RF通道都进行校测,相对同时校测多个RF通道,本申请有利于提升校测的准确性。
在一种可能的设计中,在本申请实施例的第一方面的第二种实现方式中,通过第二RF通道接收每一个第一RF通道发送的耦合信号,可以采用如下的步骤:
具体地,在第一步中,当所有与第一RF通道镜像对称的第二RF通道都处于关闭状态时,开启这些第二RF通道中的第n个第二RF通道,其中,n为正整数,且n不会大于第一RF通道的总个数。在第二步中,校测装置通过该第n个第二RF通道接收来自第n个第一RF通道发送的耦合信号,当然,这里的第n个第二RF通道与第n个第一RF通道之间也是具有镜像对称关系的。耦合信号接收完毕后,在第三步中关闭该第二RF通道。
上述的第一步至第三步可以检测第一相控阵中的任意一个从第一RF通道发送来的耦合信号,第一相控阵中的所有第一RF通道都可以采用上述三个步骤进行耦合信号的发送,直至第一RF通道所发送的耦合信号均被第二RF通道接收。
可见,本申请实施例中,介绍了第二RF通道如何接收来自第一RF通道的耦合信号,以一组第一RF通道和与之对应的第二RF通道为例进行说明,采用相似的方法可以逐一地对待检测的相控阵进行幅相的校正和测量,即可以对每个第一RF通道都进行校测,相对同时校测多个RF通道,本申请有利于提升校测的准确性。
在一种可能的设计中,在本申请实施例的第一方面的第三种实现方式中,校测装置根据耦合信号确定第一RF通道所对应的幅度偏差值以及相位偏差值,具体可以包括如下几个步骤:
首先,校测装置中的矢量网络分析仪器,可以根据已经获取到的耦合信号检测出第一RF通道所对应的幅度值以及相位值。可以理解的是,通常情况下,幅度值和相位值是针对每个第一RF通道而言的,但是在实际应用中,这个幅度值和相位值也可以是针对多个第一RF通道而言的,我们以一个第一RF通道的幅度值和相位值为例进行介绍,然而,这不应构成对本方案的限定。
在得到第一RF通道的幅度值和相位值之后,利用提前设置的好的预设幅度值和预设相位值,可以分别计算出幅度偏差值和相位偏差值。举个例子,假设预设幅度值为-20分贝,预设相位值为2度,第一RF通道的幅度值为-15分贝,第一RF通道的相位值为5度,那么幅度偏差值即为(-15-(-20))=5,相位偏差值即为(5-2)=3。
可见,本申请实施例中,先根据耦合信号获取第一RF通道所对应的幅度值以及相位值,然后分别采用预设幅度值和预设相位值,计算得到我们需要的幅度偏差值和相位偏差值。通过上述方式,可以得到当前测量的幅相值与预设幅相值之间的偏差值,偏差值用于确定RF通道是否存在异常或故障,从而有利于提升方案的实用性和可操作性。
在一种可能的设计中,在本申请实施例的第一方面的第四种实现方式中,校测装置在根据耦合信号确定第一RF通道所对应的幅度偏差值以及相位偏差值之后,还可以执行如下步骤:
校测装置判断幅度偏差值的绝对值是否在预设幅度误差范围内,且相位偏差值的绝对值是否在预设相位误差范围内,如果两个条件都达到,则校测装置可以确定幅度偏差值和相位偏差值满足预设误差校正条件。以9元天线为例,假设预设幅度误差范围为大于或等于10分贝,预设相位误差范围为大于或等于5度,9个第一RF通道的幅度偏差值分别为12分贝、5分贝、11分贝、10分贝、5分贝、3分贝、7分贝、4分贝和19分贝,经过比较后,发现最大的幅度偏差值为19分贝,已经大于10分贝,因此确定幅度偏差值的绝对值在预设幅度误差范围内。9个第一RF通道的相位偏差值分别为3度、5度、8度、1度、1度、3度、7度、10度和6度,经过比较后,发现最大的相位偏差值为10度,已经大于5度,因此确定相位偏差值的绝对值在预设相位误差范围内。这个时候,说明当前满足预设误差校正条件。
可见,本申请实施例中,在得到幅度偏差值和相位偏差值之后,进而判断幅度偏差值的绝对值是否在预设幅度误差范围内,且相位偏差值的绝对值是否在预设相位误差范围内,若是,在确定满足预设误差校正条件,也就可以进行后续的RF通道幅相校测,反之,若不满足预设误差校正条件,则认为这个RF通道存在通道故障,也就不进行后续的通道幅相校测,直接由机械手臂将第一相控阵拆离第二相控阵,送回检修,因此有助于尽早地发现待检测的相控阵是否出现故障,从而提升方案的实用性。
在一种可能的设计中,在本申请实施例的第一方面的第五种实现方式中,校测装置在根据耦合信号确定第一RF通道所对应的幅度偏差值以及相位偏差值之后,还可以执行如下步骤:
首先,校测装置获取第一RF通道在空间中的第一位置矢量以及第二RF通道在空间中的第二位置矢量,然后可以根据第一位置矢量和第二位置矢量确定幅度系数以及相位系数,最后采用相关公式,根据第一RF通道产生的近区电场、第二RF通道产生的近区电场、幅度系数以及相位系数计算耦合系数。
可见,本申请实施例中,介绍了在确定第一RF通道所对应的幅度偏差值和相位偏差值之后,还可以进一步获取第一位置矢量和第二位置矢量,然后根据一系列参数计算得到耦合系数。通过上述方式,能够得到更准确的耦合系数,并用于后续的RF通道校测,从而提升方案的可行性。
在一种可能的设计中,在本申请实施例的第一方面的第六种实现方式中,校测装置对第一RF通道所对应的幅度系数与相位系数进行校正,以得到目标幅度系数以及目标相位系数,具体包括如下步骤:
在理想情况下,第一相控阵阵面和第二相控阵阵面可以保持平行,那么这个时候,校测装置可以采用预设关系模型对幅度系数与相位系数进行训练,其中,预设关系模型为耦合系数与平行偏移位置之间的函数关系模型。然后,校测装置既可以获取训练后的目标幅度系数以及目标相位系数。
可见,本申请实施例中,介绍了在第一相控阵和第二相控阵相互平时,如何获取目标幅度系数以及目标相位系数的方式,即采用预设关系模型对已经得到的幅度系数和相位系数进行训练。通过上述方式,运用人工神经网络模型建立耦合系数与平行偏移位置之间的函数关系模型,在实测数据的基础上,采用人工智能学习算法对幅度系数与相位系数进行修正,从而得到相应的目标幅度系数和目标相位系数,以此提升每个第一RF通道的校正精度。
在一种可能的设计中,在本申请实施例的第一方面的第七种实现方式中,在更多的情况下,第一相控阵阵面和第二相控阵阵面是不平行的,那么这个时候,校测装置对第一RF通道所对应的幅度系数与相位系数进行校正,以得到目标幅度系数以及目标相位系数,这个步骤具体可以包括:
首先,校测装置获取第一相控阵的阵面与第二相控阵的阵面之间的夹角,根据夹角的大小来决定如何对幅度系数和相位系数进行校正。
如果夹角属于小角度夹角,则校测装置可以根据第一幅度修正系数以及幅度系数计算出目标幅度系数,并且可以根据第一相位修正系数以及相位系数计算出目标相位系数,其中,第一幅度修正系数表示预先设置的不同方向(如x轴、y轴和z轴)上的幅度修正系数,第一相位修正系数表示预先设置的不同方向(如x轴、y轴和z轴)上的相位修正系数。反之,如果夹角属于大角度夹角,则根据第一幅度修正系数、第二幅度修正系数以及幅度系数计算所目标幅度系数,并根据第一相位修正系数、第二相位修正系数以及相位系数计算目标相位系数,其中,第二幅度修正系数表示第一RF通道和对应的第二RF通道之间耦合的幅度修正系数,第二相位修正系数表示第一RF通道和对应的第二RF通道之间耦合的相位修正系数。
可见,本申请实施例中,介绍了在第一相控阵和第二相控阵互不平行时,如何获取目标幅度系数以及目标相位系数的方式,即先获取第一相控阵的阵面和第二相控阵的阵面之间的夹角,根据夹角的类型选择相应的修正方式。通过上述方式,在实测数据的基础上,利用幅度修正系数和相位修正系数对幅度系数与相位系数进行修正,从而得到相应的目标幅度系数和目标相位系数,以此提升每个第一RF通道的校正精度。
在一种可能的设计中,在本申请实施例的第一方面的第八种实现方式中,校测装置在得到目标幅度系数以及目标相位系数之后,还可以执行如下步骤:
校测装置还可以根据目标幅度系数以及目标相位系数确定第一相控阵的波束方向图。
其中,波束是指由卫星天线发射出来的电磁波在地球表面上形成的形状。主要有全球波束、点形波束和赋形波束。它们由发射天线来决定其形状。波束方向图中可以包括水平波束宽度和垂直波束宽度。
波束宽度可以是波束两个半功率点之间的夹角,与天线增益有关,一般天线增益越大,波束就越窄,探测角分辨率就越高。水平波束宽度是指在水平方向上,在最大辐射方向两侧,辐射功率下降3分贝的两个方向的夹角。而垂直波束宽度是指在垂直方向上,在最大辐射方向两侧,辐射功率下降3dB的两个方向的夹角。
可见,本申请实施例中,在对第一相控阵的所有RF通道校正完毕后,不但可以利用第二相控阵的后端处理设备,对第一相控阵的性能指标参数进行在线监测,还可以利用目标相位系数和目标幅度系数确定出第一相控阵所对应的波束方向图,从而实现对待测相控阵波束方向图的预测,以此提升方案的实用性。
在一种可能的设计中,在本申请实施例的第一方面的第九种实现方式中,检测装置在通过所述第二RF通道接收通过所述第一RF通道发送的耦合信号之前,还可以执行如下步骤:
当第二RF通道的传输幅度值最大时,校测装置确定第一相控阵与所述第二相控阵之间的对应位置。具体地,首先测试仪器在x轴和y轴维度进行峰值搜索,x轴和y轴分别是横轴和纵轴。通过峰值搜索得到第二相控阵在不同的坐标位置所对应的传输幅度值,坐标位置即为x轴和y轴上的位置。一种可行的方式为,当所有第二RF通道传输幅度值最大值时,可以认为第一相控阵的阵面与第二相控阵的阵面对准,从而能够继续进行后续的相控阵校测。
可见,本申请实施例中,在通过第二RF通道接收通过第一RF通道发送的耦合信号之后,还需要对第一相控阵和第二相控阵进行位置调整,调整到最佳位置时,第二RF通道的传输幅度值应为最大。通过上述方式,能够采用物理位置搜索的方式,找到第一相控阵和第二相控阵位置上的最优点,并以此进行校测,从而达到更准确高效的校测效果。
本申请实施例的第二方面提供一种校测装置,校测装置可以包含第一相控阵、第二相控阵和测试仪器,其中,第一相控阵即为待检测的相控阵,具体可以是待检测的相控阵天线。第二相控阵即为镜像校正测试阵列。第一相控阵包含至少一个第一RF通道,第二相控阵包含至少一个第二RF通道,第二相控阵中第二RF通道的数量需要大于或等于第一RF通道的数量,这样才能使得每个第一RF通道都能与第二RF通道对应上,即第一RF通道与第二RF通道为面对面耦合。第一相控阵与第二相控阵之间间隔亚波长距离,亚波长的量级为纳米,因此亚波长比波长更小。
校测装置中的第二相控阵可以用于通过第二相控阵中的第二RF通道接收来自第一相控阵中同通过第一RF通道发送的耦合信号。
测试仪器用于根据耦合信号确定第一RF通道的幅度值和相位值,接着根据幅度值相位值以及标准计量数据,计算得到第一RF通道所对应的幅度偏差值以及相位偏差值。
如果幅度偏差值和所述相位偏差值满足预设误差校正条件,也就是说,如果幅度偏差值的绝对值在预设幅度误差范围内,而且相位偏差值的绝对值也在预设相位误差范围内,那么确定满足预设误差条件,这个时候,测试仪器用于对所有第一RF通道对应的幅度系数与相位系数进行校正,并且得到校正后的目标幅度系数以及目标相位系数。
测试仪器用于根据目标幅度系数以及目标相位系数对第一相控阵进行测试,并得到第一相控阵对应的各个性能指标参数,如等效全向辐射功率、误差向量幅度和误码率。
本申请实施例中,通过一个标定好的镜像相控阵,以亚波长距离与待测相控阵面对面放置,通过阵元天线之间的紧贴直通耦合机理,对待测相控阵的全部RF通道进行快速幅相校正,从而提升检测效率,减小占地面积,降低成本低,可以大幅度地缩减相控阵校正所需时间以及提升相控阵产品的检测效率。
在一种可能的设计中,在本申请实施例的第二方面的第一种实现方式中,第一相控阵包含多个第一RF通道,第二相控阵包含多个第二RF通道,第二相控阵还可以包含多个开关以及多个衰减器,其中,每个开关与每个第二RF通道相连,每个衰减器与每个第二RF通道相连;
当多个第二RF通道处于关闭状态时,开关用于开启多个第二RF通道中的一个目标第二RF通道,其中,目标第二RF通道为多个第二RF通道中的任意一个第二RF通道;
第二RF通道用于通过目标第二RF通道接收目标第一RF通道发送的耦合信号,直至多个第一RF通道所发送的耦合信号均被接收,其中,目标第一RF通道为多个第一RF通道中的一个与目标第二RF通道具有镜像对称关系的第一RF通道;
每个衰减器用于对耦合信号进行信号衰减处理。
将第二相控阵进行严格地精密校正之后,安装在固定的流水线检测平台上,作为第一相控阵的标准校测设备。首先,通过开关矩阵(包含有多个开关的矩阵)将第二相控阵中所有与第一RF通道直通耦合的第二RF通道都设置为关闭状态,其中,第二相控阵的每个第二RF通道由开关矩阵进行通断控制,开关矩阵中包含了多个开关,一个开关连接一个第二RF通道,此外,每个开关处还具有衰减器,衰减器可以防止功率过大。
接下来,可以按照一定的顺序逐一开启第二RF通道,举个例子,假设现在第一相控阵中有9个第一RF通道,且第二相控阵也有9个第二RF通道,按照顺序,这9个第二RF通道依次编号为1至9号。一开始,9个第二RF通道都是出于关闭状态的,于是,先开启1号第二RF通道,然后通过1号第二RF通道接收通过与之对应的1号第一RF通道发送的耦合信号,再关闭1号第二RF通道,接着开启2号第二RF通道,通过2号第二RF通道接收通过与之对应的2号第一RF通道发送的耦合信号,以此类推,直到来自9个第一RF通道的耦合信号都被接收。
可见,本申请实施例中,首先关闭与第一RF通道对应的所有第二RF通道,然后依次开启这些第二RF通道中的每个RF通道,最后通过每个第二RF通道接收每个第一RF通道发送过来的耦合信号。通过上述方式,能够逐一地对待检测的相控阵进行幅相的校正和测量,即可以对每个第一RF通道都进行校测,相对同时校测多个RF通道,本申请有利于提升校测的准确性。
在一种可能的设计中,在本申请实施例的第二方面的第二种实现方式中,开关和第二RF通道可以通过如下操作接收每一个第一RF通道发送的耦合信号;
1)开关具体用于当多个第二RF通道处于关闭状态时,开启多个第二RF通道中的第n个第二RF通道,其中,n为正整数;
2)第二RF通道具体用于通过第n个第二RF通道接收通过第n个第一RF通道发送的耦合信号,其中,第n个第二RF通道与第n个第一RF通道具有镜像对称关系;
3)开关具体用于关闭第n个第二RF通道;
开关和第二RF通道用于分别对与多个第一RF通道具有镜像对称关系的多个第二RF通道均执行如步骤1)至步骤3)的操作,直至多个第一RF通道所发送的耦合信号均被多个第二RF通道接收。
可见,本申请实施例中,介绍了第二RF通道如何接收来自第一RF通道的耦合信号,以一组第一RF通道和与之对应的第二RF通道为例进行说明,采用相似的方法可以逐一地对待检测的相控阵进行幅相的校正和测量,即可以对每个第一RF通道都进行校测,相对同时校测多个RF通道,本申请有利于提升校测的准确性。
在一种可能的设计中,在本申请实施例的第二方面的第三种实现方式中,测试仪器可以包括矢量网络分析仪器,矢量网络分析仪器主要用于根据耦合信号获取第一RF通道所对应的幅度值以及相位值,然后根据幅度值与预设幅度值计算第一RF通道所对应的幅度偏差值,与此同时,矢量网络分析仪器也用于根据相位值与预设相位值计算第一RF通道所对应的相位偏差值。
首先,矢量网络分析仪器,可以根据已经获取到的耦合信号检测出第一RF通道所对应的幅度值以及相位值。可以理解的是,通常情况下,幅度值和相位值是针对每个第一RF通道而言的,但是在实际应用中,这个幅度值和相位值也可以是针对多个第一RF通道而言的,我们以一个第一RF通道的幅度值和相位值为例进行介绍,然而,这不应构成对本方案的限定。
在得到第一RF通道的幅度值和相位值之后,利用提前设置的好的预设幅度值和预设相位值,可以分别计算出幅度偏差值和相位偏差值。举个例子,假设预设幅度值为-20分贝,预设相位值为2度,第一RF通道的幅度值为-15分贝,第一RF通道的相位值为5度,那么幅度偏差值即为(-15-(-20))=5,相位偏差值即为(5-2)=3。
可见,本申请实施例中,先根据耦合信号获取第一RF通道所对应的幅度值以及相位值,然后分别采用预设幅度值和预设相位值,计算得到我们需要的幅度偏差值和相位偏差值。通过上述方式,可以得到当前测量的幅相值与预设幅相值之间的偏差值,偏差值用于确定RF通道是否存在异常或故障,从而有利于提升方案的实用性和可操作性。
在一种可能的设计中,在本申请实施例的第二方面的第四种实现方式中,测试仪器包括测试控制设备;
测试控制设备用于判断幅度偏差值的绝对值是否在预设幅度误差范围内,且相位偏差值的绝对值是否在预设相位误差范围内,如果两个条件都达到,则测试控制设备可以确定幅度偏差值和相位偏差值满足预设误差校正条件。
以9元天线为例,假设预设幅度误差范围为大于或等于10分贝,预设相位误差范围为大于或等于5度,9个第一RF通道的幅度偏差值分别为12分贝、5分贝、11分贝、10分贝、5分贝、3分贝、7分贝、4分贝和19分贝,经过比较后,发现最大的幅度偏差值为19分贝,已经大于10分贝,因此确定幅度偏差值的绝对值在预设幅度误差范围内。9个第一RF通道的相位偏差值分别为3度、5度、8度、1度、1度、3度、7度、10度和6度,经过比较后,发现最大的相位偏差值为10度,已经大于5度,因此确定相位偏差值的绝对值在预设相位误差范围内。这个时候,说明当前满足预设误差校正条件。
可见,本申请实施例中,在得到幅度偏差值和相位偏差值之后,进而判断幅度偏差值的绝对值是否在预设幅度误差范围内,且相位偏差值的绝对值是否在预设相位误差范围内,若是,在确定满足预设误差校正条件,也就可以进行后续的RF通道幅相校测,反之,若不满足预设误差校正条件,则认为这个RF通道存在通道故障,也就不进行后续的通道幅相校测,直接由机械手臂将第一相控阵拆离第二相控阵,送回检修,以此有助于尽早地发现待检测的相控阵是否出现故障,从而提升方案的实用性。
在一种可能的设计中,在本申请实施例的第二方面的第五种实现方式中,测试仪器还用于获取第一RF通道在空间中的第一位置矢量以及第二RF通道在空间中的第二位置矢量,该测试仪器根据第一位置矢量和第二位置矢量确定幅度系数以及相位系数,最后测试仪器根据所述第一RF通道产生的近区电场、第二RF通道产生的近区电场、幅度系数以及相位系数计算耦合系数。
可见,本申请实施例中,介绍了在确定第一RF通道所对应的幅度偏差值和相位偏差值之后,还可以进一步获取第一位置矢量和第二位置矢量,然后根据一系列参数计算得到耦合系数。通过上述方式,能够得到更准确的耦合系数,并用于后续的RF通道校测,从而提升方案的可行性。
在一种可能的设计中,在本申请实施例的第二方面的第六种实现方式中,在理想情况下,第一相控阵阵面和第二相控阵阵面可以保持平行,则测试仪器具体用于采用预设关系模型对幅度系数与相位系数进行训练,然后获取训练后的目标幅度系数以及目标相位系数,其中,预设关系模型为耦合系数与平行偏移位置之间的函数关系模型。
可见,本申请实施例中,介绍了在第一相控阵和第二相控阵相互平时,如何获取目标幅度系数以及目标相位系数的方式,即采用预设关系模型对已经得到的幅度系数和相位系数进行训练。通过上述方式,运用人工神经网络模型建立耦合系数与平行偏移位置之间的函数关系模型,在实测数据的基础上,采用人工智能学习算法对幅度系数与相位系数进行修正,从而得到相应的目标幅度系数和目标相位系数,以此提升每个第一RF通道的校正精度。
在一种可能的设计中,在本申请实施例的第二方面的第七种实现方式中,在更多的情况下,第一相控阵阵面和第二相控阵阵面是不平行的,那么这个时候,测试仪器具体用于获取第一相控阵的阵面与第二相控阵的阵面之间的夹角。
如果夹角属于小角度夹角,则测试仪器可以根据第一幅度修正系数以及幅度系数计算出目标幅度系数,并且可以根据第一相位修正系数以及相位系数计算出目标相位系数,其中,第一幅度修正系数表示预先设置的不同方向(如x轴、y轴和z轴)上的幅度修正系数,第一相位修正系数表示预先设置的不同方向(如x轴、y轴和z轴)上的相位修正系数。反之,如果夹角属于大角度夹角,则测试仪器根据第一幅度修正系数、第二幅度修正系数以及幅度系数计算所目标幅度系数,并根据第一相位修正系数、第二相位修正系数以及相位系数计算目标相位系数,其中,第二幅度修正系数表示第一RF通道和对应的第二RF通道之间耦合的幅度修正系数,第二相位修正系数表示第一RF通道和对应的第二RF通道之间耦合的相位修正系数。
可见,本申请实施例中,介绍了在第一相控阵和第二相控阵互不平行时,如何获取目标幅度系数以及目标相位系数的方式,即先获取第一相控阵的阵面和第二相控阵的阵面之间的夹角,根据夹角的类型选择相应的修正方式。通过上述方式,在实测数据的基础上,利用幅度修正系数和相位修正系数对幅度系数与相位系数进行修正,从而得到相应的目标幅度系数和目标相位系数,以此提升每个第一RF通道的校正精度。
在一种可能的设计中,在本申请实施例的第二方面的第八种实现方式中,校测装置在得到目标幅度系数以及目标相位系数之后,还可以执行如下步骤:
校测装置还可以根据目标幅度系数以及目标相位系数确定第一相控阵的波束方向图。
其中,波束是指由卫星天线发射出来的电磁波在地球表面上形成的形状。主要有全球波束、点形波束和赋形波束。它们由发射天线来决定其形状。波束方向图中可以包括水平波束宽度和垂直波束宽度。
波束宽度可以是波束两个半功率点之间的夹角,与天线增益有关,一般天线增益越大,波束就越窄,探测角分辨率就越高。水平波束宽度是指在水平方向上,在最大辐射方向两侧,辐射功率下降3分贝的两个方向的夹角。而垂直波束宽度是指在垂直方向上,在最大辐射方向两侧,辐射功率下降3dB的两个方向的夹角。
可见,本申请实施例中,在对第一相控阵的所有RF通道校正完毕后,不但可以利用第二相控阵的后端处理设备,对第一相控阵的性能指标参数进行在线监测,还可以利用目标相位系数和目标幅度系数确定出第一相控阵所对应的波束方向图,从而实现对待测相控阵波束方向图的预测,以此提升方案的实用性。
在一种可能的设计中,在本申请实施例的第二方面的第九种实现方式中,当第二RF通道的传输幅度值最大时,测试仪器还用于确定第一相控阵与所述第二相控阵之间的对应位置。
具体地,首先测试仪器在x轴和y轴维度进行峰值搜索,x轴和y轴分别是横轴和纵轴。通过峰值搜索得到第二相控阵在不同的坐标位置所对应的传输幅度值,坐标位置即为x轴和y轴上的位置。一种可行的方式为,当所有第二RF通道传输幅度值最大值时,可以认为第一相控阵的阵面与第二相控阵的阵面对准,从而能够继续进行后续的相控阵校测。
可见,本申请实施例中,在通过第二RF通道接收通过第一RF通道发送的耦合信号之后,还需要对第一相控阵和第二相控阵进行位置调整,调整到最佳位置时,第二RF通道的传输幅度值应为最大。通过上述方式,能够采用物理位置搜索的方式,找到第一相控阵和第二相控阵位置上的最优点,并以此进行校测,从而达到更准确高效的校测效果。
第三方面,本申请实施例提供一种计算机设备,包括:处理器、存储器、总线和通信接口;该存储器用于存储计算机执行指令,该处理器与该存储器通过该总线连接,当该服务器运行时,该处理器执行该存储器存储的该计算机执行指令,以使该服务器执行如上述任一方面的方法。
第四方面,本申请实施例提供了一种计算机可读存储介质,用于储存为上述方法所用的计算机软件指令,当其在计算机上运行时,使得计算机可以执行上述中任一方面的方法。
第五方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述任一方面的方法。
另外,第三方面第五方面任一种设计方式所带来的技术效果可参见第一方面中不同设计方式所带来的技术效果,此处不再赘述。
从以上技术方案可以看出,本申请实施例具有以下优点:
本申请实施例中,提供了一种相控阵校测的方法,该方法主要应用于校测装置,校测装置包含第一相控阵和第二相控阵,第一相控阵包含第一射频RF通道,第二相控阵包含第二RF通道,第一RF通道与第二RF通道具有对应关系,且第二相控阵与第一相控阵之间间隔亚波长距离。首先校测装置通过第二RF通道接收通过第一RF通道发送的耦合信号,然后根据耦合信号确定第一RF通道所对应的幅度偏差值以及相位偏差值,如果幅度偏差值和相位偏差值满足预设误差校正条件,则校测装置需要对第一RF通道所对应的幅度系数与相位系数进行校正,以得到目标幅度系数以及目标相位系数,最后校测装置可以采用目标幅度系数以及目标相位系数测量第一相控阵的性能指标参数。通过上述方式,由一个标定好的镜像相控阵,以亚波长距离与待测相控阵面对面放置,通过阵元天线之间的紧贴直通耦合机理,对待测相控阵的全部RF通道进行快速幅相校正,从而提升检测效率,减小占地面积,降低成本低,可以大幅度地缩减相控阵校正所需时间以及提升相控阵产品的检测效率。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例。
图1为本申请实施例中校测装置的一个结构示意图;
图2为本申请实施例中相控阵校测的方法一个实施例示意图;
图3为本申请实施例中第二相控阵的一个结构示意图;
图4为本申请实施例中第一相控阵与第二相控阵的阵面示意图;
图5为本申请实施例中第一相控阵阵面与第二相控阵阵面平行的实施例示意图;
图6为本申请实施例中第一相控阵阵面与第二相控阵阵面不平行的实施例示意图;
图7为本申请应用场景中校测装置的一个功能示意图;
图8为本申请应用场景中相控阵校测的方法一个流程示意图;
图9为本申请实施例中校测装置的另一个结构示意图;
图10为本申请实施例中校测装置的另一个结构示意图;
图11为本申请实施例中校测装置的另一个结构示意图;
图12为本申请实施例中校测装置的另一个结构示意图;
图13为本申请实施例中校测装置的一个实施例示意图;
图14为本申请实施例中校测装置的另一个实施例示意图;
图15为本申请实施例中校测装置的另一个实施例示意图。
具体实施方式
本申请实施例提供了一种相控阵校测的方法以及校测装置,可以提升检测效率,减小占地面积,降低成本低,从而大幅度地缩减相控阵校正所需时间以及提升相控阵产品的检测效率。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
应理解,本申请可以应用于快速校正相控阵天线产品的场景,相控阵天线是目前卫星移动通信系统中最重要的一种天线形式,由三个部分组成:天线阵、馈电网络和波束控制器。基本原理是微处理器接收到包含通信方向的控制信息后,根据控制软件提供的算法计算出各个移相器的相移量,然后通过天线控制器来控制馈电网络完成移相过程。由于移相能够补偿同一信号到达各个不同阵元而产生的时间差,所以此时天线阵的输出同相叠加达到最大。一旦信号方向发生变化,只要通过调整移相器的相移量就可使天线阵波束的最大指向做相应的变化,从而实现波束扫描和跟踪。相控阵天线有相控扫描线天线阵和平面相控阵天线。
相控阵在快速跟踪雷达和测相等领域得到广泛的应用,它可以使主瓣指向随着通信的需要而不断地调整。通过控制阵列天线中辐射单元的馈电相位改变方向图形状的天线。控制相位可以改变天线方向图最大值的指向,以达到波速扫描的目的。在特殊情况下,也可以控制副瓣电平、最小值位置和整个方向图的形状。用机械方法旋转天线时,惯性大且速度慢,相控阵天线克服了这个缺点,波速的扫描高。它的馈电相一般用电子计算机(即主控装备)控制,相位变化速度快,即天线方向图最大值指向或其他参数的变化迅速。这是相控阵天线的最大特点。
为了便于介绍,请参阅图1,图1为本申请实施例中校测装置的一个结构示意图,如图所示,本申请提供了一种基于亚波长间距镜像直耦的校测装置,顾名思义,该校测装置不再采用馈线耦合机理、近场扫描机制和远场旋转矢量方法中的任一项进行相控阵通道的幅相校正,而是采用一个已经标定好的镜像相控阵,以亚波长距离与待测相控阵面对面放置,通过阵元天线之间的紧贴直通耦合机理,实现对待测相控阵全部通道的快速幅相校正。
图1中的镜像校正测试阵列的结构和功能与待测相控阵的结构和功能一致,为了方便对每一个射频(radio frequency,RF)通道进行逐一地幅相校正,由开关矩阵实现对各个RF通道的控制。如果将镜像校正测试阵列所有RF通道的开关全部同时接入到接收通道,可以在数秒内完成全部RF通道的同步幅相校正。在校测过程中,可以由机械手臂通过预先规范设计的精密定位孔装置,将待测相控阵与镜像校正测试阵列进行精准地空间对接、装配和拆离。此外,图1中的波束控制器用于控制待测相控阵的波束指向和波束形状,而镜像阵列控制器用于控制镜像校正测试阵列的波束指向和波束形状。
从近远场角度进行划分,本申请采用了一种超近场相控阵校正的方法。从工作机理角度来看,本申请采用了电磁谐振耦合的机制,即利用面对面紧贴阵元间的直通耦合谐振信号的信息,而不是通过电磁探针测量近场、中场或远场的空间电磁场信息,进行通道的幅相校正。本申请不需要做近场扫描,也无需精密的电磁探针和成本高昂的电磁暗室环境,因此校正速度快,检测效率高,占地面积小,且成本低,可以实现相控阵产品的批量在线校测,能极大地缩减相控阵校正所需时间以及提升相控阵产品的检测效率,尤其适用于大批量相控阵产品的校测。
可以理解的是,在本申请中,各个RF通道以及RF通道中的有源器件均可以依据测试场景进行匹配。
其中,关于各个RF通道在测试场景中的匹配方式为,假设待测相控阵为9元天线(即包含9个RF通道),那么就需要将镜像校正测试阵列中的9个RF通道与待测相控阵的9个RF通道进行匹配,以进行测试。
关于各个RF通道中的有源器件在测试场景中的匹配方式为,若待测相控阵处于信号发射场景,则可以通过调整待测相控阵中的有源器件来控制输出功率,输出功率可以为大于或等于0dbm。若镜像校正测试阵列处于信号接收场景,则可以通过调整镜像校正测试阵列中的有源器件来控制输入功率,输入功率可以为大于或等于-130dbm,且小于或等于0dbm。
需要说明的是,有源器件包含但不仅限于功率放大器、集成稳压器、比较器以及波形发生器,此处不做限定。
请参阅图2,本申请实施例中相控阵校测的方法一个实施例包括:
101、校测装置通过第二射频RF通道接收通过第一RF通道发送的耦合信号,校测装置包含第一相控阵和第二相控阵,其中,第一相控阵为待检测的相控阵,第一相控阵包含第一RF通道,第二相控阵包含第二RF通道,第一RF通道的拓扑结构与第二RF通道的拓扑结构具有镜像对称关系,第二相控阵与第一相控阵之间间隔亚波长距离;
本实施例中,采用包含第一相控阵和第二相控阵的校测装置,其中,第一相控阵即为待检测的相控阵,具体可以是待检测的相控阵天线。第二相控阵即为镜像校正测试阵列。第一相控阵包含至少一个第一RF通道,第二相控阵包含至少一个第二RF通道,第二相控阵中第二RF通道的数量需要大于或等于第一RF通道的数量,这样才能使得每个第一RF通道都能与第二RF通道对应上,即第一RF通道与第二RF通道为面对面耦合。第一相控阵与第二相控阵之间间隔亚波长距离,通常波长的量级为微米,而亚波长的量级为纳米,因此亚波长比波长更小。其中,第一RF通道的拓扑结构与第二RF通道的拓扑结构具有对应关系,这里的拓扑结构是指硬件上的结构,例如第一RF通道与第二RF通道之间的间距,以及第一RF通道和第二RF通道数量。但是,拓扑结构不包括有源器件的间距和数量,比如,第二RF通道上部署有衰减器,第一RF通道上可以无需部署衰减器。又比如,第一RF通道上部署有放大器,而第二RF通道上不需要部署放大器。
具体地,预先构建一个与第一相控阵通道单元数目相同或更多的第二相控阵,请参阅图3,图3为本申请实施例中第二相控阵的一个结构示意图,如图所示,假设第二相控阵包括一个9元天线阵列,该9元天线阵列与功分器相接,通过功分器将一路输入信号能量分成多路输出相等或不相等的信号,此外,也可以将多路信号能量合成一路输出。一个功分器的输出端口之间应该保证一定的隔离度。
将第二相控阵进行严格地精密校正之后,安装在固定的流水线检测平台上,作为第一相控阵的标准校测设备。第二相控阵的每个第二RF通道由开关矩阵进行通断控制。
更具体地,每检测一个第一RF通道发送的耦合信号,还可以采用如下的步骤:
在第一步中,当所有与第一RF通道镜像对称的第二RF通道都处于关闭状态时,开启这些第二RF通道中的第n个第二RF通道,其中,n为正整数,且n不会大于第一RF通道的总个数。在第二步中,校测装置通过该第n个第二RF通道接收来自第n个第一RF通道发送的耦合信号,当然,这里的第n个第二RF通道与第n个第一RF通道之间也是具有镜像对称关系的。耦合信号接收完毕后,在第三步中关闭该第二RF通道。
上述的第一步至第三步可以检测第一相控阵中的任意一个从第一RF通道发送来的耦合信号,第一相控阵中的所有第一RF通道都可以采用上述三个步骤进行耦合信号的发送,直至第一RF通道所发送的耦合信号均被第二RF通道接收。
例如,第一相控阵中有9个第一RF通道,且第二相控阵也有20个第二RF通道,按照顺序,这20个第二RF通道依次编号为1至20号,然而与第一RF通道具有镜像对称关系的第二RF通道依次编号为1至9号。一开始,9个第二RF通道都是处于关闭状态的,于是,先开启1号第二RF通道,然后通过1号第二RF通道接收通过与之对应的1号第一RF通道发送的耦合信号,再关闭1号第二RF通道,接着开启2号第二RF通道,通过2号第二RF通道接收通过与之对应的2号第一RF通道发送的耦合信号,以此类推,直到来自9个第一RF通道的耦合信号都被接收。
可以理解的是,在实际应用中,第二RF通道可以不按照固定顺序来接收耦合信号。
102、校测装置根据耦合信号确定第一RF通道所对应的幅度偏差值以及相位偏差值;
本实施例中,校测装置首先根据从第一相控阵传递过来的耦合信号,确定每个第一RF通道所对应的幅度值和相位值。然后根据标准计量数据计算出每个第一RF通道所对应的幅度偏差值和相位偏差值。
具体地,以第二相控阵的天线罩阵面作为相位参考面,以第二相控阵每个第二RF通道对应的标准计量数据作为测量基准,采用多RF通道矢量网络分析仪对第一相控阵进行通道的幅相测量。假设我们将第一RF通道对应的标准计量数据记做
Figure BDA0001398245350000141
其中,i表示第i个第一RF通道,N表示第一RF通道的数量,表示第i个第一RF通道的预设幅度值,
Figure BDA0001398245350000143
表示第i个第一RF通道的预设相位值。在RF通道逐一校正的模式下,由开关矩阵依照第二RF通道的编号顺序,实现对第二相控阵中每个第二RF通道的开关进行通断切换,从而逐一地对第一相控阵的各个第一RF通道进行幅相测量和校正。
在全通道同步校正模式下,由开关矩阵将第二相控阵中所有第二RF通道的开关置于通道接收状态,然后同步测量和记录所有第一RF通道耦合过来的信号,这些耦合信号记做aii,i=1,2,…,N,其中,i表示第i个第一RF通道,N表示第一RF通道的数量,ai表示第i个第一RF通道的幅度值,φi表示第i个第一RF通道的相位值。通过与标准计量数据进行比对,可以计算出各个第一RF通道的幅度偏差值以及相位偏差值。
例如,可以采用如下公式计算第i个第一RF通道的幅度偏差值:
Figure BDA0001398245350000144
可以采用如下公式计算第i个第一RF通道的相位偏差值:
其中,Δai表示第i个第一RF通道的幅度偏差值,Δφ表示第i个第一RF通道的相位偏差值。
可以理解的是,如果第k个第一RF通道耦合信号的幅度值ak远远大于或小于其对照单元计量数据
Figure BDA0001398245350000146
Figure BDA0001398245350000147
或者
Figure BDA0001398245350000148
则判定第一相控阵中的第k个第一RF通道出现异常或存在通道故障,因此不进行后续的通道幅相校正。类似地,如果第k个第一RF通道耦合信号的相位值φk远远大于或小于其对照单元计量数据
Figure BDA0001398245350000149
Figure BDA00013982453500001410
或者
Figure BDA00013982453500001411
则判定第一相控阵中的第k个第一RF通道出现异常或存在通道故障,同样不进行后续的通道幅相校正。k为1至N中的任意一个整数。
103、若幅度偏差值和相位偏差值满足预设误差校正条件,则校测装置对第一RF通道所对应的幅度系数与相位系数进行校正,以得到目标幅度系数以及目标相位系数;
本实施例中,在得到幅度偏差值和相位偏差值之后,需要判断幅度偏差值的绝对值是否在预设幅度误差范围内,且相位偏差值的绝对值是否在预设相位误差范围内,若两个条件均满足,则确定幅度偏差值和相位偏差值满足所预设误差校正条件,也就是需要对第一RF通道所对应的幅度系数与相位系数进行校正,直到校正后的幅度偏差值和相位偏差值满足预设误差校正条件为止,并得到校正后的目标幅度系数以及目标相位系数。反之,如果幅度偏差值的绝对值不在预设幅度误差范围内,或相位偏差值的绝对值不在预设相位误差范围内,也就说明不需要对幅度系数与相位系数进行校正了。
具体地,可以预先设定幅相阈值,即幅度阈值ath和相位阈值φth,然后根据ath和φth分别对每个第一RF通道的幅度偏差值Δai和相位偏差值Δφi进行判断。满足预设误差校正条件时,即为
Figure BDA0001398245350000151
这个时候需要对第一RF通道所对应的幅度系数与相位系数进行校正,直到各个第一RF通道在第二相控阵参考面上的最大幅度偏差值小于预先设定的幅度阈值ath,以及最大相位偏差值小于预先设定的相位阈值φth
不满足预设误差校正条件时,即为
Figure BDA0001398245350000153
和/或
Figure BDA0001398245350000154
此时,也就不需要再对第一RF通道所对应的幅度系数与相位系数进行校正。
可以理解的是,可以根据实际情况设定幅度阈值ath和相位阈值φth,对于普通的相控阵而言,幅度阈值ath可设定在-10分贝(decibel,dB)以下,相位阈值φth可设定在10°以下。对于高精度相控阵而言,幅度阈值ath可设定在-20dB以下,相位阈值φth可设定在1°以下。然而,在实际应用中,还可以根据需求设定幅度阈值ath和相位阈值φth,此处仅为一个示意,并不应理解为对本申请的限定。
104、校测装置采用目标幅度系数以及目标相位系数测量第一相控阵的性能指标参数。
本实施例中,在校测装置对所有第一RF通道所对应的幅度系数与相位系数进行校正之后,可以得到各个第一RF通道对应的目标幅度系数以及目标相位系数。
具体地,在第一相控阵的所有第一RF通道校正完毕后,可利用第二相控阵的后端处理设备,对第一相控阵的性能指标参数进行在线监测,这些性能指标参数包含但不仅限于等效全向辐射功率(effective isotropic radiated power,ERIP)、误差向量幅度(error vector magnitude,EVM)和误码率(bit error rate,BER)。
校测装置还可以根据目标幅度系数以及目标相位系数确定第一相控阵的波束方向图。可以采用如下公式计算第一相控阵的波束方向图,即可以对第一相控阵合成波束方向图进行预测:
其中,
Figure BDA0001398245350000156
表示第一相控阵合成波束方向图,
Figure BDA0001398245350000157
表示第一相控阵中单元方向图,ai表示第一相控阵中已经校正完毕的第i个第一RF通道对应耦合信号的目标幅度系数,φi表示第一相控阵中已经校正完毕的第i个第一RF通道对应耦合信号的目标相位系数,k表示自由空间波矢,ri表示第一相控阵中第i个第一RF通道的位置矢量。
本申请实施例中,提供了一种相控阵校测的方法,该方法主要应用于校测装置,校测装置包含第一相控阵和第二相控阵,第一相控阵包含第一射频RF通道,第二相控阵包含第二RF通道,第一RF通道与第二RF通道具有对应关系,且第二相控阵与第一相控阵之间间隔亚波长距离。首先校测装置通过第二RF通道接收通过第一RF通道发送的耦合信号,然后根据耦合信号确定第一RF通道所对应的幅度偏差值以及相位偏差值,如果幅度偏差值和相位偏差值满足预设误差校正条件,则校测装置需要对第一RF通道所对应的幅度系数与相位系数进行校正,以得到目标幅度系数以及目标相位系数,最后校测装置可以采用目标幅度系数以及目标相位系数测量第一相控阵的性能指标参数。通过上述方式,由一个标定好的镜像相控阵,以亚波长距离与待测相控阵面对面放置,通过阵元天线之间的紧贴直通耦合机理,对待测相控阵的全部RF通道进行快速幅相校正,从而提升检测效率,减小占地面积,降低成本低,可以大幅度地缩减相控阵校正所需时间以及提升相控阵产品的检测效率。
可选地,在上述图2对应的实施例的基础上,本申请实施例提供的相控阵校测的方法第一个可选实施例中根据耦合信号确定第一RF通道所对应的幅度偏差值以及相位偏差值之后,还可以包括:
获取第一RF通道在空间中的第一位置矢量以及第二RF通道在空间中的第二位置矢量;
根据第一位置矢量和第二位置矢量确定幅度系数以及相位系数;
根据第一RF通道产生的近区电场、第二RF通道产生的近区电场、幅度系数以及相位系数计算耦合系数。
本实施例中,将介绍如何计算耦合系数,首先校测装置获取第一RF通道在空间中的第一位置矢量,以及第二RF通道在空间中的第二位置矢量,然后利用第一位置矢量和第二位置矢量计算得到幅度系数和相位系数,该幅度系数和相位系数为待校正的参数。最后,校测装置根据第一RF通道产生的近区电场、第二RF通道产生的近区电场、幅度系数和相位系数计算得到耦合系数。
具体地,如果第一相控阵的所有第一RF通道耦合信号没有异常偏离标准计量数据,则可以对第一相控阵中的各个第一RF通道进行幅度系数和相位系数的校正。可以理解的是,校正之前还需要确定该幅度系数对应的幅度偏差值,以及相位系数对应的相位偏差值满足预设误差校正条件。
基于各个第一RF通道的幅度偏差值和相位偏差值(即Δai,Δφi,i=1,2,…,N),采用通道直通耦合补偿计算公式、蒙特卡罗概率统计预估以及迭代最小二乘算法,对第一相控阵的各个第一RF通道进行校正。在亚波长间距下,采用如下公式可以计算耦合系数:
Figure BDA0001398245350000161
其中,Cii表示耦合系数,
Figure BDA0001398245350000162
表示第一相控阵中第i个第一RF通道产生的近区电场,
Figure BDA0001398245350000163
表示第二相控阵中第i个第二RF通道产生的近区电场,ri DUT表示第一相控阵中第i个第一RF通道在空间中的第一位置矢量,ri Imag表示第二相控阵中第i个第二RF通道在空间中的第二位置矢量,κii(ri DUT;ri Imag)表示第i个第一RF通道和第i个第二RF通道之间的幅度系数,Δφii(ri DUT;ri Imag)表示第i个第一RF通道和第i个第二RF通道之间的相位系数。
在实际应用中,第一相控阵的阵面和第二相控阵的阵面可能无法做到完全平行,请参阅图4,图4为本申请实施例中第一相控阵与第二相控阵的阵面示意图,第一相控阵的阵面与第二相控阵的阵面之间可能具有夹角。下面将针对夹角大小和阵面是否平行的情况对如何计算得到目标幅度系数和目标相位系数进行介绍。
情形一,第一相控阵阵面和第二相控阵阵面平行;
请参阅图5,图5为本申请实施例中第一相控阵阵面与第二相控阵阵面平行的实施例示意图,如图所示,在理想情况下,ri DUT与ri Imag在一条理想的直线上时,第一相控阵阵面和第二相控阵阵面完全平行,无轴向偏离,且单元中心对齐,所有直通耦合RF通道之间的间距都相等。在阵面严格平行条件下,运用后向回传三层人工神经网络模型,即建立x向与耦合系数Cii关系模型、y向与耦合系数Cii关系模型以及xy向平行偏移位置(Δx,Δy)与耦合系数Cii关系模型,这三个关系模型可以统称为预设关系模型。
然后在实测数据的基础上,利用人工智能学习算法以及蒙特卡罗概率预测方法,对幅度系数κii(ri DUT;ri Imag)和相位系数Δφii(ri DUT;ri Imag)进行校正,以提升单元通道校正精度,并得到校正后的目标幅度系数以及目标相位系数。
情形二,第一相控阵阵面和第二相控阵阵面不平行;
请参阅图6,图6为本申请实施例中第一相控阵阵面与第二相控阵阵面不平行的实施例示意图,由于实际加工误差、各阵元天线的装配误差、空间对接定位误差以及由结构应力造成的器件形变误差等因素,会导致第一相控阵的第一RF通道排布不整齐,第一相控阵阵面不严格平行于第二相控阵阵面。首先使第一相控阵与第二相控阵的主轴在空间上不平行,形成一定的夹角。
可以理解的是,小角度夹角可以为10度、15度或20度,大角度夹角可以为45度、50度或60度,在实际应用中,还可以根据情况定义小角度夹角和大角度夹角,此处不做限定。
对于第一相控阵阵面和第二相控阵阵面不平行的情况,即偏离主轴的情况下,则需要获取第一相控阵阵面和第二相控阵阵面之间的夹角,利用坐标旋转变换和近场耦合矩阵分析法,分别对小角度偏离的耦合系数(包括直耦和RF通道间互耦)和大角度偏离的耦合系数(包括直耦和RF通道间互耦)进行校正。
若夹角属于小角度夹角,则根据第一幅度修正系数以及幅度系数计算目标幅度系数,并根据第一相位修正系数以及相位系数计算目标相位系数,其中,第一幅度修正系数表示预先设置的不同方向上的幅度修正系数,第一相位修正系数表示预先设置的不同方向上的相位修正系数。在小角度主轴偏离下,经过校正后的幅度系数和相位系数分别为:
κ′ii(ri DUT;ri Imag)=(1+Δηx)(1+Δηy)(1+Δηzii(ri DUT;ri Imag);
Figure BDA0001398245350000171
其中,κ′ii(ri DUT;ri Imag)表示目标幅度系数,Δηx表示x轴方向上的第一幅度修正系数,Δηy表示y轴方向上的第一幅度修正系数,Δηz表示主轴z向上的第一幅度修正系数,κii(ri DUT;ri Imag)表示幅度系数,第一幅度修正系数是预先设定好的参数。
其中,Δφ′ii(ri DUT;ri Imag)表示目标相位系数,表示x轴方向上的第一相位修正系数,表示y轴方向上的第一相位修正系数,
Figure BDA0001398245350000182
表示主轴z向上的第一相位修正系数,Δφii(ri DUT;ri Imag)表示相位系数。
若夹角属于大角度夹角,则根据第一幅度修正系数、第二幅度修正系数以及幅度系数计算目标幅度系数,并根据第一相位修正系数、第二相位修正系数以及相位系数计算目标相位系数,其中,第二幅度修正系数表示RF通道之间耦合的幅度修正系数,第二相位修正系数表示RF通道之间耦合的相位修正系数。在大角度主轴偏离下,经过校正后的幅度系数和相位系数分别为:
Figure BDA0001398245350000183
Figure BDA0001398245350000184
其中,κ″ii(ri DUT;ri Imag)表示目标相位系数,Δηx表示x轴方向上的第一幅度修正系数,Δηy表示y轴方向上的第一幅度修正系数,Δηz表示主轴z向上的第一幅度修正系数,γil表示第i个第一RF通道与第i个第二RF通道因临近耦合引起的第二幅度修正系数,κii(ri DUT;ri Imag)表示幅度系数。
其中,Δφ″ii(ri DUT;ri Imag)表示目标幅度系数,
Figure BDA0001398245350000185
表示x轴方向上的第一相位修正系数,
Figure BDA0001398245350000186
表示y轴方向上的第一相位修正系数,表示主轴z向上的第一相位修正系数,Δφil表示第i个第一RF通道与第i个第二RF通道因临近耦合引起的第二相位修正系数,Δφii(ri DUT;ri Imag)表示相位系数。
最后,经过实测的阵面在x轴、y轴和z轴的偏离误差,代入上述耦合系数计算公式,计算出耦合系数的幅度系数和相位系数,并结合各个第一RF通道的幅度偏差值和相位偏差值(Δai,Δφi,i=1,2,…,N),计算出每个第一RF通道实际的幅度和相位误差数据,并将其反馈到第一相控阵,利用第一相控阵的可调衰减器和移相器进行第一RF通道的参数校正设置。
其次,本申请实施例中,通过构建一个标准的且多通道开关控制的第二相控阵,采用面对面的直耦技术,将第一相控阵的每路第一RF通道的信息进行逐次采集,在亚波长间距下实现第一相控阵的第一RF通道幅相校正、通道故障失效检测以及性能指标参数测算。通过上述方式,可以高效地校测相控阵天线,且稳定性号,维护方便,适用于批量的产品ian流水检测,从而提升方案的实用性和可操作性。
可选地,在上述图2对应的实施例的基础上,本申请实施例提供的相控阵校测的方法第二个可选实施例中通过第二RF通道接收通过第一RF通道发送的耦合信号之前,还可以包括:
当第二RF通道的传输幅度值最大时,确定第一相控阵与第二相控阵之间的对应位置。
本实施例中,在校测装置通过第二RF通道接收通过第一RF通道发送来的耦合信号之前,需要对准第一相控阵和第二相控阵。
具体地,首先由校测装置在x轴和y轴维度进行峰值搜索,x轴和y轴分别是横轴和纵轴。通过峰值搜索得到第二相控阵在不同的坐标位置所对应的传输幅度值,坐标位置即为x轴和y轴上的位置。一种可行的方式为,当所有第二RF通道传输幅度值均方根(rootmeam square,RMS)为最大值时,可以认为第一相控阵的阵面与第二相控阵的阵面对准,从而能够继续进行后续的相控阵校测。
其次,本申请实施例中,在通过第二RF通道接收通过第一RF通道发送的耦合信号之后,还需要对第一相控阵和第二相控阵进行位置调整,调整到最佳位置时,第二RF通道的传输幅度值应为最大。通过上述方式,能够采用物理位置搜索的方式,找到第一相控阵和第二相控阵位置上的最优点,并以此进行校测,从而达到更准确高效的校测效果。
为了便于理解,下面以一个具体应用场景对本申请实施例中的一种相控阵校测的方法进行详细描述,请参阅图7,图7为本申请应用场景中校测装置的一个功能示意图,如图所示,通过机械手臂,将待测相控阵(第一相控阵)的定位孔对准镜像校正测试阵列(第二相控阵)的定位标记,并进行待测相控阵的空间装配。为保证RF通道之间直通耦合的效率,待测相控阵的天线罩和镜像校正测试阵列的天线罩之间间隔为d0,d0由定位销钉装置固定在亚波长量级,即小于1/5的中心工作波长。
于是,此时待测相控阵和镜像校正测试阵列之间间隔为d,待测相控阵到待测相控阵天线罩之间的距离为d1,待测相控阵的天线罩和镜像校正测试阵列的天线罩之间间隔为d0,镜像校正测试阵列到镜像校正测试阵列天线罩之间的距离为d2,则d=d1+d0+d2
以9元待测相控阵为例,采用同样的9元天线镜像校正测试阵列,放置在离待测相控阵的距离为d0=1/20波长处的位置,天线罩1的厚度为d1=1/15波长,将天线罩1罩在待测相控阵上。天线罩2的厚度为d2=1/15波长,将天线罩2罩在镜像校正测试阵列上。镜像校正测试阵列的9元天线分别连接9个相同的单刀单掷开关,再与功分器相接。
一个标准的且多通道开关控制的第二相控阵,采用面对面的直耦技术,在亚波长间距下实现第一相控阵的通道幅相校正、通道故障失效检测以及性能指标参数测算。
下面将通过一个具体的应用场景说明如何对第一相控阵阵面和第二相控阵阵面进行偏离校正,请继续参阅图7,首先对没有偏离的耦合系数进行计算,记为r1,然后保持第一相控阵y方向不变,在x方向上偏离x1=2mm,x2=3mm,x3=4mm,对其耦合系数进行计算得到rx1,rx2,rx3。同样,保持第一相控阵x方向不变,在y向偏离y1=2mm,y2=3mm,y3=4mm,对其耦合系数计算得到ry1,ry2,ry3。最后,对x1=2mm,x2=3mm,x3=4mm、y1=2mm,y2=3mm,y3=4mm的偏离进行耦合系数计算得到r11,r12,r13,r21,r22,r23,ry31,ry32,ry33,采用实测数据,利用人工智能学习算法,分别建立位置偏差x,y与耦合系数r的关系模型,提升耦合系数计算精度。
最后,经过实测的阵面在x轴、y轴和z轴的偏离误差,代入上述耦合系数计算公式,计算出耦合系数的幅度系数和相位系数,并结合各个第一RF通道的幅度偏差值和相位偏差值(Δai,Δφi,i=1,2,…,N),计算出每个第一RF通道实际的幅度和相位误差数据,并将其反馈到第一相控阵,利用第一相控阵的可调衰减器和移相器进行第一RF通道的参数校正设置。
结合图7所示的内容,请参阅图8,图8为本申请应用场景中相控阵校测的方法一个流程示意图,如图所示,在步骤201中,首先需要准备校正及测试相控阵的架设,即构建一个测试环境,包括一个与待测相控阵(第一相控阵)通道单元数相同或者更多的镜像校正测试阵列(第二相控阵)。采用国家标准的计量设备对镜像校正测试阵列进行校准,并安装在流水线检测平台上。
在步骤202中,采集待测相控阵RF通道的幅度数据和相位数据,具体地,在进行流水线测试时,机械手臂将待测相控阵进行定位孔安装,然后采用面对面的直耦技术,在亚波长间距下采集待测相控阵的RF通道幅度数据和相位数据。
在步骤203中,对待测相控阵RF通道的幅度数据和相位数据进行校正。
在步骤204中,在待测相控阵校正完毕之后,可以进一步地对待测相控阵的性能指标参数进行测量,其中,性能指标参数包含发射性能指标和接收性能指标等。
在步骤205中,对已经采集的测试数据进行判断和分析,如果幅度数据和相位数据异常(全部幅度数据和相位数据或者部分幅度数据和相位数据超过阈值),则返回至步骤202,反之,如果幅度数据和相位数据均正常,则执行步骤206。
在步骤206中,输出测试结果,由此完成测试,这个时候可以利用机械手拆离已经测试好的相控阵,然后进行下一个待测相控阵的校测,即继续重复步骤201至步骤205。
下面对本申请中的校测装置进行详细描述,请参阅图9,本申请实施例中的校测装置30包含第一相控阵301、第二相控阵302和测试仪器303,其中,第一相控阵301为待检测的相控阵,第一相控阵301包含第一RF通道3011,第二相控阵302包含第二RF通道3021,第一RF通道3011的拓扑结构与第二RF通道3021的拓扑结构具有镜像对称关系,第二相控阵302与第一相控阵301之间间隔亚波长距离,校测装置30包括:
第二相控阵302用于通过第二RF通道3021接收第一相控阵301通过第一RF通道3011发送的耦合信号;
测试仪器303用于根据耦合信号确定第一RF通道3011所对应的幅度偏差值以及相位偏差值;
若幅度偏差值和相位偏差值满足预设误差校正条件,则测试仪器303用于对第一RF通道3011所对应的幅度系数与相位系数进行校正,以得到目标幅度系数以及目标相位系数;
测试仪器303用于采用目标幅度系数以及目标相位系数测量第一相控阵3011的性能指标参数。
本实施例中,首先可以通过机械手臂,将第一相控阵301的定位孔对准第二相控阵302的定位标记,进行第一相控阵301的空间装配。需要说明的是,对准的方式可以是激光对准或者可销钉定位,还可以是其他的对阵方式,此处不做限定。
为了保证第一RF通道3011与第二RF通道之间直通耦合的效率,第一相控阵301的天线罩和第二相控阵302的天线罩之间间隔为d0,d0小于波长。假设第一相控阵301和第二相控阵302之间间隔为d,第一相控阵301到第一相控阵301天线罩之间的距离为d1,第二相控阵302的天线罩和第一相控阵301的天线罩之间间隔为d0,第二相控阵302到第二相控阵302天线罩之间的距离为d2,则d=d1+d0+d2
此外,当第二RF通道3021的传输幅度值最大时,测试仪器303可以确定第一相控阵301与第二相控阵302之间的对应位置。
校测装置30首先根据从第一相控阵301传递过来的耦合信号,确定每个第一RF通道3011所对应的幅度值和相位值。然后根据标准计量数据计算出每个第一RF通道3011所对应的幅度偏差值和相位偏差值。在得到幅度偏差值和相位偏差值之后,需要判断幅度偏差值的绝对值是否在预设幅度误差范围内,且相位偏差值的绝对值是否在预设相位误差范围内,若两个条件均满足,则确定幅度偏差值和相位偏差值满足所预设误差校正条件,也就是需要对第一RF通道3011所对应的幅度系数与相位系数进行校正,直到校正后的幅度偏差值和相位偏差值满足预设误差校正条件为止,并得到校正后的目标幅度系数以及目标相位系数。反之,如果幅度偏差值的绝对值不在预设幅度误差范围内,或相位偏差值的绝对值不在预设相位误差范围内,也就说明不需要对幅度系数与相位系数进行校正了。
最后,校测装置30对所有第一RF通道3011所对应的幅度系数与相位系数进行校正之后,可以得到各个第一RF通道3011对应的目标幅度系数以及目标相位系数。此外,校测装置30还可以根据目标幅度系数以及目标相位系数确定第一相控阵301的波束方向图。
本申请实施例中,提供了一种校测装置,通过一个标定好的镜像相控阵,以亚波长距离与待测相控阵面对面放置,通过阵元天线之间的紧贴直通耦合机理,对待测相控阵的全部RF通道进行快速幅相校正,从而提升检测效率,减小占地面积,降低成本低,可以大幅度地缩减相控阵校正所需时间以及提升相控阵产品的检测效率。
可选地,在上述图9所对应的实施例的基础上,请参阅图10,本申请实施例提供的校测装置30的另一实施例中,第一相控阵301包含多个第一RF通道3011,第二相控阵302包含多个第二RF通道3021,第二相控阵302还包含多个开关3022以及多个衰减器3023,其中,每个开关3022与每个第二RF通道3021相连,每个衰减器3023与每个第二RF通道3021相连;
开关3022用于关闭多个第二RF通道3021;
当多个第二RF通道3021处于关闭状态时,开关3022用于开启多个第二RF通道3021中的一个目标第二RF通道,其中,目标第二RF通道为多个第二RF通道3021中的任意一个第二RF通道3021;
第二RF通道3021用于通过目标第二RF通道接收目标第一RF通道发送的耦合信号,直至多个第一RF通道3011所发送的耦合信号均被接收,其中,目标第一RF通道为多个第一RF通道3011中的一个与目标第二RF通道具有镜像对称关系的第一RF通道3011;
每个衰减器3023用于对耦合信号进行信号衰减处理;
具体地,1)开关3022具体用于当多个第二RF通道3021处于关闭状态时,开启多个第二RF通道3021中的第n个第二RF通道3021,其中,n为正整数;
2)第二RF通道3021具体用于通过第n个第二RF通道3021接收通过第n个第一RF通道3011发送的耦合信号,其中,第n个第二RF通道3021与第n个第一RF通道3011具有镜像对称关系;
3)开关3022具体用于关闭第n个第二RF通道3021;
开关3022和第二RF通道3021用于分别对与多个第一RF通道3011具有镜像对称关系的多个第二RF通道3021均执行如步骤1)至步骤3)的操作,直至多个第一RF通道3011所发送的耦合信号均被多个第二RF通道接收。
本实施例中,将第二相控阵302进行严格地精密校正之后,安装在固定的流水线检测平台上,作为第一相控阵301的标准校测设备。第二相控阵302的每个第二RF通道3021由开关3022矩阵进行通断控制。首先将所有第二RF通道3021关闭,然后以此开启每个第二RF通道3021,再通过每个第二RF通道3021接收通过每个第一RF通道3011发送的耦合信号,以逐一地或有选择性地通道幅相校正。若要进行全部第一RF通道3011同步校正,只需将第二RF通道3021所有开关3022置于接收状态即可。
可以理解的是,每个第二RF通道3021分别连接一个单独的开关3022和衰减器3023,然后再与功分器相接。具体地,开关3022可以为单刀单掷开关(single pole singlethrow,SPST),SPST属于同轴开关的一种,可选地,开关3022还可以为单刀双掷开关(singlepole double throw,SPDT)、双刀双掷开关(double pole double throw,DPDT)或者单刀六掷开关(single pole six throw,SP6T)等,此处仅为一个示意,不应理解为对本方案的限定。
此外,衰减器3023可以起到保护电路的作用,还可以调整电路中信号的大小,在比较法测量电路中,可用来直读被测网络的衰减值,以及改善阻抗匹配。若一些电路要求有一个比较稳定的负载阻抗时,则可在此电路与实际负载阻抗之间插入一个衰减器,能够缓冲阻抗的变化。
其次,本申请实施例中,首先关闭与第一RF通道对应的所有第二RF通道,然后依次开启这些第二RF通道中的每个RF通道,最后通过每个第二RF通道接收每个第一RF通道发送过来的耦合信号。通过上述方式,能够逐一地对待检测的相控阵进行幅相的校正和测量,即可以对每个第一RF通道都进行校测,相对同时校测多个RF通道,本申请有利于提升校测的准确性。
可选地,在上述图9所对应的实施例的基础上,请参阅图11,本申请实施例提供的校测装置30的另一实施例中,测试仪器303包括矢量网络分析仪器3031;
矢量网络分析仪器3031用于根据耦合信号获取第一RF通道3011所对应的幅度值以及相位值;
矢量网络分析仪器3031用于根据幅度值与预设幅度值计算第一RF通道3011所对应的幅度偏差值;
矢量网络分析仪器3031用于根据相位值与预设相位值计算第一RF通道3011所对应的相位偏差值。
本实施例中,矢量网络分析仪器3031是一种电磁波能量的测试设备。它既能测量单端口网络或两端口网络的各种参数幅度值,又能测量相位值。
具体地,假设我们将第一RF通道3011对应的标准计量数据记做
Figure BDA0001398245350000221
其中,i表示第i个第一RF通道3011,N表示第一RF通道3011的数量,
Figure BDA0001398245350000222
表示第i个第一RF通道3011的预设幅度值,表示第i个第一RF通道3011的预设相位值。在RF通道逐一校正的模式下,由开关3022矩阵依照第二RF通道3021的编号顺序,实现对第二相控阵302中每个第二RF通道3021的开关进行通断切换,从而逐一地对第一相控阵301的各个第一RF通道3011进行幅相测量和校正。
在全通道同步校正模式下,由开关3022矩阵将第二相控阵302中所有第二RF通道3021的开关3022置于通道接收状态,然后同步测量和记录所有第一RF通道3011耦合过来的信号,这些耦合信号记做aii,i=1,2,…,N,其中,i表示第i个第一RF通道3011,N表示第一RF通道3011的数量,ai表示第i个第一RF通道3011的幅度值,φi表示第i个第一RF通道3011的相位值。通过与标准计量数据进行比对,可以计算出各个第一RF通道3011的幅度偏差值以及相位偏差值。
例如,可以采用如下公式计算第i个第一RF通道3011的幅度偏差值:
Figure BDA0001398245350000231
可以采用如下公式计算第i个第一RF通道3011的相位偏差值:
Figure BDA0001398245350000232
其中,Δai表示第i个第一RF通道3011的幅度偏差值,Δφ表示第i个第一RF通道3011的相位偏差值。
其次,本申请实施例中,先根据耦合信号获取第一RF通道所对应的幅度值以及相位值,然后分别采用预设幅度值和预设相位值,计算得到我们需要的幅度偏差值和相位偏差值。通过上述方式,可以得到当前测量的幅相值与预设幅相值之间的偏差值,偏差值用于确定RF通道是否存在异常或故障,从而有利于提升方案的实用性和可操作性。此外,测试仪器能够对加工、通道装配、检测对接装配以及结构形变引起的位置偏差进行高效校正,有利于增加方案是可行性。
可选地,在上述图9至图11中任一项所对应的实施例的基础上,请参阅图12,本申请实施例提供的校测装置30的另一实施例中,测试仪器303包括测试控制设备3032;
测试控制设备3032用于判断幅度偏差值的绝对值是否在预设幅度误差范围内,且相位偏差值的绝对值是否在预设相位误差范围内;
若幅度偏差值的绝对值在预设幅度误差范围内,且相位偏差值的绝对值在预设相位误差范围内,则测试控制设备3022用于确定幅度偏差值和相位偏差值满足预设误差校正条件。
本实施例中,测试控制设备3032需要判断幅度偏差值的绝对值是否在预设幅度误差范围内,且相位偏差值的绝对值是否在预设相位误差范围内,若两个条件均满足,则确定幅度偏差值和相位偏差值满足所预设误差校正条件,也就是需要对第一RF通道3011所对应的幅度系数与相位系数进行校正,直到校正后的幅度偏差值和相位偏差值满足预设误差校正条件为止,并得到校正后的目标幅度系数以及目标相位系数。反之,如果幅度偏差值的绝对值不在预设幅度误差范围内,或相位偏差值的绝对值不在预设相位误差范围内,也就说明不需要对幅度系数与相位系数进行校正了。
此外,测试仪器303还可以获取第一RF通道3011在空间中的第一位置矢量以及第二RF通道3021在空间中的第二位置矢量,然后根据第一位置矢量和第二位置矢量确定幅度系数以及相位系数,测试仪器303再根据第一RF通道3011产生的近区电场、第二RF通道3021产生的近区电场、幅度系数以及相位系数计算耦合系数。
如果第一相控阵301的阵面与第二相控阵302的阵面平行,则测试仪器303采用预设关系模型对幅度系数与相位系数进行训练,测试仪器303具体用于获取训练后的目标幅度系数以及目标相位系数,其中,预设关系模型为耦合系数与平行偏移位置之间的函数关系模型。
反之,如果第一相控阵301的阵面与第二相控阵302的阵面不平行,则测试仪器303先获取第一相控阵301的阵面与第二相控阵302的阵面之间的夹角。若该夹角属于小角度夹角,则测试仪器303根据第一幅度修正系数以及幅度系数计算目标幅度系数,并根据第一相位修正系数以及相位系数计算目标相位系数,其中,第一幅度修正系数表示预先设置的不同方向上的幅度修正系数,第一相位修正系数表示预先设置的不同方向上的相位修正系数。若该夹角属于大角度夹角,则测试仪器303具体用于根据第一幅度修正系数、第二幅度修正系数以及幅度系数计算目标幅度系数,并根据第一相位修正系数、第二相位修正系数以及相位系数计算目标相位系数,其中,第二幅度修正系数表示RF通道之间耦合的幅度修正系数,第二相位修正系数表示RF通道之间耦合的相位修正系数。
此外,测试仪器303还可以根据目标幅度系数以及目标相位系数确定第一相控阵301的波束方向图。
可以理解的是,矢量网络分析仪器3031的功能与测试控制设备3022的功能可以集成在同一个设备上,例如,同时集成在矢量网络分析仪器3031上,或者同时集成在测试控制设备3022上,在实际应用中,还可以集成在测试仪器303中的其他模块上,此处不做限定。
再次,本申请实施例中,在第一相控阵和第二相控阵相互平时,采用预设关系模型对已经得到的幅度系数和相位系数进行训练。在第一相控阵和第二相控阵互不平行时,即先获取第一相控阵的阵面和第二相控阵的阵面之间的夹角,根据夹角的类型选择相应的修正方式。通过上述方式,在实测数据的基础上,对幅度系数与相位系数进行修正,从而得到相应的目标幅度系数和目标相位系数,以此提升每个第一RF通道的校正精度。
下面对本申请中一个实施例对应的校测装置进行详细描述,请参阅图13,本申请实施例中的校测装置40包含第一相控阵和第二相控阵,其中,所述第一相控阵为待检测的相控阵,所述第一相控阵包含第一RF通道,所述第二相控阵包含第二RF通道,所述第一RF通道的拓扑结构与所述第二RF通道的拓扑结构具有镜像对称关系,所述第二相控阵与所述第一相控阵之间间隔亚波长距离,所述校测装置40包括:
接收模块401,用于通过所述第二RF通道接收通过所述第一RF通道发送的耦合信号;
确定模块402,用于根据所述接收模块401接收的所述耦合信号确定所述第一RF通道所对应的幅度偏差值以及相位偏差值;
校正模块403,用于若所述确定模块402确定的所述幅度偏差值和所述相位偏差值满足预设误差校正条件,则对所述第一RF通道所对应的幅度系数与相位系数进行校正,以得到目标幅度系数以及目标相位系数;
测量模块404,用于采用所述校正模块403校正的所述目标幅度系数以及所述目标相位系数测量所述第一相控阵的性能指标参数。
本实施例中,校测装置40包含第一相控阵和第二相控阵,其中,第一相控阵为待检测的相控阵,第一相控阵包含第一RF通道,第二相控阵包含第二RF通道,第一RF通道与第二RF通道具有对应关系,第二相控阵与第一相控阵之间间隔亚波长距离,接收模块401通过第二RF通道接收通过第一RF通道发送的耦合信号,确定模块402根据接收模块401接收的耦合信号确定第一RF通道所对应的幅度偏差值以及相位偏差值,若确定模块402确定的所述幅度偏差值和所述相位偏差值满足预设误差校正条件,则校正模块403对所述第一RF通道所对应的幅度系数与相位系数进行校正,以得到目标幅度系数以及目标相位系数,测量模块404采用所述校正模块403校正的所述目标幅度系数以及所述目标相位系数测量所述第一相控阵的性能指标参数。
本申请实施例中,提供了一种校测装置,通过一个标定好的镜像相控阵,以亚波长距离与待测相控阵面对面放置,通过阵元天线之间的紧贴直通耦合机理,对待测相控阵的全部RF通道进行快速幅相校正,从而提升检测效率,减小占地面积,降低成本低,可以大幅度地缩减相控阵校正所需时间以及提升相控阵产品的检测效率。
可选地,在上述图13所对应的实施例的基础上,本申请实施例提供的校测装置40的另一实施例中,第一相控阵包含多个第一RF通道,第二相控阵包含多个第二RF通道;
所述接收模块401,具体用于关闭多个所述第二RF通道;
1)开启多个所述第二RF通道中的第n个所述第二RF通道,其中,所述n为正整数;
2)通过第n个所述第二RF通道接收通过第n个所述第一RF通道发送的所述耦合信号,其中,第n个所述第二RF通道与第n个所述第一RF通道具有镜像对称关系;
3)关闭第n个所述第二RF通道;
分别对与多个所述第一RF通道具有镜像对称关系的多个所述第二RF通道均执行如步骤1)至步骤3)的操作,直至多个所述第二RF通道均接收到所述耦合信号。
其次,本申请实施例中,首先关闭与第一RF通道对应的所有第二RF通道,然后依次开启这些第二RF通道中的每个RF通道,最后通过每个第二RF通道接收每个第一RF通道发送过来的耦合信号。通过上述方式,能够逐一地对待检测的相控阵进行幅相的校正和测量,即可以对每个第一RF通道都进行校测,相对同时校测多个RF通道,本申请有利于提升校测的准确性。
可选地,在上述图13所对应的实施例的基础上,本申请实施例提供的校测装置40的另一实施例中,
所述确定模块402,具体用于根据所述耦合信号获取所述第一RF通道所对应的幅度值以及相位值;
根据所述幅度值与预设幅度值计算所述第一RF通道所对应的所述幅度偏差值;
根据所述相位值与预设相位值计算所述第一RF通道所对应的所述相位偏差值。
其次,本申请实施例中,先根据耦合信号获取第一RF通道所对应的幅度值以及相位值,然后分别采用预设幅度值和预设相位值,计算得到我们需要的幅度偏差值和相位偏差值。通过上述方式,可以得到当前测量的幅相值与预设幅相值之间的偏差值,偏差值用于确定RF通道是否存在异常或故障,从而有利于提升方案的实用性和可操作性。
可选地,在上述图13所对应的实施例的基础上,请参阅图14,本申请实施例提供的校测装置40的另一实施例中,所述校测装置40还包括:
判断模块405,用于根据所述确定模块402确定的所述耦合信号确定所述第一RF通道所对应的幅度偏差值以及相位偏差值之后,判断所述幅度偏差值的绝对值是否在预设幅度误差范围内,且所述相位偏差值的绝对值是否在预设相位误差范围内;
所述确定模块402,还用于若判断模块405判断得到所述幅度偏差值的绝对值大于或等于预设幅度误差值,且所述相位偏差值的绝对值在预设相位误差范围内,则确定所述幅度偏差值和所述相位偏差值满足所述预设误差校正条件。
再次,本申请实施例中,在得到幅度偏差值和相位偏差值之后,进而判断幅度偏差值的绝对值是否在预设幅度误差范围内,且相位偏差值的绝对值是否在预设相位误差范围内,若是,在确定满足预设误差校正条件,也就可以进行后续的RF通道幅相校测,反之,若不满足预设误差校正条件,则认为这个RF通道存在通道故障,也就不进行后续的通道幅相校测,直接由机械手臂将第一相控阵拆离第二相控阵,送回检修,以此有助于尽早地发现待检测的相控阵是否出现故障,从而提升方案的实用性。
可选地,在上述图13所对应的实施例的基础上,请参阅图15,本申请实施例提供的校测装置40的另一实施例中,所述校测装置40还包括:
获取模块406,用于所述确定模块402确定的根据所述耦合信号确定所述第一RF通道所对应的幅度偏差值以及相位偏差值之后,获取所述第一RF通道在空间中的第一位置矢量以及所述第二RF通道在所述空间中的第二位置矢量;
所述确定模块402,还用于根据所述获取模块406获取的所述第一位置矢量和所述第二位置矢量确定所述幅度系数以及所述相位系数;
计算模块407,用于根据所述第一RF通道产生的近区电场、所述第二RF通道产生的近区电场、所述确定模块402确定的所述幅度系数以及所述相位系数计算耦合系数。
再次,本申请实施例中,介绍了在确定第一RF通道所对应的幅度偏差值和相位偏差值之后,还可以进一步获取第一位置矢量和第二位置矢量,然后根据一系列参数计算得到耦合系数。通过上述方式,能够得到更准确的耦合系数,并用于后续的RF通道校测,从而提升方案的可行性。
可选地,在上述图15所对应的实施例的基础上,本申请实施例提供的校测装置40的另一实施例中,所述校测装置40还包括:
所述校正模块403,具体用于若所述第一相控阵与所述第二相控阵平行,则采用预设关系模型对所述幅度系数与所述相位系数进行训练,其中,所述预设关系模型为所述耦合系数与平行偏移位置之间的函数关系模型;
获取训练后的所述目标幅度系数以及所述目标相位系数。
进一步地,本申请实施例中,介绍了在第一相控阵和第二相控阵相互平时,如何获取目标幅度系数以及目标相位系数的方式,即采用预设关系模型对已经得到的幅度系数和相位系数进行训练。通过上述方式,运用人工神经网络模型建立耦合系数与平行偏移位置之间的函数关系模型,在实测数据的基础上,采用人工智能学习算法对幅度系数与相位系数进行修正,从而得到相应的目标幅度系数和目标相位系数,以此提升每个第一RF通道的校正精度。
可选地,在上述图15所对应的实施例的基础上,本申请实施例提供的校测装置40的另一实施例中,所述校测装置40还包括:
所述校正模块403,具体用于若所述第一相控阵与所述第二相控阵不平行,则获取所述第一相控阵的阵面与所述第二相控阵的阵面之间的夹角;
若所述夹角属于小角度夹角,则根据第一幅度修正系数以及所述幅度系数计算所述目标幅度系数,并根据第一相位修正系数以及所述相位系数计算所述目标相位系数,其中,所述第一幅度修正系数表示预先设置的不同方向上的幅度修正系数,所述第一相位修正系数表示预先设置的不同方向上的相位修正系数;
若所述夹角属于大角度夹角,则根据所述第一幅度修正系数、第二幅度修正系数以及所述幅度系数计算所述目标幅度系数,并根据所述第一相位修正系数、第二相位修正系数以及所述相位系数计算所述目标相位系数,其中,所述第二幅度修正系数表示RF通道之间耦合的幅度修正系数,所述第二相位修正系数表示RF通道之间耦合的相位修正系数。
进一步地,本申请实施例中,介绍了在第一相控阵和第二相控阵互不平行时,如何获取目标幅度系数以及目标相位系数的方式,即先获取第一相控阵的阵面和第二相控阵的阵面之间的夹角,根据夹角的类型选择相应的修正方式。通过上述方式,在实测数据的基础上,利用幅度修正系数和相位修正系数对幅度系数与相位系数进行修正,从而得到相应的目标幅度系数和目标相位系数,以此提升每个第一RF通道的校正精度。
可选地,在上述图13至图15中任一项所对应的实施例的基础上,本申请实施例提供的校测装置40的另一实施例中,所述校测装置40还包括:
所述确定模块402,还用于所述校正模块403得到目标幅度系数以及目标相位系数之后,根据所述目标幅度系数以及所述目标相位系数确定所述第一相控阵的波束方向图。
更进一步地,本申请实施例中,在对第一相控阵的所有RF通道校正完毕后,不但可以利用第二相控阵的后端处理设备,对第一相控阵的性能指标参数进行在线监测,还可以利用目标相位系数和目标幅度系数确定出第一相控阵所对应的波束方向图,从而实现对待测相控阵波束方向图的预测,以此提升方案的实用性。
可选地,在上述图13所对应的实施例的基础上,本申请实施例提供的校测装置40的另一实施例中,
所述确定模块402,还用于所述接收模块401通过所述第二RF通道接收通过所述第一RF通道发送的耦合信号之前,当所述第二RF通道的传输幅度值最大时,确定所述第一相控阵与所述第二相控阵之间的对应位置。
其次,本申请实施例中,在通过第二RF通道接收通过第一RF通道发送的耦合信号之后,还需要对第一相控阵和第二相控阵进行位置调整,调整到最佳位置时,第二RF通道的传输幅度值应为最大。通过上述方式,能够采用物理位置搜索的方式,找到第一相控阵和第二相控阵位置上的最优点,并以此进行校测,从而达到更准确高效的校测效果。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘solid state disk(SSD))等。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (21)

1.一种相控阵校测的方法,其特征在于,所述方法应用于校测装置,所述校测装置包含第一相控阵和第二相控阵,其中,所述第一相控阵为待检测的相控阵,所述第一相控阵包含第一射频RF通道,所述第二相控阵包含第二RF通道,所述第一RF通道的拓扑结构与所述第二RF通道的拓扑结构具有镜像对称关系,所述第二相控阵与所述第一相控阵之间间隔亚波长距离,所述方法包括:
通过所述第二RF通道接收通过所述第一RF通道发送的耦合信号;
根据所述耦合信号确定所述第一RF通道所对应的幅度偏差值以及相位偏差值;
若所述幅度偏差值和所述相位偏差值满足预设误差校正条件,则对所述第一RF通道所对应的幅度系数与相位系数进行校正,以得到目标幅度系数以及目标相位系数;
采用所述目标幅度系数以及所述目标相位系数测量所述第一相控阵的性能指标参数。
2.根据权利要求1所述的方法,其特征在于,所述第一相控阵包含多个所述第一RF通道,所述第二相控阵包含多个所述第二RF通道;
所述通过所述第二RF通道接收通过所述第一RF通道发送的耦合信号之前,所述方法还包括:
关闭多个所述第二RF通道;
所述通过所述第二RF通道接收通过所述第一RF通道发送的耦合信号,包括:
当多个所述第二RF通道处于关闭状态时,开启多个所述第二RF通道中的一个目标第二RF通道,其中,所述目标第二RF通道为多个所述第二RF通道中的任意一个所述第二RF通道;
通过所述目标第二RF通道接收目标第一RF通道发送的所述耦合信号,直至多个所述第一RF通道所发送的所述耦合信号均被接收,其中,所述目标第一RF通道为多个所述第一RF通道中的一个与所述目标第二RF通道具有镜像对称关系的所述第一RF通道。
3.根据权利要求2所述的方法,其特征在于,所述当多个所述第二RF通道处于关闭状态时,开启多个所述第二RF通道中的一个目标第二RF通道,包括:
1)当多个所述第二RF通道处于关闭状态时,开启多个所述第二RF通道中的第n个所述第二RF通道,其中,所述n为正整数;
所述通过所述目标第二RF通道接收目标第一RF通道发送的所述耦合信号,直至多个所述第一RF通道所发送的所述耦合信号均被接收,包括:
2)通过第n个所述第二RF通道接收通过第n个所述第一RF通道发送的所述耦合信号,其中,第n个所述第二RF通道与第n个所述第一RF通道具有镜像对称关系;
3)关闭第n个所述第二RF通道;
分别对与多个所述第一RF通道具有镜像对称关系的多个所述第二RF通道均执行如步骤1)至步骤3)的操作,直至多个所述第一RF通道所发送的所述耦合信号均被多个所述第二RF通道接收。
4.根据权利要求1所述的方法,其特征在于,所述根据所述耦合信号确定所述第一RF通道所对应的幅度偏差值以及相位偏差值,包括:
根据所述耦合信号获取所述第一RF通道所对应的幅度值以及相位值;
根据所述幅度值与预设幅度值计算所述第一RF通道所对应的所述幅度偏差值;
根据所述相位值与预设相位值计算所述第一RF通道所对应的所述相位偏差值。
5.根据权利要求1至4中任一项所述的方法,其特征在于,所述根据所述耦合信号确定所述第一RF通道所对应的幅度偏差值以及相位偏差值之后,所述方法还包括:
判断所述幅度偏差值的绝对值是否在预设幅度误差范围内,且所述相位偏差值的绝对值是否在预设相位误差范围内;
若是,则确定所述幅度偏差值和所述相位偏差值满足所述预设误差校正条件。
6.根据权利要求1至4中任一项所述的方法,其特征在于,所述根据所述耦合信号确定所述第一RF通道所对应的幅度偏差值以及相位偏差值之后,所述方法还包括:
获取所述第一RF通道在空间中的第一位置矢量以及所述第二RF通道在所述空间中的第二位置矢量;
根据所述第一位置矢量和所述第二位置矢量确定所述幅度系数以及所述相位系数;
根据所述第一RF通道产生的近区电场、所述第二RF通道产生的近区电场、所述幅度系数以及所述相位系数计算耦合系数。
7.根据权利要求6所述的方法,其特征在于,所述对所述第一RF通道所对应的幅度系数与相位系数进行校正,以得到目标幅度系数以及目标相位系数,包括:
若所述第一相控阵与所述第二相控阵平行,则采用预设关系模型对所述幅度系数与所述相位系数进行训练,其中,所述预设关系模型为所述耦合系数与平行偏移位置之间的函数关系模型;
获取训练后的所述目标幅度系数以及所述目标相位系数。
8.根据权利要求6所述的方法,其特征在于,所述对所述第一RF通道所对应的幅度系数与相位系数进行校正,以得到目标幅度系数以及目标相位系数,包括:
若所述第一相控阵与所述第二相控阵不平行,则获取所述第一相控阵的阵面与所述第二相控阵的阵面之间的夹角;
若所述夹角属于小角度夹角,则根据第一幅度修正系数以及所述幅度系数计算所述目标幅度系数,并根据第一相位修正系数以及所述相位系数计算所述目标相位系数,其中,所述第一幅度修正系数表示预先设置的不同方向上的幅度修正系数,所述第一相位修正系数表示预先设置的不同方向上的相位修正系数;
若所述夹角属于大角度夹角,则根据所述第一幅度修正系数、第二幅度修正系数以及所述幅度系数计算所述目标幅度系数,并根据所述第一相位修正系数、第二相位修正系数以及所述相位系数计算所述目标相位系数,其中,所述第二幅度修正系数表示RF通道之间耦合的幅度修正系数,所述第二相位修正系数表示RF通道之间耦合的相位修正系数。
9.根据权利要求1至4中任一项所述的方法,其特征在于,所述对所述第一RF通道所对应的幅度系数与相位系数进行校正,以得到目标幅度系数以及目标相位系数之后,所述方法还包括:
根据所述目标幅度系数以及所述目标相位系数确定所述第一相控阵的波束方向图。
10.根据权利要求1所述的方法,其特征在于,所述通过所述第二RF通道接收通过所述第一RF通道发送的耦合信号之前,所述方法还包括:
当所述第二RF通道的传输幅度值最大时,确定所述第一相控阵与所述第二相控阵之间的对应位置。
11.一种校测装置,其特征在于,所述校测装置包含第一相控阵、第二相控阵和测试仪器,其中,所述第一相控阵为待检测的相控阵,所述第一相控阵包含第一射频RF通道,所述第二相控阵包含第二RF通道,所述第一RF通道的拓扑结构与所述第二RF通道的拓扑结构具有镜像对称关系,所述第二相控阵与所述第一相控阵之间间隔亚波长距离,所述校测装置包括:
所述第二相控阵用于通过所述第二RF通道接收所述第一相控阵通过所述第一RF通道发送的耦合信号;
所述测试仪器用于根据所述耦合信号确定所述第一RF通道所对应的幅度偏差值以及相位偏差值;
若所述幅度偏差值和所述相位偏差值满足预设误差校正条件,则所述测试仪器用于对所述第一RF通道所对应的幅度系数与相位系数进行校正,以得到目标幅度系数以及目标相位系数;
所述测试仪器用于采用所述目标幅度系数以及所述目标相位系数测量所述第一相控阵的性能指标参数。
12.根据权利要求11所述的校测装置,其特征在于,所述第一相控阵包含多个所述第一RF通道,所述第二相控阵包含多个所述第二RF通道,所述第二相控阵还包含多个开关以及多个衰减器,其中,每个所述开关与每个所述第二RF通道相连,每个所述衰减器与每个所述第二RF通道相连;
所述开关用于关闭多个所述第二RF通道;
当多个所述第二RF通道处于关闭状态时,所述开关用于开启多个所述第二RF通道中的一个目标第二RF通道,其中,所述目标第二RF通道为多个所述第二RF通道中的任意一个所述第二RF通道;
所述第二RF通道用于通过所述目标第二RF通道接收目标第一RF通道发送的所述耦合信号,直至多个所述第一RF通道所发送的所述耦合信号均被接收,其中,所述目标第一RF通道为多个所述第一RF通道中的一个与所述目标第二RF通道具有镜像对称关系的所述第一RF通道;
每个所述衰减器用于对所述耦合信号进行信号衰减处理。
13.根据权利要求12所述的校测装置,其特征在于,
1)所述开关具体用于当多个所述第二RF通道处于关闭状态时,开启多个所述第二RF通道中的第n个所述第二RF通道,其中,所述n为正整数;
2)所述第二RF通道具体用于通过第n个所述第二RF通道接收通过第n个所述第一RF通道发送的所述耦合信号,其中,第n个所述第二RF通道与第n个所述第一RF通道具有镜像对称关系;
3)所述开关具体用于关闭第n个所述第二RF通道;
所述开关和所述第二RF通道用于分别对与多个所述第一RF通道具有镜像对称关系的多个所述第二RF通道均执行如步骤1)至步骤3)的操作,直至多个所述第一RF通道所发送的所述耦合信号均被多个所述第二RF通道接收。
14.根据权利要求11所述的校测装置,其特征在于,所述测试仪器包括矢量网络分析仪器;
所述矢量网络分析仪器用于根据所述耦合信号获取所述第一RF通道所对应的幅度值以及相位值;
所述矢量网络分析仪器用于根据所述幅度值与预设幅度值计算所述第一RF通道所对应的所述幅度偏差值;
所述矢量网络分析仪器用于根据所述相位值与预设相位值计算所述第一RF通道所对应的所述相位偏差值。
15.根据权利要求11至14中任一项所述的校测装置,其特征在于,所述测试仪器包括测试控制设备;
所述测试控制设备用于判断所述幅度偏差值的绝对值是否在预设幅度误差范围内,且所述相位偏差值的绝对值是否在预设相位误差范围内;
若是,则所述测试控制设备用于确定所述幅度偏差值和所述相位偏差值满足所述预设误差校正条件。
16.根据权利要求11至14中任一项所述的校测装置,其特征在于,
所述测试仪器还用于获取所述第一RF通道在空间中的第一位置矢量以及所述第二RF通道在所述空间中的第二位置矢量;
所述测试仪器还用于根据所述第一位置矢量和所述第二位置矢量确定所述幅度系数以及所述相位系数;
所述测试仪器还用于根据所述第一RF通道产生的近区电场、所述第二RF通道产生的近区电场、所述幅度系数以及所述相位系数计算耦合系数。
17.根据权利要求16所述的校测装置,其特征在于,
若所述第一相控阵与所述第二相控阵平行,则所述测试仪器具体用于采用预设关系模型对所述幅度系数与所述相位系数进行训练;
所述测试仪器具体用于获取训练后的所述目标幅度系数以及所述目标相位系数,其中,所述预设关系模型为所述耦合系数与平行偏移位置之间的函数关系模型。
18.根据权利要求16所述的校测装置,其特征在于,
若所述第一相控阵与所述第二相控阵不平行,则所述测试仪器具体用于获取所述第一相控阵的阵面与所述第二相控阵的阵面之间的夹角;
若所述夹角属于小角度夹角,则所述测试仪器具体用于根据第一幅度修正系数以及所述幅度系数计算所述目标幅度系数,并根据第一相位修正系数以及所述相位系数计算所述目标相位系数,其中,所述第一幅度修正系数表示预先设置的不同方向上的幅度修正系数,所述第一相位修正系数表示预先设置的不同方向上的相位修正系数;
若所述夹角属于大角度夹角,则所述测试仪器具体用于根据所述第一幅度修正系数、第二幅度修正系数以及所述幅度系数计算所述目标幅度系数,并根据所述第一相位修正系数、第二相位修正系数以及所述相位系数计算所述目标相位系数,其中,所述第二幅度修正系数表示RF通道之间耦合的幅度修正系数,所述第二相位修正系数表示RF通道之间耦合的相位修正系数。
19.根据权利要求11至14中任一项所述的校测装置,其特征在于,
所述测试仪器还用于根据所述目标幅度系数以及所述目标相位系数确定所述第一相控阵的波束方向图。
20.根据权利要求11所述的校测装置,其特征在于,
当所述第二RF通道的传输幅度值最大时,所述测试仪器还用于确定所述第一相控阵与所述第二相控阵之间的对应位置。
21.一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1-10中任一项所述的方法。
CN201710786716.2A 2017-09-04 2017-09-04 一种相控阵校测的方法以及校测装置 Active CN107765104B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201710786716.2A CN107765104B (zh) 2017-09-04 2017-09-04 一种相控阵校测的方法以及校测装置
PCT/CN2018/085202 WO2019041868A1 (zh) 2017-09-04 2018-04-28 一种相控阵校测的方法以及校测装置
CN201880004203.4A CN109952513B (zh) 2017-09-04 2018-04-28 一种相控阵校测的方法以及校测装置
EP18851018.4A EP3671233B1 (en) 2017-09-04 2018-04-28 Phased array calibration apparatus
US16/806,769 US11121464B2 (en) 2017-09-04 2020-03-02 Phased array correction and testing method and correction and testing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710786716.2A CN107765104B (zh) 2017-09-04 2017-09-04 一种相控阵校测的方法以及校测装置

Publications (2)

Publication Number Publication Date
CN107765104A CN107765104A (zh) 2018-03-06
CN107765104B true CN107765104B (zh) 2020-02-14

Family

ID=61265061

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201710786716.2A Active CN107765104B (zh) 2017-09-04 2017-09-04 一种相控阵校测的方法以及校测装置
CN201880004203.4A Active CN109952513B (zh) 2017-09-04 2018-04-28 一种相控阵校测的方法以及校测装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201880004203.4A Active CN109952513B (zh) 2017-09-04 2018-04-28 一种相控阵校测的方法以及校测装置

Country Status (4)

Country Link
US (1) US11121464B2 (zh)
EP (1) EP3671233B1 (zh)
CN (2) CN107765104B (zh)
WO (1) WO2019041868A1 (zh)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10142137B2 (en) 2017-03-02 2018-11-27 Micron Technology, Inc. Wireless devices and systems including examples of full duplex transmission
US11941516B2 (en) 2017-08-31 2024-03-26 Micron Technology, Inc. Cooperative learning neural networks and systems
CN107765104B (zh) * 2017-09-04 2020-02-14 华为技术有限公司 一种相控阵校测的方法以及校测装置
CN109495189B (zh) * 2017-09-11 2020-08-28 大唐移动通信设备有限公司 一种阵列天线校准方法及装置
US10554375B2 (en) 2017-09-11 2020-02-04 Micron Technology, Inc. Full duplex device-to-device cooperative communication
US11206050B2 (en) 2018-02-06 2021-12-21 Micron Technology, Inc. Self interference noise cancellation to support multiple frequency bands
WO2019183018A1 (en) * 2018-03-22 2019-09-26 Commscope Technologies Llc Base station antennas that utilize amplitude-weighted and phase-weighted linear superposition to support high effective isotropic radiated power (eirp) with high boresight coverage
CN108322268A (zh) * 2018-03-28 2018-07-24 北京聚利科技股份有限公司 相控阵天线的校准处理装置及相控阵天线系统
CN110542798B (zh) * 2018-05-28 2024-04-09 是德科技股份有限公司 使用中场天线方向图测试天线阵列的方法和系统
CN108768553B (zh) * 2018-06-01 2021-05-18 中国电子科技集团公司第三十八研究所 一种通用性全自动阵列收发模块幅相测试系统及其测试方法
CN109150325B (zh) * 2018-07-26 2021-06-29 中国电子科技集团公司第二十九研究所 一种相控阵天线中场校准方法
KR102388027B1 (ko) 2018-12-26 2022-04-19 삼성전자 주식회사 무선통신 모듈의 시험 방법 및 상기 무선통신 모듈을 포함하는 전자 장치
CN109922427B (zh) * 2019-03-06 2020-09-11 东南大学 利用大规模阵列天线的智能无线定位系统和方法
CN111865448B (zh) * 2019-04-29 2023-05-30 深圳市通用测试系统有限公司 相控阵天线测试方法及计算机可读存储介质
CN111865444B (zh) * 2019-04-29 2022-09-16 深圳市通用测试系统有限公司 相控阵天线校准系统及校准方法
CN111865447A (zh) * 2019-04-29 2020-10-30 深圳市通用测试系统有限公司 相控阵天线测试系统及测试方法
WO2020258315A1 (zh) 2019-06-28 2020-12-30 华为技术有限公司 一种传输通道校准装置及无线通信设备
CN110456316B (zh) * 2019-07-05 2021-02-26 四川九洲空管科技有限责任公司 一种多功能相控阵雷达多通道收发校正系统及方法
JP2022541190A (ja) * 2019-07-16 2022-09-22 メタウェーブ コーポレーション ミリメートル波用途において使用されるフェーズドアレイアンテナ較正システム及び方法
CN110413936B (zh) * 2019-07-26 2022-11-22 成都天锐星通科技有限公司 一种相控阵天线校准数据确定方法及天线系统
CN110504555B (zh) * 2019-08-28 2020-10-16 中国电子科技集团公司第五十四研究所 一种网络幅相可分解的赋形阵列天线设计方法
US10979097B2 (en) 2019-09-05 2021-04-13 Micron Technology, Inc. Wireless devices and systems including examples of full duplex transmission using neural networks or recurrent neural networks
CN111965602B (zh) * 2019-11-18 2023-11-10 南京大学 一种相控阵雷达幅相一致性检测方法和系统
CN111308412B (zh) * 2020-04-02 2021-02-23 深圳市华智芯联科技有限公司 天线阵列的校正方法、装置、计算机设备和存储介质
US11258473B2 (en) 2020-04-14 2022-02-22 Micron Technology, Inc. Self interference noise cancellation to support multiple frequency bands with neural networks or recurrent neural networks
CN111612121B (zh) * 2020-06-02 2023-04-18 电子科技大学 一种液晶微波相控阵天线动态增益的优化方法
CN111596146B (zh) * 2020-06-08 2022-05-13 中国电子科技集团公司第十四研究所 一种通用型多功能可调星载天线测试平台
CN111817800B (zh) * 2020-06-12 2022-06-03 中国船舶重工集团公司第七二四研究所 一种相控阵通信设备下行幅相在线监测方法
CN112202509B (zh) * 2020-09-17 2022-09-02 湖北航天技术研究院总体设计所 一种相控阵导引头前端变频校准补偿系统
CN114252707B (zh) * 2020-09-23 2024-03-15 上海华为技术有限公司 一种阵列天线校准装置、方法及系统
CN112305496B (zh) * 2020-10-26 2022-06-17 哈尔滨工程大学 一种被动测向通道相位校正方法
CN112428264B (zh) * 2020-10-26 2021-12-07 中国计量大学 一种机器人臂的矫正方法及系统
CN112763987B (zh) * 2020-12-29 2024-03-01 四川九洲空管科技有限责任公司 一种基于动态范围拆分的二次雷达全动态接收系统
CN112946373B (zh) * 2021-02-01 2024-02-09 北京邮电大学 一种基于紧缩场系统的无相位测量方法及装置
CN113015199B (zh) * 2021-02-24 2024-03-22 上海豪锦通信科技有限公司 一种相位矩阵矫正方法和装置
CN113381187B (zh) * 2021-05-31 2022-04-12 西南电子技术研究所(中国电子科技集团公司第十研究所) 球面相控阵天线坐标远近场比较修正方法
TWI794840B (zh) * 2021-06-16 2023-03-01 川升股份有限公司 封裝天線相控陣列輻射場型評估系統
CN113746498B (zh) * 2021-07-28 2022-09-27 南京新频点电子科技有限公司 一种tr组件性能综合测试系统
CN113740620B (zh) * 2021-08-06 2022-06-03 北京航天长征飞行器研究所 一种相控阵天线快速校准测试系统及方法
CN113406403B (zh) * 2021-08-19 2021-11-19 上海莱天通信技术有限公司 基于分组旋转矢量法的相控阵天线校准方法及装置
US11879923B1 (en) * 2021-09-29 2024-01-23 The Government Of The United States Of America As Represented By The Secretary Of The Navy Method for estimating antenna gain via near-field measurements
CN113702722B (zh) * 2021-10-28 2022-01-25 成都雷电微力科技股份有限公司 一种tr组件多级链路故障检测结构和方法
WO2023110094A1 (en) * 2021-12-15 2023-06-22 Advantest Corporation Measurement arrangement and method for characterizing a radio frequency arrangement comprising a plurality of antennas
CN115021833B (zh) * 2022-05-30 2023-07-25 中国电子科技集团公司第十研究所 相控阵天线阵元通道一致性多模并行处理标校方法
CN115060986A (zh) * 2022-08-05 2022-09-16 深圳市锦鸿无线科技有限公司 数字相控阵天线测试方法、系统、设备及存储介质
CN116208265B (zh) * 2023-05-06 2023-07-07 北京中科睿信科技有限公司 一种有源相控阵天线的校准方法、装置及介质
CN116760437B (zh) * 2023-08-17 2023-10-20 四川省华盾防务科技股份有限公司 应用于相控阵系统的宽带微波收发控制方法及系统
CN116826381B (zh) * 2023-08-23 2023-11-14 成都天成电科科技有限公司 相控阵天线指向精度的修正方法、设备及系统
CN117233682B (zh) * 2023-11-13 2024-03-19 广州思林杰科技股份有限公司 一种平衡电桥的快速校准系统
CN117613556A (zh) * 2023-11-23 2024-02-27 航天恒星科技有限公司 相控阵天线全空域校正方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013052234A1 (en) * 2011-10-06 2013-04-11 Toyota Motor Engineering & Manufacturing North America, Inc. Calibration method for automotive radar using phased array
CN106357351A (zh) * 2015-07-17 2017-01-25 上海华虹集成电路有限责任公司 相控阵校正系统和方法
CN106443599A (zh) * 2016-08-25 2017-02-22 零八电子集团有限公司 基于矩阵选通tr组件幅相的测试方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4298873A (en) * 1981-01-02 1981-11-03 The United States Of America As Represented By The Secretary Of The Army Adaptive steerable null antenna processor
GB2171849A (en) * 1985-02-25 1986-09-03 Secr Defence Improvements in or relating to the alignment of phased array antenna systems
JPS6211305A (ja) * 1985-07-09 1987-01-20 Mitsubishi Electric Corp アンテナ診断法
US4700192A (en) * 1986-01-15 1987-10-13 The United States Of America As Represented By The Secretary Of The Air Force Test configuration and procedure for determining the operational status of a phased array antenna
JP2560452B2 (ja) * 1988-10-13 1996-12-04 三菱電機株式会社 アンテナ測定方法
US6163296A (en) * 1999-07-12 2000-12-19 Lockheed Martin Corp. Calibration and integrated beam control/conditioning system for phased-array antennas
JPWO2004013644A1 (ja) * 2002-08-06 2006-09-21 三菱電機株式会社 アンテナ測定装置および方法
CN101483273B (zh) * 2009-02-24 2012-06-13 中国航天科技集团公司第五研究院第五○四研究所 一种幅度和相位可变的阵列天线的校准方法
CN102412441A (zh) * 2011-09-02 2012-04-11 中国电子科技集团公司第十研究所 相控阵天线矢量平均校准方法
US20140260628A1 (en) * 2013-03-15 2014-09-18 Westinghouse Electric Company Llc Ultrasonic examination of components with unknown surface geometries
US10156548B2 (en) * 2013-07-31 2018-12-18 Olympus Scientific Solutions Americas Inc. System and method of non-destructive inspection with a visual scanning guide
US9229100B2 (en) * 2013-09-20 2016-01-05 Toyota Motor Engineering & Manufacturing North America, Inc. Phased array radar with monopulse algorithm measurement
JP2015231108A (ja) * 2014-06-04 2015-12-21 富士通株式会社 アンテナ装置、及び、アンテナの方向調整方法
US9331751B2 (en) * 2014-08-05 2016-05-03 Raytheon Company Method and system for characterizing an array antenna using near-field measurements
CN104506253A (zh) * 2015-01-13 2015-04-08 重庆大学 一种相控阵天线发射通道幅相误差校正系统及方法
CN105353229B (zh) 2015-10-20 2018-06-15 上海无线电设备研究所 一种基于一维旋转的相控阵幅相误差近场校准方法
CN105911531B (zh) * 2016-04-08 2018-04-03 中国电子科技集团公司第三十八研究所 一种用于相控阵天线现场校准的装置
US11424539B2 (en) * 2016-12-21 2022-08-23 Intel Corporation Wireless communication technology, apparatuses, and methods
CN107765104B (zh) * 2017-09-04 2020-02-14 华为技术有限公司 一种相控阵校测的方法以及校测装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013052234A1 (en) * 2011-10-06 2013-04-11 Toyota Motor Engineering & Manufacturing North America, Inc. Calibration method for automotive radar using phased array
CN106357351A (zh) * 2015-07-17 2017-01-25 上海华虹集成电路有限责任公司 相控阵校正系统和方法
CN106443599A (zh) * 2016-08-25 2017-02-22 零八电子集团有限公司 基于矩阵选通tr组件幅相的测试方法

Also Published As

Publication number Publication date
CN107765104A (zh) 2018-03-06
EP3671233A1 (en) 2020-06-24
CN109952513A (zh) 2019-06-28
US11121464B2 (en) 2021-09-14
WO2019041868A1 (zh) 2019-03-07
CN109952513B (zh) 2020-07-28
US20200358177A1 (en) 2020-11-12
EP3671233B1 (en) 2023-04-05
EP3671233A4 (en) 2020-08-26

Similar Documents

Publication Publication Date Title
CN107765104B (zh) 一种相控阵校测的方法以及校测装置
US10663563B2 (en) On-site calibration of array antenna systems
US9705611B1 (en) Systems and methods for array antenna calibration
CN109541330B (zh) 一种平面波模拟器的阵列天线通道校准系统
KR101543242B1 (ko) 통합 교정 회로망을 갖는 위상 배열 안테나 및 그의 교정 비율을 측정하는 방법
CN107783087B (zh) 球面相控阵天线近场通道标校链路的自校正方法
CN109309533B (zh) 一种校准方法及设备
CN111490834B (zh) 一种基于差波束标校的相控阵天线校准方法
US20110193566A1 (en) Multichannel absorberless near field measurement system
CN111987462B (zh) 一种相控阵天线相位校准测量系统及方法
CN112904095A (zh) 一种阵列天线近场校准系统及方法
EP3772196B1 (en) Multi-element antenna array with integral comparison circuit for phase and amplitude calibration
ES2674323T3 (es) Métodos, aparatos de prueba y dispositivos para eliminar los efectos del acoplamiento transversal en los conjuntos de antenas
CN111381112A (zh) 一种卫星导航阵列天线的相位中心远场标定方法
He et al. Fast phased array calibration by power-only measurements twice for each antenna element
CN116047436A (zh) 有源相控阵雷达天线的近场幅相校准方法、系统、设备
CN115047256A (zh) 一种阵列天线多通道并行测试装置、测试方法及校准方法
CN109975620B (zh) 一种全空域相控阵被测天线旋转模拟校准系统及方法
US11276928B1 (en) Calibrating/monitoring method and apparatus for phased array antenna employing very near field
CN115792840B (zh) 一种星载相控阵天线方向图建模在轨修正方法
RU2807957C1 (ru) Способ определения характеристик диаграммы направленности активной фазированной антенной решетки
CN115833972B (zh) 对阵列馈电系统输出的目标角位置进行校准的系统及方法
JP2004096676A (ja) アレー送受信機のための自己校正方法及びそのためのアクティブスイッチアンテナ
EP4280481A1 (en) Low sll aesa taper calibration
Natera et al. Automated measurement procedure for the calibration of planar active arrays

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant