WO2019047603A1 - 发送上行控制信息的方法和移动台 - Google Patents

发送上行控制信息的方法和移动台 Download PDF

Info

Publication number
WO2019047603A1
WO2019047603A1 PCT/CN2018/094465 CN2018094465W WO2019047603A1 WO 2019047603 A1 WO2019047603 A1 WO 2019047603A1 CN 2018094465 W CN2018094465 W CN 2018094465W WO 2019047603 A1 WO2019047603 A1 WO 2019047603A1
Authority
WO
WIPO (PCT)
Prior art keywords
control information
uplink control
information
bits
ranks
Prior art date
Application number
PCT/CN2018/094465
Other languages
English (en)
French (fr)
Inventor
李慧玲
王新
那崇宁
王闰昕
柿岛佑一
永田聪
Original Assignee
株式会社Ntt都科摩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ntt都科摩 filed Critical 株式会社Ntt都科摩
Priority to US16/645,944 priority Critical patent/US11234260B2/en
Priority to CN201880058703.6A priority patent/CN111183699B/zh
Priority to EP18853937.3A priority patent/EP3684129A4/en
Priority to JP2020514584A priority patent/JP7293204B2/ja
Publication of WO2019047603A1 publication Critical patent/WO2019047603A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0645Variable feedback

Definitions

  • the present invention relates to the field of wireless communications, and in particular to a method and a mobile station for transmitting uplink control information.
  • CSI channel state information
  • the rank of the channel matrix reported by the user terminal when performing CSI feedback may also be different. Accordingly, the number of bits required for CSI feedback is also different.
  • the difference between the number of bits of the CSI feedback is not large, and does not cause a significant influence on the receiving side, that is, the base station.
  • the difference between the number of bits of the CSI feedback increases as the size of the input multiple output (MIMO) antenna increases.
  • the base station in the 5G NR system cannot determine the number of bits included in the uplink control information including the CSI feedback.
  • a method for transmitting uplink control information comprising: adding padding bits to initial control information to generate uplink control information, wherein the initial control information includes having the same bit for ranks of different channel matrices The first information of the number of bits and the second information having the same or different bit numbers for the ranks of the different channel matrices; and transmitting the uplink control information.
  • a method for transmitting uplink control information includes: transmitting length indication information indicating a length of uplink control information, wherein the uplink control information includes having the same bit for ranks of different channel matrices The first information of the number and the second information having the same or different bit numbers for the ranks of the different channel matrices; and transmitting the uplink control information in one slot.
  • a method for transmitting uplink control information includes: determining a rank of a channel matrix according to the received indication information; and ranking a rank for the plurality of channel matrices according to the determined rank of the channel matrix
  • Initial control information is jointly encoded to generate uplink control information, wherein initial control information for the rank of each channel matrix includes first information having the same number of bits for ranks of different channel matrices and ranks for ranks of different channel matrices Or second information of different bit numbers; and transmitting the uplink control information.
  • a method for transmitting uplink control information includes: using a first resource to transmit first uplink control information at a first time interval; and independent of the first uplink control information, Using the second resource to transmit the second uplink control information at a second time interval, wherein at least one of the first uplink control information and the second uplink control information includes the same number of bits for ranks of different channel matrices The first information and the second information having the same or different bit numbers for the ranks of the different channel matrices.
  • a mobile station comprising: a transmitting unit configured to transmit length indication information indicating a length of uplink control information, wherein the uplink control information includes ranks having the same bit for ranks of different channel matrices The first information of the number of bits and the second information having the same or different bit numbers for the ranks of the different channel matrices, the transmitting unit is further configured to transmit the uplink control information in one slot.
  • a mobile station comprising: a determining unit configured to determine a rank of a channel matrix according to the received indication information; and a generating unit configured to use according to the determined rank pair of the channel matrix
  • the initial control information of the ranks of the plurality of channel matrices is jointly encoded to generate uplink control information, wherein initial control information of the rank of each channel matrix includes first information having the same number of bits for ranks of different channel matrices and for different
  • the rank of the channel matrix has second information of the same or different bit numbers; and the transmitting unit is configured to transmit the uplink control information.
  • a mobile station comprising: a sending unit configured to use a first resource to transmit first uplink control information at a first time interval, the sending unit further configured to be independent of The first uplink control information is used to send the second uplink control information by using the second resource at a second time interval, where at least one of the first uplink control information and the second uplink control information is included for a different channel matrix
  • the first information having the same number of bits and the second information having the same or different bit numbers for the ranks of the different channel matrices.
  • FIG. 1 is a flow chart showing a method of transmitting uplink control information according to an embodiment of the present invention.
  • FIG. 2 shows a schematic diagram of channel state information (CSI) included in initial control information according to an embodiment of the present invention.
  • CSI channel state information
  • FIG. 3 is a diagram showing the addition of padding bits to the initial control information shown in FIG. 2, in accordance with one embodiment of the present invention.
  • FIG. 4 is a diagram showing the addition of padding bits to the initial control information shown in FIG. 2, in accordance with another embodiment of the present invention.
  • FIG. 5 is a flow chart showing a method of transmitting uplink control information according to another embodiment of the present invention.
  • FIG. 6 is a flow chart showing a method of transmitting uplink control information according to another embodiment of the present invention.
  • FIG. 7 is a diagram showing joint coding of initial control information in accordance with one embodiment of the present invention.
  • FIG. 8 is a flow chart showing a method of transmitting uplink control information according to another embodiment of the present invention.
  • FIG. 9 is a schematic diagram showing a first resource and a second resource configured in accordance with an embodiment of the present invention.
  • Figure 10 shows a block diagram of a mobile station in accordance with one embodiment of the present invention.
  • Figure 11 shows a block diagram of a mobile station in accordance with another embodiment of the present invention.
  • Figure 12 shows a block diagram of a mobile station in accordance with another embodiment of the present invention.
  • Figure 13 shows a block diagram of a mobile station in accordance with another embodiment of the present invention.
  • FIG. 14 is a diagram showing an example of a hardware configuration of a mobile station according to an embodiment of the present invention.
  • a method of transmitting uplink control information and a mobile station according to an embodiment of the present invention will be described below with reference to the accompanying drawings.
  • the same reference numerals are used to refer to the same elements.
  • the embodiments described herein are illustrative only and are not intended to limit the scope of the invention.
  • the UEs described herein may include various types of user terminals, such as mobile terminals (or mobile stations) or fixed terminals, however, for convenience, the UE and the mobile station may sometimes be used interchangeably.
  • the uplink control information may only include channel state information (CSI).
  • CSI channel state information
  • the uplink control information may further include other control information such as HARQ feedback information in an embodiment in accordance with the present invention.
  • FIG. 1 shows a flow diagram of a method 100 of transmitting uplink control information.
  • step S101 padding bits are added to the initial control information to generate uplink control information.
  • the initial control information may be initial control information of uplink control information to be transmitted in one slot.
  • the initial control information in step S101 may include first information having the same number of bits for ranks of different channel matrices and second information having the same or different bit numbers for ranks of different channel matrices.
  • the first information may include a rank indication (RI) and/or a CSI-RS resource indication (CRI) or the like
  • the second information includes a channel quality indicator (CQI) and/or a precoding matrix indication (PMI) or the like.
  • RI rank indication
  • CQI channel quality indicator
  • PMI precoding matrix indication
  • FIG. 2 shows a schematic diagram of channel state information (CSI) included in initial control information according to an embodiment of the present invention.
  • CSI channel state information
  • the corresponding CSI is CSI 210; when RANK is 2, the corresponding CSI is CSI 220; when RANK is 3 or 4, corresponding The CSI is CSI 230; when RANK is any one of 5 to 8, the corresponding CSI is CSI 240.
  • CSIs 210 to 240 each include RI, CQI, and PMI. For any of RANKs 1 through 8, the RIs all have the same number of bits, i.e., 3 bits.
  • the CQI and PMI may have different numbers of bits. For example, when RANK is 1, the PMI has 10 bits. When RANK is 2, the PMI has 11 bits. For another example, when RANK is 3 or 4, the CQI has 4 bits. When RANK is 5 to 8, the CQI has 7 bits.
  • the total number of bits included in the CSI may be different corresponding to different RANKs.
  • CSIs 210-240 may have 17 bits, 18 bits, 17 bits, and 19 bits, respectively.
  • the number of bits of the uplink control information including the CSI also changes depending on the value of the RANK.
  • uplink control information having a predetermined number of bits can be generated by adding padding bits to the initial control information. For example, it may be predetermined that the uplink control information should have X bits. The padding bits may be added to the initial control information such that the uplink control information is X bits regardless of the value of the RANK.
  • FIG. 3 is a diagram showing the addition of padding bits to the initial control information shown in FIG. 2, in accordance with one embodiment of the present invention.
  • RANK is 5 to 8
  • n bits need to be added so that the uplink control information reaches X bits
  • n + 2 bits need to be added so that the uplink control information reaches X.
  • each of the first information and the second information in the initial control information includes one or more segments, and in step S101, the one or more points may be At least part of the segments in the segment are respectively filled with padding bits.
  • the first information and the second information may include respective segments corresponding to different parameters such as RI, PMI, CQI, and the like. Fill bits may be added separately for one or more of these segments.
  • the initial control information shown in FIG. 2 may include an RI segment, a PMI segment, and a CQI segment. Bit filling can be performed on RI segmentation, PMI segmentation, and CQI segmentation. As shown in FIG. 4, padding a bits may be added to the RI segment, b bits are padded for the PMI segment, and padding c bits are added to the CQI segment. Alternatively, only a portion of the segments may be padded. For example, in the example shown in FIG. 4, the PMI segment is padded with b bits, and the CQI segment is padded with c bits without adding a padding to the RI segment (as shown by the dashed box in FIG. 4). .
  • the initial control information may include other information such as hybrid automatic repeat (HARQ) information or the like in addition to the CSI information.
  • HARQ hybrid automatic repeat
  • padding bits may be added to the CSI information and the HARQ information, respectively.
  • the CSI information may be a bit sequence in which a plurality of parameters such as RI, PMI, CQI, and the like are jointly coded, or may be a bit sequence in which segments respectively corresponding to the respective parameters are included.
  • the padding bits added in step S101 are used to verify the uplink control information.
  • padding bits can be used for cyclic redundancy check (CRC) of uplink control information.
  • the base station may perform blind detection on the CRC in the uplink control information sent by the UE.
  • padding bits can be used for parity control of uplink control information.
  • padding bits may be added to the uplink control information as a whole.
  • the padding bits added to the uplink control information as a whole can be used for cyclic redundancy check of the entire uplink control information.
  • padding bits may also be added to at least some of the one or more segments in the initial control information, and the padding bits added may be used for the cyclic redundancy check of the segment.
  • padding bits may also be added for cyclic redundancy check of the entire uplink control information.
  • the padding bit added in step S101 may indicate at least a portion of the first information in the initial control information.
  • a part of a rank indication (RI) or a rank indication (RI) in the first information may be used as a padding bit.
  • bit stuffing can be performed prior to channel encoding the initial control information.
  • padding bits may be added to the initial control information to generate a padding bit sequence, and the padding bit sequence is channel coded to generate uplink control information.
  • bit stuffing may also be performed when channel coding the initial control information.
  • the generated uplink control information is transmitted in step S102.
  • the generated uplink control information may be transmitted on an uplink channel such as a physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH).
  • the generated uplink control information can be transmitted in one time slot.
  • the uplink control information may have a specific number of bits by adding padding bits to the initial control information. Therefore, even if the base station is not notified of the length of the uplink control information, the base station can determine the length of the uplink control information according to the determined specific number of bits.
  • the length of the uplink control information may be notified to the base station by the length indication information, so that the base station determines the length of the uplink control information.
  • FIG. 5 shows a flow diagram of a method 500 of transmitting uplink control information.
  • step S501 length indication information indicating a length of uplink control information, where the uplink control information includes first information having the same bit number for ranks of different channel matrices and for different channel matrices
  • the rank has the second information of the same or different bit number.
  • the initial control information may be initial control information of uplink control information to be transmitted in one slot.
  • part of the information in the demodulation reference signal may be used as the length indication information.
  • a scrambling code sequence of the DMRS may be used as the length indication information to indicate the length of the uplink control information.
  • uplink control information indicating the length of the length indication information is transmitted in one slot.
  • the generated uplink control information may be transmitted on an uplink channel such as a physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH).
  • the base station can determine the length of the uplink control information received in one subframe by the length indication information, and may not need to add padding bits.
  • the base station may notify the mobile station of information about the rank of the channel matrix, in which case the base station may expect the mobile station to return the uplink control information based on the information notified to the mobile station.
  • the length does not need to be notified to the base station by the length indication information.
  • FIG. 6 shows a flow diagram of a method 600 of transmitting uplink control information.
  • the rank of the channel matrix is determined based on the received indication information.
  • the number of layers of the supported space may be determined according to higher layer signaling transmitted by the base station, and thereby the rank of the channel matrix.
  • initial control information for ranks of multiple channel matrices may be jointly encoded according to the determined rank of the channel matrix to generate uplink control information, where initial control information of the rank of each channel matrix includes
  • the ranks of the different channel matrices have first information of the same number of bits and second information having the same or different bit numbers for ranks of different channel matrices.
  • step S602 when it is determined in step S601 that the rank of the channel matrix is RANK 1-2, in step S602, the initial control information corresponding to RANK 1 and the initial control information corresponding to RANK 2 may be jointly encoded, where RANK 1
  • Each of the corresponding initial control information and the initial control information corresponding to RANK 2 may include first information (eg, RI) having the same number of bits for ranks of different channel matrices and ranks for ranks of different channel matrices Second information of the same or different bit numbers (eg, PMI or CQI).
  • the initial control information corresponding to each of RANK 1-8 may be jointly encoded.
  • the uplink control information may have 49151 states, and the mobile station needs to use 16 bits to indicate the state of the specific uplink control information. Therefore, when the base station can notify the mobile station that the information on the rank of the channel matrix is RANK 1-2, the length of the uplink control information can be expected to be 16 bits.
  • the uplink control information may have 81,919 states, and the mobile station needs to use 17 bits to indicate the state of the specific uplink control information.
  • the base station can notify the mobile station that the rank of the channel matrix is RANK 1-4, the length of the uplink control information can be expected to be 17 bits.
  • the uplink control information may have 344063 states, and the mobile station needs to use 19 bits to indicate the state of the specific uplink control information. Therefore, when the base station can notify the mobile station that the information on the rank of the channel matrix is RANK 1-8, the length of the uplink control information can be expected to be 19 bits.
  • codebooks supported in the communication system may be downsampled. That is to reduce the number of codebooks that need to be represented in the uplink control information.
  • a predetermined threshold may be set between 2 ⁇ n and 2 ⁇ (n+1), and the number of states required for the uplink control information is between 2 ⁇ n and 2 ⁇ (n+1), and is smaller than
  • the codebook may be downsampled to reduce the number of codebooks to be represented in the uplink control information, thereby transmitting uplink control information using a smaller number of bits.
  • uplink control information is transmitted.
  • the generated uplink control information may be transmitted on an uplink channel such as a physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH).
  • the generated uplink control information can be transmitted in one time slot.
  • the length of the uplink control information may be determined by padding bits, transmitting length indication information, or determining the rank of the channel matrix based on the received indication information.
  • the mobile station or the base station does not perform the above operation, but directly transmits the uplink control information.
  • the base station can perform blind decoding on the uplink control information sent by the mobile station to determine its length.
  • the transmission period of the uplink control information may be different for different situations. For example, in some cases, the mobile station may need to send uplink control information in a 5 ms period. In other cases, the mobile station may need to send uplink control information in a period of 20 ms. In this case, if only one set of uplink control information resources (also referred to as a “resource group”) is configured, unnecessary uplink control information transmission may be caused. Thus, in accordance with another example of the present invention, multiple sets of resources may be configured to separately transmit uplink control information.
  • FIG. 8 shows a flow diagram of a method 800 of transmitting uplink control information.
  • a first resource (which may also be referred to as a "first resource group”) is used to transmit first uplink control information at a first time interval
  • step S802 independent of The first uplink control information is used to transmit the second uplink control information by using the second resource (which may also be referred to as a “second resource group”) at the second time interval.
  • At least one of the first uplink control information and the second uplink control information includes first information having the same number of bits for ranks of different channel matrices and ranks for ranks of different channel matrices or The second information of different bit numbers.
  • the first uplink control information may include first information having the same bit number for ranks of different channel matrices
  • the second uplink control information may include first information having the same bit number for ranks of different channel matrices
  • the ranks of the different channel matrices have second information of the same or different bit numbers.
  • both the first uplink control information and the first uplink control information may include first information having the same bit number for ranks of different channel matrices, and second having the same or different bit number for ranks of different channel matrices. information.
  • the first resource and the second resource may be configured in one slot.
  • 9 is a schematic diagram showing a first resource and a second resource configured in accordance with an embodiment of the present invention. As shown in FIG. 9, the first resource 901 and the second resource 902 can be located in different areas in a resource pool corresponding to one time slot. A small square in Figure 9 can represent a symbol.
  • the first resource 901 is configured to send first uplink control information
  • the second resource 902 is configured to send second uplink control information.
  • the first uplink control information may be sent only according to the configured first resource, and in some time slots, according to the configured The first resource sends the first uplink control information, and sends the second uplink control information according to the configured second resource.
  • the initial information of the first uplink control information and the initial information of the second uplink control information may be independently encoded to obtain mutually independent An uplink control information and second uplink control information.
  • the first uplink control information and/or the second uplink control information includes multiple segments or information
  • the foregoing uplink control information and/or the second uplink control information may be performed in combination with FIG. 1 .
  • -7 describes the operations of padding bits, joint coding, and the like. For example, padding bits may be added to the initial control information of the first uplink control information to generate first uplink control information.
  • each of the second uplink control information may be jointly encoded. The operations of padding bits, joint coding, and the like have been described in detail above with reference to FIG. 1-7, and thus are not described herein again.
  • the first uplink control information may be uplink control information for wideband communication.
  • the second uplink control information may be uplink control information for subband communication, and vice versa.
  • FIG. Figure 10 shows a block diagram of a mobile station 1000 in accordance with one embodiment of the present invention.
  • the mobile station 1000 includes a padding unit 1010 and a transmitting unit 1020.
  • the mobile station 1000 may include other components in addition to these two units, however, since these components are not related to the content of the embodiment of the present invention, the illustration and description thereof are omitted herein. Further, since the specific details of the operations described below performed by the mobile station 1000 according to the embodiment of the present invention are the same as those described above with reference to FIGS. 1-4, repeated description of the same details is omitted herein to avoid repetition.
  • the padding unit 1010 may add padding bits to the initial control information to generate uplink control information.
  • the initial control information may be initial control information of uplink control information to be transmitted in one slot.
  • the initial control information may include first information having the same number of bits for ranks of different channel matrices and second information having the same or different number of bits for ranks of different channel matrices.
  • the first information may include a rank indication (RI) and/or a CSI-RS resource indication (CRI) or the like
  • the second information includes a channel quality indicator (CQI) and/or a precoding matrix indication (PMI) or the like.
  • RI rank indication
  • CQI channel quality indicator
  • PMI precoding matrix indication
  • the padding unit 1010 may generate uplink control information having a predetermined number of bits by adding padding bits to the initial control information. For example, it may be predetermined that the uplink control information should have X bits. The padding bits may be added to the initial control information such that the uplink control information is X bits regardless of the value of the RANK.
  • the padding unit 1010 may add the padded bits as a whole to the uplink control information.
  • each of the first information and the second information in the initial control information includes one or more segments.
  • Padding unit 1010 can add padding bits to at least a portion of the one or more segments, respectively.
  • the first information and the second information may include respective segments corresponding to different parameters such as RI, PMI, CQI, and the like. Fill bits may be added separately for one or more of these segments.
  • the padding unit 1010 may add padding bits for each segment.
  • the padding unit 1010 may perform bit stuffing on only a portion of the segments.
  • the initial control information may include other information such as hybrid automatic repeat (HARQ) information or the like in addition to the CSI information.
  • the padding unit 1010 may add padding bits for the CSI information and the HARQ information, respectively.
  • the CSI information may be a bit sequence in which a plurality of parameters such as RI, PMI, CQI, and the like are jointly coded, or may be a bit sequence in which segments respectively corresponding to the respective parameters are included.
  • padding bits added by padding unit 1010 are used to verify the uplink control information.
  • padding bits can be used for cyclic redundancy check (CRC) of uplink control information.
  • the base station may perform blind detection on the CRC in the uplink control information sent by the UE.
  • padding bits can be used for parity control of uplink control information.
  • padding bits may be added to the uplink control information as a whole.
  • the padding bits added to the uplink control information as a whole can be used for cyclic redundancy check of the entire uplink control information.
  • padding bits may also be added to at least some of the one or more segments in the initial control information, and the padding bits added may be used for the cyclic redundancy check of the segment.
  • the padding unit 1010 may also add padding bits for cyclic redundancy check of the entire uplink control information. .
  • the padding bits added by the padding unit 1010 may indicate at least a portion of the first information in the initial control information.
  • a part of a rank indication (RI) or a rank indication (RI) in the first information may be used as a padding bit.
  • bit stuffing can be performed prior to channel encoding the initial control information.
  • the mobile station may further include an encoding unit (not shown).
  • the padding unit 1010 may add padding bits to the initial control information to generate a padding bit sequence.
  • the coding unit may perform channel coding on the padding bit sequence to generate uplink control information.
  • the padding unit 1010 may also perform bit stuffing when channel coding the initial control information.
  • the transmitting unit 1020 transmits the generated uplink control information.
  • the sending unit 1020 may send the generated uplink control information on an uplink channel such as a physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH). Further, the transmitting unit 1020 can transmit the generated uplink control information in one slot.
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • the mobile station shown in FIG. 10 can add a padding bit to the initial control information, and the uplink control information can have a specific number of bits. Therefore, the base station is not notified of the length of the uplink control information in time, and the base station can also determine the length of the uplink control information according to the determined specific number of bits.
  • the mobile station may notify the base station of the length of the uplink control information by using the length indication information, so that the base station determines the length of the uplink control information.
  • FIG. 11 shows a block diagram of a mobile station 1100 in accordance with another embodiment of the present invention.
  • the mobile station 1100 includes a transmitting unit 1110.
  • the mobile station 1100 may include other components in addition to the transmitting unit 1110, however, since these components are not related to the content of the embodiment of the present invention, illustration and description thereof are omitted herein. Further, since the specific details of the operations described below performed by the mobile station 1100 according to the embodiment of the present invention are the same as those described above with reference to FIG. 5, repeated description of the same details is omitted herein to avoid redundancy.
  • the transmitting unit 1110 transmits length indication information indicating the length of the uplink control information, where the uplink control information includes first information having the same bit number for ranks of different channel matrices and ranks for different channel matrices. Second information having the same or different bit numbers.
  • the initial control information may be initial control information of uplink control information to be transmitted in one slot.
  • part of the information in the demodulation reference signal may be used as the length indication information.
  • a scrambling code sequence of the DMRS may be used as the length indication information to indicate the length of the uplink control information.
  • the transmitting unit 1110 transmits uplink control information indicating the length of the length indication information in one slot.
  • the generated uplink control information may be transmitted on an uplink channel such as a physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH).
  • the base station can determine the length of the uplink control information received in one subframe by the length indication information, and may not need to add padding bits.
  • the base station may notify the mobile station of information about the rank of the channel matrix, in which case the base station may expect the mobile station to return the uplink control information based on the information notified to the mobile station.
  • the length does not need to be notified to the base station by the length indication information.
  • FIG. 12 shows a block diagram of a mobile station 1200 in accordance with another embodiment of the present invention.
  • the mobile station 1200 includes a determining unit 1210, a generating unit 1220, and a transmitting unit 1230.
  • the mobile station 1200 may include other components in addition to the three units shown in FIG.
  • the determining unit 1210 determines the rank of the channel matrix based on the received indication information.
  • the number of layers of the supported space may be determined according to higher layer signaling transmitted by the base station, and thereby the rank of the channel matrix.
  • the generating unit 1220 may jointly encode the initial control information for the ranks of the plurality of channel matrices according to the determined rank of the channel matrix to generate uplink control information, where the initial control information of the rank of each channel matrix includes for different channels.
  • the rank of the matrix has first information of the same number of bits and second information having the same or different number of bits for ranks of different channel matrices.
  • the generating unit 1220 may jointly encode the initial control information corresponding to the RANK 1 and the initial control information corresponding to the RANK 2, where RANK 1 corresponds to Each of the initial control information and the initial control information corresponding to RANK 2 may include first information (eg, RI) having the same number of bits for ranks of different channel matrices and the same or different ranks for different channel matrices The second information of the number of bits (for example, PMI or CQI).
  • the determining unit 1210 determines that the rank of the channel matrix is RANK 1-8
  • the generating unit 1220 may jointly encode the initial control information corresponding to the RANK 1-8.
  • codebooks supported in the communication system may be downsampled. That is to reduce the number of codebooks that need to be represented in the uplink control information.
  • a predetermined threshold may be set between 2 ⁇ n and 2 ⁇ (n+1), and the number of states required for the uplink control information is between 2 ⁇ n and 2 ⁇ (n+1), and is smaller than
  • the sampling unit in the mobile station may downsample the codebook to reduce the number of codebooks to be represented in the uplink control information, thereby transmitting the uplink control information using a smaller number of bits.
  • the transmitting unit 1230 can transmit uplink control information.
  • the generated uplink control information may be transmitted on an uplink channel such as a physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH).
  • the generated uplink control information can be transmitted in one time slot.
  • the length of the uplink control information may be determined by padding bits, transmitting length indication information, or determining the rank of the channel matrix according to the received indication information, and the like.
  • the mobile station or the base station does not perform the above operation, and the transmitting unit of the mobile station directly transmits the uplink control information.
  • the base station can perform blind decoding on the uplink control information sent by the mobile station to determine its length.
  • the transmission period of the uplink control information may be different for different situations. For example, in some cases, the mobile station may need to send uplink control information in a 5 ms period. In other cases, the mobile station may need to send uplink control information in a period of 20 ms. In this case, if only one set of uplink control information resources (also referred to as a “resource group”) is configured, unnecessary uplink control information transmission may be caused. Thus, in accordance with another example of the present invention, multiple sets of resources may be configured to separately transmit uplink control information.
  • FIG. 13 shows a block diagram of a mobile station 1300 in accordance with another embodiment of the present invention.
  • the mobile station 1300 includes a transmitting unit 1310.
  • the mobile station 1300 may include other components in addition to the transmitting unit 1310 shown in FIG. 13, however, since these components are not related to the content of the embodiment of the present invention, the illustration and description thereof are omitted here. Further, since the specific details of the operations described below performed by the mobile station 1300 according to the embodiment of the present invention are the same as those described above with reference to FIGS. 8-9, repeated description of the same details is omitted herein to avoid repetition.
  • the transmitting unit 1310 uses a first resource (which may also be referred to as a "first resource group”) to transmit first uplink control information at a first time interval, and the transmitting unit 1310 is independent of the first Uplink control information, using a second resource (which may also be referred to as a "second resource group") at a second time interval to transmit second uplink control information.
  • a first resource which may also be referred to as a "first resource group”
  • the transmitting unit 1310 is independent of the first Uplink control information
  • a second resource which may also be referred to as a "second resource group”
  • at least one of the first uplink control information and the second uplink control information includes first information having the same number of bits for ranks of different channel matrices and ranks for ranks of different channel matrices or The second information of different bit numbers.
  • the first uplink control information may include first information having the same bit number for ranks of different channel matrices
  • the second uplink control information may include first information having the same bit number for ranks of different channel matrices
  • the ranks of the different channel matrices have second information of the same or different bit numbers.
  • both the first uplink control information and the first uplink control information may include first information having the same bit number for ranks of different channel matrices, and second having the same or different bit number for ranks of different channel matrices. information.
  • the first resource and the second resource may be configured in one slot. Because the sending period of the first uplink control information and the second uplink control information are different, in some slots, the sending unit 1310 may only send the first uplink control information according to the configured first resource, and in some slots, the sending unit 1310 The first uplink control information may be sent according to the configured first resource, and the second uplink control information may be sent according to the configured second resource.
  • the mobile station may also include an encoding unit (not shown).
  • the encoding unit may independently encode the initial information of the first uplink control information and the initial information of the second uplink control information, to Obtaining the first uplink control information and the second uplink control information that are independent of each other.
  • the mobile station can also include a padding unit.
  • the coding unit and the filling unit may perform the above combination in the first uplink control information and/or the second uplink control information. Operations such as padding bits, joint coding, and the like described in 1-7.
  • the padding unit may add padding bits to the initial control information of the first uplink control information to generate first uplink control information.
  • the encoding unit may jointly encode each information in the second uplink control information.
  • the first uplink control information may be uplink control information for wideband communication.
  • the second uplink control information may be uplink control information for subband communication, and vice versa.
  • the radio base station, the user terminal, and the like in one embodiment of the present invention can function as a computer that performs processing of the radio communication method of the present invention.
  • FIG. 14 is a diagram showing an example of a hardware configuration of a mobile station according to an embodiment of the present invention. Any of the above-described mobile stations 1000 to 1300 may be configured as a computer device that physically includes a processor 1410, a memory 1420, a memory 1430, a communication device 1440, an input device 1450, an output device 1460, a bus 1470, and the like.
  • the hardware structure of the mobile station 1400 may include one or more of the devices shown in the figures, or may not include some of the devices.
  • processor 1410 is only illustrated as one, but may be multiple processors.
  • the processing may be performed by one processor, or may be performed by one or more processors simultaneously, sequentially, or by other methods.
  • the processor 1410 can be installed by more than one chip.
  • Each function in the mobile station 1400 is realized, for example, by reading predetermined software (program) into hardware such as the processor 1410 and the memory 1420, thereby causing the processor 1410 to perform calculations for communication by the communication device 1440. Control is performed and control of reading and/or writing of data in the memory 1420 and the memory 1430 is performed.
  • predetermined software program
  • control is performed and control of reading and/or writing of data in the memory 1420 and the memory 1430 is performed.
  • the processor 1410 causes the operating system to operate to control the entire computer.
  • the processor 1410 may be configured by a central processing unit (CPU) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the padding unit 1010, the determining unit 1210, the generating unit 1220, the encoding unit, and the like described above may be implemented by the processor 1410.
  • the processor 1410 reads out programs (program codes), software modules, data, and the like from the memory 1430 and/or the communication device 1440 to the memory 1420, and executes various processes in accordance therewith.
  • programs program codes
  • software modules software modules
  • data data, and the like
  • the program a program for causing a computer to execute at least a part of the operations described in the above embodiments can be employed.
  • the memory 1420 is a computer readable recording medium, and may be, for example, a read only memory (ROM), an EEPROM (Erasable Programmable ROM), an electrically programmable read only memory (EEPROM), or an electrically programmable read only memory (EEPROM). At least one of a random access memory (RAM) and other suitable storage medium is used.
  • the memory 1420 may also be referred to as a register, a cache, a main memory (primary storage device), or the like.
  • the memory 1420 can store an executable program (program code), a software module, and the like for implementing the wireless communication method according to the embodiment of the present invention.
  • the memory 1430 is a computer readable recording medium, and may be, for example, a flexible disk, a soft (registered trademark) disk (floppy disk), a magneto-optical disk (for example, a CD-ROM (Compact Disc ROM), etc.). Digital Versatile Disc, Blu-ray (registered trademark) disc, removable disk, hard drive, smart card, flash device (eg card, stick, key driver), magnetic stripe, database At least one of a server, a server, and other suitable storage medium. Memory 1430 may also be referred to as an auxiliary storage device.
  • the communication device 1440 is hardware (transmission and reception device) for performing communication between computers through a wired and/or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, and the like, for example.
  • the communication device 1440 may include a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc., in order to implement, for example, Frequency Division Duplex (FDD) and/or Time Division Duplex (TDD).
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the above-described transmitting unit 710, receiving unit 810, and the like can be implemented by the communication device 1440.
  • Input device 1450 is an input device (eg, a keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1460 is an output device (for example, a display, a speaker, a light emitting diode (LED) lamp, etc.) that performs an output to the outside.
  • the input device 1450 and the output device 1460 may also be an integrated structure (for example, a touch panel).
  • each device such as the processor 1410, the memory 1420, and the like are connected by a bus 1470 for communicating information.
  • the bus 1470 may be composed of a single bus or a different bus between devices.
  • the mobile station 1400 may include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD, Programmable Logic Device), and field programmable.
  • a microprocessor such as a Field Programmable Gate Array (FPGA) can realize some or all of each functional block by this hardware.
  • processor 1410 can be installed by at least one of these hardware.
  • the channel and/or symbol can also be a signal (signaling).
  • the signal can also be a message.
  • the reference signal may also be simply referred to as an RS (Reference Signal), and may also be referred to as a pilot (Pilot), a pilot signal, or the like according to applicable standards.
  • a component carrier may also be referred to as a cell, a frequency carrier, a carrier frequency, or the like.
  • the radio frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the radio frame may also be referred to as a sub-frame.
  • a subframe may be composed of one or more time slots in the time domain.
  • the subframe may be a fixed length of time (eg, 1 ms) that is independent of the numerology.
  • the time slot may have one or more symbols in the time domain (Orthogonal Frequency Division Multiplexing (OFDM), Single Carrier Frequency Division Multiple Access (SC-FDMA), Single Carrier Frequency Division Multiple Access (SC-FDMA) Symbols, etc.).
  • the time slot can also be a time unit based on parameter configuration.
  • the time slot may also include a plurality of minislots. Each minislot may be composed of one or more symbols in the time domain.
  • a minislot can also be referred to as a subslot.
  • Radio frames, subframes, time slots, mini-slots, and symbols all represent time units when signals are transmitted. Radio frames, subframes, time slots, mini-slots, and symbols can also use other names that correspond to each other.
  • one subframe may be referred to as a Transmission Time Interval (TTI), and a plurality of consecutive subframes may also be referred to as a TTI.
  • TTI Transmission Time Interval
  • One slot or one minislot may also be referred to as a TTI. That is to say, the subframe and/or the TTI may be a subframe (1 ms) in the existing LTE, or may be a period shorter than 1 ms (for example, 1 to 13 symbols), or may be a period longer than 1 ms.
  • a unit indicating a TTI may also be referred to as a slot, a minislot, or the like instead of a subframe.
  • TTI refers to, for example, a minimum time unit scheduled in wireless communication.
  • the radio base station performs scheduling for all user terminals to allocate radio resources (bandwidth, transmission power, etc. usable in each user terminal) in units of TTIs.
  • the definition of TTI is not limited to this.
  • the TTI may be a channel-coded data packet (transport block), a code block, and/or a codeword transmission time unit, or may be a processing unit such as scheduling, link adaptation, or the like.
  • the time interval e.g., the number of symbols
  • actually mapped to the transport block, code block, and/or codeword may also be shorter than the TTI.
  • TTI time slot or one mini time slot
  • more than one TTI ie, more than one time slot or more than one micro time slot
  • the number of slots (the number of microslots) constituting the minimum time unit of the scheduling can be controlled.
  • a TTI having a length of 1 ms may also be referred to as a regular TTI (TTI in LTE Rel. 8-12), a standard TTI, a long TTI, a regular subframe, a standard subframe, or a long subframe.
  • TTI shorter than a conventional TTI may also be referred to as a compressed TTI, a short TTI, a partial TTI (partial or fractional TTI), a compressed subframe, a short subframe, a minislot, or a subslot.
  • a long TTI (eg, a regular TTI, a subframe, etc.) may be replaced with a TTI having a time length exceeding 1 ms
  • a short TTI eg, a compressed TTI, etc.
  • TTI length of the TTI may be replaced with 1 ms.
  • a resource block is a resource allocation unit of a time domain and a frequency domain, and may include one or more consecutive subcarriers (subcarriers) in the frequency domain.
  • the RB may include one or more symbols in the time domain, and may also be one slot, one minislot, one subframe, or one TTI.
  • a TTI and a subframe may each be composed of one or more resource blocks.
  • one or more RBs may also be referred to as a physical resource block (PRB, Physical RB), a sub-carrier group (SCG), a resource element group (REG, a resource element group), a PRG pair, an RB pair, and the like. .
  • the resource block may also be composed of one or more resource elements (REs, Resource Elements).
  • REs resource elements
  • Resource Elements For example, one RE can be a subcarrier and a symbol of a radio resource area.
  • radio frames, subframes, time slots, mini-slots, symbols, and the like are merely examples.
  • the number of subframes included in the radio frame, the number of slots of each subframe or radio frame, the number of microslots included in the slot, the number of symbols and RBs included in the slot or minislot, and the number of RBs included in the RB The number of subcarriers, the number of symbols in the TTI, the symbol length, and the length of the cyclic prefix (CP, Cyclic Prefix) can be variously changed.
  • the information, parameters, and the like described in the present specification may be expressed by absolute values, may be represented by relative values with predetermined values, or may be represented by other corresponding information.
  • wireless resources can be indicated by a specified index.
  • the formula or the like using these parameters may be different from those explicitly disclosed in the present specification.
  • the information, signals, and the like described in this specification can be expressed using any of a variety of different techniques.
  • data, commands, instructions, information, signals, bits, symbols, chips, etc. which may be mentioned in all of the above description, may pass voltage, current, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of them. Combined to represent.
  • information, signals, and the like may be output from the upper layer to the lower layer, and/or from the lower layer to the upper layer.
  • Information, signals, etc. can be input or output via a plurality of network nodes.
  • Information or signals input or output can be stored in a specific place (such as memory) or managed by a management table. Information or signals input or output may be overwritten, updated or supplemented. The output information, signals, etc. can be deleted. The input information, signals, etc. can be sent to other devices.
  • the notification of the information is not limited to the mode/embodiment described in the specification, and may be performed by other methods.
  • the notification of the information may be through physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI), and upper layer signaling (for example, radio resource control).
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Media Access Control
  • the physical layer signaling may be referred to as L1/L2 (Layer 1/Layer 2) control information (L1/L2 control signal), L1 control information (L1 control signal), and the like.
  • the RRC signaling may also be referred to as an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
  • the MAC signaling can be notified, for example, by a MAC Control Unit (MAC CE).
  • MAC CE MAC Control Unit
  • the notification of the predetermined information is not limited to being explicitly performed, and may be performed implicitly (for example, by not notifying the predetermined information or by notifying the other information).
  • the determination can be performed by a value (0 or 1) represented by 1 bit, or by a true or false value (boolean value) represented by true (true) or false (false), and can also be compared by numerical values ( For example, comparison with a predetermined value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language, or other names, should be interpreted broadly to mean commands, command sets, code, code segments, program code, programs, sub- Programs, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, steps, functions, and the like.
  • software, commands, information, and the like may be transmitted or received via a transmission medium.
  • a transmission medium For example, when using wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) from a website, server, or other remote source
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • radio base station (BS, Base Station)
  • radio base station radio base station
  • eNB radio base station
  • gNB gNodeB
  • cell a cell
  • cell group a carrier
  • component carrier a fixed station
  • NodeB a NodeB
  • eNodeB eNodeB
  • access point a transmission point
  • reception point a reception point
  • femto cell a small cell
  • a wireless base station can accommodate one or more (eg, three) cells (also referred to as sectors). When a wireless base station accommodates multiple cells, the entire coverage area of the wireless base station can be divided into multiple smaller areas, and each smaller area can also pass through a wireless base station subsystem (for example, a small indoor wireless base station (radio-radio) Head (RRH, Remote Radio Head))) to provide communication services.
  • a wireless base station subsystem for example, a small indoor wireless base station (radio-radio) Head (RRH, Remote Radio Head)
  • RRH small indoor wireless base station
  • the term "cell” or “sector” refers to a part or the whole of the coverage area of a radio base station and/or a radio base station subsystem that performs communication services in the coverage.
  • the radio base station is sometimes referred to by a fixed station, a NodeB, an eNodeB (eNB), an access point, a transmission point, a reception point, a femto cell, a small cell, and the like.
  • Mobile stations are also sometimes used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless Terminals, remote terminals, handsets, user agents, mobile clients, clients, or several other appropriate terms are used.
  • the wireless base station in this specification can also be replaced with a user terminal.
  • each mode/embodiment of the present invention can be applied to a configuration in which communication between a radio base station and a user terminal is replaced with communication between a plurality of user-to-device (D2D) devices.
  • the user terminal in this specification can also be replaced with a wireless base station.
  • a specific operation performed by the radio base station may be performed by an upper node depending on the situation.
  • various actions performed for communication with the terminal may pass through the wireless base station and one other than the wireless base station.
  • the above network node may be considered, for example, a Mobility Management Entity (MME), a Serving-Gateway (S-GW, etc.), but not limited thereto), or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • LTE-B Long-Term Evolution
  • LTE-Beyond Long-Term Evolution
  • Super 3rd generation mobile communication system SUPER 3G
  • IMT-Advanced advanced international mobile communication
  • 4th generation mobile communication system (4G, 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • future radio access FAA
  • new radio access technology New-RAT, Radio Access Technology
  • NR New Radio Access Technology
  • NX new radio access
  • FX Next Generation Wireless Access
  • GSM Registered trademark
  • GSM Global System for Mobile Communications
  • CDMA2000 Code Division Multiple Access 2000
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.20 Ultra Wideband
  • any reference to a unit using the names "first”, “second”, etc., as used in this specification, does not fully limit the number or order of the units. These names can be used in this specification as a convenient method of distinguishing between two or more units. Thus, reference to a first element and a second element does not mean that only two elements may be employed or that the first element must prevail in the form of the second unit.
  • determination used in the present specification sometimes includes various actions. For example, regarding “judgment (determination)", calculation, calculation, processing, deriving, investigating, looking up (eg, table, database, or other) may be performed. Search in the data structure, ascertaining, etc. are considered to be “judgment (determination)”. Further, regarding “judgment (determination)”, reception (for example, receiving information), transmission (for example, transmission of information), input (input), output (output), and access (for example) may also be performed (for example, Accessing data in memory, etc. is considered to be “judgment (determination)”.
  • judgment (determination) it is also possible to consider “resolving”, “selecting”, selecting (choosing), establishing (comparing), comparing (comparing), etc. as “judging (determining)”. That is to say, regarding "judgment (determination)", several actions can be regarded as performing "judgment (determination)".
  • connection means any direct or indirect connection or combination between two or more units, This includes the case where there is one or more intermediate units between two units that are “connected” or “coupled” to each other.
  • the combination or connection between the units may be physical, logical, or a combination of the two.
  • connection can also be replaced with "access”.
  • two units may be considered to be electrically connected by using one or more wires, cables, and/or printed, and as a non-limiting and non-exhaustive example by using a radio frequency region.
  • the electromagnetic energy of the wavelength of the region, the microwave region, and/or the light is "connected” or "bonded” to each other.

Abstract

本发明的实施例提供了发送上行控制信息的方法和移动台。根据本发明实施例的发送上行控制信息的方法,包括:对初始控制信息添加填充比特,以生成上行控制信息,其中所述初始控制信息包括对于不同信道矩阵的秩具有相同比特位数的第一信息和对于不同信道矩阵的秩具有相同或不同比特位数的第二信息;以及发送所述上行控制信息。

Description

发送上行控制信息的方法和移动台 技术领域
本发明涉及无线通信领域,并且具体涉及发送上行控制信息的方法和移动台。
背景技术
在通信系统中,在用户终端中对信道的空间特性进行测量,并且将测量结果以信道状态信息(CSI)的形式反馈给无线基站变得越发重要。根据信道状态不同,用户终端在进行CSI反馈时所报告的信道矩阵的秩也可能不同,相应地,进行CSI反馈所需要的比特数也不同。
在LTE系统中,由于输入多输出(MIMO)天线的规模有限,CSI反馈的比特数之间的差异不大,并且不会给接收侧,即基站,造成显著的影响。然而,在5G NR(New Radio)系统中,由于输入多输出(MIMO)天线规模的增加,CSI反馈的比特数之间的差异也随之增加。然而,根据目前的上行控制信息发送方法,5G NR系统中的基站不能确定包括CSI反馈的上行控制信息中所包含的比特数。
发明内容
根据本发明的一个方面,提供了一种发送上行控制信息的方法,包括:对初始控制信息添加填充比特,以生成上行控制信息,其中所述初始控制信息包括对于不同信道矩阵的秩具有相同比特位数的第一信息和对于不同信道矩阵的秩具有相同或不同比特位数的第二信息;以及发送所述上行控制信息。
根据本发明的另一方面,提供了一种发送上行控制信息的方法,包括:发送指示上行控制信息的长度的长度指示信息,其中所述上行控制信息包括对于不同信道矩阵的秩具有相同比特位数的第一信息和对于不同信道矩阵的秩具有相同或不同比特位数的第二信息;以及在一个时隙中发送所述上行控制信息。
根据本发明的另一方面,提供了一种发送上行控制信息的方法,包括: 根据接收到的指示信息确定信道矩阵的秩;根据所确定的信道矩阵的秩对用于多个信道矩阵的秩的初始控制信息进行联合编码,以生成上行控制信息,其中每个信道矩阵的秩的初始控制信息包括对于不同信道矩阵的秩具有相同比特位数的第一信息和对于不同信道矩阵的秩具有相同或不同比特位数的第二信息;以及发送所述上行控制信息。
根据本发明的另一方面,提供了一种发送上行控制信息的方法,包括:以第一时间间隔,使用第一资源以发送第一上行控制信息;以及独立于所述第一上行控制信息,以第二时间间隔,使用第二资源以发送第二上行控制信息,其中所述第一上行控制信息和所述第二上行控制信息中的至少一个包括对于不同信道矩阵的秩具有相同比特位数的第一信息和对于不同信道矩阵的秩具有相同或不同比特位数的第二信息。
根据本发明的另一方面,提供了一种移动台,包括:发送单元,配置为发送指示上行控制信息的长度的长度指示信息,其中所述上行控制信息包括对于不同信道矩阵的秩具有相同比特位数的第一信息和对于不同信道矩阵的秩具有相同或不同比特位数的第二信息,所述发送单元还配置为在一个时隙中发送所述上行控制信息。
根据本发明的另一方面,提供了一种移动台,包括:确定单元,配置为根据接收到的指示信息确定信道矩阵的秩;生成单元,配置为根据所确定的信道矩阵的秩对用于多个信道矩阵的秩的初始控制信息进行联合编码,以生成上行控制信息,其中每个信道矩阵的秩的初始控制信息包括对于不同信道矩阵的秩具有相同比特位数的第一信息和对于不同信道矩阵的秩具有相同或不同比特位数的第二信息;以及发送单元,配置为发送所述上行控制信息。
根据本发明的另一方面,提供了一种移动台,包括:发送单元,配置为以第一时间间隔,使用第一资源以发送第一上行控制信息,所述发送单元还配置为独立于所述第一上行控制信息,以第二时间间隔,使用第二资源以发送第二上行控制信息,所述第一上行控制信息和所述第二上行控制信息中的至少一个包括对于不同信道矩阵的秩具有相同比特位数的第一信息和对于不同信道矩阵的秩具有相同或不同比特位数的第二信息。
附图说明
通过结合附图对本发明的实施例进行详细描述,本发明的上述和其它目的、特征、优点将会变得更加清楚。
图1是示出了根据本发明的一个实施例的发送上行控制信息的方法的流程图。
图2示出了根据本发明的一个实施例的初始控制信息中包括的信道状态信息(CSI)的示意图。
图3是示出了根据本发明的一个实施例,对图2中所示的初始控制信息添加填充比特的示意图。
图4是示出了根据本发明的另一实施例,对图2中所示的初始控制信息添加填充比特的示意图。
图5是示出了根据本发明的另一实施例的发送上行控制信息的方法的流程图。
图6是示出了根据本发明的另一实施例的发送上行控制信息的方法的流程图。
图7是示出了根据本发明的一个实施例,对初始控制信息进行联合编码的示意图。
图8是示出了根据本发明的另一实施例的发送上行控制信息的方法的流程图。
图9是示出了根据本发明的一个实施例所配置的第一资源和第二资源的示意图。
图10示出了根据本发明一个实施例的移动台的框图。
图11示出了根据本发明另一实施例的移动台的框图。
图12示出了根据本发明另一实施例的移动台的框图。
图13示出了根据本发明另一实施例的移动台的框图。
图14是示出本发明的一实施方式所涉及的移动台的硬件结构的一例的图。
具体实施方式
下面将参照附图来描述根据本发明实施例发送上行控制信息的方法和 移动台。在附图中,相同的参考标号自始至终表示相同的元件。应当理解:这里描述的实施例仅仅是说明性的,而不应被解释为限制本发明的范围。此外,这里所述的UE可以包括各种类型的用户终端,例如移动终端(或称为移动台)或者固定终端,然而,为方便起见,在下文中有时候可互换地使用UE和移动台。
在根据本发明的实施例中,上行控制信息可仅包括信道状态信息(CSI)。可替换地,在根据本发明的实施例中,除了信道状态信息(CSI)以外,上行控制信息还可包括HARQ反馈信息等其他控制信息。
以下,参照图1描述根据本发明一个实施例的发送上行控制信息的方法。图1示出了发送上行控制信息的方法100的流程图。
如图1所示,在步骤S101中,对初始控制信息添加填充比特,以生成上行控制信息。在此,初始控制信息可以是要在一个时隙中发送的上行控制信息的初始控制信息。此外,在步骤S101中的初始控制信息可包括对于不同信道矩阵的秩具有相同比特位数的第一信息和对于不同信道矩阵的秩具有相同或不同比特位数的第二信息。例如,第一信息可包括秩指示(RI)和/或CSI-RS资源指示(CRI)等,并且第二信息包括信道质量指示(CQI)和/或预编码矩阵指示(PMI)等。
图2示出了根据本发明的一个实施例的初始控制信息中包括的信道状态信息(CSI)的示意图。在图2所示的示例中,当信道矩阵的RANK(秩)为1时,对应的CSI为CSI 210;当RANK为2时,对应的CSI为CSI 220;当RANK为3或4时,对应的CSI为CSI 230;当RANK为5至8中的任意一个时,对应的CSI为CSI 240。如图2所示,CSI 210至240均包括RI、CQI和PMI。对于RANK 1至8中的任意一个,RI均具有相同的比特数,即,3比特。另一方面,当RANK取值不同时,CQI和PMI可具有不同的比特数。例如,当RANK为1时,PMI具有10个比特。当RANK为2时,PMI具有11个比特。又例如,当RANK为3或4时,CQI具有4个比特。当RANK为5至8时,CQI具有7个比特。
在图2所示的示例中,对应于不同RANK,CSI所包含的总比特数可能不同。具体地,CSI 210-240可分别具有17比特、18比特、17比特和19比特。在此情况下,包含CSI的上行控制信息的比特数也随着RANK的取值 不同而发生改变。
返回图1,在步骤S101中,可通过对初始控制信息添加填充比特,生成具有预定比特数量的上行控制信息。例如,可预先确定上行控制信息应具有X比特。可对初始控制信息添加填充比特,使得不论RANK的取值如何,上行控制信息均为X比特。
图3是示出了根据本发明的一个实施例,对图2中所示的初始控制信息添加填充比特的示意图。如图3所示,假设当RANK为5至8时,需要添加n个比特以便于上行控制信息达到X比特,则当RANK为1时,需要添加n+2个比特以便于上行控制信息达到X比特;当RANK为2时,需要添加n+1个比特以便于上行控制信息达到X比特;当RANK为3或4时,需要添加n+2个比特以便于上行控制信息达到X比特,其中X为大于0的整数,n为大于或等于0的整数。
在图3所示的示例中,填充比特作为一个整体被添加到上行控制信息中。可替换地,根据本发明的另一示例,初始控制信息中的第一信息和第二信息中的每个包括一个或多个分段,在步骤S101中,可对所述一个或多个分段中的至少部分分段分别添加填充比特。例如,第一信息和第二信息可包括对应于如RI、PMI、CQI等不同参数的各个分段。可对于这些分段中的一个或多个,分别添加填充比特。
图4是示出了根据本发明的另一实施例,对图2中所示的初始控制信息添加填充比特的示意图。图2中所示的初始控制信息可包括RI分段、PMI分段、CQI分段。可对RI分段、PMI分段、CQI分段都进行比特填充。如图4所示,可对RI分段添加填充a比特,对PMI分段填充b比特、并且对CQI分段添加填充c比特。可替换地,可仅对一部分分段进行比特填充。例如,在图4所示的示例中,对对PMI分段填充b比特、并且对CQI分段添加填充c比特,而不对RI分段添加填充a比特(如图4中的虚线框所示)。
此外,根据本发明的另一示例,除了CSI信息以外,初始控制信息还可包括例如混合自动重传(HARQ)信息等的其他信息。在此情况下,可对于CSI信息和HARQ信息分别添加填充比特。这里,CSI信息可以是对RI、PMI、CQI等多个参数进行了联合编码的比特序列,也可以是其中分别包括对应于各个参数的分段的比特序列。
在根据本发明的示例中,在步骤S101中添加的填充比特用于校验所述上行控制信息。例如,填充比特可用于上行控制信息的循环冗余校验(CRC)。在此情况下,基站可对UE发送的上行控制信息中的CRC进行盲检。又例如,填充比特可用于上行控制信息的奇偶校验。
例如,如上所述,填充比特可作为一个整体被添加到上行控制信息中。该整体被添加到上行控制信息中的填充比特可用于整个上行控制信息的循环冗余校验。又例如,如上所述,还可对初始控制信息中的一个或多个分段中的至少部分分段分别添加填充比特,被添加的填充比特可用于该分段的循环冗余校验。此外,在对初始控制信息中的一个或多个分段中的至少部分分段分别添加填充比特的情况下,还可添加填充比特以用于整个上行控制信息的循环冗余校验。
此外,根据本发明另一示例,在步骤S101中添加的填充比特可指示初始控制信息中第一信息的至少一部分。例如,可使用第一信息中的秩指示(RI)或秩指示(RI)的一部分作为填充比特。
此外,根据本发明的一个示例,可在对初始控制信息进行信道编码之前进行比特填充。具体地,在步骤S101中,可对初始控制信息添加填充比特,以生成填充比特序列,并且对所述填充比特序列进行信道编码,以生成上行控制信息。可替换地,也可在对初始控制信息进行信道编码时进行比特填充。
在步骤S102中发送生成的上行控制信息。例如,可在物理上行控制信道(PUCCH)或物理上行共享信道(PUSCH)等上行信道上发送所生成的上行控制信息。此外,可在一个时隙中发送所生成的上行控制信息。
在图1所示的发送上行控制信息的方法中,通过对初始控制信息添加填充比特,上行控制信息可具有特定的比特数。从而即使不向基站通知上行控制信息的长度,基站也能够根据确定的该特定比特数来确定上行控制信息的长度。
根据本发明的另一实施例,可通过长度指示信息来向基站通知上行控制信息的长度,以便于基站确定上行控制信息的长度。以下,参照图5描述根据本发明另一实施例的发送上行控制信息的方法。图5示出了发送上行控制信息的方法500的流程图。
如图5所示,在步骤S501中,发送指示上行控制信息的长度的长度指 示信息,其中所述上行控制信息包括对于不同信道矩阵的秩具有相同比特位数的第一信息和对于不同信道矩阵的秩具有相同或不同比特位数的第二信息。在此,初始控制信息可以是要在一个时隙中发送的上行控制信息的初始控制信息。
根据本发明的一个示例,可将解调参考信号(DMRS)中的部分信息作为长度指示信息。例如,可使用DMRS的扰码序列作为长度指示信息,以指示上行控制信息的长度。
然后在步骤S502中,在一个时隙中发送长度指示信息指示其长度的上行控制信息。例如,可在物理上行控制信道(PUCCH)或物理上行共享信道(PUSCH)等上行信道上发送所生成的上行控制信息。从而,基站可通过长度指示信息来确定在一子帧中接收到的上行控制信息的长度,并且可不需要添加填充比特。
此外,根据本发明的另一实施例,基站可向移动台通知关于信道矩阵的秩的信息,在此情况下,基站可根据向移动台通知的信息来预期移动台将返回的上行控制信息的长度,而不需要通过长度指示信息向基站进行通知。以下,参照图6描述根据本发明另一实施例的发送上行控制信息的方法。图6示出了发送上行控制信息的方法600的流程图。
如图6所示,在步骤S601中,根据接收到的指示信息确定信道矩阵的秩。根据本发明的一个示例,可根据基站发送的高层信令来确定所支持的空间的层数,并且从而确定信道矩阵的秩。
在步骤S602中,可根据所确定的信道矩阵的秩对用于多个信道矩阵的秩的初始控制信息进行联合编码,以生成上行控制信息,其中每个信道矩阵的秩的初始控制信息包括对于不同信道矩阵的秩具有相同比特位数的第一信息和对于不同信道矩阵的秩具有相同或不同比特位数的第二信息。
例如,当在步骤S601中确定信道矩阵的秩为RANK 1-2时,在步骤S602中,可对RANK 1所对应的初始控制信息和RANK 2所对应的初始控制信息进行联合编码,其中RANK 1所对应的初始控制信息和RANK 2所对应的初始控制信息中的每个都可包括对于不同信道矩阵的秩具有相同比特位数的第一信息(例如,RI)和对于不同信道矩阵的秩具有相同或不同比特位数的第二信息(例如,PMI或CQI)。又例如,当在步骤S601中确定信道矩阵的 秩为RANK 1-8时,在步骤S602中,可对RANK 1-8分别对应的初始控制信息进行联合编码。
图7是示出了根据本发明的一个实施例,对初始控制信息进行联合编码的示意图。如图7所示,当对RANK 1-2分别对应的初始控制信息进行联合编码时,上行控制信息可具有49151个状态,移动台需要使用16个比特来指示特定的上行控制信息的状态。因此,当基站可向移动台通知关于信道矩阵的秩为RANK 1-2的信息时,可预期上行控制信息的长度的为16比特。当对RANK 1-4分别对应的初始控制信息进行联合编码时,上行控制信息可具有81919个状态,移动台需要使用17个比特来指示特定的上行控制信息的状态。因此,当基站可向移动台通知关于信道矩阵的秩为RANK 1-4的信息时,可预期上行控制信息的长度的为17比特。当对RANK 1-8分别对应的初始控制信息进行联合编码时,上行控制信息可具有344063个状态,移动台需要使用19个比特来指示特定的上行控制信息的状态。因此,当基站可向移动台通知关于信道矩阵的秩为RANK 1-8的信息时,可预期上行控制信息的长度的为19比特。
为了减少用于发送控制信息的比特数,根据本发明的一个示例,可对通信系统中所支持的码本进行下采样。也就是说,以减少上行控制信息中需要表示的码本的数量。优选地,可在2^n和2^(n+1)之间设置预定阈值,当上行控制信息所需的表示的状态数量位于2^n和2^(n+1)之间,且小于预定阈值时,可对码本进行下采样以减少上行控制信息中需要表示的码本的数量,从而使用较少的比特数来发送上行控制信息。
返回图6,然后,在步骤S603中,发送上行控制信息。例如,可在物理上行控制信道(PUCCH)或物理上行共享信道(PUSCH)等上行信道上发送所生成的上行控制信息。此外,可在一个时隙中发送所生成的上行控制信息。
以上在结合图1-7描述的示例中,可通过填充比特、发送长度指示信息、或根据接收到的指示信息确定信道矩阵的秩等方式来确定上行控制信息的长度。可替换地,为了减少需要发送的控制信令,移动台或基站也不进行上述操作,而直接发送上行控制信息。在此情况下,基站可对于移动台发送的上行控制信息进行盲解码,以确定其长度。
此外,对于不同情况的上行控制信息的发送周期可能不同。例如,在某些情况下,移动台可需要以5ms为周期发送上行控制信息。而在其他情况下,移动台可需要以20ms为周期发送上行控制信息。在此情况下如果只配置一组上行控制信息资源(也可称为“资源组”),可能造成不必要的上行控制信息发送。因此,根据本发明的另一示例,可配置多组资源以分别发送上行控制信息。
以下,参照图8描述根据本发明另一实施例的发送上行控制信息的方法。图8示出了发送上行控制信息的方法800的流程图。如图8所示,在步骤S801中,以第一时间间隔,使用第一资源(也可以称为“第一资源组”)以发送第一上行控制信息,并且在步骤S802中,独立于所述第一上行控制信息,以第二时间间隔,使用第二资源(也可以称为“第二资源组”)以发送第二上行控制信息。根据本发明的一个示例,第一上行控制信息和所述第二上行控制信息中的至少一个包括对于不同信道矩阵的秩具有相同比特位数的第一信息和对于不同信道矩阵的秩具有相同或不同比特位数的第二信息。例如,第一上行控制信息可以包括对于不同信道矩阵的秩具有相同比特位数的第一信息,第二上行控制信息可以包括对于不同信道矩阵的秩具有相同比特位数的第一信息、以及对于不同信道矩阵的秩具有相同或不同比特位数的第二信息。又例如,第一上行控制信息和第一上行控制信息都可包括对于不同信道矩阵的秩具有相同比特位数的第一信息、以及对于不同信道矩阵的秩具有相同或不同比特位数的第二信息。
此外,例如,可在一个时隙中配置第一资源和第二资源。图9是示出了根据本发明的一个实施例所配置的第一资源和第二资源的示意图。如图9所示,第一资源901和第二资源902可被位置为位于一个时隙所对应的资源池中的不同区域。图9中的一个小方格可以表示一个码元。第一资源901用于发送第一上行控制信息,并且第二资源902用于发送第二上行控制信息。由于第一上行控制信息和第二上行控制信息的发送周期不同,在有些时隙中可能只根据所配置的第一资源发送第一上行控制信息,而在有些时隙中可能既根据所配置的第一资源发送第一上行控制信息,又根据所配置的第二资源发送第二上行控制信息。
当在一个子帧中既发送第一上行控制信息又发送第二上行控制信息时, 可对第一上行控制信息的初始信息和第二上行控制信息的初始信息独立编码,以获得相互独立的第一上行控制信息和第二上行控制信息。另一方面,在当第一上行控制信息和/或第二上行控制信息内部包括多个分段或信息时,可在第一上行控制信息和/或第二上行控制信息内部进行以上结合图1-7描述的填充比特、联合编码等操作。例如,在可对第一上行控制信息的初始控制信息添加填充比特,以生成第一上行控制信息。又例如,可对第二上行控制信息中的各个信息进行联合编码。以上已结合图1-7对填充比特、联合编码等操作进行了详细描述,故在此不再赘述。
根据本发明的一个示例,第一上行控制信息可以是用于宽带(wideband)通信的上行控制信息。第二上行控制信息可以是用于子带(subband)通信的上行控制信息,反之亦然。
下面,参照图10来描述根据本发明一个实施例的移动台。图10示出了根据本发明一个实施例的移动台1000的框图。如图10所示,移动台1000包括填充单元1010和发送单元1020。除了这两个单元以外,移动台1000还可以包括其他部件,然而,由于这些部件与本发明实施例的内容无关,因此在这里省略其图示和描述。此外,由于根据本发明实施例的移动台1000执行的下述操作的具体细节与在上文中参照图1-4描述的细节相同,因此在这里为了避免重复而省略对相同细节的重复描述。
填充单元1010可对初始控制信息添加填充比特,以生成上行控制信息。在此,初始控制信息可以是要在一个时隙中发送的上行控制信息的初始控制信息。此外,初始控制信息可包括对于不同信道矩阵的秩具有相同比特位数的第一信息和对于不同信道矩阵的秩具有相同或不同比特位数的第二信息。例如,第一信息可包括秩指示(RI)和/或CSI-RS资源指示(CRI)等,并且第二信息包括信道质量指示(CQI)和/或预编码矩阵指示(PMI)等。
填充单元1010可通过对初始控制信息添加填充比特,生成具有预定比特数量的上行控制信息。例如,可预先确定上行控制信息应具有X比特。可对初始控制信息添加填充比特,使得不论RANK的取值如何,上行控制信息均为X比特。
根据本发明的一个示例,填充单元1010可将填充的比特作为一个整体添加到上行控制信息中。可替换地,根据本发明的另一示例,初始控制信息 中的第一信息和第二信息中的每个包括一个或多个分段。填充单元1010可对所述一个或多个分段中的至少部分分段分别添加填充比特。例如,第一信息和第二信息可包括对应于如RI、PMI、CQI等不同参数的各个分段。可对于这些分段中的一个或多个,分别添加填充比特。具体地,填充单元1010可对于每个分段都添加填充比特。可替换地,填充单元1010可仅对一部分分段进行比特填充。
此外,根据本发明的另一示例,除了CSI信息以外,初始控制信息还可包括例如混合自动重传(HARQ)信息等的其他信息。在此情况下,填充单元1010可对于CSI信息和HARQ信息分别添加填充比特。这里,CSI信息可以是对RI、PMI、CQI等多个参数进行了联合编码的比特序列,也可以是其中分别包括对应于各个参数的分段的比特序列。
在根据本发明的示例中,填充单元1010添加的填充比特用于校验所述上行控制信息。例如,填充比特可用于上行控制信息的循环冗余校验(CRC)。在此情况下,基站可对UE发送的上行控制信息中的CRC进行盲检。又例如,填充比特可用于上行控制信息的奇偶校验。
例如,如上所述,填充比特可作为一个整体被添加到上行控制信息中。该整体被添加到上行控制信息中的填充比特可用于整个上行控制信息的循环冗余校验。又例如,如上所述,还可对初始控制信息中的一个或多个分段中的至少部分分段分别添加填充比特,被添加的填充比特可用于该分段的循环冗余校验。此外,在对初始控制信息中的一个或多个分段中的至少部分分段分别添加填充比特的情况下,填充单元1010还可添加填充比特以用于整个上行控制信息的循环冗余校验。
此外,根据本发明另一示例,填充单元1010添加的填充比特可指示初始控制信息中第一信息的至少一部分。例如,可使用第一信息中的秩指示(RI)或秩指示(RI)的一部分作为填充比特。
此外,根据本发明的一个示例,可在对初始控制信息进行信道编码之前进行比特填充。具体地,移动台还可包括编码单元(未示出)。填充单元1010可对初始控制信息添加填充比特,以生成填充比特序列。然后,编码单元可对所述填充比特序列进行信道编码,以生成上行控制信息。可替换地,填充单元1010也可在对初始控制信息进行信道编码时进行比特填充。
然后,发送单元1020发送生成的上行控制信息。例如,发送单元1020可在物理上行控制信道(PUCCH)或物理上行共享信道(PUSCH)等上行信道上发送所生成的上行控制信息。此外,发送单元1020可在一个时隙中发送所生成的上行控制信息。
图10所示的移动台通过对初始控制信息添加填充比特,上行控制信息可具有特定的比特数。从而及时不向基站通知上行控制信息的长度,基站也能够根据确定的该特定比特数来确定上行控制信息的长度。
根据本发明的另一实施例,移动台可通过长度指示信息来向基站通知上行控制信息的长度,以便于基站确定上行控制信息的长度。以下,参照图11描述根据本发明另一实施例的移动台。图11示出了根据本发明另一实施例的移动台1100的框图。如图11所示,移动台1100包括发送单元1110。除了发送单元1110以外,移动台1100还可以包括其他部件,然而,由于这些部件与本发明实施例的内容无关,因此在这里省略其图示和描述。此外,由于根据本发明实施例的移动台1100执行的下述操作的具体细节与在上文中参照图5描述的细节相同,因此在这里为了避免重复而省略对相同细节的重复描述。
如图11所示,发送单元1110发送指示上行控制信息的长度的长度指示信息,其中所述上行控制信息包括对于不同信道矩阵的秩具有相同比特位数的第一信息和对于不同信道矩阵的秩具有相同或不同比特位数的第二信息。在此,初始控制信息可以是要在一个时隙中发送的上行控制信息的初始控制信息。
根据本发明的一个示例,可将解调参考信号(DMRS)中的部分信息作为长度指示信息。例如,可使用DMRS的扰码序列作为长度指示信息,以指示上行控制信息的长度。
然后发送单元1110,在一个时隙中发送长度指示信息指示其长度的上行控制信息。例如,可在物理上行控制信道(PUCCH)或物理上行共享信道(PUSCH)等上行信道上发送所生成的上行控制信息。从而,基站可通过长度指示信息来确定在一子帧中接收到的上行控制信息的长度,并且可不需要添加填充比特。
此外,根据本发明的另一实施例,基站可向移动台通知关于信道矩阵的 秩的信息,在此情况下,基站可根据向移动台通知的信息来预期移动台将返回的上行控制信息的长度,而不需要通过长度指示信息向基站进行通知。以下,参照图12描述根据本发明另一实施例的移动台。图12示出了根据本发明另一实施例的移动台1200的框图。如图12所示,移动台1200包括确定单元1210、生成单元1220和发送单元1230。除了图12中所示的三个单元以外,移动台1200还可以包括其他部件,然而,由于这些部件与本发明实施例的内容无关,因此在这里省略其图示和描述。此外,由于根据本发明实施例的移动台1300执行的下述操作的具体细节与在上文中参照图6-7描述的细节相同,因此在这里为了避免重复而省略对相同细节的重复描述。
在图12所示的示例中,确定单元1210根据接收到的指示信息确定信道矩阵的秩。根据本发明的一个示例,可根据基站发送的高层信令来确定所支持的空间的层数,并且从而确定信道矩阵的秩。
生成单元1220可根据所确定的信道矩阵的秩对用于多个信道矩阵的秩的初始控制信息进行联合编码,以生成上行控制信息,其中每个信道矩阵的秩的初始控制信息包括对于不同信道矩阵的秩具有相同比特位数的第一信息和对于不同信道矩阵的秩具有相同或不同比特位数的第二信息。
例如,当确定单元1210确定信道矩阵的秩为RANK 1-2时,生成单元1220可对RANK 1所对应的初始控制信息和RANK 2所对应的初始控制信息进行联合编码,其中RANK 1所对应的初始控制信息和RANK 2所对应的初始控制信息中的每个都可包括对于不同信道矩阵的秩具有相同比特位数的第一信息(例如,RI)和对于不同信道矩阵的秩具有相同或不同比特位数的第二信息(例如,PMI或CQI)。又例如,当确定单元1210确定信道矩阵的秩为RANK 1-8时,生成单元1220可对RANK 1-8分别对应的初始控制信息进行联合编码。
为了减少用于发送控制信息的比特数,根据本发明的一个示例,可对通信系统中所支持的码本进行下采样。也就是说,以减少上行控制信息中需要表示的码本的数量。优选地,可在2^n和2^(n+1)之间设置预定阈值,当上行控制信息所需的表示的状态数量位于2^n和2^(n+1)之间,且小于预定阈值时,移动台中的采样单元可对码本进行下采样以减少上行控制信息中需要表示的码本的数量,从而使用较少的比特数来发送上行控制信息。
然后,在发送单元1230可发送上行控制信息。例如,可在物理上行控制信道(PUCCH)或物理上行共享信道(PUSCH)等上行信道上发送所生成的上行控制信息。此外,可在一个时隙中发送所生成的上行控制信息。
以上在结合图10-12描述的示例中,可通过填充比特、发送长度指示信息、或根据接收到的指示信息确定信道矩阵的秩等方式来确定上行控制信息的长度。可替换地,为了减少需要发送的控制信令,移动台或基站也不进行上述操作,而由移动台的发送单元直接发送上行控制信息。在此情况下,基站可对于移动台发送的上行控制信息进行盲解码,以确定其长度。
此外,对于不同情况的上行控制信息的发送周期可能不同。例如,在某些情况下,移动台可需要以5ms为周期发送上行控制信息。而在其他情况下,移动台可需要以20ms为周期发送上行控制信息。在此情况下如果只配置一组上行控制信息资源(也可称为“资源组”),可能造成不必要的上行控制信息发送。因此,根据本发明的另一示例,可配置多组资源以分别发送上行控制信息。
以下,参照图13描述根据本发明另一实施例的移动台。图13示出了根据本发明另一实施例的移动台1300的框图。如图13所示,移动台1300包括发送单元1310。除了图13中所示的发送单元1310以外,移动台1300还可以包括其他部件,然而,由于这些部件与本发明实施例的内容无关,因此在这里省略其图示和描述。此外,由于根据本发明实施例的移动台1300执行的下述操作的具体细节与在上文中参照图8-9描述的细节相同,因此在这里为了避免重复而省略对相同细节的重复描述。
如图8所示,发送单元1310以第一时间间隔,使用第一资源(也可以称为“第一资源组”)以发送第一上行控制信息,并且发送单元1310,独立于所述第一上行控制信息,以第二时间间隔,使用第二资源(也可以称为“第二资源组”)以发送第二上行控制信息。根据本发明的一个示例,第一上行控制信息和所述第二上行控制信息中的至少一个包括对于不同信道矩阵的秩具有相同比特位数的第一信息和对于不同信道矩阵的秩具有相同或不同比特位数的第二信息。例如,第一上行控制信息可以包括对于不同信道矩阵的秩具有相同比特位数的第一信息,第二上行控制信息可以包括对于不同信道矩阵的秩具有相同比特位数的第一信息、以及对于不同信道矩阵的秩具有 相同或不同比特位数的第二信息。又例如,第一上行控制信息和第一上行控制信息都可包括对于不同信道矩阵的秩具有相同比特位数的第一信息、以及对于不同信道矩阵的秩具有相同或不同比特位数的第二信息。
此外,例如,可在一个时隙中配置第一资源和第二资源。由于第一上行控制信息和第二上行控制信息的发送周期不同,在有些时隙中发送单元1310可能只根据所配置的第一资源发送第一上行控制信息,而在有些时隙中发送单元1310可能既根据所配置的第一资源发送第一上行控制信息,又根据所配置的第二资源发送第二上行控制信息。
移动台还可包括编码单元(未示出)。当发送单元1310在一个子帧中既发送第一上行控制信息又发送第二上行控制信息时,编码单元可对第一上行控制信息的初始信息和第二上行控制信息的初始信息独立编码,以获得相互独立的第一上行控制信息和第二上行控制信息。另一方面,移动台还可包括填充单元。在当第一上行控制信息和/或第二上行控制信息内部包括多个分段或信息时,编码单元和填充单元可在第一上行控制信息和/或第二上行控制信息内部进行以上结合图1-7描述的填充比特、联合编码等操作。例如,填充单元在可对第一上行控制信息的初始控制信息添加填充比特,以生成第一上行控制信息。又例如,编码单元可对第二上行控制信息中的各个信息进行联合编码。以上已结合图1-7对填充比特、联合编码等操作进行了详细描述,故在此不再赘述。
根据本发明的一个示例,第一上行控制信息可以是用于宽带(wideband)通信的上行控制信息。第二上行控制信息可以是用于子带(subband)通信的上行控制信息,反之亦然。
<硬件结构>
本发明的一实施方式中的无线基站、用户终端等可以作为执行本发明的无线通信方法的处理的计算机来发挥功能。图14是示出本发明的一实施方式所涉及的移动台的硬件结构的一例的图。上述的移动台1000至1300中的任意一个可以作为在物理上包括处理器1410、内存1420、存储器1430、通信装置1440、输入装置1450、输出装置1460、总线1470等的计算机装置来构成。
另外,在以下的说明中,“装置”这样的文字也可替换为电路、设备、 单元等。移动台1400的硬件结构可以包括一个或多个图中所示的各装置,也可以不包括部分装置。
例如,处理器1410仅图示出一个,但也可以为多个处理器。此外,可以通过一个处理器来执行处理,也可以通过一个以上的处理器同时、依次、或采用其它方法来执行处理。另外,处理器1410可以通过一个以上的芯片来安装。
移动台1400中的各功能例如通过如下方式实现:通过将规定的软件(程序)读入到处理器1410、内存1420等硬件上,从而使处理器1410进行运算,对由通信装置1440进行的通信进行控制,并对内存1420和存储器1430中的数据的读出和/或写入进行控制。
处理器1410例如使操作系统进行工作从而对计算机整体进行控制。处理器1410可以由包括与周边装置的接口、控制装置、运算装置、寄存器等的中央处理器(CPU,Central Processing Unit)构成。例如,上述的填充单元1010、确定单元1210、生成单元1220、编码单元等可以通过处理器1410实现。
此外,处理器1410将程序(程序代码)、软件模块、数据等从存储器1430和/或通信装置1440读出到内存1420,并根据它们执行各种处理。作为程序,可以采用使计算机执行在上述实施方式中说明的动作中的至少一部分的程序。
内存1420是计算机可读取记录介质,例如可以由只读存储器(ROM,Read Only Memory)、可编程只读存储器(EPROM,Erasable Programmable ROM)、电可编程只读存储器(EEPROM,Electrically EPROM)、随机存取存储器(RAM,Random Access Memory)、其它适当的存储介质中的至少一个来构成。内存1420也可以称为寄存器、高速缓存、主存储器(主存储装置)等。内存1420可以保存用于实施本发明的一实施方式所涉及的无线通信方法的可执行程序(程序代码)、软件模块等。
存储器1430是计算机可读取记录介质,例如可以由软磁盘(flexible disk)、软(注册商标)盘(floppy disk)、磁光盘(例如,只读光盘(CD-ROM(Compact Disc ROM)等)、数字通用光盘、蓝光(Blu-ray,注册商标)光盘)、可移动磁盘、硬盘驱动器、智能卡、闪存设备(例如,卡、棒(stick)、 密钥驱动器(key driver))、磁条、数据库、服务器、其它适当的存储介质中的至少一个来构成。存储器1430也可以称为辅助存储装置。
通信装置1440是用于通过有线和/或无线网络进行计算机间的通信的硬件(发送接收设备),例如也称为网络设备、网络控制器、网卡、通信模块等。通信装置1440为了实现例如频分双工(FDD,Frequency Division Duplex)和/或时分双工(TDD,Time Division Duplex),可以包括高频开关、双工器、滤波器、频率合成器等。例如,上述的发送单元710、接收单元810等可以通过通信装置1440来实现。
输入装置1450是接受来自外部的输入的输入设备(例如,键盘、鼠标、麦克风、开关、按钮、传感器等)。输出装置1460是实施向外部的输出的输出设备(例如,显示器、扬声器、发光二极管(LED,Light Emitting Diode)灯等)。另外,输入装置1450和输出装置1460也可以为一体的结构(例如触控面板)。
此外,处理器1410、内存1420等各装置通过用于对信息进行通信的总线1470连接。总线1470可以由单一的总线构成,也可以由装置间不同的总线构成。
此外,移动台1400可以包括微处理器、数字信号处理器(DSP,Digital Signal Processor)、专用集成电路(ASIC,Application Specific Integrated Circuit)、可编程逻辑器件(PLD,Programmable Logic Device)、现场可编程门阵列(FPGA,Field Programmable Gate Array)等硬件,可以通过该硬件来实现各功能块的部分或全部。例如,处理器1410可以通过这些硬件中的至少一个来安装。
(变形例)
另外,关于本说明书中说明的用语和/或对本说明书进行理解所需的用语,可以与具有相同或类似含义的用语进行互换。例如,信道和/或符号也可以为信号(信令)。此外,信号也可以为消息。参考信号也可以简称为RS(Reference Signal),根据所适用的标准,也可以称为导频(Pilot)、导频信号等。此外,分量载波(CC,Component Carrier)也可以称为小区、频率载波、载波频率等。
此外,无线帧在时域中可以由一个或多个期间(帧)构成。构成无线帧 的该一个或多个期间(帧)中的每一个也可以称为子帧。进而,子帧在时域中可以由一个或多个时隙构成。子帧可以是不依赖于参数配置(numerology)的固定的时间长度(例如1ms)。
进而,时隙在时域中可以由一个或多个符号(正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)符号、单载波频分多址(SC-FDMA,Single Carrier Frequency Division Multiple Access)符号等)构成。此外,时隙也可以是基于参数配置的时间单元。此外,时隙还可以包括多个微时隙。各微时隙在时域中可以由一个或多个符号构成。此外,微时隙也可以称为子时隙。
无线帧、子帧、时隙、微时隙以及符号均表示传输信号时的时间单元。无线帧、子帧、时隙、微时隙以及符号也可以使用各自对应的其它名称。例如,一个子帧可以被称为传输时间间隔(TTI,Transmission Time Interval),多个连续的子帧也可以被称为TTI,一个时隙或一个微时隙也可以被称为TTI。也就是说,子帧和/或TTI可以是现有的LTE中的子帧(1ms),也可以是短于1ms的期间(例如1~13个符号),还可以是长于1ms的期间。另外,表示TTI的单元也可以称为时隙、微时隙等而非子帧。
在此,TTI例如是指无线通信中调度的最小时间单元。例如,在LTE系统中,无线基站对各用户终端进行以TTI为单位分配无线资源(在各用户终端中能够使用的频带宽度、发射功率等)的调度。另外,TTI的定义不限于此。
TTI可以是经过信道编码的数据包(传输块)、码块、和/或码字的发送时间单元,也可以是调度、链路适配等的处理单元。另外,在给出TTI时,实际上与传输块、码块、和/或码字映射的时间区间(例如符号数)也可以短于该TTI。
另外,一个时隙或一个微时隙被称为TTI时,一个以上的TTI(即一个以上的时隙或一个以上的微时隙)也可以成为调度的最小时间单元。此外,构成该调度的最小时间单元的时隙数(微时隙数)可以受到控制。
具有1ms时间长度的TTI也可以称为常规TTI(LTE Rel.8-12中的TTI)、标准TTI、长TTI、常规子帧、标准子帧、或长子帧等。短于常规TTI的TTI也可以称为压缩TTI、短TTI、部分TTI(partial或fractional TTI)、压缩子 帧、短子帧、微时隙、或子时隙等。
另外,长TTI(例如常规TTI、子帧等)也可以用具有超过1ms的时间长度的TTI来替换,短TTI(例如压缩TTI等)也可以用具有比长TTI的TTI长度短且1ms以上的TTI长度的TTI来替换。
资源块(RB,Resource Block)是时域和频域的资源分配单元,在频域中,可以包括一个或多个连续的副载波(子载波(subcarrier))。此外,RB在时域中可以包括一个或多个符号,也可以为一个时隙、一个微时隙、一个子帧或一个TTI的长度。一个TTI、一个子帧可以分别由一个或多个资源块构成。另外,一个或多个RB也可以称为物理资源块(PRB,Physical RB)、子载波组(SCG,Sub-Carrier Group)、资源单元组(REG,Resource Element Group)、PRG对、RB对等。
此外,资源块也可以由一个或多个资源单元(RE,Resource Element)构成。例如,一个RE可以是一个子载波和一个符号的无线资源区域。
另外,上述的无线帧、子帧、时隙、微时隙以及符号等的结构仅仅为示例。例如,无线帧中包括的子帧数、每个子帧或无线帧的时隙数、时隙内包括的微时隙数、时隙或微时隙中包括的符号和RB的数目、RB中包括的子载波数、以及TTI内的符号数、符号长度、循环前缀(CP,Cyclic Prefix)长度等的结构可以进行各种各样的变更。
此外,本说明书中说明的信息、参数等可以用绝对值来表示,也可以用与规定值的相对值来表示,还可以用对应的其它信息来表示。例如,无线资源可以通过规定的索引来指示。进一步地,使用这些参数的公式等也可以与本说明书中明确公开的不同。
在本说明书中用于参数等的名称在任何方面都并非限定性的。例如,各种各样的信道(物理上行链路控制信道(PUCCH,Physical Uplink Control Channel)、物理下行链路控制信道(PDCCH,Physical Downlink Control Channel)等)和信息单元可以通过任何适当的名称来识别,因此为这些各种各样的信道和信息单元所分配的各种各样的名称在任何方面都并非限定性的。
本说明书中说明的信息、信号等可以使用各种各样不同技术中的任意一种来表示。例如,在上述的全部说明中可能提及的数据、命令、指令、信息、 信号、比特、符号、芯片等可以通过电压、电流、电磁波、磁场或磁性粒子、光场或光子、或者它们的任意组合来表示。
此外,信息、信号等可以从上层向下层、和/或从下层向上层输出。信息、信号等可以经由多个网络节点进行输入或输出。
输入或输出的信息、信号等可以保存在特定的场所(例如内存),也可以通过管理表进行管理。输入或输出的信息、信号等可以被覆盖、更新或补充。输出的信息、信号等可以被删除。输入的信息、信号等可以被发往其它装置。
信息的通知并不限于本说明书中说明的方式/实施方式,也可以通过其它方法进行。例如,信息的通知可以通过物理层信令(例如,下行链路控制信息(DCI,Downlink Control Information)、上行链路控制信息(UCI,Uplink Control Information))、上层信令(例如,无线资源控制(RRC,Radio Resource Control)信令、广播信息(主信息块(MIB,Master Information Block)、系统信息块(SIB,System Information Block)等)、媒体存取控制(MAC,Medium Access Control)信令)、其它信号或者它们的组合来实施。
另外,物理层信令也可以称为L1/L2(第1层/第2层)控制信息(L1/L2控制信号)、L1控制信息(L1控制信号)等。此外,RRC信令也可以称为RRC消息,例如可以为RRC连接建立(RRC Connection Setup)消息、RRC连接重配置(RRC Connection Reconfiguration)消息等。此外,MAC信令例如可以通过MAC控制单元(MAC CE(Control Element))来通知。
此外,规定信息的通知(例如,“为X”的通知)并不限于显式地进行,也可以隐式地(例如,通过不进行该规定信息的通知,或者通过其它信息的通知)进行。
关于判定,可以通过由1比特表示的值(0或1)来进行,也可以通过由真(true)或假(false)表示的真假值(布尔值)来进行,还可以通过数值的比较(例如与规定值的比较)来进行。
软件无论被称为软件、固件、中间件、微代码、硬件描述语言,还是以其它名称来称呼,都应宽泛地解释为是指命令、命令集、代码、代码段、程序代码、程序、子程序、软件模块、应用程序、软件应用程序、软件包、例程、子例程、对象、可执行文件、执行线程、步骤、功能等。
此外,软件、命令、信息等可以经由传输介质被发送或接收。例如,当使用有线技术(同轴电缆、光缆、双绞线、数字用户线路(DSL,Digital Subscriber Line)等)和/或无线技术(红外线、微波等)从网站、服务器、或其它远程资源发送软件时,这些有线技术和/或无线技术包括在传输介质的定义内。
本说明书中使用的“系统”和“网络”这样的用语可以互换使用。
在本说明书中,“无线基站(BS,Base Station)”、“无线基站”、“eNB”、“gNB”、“小区”、“扇区”、“小区组”、“载波”以及“分量载波”这样的用语可以互换使用。无线基站有时也以固定台(fixed station)、NodeB、eNodeB(eNB)、接入点(access point)、发送点、接收点、毫微微小区、小小区等用语来称呼。
无线基站可以容纳一个或多个(例如三个)小区(也称为扇区)。当无线基站容纳多个小区时,无线基站的整个覆盖区域可以划分为多个更小的区域,每个更小的区域也可以通过无线基站子系统(例如,室内用小型无线基站(射频拉远头(RRH,Remote Radio Head)))来提供通信服务。“小区”或“扇区”这样的用语是指在该覆盖中进行通信服务的无线基站和/或无线基站子系统的覆盖区域的一部分或整体。
在本说明书中,“移动台(MS,Mobile Station)”、“用户终端(user terminal)”、“用户装置(UE,User Equipment)”以及“终端”这样的用语可以互换使用。无线基站有时也以固定台(fixed station)、NodeB、eNodeB(eNB)、接入点(access point)、发送点、接收点、毫微微小区、小小区等用语来称呼。
移动台有时也被本领域技术人员以用户台、移动单元、用户单元、无线单元、远程单元、移动设备、无线设备、无线通信设备、远程设备、移动用户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或者若干其它适当的用语来称呼。
此外,本说明书中的无线基站也可以用用户终端来替换。例如,对于将无线基站和用户终端间的通信替换为多个用户终端间(D2D,Device-to-Device)的通信的结构,也可以应用本发明的各方式/实施方式。同样,本说明书中的用户终端也可以用无线基站来替换。
在本说明书中,设为通过无线基站进行的特定动作根据情况有时也通过其上级节点(upper node)来进行。显然,在具有无线基站的由一个或多个网络节点(network nodes)构成的网络中,为了与终端间的通信而进行的各种各样的动作可以通过无线基站、除无线基站之外的一个以上的网络节点(可以考虑例如移动管理实体(MME,Mobility Management Entity)、服务网关(S-GW,Serving-Gateway)等,但不限于此)、或者它们的组合来进行。
本说明书中说明的各方式/实施方式可以单独使用,也可以组合使用,还可以在执行过程中进行切换来使用。此外,本说明书中说明的各方式/实施方式的处理步骤、序列、流程图等只要没有矛盾,就可以更换顺序。例如,关于本说明书中说明的方法,以示例性的顺序给出了各种各样的步骤单元,而并不限定于给出的特定顺序。
本说明书中说明的各方式/实施方式可以应用于利用长期演进(LTE,Long Term Evolution)、高级长期演进(LTE-A,LTE-Advanced)、超越长期演进(LTE-B,LTE-Beyond)、超级第3代移动通信系统(SUPER 3G)、高级国际移动通信(IMT-Advanced)、第4代移动通信系统(4G,4th generation mobile communication system)、第5代移动通信系统(5G,5th generation mobile communication system)、未来无线接入(FRA,Future Radio Access)、新无线接入技术(New-RAT,Radio Access Technology)、新无线(NR,New Radio)、新无线接入(NX,New radio access)、新一代无线接入(FX,Future generation radio access)、全球移动通信系统(GSM(注册商标),Global System for Mobile communications)、码分多址接入2000(CDMA2000)、超级移动宽带(UMB,Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(注册商标))、IEEE 802.16(WiMAX(注册商标))、IEEE 802.20、超宽带(UWB,Ultra-WideBand)、蓝牙(Bluetooth(注册商标))、其它适当的无线通信方法的系统和/或基于它们而扩展的下一代系统。
本说明书中使用的“根据”这样的记载,只要未在其它段落中明确记载,则并不意味着“仅根据”。换言之,“根据”这样的记载是指“仅根据”和“至少根据”这两者。
本说明书中使用的对使用“第一”、“第二”等名称的单元的任何参照,均非全面限定这些单元的数量或顺序。这些名称可以作为区别两个以上单元 的便利方法而在本说明书中使用。因此,第一单元和第二单元的参照并不意味着仅可采用两个单元或者第一单元必须以若干形式占先于第二单元。
本说明书中使用的“判断(确定)(determining)”这样的用语有时包含多种多样的动作。例如,关于“判断(确定)”,可以将计算(calculating)、推算(computing)、处理(processing)、推导(deriving)、调查(investigating)、搜索(looking up)(例如表、数据库、或其它数据结构中的搜索)、确认(ascertaining)等视为是进行“判断(确定)”。此外,关于“判断(确定)”,也可以将接收(receiving)(例如接收信息)、发送(transmitting)(例如发送信息)、输入(input)、输出(output)、存取(accessing)(例如存取内存中的数据)等视为是进行“判断(确定)”。此外,关于“判断(确定)”,还可以将解决(resolving)、选择(selecting)、选定(choosing)、建立(establishing)、比较(comparing)等视为是进行“判断(确定)”。也就是说,关于“判断(确定)”,可以将若干动作视为是进行“判断(确定)”。
本说明书中使用的“连接的(connected)”、“结合的(coupled)”这样的用语或者它们的任何变形是指两个或两个以上单元间的直接的或间接的任何连接或结合,可以包括以下情况:在相互“连接”或“结合”的两个单元间,存在一个或一个以上的中间单元。单元间的结合或连接可以是物理上的,也可以是逻辑上的,或者还可以是两者的组合。例如,“连接”也可以替换为“接入”。在本说明书中使用时,可以认为两个单元是通过使用一个或一个以上的电线、线缆、和/或印刷电气连接,以及作为若干非限定性且非穷尽性的示例,通过使用具有射频区域、微波区域、和/或光(可见光及不可见光这两者)区域的波长的电磁能等,被相互“连接”或“结合”。
在本说明书或权利要求书中使用“包括(including)”、“包含(comprising)”、以及它们的变形时,这些用语与用语“具备”同样是开放式的。进一步地,在本说明书或权利要求书中使用的用语“或(or)”并非是异或。
以上对本发明进行了详细说明,但对于本领域技术人员而言,显然,本发明并非限定于本说明书中说明的实施方式。本发明在不脱离由权利要求书的记载所确定的本发明的宗旨和范围的前提下,可以作为修改和变更方式来实施。因此,本说明书的记载是以示例说明为目的,对本发明而言并非具 有任何限制性的意义。

Claims (14)

  1. 一种发送上行控制信息的方法,包括:
    对初始控制信息添加填充比特,以生成上行控制信息,其中所述初始控制信息包括对于不同信道矩阵的秩具有相同比特位数的第一信息和对于不同信道矩阵的秩具有相同或不同比特位数的第二信息;以及
    发送所述上行控制信息。
  2. 如权利要求1所述的方法,其中
    所述第一信息和第二信息中的每个包括一个或多个分段;
    所述对初始控制信息添加填充比特包括:
    对所述一个或多个分段中的至少一个分段添加填充比特。
  3. 如权利要求1或2所述的方法,其中
    所述填充比特用于校验所述上行控制信息。
  4. 如权利要求1或2所述的方法,其中
    所述填充比特指示所述第一信息的至少一部分。
  5. 如权利要求1或2所述的方法,其中
    所述第一信息包括秩指示(RI)和/或CSI-RS资源指示(CRI);
    所述第二信息包括信道质量指示(CQI)和/或预编码矩阵指示(PMI)。
  6. 如权利要求1或2所述的方法,其中对所述填充比特序列进行编码,以生成上行控制信息包括:
    对初始控制信息添加填充比特,以生成填充比特序列;以及
    对所述填充比特序列进行信道编码,以生成上行控制信息。
  7. 一种发送上行控制信息的方法,包括:
    发送指示上行控制信息的长度的长度指示信息,其中所述上行控制信息包括对于不同信道矩阵的秩具有相同比特位数的第一信息和对于不同信道矩阵的秩具有相同或不同比特位数的第二信息;以及
    在一个时隙中发送所述上行控制信息。
  8. 如权利要求7所述的方法,其中
    所述长度指示信息为解调参考信号。
  9. 一种发送上行控制信息的方法,包括:
    根据接收到的指示信息确定信道矩阵的秩;
    根据所确定的信道矩阵的秩对用于多个信道矩阵的秩的初始控制信息进行联合编码,以生成上行控制信息,其中每个信道矩阵的秩的初始控制信息包括对于不同信道矩阵的秩具有相同比特位数的第一信息和对于不同信道矩阵的秩具有相同或不同比特位数的第二信息;以及
    发送所述上行控制信息。
  10. 一种发送上行控制信息的方法,包括:
    以第一时间间隔,使用第一资源以发送第一上行控制信息;以及
    独立于所述第一上行控制信息,以第二时间间隔,使用第二资源以发送第二上行控制信息,其中
    所述第一上行控制信息和所述第二上行控制信息中的至少一个包括对于不同信道矩阵的秩具有相同比特位数的第一信息和对于不同信道矩阵的秩具有相同或不同比特位数的第二信息。
  11. 一种移动台,包括:
    填充单元,配置为对初始控制信息添加填充比特,以生成上行控制信息,其中所述初始控制信息包括对于不同信道矩阵的秩具有相同比特位数的第一信息和对于不同信道矩阵的秩具有相同或不同比特位数的第二信息;
    发送单元,配置为发送所述上行控制信息。
  12. 一种移动台,包括:
    发送单元,配置为发送指示上行控制信息的长度的长度指示信息,其中所述上行控制信息包括对于不同信道矩阵的秩具有相同比特位数的第一信息和对于不同信道矩阵的秩具有相同或不同比特位数的第二信息,
    所述发送单元还配置为在一个时隙中发送所述上行控制信息。
  13. 一种移动台,包括:
    确定单元,配置为根据接收到的指示信息确定信道矩阵的秩;
    生成单元,配置为根据所确定的信道矩阵的秩对用于多个信道矩阵的秩的初始控制信息进行联合编码,以生成上行控制信息,其中每个信道矩阵的秩的初始控制信息包括对于不同信道矩阵的秩具有相同比特位数的第一信息和对于不同信道矩阵的秩具有相同或不同比特位数的第二信息;以及
    发送单元,配置为发送所述上行控制信息。
  14. 一种移动台,包括:
    发送单元,配置为以第一时间间隔,使用第一资源以发送第一上行控制信息,
    所述发送单元还配置为独立于所述第一上行控制信息,以第二时间间隔,使用第二资源以发送第二上行控制信息,
    所述第一上行控制信息和所述第二上行控制信息中的至少一个包括对于不同信道矩阵的秩具有相同比特位数的第一信息和对于不同信道矩阵的秩具有相同或不同比特位数的第二信息。
PCT/CN2018/094465 2017-09-10 2018-07-04 发送上行控制信息的方法和移动台 WO2019047603A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/645,944 US11234260B2 (en) 2017-09-10 2018-07-04 Method for transmitting uplink control information and mobile station
CN201880058703.6A CN111183699B (zh) 2017-09-10 2018-07-04 发送上行控制信息的方法和移动台
EP18853937.3A EP3684129A4 (en) 2017-09-10 2018-07-04 PROCEDURE FOR SENDING UPLINK CONTROL INFORMATION AND MOBILE STATION
JP2020514584A JP7293204B2 (ja) 2017-09-10 2018-07-04 端末、無線通信方法、基地局及びシステム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710809353.X 2017-09-10
CN201710809353.XA CN109495972A (zh) 2017-09-10 2017-09-10 发送上行控制信息的方法和移动台

Publications (1)

Publication Number Publication Date
WO2019047603A1 true WO2019047603A1 (zh) 2019-03-14

Family

ID=65633587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/094465 WO2019047603A1 (zh) 2017-09-10 2018-07-04 发送上行控制信息的方法和移动台

Country Status (5)

Country Link
US (1) US11234260B2 (zh)
EP (1) EP3684129A4 (zh)
JP (1) JP7293204B2 (zh)
CN (2) CN109495972A (zh)
WO (1) WO2019047603A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11343822B2 (en) * 2018-01-12 2022-05-24 Qualcomm Incorporated Coded-bit allocation for uplink control information (UCI) segmentation
US20220399930A1 (en) * 2021-06-10 2022-12-15 Qualcomm Incorporated Configurations for utilization of a padding duration

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102263617A (zh) * 2010-05-31 2011-11-30 中兴通讯股份有限公司 上行控制信息在物理上行共享信道上的发送方法及装置
CN103209053A (zh) * 2010-09-08 2013-07-17 华为技术有限公司 一种信息比特发送方法、装置和系统
CN105391479A (zh) * 2014-08-27 2016-03-09 中国电信股份有限公司 一种lte网络中终端反馈码本的方法、基站及系统
EP2996296A1 (en) * 2013-05-11 2016-03-16 LG Electronics Inc. Communication method considering carrier type and apparatus for same

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009107985A1 (en) * 2008-02-28 2009-09-03 Lg Electronics Inc. Method for multiplexing data and control information
US8848672B2 (en) * 2010-02-23 2014-09-30 Lg Electronics Inc. Method and device for providing control information for uplink transmission in wireless communication system supporting uplink multi-antenna transmission
EP2556712B1 (en) * 2010-04-05 2020-09-09 Nokia Technologies Oy Channel state information feedback for enhanced downlink multiple input - multiple output operation
CN102404072B (zh) * 2010-09-08 2013-03-20 华为技术有限公司 一种信息比特发送方法、装置和系统
US9674822B2 (en) * 2012-02-22 2017-06-06 Lg Electronics Inc. Method and apparatus for transmitting control information
WO2013172674A1 (ko) * 2012-05-17 2013-11-21 엘지전자 주식회사 채널 상태 정보 보고 방법 및 장치
US9647738B2 (en) * 2013-03-21 2017-05-09 Lg Electronics Inc. Method and device for transmitting channel state information in wireless communication system
WO2017038532A1 (ja) * 2015-08-31 2017-03-09 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
WO2017039166A1 (ko) * 2015-09-01 2017-03-09 엘지전자 주식회사 채널 상태 보고 방법 및 이를 위한 장치
CN107211399B (zh) * 2015-12-03 2020-05-08 华为技术有限公司 一种控制信息格式的处理方法和基站以及用户设备
US10299255B2 (en) * 2016-06-27 2019-05-21 Lg Electronics Inc. Method for transmitting uplink control information in wireless communication system and apparatus for the same
US10038488B2 (en) * 2016-12-22 2018-07-31 Qualcomm Incorporated PUCCH transmit diversity with one-symbol STBC
US11337188B2 (en) * 2016-12-28 2022-05-17 Samsung Electronics Co., Ltd Method and device for transmitting/receiving uplink control information in wireless communication system
RU2742949C1 (ru) * 2017-07-24 2021-02-12 Гуандун Оппо Мобайл Телекоммьюникейшнз Корп., Лтд. Способ передачи данных, терминальное устройство и сетевое устройство
US10716128B2 (en) * 2017-12-09 2020-07-14 Huawei Technologies Co., Ltd. Communication method and communication apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102263617A (zh) * 2010-05-31 2011-11-30 中兴通讯股份有限公司 上行控制信息在物理上行共享信道上的发送方法及装置
CN103209053A (zh) * 2010-09-08 2013-07-17 华为技术有限公司 一种信息比特发送方法、装置和系统
EP2996296A1 (en) * 2013-05-11 2016-03-16 LG Electronics Inc. Communication method considering carrier type and apparatus for same
CN105391479A (zh) * 2014-08-27 2016-03-09 中国电信股份有限公司 一种lte网络中终端反馈码本的方法、基站及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3684129A4 *

Also Published As

Publication number Publication date
EP3684129A1 (en) 2020-07-22
US20200281013A1 (en) 2020-09-03
CN109495972A (zh) 2019-03-19
CN111183699B (zh) 2024-04-19
JP2020533900A (ja) 2020-11-19
US11234260B2 (en) 2022-01-25
EP3684129A4 (en) 2021-05-12
JP7293204B2 (ja) 2023-06-19
CN111183699A (zh) 2020-05-19

Similar Documents

Publication Publication Date Title
JP2022177217A (ja) 端末、無線通信方法、基地局及びシステム
US11357009B2 (en) Beam selection method, base station, and user equipment
US11218202B2 (en) Beam configuration method, a mobile station and a base station
JPWO2019064561A1 (ja) ユーザ端末及び無線通信方法
WO2018171649A1 (zh) 反馈方法和通信设备
WO2016173489A1 (zh) 一种控制信息发送方法和接收方法及发射机、接收机
WO2018171655A1 (zh) 参考信号发送方法、信道测量方法、无线基站及用户终端
US20230075481A1 (en) Method, user equipment unit and base station for transmitting and receiving uplink data
WO2020039482A1 (ja) ユーザ端末及び無線通信方法
WO2018201910A1 (zh) 波束信息反馈方法及用户装置
JP7465812B2 (ja) ユーザ端末、無線基地局、及び、無線通信方法
US11129038B2 (en) Hybrid channel quality measurement method and user equipment
WO2018201786A1 (zh) 一种多波束的csi反馈信息的传输方法和装置
CN111183699B (zh) 发送上行控制信息的方法和移动台
US11425742B2 (en) Method for determining an uplink scheduling manner, user equipment and base station
US11057154B2 (en) Method and apparatus for rate matching interleaving for polar codes
US20220191894A1 (en) Terminal
WO2019062535A1 (zh) 比特到符号的映射方法和通信装置
US20200389872A1 (en) User terminal and radio communication method
US20240032013A1 (en) Terminal, base station and communication method
US11528709B2 (en) User terminal and radio communication method
WO2019157697A1 (zh) 传输块大小列表构建和选择方法、随机接入方法和通信设备
WO2020029007A1 (zh) 信息发送和接收方法、用户设备和基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18853937

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020514584

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018853937

Country of ref document: EP

Effective date: 20200414