WO2019047711A1 - 功率控制方法、网络设备及终端 - Google Patents

功率控制方法、网络设备及终端 Download PDF

Info

Publication number
WO2019047711A1
WO2019047711A1 PCT/CN2018/101493 CN2018101493W WO2019047711A1 WO 2019047711 A1 WO2019047711 A1 WO 2019047711A1 CN 2018101493 W CN2018101493 W CN 2018101493W WO 2019047711 A1 WO2019047711 A1 WO 2019047711A1
Authority
WO
WIPO (PCT)
Prior art keywords
power control
resource
beam management
uplink beam
control parameter
Prior art date
Application number
PCT/CN2018/101493
Other languages
English (en)
French (fr)
Inventor
孙晓东
潘学明
孙鹏
宋扬
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to US16/646,186 priority Critical patent/US11399345B2/en
Priority to EP18853954.8A priority patent/EP3684132A4/en
Publication of WO2019047711A1 publication Critical patent/WO2019047711A1/zh
Priority to US17/807,878 priority patent/US11800462B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/10Open loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/346TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading distributing total power among users or channels

Definitions

  • the embodiments of the present disclosure relate to the field of communications technologies, and in particular, to a power control method, a network device, and a terminal.
  • the Sounding Reference Signal is mainly used for uplink or downlink channel state information (CSI) acquisition.
  • the SRS can be used not only for uplink or downlink CSI acquisition but also for beam management.
  • the related art there is no relevant solution for how to perform power control of resources for uplink beam management.
  • an embodiment of the present disclosure provides a power control method.
  • the method is for a network device, the method comprising:
  • an embodiment of the present disclosure also provides a power control method.
  • the method is for a terminal, and the method comprises:
  • an embodiment of the present disclosure further provides a network device.
  • the network device includes:
  • a first configuration module configured to configure power control parameters for resources in an uplink beam management resource set used for an uplink beam management process
  • a sending module configured to send the power control parameter to the terminal, so that the terminal sends the resource in the uplink beam management resource set according to the power control parameter.
  • an embodiment of the present disclosure further provides a terminal.
  • the terminal includes:
  • a first receiving module configured to receive power control parameters corresponding to resources in the uplink beam management resource set
  • a sending module configured to send, according to the power control parameter corresponding to the resource in the uplink beam management resource set, the resource in the uplink beam management resource set.
  • an embodiment of the present disclosure further provides a network device, including a processor, a memory, and a computer program stored on the memory and executable on the processor, where the computer program is executed by the processor.
  • an embodiment of the present disclosure further provides a terminal, including a processor, a memory, and a computer program stored on the memory and executable on the processor, when the computer program is executed by the processor.
  • the embodiment of the present disclosure further provides a computer readable storage medium, where the computer readable storage medium stores a computer program, and when the computer program is executed by the processor, implements the power control method provided by the first aspect. A step of.
  • an embodiment of the present disclosure further provides a computer readable storage medium, where the computer readable storage medium stores a computer program, and when the computer program is executed by a processor, implementing the power control method provided by the second aspect A step of.
  • FIG. 1 is a schematic structural diagram of a network applicable to a power control method according to an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a power control method according to an embodiment of the present disclosure
  • FIG. 3 is a flowchart of a power control method according to still another embodiment of the present disclosure.
  • FIG. 4 is a flowchart of a power control method according to still another embodiment of the present disclosure.
  • FIG. 5 is a flowchart of a power control method according to still another embodiment of the present disclosure.
  • FIG. 6 is a flowchart of a power control method according to still another embodiment of the present disclosure.
  • FIG. 7 is a flowchart of a power control method according to still another embodiment of the present disclosure.
  • FIG. 8 is a structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 9 is a second structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 10 is a structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 11 is a second structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 12 is a third structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 13 is a fourth structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 14 is a fifth structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 15 is a sixth structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 16 is a third structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 17 is a seventh structural diagram of a terminal according to an embodiment of the present disclosure.
  • the Sounding Reference Signal is mainly used for uplink or downlink channel state information (CSI) acquisition.
  • the power of the terminal such as a user equipment (UE), transmitting the SRS on the subframe i is:
  • P SRS (i) min ⁇ P CMAX , P SRS_OFFSET +10log 10 (M SRS )+P O_PUSCH (j)+ ⁇ (j) ⁇ PL+f(i) ⁇
  • P CMAX represents the maximum power transmitted by the UE configuration
  • M SRS indicates the bandwidth of the SRS transmission, and is represented by the number of Resource Blocks (RBs);
  • f(i) represents a current power adjustment value of a Physical Uplink Sharing Channel (PUSCH);
  • PL represents the path loss value
  • the SRS can be used not only for uplink or downlink CSI acquisition but also for beam management.
  • 5G fifth generation mobile communication technology
  • the uplink power control involves the following content:
  • PUSCH physical uplink shared channel
  • SRS partial type sounding reference signal
  • the PUSCH and the Physical Uplink Control Channel rely on independent power control commands;
  • the path loss (Path Loss) calculation supports at least periodic channel state information reference signal (CSI-RS) calculation and is applicable to PUSCH, PUCCH and SRS.
  • CSI-RS channel state information reference signal
  • the SRS can be used not only for uplink or downlink channel state information (CSI) acquisition, but also for beam management.
  • an SRS or other resource for example, a physical uplink shared channel resource
  • a network device for example, a base station
  • UE user equipment
  • uplink beam management resources used for the uplink beam management process preferably have the same transmit power. Therefore, the embodiment of the present disclosure provides a power control method for an uplink beam management resource for an uplink beam management process, to standardize power control of an uplink beam management resource for an uplink beam management process, and further improve uplink beam management efficiency. And increase the uplink transmission rate.
  • FIG. 1 is a schematic diagram of a network structure applicable to an embodiment of the present disclosure.
  • the network device 10 and the terminal 20 are included.
  • the terminal 20 can communicate with the network device 10 through a network.
  • the network device 10 may be an evolved base station (eNB or eNodeB), or a relay station or an access point, or a base station (gNB for short) in a 5G network, or a radio network controller on the network side, or a terminal. (referred to as UE), etc., is not limited herein.
  • the terminal 20 can be a mobile phone, a tablet personal computer, a laptop computer, a personal digital assistant (PDA), a mobile internet device (MID), or a wearable device. (Wearable Device), etc.
  • the network device 10 is a resource in an uplink beam management resource set for an uplink beam management process (ie, Procedure), configures power control parameters, and sends the power control parameters to the terminal 20.
  • the uplink beam management includes the terminal transmitting resources by using multiple identical or different beams.
  • the foregoing resource set may include one or more of an SRS resource set, a physical random access channel (PRACH) resource set, and a physical uplink control channel (PUCCH) resource set, where the SRS Each of one or more of the resource set, the PRACH resource set, and the PUCCH resource set includes the same resource identifier and/or a resource corresponding to the different resource identifier.
  • PRACH physical random access channel
  • PUCCH physical uplink control channel
  • the power control parameter may include one or more of an open loop power control parameter set, a closed loop power control parameter set, and a transmit power, where the open loop power control parameter set may include but is not limited to a target received power and a path loss. One or more of a compensation factor and a power offset; the closed loop power control parameter set may include, but is not limited to, one or more of a power adjustment value, a resource block number, and a modulation and coding mode.
  • the network device 10 may configure the same power control parameter for the same or different resources in the same uplink beam management resource set for the same uplink beam management process, so that the terminal 20 uses the same in the same uplink beam management process.
  • the transmit power is transmitted for resources in the set of uplink beam management resources.
  • the network device 10 may send the foregoing power control parameter to the terminal 20 by using a higher layer (ie, higher layer) signaling.
  • a higher layer ie, higher layer
  • the terminal 20 may send the resource in the uplink beam management resource set according to the power control parameter. For example, if the power control parameter is the transmit power, the terminal 20 may use the transmit power to send the resource of the uplink beam management resource set; if the power control parameter is the path loss value, the terminal 20 may calculate the transmit power by using the path loss value.
  • the terminal 20 may use the reference beam set to calculate a path loss value, further calculate a transmit power, and further utilize the transmit
  • the power transmits the resources of the uplink beam management resource set; if the power control parameter is an open loop power control parameter set and/or a closed loop power control parameter set, the terminal 20 may control the parameter set according to the open loop power and/or the closed loop power control parameter set.
  • the transmit power is calculated and the transmit power is further utilized to transmit resources for the set of uplink beam management resources.
  • the terminal 20 may use the same transmit power to send the uplink for the uplink beam management process.
  • the beam manages the various resources of the resource set such that the network device (e.g., base station) can better assess the pros and cons of the uplink beam.
  • the network device 10 configures power control parameters for the resources of the uplink beam management resource set by the network device 10, and sends the power control parameters to the terminal 20, so that the terminal 20 can send resources for uplink beam management based on the power control parameters configured on the network side.
  • the signaling overhead of the power control of the uplink beam management resources for the uplink beam management procedure can be controlled.
  • FIG. 2 is a flowchart of a power control method according to an embodiment of the present disclosure. As shown in FIG. 2, the method includes the following steps:
  • Step 201 Configure power control parameters for resources in the uplink beam management resource set used for the uplink beam management process.
  • the foregoing uplink beam management process may include the user equipment transmitting resources by using multiple identical or different beams.
  • the foregoing uplink beam management resource set may include one or more of an SRS resource set, a PRACH resource set, and a PUCCH resource set, where the SRS resource set may include one or more SRS resources, and the PRACH resource set may include one or more The PRACH resource, the PUCCH resource set may include one or more PUCCH resources.
  • each one of the SRS resource set, the PRACH resource set, and the PUCCH resource set may include the resource corresponding to the same resource identifier and/or the resource corresponding to the different resource identifier, where The resources corresponding to the same resource identifier are the same, and the resources corresponding to different resource identifiers are different.
  • the SRS resource set includes the SRS resource set and the PRACH resource set, and the SRS resource set may include the resource corresponding to the same resource identifier and/or the SRS resource corresponding to the different resource identifier.
  • the PRACH resource set may also include the same. The resource corresponding to the resource identifier and/or the PRACH resource corresponding to the different resource identifier.
  • the power control parameter is used for power control of resources in the uplink beam management resource set.
  • the foregoing power control parameters may include, but are not limited to, an open loop power control parameter set, a closed loop power control parameter set, and a transmit power. One or more.
  • the foregoing set of open loop power control parameters may include, but is not limited to, one or more of a target received power, a path loss compensation factor, and a power offset.
  • the closed loop power control parameter set may include but is not limited to power adjustment.
  • the embodiment of the present disclosure may be configured with only one power control parameter for all resources in the uplink beam management resource set of the same uplink beam management process, or may be each of the uplink beam management resource sets of the same uplink beam management process. Resources are configured with one power control parameter.
  • Step 202 Send the power control parameter to the terminal, so that the terminal sends the resource in the uplink beam management resource set according to the power control parameter.
  • the network device sends the power control parameter configured for the resource in the uplink beam management resource set of the uplink beam management process to the terminal, so that the terminal can send the uplink control according to the power control parameter configured by the network device.
  • the resources of the upstream beam management resource set of the beam management process are configured to the terminal.
  • the terminal may use the transmit power to send the resource of the uplink beam management resource set; if the power control parameter is the path loss value, the terminal may calculate the transmit power according to the path loss value, and further And transmitting, by the transmit power, a resource for an uplink beam management resource set; if the power control parameter is a reference beam set identifier, the terminal may calculate a path loss value according to the reference beam set identifier, further calculate a transmit power, and further utilize the transmit power.
  • the terminal may be according to the open loop
  • the power control parameter set and/or the closed loop power control parameter set calculates transmit power and further utilizes the transmit power to transmit resources of the uplink beam management resource set.
  • the power control method of the embodiment of the present disclosure configures a power control parameter by using a resource in a set of uplink beam management resources for an uplink beam management process; and transmitting the power control parameter to the terminal, so that the terminal is configured according to the terminal
  • the power control parameter sends the resources in the uplink beam management resource set, implements power control on resources in the uplink beam management resource set used for the uplink beam management process, and controls an uplink beam used in the uplink beam management process.
  • the signaling overhead of the power control of the management resource is configured to the terminal.
  • the uplink beam management resource set includes: one or more of a sounding reference signal SRS resource set, a physical random access channel PRACH resource set, and a physical uplink control channel PUCCH resource set, where the SRS resource Each of the one or more of the set, the PRACH resource set, and the PUCCH resource set includes the same resource identifier and/or a resource corresponding to the different resource identifier;
  • the power control parameter includes one or more of an open loop power control parameter set, a closed loop power control parameter set, a transmit power, a path loss value, and a reference beam set identifier.
  • the foregoing SRS resource set may include one or more SRS resources
  • the PRACH resource set may include one or more PRACH resources
  • the PUCCH resource set may include one or more PUCCH resources.
  • Each of the above SRS resource set, PRACH resource set, and PUCCH resource set may include the same resource and/or different resources.
  • the PRACH resource set the PRACH resources with the same channel type and the same beam may be included, and/or the PRACH resources with different channel types or the PRACH resources with the same channel type but different beams may be included.
  • the embodiment of the present disclosure may identify the same resource and different resources according to the resource identifier.
  • each of the foregoing SRS resource set, the PRACH resource set, and the PUCCH resource set may include the same resource identifier and/or different. The resource corresponding to the resource identifier.
  • the above reference beam set identification may include one or more reference beam identifications.
  • the above power control parameters may include, but are not limited to, one or more of an open loop power control parameter set, a closed loop power control parameter set, and a transmit power.
  • the open loop power control parameter set may include one or more open loop power control parameters, such as target receive power, path loss compensation factor, etc.
  • the closed loop power control parameter set may include one or more closed loop power control parameters, for example, , power adjustment value, number of resource blocks, and so on. It can be understood that the foregoing power control parameters can be reasonably configured according to actual conditions.
  • the set of open loop power control parameters includes one or more of a target received power, a path loss compensation factor, and a power offset;
  • the closed loop power control parameter set includes one or more of a power adjustment value, a resource block number, and a modulation and coding manner.
  • the set of open loop power control parameters may include, but is not limited to, one or more of a target received power, a path loss compensation factor, and a power offset.
  • the closed loop power control parameter set may include but is not limited to power adjustment.
  • step 201 that is, the resource in the uplink beam management resource set used for the uplink beam management process, configuring power control parameters, including:
  • corresponding power control parameters are configured, where power control parameters corresponding to the respective resources are the same.
  • all the resources in the beam management resource set may be configured with only one power control parameter, that is, all of the uplink beam management resource sets used in the same uplink beam management process.
  • the resources all correspond to the same power control parameter, so that the terminal sends all the resources used in the beam management resource set according to the same power control parameter.
  • the embodiments of the present disclosure may also configure one power control parameter, that is, a beam management resource set for the same uplink beam management process, for each resource in the beam management resource set for the same uplink beam management process.
  • Each resource corresponds to a power control parameter, so that the terminal can control the transmission of each resource according to the power control parameters corresponding to each resource.
  • the power control parameters corresponding to the foregoing resources are the same, so that the terminal can send each resource by using the same transmit power.
  • the open loop power control parameter set and/or the closed loop power control parameter set are determined by a downlink beam or a beam pair used to calculate a path loss value of the resource in the uplink beam management resource set, or Determining an uplink beam or beam pair corresponding to a downlink beam or beam pair used to calculate a path loss value of a resource in the uplink beam management resource set; or
  • the open loop power control parameter set and/or the closed loop power control parameter set are determined based on a reference power control parameter, where the reference power control parameter includes a power control parameter of a physical uplink shared channel PUSCH or a power of a physical random access channel PRACH Controlling parameters or power control parameters of the physical uplink control channel PUCCH or power control parameters of the sounding reference signal SRS; and/or
  • the path loss value is calculated by the terminal based on the channel state information reference signal CSI-RS set and/or one or more reference signal received power RSRP values reported by the synchronization signal block set; and/or
  • the reference beam set identifier is determined based on a beam reported by the terminal.
  • the set of synchronization signal blocks may be, for example, an SS block (ie, a Block) in a 5G system. It can be understood that the above-mentioned synchronization signal block set can also be a synchronization signal block in other mobile communication systems.
  • the RSRP may be a first layer RSRP (L1-RSRP) or a third layer RSRP (L3-RSRP).
  • the open loop power control parameter set and/or the closed loop power control parameter set may be determined based on a downlink beam or a beam pair used to calculate a path loss value of the resource in the resource set, or based on The downlink beam or beam pair of the path loss value of the resource in the uplink beam management resource set is determined by the corresponding uplink beam or beam pair.
  • the terminal may calculate a path loss value based on the periodic or semi-persistent channel state information reference signal CSI-RS set and/or the synchronization signal block set, where the CSI-RS set may include one or more CSI-RSs, and the synchronization
  • the set of signal blocks may include one or more sync signal blocks.
  • the foregoing periodic CSI-RS set and/or synchronization signal block set may refer to a periodically transmitted CSI-RS set, and/or a periodically transmitted synchronization signal block set.
  • the semi-persistent CSI-RS set and/or synchronization signal block set may refer to a CSI-RS set that is periodically transmitted within a period of time (eg, may be determined by a set start time point and an end time point). And/or a set of synchronization signal blocks that are periodically transmitted during a period of time.
  • the terminal may send at least two CSI-RSs and/or at least two synchronization signal blocks to transmit a maximum value of path loss values of beams or beam pairs as path loss values corresponding to resources in the uplink beam management resource set. Or transmitting at least two CSI-RSs and/or at least two synchronization signal blocks to transmit a minimum value of a path loss value of a beam or a beam pair as a path loss value corresponding to a resource in the uplink beam management resource set; or Transmitting at least two CSI-RSs and/or at least two synchronization signal blocks to an intermediate value of a path loss value of a beam or a beam pair as a path loss value corresponding to a resource in the uplink beam management resource set; or The weighted average of the path loss values of the two CSI-RSs and/or the at least two synchronization signal block transmission beams or beam pairs is used as the path loss value corresponding to the resources in the uplink beam management resource set.
  • the path loss value a and the CSI-RS of the transmission beam or beam pair of the CSI-RS identified by the terminal are the maximum value of the transmission beam or the beam path value b of the beam pair, as the uplink beam
  • the path loss value corresponding to the resource in the management resource set is an example.
  • the set of ring power control parameters and/or the set of closed-loop power control parameters may be determined based on a downlink beam or beam pair used to calculate the path loss value a, ie, a transmit beam or beam pair identified by CSI-RS as a, or based on The transmit beam or beam pair of the CSI-RS identified as a is determined by the corresponding uplink beam or beam pair.
  • the open loop power control parameter set and/or the closed loop power control parameter set may also be determined based on a reference power control parameter, where the reference power control parameter includes a power control parameter of the physical uplink shared channel PUSCH or a physical random The power control parameter of the access channel PRACH or the power control parameter of the physical uplink control channel PUCCH or the power control parameter of the sounding reference signal SRS.
  • the reference power control parameter includes a power control parameter of the physical uplink shared channel PUSCH or a physical random The power control parameter of the access channel PRACH or the power control parameter of the physical uplink control channel PUCCH or the power control parameter of the sounding reference signal SRS.
  • the open loop power control parameter set and/or the closed loop power control parameter set may refer to a current or historically transmitted PUSCH power control parameter, or refer to a current or historically transmitted PRACH power control parameter, or refer to current or historical
  • the power control parameters of the transmitted SRS are configured.
  • the power control parameter of the recently transmitted PUSCH may be referred to, or the power control parameter of the recently transmitted PRACH may be referred to, or may be configured with reference to the power control parameter of the recently transmitted SRS.
  • the target received power a of the most recently transmitted PUSCH may be used as the target received power in the open loop power control parameter set.
  • the path loss value may be calculated by the terminal based on the channel state information reference signal CSI-RS set and/or one or more reference signal received power RSRP values reported by the synchronization signal block set.
  • the network device may calculate a path loss value according to one or more reference signal receiving powers (RSRPs) reported by the terminal based on the CSI-RSR set and/or the synchronization signal block set, and send the path loss value to the terminal.
  • the device is configured to allow the terminal device to calculate the transmit power according to the path loss value.
  • RSRPs reference signal receiving powers
  • the foregoing CSI-RS set and/or synchronization signal block set may be configured by the network device for the terminal, or may be configured by the terminal.
  • step 201 that is, the resource in the uplink beam management resource set used for the uplink beam management process, configuring power control parameters, including: an uplink beam management resource set used for an uplink beam management process. And a part of the power control parameters in the set of open loop power control parameters and/or a part of the power control parameters in the closed loop power control parameter set.
  • a part of the power control parameters and/or the closed-loop power control parameter set in the set of open-loop power control parameters may be configured for resources in an uplink beam management resource set for an uplink beam management process.
  • a part of the power control parameters in the set of open loop power control parameters and/or a part of the power control parameters in the closed loop power control parameter set may be configured, in combination with the power control parameters configured on the terminal side, for example, if If the target receiving power is configured on the terminal side, the network device side may configure one or more of the remaining power control parameters except the target received power, for example, a path loss compensation factor, a power offset, and the like.
  • the network device sends a part of the power control parameters and/or a part of the power control parameters of the closed loop power control parameter set in the set of open loop power control parameters to the terminal, so that the terminal may be based on the open loop power control parameter set configured by the network device.
  • a part of the power control parameter and/or a part of the power control parameter in the closed-loop power control parameter set, and the transmit power is calculated in combination with the power control parameter configured on the terminal side, so that the resource in the resource set can be transmitted by using the transmit power.
  • the configuration of the terminal-side power control parameter may refer to the power control parameter of the recently transmitted PUSCH or the power control parameter of the most recently transmitted PRACH or the power control parameter of the most recently transmitted PUCCH or the power control parameter of the recently transmitted SRS.
  • the target received power of the most recently transmitted PUSCH may be used as the target received power of the resource of the resource set.
  • the embodiment of the present disclosure configures a part of the power control parameters in the open loop power control parameter set and/or the closed loop power control parameter set by using only resources in the uplink beam management resource set for the uplink beam management process.
  • a part of the power control parameters can reduce the control signaling overhead.
  • the method further includes: configuring a channel state information reference signal CSI-RS set or a synchronization signal block set for calculating a path loss value of the resource in the uplink beam management resource set, and sending the signal to the terminal The CSI-RS set or the set of synchronization signal blocks; or
  • the network device may be configured to calculate a channel state information reference signal CSI-RS set or a synchronization signal block set for calculating a path loss value of the resource in the uplink beam management resource set, and send the terminal to the terminal, so that the terminal
  • the path loss value of the resource in the resource set may be calculated based on the CSI-RS set or the synchronization signal block set sent by the network device, where the CSI-RS set may include one or more CSI-RSs, and the synchronization signal block set may include One or more sync signal blocks.
  • the network device in the embodiment of the disclosure may also configure a measurement resource set and send the same to the terminal, where the measurement resource set includes multiple measurement resources, where the measurement resource may be a CSI-RS or a synchronization signal block.
  • the terminal determines, according to a reference signal receiving power (RSRP) or a signal to interference plus noise ratio (SINR) of each measurement resource, for calculating the uplink beam management resource set.
  • RSRP reference signal receiving power
  • SINR signal to interference plus noise ratio
  • a CSI-RS set or a set of synchronization signal blocks of path loss values of resources For example, N measurement resources with a large RSRP or a large SINR may be obtained from the M measurement resources as a CSI-RS set or a synchronization signal block for calculating a path loss value of a resource in the uplink beam management resource set.
  • the embodiment of the present disclosure may also pre-define a CSI-RS set or a synchronization signal block set for calculating a path loss value of a resource in the uplink beam management resource set by using a protocol.
  • the foregoing step 201 that is, the resource in the uplink beam management resource set used for the uplink beam management process, configures the power control parameter, including:
  • a reference signal received power RSRP that is reported based on a periodic or semi-persistent channel state information reference signal or a synchronization signal block
  • the transmit power is calculated based on the RSRP.
  • the network device may directly configure the transmit power for the resources in the uplink beam management resource set used for the uplink beam management process.
  • the terminal may refer to the signal or the synchronization signal based on the periodic or semi-persistent channel state information.
  • the RSRP reported by the block calculates the transmit power. Therefore, the terminal can directly use the transmit power to transmit resources used in the uplink beam management resource set.
  • the foregoing periodic CSI-RS set and/or synchronization signal block set may refer to a periodically transmitted CSI-RS set, and/or a periodically transmitted synchronization signal block set.
  • the semi-persistent CSI-RS set and/or synchronization signal block set may refer to a CSI-RS set that is periodically transmitted within a period of time (eg, may be determined by a set start time point and an end time point). And/or a set of synchronization signal blocks that are periodically transmitted during a period of time.
  • the above RSRP may include L3-RSRP or L1-RSRP.
  • the embodiment of the present disclosure can effectively reduce the control signaling overhead by configuring the transmit power for the uplink beam management resource used for the uplink beam management process on the network side.
  • the foregoing step 201 that is, the resource in the uplink beam management resource set used for the uplink beam management process, configures power control parameters, including:
  • Different power control parameters are configured for resources in a quasi-co-location sub-resource set in the uplink beam management resource set for the same uplink beam management procedure.
  • different power control parameters may be configured for resources in the uplink beam management resource set of different uplink beam management procedures.
  • the power control parameter a is configured
  • the power control parameter b is configured for the resources in the uplink beam management resource set for the uplink beam management process b.
  • the power control parameter a and the power control parameter b are different.
  • the embodiment of the present disclosure may be a power control parameter that is configured differently for non-quasi-co-location resources in the uplink beam management resource set in the same uplink beam management process.
  • the embodiments of the present disclosure configure non-uniform power control parameters for the resources in the uplink beam management resource set for different uplink beam management procedures, which are non-quasi-co-located in the uplink beam management resource set for the same uplink beam management process.
  • the resources in the set of sub-resources are configured with different power control parameters to improve the accuracy of power control.
  • FIG. 3 is a flowchart of a power control method according to still another embodiment of the present disclosure. This method is applied to the network side. As shown in FIG. 3, the receiving method provided by the implementation of the present disclosure includes the following steps:
  • Step 301 Receive power control parameters corresponding to resources in an uplink beam management resource set used in an uplink beam management process.
  • the foregoing uplink beam management process may include the user equipment transmitting resources by using multiple identical or different beams.
  • the foregoing set of uplink beam management resources may include one or more of an SRS resource set, a PRACH resource set, and a PUCCH resource set, where the SRS resource set may include one or more SRS resources, and the PRACH resource set may include one or The plurality of PRACH resources, the PUCCH resource set may include one or more PUCCH resources.
  • each one of the SRS resource set, the PRACH resource set, and the PUCCH resource set may include the resource corresponding to the same resource identifier and/or the resource corresponding to the different resource identifier, where The resources corresponding to the same resource identifier are the same, and the resources corresponding to different resource identifiers are different.
  • the SRS resource set and the PRACH resource set are included in the resource set, the SRS resource set may include the resource corresponding to the same resource identifier and/or the SRS resource corresponding to the different resource identifier.
  • the PRACH resource set may also include the same resource identifier. The resources and/or different resources identify the corresponding PRACH resources.
  • the power control parameter is used for power control of resources in the uplink beam management resource set.
  • the foregoing power control parameters may include, but are not limited to, an open loop power control parameter set, a closed loop power control parameter set, and a transmit power. One or more.
  • the foregoing set of open loop power control parameters may include, but is not limited to, one or more of a target received power, a path loss compensation factor, and a power offset.
  • the closed loop power control parameter set may include but is not limited to power adjustment.
  • the embodiment of the present disclosure may configure only one power control parameter for all resources in the resource set, and may also configure one power control parameter for each resource in the resource set.
  • Step 302 Send resources in the uplink beam management resource set according to power control parameters corresponding to resources in the uplink beam management resource set.
  • the terminal may send the resource in the resource set based on the power control parameter. For example, if the power control parameter is the transmit power, the terminal may use the transmit power to send the The resource of the uplink beam management resource set of the uplink beam management process, if the power control parameter is an open loop power control parameter set and/or a closed loop power control parameter set, the terminal may control the parameter set according to the open loop power and/or the closed loop power control.
  • the set of parameters calculates the transmit power and further utilizes the transmit power to transmit resources for the set of uplink beam management resources for the uplink beam management procedure.
  • the power control method of the embodiment of the present disclosure receives the power control parameter corresponding to the resource in the uplink beam management resource set for the uplink beam management process, and the power control parameter corresponding to the resource in the uplink beam management resource set. Transmitting the resources in the uplink beam management resource set, implementing power control on resources in the uplink beam management resource set for the uplink beam management process, and controlling power of the uplink beam management resource used in the uplink beam management process Controlling signaling overhead.
  • the uplink beam management resource set includes one or more of a sounding reference signal SRS set, a physical random access channel PRACH set, and a physical uplink control channel PUCCH set, where the SRS resource set, PRACH
  • Each of the one or more of the resource set and the PUCCH resource set includes the same resource identifier and/or a resource corresponding to the different resource identifier;
  • the power control parameter includes one or more of an open loop power control parameter set, a closed loop power control parameter set, a transmit power, a path loss value, and a reference beam set identifier.
  • the foregoing SRS resource set may include one or more SRS resources
  • the PRACH resource set may include one or more PRACH resources
  • the PUCCH resource set may include one or more PUCCH resources.
  • Each of the SRS resource set, the PRACH resource set, and the PUCCH resource set may include the same resource or different resources.
  • the PRACH resource set the PRACH resource with the same channel type and the same beam may be included, and/or It includes PRACH resources with different channel types or PRACH resources with the same channel type but different beams.
  • the embodiment of the present disclosure may identify the same resource and different resources according to the resource identifier.
  • each of the foregoing SRS resource set, the PRACH resource set, and the PUCCH resource set may include the same resource identifier and/or different. The resource corresponding to the resource identifier.
  • the above reference beam set identification may include one or more reference beam identifications.
  • the above power control parameters may include, but are not limited to, one or more of an open loop power control parameter set, a closed loop power control parameter set, and a transmit power.
  • the open loop power control parameter set may include one or more open loop power control parameters, such as a target received power, a path loss compensation factor, etc.
  • the closed loop power control parameter set may include one or more closed loop power control parameters, for example, , power adjustment value, number of resource blocks, and so on. It can be understood that the foregoing power control parameters can be reasonably configured according to actual conditions.
  • the set of open loop power control parameters includes: one or more of a target receiving power, a path loss compensation factor, and a power offset;
  • the closed loop power control parameter set includes one or more of a power adjustment value, a resource block number, and a modulation and coding manner.
  • the set of open loop power control parameters may include, but is not limited to, one or more of a target received power, a path loss compensation factor, and a power offset.
  • the closed loop power control parameter set may include but is not limited to power adjustment.
  • the power control parameters corresponding to the resources in the uplink beam management resource set of the same uplink beam management process are the same.
  • all the resources in the beam management resource set may all correspond to the same power control parameter, that is, all in the uplink beam management resource set used in the same uplink beam management process.
  • the resources all correspond to the same power control parameter, so that the terminal transmits all resources in the resource set for the beam management according to the same power control parameter.
  • each resource in the beam management resource set for the same uplink beam management process in the embodiment of the disclosure may also correspond to one power control parameter, and the power control parameters corresponding to the foregoing resources are the same, so that the terminal may adopt the same
  • the transmit power is transmitted to each resource, so that the network device can better evaluate the advantages and disadvantages of the uplink beam of the terminal.
  • the sending the resources in the uplink beam management resource set according to the power control parameter corresponding to the resource in the uplink beam management resource set includes:
  • a transmit power corresponding to the resource in the uplink beam management resource set Calculating, according to a power control parameter corresponding to the resource in the uplink beam management resource set, a transmit power corresponding to the resource in the uplink beam management resource set, where the power control parameter includes an open loop power control parameter set and a closed loop power One or more of a control parameter set, a path loss value, and a reference beam set identifier;
  • the terminal when the power control parameter includes one or more of an open loop power control parameter set, a closed loop power control parameter set, a path loss value, and a reference beam set identifier, the terminal needs to be controlled according to power.
  • the parameter calculates a transmit power corresponding to the resource in the resource set, and further utilizes the transmit power to transmit each resource in the resource set.
  • the transmit power may be calculated according to the open loop power control parameter set and the closed loop power control parameter set.
  • the power control parameter is a path loss value
  • the transmit power can be calculated according to the path loss value.
  • the power control parameter is the reference beam set identifier
  • the transmit power can be calculated according to the reference beam set identifier.
  • the power control parameter includes an open loop power control parameter set and/or a closed loop power control parameter set
  • performing the uplink according to the power control parameter corresponding to the resource in the uplink beam management resource set includes:
  • the reference power control parameter includes a power control parameter of a physical uplink shared channel PUSCH or a power control parameter of a physical random access channel PRACH or a power control parameter or a sounding reference signal SRS of a physical uplink control channel PUCCH Power control parameters;
  • the terminal may calculate the transmit power by combining the reference power control parameter with a part of the power control parameter in the set of open loop power control parameters configured on the network device side and/or a part of the power control parameter in the closed loop power control parameter set.
  • the reference power control parameter may include a power control parameter of the PUSCH or a power control parameter of the PRACH or a power control parameter of the PUCCH or a power control parameter of the SRS.
  • the reference power control parameter may be configured by including a power control parameter of the most recently transmitted PUSCH or a power control parameter of the most recently transmitted PRACH or a power control parameter of the most recently transmitted PUCCH or a power control parameter of the most recently transmitted SRS.
  • the reference power parameter may be one or more of the power control parameters of the PUSCH.
  • the reference power parameter includes only the target received power of the PUSCH.
  • a part of the power control parameters in the set of open loop power control parameters and/or a part of the power control parameters in the closed loop power control parameter set may be determined based on a reference power parameter configured by the terminal side, for example, if the terminal If the target receiving power is configured on the side, the network device side may configure one or more of the remaining power control parameters except the target received power, for example, a path loss compensation factor, a power offset, and the like.
  • Embodiments of the present disclosure can reduce control signaling overhead by referring to power control parameters of other channels or signals.
  • the obtaining the reference power control parameter includes: acquiring a current or historical PUSCH power control parameter, or a current or historical PRACH power control parameter, or a current or historical PUCCH power control parameter, or a current or historical sounding reference.
  • the power control parameter of the signal SRS is used as the reference power control parameter.
  • the power control parameter of the pre- or historical PUSCH may be obtained and used as a reference power control parameter, or the current or historical PRACH power control parameter may be obtained as a reference power control parameter, or the current or historical PUCCH power control parameter may be obtained. And as a reference power control parameter, or obtain the power control parameter of the current or historical sounding reference signal SRS and as a reference power control parameter.
  • the reference power control parameter is determined by a beam or a beam pair corresponding to a path loss value of the resource in the uplink beam management resource set, or by at least two channel state information reference signals CSI-RS set or at least
  • the path loss values of the two synchronization signal block set transmission beams or beam pairs are determined by a beam or beam pair corresponding to the path loss value having the smallest absolute value of the path loss value of the resources in the uplink beam management resource set.
  • the terminal identifies the path loss value a of the transmit beam or beam pair of the CSI-RS as a, and the maximum value of the path loss value b of the transmit beam or beam pair of the BSI-RS as b, as the uplink beam
  • the path loss value corresponding to the resource in the resource set is managed. If the path loss value a is greater than the path loss value b, the path loss value corresponding to the resource in the uplink beam management resource set is the path loss value a, and the reference power control is performed.
  • the parameters may be determined based on the downlink beam or beam pair used to calculate the path loss value a, ie, the transmit beam or beam pair identified by the CSI-RS as a.
  • the terminal identifies the path loss value a of the transmit beam or beam pair of the CSI-RS as a, and the weighted average c of the path loss value b of the transmit beam or beam pair of the CSI-RS as b, as the uplink beam management
  • the path loss value corresponding to the resource in the resource set if the absolute value of the difference between the path loss value a and the weighted average c is less than the absolute value of the difference between the path loss value b and the weighted average c, the reference power control parameter It may be determined by a transmit beam or beam pair that identifies the CSI-RS as a.
  • the method before the sending, according to the power control parameter corresponding to the resource in the uplink beam management resource set, the resource in the uplink beam management resource set, the method further includes: using the channel state information reference signal CSI- The RS set or the synchronization signal block set transmits a path loss value of the beam or the beam pair, and determines a path loss value corresponding to the resource in the uplink beam management resource set.
  • the path loss value of the beam or the beam pair may be transmitted based on the CSI-RS set or the synchronization signal block set, and the path loss value corresponding to the resource in the uplink beam management resource set may be determined.
  • the CSI may be used.
  • the RS set or the synchronization signal block set transmits the maximum value of the path loss value of the beam or beam pair as the path loss value corresponding to the resource in the resource set, and may also transmit the CSI-RS set or the synchronization signal block set to the beam or beam pair.
  • the minimum value of the path loss values is the path loss value corresponding to the resources in the resource set.
  • the determining, by the channel state information reference signal CSI-RS set or the synchronization signal block set, the path loss value of the beam or the beam pair, and determining the path loss value corresponding to the resource in the uplink beam management resource set including:
  • a weighted average of path loss values of at least two CSI-RSs and/or at least two synchronization signal block transmission beams or beam pairs is determined as a path loss value corresponding to the resources in the uplink beam management resource set.
  • the path loss value of the beam or the beam pair is transmitted based on the channel state information reference signal CSI-RS set or the synchronization signal block set, and the path loss value corresponding to the resource in the uplink beam management resource set is determined.
  • the method also includes:
  • CSI-RS set or a synchronization signal block set configured by the network device, wherein the CSI-RS set or the synchronization signal block set is used for a path loss value calculation of the resource in the uplink beam management resource set;
  • a channel state information reference signal for calculating a path loss value of a resource in the uplink beam management resource set or Synchronization signal block set.
  • the network device may be configured to calculate a channel state information reference signal CSI-RS set or a synchronization signal block set for calculating a path loss value of the resource in the uplink beam management resource set, and send the terminal to the terminal, so that the terminal
  • the path loss value of the resource in the resource set may be calculated based on the CSI-RS set or the synchronization signal block set sent by the network device, where the CSI-RS set may include one or more CSI-RSs, and the synchronization signal block set may include One or more sync signal blocks.
  • the above-mentioned synchronization signal block set may be an SS block (ie, a Block) in a 5G system.
  • the above-mentioned synchronization signal block set can also be an SS block of other mobile communication systems.
  • the above RSRP may be a first layer RSRP (L1-RSRP) or a third layer RSRP (L3-RSRP).
  • the network device in the embodiment of the disclosure may also configure a measurement resource set and send the same to the terminal, where the measurement resource set includes multiple measurement resources, where the measurement resource may be a CSI-RS or a synchronization signal block.
  • the terminal determines, according to the reference signal received power RSRP or the signal to interference plus noise ratio SINR of each measurement resource, a CSI-RS set or a synchronization signal block used to calculate a path loss value of the resource in the uplink beam management resource set. set.
  • N measurement resources with a large RSRP or a large SINR may be obtained from the M measurement resources as a CSI-RS set or a synchronization signal block for calculating a path loss value of a resource in the uplink beam management resource set.
  • the embodiment of the present disclosure may also pre-define a CSI-RS set or a synchronization signal block set for calculating a path loss value of a resource in the uplink beam management resource set by using a protocol.
  • the method further includes: reporting the reference signal received power RSRP based on the periodic or semi-persistent CSI-RS, or the periodic or semi-persistent synchronization signal block.
  • the terminal may refer to the RSRP reported by the signal or the synchronization signal block based on the periodic or semi-persistent channel state information.
  • the network device can calculate the transmit power based on the periodic or semi-persistent CSI-RS, or the RSRP reported by the periodic or semi-persistent sync block.
  • the foregoing periodic CSI-RS set and/or synchronization signal block set may refer to a periodically transmitted CSI-RS set, and/or a periodically transmitted synchronization signal block set.
  • the semi-persistent CSI-RS set and/or synchronization signal block set may refer to a CSI-RS set that is periodically transmitted within a period of time (eg, may be determined by a set start time point and an end time point). And/or a set of synchronization signal blocks that are periodically transmitted during a period of time.
  • the above RSRP may include L3-RSRP or L1-RSRP.
  • the power control parameters corresponding to the resources in the uplink beam management resource set used in different uplink beam management processes are different; the non-quasi-co-located sub-resource set in the uplink beam management resource set used in the same uplink beam management process The corresponding power control parameters are different.
  • different power control parameters may be configured for resources in the uplink beam management resource set of different uplink beam management procedures.
  • the power control parameter a is configured
  • the power control parameter b is configured for the resources in the uplink beam management resource set for the uplink beam management process b.
  • the power control parameter a and the power control parameter b are different.
  • the embodiment of the present disclosure may be a power control parameter that is different for resource configuration of non-quasi-co-location in the same uplink beam management resource set.
  • the embodiments of the present disclosure configure non-uniform power control parameters for the resources in the uplink beam management resource set for different uplink beam management procedures, which are non-quasi-co-located in the uplink beam management resource set for the same uplink beam management process.
  • the resources in the set of sub-resources are configured with different power control parameters to improve the accuracy of power control.
  • an uplink beam management resource set for example, including one or more SRS and/or PRACH and/or
  • the calculation of the transmit power of the same or different resources (for example, resources including different channel types and/or the same channel type but different beams) in the PUCCH resources or the like includes at least the following implementations:
  • the network device configures the same set of open loop power control parameters (eg, target received power and path loss compensation factor, power offset, etc.), and/or closed loop power control parameters for the uplink beam management resource set used for the uplink beam management process.
  • a collection eg, power adjustment value, number of resource blocks, etc. is sent to the terminal.
  • the terminal may calculate the path loss value based on the periodic or semi-persistent CSI-RS and/or the synchronization signal block (ie, SS Block), and may further be based on the open loop power control parameter set and/or the closed loop power control parameter set configured by the network device. And the above path loss value is used to calculate the transmission power.
  • the network device 10 configures the same open loop power control parameters and/or closed loop power control parameters for the uplink beam management resources for the uplink beam management process, and sends the same to the terminal 20.
  • the terminal 20 transmits the uplink beam management resource by using the same transmit power in an uplink beam management process based on the open loop power control parameters and/or the closed loop power control parameters configured on the network side.
  • the network device 10 in the embodiment of the present disclosure may further configure the same path loss value and/or reference beam set identifier for the same or different resources in the uplink beam management resource set used in the uplink beam management process. And sent to the terminal 20, wherein the reference beam set identifier includes an identifier of one or more reference beams. The terminal 20 transmits the uplink beam management resource using the same transmit power in one uplink beam management process based on the path loss value and/or the reference beam set identifier configured by the network device 10.
  • the network side configures the same transmit power for the same or different resources in the set of uplink beam management resources used for the uplink beam management procedure.
  • the network side may calculate the transmit power according to the L3-RSRP or the L1-RSRP reported by the terminal side based on the periodic or semi-persistent CSI-RS or the SS Block, and send the transmit power to the terminal.
  • network device 10 i.e., the network side
  • the terminal 20 transmits the uplink beam management resource by using the same power in one uplink beam management process based on the transmission power configured on the network side.
  • the embodiments of the present disclosure can effectively reduce the control signaling overhead by configuring the transmit power of resources for uplink beam management.
  • the terminal may refer to the power control parameter of the most recently transmitted PUSCH or PRACH (for example, the target received power), and combine some power control parameters configured by the network side except the power control parameters of the recently transmitted PUSCH or PRACH,
  • the same or different resources in the uplink beam management resource set of the uplink beam management process are configured with the same transmit power.
  • the network device 10 configures the same partial power control parameter and/or partial closed-loop power control parameter for the uplink beam management resource for the uplink beam management process, and sends the same to the terminal 20, where
  • the partial power control parameters and/or the partial closed loop power control parameters may be determined based on the power control parameters configured on the terminal side described above.
  • the terminal 20 refers to the power control parameter of the latest PUSCH or PRACH, and combines the partial power control parameters and/or the partial closed-loop power control parameters configured on the network side to transmit the uplink beam management resource by using the same transmit power in one uplink beam management process. .
  • Embodiments of the present disclosure can reduce control signaling overhead by referring to power control parameters of other channels or signals.
  • the transmit power of the same or different resources in the uplink beam management resource set may be the same.
  • the transmit power of the same or different resources between the sets of uplink beam management resources may be different.
  • FIG. 8 is a structural diagram of a network device according to an embodiment of the present disclosure.
  • the network device 800 includes: a first configuration module 801 and a sending module 802, where:
  • the first configuration module 801 is configured to configure power control parameters for resources in the uplink beam management resource set used for the uplink beam management process;
  • the sending module 802 is configured to send the power control parameter to the terminal, so that the terminal sends the resource in the uplink beam management resource set according to the power control parameter.
  • the uplink beam management resource set includes: one or more of a sounding reference signal SRS resource set, a physical random access channel PRACH resource set, and a physical uplink control channel PUCCH resource set, where the SRS resource Each of the one or more of the set, the PRACH resource set, and the PUCCH resource set includes the same resource identifier and/or a resource corresponding to the different resource identifier;
  • the power control parameter includes one or more of an open loop power control parameter set, a closed loop power control parameter set, a transmit power, a path loss value, and a reference beam set identifier.
  • the set of open loop power control parameters includes one or more of a target receiving power, a path loss compensation factor, and a power offset;
  • the closed loop power control parameter set includes one or more of a power adjustment value, a resource block number, and a modulation and coding manner.
  • the first configuration module 801 is specifically configured to:
  • corresponding power control parameters are configured, where power control parameters corresponding to the respective resources are the same.
  • the open loop power control parameter set and/or the closed loop power control parameter set are determined by a downlink beam or a beam pair used to calculate a path loss value of the resource in the uplink beam management resource set, or Determining an uplink beam or beam pair corresponding to a downlink beam or beam pair used to calculate a path loss value of a resource in the uplink beam management resource set; or
  • the open loop power control parameter set and/or the closed loop power control parameter set are determined based on a reference power control parameter, where the reference power control parameter includes a power control parameter of a physical uplink shared channel PUSCH or a power of a physical random access channel PRACH Controlling parameters or power control parameters of the physical uplink control channel PUCCH or power control parameters of the sounding reference signal SRS; and/or
  • the path loss value is calculated by the terminal based on the channel state information reference signal CSI-RS set and/or one or more reference signal received power RSRP values reported by the synchronization signal block set; and/or
  • the reference beam set identifier is determined based on a beam reported by the terminal.
  • the first configuration module 801 is specifically configured to:
  • the network device 800 further includes a second configuration module 803, where the second configuration module is specifically configured to:
  • a channel state information reference signal CSI-RS set or a synchronization signal block set for calculating a path loss value of the resource in the uplink beam management resource set, and sending the CSI-RS set or synchronization signal block to the terminal Collection;
  • the first configuration module 801 is specifically configured to:
  • a reference signal received power RSRP that is reported based on a periodic or semi-persistent channel state information reference signal or a synchronization signal block
  • the transmit power is calculated based on the RSRP.
  • the first configuration module 801 is specifically configured to: configure different power control parameters for resources in the uplink beam management resource set used for different uplink beam management processes; and use the same uplink beam management process for the same uplink beam management process.
  • a set of sub-resources that are not quasi-co-located in the uplink beam management resource set, and different power control parameters are configured.
  • the network device 800 can implement the various processes performed by the network device in any of the foregoing method embodiments, and achieve the same or similar effects. To avoid repetition, details are not described herein again.
  • the network device 800 of the embodiment of the present disclosure configures a power control parameter for the resource in the uplink beam management resource set for the uplink beam management process by the first configuration module 801; and the sending module 802 sends the power control parameter to the terminal, So that the terminal sends the resources in the uplink beam management resource set according to the power control parameter, and implements power control on resources in the uplink beam management resource set used for the uplink beam management process, and can be controlled for uplink. Signaling overhead for power control of the uplink beam management resources of the beam management process.
  • FIG. 10 is a structural diagram of a terminal according to an embodiment of the present disclosure.
  • the terminal 1000 includes: a first receiving module 1001 and a sending module 1002, where:
  • the first receiving module 1001 is configured to receive a power control parameter corresponding to a resource in an uplink beam management resource set used in an uplink beam management process;
  • the sending module 1002 is configured to send, according to the power control parameter corresponding to the resource in the uplink beam management resource set, the resource in the uplink beam management resource set.
  • the uplink beam management resource set includes one or more of a sounding reference signal SRS set, a physical random access channel PRACH set, and a physical uplink control channel PUCCH set, where the SRS resource set, PRACH
  • Each of the one or more of the resource set and the PUCCH resource set includes the same resource identifier and/or a resource corresponding to the different resource identifier;
  • the power control parameter includes one or more of an open loop power control parameter set, a closed loop power control parameter set, a transmit power, a path loss value, and a reference beam set identifier.
  • the set of open loop power control parameters includes: one or more of a target receiving power, a path loss compensation factor, and a power offset;
  • the closed loop power control parameter set includes one or more of a power adjustment value, a resource block number, and a modulation and coding manner.
  • the power control parameters corresponding to the resources in the uplink beam management resource set of the same uplink beam management process are the same.
  • the sending module 1002 includes:
  • the first calculating unit 10021 is configured to calculate, according to a power control parameter corresponding to the resource in the uplink beam management resource set, a transmit power corresponding to the resource in the uplink beam management resource set, where the power control parameter includes One or more of a set of loop power control parameters, a set of closed loop power control parameters, a path loss value, and a reference beam set identifier;
  • the first sending unit 10022 is configured to send, by using the transmit power corresponding to the resource in the uplink beam management resource set, the resource in the uplink beam management resource set.
  • the sending module 1002 when the power control parameter includes an open loop power control parameter set and/or a closed loop power control parameter set, the sending module 1002 includes:
  • the obtaining unit 10023 is configured to obtain a reference power control parameter, where the reference power control parameter includes a power control parameter of a physical uplink shared channel PUSCH or a power control parameter of a physical random access channel PRACH or a power control of a physical uplink control channel PUCCH Power control parameters of the parameter or sounding reference signal SRS;
  • the second calculating unit 10024 is configured to: according to a part of the power control parameter and/or a part of the power control parameter in the closed loop power control parameter set corresponding to the resource in the uplink beam management resource set, and the Determining, according to the power control parameter, a transmit power corresponding to the resource in the uplink beam management resource set;
  • the second sending unit 10025 is configured to send, by using the transmit power corresponding to the resource in the uplink beam management resource set, the resource in the uplink beam management resource set.
  • the obtaining unit 10023 is specifically configured to:
  • the reference power control parameter is determined by a beam or a beam pair corresponding to a path loss value of the resource in the uplink beam management resource set, or by at least two channel state information reference signals CSI-RS set or at least
  • the path loss values of the two synchronization signal block set transmission beams or beam pairs are determined by a beam or beam pair corresponding to the path loss value having the smallest absolute value of the path loss value of the resources in the uplink beam management resource set.
  • the terminal 1000 before the sending the resources in the uplink beam management resource set according to the power control parameter corresponding to the resource in the uplink beam management resource set, the terminal 1000 further includes:
  • the first determining module 1003 is configured to determine, according to the channel state information reference signal CSI-RS set or the synchronization signal block set, a path loss value of the beam or the beam pair, and determine a path loss value corresponding to the resource in the uplink beam management resource set.
  • the first determining module 1003 is specifically configured to:
  • a weighted average of path loss values of at least two CSI-RSs and/or at least two synchronization signal block transmission beams or beam pairs is determined as a path loss value corresponding to the resources in the uplink beam management resource set.
  • the path loss value corresponding to the resource in the uplink beam management resource set is determined by using a channel state information reference signal CSI-RS set or a synchronization signal block set to transmit a path loss value of a beam or a beam pair.
  • the terminal 1000 further includes:
  • the second receiving module 1004 is configured to receive a CSI-RS set or a synchronization signal block set configured by the network device, where the CSI-RS set or the synchronization signal block set is used for a path of resources in the uplink beam management resource set. Loss calculation; or
  • the third receiving module 1005 is configured to receive a measurement resource set configured by the network device.
  • the second determining module 1006 is configured to determine, according to the reference signal received power RSRP or the signal to interference plus noise ratio SINR of the measurement resource in the measurement resource set, a path loss value used for the resource in the uplink beam management resource set.
  • the terminal 1000 further includes:
  • the reporting module 1007 is configured to report the reference signal received power RSRP based on the periodic or semi-persistent CSI-RS, or the periodic or semi-persistent synchronization signal block.
  • the power control parameters corresponding to the resources in the uplink beam management resource set used in different uplink beam management processes are different; the non-quasi-co-located sub-resource set in the uplink beam management resource set used in the same uplink beam management process The corresponding power control parameters are different.
  • the terminal 1000 can implement the processes performed by the terminal in any of the foregoing method embodiments, and achieve the same or similar effects. To avoid repetition, details are not described herein again.
  • the terminal 1000 of the embodiment of the present disclosure receives the power control parameter corresponding to the resource in the uplink beam management resource set by the first receiving module 1001, and the sending module 1002 determines the power control parameter corresponding to the resource in the uplink beam management resource set. Transmitting the resources in the uplink beam management resource set, implementing power control on resources in the uplink beam management resource set for the uplink beam management process, and controlling the uplink beam management resource set used in the uplink beam management process The signaling overhead of the power control of the resource.
  • Embodiments of the present disclosure also provide a network device including a memory, a processor, and a computer program stored on the memory and executable on the processor, the computer program being executed by the processor to implement FIG. 2
  • a network device including a memory, a processor, and a computer program stored on the memory and executable on the processor, the computer program being executed by the processor to implement FIG. 2
  • the steps of the power control method of the method embodiment, and the same or similar technical effects can be achieved. To avoid repetition, details are not described herein again.
  • Embodiments of the present disclosure also provide a terminal, including a memory, a processor, and a computer program stored on the memory and executable on the processor, the computer program being executed by the processor to implement the The steps of the power control method of the method embodiment, and the same or similar technical effects can be achieved. To avoid repetition, details are not described herein again.
  • the embodiment of the present disclosure further provides a computer readable storage medium having a computer program stored thereon, the computer program being executed by the processor to implement the power control method of the method embodiment of FIG. 2 Steps, and can achieve the same technical effect, in order to avoid repetition, no longer repeat here.
  • the embodiment of the present disclosure further provides a computer readable storage medium having a computer program stored thereon, the computer program being executed by the processor to implement the power control method of the method embodiment of FIG. Steps, and can achieve the same or similar technical effects, in order to avoid repetition, no longer repeat here.
  • FIG. 16 is a structural diagram of a network device according to an embodiment of the present disclosure.
  • the network device 1600 includes: a processor 1601 , a memory 1602 , a bus interface 1603 , and a transceiver 1604 .
  • the memory 1602 and the transceiver 1604 are both connected to the bus interface 1603.
  • the network device 1600 further includes: a computer program stored on the memory 1602 and executable on the processor 1601.
  • a computer program stored on the memory 1602 and executable on the processor 1601.
  • the uplink beam management resource set includes: one or more of a sounding reference signal SRS resource set, a physical random access channel PRACH resource set, and a physical uplink control channel PUCCH resource set, where the SRS resource Each of the one or more of the set, the PRACH resource set, and the PUCCH resource set includes the same resource identifier and/or a resource corresponding to the different resource identifier;
  • the power control parameter includes one or more of an open loop power control parameter set, a closed loop power control parameter set, a transmit power, a path loss value, and a reference beam set identifier.
  • the set of open loop power control parameters includes one or more of a target receiving power, a path loss compensation factor, and a power offset;
  • the closed loop power control parameter set includes one or more of a power adjustment value, a resource block number, and a modulation and coding manner.
  • corresponding power control parameters are configured, where power control parameters corresponding to the respective resources are the same.
  • the open loop power control parameter set and/or the closed loop power control parameter set are determined by a downlink beam or a beam pair used to calculate a path loss value of the resource in the uplink beam management resource set, or Determining an uplink beam or beam pair corresponding to a downlink beam or beam pair used to calculate a path loss value of a resource in the uplink beam management resource set; or
  • the open loop power control parameter set and/or the closed loop power control parameter set are determined based on a reference power control parameter, where the reference power control parameter includes a power control parameter of a physical uplink shared channel PUSCH or a power of a physical random access channel PRACH Controlling parameters or power control parameters of the physical uplink control channel PUCCH or power control parameters of the sounding reference signal SRS; and/or
  • the path loss value is calculated by the terminal based on the channel state information reference signal CSI-RS set and/or one or more reference signal received power RSRP values reported by the synchronization signal block set; and/or
  • the reference beam set identifier is determined based on a beam reported by the terminal.
  • a part of the power control parameters in the open loop power control parameter set and/or a part of the power control parameters in the closed loop power control parameter set are configured.
  • a channel state information reference signal CSI-RS set or a synchronization signal block set for calculating a path loss value of the resource in the uplink beam management resource set, and sending the CSI-RS set or synchronization signal block to the terminal Collection;
  • a reference signal received power RSRP based on a periodic or semi-persistent channel state information reference signal or a synchronization signal block
  • the transmit power is calculated based on the RSRP.
  • the following steps may be implemented: configuring different power control parameters for resources in the uplink beam management resource set for different uplink beam management procedures; for being used for the same uplink beam A set of sub-resources that are not quasi-co-located in the uplink beam management resource set of the management process, and different power control parameters are configured.
  • the network device of the embodiment of the present disclosure configures a power control parameter by using a resource in a set of uplink beam management resources for an uplink beam management procedure; and transmitting the power control parameter to the terminal, so that the terminal according to the power
  • the control parameter sends the resources in the uplink beam management resource set, implements power control of resources in the uplink beam management resource set for the uplink beam management process, and can control uplink beam management resources used in the uplink beam management process. Signaling overhead for power control.
  • FIG. 17 is a structural diagram of a terminal provided by an implementation of the present disclosure.
  • the terminal 1700 includes: at least one processor 1701, a memory 1702, at least one network interface 1704, and a user interface 1703.
  • the various components in terminal 1700 are coupled together by a bus system 1705.
  • the bus system 1705 is used to implement connection communication between these components.
  • the bus system 1705 includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • various buses are labeled as bus system 1705 in FIG.
  • the user interface 1703 may include a display, a keyboard, or a pointing device (eg, a mouse, a trackball, a touchpad, or a touch screen, etc.).
  • a pointing device eg, a mouse, a trackball, a touchpad, or a touch screen, etc.
  • the memory 1702 in the embodiments of the present disclosure may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SDRAM Synchronous Connection Dynamic Random Access Memory
  • DRRAM direct memory bus random access memory
  • the memory 1702 stores elements, executable modules or data structures, or a subset thereof, or their extended set: an operating system 17021 and an application 17022.
  • the operating system 17021 includes various system programs, such as a framework layer, a core library layer, a driver layer, and the like, for implementing various basic services and processing hardware-based tasks.
  • the application 17022 includes various applications, such as a media player (Media Player), a browser, and the like, for implementing various application services.
  • a program implementing the method of the embodiments of the present disclosure may be included in the application 17022.
  • the terminal 1700 further includes: a computer program stored on the memory 1702 and executable on the processor 1701, and specifically, may be a computer program in the application 17022, when the computer program is executed by the processor 1701
  • the step of: receiving a power control parameter corresponding to the resource in the uplink beam management resource set of the uplink beam management process; and sending the uplink beam management resource according to the power control parameter corresponding to the resource in the uplink beam management resource set The resources in the collection.
  • the method disclosed in the above embodiments of the present disclosure may be applied to the processor 1701 or implemented by the processor 1701.
  • the processor 1701 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the above method may be completed by an integrated logic circuit of hardware in the processor 1701 or an instruction in a form of software.
  • the processor 1701 may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or the like. Programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present disclosure may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in connection with the embodiments of the present disclosure may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 1702, and the processor 1701 reads the information in the memory 1702 and completes the steps of the above method in combination with its hardware.
  • the embodiments described herein can be implemented in hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processing (DSP), Digital Signal Processing Equipment (DSP Device, DSPD), programmable Programmable Logic Device (PLD), Field-Programmable Gate Array (FPGA), general purpose processor, controller, microcontroller, microprocessor, other for performing the functions described herein In an electronic unit or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSP Digital Signal Processing
  • DSP Device Digital Signal Processing Equipment
  • PLD programmable Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • the techniques described herein can be implemented by modules (eg, procedures, functions, and so on) that perform the functions described herein.
  • the software code can be stored in memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the uplink beam management resource set includes one or more of a sounding reference signal SRS set, a physical random access channel PRACH set, and a physical uplink control channel PUCCH set, where the SRS resource set, PRACH
  • Each of the one or more of the resource set and the PUCCH resource set includes the same resource identifier and/or a resource corresponding to the different resource identifier;
  • the power control parameter includes one or more of an open loop power control parameter set, a closed loop power control parameter set, a transmit power, a path loss value, and a reference beam set identifier.
  • the set of open loop power control parameters includes: one or more of a target receiving power, a path loss compensation factor, and a power offset;
  • the closed loop power control parameter set includes one or more of a power adjustment value, a resource block number, and a modulation and coding manner.
  • the power control parameters corresponding to the resources in the uplink beam management resource set of the same uplink beam management process are the same.
  • a transmit power corresponding to the resource in the uplink beam management resource set Calculating, according to a power control parameter corresponding to the resource in the uplink beam management resource set, a transmit power corresponding to the resource in the uplink beam management resource set, where the power control parameter includes an open loop power control parameter set and a closed loop power One or more of a control parameter set, a path loss value, and a reference beam set identifier;
  • the power control parameter includes an open loop power control parameter set and/or a closed loop power control parameter set
  • the following steps may also be implemented:
  • the reference power control parameter includes a power control parameter of a physical uplink shared channel PUSCH or a power control parameter of a physical random access channel PRACH or a power control parameter or a sounding reference signal SRS of a physical uplink control channel PUCCH Power control parameters;
  • the reference power control parameter is determined by a beam or a beam pair corresponding to a path loss value of the resource in the uplink beam management resource set, or by at least two channel state information reference signals CSI-RS set or at least
  • the path loss values of the two synchronization signal block set transmission beams or beam pairs are determined by a beam or beam pair corresponding to the path loss value having the smallest absolute value of the path loss value of the resources in the uplink beam management resource set.
  • a weighted average of path loss values of at least two CSI-RSs and/or at least two synchronization signal block transmission beams or beam pairs is determined as a path loss value corresponding to the resources in the uplink beam management resource set.
  • CSI-RS set or a synchronization signal block set configured by the network device, wherein the CSI-RS set or the synchronization signal block set is used for a path loss value calculation of the resource in the uplink beam management resource set;
  • a channel state information reference signal for calculating a path loss value of a resource in the uplink beam management resource set or Synchronization signal block set.
  • the reference signal received power RSRP is reported based on a periodic or semi-persistent CSI-RS, or a periodic or semi-persistent synchronization signal block.
  • the power control parameters corresponding to the resources in the uplink beam management resource set used in different uplink beam management processes are different; the non-quasi-co-located sub-resource set in the uplink beam management resource set used in the same uplink beam management process The corresponding power control parameters are different.
  • the terminal 1700 can implement various processes implemented by the terminal in the foregoing embodiment. To avoid repetition, details are not described herein again.
  • the terminal 1700 of the embodiment of the present disclosure receives the power control parameter corresponding to the resource in the uplink beam management resource set of the uplink beam management process, and sends the location according to the power control parameter corresponding to the resource in the uplink beam management resource set. Deriving resources in the uplink beam management resource set, implementing power control on resources in the uplink beam management resource set for the uplink beam management process, and controlling power control of the uplink beam management resource used in the uplink beam management process Signaling overhead.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present disclosure.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, a portion of the technical solution of the present disclosure that contributes in essence or to the related art or a part of the technical solution may be embodied in the form of a software product stored in a storage medium, including several The instructions are for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种功率控制方法、网络设备及终端。该功率控制方法包括:为用于上行波束管理过程的上行波束管理资源集合中的资源,配置功率控制参数;以及向终端发送所述功率控制参数,以使所述终端根据所述功率控制参数发送所述上行波束管理资源集合中的资源。

Description

功率控制方法、网络设备及终端
相关申请的交叉引用
本申请主张在2017年9月11日在中国提交的中国专利申请号No.201710813624.9的优先权,其全部内容通过引用包含于此。
技术领域
本公开实施例涉及通信技术领域,尤其涉及一种功率控制方法、网络设备及终端。
背景技术
传统第四代移动通信技术(4th Generation,4G)移动通信系统中,探测参考信号(Sounding Reference Signal,SRS)主要用于上行或下行信道状态信息(Channel State Information,CSI)获取。然而,在未来移动通信系统中,例如,第五代移动通信技术(5th Generation,5G)移动通信系统中,SRS不仅可以用于上行或下行CSI获取,还可以用于波束管理。然而,相关技术中,对于如何进行用于上行波束管理的资源的功率控制并没有相关的解决方案。
发明内容
第一方面,本公开实施例提供了一种功率控制方法。该方法用于网络设备,该方法包括:
为用于上行波束管理过程的上行波束管理资源集合中的资源,配置功率控制参数;以及
向终端发送所述功率控制参数,以使所述终端根据所述功率控制参数发送所述上行波束管理资源集合中的资源。
第二方面,本公开实施例还提供一种功率控制方法。该方法用于终端,该方法包括:
接收用于上行波束管理过程的上行波束管理资源集合中的资源对应的功率控制参数;以及
根据所述上行波束管理资源集合中的资源对应的功率控制参数,发送所述上行波束管理资源集合中的资源。
第三方面,本公开实施例还提供一种网络设备。该网络设备包括:
第一配置模块,用于为用于上行波束管理过程的上行波束管理资源集合中的资源,配置功率控制参数;以及
发送模块,用于向终端发送所述功率控制参数,以使所述终端根据所述功率控制参数发送所述上行波束管理资源集合中的资源。
第四方面,本公开实施例还提供一种终端。该终端包括:
第一接收模块,用于接收用于上行波束管理资源集合中的资源对应的功率控制参数;以及
发送模块,用于根据所述上行波束管理资源集合中的资源对应的功率控制参数,发送所述上行波束管理资源集合中的资源。
第五方面,本公开实施例还提供一种网络设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现上述第一方面提供的功率控制方法的步骤。
第六方面,本公开实施例还提供一种终端,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现上述第二方面提供的功率控制方法的步骤。
第七方面,本公开实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现上述第一方面提供的功率控制方法的步骤。
第八方面,本公开实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现上述第二方面提供的功率控制方法的步骤。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性 劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的功率控制方法可应用的网络结构示意图;
图2是本公开实施例提供的功率控制方法的流程图;
图3是本公开又一实施例提供的功率控制方法的流程图;
图4是本公开又一实施例提供的功率控制方法的流程图;
图5是本公开又一实施例提供的功率控制方法的流程图;
图6是本公开又一实施例提供的功率控制方法的流程图;
图7是本公开又一实施例提供的功率控制方法的流程图;
图8是本公开实施例提供的网络设备的结构图之一;
图9是本公开实施例提供的网络设备的结构图之二;
图10是本公开实施例提供的终端的结构图之一;
图11是本公开实施例提供的终端的结构图之二;
图12是本公开实施例提供的终端的结构图之三;
图13是本公开实施例提供的终端的结构图之四;
图14是本公开实施例提供的终端的结构图之五;
图15是本公开实施例提供的终端的结构图之六;
图16是本公开实施例提供的网络设备的结构图之三;以及
图17是本公开实施例提供的终端的结构图之七。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例,例如除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤 或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B和/或C,表示包含单独A,单独B,单独C,以及A和B都存在,B和C都存在,A和C都存在,以及A、B和C都存在的7种情况。
传统第四代移动通信技术(4th Generation,4G)移动通信系统中,探测参考信号(Sounding Reference Signal,SRS)主要用于上行或下行信道状态信息(Channel State Information,CSI)获取。具体的,终端,例如用户设备(User Equipment,UE)在子帧i上发送SRS的功率为:
P SRS(i)=min{P CMAX,P SRS_OFFSET+10log 10(M SRS)+P O_PUSCH(j)+α(j)·PL+f(i)}
其中,P CMAX表示UE配置的发送的最大的功率;
P SRS_OFFSE表示高层配置的半静态UE参数,分为两种情况,如果K S=1.25,P SRS_OFFSE的范围为[-3,12]db,步长为1db;如果K S=0,则P SRS_OFFSE范围为[-10.5,12],步长为1.5db;
M SRS表示SRS发射的带宽,用资源块(Resource Block,RB)数来表示;
f(i)表示物理上行共享信道(Physical Uplink Sharing Channel,PUSCH)的当前功率调整值;
P O_PUSCH(j)和α(j)都是PUSCH相关的值,j=1;
PL表示路损值。
在未来移动通信系统中,例如,第五代移动通信技术(5th Generation,5G)移动通信系统中,SRS不仅可以用于上行或下行CSI获取,还可以用于波束管理。然而,相关技术中,对于如何进行用于上行波束管理的资源的功率控制并没有相关的解决方案。
具体的,本公开实施例中,上行功率控制涉及如下内容:
在新无线接入(New Radio,NR)系统中,物理上行共享信道(Physical Uplink Sharing Channel,PUSCH)与部分类型探测参考信号(Sounding Reference Signal,SRS)共享相同的闭环功率控制命令;
PUSCH和物理上行控制信道(Physical Uplink Control Channel,PUCCH) 依赖独立功率控制命令;
SRS载波间切换功率控制;
路损(即Path Loss)计算至少支持基于周期性的信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)计算,并适用于PUSCH、PUCCH和SRS。
具体的,SRS不仅可以用于上行或下行信道状态信息(Channel State Information,CSI)获取,还可以用于波束管理。当SRS或其他资源(例如,物理上行共享信道资源)用于上行波束管理时,为了便于网络设备(例如,基站)更好地评估终端,例如用户设备(User Equipment,UE)上行波束的优劣,在一个上行波束管理过程中,用于上行波束管理过程的上行波束管理资源的发射功率最好相同。因此,本公开实施例提供一种用于上行波束管理过程的上行波束管理资源的功率控制方法,以规范对用于上行波束管理过程的上行波束管理资源的功率控制,进一步提高上行波束管理效率,以及提升上行传输速率。
参见图1,图1是本公开实施例可应用的网络结构示意图,如图1所示,包括网络设备10和终端20,其中,终端20可以通过网络与网络设备10进行通信。其中,网络设备10可以是演进型基站(Evolutional Node B,简称eNB或eNodeB),或者中继站或接入点,或者5G网络中的基站(简称gNB),或者网络侧的无线网络控制器,或者终端(简称UE)等,在此并不限定。终端20可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(personal digital assistant,简称PDA)、移动上网装置(Mobile Internet Device,MID)或可穿戴式设备(Wearable Device)等。
本公开实施例中,网络设备10为用于一个上行波束管理过程(即Procedure)的一上行波束管理资源集合中的资源,配置功率控制参数,并向终端20发送上述功率控制参数。其中,上行波束管理包括终端采用多个相同或不同的波束发送资源。
上述资源集合可以包括SRS资源集合、物理随机接入信道(Physical Random Access Channel,PRACH)资源集合和物理上行控制信道(Physical Uplink Control Channel,PUCCH)资源集合中的一项或者多项,所述SRS资源 集合、PRACH资源集合和PUCCH资源集合中的一项或者多项中的每一项均包含相同资源标识和/或不同资源标识对应的资源。
上述功率控制参数可以包括开环功率控制参数集合、闭环功率控制参数集合和发射功率中的一项或者多项,其中,所述开环功率控制参数集合可以包括但不限于目标接收功率、路损补偿因子、功率偏移量中的一项或者多项;所述闭环功率控制参数集合可以包括但不限于功率调整值、资源块数量、调制编码方式中的一项或者多项。
可选的,网络设备10可以为用于同一上行波束管理过程的同一上行波束管理资源集合中相同或不同的资源均配置相同的功率控制参数,从而使得终端20在同一上行波束管理过程中使用相同的发射功率发送用于该上行波束管理资源集合中的资源。
可选的,网络设备10可以通过高层(即Higher Layer)信令向终端20发送上述功率控制参数。
终端20接收到网络设备10发送的功率控制参数后,可以根据该功率控制参数发送所述上行波束管理资源集合中的资源。例如,若上述功率控制参数为发射功率,则终端20可以利用该发射功率发送上行波束管理资源集合的资源;若上述功率控制参数为路损值,则终端20可以利用该路损值计算发射功率,并进一步利用该发射功率发送上行波束管理资源集合的资源;若上述功率控制参数为参考波束集合,则终端20可以利用该参考波束集合计算路损值,进一步计算发射功率,并进一步利用该发射功率发送上行波束管理资源集合的资源;若上述功率控制参数为开环功率控制参数集合和/或闭环功率控制参数集,则终端20可以根据开环功率控制参数集合和/或闭环功率控制参数集计算发射功率,并进一步利用该发射功率发送用于上行波束管理资源集合的资源。
可选的,本公开实施例中,若用于同一上行波束管理过程的上行波束管理资源集合的资源的功率控制参数相同,则终端20可以采用相同的发射功率发送用于上行波束管理过程的上行波束管理资源集合的各个资源,从而网络设备(例如,基站)可以更好地评估上行波束的优劣。
这样,本公开实施例通过网络设备10为上行波束管理资源集合的资源配 置功率控制参数,并发送给终端20,从而终端20可以基于网络侧配置的功率控制参数发送用于上行波束管理的资源,可控制用于上行波束管理过程的上行波束管理资源的功率控制的信令开销。
本公开实施例提供一种功率控制方法。该方法应用于网络设备。参见图2,图2是本公开实施例提供的功率控制方法的流程图,如图2所示,包括以下步骤:
步骤201、为用于上行波束管理过程的上行波束管理资源集合中的资源,配置功率控制参数。
本公开实施例中,上述上行波束管理过程可以包括用户设备采用多个相同或不同的波束发送资源。
上述上行波束管理资源集合可以包括SRS资源集合、PRACH资源集合和PUCCH资源集合中的一项或者多项,其中,SRS资源集合可以包括一个或多个SRS资源,PRACH资源集合可以包括一个或多个PRACH资源,PUCCH资源集合可以包括一个或多个PUCCH资源。
可选的,所述SRS资源集合、PRACH资源集合和PUCCH资源集合中的一项或者多项中的每一项均可以包含相同资源标识对应的资源和/或不同资源标识对应的资源,其中,相同资源标识对应的资源相同,不同资源标识对应的资源不同。例如,上行波束管理资源集合中包括SRS资源集合和PRACH资源集合,则SRS资源集合可以包含相同资源标识对应的资源和/或不同资源标识对应的SRS资源,同样的,PRACH资源集合也可以包含相同资源标识对应的资源和/或不同资源标识对应的PRACH资源。
可选的,上述功率控制参数用于上行波束管理资源集合中的资源的功率控制,例如,上述功率控制参数可以包括但不限于开环功率控制参数集合、闭环功率控制参数集合和发射功率中的一项或者多项。
可选的,上述开环功率控制参数集合可以包括但不限于目标接收功率、路损补偿因子、功率偏移量中的一项或者多项;上述闭环功率控制参数集合可以包括但不限于功率调整值、资源块数量、调制编码方式中的一项或者多项。
可以理解的是,本公开实施例可以根据实际情况合理配置上述功率控制 参数。
可以理解的是,本公开实施例可以为同一上行波束管理过程的上行波束管理资源集合中的所有资源仅配置一个功率控制参数,也可以为同一上行波束管理过程的上行波束管理资源集合中的各个资源均配置一个功率控制参数。
步骤202、向终端发送所述功率控制参数,以使所述终端根据所述功率控制参数发送所述上行波束管理资源集合中的资源。
本公开实施例中,网络设备将为用于上行波束管理过程的上行波束管理资源集合中的资源所配置的功率控制参数发送给终端,从而终端可以根据网络设备配置的功率控制参数发送用于上行波束管理过程的上行波束管理资源集合的资源。例如,若上述功率控制参数为发射功率,则终端可以利用该发射功率发送上行波束管理资源集合的资源;若上述功率控制参数为路损值,则终端可以根据路损值计算发射功率,并进一步利用该发射功率发送用于上行波束管理资源集合的资源;若上述功率控制参数为参考波束集合标识,则终端可以根据参考波束集合标识计算路损值,进一步计算发射功率,并进一步利用该发射功率发送上行波束管理资源集合的资源,其中参考波束集合可以包括一个或多个参考波束标识;若上述功率控制参数为开环功率控制参数集合和/或闭环功率控制参数集合,则终端可以根据开环功率控制参数集合和/或闭环功率控制参数集合计算发射功率,并进一步利用该发射功率发送上行波束管理资源集合的资源。
这样,本公开实施例的功率控制方法,通过为用于上行波束管理过程的上行波束管理资源集合中的资源,配置功率控制参数;以及向终端发送所述功率控制参数,以使所述终端根据所述功率控制参数发送所述上行波束管理资源集合中的资源,实现了对用于上行波束管理过程的上行波束管理资源集合中的资源的功率控制,可控制用于上行波束管理过程的上行波束管理资源的功率控制的信令开销。
可选的,所述上行波束管理资源集合包括:探测参考信号SRS资源集合、物理随机接入信道PRACH资源集合和物理上行控制信道PUCCH资源集合中的一项或者多项,其中,所述SRS资源集合、PRACH资源集合和PUCCH资源集合中的一项或者多项中的每一项包含相同资源标识和/或不同资源标 识对应的资源;
所述功率控制参数包括:开环功率控制参数集合、闭环功率控制参数集合、发射功率、路损值、参考波束集合标识中的一项或者多项。
本公开实施例中,上述SRS资源集合可以包括一个或多个SRS资源,PRACH资源集合可以包括一个或多个PRACH资源,PUCCH资源集合可以包括一个或多个PUCCH资源。上述SRS资源集合、PRACH资源集合和PUCCH资源集合中的每一个均可以包括相同的资源和/或不相同的资源。例如,对于PRACH资源集合,可以包括信道类型相同且波束相同的PRACH资源,和/或包括信道类型不同的PRACH资源或是信道类型相同但波束不同的PRACH资源。具体的,本公开实施例可以根据资源标识来识别相同的资源以及不同的资源,相应的,上述SRS资源集合、PRACH资源集合和PUCCH资源集合中的每一个均可以包括相同资源标识和/或不同资源标识对应的资源。
上述参考波束集合标识可以包括一个或多个参考波束标识。
上述功率控制参数可以包括但不限于开环功率控制参数集合、闭环功率控制参数集合和发射功率中的一项或者多项。其中,开环功率控制参数集合可以包括一个或多个开环功率控制参数,例如,目标接收功率、路损补偿因子等,上述闭环功率控制参数集合可以包括一个或多个闭环功率控制参数,例如,功率调整值、资源块数量等。可以理解的是,本公开实施例可以根据实际情况合理配置上述功率控制参数。
可选的,所述开环功率控制参数集合包括:目标接收功率、路损补偿因子、功率偏移量中的一项或者多项;以及
所述闭环功率控制参数集合包括:功率调整值、资源块数量、调制编码方式中的一项或者多项。
本公开实施例中,开环功率控制参数集合可以包括但不限于目标接收功率、路损补偿因子、功率偏移量中的一项或者多项,闭环功率控制参数集合可以包括但不限于功率调整值、资源块数量、调制编码方式中的一项或者多项。
可以理解的是,本公开实施例可以根据实际情况合理配置上述开环功率 控制参数集合和闭环功率控制参数集合。
可选的,对于上述步骤201,也即所述为用于上行波束管理过程的上行波束管理资源集合中的资源,配置功率控制参数,包括:
为用于同一上行波束管理过程的上行波束管理资源集合中的资源,配置同一功率控制参数;或者
为用于同一上行波束管理过程的上行波束管理资源集合中的各个资源,均配置对应的功率控制参数,其中,所述各个资源对应的功率控制参数均相同。
本公开实施例中,可以为同一个上行波束管理过程中,上述波束管理资源集合中的全部资源仅配置一个功率控制参数,也即用于同一上行波束管理过程的上行波束管理资源集合中的全部资源均对应同一个功率控制参数,从而终端根据同一个功率控制参数发送用于该波束管理资源集合中的全部资源。可选的,本公开实施例也可以分别为用于同一上行波束管理过程的波束管理资源集合中的各个资源均配置一个功率控制参数,也即用于同一上行波束管理过程的波束管理资源集合中的各个资源均对应一个功率控制参数,从而终端可以分别根据各个资源对应的功率控制参数控制各个资源的发送。需要说明的是,为了便于网络设备更好地评估终端上行波束的优劣,上述各个资源对应的功率控制参数相同,从而终端可以采用相同的发射功率发送各个资源。
可选的,所述开环功率控制参数集合和/或闭环功率控制参数集合由用于计算所述上行波束管理资源集合中的资源的路损值的下行波束或波束对确定,或者,由与用于计算所述上行波束管理资源集合中的资源的路损值的下行波束或波束对相对应的上行波束或波束对确定;或者
所述开环功率控制参数集合和/或闭环功率控制参数集合基于参考功率控制参数确定;其中,所述参考功率控制参数包括物理上行共享信道PUSCH的功率控制参数或物理随机接入信道PRACH的功率控制参数或物理上行控制信道PUCCH的功率控制参数或探测参考信号SRS的功率控制参数;和/或
所述路损值由所述终端基于信道状态信息参考信号CSI-RS集合和/或同步信号块集合上报的一个或多个参考信号接收功率RSRP值计算得到;和/或
所述参考波束集合标识基于所述终端上报的波束确定。
所述同步信号块集合,例如可以为5G系统中的SS块(即Block)。可以理解的是,上述同步信号块集合也可以为其他移动通信系统中的同步信号块。所述RSRP可以为第一层RSRP(L1-RSRP),或者第三层RSRP(L3-RSRP)。
本公开实施例中,上述开环功率控制参数集合和/或闭环功率控制参数集合可以基于用于计算上述资源集合中的资源的路损值的下行波束或波束对确定,或者基于与用于计算所述上行波束管理资源集合中的资源的路损值的下行波束或波束对相对应的上行波束或波束对确定。
具体的,终端可以基于周期性或半持续的信道状态信息参考信号CSI-RS集合和/或同步信号块集合计算路损值,其中,CSI-RS集合可以包括一个或多个CSI-RS,同步信号块集合可以包括一个或多个同步信号块。需要说明的是,上述周期性的CSI-RS集合和/或同步信号块集合可以是指周期性的发送的CSI-RS集合,和/或周期性的发送的同步信号块集合。上述半持续的CSI-RS集合和/或同步信号块集合可以是指在一时间段(例如,可以通过设置的起始时间点和结束时间点确定)内周期性的发送的CSI-RS集合,和/或在一时间段内周期性的发送的同步信号块集合。
例如,终端可以将至少两个CSI-RS和/或至少两个同步信号块发送波束或波束对的路损值中的最大值,作为所述上行波束管理资源集合中的资源对应的路损值;或者将至少两个CSI-RS和/或至少两个同步信号块发送波束或波束对的路损值中的最小值,作为所述上行波束管理资源集合中的资源对应的路损值;或者将至少两个CSI-RS和/或至少两个同步信号块发送波束或波束对的路损值中的中间值,作为所述上行波束管理资源集合中的资源对应的路损值;或者将至少两个CSI-RS和/或至少两个同步信号块发送波束或波束对的路损值的加权平均值,作为所述上行波束管理资源集合中的资源对应的路损值。
例如,以终端将CSI-RS标识为a的发送波束或波束对的路损值a和CSI-RS标识为b的发送波束或波束对的路损值b中的最大值,作为所述上行波束管理资源集合中的资源对应的路损值为例,若路损值a大于路损值b,则所述上行波束管理资源集合中的资源对应的路损值为路损值a,则上述开环功 率控制参数集合和/或闭环功率控制参数集合可以基于用于计算路损值a的下行波束或波束对确定,也即由CSI-RS标识为a的发送波束或波束对确定,或者基于与CSI-RS标识为a的发送波束或波束对相对应的上行波束或波束对确定。
可选的,所述开环功率控制参数集合和/或闭环功率控制参数集合也可以基于参考功率控制参数确定,其中,所述参考功率控制参数包括物理上行共享信道PUSCH的功率控制参数或物理随机接入信道PRACH的功率控制参数或物理上行控制信道PUCCH的功率控制参数或探测参考信号SRS的功率控制参数。
可选的,开环功率控制参数集合和/或闭环功率控制参数集合可以参考当前或历史发送的PUSCH的功率控制参数,或者参考当前或历史发送的PRACH的功率控制参数,或是参考当前或历史发送的SRS的功率控制参数进行配置。特别的,可以参考最近发送的PUSCH的功率控制参数,或者参考最近发送的PRACH的功率控制参数,或是参考最近发送的SRS的功率控制参数进行配置。
例如,若开环功率控制参数集合包括目标接收功率,则可以将最近发送的PUSCH的目标接收功率a作为上述开环功率控制参数集合中的目标接收功率。
可选的,所述路损值可以由所述终端基于信道状态信息参考信号CSI-RS集合和/或同步信号块集合上报的一个或多个参考信号接收功率RSRP值计算得到。
本公开实施例中,网络设备可以根据终端基于CSI-RSR集合和/或同步信号块集合上报的一个或多个参考信号接收功率(Reference Signal Receiving Power,RSRP)计算路损值,并发送给终端设备,以供终端设备根据该路损值计算发射功率。可以理解的是,上述CSI-RS集合和/或同步信号块集合可以是由网络设备为终端配置的,也可以是终端配置的。
可选的,对于上述步骤201,也即所述为用于上行波束管理过程的上行波束管理资源集合中的资源,配置功率控制参数,包括:为用于上行波束管理过程的上行波束管理资源集合中的资源,配置所述开环功率控制参数集合 中的一部分功率控制参数和/或所述闭环功率控制参数集合中的一部分功率控制参数。
本公开实施例中,还可以为用于上行波束管理过程的上行波束管理资源集合中的资源配置所述开环功率控制参数集合中的一部分功率控制参数和/或所述闭环功率控制参数集合中的一部分功率控制参数。可选的,可以结合终端侧配置的功率控制参数,确定配置所述开环功率控制参数集合中的一部分功率控制参数和/或所述闭环功率控制参数集合中的一部分功率控制参数,例如,若终端侧配置了目标接收功率,则网络设备侧可以配置除上述目标接收功率之外的其余功率控制参数中的一项或是多项,例如,路损补偿因子、功率偏移量等。
具体的,网络设备向终端发送上述开环功率控制参数集合中的一部分功率控制参数和/或闭环功率控制参数集合中的一部分功率控制参数,从而终端可以基于网络设备配置的开环功率控制参数集合中的一部分功率控制参数和/或闭环功率控制参数集合中的一部分功率控制参数,并结合终端侧配置的功率控制参数计算发射功率,从而可以采用该发射功率发送上述资源集合中的资源。
可选的,终端侧功率控制参数的配置可以参考最近发送的PUSCH的功率控制参数或最近发送的PRACH的功率控制参数或最近发送的PUCCH的功率控制参数或最近发送的SRS的功率控制参数。例如,终端侧需要配置上述资源集合的资源的目标接收功率,则可以将最近发送的PUSCH的目标接收功率作为上述资源集合的资源的目标接收功率。
本公开实施例通过仅为用于上行波束管理过程的上行波束管理资源集合中的资源,配置所述开环功率控制参数集合中的一部分功率控制参数和/或所述闭环功率控制参数集合中的一部分功率控制参数,可以降低控制信令开销。
可选的,所述方法还包括:配置用于计算所述上行波束管理资源集合中的资源的路损值的信道状态信息参考信号CSI-RS集合或同步信号块集合,并向所述终端发送所述CSI-RS集合或同步信号块集合;或者
配置测量资源集合,并向所述终端发送所述测量资源集合。
本公开实施例中,网络设备可以配置用于计算所述上行波束管理资源集 合中的资源的路损值的信道状态信息参考信号CSI-RS集合或同步信号块集合,并发送给终端,从而终端可以基于网络设备发送的CSI-RS集合或同步信号块集合计算资源集合中的资源的路损值,其中,上述CSI-RS集合可以包括一个或多个CSI-RS,上述同步信号块集合可以包括一个或多个同步信号块。
可选的,本公开实施例中网络设备也可以配置测量资源集合并发送给终端,其中,测量资源集合中包括多个测量资源,上述测量资源可以是CSI-RS或同步信号块。
可选的,终端根据各个测量资源的参考信号接收功率(Reference Signal Receiving Power,RSRP)或信号与干扰加噪声比(Signal to Interference Plus Noise Ratio,SINR)确定用于计算所述上行波束管理资源集合中的资源的路损值的CSI-RS集合或同步信号块集合。例如,可以从M个测量资源中获取N个RSRP较大或SINR较大的测量资源,作为用于计算所述上行波束管理资源集合中的资源的路损值的CSI-RS集合或同步信号块集合,其中,M、N均为正整数,M>=N。
可以理解的是,本公开实施例也可以通过在协议预定义上述用于计算所述上行波束管理资源集合中的资源的路损值的CSI-RS集合或同步信号块集合。
可选的,当所述功率控制参数为发射功率时,上述步骤201,也即所述为用于上行波束管理过程的上行波束管理资源集合中的资源,配置功率控制参数,包括:
接收所述终端基于周期性或半持续的信道状态信息参考信号或同步信号块上报的参考信号接收功率RSRP;以及
根据所述RSRP计算所述发射功率。
本公开实施例中,网络设备可以直接为用于上行波束管理过程的上行波束管理资源集合中的资源配置发射功率,例如,可以通过终端基于周期性或半持续的信道状态信息参考信号或同步信号块上报的RSRP,计算发射功率。从而终端可以直接采用该发射功率发送用于上行波束管理资源集合中的资源。
需要说明的是,上述周期性的CSI-RS集合和/或同步信号块集合可以是指周期性的发送的CSI-RS集合,和/或周期性的发送的同步信号块集合。上 述半持续的CSI-RS集合和/或同步信号块集合可以是指在一时间段(例如,可以通过设置的起始时间点和结束时间点确定)内周期性的发送的CSI-RS集合,和/或在一时间段内周期性的发送的同步信号块集合。上述RSRP可以包括L3-RSRP或L1-RSRP。
本公开实施例通过网络侧为用于上行波束管理过程的上行波束管理资源配置发射功率,可以有效降低控制信令开销。
可选的,上述步骤201,也即所述为用于上行波束管理过程的上行波束管理资源集合中的资源,配置功率控制参数,包括:
为用于不同上行波束管理过程的上行波束管理资源集合中的资源,配置不相同的功率控制参数;
为用于同一上行波束管理过程的上行波束管理资源集合中非准共址(quasi-co-location)的子资源集合中的资源,配置不相同的功率控制参数。
本公开实施例中,可以为不同上行波束管理过程的上行波束管理资源集合中的资源,配置不同的功率控制参数。例如,为用于上行波束管理过程a的上行波束管理资源集合中的资源,配置功率控制参数a,为用于上行波束管理过程b的上行波束管理资源集合中的资源,配置功率控制参数b,其中,功率控制参数a和功率控制参数b不相同。
可选的,本公开实施例可以为用于同一上行波束管理过程上行波束管理资源集合中非准共址的资源配置不相同的功率控制参数。
本公开实施例通过为用于不同上行波束管理过程的上行波束管理资源集合中的资源,配置不相同的功率控制参数,为用于同一上行波束管理过程的上行波束管理资源集合中非准共址的子资源集合中的资源,配置不相同的功率控制参数,以提高功率控制的准确性。
参见图3,图3是本公开又一实施例提供的功率控制方法的流程图。该方法应用于网络侧。如图3所示,本公开实施提供的接收方法包括以下步骤:
步骤301、接收用于上行波束管理过程的上行波束管理资源集合中的资源对应的功率控制参数。
本公开实施例中,上述上行波束管理过程可以包括用户设备采用多个相同或不同的波束发送资源。
上述用于上行波束管理资源集合可以包括SRS资源集合、PRACH资源集合和PUCCH资源集合中的一项或者多项,其中,SRS资源集合可以包括一个或多个SRS资源,PRACH资源集合可以包括一个或多个PRACH资源,PUCCH资源集合可以包括一个或多个PUCCH资源。
可选的,所述SRS资源集合、PRACH资源集合和PUCCH资源集合中的一项或者多项中的每一项均可以包含相同资源标识对应的资源和/或不同资源标识对应的资源,其中,相同资源标识对应的资源相同,不同资源标识对应的资源不同。例如,资源集合中包括SRS资源集合和PRACH资源集合,则SRS资源集合可以包含相同资源标识对应的资源和/或不同资源标识对应的SRS资源,同样的,PRACH资源集合也可以包含相同资源标识对应的资源和/或不同资源标识对应的PRACH资源。
可选的,上述功率控制参数用于上行波束管理资源集合中的资源的功率控制,例如,上述功率控制参数可以包括但不限于开环功率控制参数集合、闭环功率控制参数集合和发射功率中的一项或者多项。
可选的,上述开环功率控制参数集合可以包括但不限于目标接收功率、路损补偿因子、功率偏移量中的一项或者多项;上述闭环功率控制参数集合可以包括但不限于功率调整值、资源块数量、调制编码方式中的一项或者多项。
可以理解的是,本公开实施例可以根据实际情况合理配置上述功率控制参数。
可以理解的是,本公开实施例可以为资源集合中的所有资源仅配置一个功率控制参数,也可以为资源集合中的各个资源均配置一个功率控制参数。
步骤302、根据所述上行波束管理资源集合中的资源对应的功率控制参数,发送所述上行波束管理资源集合中的资源。
本公开实施例中,终端接收到上述功率控制参数之后,可以基于该功率控制参数发送上述资源集合中的资源,例如,若上述功率控制参数为发射功率,则终端可以利用该发射功率发送用于上行波束管理过程的上行波束管理资源集合的资源,若上述功率控制参数为开环功率控制参数集合和/或闭环功率控制参数集合,则终端可以根据开环功率控制参数集合和/或闭环功率控制 参数集合计算发射功率,并进一步利用该发射功率发送用于上行波束管理过程的上行波束管理资源集合的资源。
这样,本公开实施例的功率控制方法,通过接收用于上行波束管理过程的上行波束管理资源集合中的资源对应的功率控制参数;根据所述上行波束管理资源集合中的资源对应的功率控制参数,发送所述上行波束管理资源集合中的资源,实现了对用于上行波束管理过程的上行波束管理资源集合中的资源的功率控制,可控制用于上行波束管理过程的上行波束管理资源的功率控制的信令开销。
可选的,所述上行波束管理资源集合包括:探测参考信号SRS集合、物理随机接入信道PRACH集合和物理上行控制信道PUCCH集合中的一项或者多项,其中,所述SRS资源集合、PRACH资源集合和PUCCH资源集合中的一项或者多项中的每一项包含相同资源标识和/或不同资源标识对应的资源;
所述功率控制参数包括:开环功率控制参数集合、闭环功率控制参数集合、发射功率、路损值、参考波束集合标识中的一项或者多项。
本公开实施例中,上述SRS资源集合可以包括一个或多个SRS资源,PRACH资源集合可以包括一个或多个PRACH资源,PUCCH资源集合可以包括一个或多个PUCCH资源。上述SRS资源集合、PRACH资源集合和PUCCH资源集合中的每一个均可以包括相同的资源或不相同的资源,例如,对于PRACH资源集合,可以包括信道类型相同且波束相同的PRACH资源,和/或包括信道类型不同的PRACH资源或是信道类型相同但波束不同的PRACH资源。具体的,本公开实施例可以根据资源标识来识别相同的资源以及不同的资源,相应的,上述SRS资源集合、PRACH资源集合和PUCCH资源集合中的每一个均可以包括相同资源标识和/或不同资源标识对应的资源。
上述参考波束集合标识可以包括一个或多个参考波束标识。
上述功率控制参数可以包括但不限于开环功率控制参数集合、闭环功率控制参数集合和发射功率中的一项或者多项。其中,开环功率控制参数集合可以包括一个或多个开环功率控制参数,例如,目标接收功率、路损补偿因子等,上述闭环功率控制参数集合可以包括一个或多个闭环功率控制参数, 例如,功率调整值、资源块数量等。可以理解的是,本公开实施例可以根据实际情况合理配置上述功率控制参数。
可选的,所述开环功率控制参数集合包括:目标接收功率、路损补偿因子、功率偏移量的一项或者多项;
所述闭环功率控制参数集合包括:功率调整值、资源块数量、调制编码方式中的一项或者多项。
本公开实施例中,开环功率控制参数集合可以包括但不限于目标接收功率、路损补偿因子、功率偏移量中的一项或者多项,闭环功率控制参数集合可以包括但不限于功率调整值、资源块数量、调制编码方式中的一项或者多项。
可以理解的是,本公开实施例可以根据实际情况合理配置上述开环功率控制参数集合和闭环功率控制参数集合。
可选的,用于同一上行波束管理过程的上行波束管理资源集合中的各个资源对应的功率控制参数相同。
本公开实施例中,同一个上行波束管理过程中,上述波束管理资源集合中的全部资源可以均对应同一个功率控制参数,也即用于同一上行波束管理过程的上行波束管理资源集合中的全部资源均对应同一个功率控制参数,从而终端根据同一个功率控制参数发送用于该波束管理的资源集合中的全部资源。可选的,本公开实施例中用于同一上行波束管理过程的波束管理资源集合中的各个资源也可以各自对应一个功率控制参数,并且上述各个资源对应的功率控制参数相同,从而终端可以采用相同的发射功率发送各个资源,以便于网络设备更好地评估终端上行波束的优劣。
可选的,所述根据所述上行波束管理资源集合中的资源对应的功率控制参数,发送所述上行波束管理资源集合中的资源,包括:
根据所述上行波束管理资源集合中的资源对应的功率控制参数,计算所述上行波束管理资源集合中的资源对应的发射功率,其中,所述功率控制参数包括开环功率控制参数集合、闭环功率控制参数集合、路损值和参考波束集合标识中的一项或是多项;以及
利用所述上行波束管理资源集合中的资源对应的发射功率,发送所述上 行波束管理资源集合中的资源。
本公开实施例中,当所述功率控制参数包括开环功率控制参数集合、闭环功率控制参数集合、路损值和参考波束集合标识中的一项或是多项时,则终端需要根据功率控制参数计算资源集合中的资源对应的发射功率,并进一步利用该发射功率发射资源集合中的各个资源。
例如,当功率控制参数为开环功率控制参数集合和闭环功率控制参数集合时,则可以先根据开环功率控制参数集合和闭环功率控制参数集合计算发射功率,当功率控制参数为路损值时,则可以先根据路损值计算发射功率,当功率控制参数为参考波束集合标识时,则可以先根据参考波束集合标识计算发射功率。
可选的,当所述功率控制参数包括开环功率控制参数集合和/或闭环功率控制参数集合时,所述根据所述上行波束管理资源集合中的资源对应的功率控制参数,进行所述上行波束管理资源集合中的资源的发送,包括:
获取参考功率控制参数,其中,所述参考功率控制参数包括物理上行共享信道PUSCH的功率控制参数或物理随机接入信道PRACH的功率控制参数或物理上行控制信道PUCCH的功率控制参数或探测参考信号SRS的功率控制参数;
根据所述上行波束管理资源集合中的资源对应的开环功率控制参数集合中的一部分功率控制参数和/或闭环功率控制参数集合中的一部分功率控制参数以及所述参考功率控制参数,确定所述上行波束管理资源集合中的资源对应的发射功率;
利用所述上行波束管理资源集合中的资源对应的发射功率,发送所述上行波束管理资源集合中的资源。
本公开实施例中,终端可以结合参考功率控制参数以及网络设备侧配置的开环功率控制参数集合中的一部分功率控制参数和/或闭环功率控制参数集合中的一部分功率控制参数计算发射功率。其中,上述参考功率控制参数可以包括PUSCH的功率控制参数或PRACH的功率控制参数或PUCCH的功率控制参数或SRS的功率控制参数。
例如,上述参考功率控制参数可以包括最近发送的PUSCH的功率控制 参数或最近发送的PRACH的功率控制参数或最近发送的PUCCH的功率控制参数或最近发送的SRS的功率控制参数进行配置。
需要说明的是,上述参考功率参数可以是PUSCH的功率控制参数的中的一项或是多项,例如,上述参考功率参数仅包括PUSCH的目标接收功率。
可选的,所述开环功率控制参数集合中的一部分功率控制参数和/或所述闭环功率控制参数集合中的一部分功率控制参数可以基于终端侧配置的参考功率参数进行确定,例如,若终端侧配置了目标接收功率,则网络设备侧可以配置除上述目标接收功率之外的其余功率控制参数中的一项或是多项,例如,路损补偿因子、功率偏移量等。
本公开实施例通过参考其他信道或信号的功率控制参数,可降低控制信令开销。
可选的,所述获取参考功率控制参数,包括:获取当前或历史PUSCH的功率控制参数,或当前或历史PRACH的功率控制参数,或当前或历史PUCCH的功率控制参数,或当前或历史探测参考信号SRS的功率控制参数,并作为所述参考功率控制参数。
本公开实施例中,可以获取前或历史PUSCH的功率控制参数并作为参考功率控制参数,或者获取当前或历史PRACH的功率控制参数并作为参考功率控制参数,或者获取当前或历史PUCCH的功率控制参数并作为参考功率控制参数,或者获取当前或历史探测参考信号SRS的功率控制参数并作为参考功率控制参数。
可选的,所述参考功率控制参数由所述上行波束管理资源集合中的资源的路损值对应的波束或波束对确定,或者,由至少两个信道状态信息参考信号CSI-RS集合或至少两个同步信号块集合发送波束或波束对的路损值中,与所述上行波束管理资源集合中的资源的路损值的差值绝对值最小的路损值对应的波束或波束对确定。
例如,若终端将CSI-RS标识为a的发送波束或波束对的路损值a和CSI-RS标识为b的发送波束或波束对的路损值b中的最大值,作为所述上行波束管理资源集合中的资源对应的路损值,若路损值a大于路损值b,则所述上行波束管理资源集合中的资源对应的路损值为路损值a,则上述参考功率控 制参数可以基于用于计算路损值a的下行波束或波束对确定,也即由CSI-RS标识为a的发送波束或波束对确定。若终端将CSI-RS标识为a的发送波束或波束对的路损值a和CSI-RS标识为b的发送波束或波束对的路损值b的加权平均值c,作为所述上行波束管理资源集合中的资源对应的路损值,若路损值a与加权平均值c的差值的绝对值小于路损值b与加权平均值c的差值的绝对值,则上述参考功率控制参数可以由将CSI-RS标识为a的发送波束或波束对确定。
可选的,所述根据所述上行波束管理资源集合中的资源对应的功率控制参数,发送所述上行波束管理资源集合中的资源之前,所述方法还包括:基于信道状态信息参考信号CSI-RS集合或同步信号块集合发送波束或波束对的路损值,确定所述上行波束管理资源集合中的资源对应的路损值。
本公开实施例中,可以基于CSI-RS集合或同步信号块集合发送波束或波束对的路损值,确定所述上行波束管理资源集合中的资源对应的路损值,例如,可以将CSI-RS集合或同步信号块集合发送波束或波束对的路损值中的最大值作为资源集合中的资源对应的路损值,也可以将CSI-RS集合或同步信号块集合发送波束或波束对的路损值中的最小值作为资源集合中的资源对应的路损值。
可选的,所述基于信道状态信息参考信号CSI-RS集合或同步信号块集合发送波束或波束对的路损值,确定所述上行波束管理资源集合中的资源对应的路损值,包括:
将至少两个CSI-RS和/或至少两个同步信号块发送波束或波束对的路损值中的最大值,确定为所述上行波束管理资源集合中的资源对应的路损值;或者
将至少两个CSI-RS和/或至少两个同步信号块发送波束或波束对的路损值中的最小值,确定为所述上行波束管理资源集合中的资源对应的路损值;或者
将至少两个CSI-RS和/或至少两个同步信号块发送波束或波束对的路损值中的中间值,确定为所述上行波束管理资源集合中的资源对应的路损值;或者
将至少两个CSI-RS和/或至少两个同步信号块发送波束或波束对的路损值的加权平均值,确定为所述上行波束管理资源集合中的资源对应的路损值。
可选的,所述基于信道状态信息参考信号CSI-RS集合或同步信号块集合发送波束或波束对的路损值,确定所述上行波束管理资源集合中的资源对应的路损值之前,所述方法还包括:
接收网络设备配置的CSI-RS集合或同步信号块集合,其中,所述CSI-RS集合或同步信号块集合用于所述上行波束管理资源集合中的资源的路损值计算;或者
接收网络设备配置的测量资源集合;
根据所述测量资源集合中的测量资源的参考信号接收功率RSRP或信号与干扰加噪声比SINR,确定用于所述上行波束管理资源集合中的资源的路损值计算的信道状态信息参考信号或同步信号块集合。
本公开实施例中,网络设备可以配置用于计算所述上行波束管理资源集合中的资源的路损值的信道状态信息参考信号CSI-RS集合或同步信号块集合,并发送给终端,从而终端可以基于网络设备发送的CSI-RS集合或同步信号块集合计算资源集合中的资源的路损值,其中,上述CSI-RS集合可以包括一个或多个CSI-RS,上述同步信号块集合可以包括一个或多个同步信号块。例如上述同步信号块集合可以为5G系统中的SS块(即Block)。可以理解的是,上述同步信号块集合也可以为其他移动通信系统的SS块。上述RSRP可以为第一层RSRP(L1-RSRP),或者第三层RSRP(L3-RSRP)。
可选的,本公开实施例中网络设备也可以配置测量资源集合并发送给终端,其中,测量资源集合中包括多个测量资源,上述测量资源可以是CSI-RS或同步信号块。
可选的,终端根据各个测量资源的参考信号接收功率RSRP或信号与干扰加噪声比SINR确定用于计算所述上行波束管理资源集合中的资源的路损值的CSI-RS集合或同步信号块集合。例如,可以从M个测量资源中获取N个RSRP较大或SINR较大的测量资源,作为用于计算所述上行波束管理资源集合中的资源的路损值的CSI-RS集合或同步信号块集合,其中,M、N均为正整数,M>=N。
可以理解的是,本公开实施例也可以通过在协议预定义上述用于计算所述上行波束管理资源集合中的资源的路损值的CSI-RS集合或同步信号块集合。
可选的,所述方法还包括:基于周期性或半持续的CSI-RS,或者周期性或半持续的同步信号块上报参考信号接收功率RSRP。
本公开实施例中,终端可以基于周期性或半持续的信道状态信息参考信号或同步信号块上报的RSRP。从而网络设备可以基于周期性或半持续的CSI-RS,或者周期性或半持续的同步信号块上报的RSRP,计算发射功率。
需要说明的是,上述周期性的CSI-RS集合和/或同步信号块集合可以是指周期性的发送的CSI-RS集合,和/或周期性的发送的同步信号块集合。上述半持续的CSI-RS集合和/或同步信号块集合可以是指在一时间段(例如,可以通过设置的起始时间点和结束时间点确定)内周期性的发送的CSI-RS集合,和/或在一时间段内周期性的发送的同步信号块集合。上述RSRP可以包括L3-RSRP或L1-RSRP。
可选的,用于不同上行波束管理过程的上行波束管理资源集合中的资源对应的功率控制参数不相同;用于同一上行波束管理过程的上行波束管理资源集合中非准共址的子资源集合对应的功率控制参数不相同。
本公开实施例中,可以为不同上行波束管理过程的上行波束管理资源集合中的资源,配置不同的功率控制参数。例如,为用于上行波束管理过程a的上行波束管理资源集合中的资源,配置功率控制参数a,为用于上行波束管理过程b的上行波束管理资源集合中的资源,配置功率控制参数b,其中,功率控制参数a和功率控制参数b不相同。
可选的,本公开实施例可以为用于同一上行波束管理资源集合中非准共址的资源配置不相同的功率控制参数。
本公开实施例通过为用于不同上行波束管理过程的上行波束管理资源集合中的资源,配置不相同的功率控制参数,为用于同一上行波束管理过程的上行波束管理资源集合中非准共址的子资源集合中的资源,配置不相同的功率控制参数,以提高功率控制的准确性。
以下结合实例对本公开实施的功率控制方法进行说明:
具体的,在NR系统的一个上行波束管理(包括UE采用多个相同或不同的波束发送资源)过程中,用于上行波束管理资源集合(例如,包括一个或多个SRS和/或PRACH和/或PUCCH资源等)中的相同或不同资源(例如,包含信道类型不同和/或信道类型相同但波束不同的资源)的发射功率的计算至少包含如下实现方式:
第一种实现方式:
网络设备为用于上行波束管理过程的上行波束管理资源集合配置相同的开环功控参数集合(例如,目标接收功率和路损补偿因子、功率偏移量等),和/或闭环功控参数集合(例如,功率调整值、资源块数量等),并发送给终端。
终端可以基于周期性或半持续的CSI-RS和/或同步信号块(即SS Block)计算路损值,并可以进一步基于网络设备配置的开环功控参数集合和/或闭环功控参数集合以及上述路损值计算发射功率。
例如,参见图4,网络设备10(也即网络侧)为用于上行波束管理过程的上行波束管理资源配置相同的开环功控参数和/或闭环功控参数,并发送给终端20。终端20基于网络侧配置的开环功控参数和/或闭环功控参数,在一个上行波束管理过程中使用相同的发射功率发送上述上行波束管理资源。
可选的,参见图5,本公开实施例中网络设备10还可以为用于上行波束管理过程的上行波束管理资源集合中的相同或不同资源配置相同的路损值和/或参考波束集合标识,并发送给终端20,其中,参考波束集合标识包括一个或多个参考波束的标识。终端20基于网络设备10配置的路损值和/或参考波束集合标识,在一个上行波束管理过程中使用相同的发射功率发送上述上行波束管理资源。
第二种实现方式:
网络侧为用于上行波束管理过程的上行波束管理资源集合中的相同或不同资源配置相同的发射功率。可选的,网络侧可以根据终端侧基于周期性或半持续的CSI-RS或同步信号块(SS Block)上报的L3-RSRP或L1-RSRP计算发射功率,并发送给终端。
例如,参见图6,网络设备10(也即网络侧)为用于上行波束管理过程 的上行波束管理资源配置相同的发射功率,并发送给终端20。终端20基于网络侧配置的发射功率,在一个上行波束管理过程中使用相同的功率发送上述上行波束管理资源。
本公开实施例通过配置用于上行波束管理的资源的发射功率,可有效降低控制信令开销。
第三种实现方式:
终端可以参考最近发送的PUSCH或PRACH的功率控制参数(例如,目标接收功率),并结合网络侧配置的除上述最近发送的PUSCH或PRACH的功率控制参数之外的一些功率控制参数,为用于上行波束管理过程的上行波束管理资源集合中的相同或不同资源配置相同的发射功率。
参见图7,网络设备10(也即网络侧)为用于上行波束管理过程的上行波束管理资源配置相同的部分功率控制参数和/或部分闭环功率控制参数,并发送给终端20,其中,上述部分功率控制参数和/或部分闭环功率控制参数可以基于上述终端侧配置的功率控制参数进行确定。终端20参考最近的PUSCH或PRACH的功率控制参数,并结合网络侧配置的部分功率控制参数和/或部分闭环功率控制参数,在一个上行波束管理过程中使用相同的发射功率发送上述上行波束管理资源。本公开实施例通过参考其他信道或信号的功率控制参数,可降低控制信令开销。
可选的,本公开实施例中,上行波束管理资源集合内的相同或不同资源的发射功率可相同。上行波束管理资源集合间的相同或不同资源的发射功率可不同。
参见图8,图8是本公开实施例提供的网络设备的结构图。如图8所示,网络设备800包括:第一配置模块801和发送模块802,其中:
第一配置模块801,用于为用于上行波束管理过程的上行波束管理资源集合中的资源,配置功率控制参数;以及
发送模块802,用于向终端发送所述功率控制参数,以使所述终端根据所述功率控制参数发送所述上行波束管理资源集合中的资源。
可选的,所述上行波束管理资源集合包括:探测参考信号SRS资源集合、物理随机接入信道PRACH资源集合和物理上行控制信道PUCCH资源集合中 的一项或者多项,其中,所述SRS资源集合、PRACH资源集合和PUCCH资源集合中的一项或者多项中的每一项包含相同资源标识和/或不同资源标识对应的资源;
所述功率控制参数包括:开环功率控制参数集合、闭环功率控制参数集合、发射功率、路损值、参考波束集合标识中的一项或者多项。
可选的,所述开环功率控制参数集合包括:目标接收功率、路损补偿因子、功率偏移量中的一项或者多项;
所述闭环功率控制参数集合包括:功率调整值、资源块数量、调制编码方式中的一项或者多项。
可选的,所述第一配置模块801具体用于:
为用于同一上行波束管理过程的上行波束管理资源集合中的资源,配置同一功率控制参数;或者
为用于同一上行波束管理过程的上行波束管理资源集合中的各个资源,均配置对应的功率控制参数,其中,所述各个资源对应的功率控制参数均相同。
可选的,所述开环功率控制参数集合和/或闭环功率控制参数集合由用于计算所述上行波束管理资源集合中的资源的路损值的下行波束或波束对确定,或者,由与用于计算所述上行波束管理资源集合中的资源的路损值的下行波束或波束对相对应的上行波束或波束对确定;或者
所述开环功率控制参数集合和/或闭环功率控制参数集合基于参考功率控制参数确定;其中,所述参考功率控制参数包括物理上行共享信道PUSCH的功率控制参数或物理随机接入信道PRACH的功率控制参数或物理上行控制信道PUCCH的功率控制参数或探测参考信号SRS的功率控制参数;和/或
所述路损值由所述终端基于信道状态信息参考信号CSI-RS集合和/或同步信号块集合上报的一个或多个参考信号接收功率RSRP值计算得到;和/或
所述参考波束集合标识基于所述终端上报的波束确定。
可选的,所述第一配置模块801具体用于:
为用于上行波束管理过程的上行波束管理资源集合中的资源,配置所述 开环功率控制参数集合中的一部分功率控制参数和/或所述闭环功率控制参数集合中的一部分功率控制参数。
可选的,参见图9,所述网络设备800还包括第二配置模块803,所述第二配置模块具体用于:
配置用于计算所述上行波束管理资源集合中的资源的路损值的信道状态信息参考信号CSI-RS集合或同步信号块集合,并向所述终端发送所述CSI-RS集合或同步信号块集合;或者
配置测量资源集合,并向所述终端发送所述测量资源集合。
可选的,当所述功率控制参数为发射功率时,所述第一配置模块801具体用于:
接收所述终端基于周期性或半持续的信道状态信息参考信号或同步信号块上报的参考信号接收功率RSRP;以及
根据所述RSRP计算所述发射功率。
可选的,所述第一配置模块801具体用于:为用于不同上行波束管理过程的上行波束管理资源集合中的资源,配置不相同的功率控制参数;为用于同一上行波束管理过程的上行波束管理资源集合中非准共址的子资源集合,配置不相同的功率控制参数。
网络设备800能够实现上述任一方法实施例中网络设备执行的各个过程,并达到相同或相似的效果,为避免重复,这里不再赘述。
本公开实施例的网络设备800,通过第一配置模块801为用于上行波束管理过程的上行波束管理资源集合中的资源,配置功率控制参数;以及发送模块802向终端发送所述功率控制参数,以使所述终端根据所述功率控制参数发送所述上行波束管理资源集合中的资源,实现了对用于上行波束管理过程的上行波束管理资源集合中的资源的功率控制,可控制用于上行波束管理过程的上行波束管理资源的功率控制的信令开销。
参见图10,图10是本公开实施例提供的终端的结构图。如图10所示,终端1000包括:第一接收模块1001和发送模块1002,其中:
第一接收模块1001,用于接收用于上行波束管理过程的上行波束管理资源集合中的资源对应的功率控制参数;以及
发送模块1002,用于根据所述上行波束管理资源集合中的资源对应的功率控制参数,发送所述上行波束管理资源集合中的资源。
可选的,所述上行波束管理资源集合包括:探测参考信号SRS集合、物理随机接入信道PRACH集合和物理上行控制信道PUCCH集合中的一项或者多项,其中,所述SRS资源集合、PRACH资源集合和PUCCH资源集合中的一项或者多项中的每一项包含相同资源标识和/或不同资源标识对应的资源;
所述功率控制参数包括:开环功率控制参数集合、闭环功率控制参数集合、发射功率、路损值和参考波束集合标识中的一项或者多项。
可选的,所述开环功率控制参数集合包括:目标接收功率、路损补偿因子、功率偏移量的一项或者多项;
所述闭环功率控制参数集合包括:功率调整值、资源块数量、调制编码方式中的一项或者多项。
可选的,用于同一上行波束管理过程的上行波束管理资源集合中的各个资源对应的功率控制参数相同。
可选的,参见图11,所述发送模块1002包括:
第一计算单元10021,用于根据所述上行波束管理资源集合中的资源对应的功率控制参数,计算所述上行波束管理资源集合中的资源对应的发射功率,其中,所述功率控制参数包括开环功率控制参数集合、闭环功率控制参数集合、路损值和参考波束集合标识中的一项或是多项;以及
第一发送单元10022,用于利用所述上行波束管理资源集合中的资源对应的发射功率,发送所述上行波束管理资源集合中的资源。
可选的,参见图12,当所述功率控制参数包括开环功率控制参数集合和/或闭环功率控制参数集合时,所述发送模块1002包括:
获取单元10023,用于获取参考功率控制参数,其中,所述参考功率控制参数包括物理上行共享信道PUSCH的功率控制参数或物理随机接入信道PRACH的功率控制参数或物理上行控制信道PUCCH的功率控制参数或探测参考信号SRS的功率控制参数;
第二计算单元10024,用于根据所述上行波束管理资源集合中的资源对应的开环功率控制参数集合中的一部分功率控制参数和/或闭环功率控制参 数集合中的一部分功率控制参数以及所述参考功率控制参数,确定所述上行波束管理资源集合中的资源对应的发射功率;
第二发送单元10025,用于利用所述上行波束管理资源集合中的资源对应的发射功率,发送所述上行波束管理资源集合中的资源。
可选的,所述获取单元10023具体用于:
获取当前或历史PUSCH的功率控制参数,或当前或历史PRACH的功率控制参数或,当前或历史PUCCH的功率控制参数,或当前或历史探测参考信号SRS的功率控制参数,并作为所述参考功率控制参数。
可选的,所述参考功率控制参数由所述上行波束管理资源集合中的资源的路损值对应的波束或波束对确定,或者,由至少两个信道状态信息参考信号CSI-RS集合或至少两个同步信号块集合发送波束或波束对的路损值中,与所述上行波束管理资源集合中的资源的路损值的差值绝对值最小的路损值对应的波束或波束对确定。
可选的,参见图13,所述根据所述上行波束管理资源集合中的资源对应的功率控制参数,发送所述上行波束管理资源集合中的资源之前,所述终端1000还包括:
第一确定模块1003,用于基于信道状态信息参考信号CSI-RS集合或同步信号块集合发送波束或波束对的路损值,确定所述上行波束管理资源集合中的资源对应的路损值。
可选的,所述第一确定模块1003具体用于:
将至少两个CSI-RS和/或至少两个同步信号块发送波束或波束对的路损值中的最大值,确定为所述上行波束管理资源集合中的资源对应的路损值;或者
将至少两个CSI-RS和/或至少两个同步信号块发送波束或波束对的路损值中的最小值,确定为所述上行波束管理资源集合中的资源对应的路损值;或者
将至少两个CSI-RS和/或至少两个同步信号块发送波束或波束对的路损值中的中间值,确定为所述上行波束管理资源集合中的资源对应的路损值;或者
将至少两个CSI-RS和/或至少两个同步信号块发送波束或波束对的路损值的加权平均值,确定为所述上行波束管理资源集合中的资源对应的路损值。
可选的,参见图14,所述基于信道状态信息参考信号CSI-RS集合或同步信号块集合发送波束或波束对的路损值,确定所述上行波束管理资源集合中的资源对应的路损值之前,所述终端1000还包括:
第二接收模块1004,用于接收网络设备配置的CSI-RS集合或同步信号块集合,其中,所述CSI-RS集合或同步信号块集合用于所述上行波束管理资源集合中的资源的路损值计算;或者
第三接收模块1005,用于接收网络设备配置的测量资源集合;
第二确定模块1006,用于根据所述测量资源集合中的测量资源的参考信号接收功率RSRP或信号与干扰加噪声比SINR,确定用于所述上行波束管理资源集合中的资源的路损值计算的信道状态信息参考信号或同步信号块集合。
可选的,参见图15,所述终端1000还包括:
上报模块1007,用于基于周期性或半持续的CSI-RS,或者周期性或半持续的同步信号块上报参考信号接收功率RSRP。
可选的,用于不同上行波束管理过程的上行波束管理资源集合中的资源对应的功率控制参数不相同;用于同一上行波束管理过程的上行波束管理资源集合中非准共址的子资源集合对应的功率控制参数不相同。
终端1000能够实现上述任一方法实施例中终端执行的各个过程,并达到相同或相似的效果,为避免重复,这里不再赘述。
本公开实施例的终端1000,通过第一接收模块1001接收用于上行波束管理资源集合中的资源对应的功率控制参数;发送模块1002根据所述上行波束管理资源集合中的资源对应的功率控制参数,发送所述上行波束管理资源集合中的资源,实现了对用于上行波束管理过程的上行波束管理资源集合中的资源的功率控制,可控制用于上行波束管理过程的上行波束管理资源集合中的资源的功率控制的信令开销。
本公开实施例还提供一种网络设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现图2的方法实施例的功率控制方法的步骤,且能达到相同或 相似的技术效果,为避免重复,这里不再赘述。
本公开实施例还提供一种终端,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现图3的方法实施例的功率控制方法的步骤,且能达到相同或相似的技术效果,为避免重复,这里不再赘述。
本公开实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被所述处理器执行时实现图2的方法实施例的功率控制方法的步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本公开实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被所述处理器执行时实现图3的方法实施例的功率控制方法的步骤,且能达到相同或相似的技术效果,为避免重复,这里不再赘述。
参见图16,图16是本公开实施例提供的网络设备的结构图,如图16所示,网络设备1600包括:处理器1601、存储器1602、总线接口1603和收发机1604,其中,处理器1601、存储器1602和收发机1604均连接至总线接口1603。
其中,在本公开实施例中,网络设备1600还包括:存储在存储器1602上并可在处理器1601上运行的计算机程序,计算机程序被处理器1601执行时实现如下步骤:
为用于上行波束管理过程的上行波束管理资源集合中的资源,配置功率控制参数;以及
向终端发送所述功率控制参数,以使所述终端根据所述功率控制参数发送所述上行波束管理资源集合中的资源。
可选的,所述上行波束管理资源集合包括:探测参考信号SRS资源集合、物理随机接入信道PRACH资源集合和物理上行控制信道PUCCH资源集合中的一项或者多项,其中,所述SRS资源集合、PRACH资源集合和PUCCH资源集合中的一项或者多项中的每一项包含相同资源标识和/或不同资源标识对应的资源;
所述功率控制参数包括:开环功率控制参数集合、闭环功率控制参数集合、发射功率、路损值、参考波束集合标识中的一项或者多项。
可选的,所述开环功率控制参数集合包括:目标接收功率、路损补偿因子、功率偏移量中的一项或者多项;
所述闭环功率控制参数集合包括:功率调整值、资源块数量、调制编码方式中的一项或者多项。
可选的,计算机程序被处理器1601执行时还可实现如下步骤:
为用于同一上行波束管理过程的上行波束管理资源集合中的资源,配置同一功率控制参数;或者
为用于同一上行波束管理过程的上行波束管理资源集合中的各个资源,均配置对应的功率控制参数,其中,所述各个资源对应的功率控制参数均相同。
可选的,所述开环功率控制参数集合和/或闭环功率控制参数集合由用于计算所述上行波束管理资源集合中的资源的路损值的下行波束或波束对确定,或者,由与用于计算所述上行波束管理资源集合中的资源的路损值的下行波束或波束对相对应的上行波束或波束对确定;或者
所述开环功率控制参数集合和/或闭环功率控制参数集合基于参考功率控制参数确定;其中,所述参考功率控制参数包括物理上行共享信道PUSCH的功率控制参数或物理随机接入信道PRACH的功率控制参数或物理上行控制信道PUCCH的功率控制参数或探测参考信号SRS的功率控制参数;和/或
所述路损值由所述终端基于信道状态信息参考信号CSI-RS集合和/或同步信号块集合上报的一个或多个参考信号接收功率RSRP值计算得到;和/或
所述参考波束集合标识基于所述终端上报的波束确定。
可选的,计算机程序被处理器1601执行时还可实现如下步骤:
为用于上行波束管理过程的上行波束管理资源集合中的资源,配置所述开环功率控制参数集合中的一部分功率控制参数和/或所述闭环功率控制参数集合中的一部分功率控制参数。
可选的,计算机程序被处理器1601执行时还可实现如下步骤:
配置用于计算所述上行波束管理资源集合中的资源的路损值的信道状态信息参考信号CSI-RS集合或同步信号块集合,并向所述终端发送所述CSI-RS集合或同步信号块集合;或者
配置测量资源集合,并向所述终端发送所述测量资源集合。
可选的,计算机程序被处理器1601执行时还可实现如下步骤:
接收所述终端基于周期性或半持续的信道状态信息参考信号或同步信号块上报的参考信号接收功率RSRP;
根据所述RSRP计算所述发射功率。
可选的,计算机程序被处理器1601执行时还可实现如下步骤:为用于不同上行波束管理过程的上行波束管理资源集合中的资源,配置不相同的功率控制参数;为用于同一上行波束管理过程的上行波束管理资源集合中非准共址的子资源集合,配置不相同的功率控制参数。
本公开实施例的网络设备,通过为用于上行波束管理过程的上行波束管理资源集合中的资源,配置功率控制参数;以及向终端发送所述功率控制参数,以使所述终端根据所述功率控制参数发送所述上行波束管理资源集合中的资源,实现了用于上行波束管理过程的上行波束管理资源集合中的资源的功率控制,并可控制用于上行波束管理过程的上行波束管理资源的功率控制的信令开销。
参见图17,图17是本公开实施提供的终端的结构图,如图17所示,终端1700包括:至少一个处理器1701、存储器1702、至少一个网络接口1704和用户接口1703。终端1700中的各个组件通过总线系统1705耦合在一起。可理解,总线系统1705用于实现这些组件之间的连接通信。总线系统1705除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图17中将各种总线都标为总线系统1705。
其中,用户接口1703可以包括显示器、键盘或者点击设备(例如,鼠标,轨迹球(trackball)、触感板或者触摸屏等。
可以理解,本公开实施例中的存储器1702可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器 (Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本文描述的系统和方法的存储器1702旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器1702存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作系统17021和应用程序17022。
其中,操作系统17021,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序17022,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本公开实施例方法的程序可以包含在应用程序17022中。
在本公开实施例中,终端1700还包括:存储在存储器1702上并可在处理器1701上运行的计算机程序,具体地,可以是应用程序17022中的计算机程序,计算机程序被处理器1701执行时实现如下步骤:接收用于上行波束管理过程的上行波束管理资源集合中的资源对应的功率控制参数;根据所述上行波束管理资源集合中的资源对应的功率控制参数,发送所述上行波束管理资源集合中的资源。
上述本公开实施例揭示的方法可以应用于处理器1701中,或者由处理器1701实现。处理器1701可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1701中的硬件的集成逻辑 电路或者软件形式的指令完成。上述的处理器1701可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1702,处理器1701读取存储器1702中的信息,结合其硬件完成上述方法的步骤。
可以理解的是,本文描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本文所述功能的模块(例如过程、函数等)来实现本文所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
可选的,所述上行波束管理资源集合包括:探测参考信号SRS集合、物理随机接入信道PRACH集合和物理上行控制信道PUCCH集合中的一项或者多项,其中,所述SRS资源集合、PRACH资源集合和PUCCH资源集合中的一项或者多项中的每一项包含相同资源标识和/或不同资源标识对应的资源;
所述功率控制参数包括:开环功率控制参数集合、闭环功率控制参数集合、发射功率、路损值、参考波束集合标识中的一项或者多项。
可选的,所述开环功率控制参数集合包括:目标接收功率、路损补偿因子、功率偏移量的一项或者多项;
所述闭环功率控制参数集合包括:功率调整值、资源块数量、调制编码方式中的一项或者多项。
可选的,用于同一上行波束管理过程的上行波束管理资源集合中的各个资源对应的功率控制参数相同。
可选的,计算机程序被处理器1701执行时还可实现如下步骤:
根据所述上行波束管理资源集合中的资源对应的功率控制参数,计算所述上行波束管理资源集合中的资源对应的发射功率,其中,所述功率控制参数包括开环功率控制参数集合、闭环功率控制参数集合、路损值和参考波束集合标识中的一项或是多项;以及
利用所述上行波束管理资源集合中的资源对应的发射功率,发送所述上行波束管理资源集合中的资源。
可选的,当所述功率控制参数包括开环功率控制参数集合和/或闭环功率控制参数集合时,计算机程序被处理器1701执行时还可实现如下步骤:
获取参考功率控制参数,其中,所述参考功率控制参数包括物理上行共享信道PUSCH的功率控制参数或物理随机接入信道PRACH的功率控制参数或物理上行控制信道PUCCH的功率控制参数或探测参考信号SRS的功率控制参数;
根据所述上行波束管理资源集合中的资源对应的开环功率控制参数集合中的一部分功率控制参数和/或闭环功率控制参数集合中的一部分功率控制参数以及所述参考功率控制参数,确定所述上行波束管理资源集合中的资源对应的发射功率;
利用所述上行波束管理资源集合中的资源对应的发射功率,发送所述上行波束管理资源集合中的资源。
可选的,计算机程序被处理器1701执行时还可实现如下步骤:
获取当前或历史PUSCH的功率控制参数,或当前或历史PRACH的功率控制参数,或当前或历史PUCCH的功率控制参数,或当前或历史探测参考信号SRS的功率控制参数,并作为所述参考功率控制参数。
可选的,所述参考功率控制参数由所述上行波束管理资源集合中的资源的路损值对应的波束或波束对确定,或者,由至少两个信道状态信息参考信 号CSI-RS集合或至少两个同步信号块集合发送波束或波束对的路损值中,与所述上行波束管理资源集合中的资源的路损值的差值绝对值最小的路损值对应的波束或波束对确定。
可选的,计算机程序被处理器1701执行时还可实现如下步骤:
基于信道状态信息参考信号CSI-RS集合或同步信号块集合发送波束或波束对的路损值,确定所述上行波束管理资源集合中的资源对应的路损值。
可选的,计算机程序被处理器1701执行时还可实现如下步骤:
将至少两个CSI-RS和/或至少两个同步信号块发送波束或波束对的路损值中的最大值,确定为所述上行波束管理资源集合中的资源对应的路损值;或者
将至少两个CSI-RS和/或至少两个同步信号块发送波束或波束对的路损值中的最小值,确定为所述上行波束管理资源集合中的资源对应的路损值;或者
将至少两个CSI-RS和/或至少两个同步信号块发送波束或波束对的路损值中的中间值,确定为所述上行波束管理资源集合中的资源对应的路损值;或者
将至少两个CSI-RS和/或至少两个同步信号块发送波束或波束对的路损值的加权平均值,确定为所述上行波束管理资源集合中的资源对应的路损值。
可选的,计算机程序被处理器1701执行时还可实现如下步骤:
接收网络设备配置的CSI-RS集合或同步信号块集合,其中,所述CSI-RS集合或同步信号块集合用于所述上行波束管理资源集合中的资源的路损值计算;或者
接收网络设备配置的测量资源集合;
根据所述测量资源集合中的测量资源的参考信号接收功率RSRP或信号与干扰加噪声比SINR,确定用于所述上行波束管理资源集合中的资源的路损值计算的信道状态信息参考信号或同步信号块集合。
可选的,计算机程序被处理器1701执行时还可实现如下步骤:
基于周期性或半持续的CSI-RS,或者周期性或半持续的同步信号块上报参考信号接收功率RSRP。
可选的,用于不同上行波束管理过程的上行波束管理资源集合中的资源对应的功率控制参数不相同;用于同一上行波束管理过程的上行波束管理资源集合中非准共址的子资源集合对应的功率控制参数不相同。
终端1700能够实现前述实施例中终端实现的各个过程,为避免重复,这里不再赘述。
本公开实施例的终端1700,通过接收用于上行波束管理过程的上行波束管理资源集合中的资源对应的功率控制参数;根据所述上行波束管理资源集合中的资源对应的功率控制参数,发送所述上行波束管理资源集合中的资源,实现了对用于上行波束管理过程的上行波束管理资源集合中的资源的功率控制,并可控制用于上行波束管理过程的上行波束管理资源的功率控制的信令开销。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或 者全部单元来实现本公开实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (46)

  1. 一种功率控制方法,用于网络设备,所述功率控制方法包括:
    为用于上行波束管理过程的上行波束管理资源集合中的资源,配置功率控制参数;以及
    向终端发送所述功率控制参数,以使所述终端根据所述功率控制参数发送所述上行波束管理资源集合中的资源。
  2. 根据权利要求1所述的方法,其中,
    所述上行波束管理资源集合包括:探测参考信号SRS资源集合、物理随机接入信道PRACH资源集合和物理上行控制信道PUCCH资源集合中的一项或者多项,其中,所述SRS资源集合、PRACH资源集合和PUCCH资源集合中的一项或者多项中的每一项包含相同资源标识和/或不同资源标识对应的资源;以及
    所述功率控制参数包括:开环功率控制参数集合、闭环功率控制参数集合、发射功率、路损值和参考波束集合标识中的一项或者多项。
  3. 根据权利要求2所述的方法,其中,
    所述开环功率控制参数集合包括:目标接收功率、路损补偿因子、功率偏移量中的一项或者多项;以及
    所述闭环功率控制参数集合包括:功率调整值、资源块数量、调制编码方式中的一项或者多项。
  4. 根据权利要求1至3中任一项所述的方法,其中,所述为用于上行波束管理过程的上行波束管理资源集合中的资源,配置功率控制参数,包括:
    为用于同一上行波束管理过程的上行波束管理资源集合中的资源,配置同一功率控制参数;或者
    为用于同一上行波束管理过程的上行波束管理资源集合中的各个资源,均配置对应的功率控制参数,其中,所述各个资源对应的功率控制参数均相同。
  5. 根据权利要求2所述的方法,其中,
    所述开环功率控制参数集合和/或闭环功率控制参数集合由用于计算所 述上行波束管理资源集合中的资源的路损值的下行波束或波束对确定,或者,由与用于计算所述上行波束管理资源集合中的资源的路损值的下行波束或波束对相对应的上行波束或波束对确定;
    所述开环功率控制参数集合和/或闭环功率控制参数集合基于参考功率控制参数确定;其中,所述参考功率控制参数包括物理上行共享信道PUSCH的功率控制参数或物理随机接入信道PRACH的功率控制参数或物理上行控制信道PUCCH的功率控制参数或探测参考信号SRS的功率控制参数;
    所述路损值由所述终端基于信道状态信息参考信号CSI-RS集合和/或同步信号块集合上报的一个或多个参考信号接收功率RSRP值计算得到;以及
    所述参考波束集合标识基于所述终端上报的波束确定。
  6. 根据权利要求3所述的方法,其中,所述为用于上行波束管理过程的上行波束管理资源集合中的资源,配置功率控制参数,包括:
    为用于上行波束管理过程的上行波束管理资源集合中的资源,配置所述开环功率控制参数集合中的一部分功率控制参数和/或所述闭环功率控制参数集合中的一部分功率控制参数。
  7. 根据权利要求1至6中任一项所述的方法,其中,所述方法还包括:
    配置用于计算所述上行波束管理资源集合中的资源的路损值的信道状态信息参考信号CSI-RS集合或同步信号块集合,并向所述终端发送所述CSI-RS集合或同步信号块集合;或者
    配置测量资源集合,并向所述终端发送所述测量资源集合。
  8. 根据权利要求2所述的方法,其中,当所述功率控制参数为发射功率时,所述为用于上行波束管理过程的上行波束管理资源集合中的资源,配置功率控制参数,包括:
    接收所述终端基于周期性或半持续的信道状态信息参考信号或同步信号块上报的参考信号接收功率RSRP;以及
    根据所述RSRP计算所述发射功率。
  9. 根据权利要求1至8中任一项所述的方法,其中,所述为用于上行波束管理过程的上行波束管理资源集合中的资源,配置功率控制参数,包括:
    为用于不同上行波束管理过程的上行波束管理资源集合中的资源,配置 不相同的功率控制参数;或者
    为用于同一上行波束管理过程的上行波束管理资源集合中非准共址的子资源集合,配置不相同的功率控制参数。
  10. 一种功率控制方法,用于终端,所述功率控制方法包括:
    接收用于上行波束管理过程的上行波束管理资源集合中的资源对应的功率控制参数;以及
    根据所述上行波束管理资源集合中的资源对应的功率控制参数,发送所述上行波束管理资源集合中的资源。
  11. 根据权利要求10所述的方法,其中,
    所述上行波束管理资源集合包括:探测参考信号SRS集合、物理随机接入信道PRACH集合和物理上行控制信道PUCCH集合中的一项或者多项,其中,所述SRS资源集合、PRACH资源集合和PUCCH资源集合中的一项或者多项中的每一项包含相同资源标识和/或不同资源标识对应的资源;以及
    所述功率控制参数包括:开环功率控制参数集合、闭环功率控制参数集合、发射功率、路损值和参考波束集合标识中的一项或者多项。
  12. 根据权利要求11所述的方法,其中,
    所述开环功率控制参数集合包括:目标接收功率、路损补偿因子、功率偏移量的一项或者多项;以及
    所述闭环功率控制参数集合包括:功率调整值、资源块数量、调制编码方式中的一项或者多项。
  13. 根据权利要求10至12中任一项所述的方法,其中,用于同一上行波束管理过程的上行波束管理资源集合中的各个资源对应的功率控制参数相同。
  14. 根据权利要求11所述的方法,其中,所述根据所述上行波束管理资源集合中的资源对应的功率控制参数,发送所述上行波束管理资源集合中的资源,包括:
    根据所述上行波束管理资源集合中的资源对应的功率控制参数,计算所述上行波束管理资源集合中的资源对应的发射功率,其中,所述功率控制参数包括开环功率控制参数集合、闭环功率控制参数集合、路损值和参考波束 集合标识中的一项或多项;以及
    利用所述上行波束管理资源集合中的资源对应的发射功率,发送所述上行波束管理资源集合中的资源。
  15. 根据权利要求11所述的方法,其中,当所述功率控制参数包括开环功率控制参数集合和/或闭环功率控制参数集合时,所述根据所述上行波束管理资源集合中的资源对应的功率控制参数,进行所述上行波束管理资源集合中的资源的发送,包括:
    获取参考功率控制参数,其中,所述参考功率控制参数包括物理上行共享信道PUSCH的功率控制参数或物理随机接入信道PRACH的功率控制参数或物理上行控制信道PUCCH的功率控制参数或探测参考信号SRS的功率控制参数;
    根据所述上行波束管理资源集合中的资源对应的开环功率控制参数集合中的一部分功率控制参数和/或闭环功率控制参数集合中的一部分功率控制参数以及所述参考功率控制参数,确定所述上行波束管理资源集合中的资源对应的发射功率;以及
    利用所述上行波束管理资源集合中的资源对应的发射功率,发送所述上行波束管理资源集合中的资源。
  16. 根据权利要求15所述的方法,其中,所述获取参考功率控制参数,包括:
    获取当前或历史PUSCH的功率控制参数,或当前或历史PRACH的功率控制参数,或当前或历史PUCCH的功率控制参数,或当前或历史探测参考信号SRS的功率控制参数,并作为所述参考功率控制参数。
  17. 根据权利要求15所述的方法,其中,所述参考功率控制参数由所述上行波束管理资源集合中的资源的路损值对应的波束或波束对确定,或者,由至少两个信道状态信息参考信号CSI-RS集合或至少两个同步信号块集合发送波束或波束对的路损值中,与所述上行波束管理资源集合中的资源的路损值的差值绝对值最小的路损值对应的波束或波束对确定。
  18. 根据权利要求10至17中任一项所述的方法,其中,所述根据所述上行波束管理资源集合中的资源对应的功率控制参数,发送所述上行波束管 理资源集合中的资源之前,所述方法还包括:
    基于信道状态信息参考信号CSI-RS集合或同步信号块集合发送波束或波束对的路损值,确定所述上行波束管理资源集合中的资源对应的路损值。
  19. 根据权利要求18所述的方法,其中,所述基于信道状态信息参考信号CSI-RS集合或同步信号块集合发送波束或波束对的路损值,确定所述上行波束管理资源集合中的资源对应的路损值,包括:
    将至少两个CSI-RS和/或至少两个同步信号块发送波束或波束对的路损值中的最大值,确定为所述上行波束管理资源集合中的资源对应的路损值;或者
    将至少两个CSI-RS和/或至少两个同步信号块发送波束或波束对的路损值中的最小值,确定为所述上行波束管理资源集合中的资源对应的路损值;或者
    将至少两个CSI-RS和/或至少两个同步信号块发送波束或波束对的路损值中的中间值,确定为所述上行波束管理资源集合中的资源对应的路损值;或者
    将至少两个CSI-RS和/或至少两个同步信号块发送波束或波束对的路损值的加权平均值,确定为所述上行波束管理资源集合中的资源对应的路损值。
  20. 根据权利要求18所述的方法,其中,所述基于信道状态信息参考信号CSI-RS集合或同步信号块集合发送波束或波束对的路损值,确定所述上行波束管理资源集合中的资源对应的路损值之前,所述方法还包括:
    接收网络设备配置的CSI-RS集合或同步信号块集合,其中,所述CSI-RS集合或同步信号块集合用于所述上行波束管理资源集合中的资源的路损值计算;或者
    接收网络设备配置的测量资源集合;
    根据所述测量资源集合中的测量资源的参考信号接收功率RSRP或信号与干扰加噪声比SINR,确定用于所述上行波束管理资源集合中的资源的路损值计算的信道状态信息参考信号或同步信号块集合。
  21. 根据权利要求10至20中任一项所述的方法,其中,
    用于不同上行波束管理过程的上行波束管理资源集合中的资源对应的功 率控制参数不相同;或者
    用于同一上行波束管理过程的上行波束管理资源集合中非准共址的子资源集合对应的功率控制参数不相同。
  22. 一种网络设备,包括:
    第一配置模块,用于为用于上行波束管理过程的上行波束管理资源集合中的资源,配置功率控制参数;以及
    发送模块,用于向终端发送所述功率控制参数,以使所述终端根据所述功率控制参数发送所述上行波束管理资源集合中的资源。
  23. 根据权利要求22所述的网络设备,其中,
    所述上行波束管理资源集合包括:探测参考信号SRS资源集合、物理随机接入信道PRACH资源集合和物理上行控制信道PUCCH资源集合中的一项或者多项,其中,所述SRS资源集合、PRACH资源集合和PUCCH资源集合中的一项或者多项中的每一项包含相同资源标识和/或不同资源标识对应的资源;以及
    所述功率控制参数包括:开环功率控制参数集合、闭环功率控制参数集合、发射功率、路损值和参考波束集合标识中的一项或者多项。
  24. 根据权利要求23所述的网络设备,其中,
    所述开环功率控制参数集合包括:目标接收功率、路损补偿因子、功率偏移量中的一项或者多项;以及
    所述闭环功率控制参数集合包括:功率调整值、资源块数量、调制编码方式中的一项或者多项。
  25. 根据权利要求22至24中任一项所述的网络设备,其中,所述第一配置模块具体用于:
    为用于同一上行波束管理过程的上行波束管理资源集合中的资源,配置同一功率控制参数;或者
    为用于同一上行波束管理过程的上行波束管理资源集合中的各个资源,均配置对应的功率控制参数,其中,所述各个资源对应的功率控制参数均相同。
  26. 根据权利要求23所述的网络设备,其中,
    所述开环功率控制参数集合和/或闭环功率控制参数集合由用于计算所述上行波束管理资源集合中的资源的路损值的下行波束或波束对确定,或者,由与用于计算所述上行波束管理资源集合中的资源的路损值的下行波束或波束对相对应的上行波束或波束对确定;或者
    所述开环功率控制参数集合和/或闭环功率控制参数集合基于参考功率控制参数确定;其中,所述参考功率控制参数包括物理上行共享信道PUSCH的功率控制参数或物理随机接入信道PRACH的功率控制参数或物理上行控制信道PUCCH的功率控制参数或探测参考信号SRS的功率控制参数;和/或
    所述路损值由所述终端基于信道状态信息参考信号CSI-RS集合和/或同步信号块集合上报的一个或多个参考信号接收功率RSRP值计算得到;和/或
    所述参考波束集合标识基于所述终端上报的波束确定。
  27. 根据权利要求24所述的网络设备,其中,所述第一配置模块具体用于:
    为用于上行波束管理过程的上行波束管理资源集合中的资源,配置所述开环功率控制参数集合中的一部分功率控制参数和/或所述闭环功率控制参数集合中的一部分功率控制参数。
  28. 根据权利要求22至27中任一项所述的网络设备,其中,所述网络设备还包括第二配置模块,所述第二配置模块具体用于:
    配置用于计算所述上行波束管理资源集合中的资源的路损值的信道状态信息参考信号CSI-RS集合或同步信号块集合,并向所述终端发送所述CSI-RS集合或同步信号块集合;或者
    配置测量资源集合,并向所述终端发送所述测量资源集合。
  29. 根据权利要求23所述的网络设备,其中,当所述功率控制参数为发射功率时,所述第一配置模块具体用于:
    接收所述终端基于周期性或半持续的信道状态信息参考信号或同步信号块上报的参考信号接收功率RSRP;以及
    根据所述RSRP计算所述发射功率。
  30. 根据权利要求22至29中任一项所述的网络设备,其中,所述第一 配置模块具体用于:
    为用于不同上行波束管理过程的上行波束管理资源集合中的资源,配置不相同的功率控制参数;或者
    为用于同一上行波束管理过程的上行波束管理资源集合中非准共址的子资源集合,配置不相同的功率控制参数。
  31. 一种终端,包括:
    第一接收模块,用于接收用于上行波束管理过程的上行波束管理资源集合中的资源对应的功率控制参数;以及
    发送模块,用于根据所述上行波束管理资源集合中的资源对应的功率控制参数,发送所述上行波束管理资源集合中的资源。
  32. 根据权利要求31所述的终端,其中,
    所述上行波束管理资源集合包括:探测参考信号SRS集合、物理随机接入信道PRACH集合和物理上行控制信道PUCCH集合中的一项或者多项,其中,所述SRS资源集合、PRACH资源集合和PUCCH资源集合中的一项或者多项中的每一项包含相同资源标识和/或不同资源标识对应的资源;以及
    所述功率控制参数包括:开环功率控制参数集合、闭环功率控制参数集合、发射功率、路损值、参考波束集合标识中的一项或者多项。
  33. 根据权利要求32所述的终端,其中,
    所述开环功率控制参数集合包括:目标接收功率、路损补偿因子、功率偏移量的一项或者多项;以及
    所述闭环功率控制参数集合包括:功率调整值、资源块数量、调制编码方式中的一项或者多项。
  34. 根据权利要求31至33中任一项所述的终端,其中,用于同一上行波束管理过程的上行波束管理资源集合中的各个资源对应的功率控制参数相同。
  35. 根据权利要求31至34中任一项所述的终端,其中,所述发送模块包括:
    第一计算单元,用于根据所述上行波束管理资源集合中的资源对应的功率控制参数,计算所述上行波束管理资源集合中的资源对应的发射功率,其 中,所述功率控制参数包括开环功率控制参数集合、闭环功率控制参数集合、路损值和参考波束集合标识中的一项或是多项;以及
    第一发送单元,用于利用所述上行波束管理资源集合中的资源对应的发射功率,发送所述上行波束管理资源集合中的资源。
  36. 根据权利要求31至35中任一项所述的终端,其中,当所述功率控制参数包括开环功率控制参数集合和/或闭环功率控制参数集合时,所述发送模块包括:
    获取单元,用于获取参考功率控制参数,其中,所述参考功率控制参数包括物理上行共享信道PUSCH的功率控制参数或物理随机接入信道PRACH的功率控制参数或物理上行控制信道PUCCH的功率控制参数或探测参考信号SRS的功率控制参数;
    第二计算单元,用于根据所述上行波束管理资源集合中的资源对应的开环功率控制参数集合中的一部分功率控制参数和/或闭环功率控制参数集合中的一部分功率控制参数以及所述参考功率控制参数,确定所述上行波束管理资源集合中的资源对应的发射功率;以及
    第二发送单元,用于利用所述上行波束管理资源集合中的资源对应的发射功率,发送所述上行波束管理资源集合中的资源。
  37. 根据权利要求36所述的终端,其中,所述获取单元具体用于:
    获取当前或历史PUSCH的功率控制参数,或当前或历史PRACH的功率控制参数或,当前或历史PUCCH的功率控制参数,或当前或历史探测参考信号SRS的功率控制参数,并作为所述参考功率控制参数。
  38. 根据权利要求36所述的终端,其中,所述参考功率控制参数由所述上行波束管理资源集合中的资源的路损值对应的波束或波束对确定,或者,由至少两个信道状态信息参考信号CSI-RS集合或至少两个同步信号块集合发送波束或波束对的路损值中,与所述上行波束管理资源集合中的资源的路损值的差值绝对值最小的路损值对应的波束或波束对确定。
  39. 根据权利要求31至38中任一项所述的终端,其中,所述根据所述上行波束管理资源集合中的资源对应的功率控制参数,发送所述上行波束管理资源集合中的资源之前,所述终端还包括:
    第一确定模块,用于基于信道状态信息参考信号CSI-RS集合或同步信号块集合发送波束或波束对的路损值,确定所述上行波束管理资源集合中的资源对应的路损值。
  40. 根据权利要求39所述的终端,其中,所述第一确定模块具体用于:
    将至少两个CSI-RS和/或至少两个同步信号块发送波束或波束对的路损值中的最大值,确定为所述上行波束管理资源集合中的资源对应的路损值;或者
    将至少两个CSI-RS和/或至少两个同步信号块发送波束或波束对的路损值中的最小值,确定为所述上行波束管理资源集合中的资源对应的路损值;或者
    将至少两个CSI-RS和/或至少两个同步信号块发送波束或波束对的路损值中的中间值,确定为所述上行波束管理资源集合中的资源对应的路损值;或者
    将至少两个CSI-RS和/或至少两个同步信号块发送波束或波束对的路损值的加权平均值,确定为所述上行波束管理资源集合中的资源对应的路损值。
  41. 根据权利要求39所述的终端,其中,所述基于信道状态信息参考信号CSI-RS集合或同步信号块集合发送波束或波束对的路损值,确定所述上行波束管理资源集合中的资源对应的路损值之前,所述终端还包括:
    第二接收模块,用于接收网络设备配置的CSI-RS集合或同步信号块集合,其中,所述CSI-RS集合或同步信号块集合用于所述上行波束管理资源集合中的资源的路损值计算;或者
    第三接收模块,用于接收网络设备配置的测量资源集合;
    第二确定模块,用于根据所述测量资源集合中的测量资源的参考信号接收功率RSRP或信号与干扰加噪声比SINR,确定用于所述上行波束管理资源集合中的资源的路损值计算的信道状态信息参考信号或同步信号块集合。
  42. 根据权利要求31至41中任一项所述的终端,其中,
    用于不同上行波束管理过程的上行波束管理资源集合中的资源对应的功率控制参数不相同;
    用于同一上行波束管理过程的上行波束管理资源集合中非准共址的子资 源集合对应的功率控制参数不相同。
  43. 一种网络设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,所述计算机程序被所述处理器执行时实现如权利要求1至9中任一项所述的功率控制方法的步骤。
  44. 一种终端,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,所述计算机程序被所述处理器执行时实现如权利要求10至21中任一项所述的功率控制方法的步骤。
  45. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至9中任一项所述的功率控制方法的步骤。
  46. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求10至21中任一项所述的功率控制方法的步骤。
PCT/CN2018/101493 2017-09-11 2018-08-21 功率控制方法、网络设备及终端 WO2019047711A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/646,186 US11399345B2 (en) 2017-09-11 2018-08-21 Power control method, network device, and terminal
EP18853954.8A EP3684132A4 (en) 2017-09-11 2018-08-21 POWER CONTROL PROCESS, NETWORK DEVICE AND TERMINAL
US17/807,878 US11800462B2 (en) 2017-09-11 2022-06-21 Power control method, network device, and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710813624.9A CN109495959A (zh) 2017-09-11 2017-09-11 功率控制方法、网络设备及终端
CN201710813624.9 2017-09-11

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/646,186 A-371-Of-International US11399345B2 (en) 2017-09-11 2018-08-21 Power control method, network device, and terminal
US17/807,878 Continuation US11800462B2 (en) 2017-09-11 2022-06-21 Power control method, network device, and terminal

Publications (1)

Publication Number Publication Date
WO2019047711A1 true WO2019047711A1 (zh) 2019-03-14

Family

ID=65633519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/101493 WO2019047711A1 (zh) 2017-09-11 2018-08-21 功率控制方法、网络设备及终端

Country Status (4)

Country Link
US (2) US11399345B2 (zh)
EP (1) EP3684132A4 (zh)
CN (1) CN109495959A (zh)
WO (1) WO2019047711A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111615182A (zh) * 2019-04-26 2020-09-01 维沃移动通信有限公司 功率控制方法及设备
WO2020187125A1 (zh) * 2019-03-20 2020-09-24 华为技术有限公司 数据传输方法和装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11647471B2 (en) * 2017-06-15 2023-05-09 Nec Corporation Methods and devices for physical random access channel power control
JP2019062506A (ja) * 2017-09-28 2019-04-18 シャープ株式会社 端末装置および方法
US11197324B2 (en) * 2018-02-23 2021-12-07 Qualcomm Incorporated NR RACH MSG3 and MSG4 resource configuration for CV2X
CN115412217B (zh) * 2018-11-02 2024-06-04 中兴通讯股份有限公司 控制信道检测、信息元素传输方法、装置、设备及介质
CN111867029B (zh) * 2019-04-29 2023-05-05 中国移动通信有限公司研究院 上行开环功率控制方法及装置、通信设备
US20220158766A1 (en) * 2019-05-02 2022-05-19 Apple Inc. System and method for beam failure recovery request
WO2020237650A1 (en) * 2019-05-31 2020-12-03 Qualcomm Incorporated Uplink (ul) beam management enhancement for full-duplex systems
CN112399543B (zh) * 2019-08-15 2022-04-19 大唐移动通信设备有限公司 一种功率控制参数配置方法、终端和网络侧设备
US20220271890A1 (en) * 2019-08-15 2022-08-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Uplink Beamforming Framework for Advanced 5G Networks
CN112689321B (zh) * 2019-10-18 2022-08-05 维沃移动通信有限公司 一种功率控制参数确定方法及终端
WO2024011507A1 (zh) * 2022-07-14 2024-01-18 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
CN115843446A (zh) * 2022-09-26 2023-03-24 北京小米移动软件有限公司 一种上行功率控制方法及其装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102427608A (zh) * 2011-12-06 2012-04-25 电信科学技术研究院 一种发送srs和指示srs发送的方法及设备
CN104620645A (zh) * 2012-08-03 2015-05-13 高通股份有限公司 用于针对协作多点操作的探测参考信号触发和功率控制的方法和装置
CN104767586A (zh) * 2014-01-02 2015-07-08 中国移动通信集团公司 一种控制探测用参考信号的发送的方法及基站设备
CN106233658A (zh) * 2014-04-20 2016-12-14 Lg电子株式会社 在无线通信系统中发送探测参考信号的方法和终端
WO2017003327A1 (en) * 2015-06-29 2017-01-05 Telefonaktiebolaget Lm Ericsson (Publ) Network node, wireless device and methods therein for managing uplink resources
CN107889209A (zh) * 2016-09-29 2018-04-06 华为技术有限公司 一种功率控制的方法及终端设备
CN108024365A (zh) * 2016-11-03 2018-05-11 华为技术有限公司 一种信息传输方法及设备
CN108134659A (zh) * 2017-08-11 2018-06-08 中兴通讯股份有限公司 参数配置、功率确定方法及装置、通信节点
CN108365930A (zh) * 2017-01-26 2018-08-03 华为技术有限公司 上行测量参考信号的功率控制方法、网络设备及终端设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103327594B (zh) 2012-03-22 2017-04-05 电信科学技术研究院 上行功率控制方法、设备及系统
CN104518845B (zh) 2013-09-27 2020-08-04 中兴通讯股份有限公司 一种时分双工系统中测量参考信号功率控制参数配置方法和系统
US9853707B2 (en) 2014-09-16 2017-12-26 Mediatek Inc Channel state information collection for wireless communication system with beamforming
CN106255207B (zh) 2015-08-31 2019-11-01 北京智谷技术服务有限公司 上行资源配置方法、上行传输方法、及其装置
PL3713314T3 (pl) * 2017-09-07 2023-08-14 Beijing Xiaomi Mobile Software Co., Ltd. Zarządzanie wiązką łącza wysyłania
WO2019090663A1 (en) * 2017-11-10 2019-05-16 Nokia Shanghai Bell Co., Ltd. Closed loop power control for beam specific uplink traffic transmission

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102427608A (zh) * 2011-12-06 2012-04-25 电信科学技术研究院 一种发送srs和指示srs发送的方法及设备
CN104620645A (zh) * 2012-08-03 2015-05-13 高通股份有限公司 用于针对协作多点操作的探测参考信号触发和功率控制的方法和装置
CN104767586A (zh) * 2014-01-02 2015-07-08 中国移动通信集团公司 一种控制探测用参考信号的发送的方法及基站设备
CN106233658A (zh) * 2014-04-20 2016-12-14 Lg电子株式会社 在无线通信系统中发送探测参考信号的方法和终端
WO2017003327A1 (en) * 2015-06-29 2017-01-05 Telefonaktiebolaget Lm Ericsson (Publ) Network node, wireless device and methods therein for managing uplink resources
CN107889209A (zh) * 2016-09-29 2018-04-06 华为技术有限公司 一种功率控制的方法及终端设备
CN108024365A (zh) * 2016-11-03 2018-05-11 华为技术有限公司 一种信息传输方法及设备
CN108365930A (zh) * 2017-01-26 2018-08-03 华为技术有限公司 上行测量参考信号的功率控制方法、网络设备及终端设备
CN108134659A (zh) * 2017-08-11 2018-06-08 中兴通讯股份有限公司 参数配置、功率确定方法及装置、通信节点

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020187125A1 (zh) * 2019-03-20 2020-09-24 华为技术有限公司 数据传输方法和装置
CN111615182A (zh) * 2019-04-26 2020-09-01 维沃移动通信有限公司 功率控制方法及设备
CN111615182B (zh) * 2019-04-26 2023-12-01 维沃移动通信有限公司 功率控制方法及设备

Also Published As

Publication number Publication date
US20220322241A1 (en) 2022-10-06
EP3684132A1 (en) 2020-07-22
US11800462B2 (en) 2023-10-24
CN109495959A (zh) 2019-03-19
US11399345B2 (en) 2022-07-26
US20200275379A1 (en) 2020-08-27
EP3684132A4 (en) 2020-10-28

Similar Documents

Publication Publication Date Title
WO2019047711A1 (zh) 功率控制方法、网络设备及终端
US11122617B2 (en) Two step random access procedure
US11012948B2 (en) Uplink measurement reference signal power control method, network device, and terminal device
US11805487B2 (en) Wireless communication method and device
EP3284291B1 (en) Power control in a wireless network
WO2019029354A1 (zh) 功率控制方法、接收方法、功率分配方法、移动通信终端以及网络设备
US20160234789A1 (en) Method of controlling transmission power in device-to-device communication and apparatus thereof
TW201902268A (zh) 針對mmWave部署的NR PHR設計
WO2021027805A1 (zh) 功率控制参数配置方法、终端和网络侧设备
JP2020502836A (ja) ビーム測定方法、端末及びネットワーク装置
WO2013155914A1 (zh) 功控信息通知及功控方法和设备
JP7468678B2 (ja) ネットワーク装置、端末装置、及び方法
JP2022549552A (ja) 通信のための方法、端末装置及びコンピュータ可読媒体
WO2020030159A1 (zh) 功率控制方法和装置、接收设备及存储介质
WO2017079870A1 (zh) 转换传输时间间隔的方法和通信系统、用户设备及基站
CN110972183A (zh) 信息上报方法及用户终端、计算机可读存储介质
WO2022083752A1 (zh) 一种阵面选择方法、终端、网络设备及存储介质
WO2019034101A1 (zh) 网络配置参数的有效取值确定方法、用户终端、基站以及网络配置参数的有效取值确定系统
CN110650522B (zh) 闭环功率控制方法、网络侧设备和终端
WO2021146923A1 (zh) 一种无线参数调整方法和装置
CN110463284B (zh) 用于确定功率控制配置的方法和设备
CN109769291B (zh) 一种终端功率控制的方法和终端
BR112021016495A2 (pt) Método e dispositivo de configuração de recursos
CN113395758B (zh) 一种功率余量上报方法和设备
WO2020077541A1 (zh) 一种小区选择准则的应用方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18853954

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018853954

Country of ref document: EP

Effective date: 20200414