WO2018171649A1 - 反馈方法和通信设备 - Google Patents
反馈方法和通信设备 Download PDFInfo
- Publication number
- WO2018171649A1 WO2018171649A1 PCT/CN2018/079930 CN2018079930W WO2018171649A1 WO 2018171649 A1 WO2018171649 A1 WO 2018171649A1 CN 2018079930 W CN2018079930 W CN 2018079930W WO 2018171649 A1 WO2018171649 A1 WO 2018171649A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- feedback information
- code block
- data block
- transmission
- sets
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 42
- 238000000034 method Methods 0.000 title claims abstract description 41
- 230000005540 biological transmission Effects 0.000 claims abstract description 198
- 238000005259 measurement Methods 0.000 claims description 24
- 230000006835 compression Effects 0.000 claims description 17
- 238000007906 compression Methods 0.000 claims description 17
- 238000012545 processing Methods 0.000 claims description 10
- 238000010586 diagram Methods 0.000 description 13
- 230000006870 function Effects 0.000 description 10
- 238000010295 mobile communication Methods 0.000 description 8
- 230000011664 signaling Effects 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 6
- 230000006978 adaptation Effects 0.000 description 5
- 238000012546 transfer Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000013468 resource allocation Methods 0.000 description 1
- 208000037918 transfusion-transmitted disease Diseases 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1829—Arrangements specially adapted for the receiver end
- H04L1/1858—Transmission or retransmission of more than one copy of acknowledgement message
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
- H04L5/0055—Physical resource allocation for ACK/NACK
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0091—Signaling for the administration of the divided path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0023—Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
- H04L1/0028—Formatting
- H04L1/0029—Reduction of the amount of signalling, e.g. retention of useful signalling or differential signalling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/1607—Details of the supervisory signal
- H04L1/1671—Details of the supervisory signal the supervisory signal being transmitted together with control information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/21—Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/54—Allocation or scheduling criteria for wireless resources based on quality criteria
- H04W72/542—Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
Definitions
- the present application relates to the field of communication technologies, and in particular to a feedback method and a communication device.
- a user equipment or mobile station also referred to as a User Equipment (UE) communicates with a base station (BS) over a wireless network, such as a Radio Access Network (RAN).
- RAN Radio Access Network
- the Radio Access Network (RAN) covers a geographical area, which is usually divided into cell areas, each of which is served by a base station for user equipment within the area.
- the user equipment may report acknowledgment (ACK) information or non-acknowledgement (NACK) information to the base station for feedback reception. Is the data block correct? When the user equipment feeds back the ACK information to the base station, it indicates that the received data block is correct. When the user equipment feeds back the NACK information to the base station, it indicates that the received data block is incorrect, and the base station needs to retransmit the data block.
- the ACK information or the NACK information fed back by the user equipment can only indicate the correctness of the data block sent by the base station, and cannot further feed back the code block or the code block included in the data block. The specific transmission status of the code block group.
- a feedback method comprising: receiving a data block including a plurality of code block sets; generating feedback information about the data block according to a reception state of the plurality of code block sets, The feedback information is used to indicate a respective transmission state of at least part of the code block set in the plurality of code block sets; and the feedback information is sent.
- a communication device comprising: a receiving unit configured to receive a data block including a plurality of code block sets; and a processing unit configured to generate according to a reception state of the plurality of code block sets Regarding the feedback information of the data block, the feedback information is used to indicate a respective transmission state of at least part of the code block set in the plurality of code block sets; and the sending unit is configured to send the feedback information.
- the specific transmission state of at least part of the code block or the code block set included in the data block transmitted by the base station can be fed back, thereby improving the efficiency and reliability of data transmission and reducing The delay in the data transmission process.
- FIG. 1 shows a flow chart of a feedback method 100 in accordance with an embodiment of the present invention
- FIG. 2 shows an example of a specific structure of feedback information in an embodiment of the present invention, wherein FIG. 2(a) shows a structure in which a correct feedback information is transmitted for each code block set in a data block; FIG. 2(b) shows a feedback information structure having at least one code block set transmission error in the data block;
- FIG. 3 is a schematic diagram showing the configuration of feedback information when the data block is transmitted correctly, wherein FIG. 3(a) is a schematic diagram showing the amount of deviation of the feedback information content portion for feeding back the demodulation reference signal DMRS CQI; FIG. 3(b) a schematic diagram showing a portion of the feedback information content portion for feeding back the DMRS CQI, and a portion for feeding back the partial CSI;
- FIG. 4 shows an example of a specific structure of feedback information in an embodiment of the present invention, wherein FIG. 4(a) shows a structure in which all code blocks in a data block are transmitted with correct feedback information; FIG. 4(b) and FIG. (c) shows a feedback information structure when a data block has at least one code block set transmission error; FIG. 4(d) shows a feedback information structure having a plurality of code block set transmission errors in the data block;
- FIG. 5 shows an example of a feedback information structure in another embodiment of the present invention.
- FIG. 6 shows a specific arrangement manner of the feedback information structure shown in FIG. 5;
- FIG. 7 shows another specific arrangement manner of the feedback information structure shown in FIG. 5;
- FIG. 8 shows an example of a setting principle of a selected transmission state of the code block set in FIG. 7;
- FIG. 9 is a schematic diagram showing arithmetic coding according to the probability of various feedback information in one embodiment of the present invention.
- Figure 10 shows a block diagram of a communication device in accordance with an embodiment of the present invention.
- Fig. 11 is a diagram showing an example of the hardware configuration of a communication device according to an embodiment of the present invention.
- ACK acknowledgment
- NACK non-acknowledgement
- the sender receives the ACK signal, it sends new data, otherwise it will resend the last transmitted data block.
- ACK or NACK information can be represented by one bit.
- ACK information as acknowledgment information may be represented by bit 0
- NACK information as unconfirmed information may be represented by bit 1.
- the value of bit 0 or 1 can also be reversed.
- each code block can be a piece of data in the data block, that is, a sub-block, and each code block set can include one or more The code block
- each code block set can include one or more The code block
- FIG. 1 shows a flow diagram of a feedback method 100, which may be performed by a mobile station or a base station, in accordance with an embodiment of the present invention.
- step S101 a data block including a plurality of code block sets is received.
- each of the received data blocks may include one or more code blocks, and the number of code blocks included in the code block set may be specific.
- the transfer settings and the content of the transferred data are determined.
- step S102 generating feedback information about the data block according to a receiving state of the plurality of code block sets, where the feedback information is used to indicate a respective transmission state of at least part of the code block set in the plurality of code block sets.
- the feedback information in the embodiment of the present invention no longer uses ACK or NACK to indicate whether the transmission state of the entire data block is successful, but specifically reflects whether the transmission state of at least part of the code block set in the data block is successful in the feedback information. Therefore, the feedback information in the embodiment of the present invention may include more than one bit.
- the number of bits in the feedback information may be related to the number of code block sets in the data block.
- the number of bits of the feedback information may be equal to the number of code block sets in the data block.
- the setting of the above number of bits is only here. For the sake of example, no restrictions are imposed.
- the feedback information may include two parts: a feedback information header and a feedback information content section.
- the feedback information content portion may include a bit corresponding to the number of code block sets in the data block; the feedback information header may be generated according to a transmission state of each code block set of the data block.
- 2 shows an example of a specific structure of feedback information in an embodiment of the present invention, wherein FIG. 2(a) shows that when there are 10 code block sets in a data block, and each code block set transmits correct feedback information structure.
- the first bit is the feedback information header, the bit 1 indicates that the entire data block is transmitted correctly; the next 10 bits together constitute the feedback information content part, and each bit corresponds to one of the data blocks respectively.
- Fig. 2(b) shows a feedback information structure in which 10 code block sets in a data block have at least one (shown as 2) code block set transmission errors.
- the first bit is also the feedback header, and the bit 0 indicates that at least one code block transmission error in the data block; the next 10 bits together constitute the feedback information content portion, and
- Figure 2 (a) Similarly, each bit also corresponds to a code block set of a corresponding position in the data block, bit 1 is used to indicate that the corresponding code block set is transmitted correctly, and bit 0 is used to indicate the corresponding code block set transmission. error.
- the first code block set and the fourth code block set in the currently fed data block are transmitted incorrectly, and the rest of the transmissions are correct.
- the channel measurement information fed back herein may indicate CQI (such as multi-user channel quality indicator MU-CQI), channel state information CSI, and/or signal-to-noise ratio SNR, signal to interference and noise ratio (SINR) (ie, signal) of the measured channel quality.
- CQI such as multi-user channel quality indicator MU-CQI
- CSI channel state information
- SINR signal-to-noise ratio
- SINR signal to interference and noise ratio
- Fig. 3 is a diagram showing the structure configuration of feedback information when the data block is transmitted correctly.
- the feedback information content portion can be used to feedback the deviation amount of the demodulation reference signal DMRSCQI for fast feedback and link adaptation, and the remaining bits can be zero-padded by padding padding.
- the feedback information content portion may be partially used for feeding back the DMRS CQI and partly for the feedback portion CSI.
- the multi-user channel quality indicator refers to a type of indicator or physical quantity that characterizes the received signal quality under multi-user transmission conditions.
- the term is not a limitation, but rather an example, in fact, a request to implement a similar function (no matter what name is called) is applicable.
- the amount of deviation of the DMRS CQI is calculated as the MU-CQI minus the modulation and coding strategy MCS used for the current data transmission. When the CQI is fed back, the amount of data fed back can be reduced by feeding back the amount of deviation.
- the MU-CQI is exemplified here by subtracting the MCS used for the current data transmission as the deviation amount (the deviation amount of the example mentioned later is also calculated), but the technical solution of the present specification is not limited thereto, and may be current data.
- the MCS used for transmission is subtracted from MU-CQI as the amount of deviation.
- the deviation amount may include a plurality of values, such as 0, a positive deviation amount, or a negative deviation amount, and the deviation amount may be an integer value, and may also be a decimal number or have other value fineness and value range.
- the amount of deviation may be +1/-1, +2/-2, 0, and the like.
- the deviation amount +1/-1 or the like here may be an integer difference between the MCS and the MU-CQI quantized to an integer, and may also represent, for example, +0.5/-0.5, +0.25 between the MCS and the MU-CQI. /-0.25 and so on as the difference in decimals.
- Non-uniform mappings can also be used, such as +1 for +0.25 differences, +2 for +1 differences, and +3 for +2 differences, etc. where the intermediate intervals are inconsistent.
- bit 0 can be used to indicate that the deviation amount is 0 or positive (ie, a non-negative deviation amount), and bit 1 is used to indicate that the deviation amount is 0 or negative (ie, non-positive deviation) the amount).
- bit 0 or 1 can also be reversed.
- a positive deviation amount or a plurality of negative deviation amounts can improve the utilization of the bit position of the feedback information content portion, and can also more accurately represent the majority or more important information of the deviation amount, while saving system resources and simplifying system design. , reducing the amount of data transmitted signals.
- the above deviation amount is expressed as an example only, and is not limited herein.
- CSI-RS refers to a type of reference signal transmitted in the system for measuring channel state.
- the term is not a limitation, but rather an example, in fact, a request to implement a similar function (no matter what name is called) is applicable.
- feedback information of a corresponding number of bits may be set according to the number of code block sets in the data block.
- the feedback information may include only the feedback information content portion capable of feeding back the respective states of each code block set, and may also include the feedback information header and the feedback information content portion.
- the number of bits included in the feedback information content portion is necessarily smaller than the number of code block sets in the data block, and the feedback information header may be generated according to the transmission state of each code block set of the data block.
- the feedback information content portion since the number of bits of the feedback information content portion is smaller than the number of code block sets in the data block, in this case, the feedback information content portion cannot feed back the transmission states of all the code block sets in the data block. And can only feedback the transmission status of a partial code block set.
- FIG. 4 shows an example of a specific structure of feedback information in the embodiment of the present invention, wherein FIG. 4(a) shows a structure in which all of the code block sets in the data block are transmitted with correct feedback information.
- the first two bits are set as feedback headers, and the bit 11 indicates that the entire block is transmitted correctly.
- the feedback information content portion in FIG. 4(a) can be used to feed back channel measurement information.
- the number of bits of the feedback information content part is smaller than the number of code block sets in the data block, and the content and examples of the channel measurement information that are fed back are as described above, and are not described herein again.
- the number of bits included in the feedback information header and the feedback information content unit in FIG. 4(a) is only an example, and may be selected according to actual conditions in a specific application, and is not limited herein.
- the feedback information headers of the first two bits in FIG. 4(b) and FIG. 4(c) are used to indicate one or more transmission failures in the data block.
- the range of locations in which the code blocks are located in the data block For example, the feedback information header 01 in FIG. 4(b) is used to indicate that the code block set in the data block fails to be located in the range of #0-#7 in all 10 code block sets (0#-9#), and
- the feedback information content part in FIG. 4(b) and FIG. 4(c) is used to indicate the feedback information header.
- FIG. 4(b) is used to indicate the respective transmission states of the code block sets in the range of #0-#7 in the data block, in the present embodiment, in #0-# In the 7-bit data block, the 0# and 3# data block transmission fails; and the feedback information header content portion in FIG. 4(c) is used to indicate the code block set in the #2-#9 range in which the transmission fails in the data block.
- the respective transmission states in the present embodiment, in the data blocks of the #2-#9 position, the transmission of the 3# and 9# data blocks fails.
- the number of bits in the feedback information content portion is smaller than the number of code block sets in the data block, the feedback information in FIGS. 4(b) and 4(c) does not completely accurately represent each code in the entire data block.
- the transmission state of the block set but considering that the probability of transmission error of a small number of code block sets (for example, 1 or 2) in the data block is the largest, and the large probability is concentrated in a certain range of the data block, so Figure 4 (b) And the feedback information in Figure 4(c) can largely feed back the specific transmission status of each code block set in the data block.
- the feedback information structure in FIG. 4(b) and FIG. 4(c) is only an example.
- the feedback information header may be used to indicate the range of positions of consecutive code block sets, and may also be preset.
- the indication manner indicates the range of positions of the non-contiguous code block sets, which is not limited herein.
- the number of bits included in each of the feedback information header and the feedback information content section is merely an example, and may be selected according to actual conditions in a specific application.
- Figure 4(d) shows a feedback information structure when 10 code block sets in a data block have a number of code block set transmission errors.
- the first two bits are also the feedback header, the bit 00 is used to indicate the entire data block transmission error, and the latter feedback information content is used to feed back the channel measurement information.
- the number of bits of the feedback information content part is smaller than the number of code block sets in the data block, and the content and examples of the channel measurement information that are fed back are as described above, and are not described herein again.
- FIG. 4(d) In another embodiment of the present invention, in the similar scenario shown in FIG. 4(d), a plurality of code block sets in the data block are failed to be transmitted, and according to FIG. 4(b) or FIG. 4(c) The structure of the feedback information cannot accurately feed back the data block location information of the specific transmission failure.
- the feedback information structure shown in FIG. 5 may be considered to further indicate the data. Transmission status information for each code block set in the block.
- the feedback information includes a feedback information header for indicating an entire data block transmission error, which may be represented by, for example, two bits 00, and the feedback information content portion
- the number of bits is less than the number of code block sets in the data block.
- the first two bits are feedback information headers
- the bit 00 is used to indicate the entire data block transmission error
- the latter feedback information content portion includes two parts: a profile indication section and a special indication section.
- the special indication unit is configured to indicate a respective transmission state of the code block set in the preset range, and the number of the preset range code block set is equal to the number of bits included in the special indication part.
- the remaining code block set is divided into at least two parts (for example, the first part, the second part, etc.) whose transmission state is indicated by the bit in the outline indication section.
- each bit in the profile indication unit is in one-to-one correspondence with the code block set of the corresponding position in the first part and the second part, and when one transmission failure in all the code block sets corresponding to a certain bit indicates For transmission failure (bit 0), the transmission is correctly indicated (bit 1) only if all code block sets corresponding to this bit are transmitted correctly.
- FIG. 6 shows a specific arrangement of the feedback information structure shown in FIG.
- the data block has 10 code block sets
- the right side of the arrow in FIG. 6 is the actual transmission state of each code block set in the data block (A is a successful transmission, N is a transmission failure), and the left side is based on the data.
- the feedback information includes a total of 10 bits, the first two bits are feedback information headers, the middle two bits are the profile indication portion of the feedback information content portion, and the last six bits are special indication portions of the feedback information content portion.
- the special indication unit is configured to indicate a specific transmission state of the #2-#7 code block set in the data block, and one-to-one correspondence with the #2-#7 code block set; the overview indication part is used to respectively indicate #0-#1 and #8-#9 The transmission status of the location code block set. It can be seen that when there are multiple code block set transmission failures in the data block, the feedback information header indicates that the data block transmission fails with the bit 00, and the special indication part of the feedback information content portion uses the bit 101111 to respectively indicate the #2-#7 code block set. The corresponding transfer status. According to the examples in FIG.
- the bit of the profile indication unit is represented as 00 because its first bit 0 corresponds to the #0 and #8 code block sets, respectively, and one code block set transmission error, so 0 is used.
- the first bit of the profile indication unit is indicated.
- the feedback information structure shown in FIG. 6 is only an example, and the specific location of the code block set indicated by the profile indication unit may be arbitrarily selected, for example, #0, #2, and #1, #3, or #0-#2. And #4-#6, there is no limit here.
- FIG. 7 shows another specific arrangement manner of the feedback information structure shown in FIG. 5.
- the specific structure is similar to that shown in FIG. 6, and is also a 2-bit feedback information header + 2-bit overview indication unit + 6-bit special indication unit.
- the arrangement of the code block set indicated by the profile indication unit in the data block is associated with the indication manner of the profile indication unit by using a preset correspondence relationship, for example, the transmission states of the code block set are AN and NN, respectively.
- the outline indication unit is indicated as 01. It is worth emphasizing that the transmission state of the code block set in FIG. 7 is not necessarily its true transmission state, but the selected transmission state acquired according to a certain rule, and FIG. 8 shows the selection of the code block set in FIG.
- the code block set for all transmission failures must be included, and the transmission state used to represent must be as close as possible to the true transmission state of the code block set.
- the selected transmission state is also necessarily NN.
- the true transmission states of the two sets of code blocks are AA and NN, respectively, the selected transmission states corresponding to the list in FIG. 7 obtained according to the above rules need to be AN and NN.
- the number of bits of each component is not limited herein, and the overview included in the feedback information is not limited herein.
- the number of indication parts may also be multiple, which are respectively used to indicate a code block set of each different location.
- the feedback information may also be generated by encoding a respective transmission state of at least part of the code block set of the plurality of code block sets or further combining channel measurement information, for example,
- the respective transmission states of at least some of the code block sets in the code block set and the MU-CQI related offset quantities are jointly encoded.
- the coding method here may be source compression coding, which refers to finding a method according to the statistical characteristics of the source output symbol sequence, and transforming the source output symbol sequence into the shortest codeword sequence, so that the latter symbols are loaded. The average amount of information is the largest, while at the same time ensuring that the original symbol sequence is restored without distortion.
- feedback information of variable length or fixed length can be generated.
- the feedback information includes a feedback information header, and the feedback information content portion is of a variable length
- the feedback information header may be used to indicate the length of the feedback information content portion, that is, the occupied number of bits.
- the length of the feedback information content portion may be a set of a limited number of lengths, such as 4, 8, 12, 16 bits, and the like.
- the feedback information header may be set to 2 bits for indicating the 4 possible lengths, respectively.
- the effective source compression coding result included in the feedback information content portion is not one of the above four possible lengths and is smaller than a certain length thereof, it may be selected to add 0 after the coding result. Or feedback in combination with other channel feedback information to fill in one of the length values.
- the source compression coding result exceeds the preset maximum 16-bit bit, the exception condition can be expressed by outputting the set feedback value (such as all-zero or all-one of 16 bits, etc.).
- the length of the feedback information content portion is a given length
- the effective source compression coding result included in the feedback information content portion is smaller than the given length
- the same may be after the coding result Complement 0, or combine with other channel feedback information for feedback to fill the given length.
- the source compression coding result exceeds the preset given length, the exception can be expressed by outputting the set feedback value (such as all 0s or all 1s of a given length bit).
- the source compression coding employed may be performed by dividing the feedback information into a feedback information header and a feedback information content portion.
- the feedback information header is used to indicate the number of error code block sets in the data block. For example, 11 indicates that all code block sets are successfully transmitted, 01 indicates that there is one code block set transmission error, and 10 indicates that there are two code block set transmissions. Error, and 00 indicates everything except this.
- the feedback information content portion is used to indicate the location of the error code block set in the data block. For example, two 4-bit fields can be utilized to indicate the first code block set transmission error in the data block.
- Each 4-bit field is sufficient to indicate that all of the data blocks containing the 16 inner code block sets produce two errors, for example, 0010 is used to indicate the #2 code block set transmission error in the data block.
- 0010 is used to indicate the #2 code block set transmission error in the data block.
- the source compression coding used may be arithmetic coding.
- the probability of various feedback information to be represented by the arithmetic coding is first estimated, and then corresponding coding is performed.
- Figure 9 is a diagram showing arithmetic coding based on the probability of various feedback information in one embodiment of the present invention. As shown in FIG.
- each CQI deviation value level is 0-0.07, 0.07-0.14, 0.14-0.21, 0.21-0.28, and 0.28-0.35, respectively.
- the situation is similar in other probability ranges.
- step S103 the feedback information is transmitted.
- the data block includes 10 code block sets as an example to illustrate the feedback information structure of the embodiment of the present invention.
- the data block may include any number of code block sets, and the feedback information may be adjusted according to the number of code block sets included in the data block, which is not limited herein.
- the specific transmission state of at least part of the code block or the code block set included in the data block sent by the base station can be fed back, thereby improving the efficiency and reliability of data transmission and reducing the data transmission process.
- the delay in the middle is the delay in the middle.
- the communication device can perform the above feedback method. Since the operation of the communication device is substantially the same as the steps of the feedback method described above, only a brief description thereof will be made herein, and a repeated description of the same content will be omitted.
- the communication device 1000 includes a receiving unit 1010, a processing unit 1020, and a transmitting unit 1030. It will be appreciated that FIG. 10 only shows components related to embodiments of the present invention, while other components are omitted, but this is merely illustrative, and the communication device 1000 may include other components as needed.
- the receiving unit 1010 receives a data block including a plurality of code block sets. Specifically, each time the code block set included in one data block (Transport Block, TB) received by the receiving unit 1010 may include one or more code blocks, the number of code blocks included in the code block set may be specifically transmitted. The settings and the content of the data transferred are determined.
- Transport Block, TB Transport Block
- the processing unit 1020 generates feedback information about the data block according to the receiving state of the plurality of code block sets, where the feedback information is used to indicate a respective transmission state of at least part of the code block set in the plurality of code block sets.
- the feedback information in the embodiment of the present invention does not simply use ACK or NACK to indicate whether the transmission state of the entire data block is successful, but specifically reflects at least part of the code block set in the data block in the feedback information. Whether the transmission status is successful. Therefore, the feedback information in the embodiment of the present invention may include more than one bit.
- the number of bits in the feedback information may be related to the number of code block sets in the data block.
- the number of bits of the feedback information may be equal to the number of code block sets in the data block.
- the setting of the above number of bits is only here. For the sake of example, no restrictions are imposed.
- the feedback information may include two parts: a feedback information header and a feedback information content section.
- the feedback information content portion may include a bit corresponding to the number of code block sets in the data block; the feedback information header may be generated according to a transmission state of each code block set of the data block.
- 2 shows an example of a specific structure of feedback information in an embodiment of the present invention, wherein FIG. 2(a) shows that when there are 10 code block sets in a data block, and each code block set transmits correct feedback information structure.
- the first bit is the feedback information header, the bit 1 indicates that the entire data block is transmitted correctly; the next 10 bits together constitute the feedback information content part, and each bit corresponds to one of the data blocks respectively.
- Fig. 2(b) shows a feedback information structure in which 10 code block sets in a data block have at least one (shown as 2) code block set transmission errors.
- the first bit is also the feedback header, and the bit 0 indicates the entire block transmission error; the next 10 bits together form the feedback information content, similar to Figure 2(a), each The bits also correspond to a set of code blocks corresponding to a corresponding position in the data block.
- Bit 1 is used to indicate that the corresponding code block set is transmitted correctly, and bit 0 is used to indicate this corresponding code block set transmission error.
- the first code block set and the fourth code block set in the currently fed data block are transmitted incorrectly, and the rest of the transmissions are correct.
- the subsequent The feedback information content portion does not need to feed back the transmission status of each code block set in the data block bit by bit. In this case, it may be considered to use the feedback information content portion at this time to transmit other feedback information, for example, for feedback channel measurement information.
- the channel measurement information fed back herein may indicate information such as CQI (such as multi-user channel quality indicator MU-CQI), channel state information CSI, and/or signal-to-noise ratio SNR for the measured channel quality.
- Fig. 3 is a diagram showing the structure configuration of feedback information when the data block is transmitted correctly.
- the feedback information content portion can be used to feedback the deviation amount of the demodulation reference signal DMRS CQI for fast feedback and link adaptation, and the remaining bits can be zero-padded.
- the feedback information content portion may be partially used for feeding back the DMRS CQI and partly for the feedback portion CSI.
- the multi-user channel quality indicator refers to a type of indicator or physical quantity that characterizes the received signal quality under multi-user transmission conditions.
- the term is not a limitation, but rather an example, in fact, a request to implement a similar function (no matter what name is called) is applicable.
- the amount of deviation of the DMRS CQI is calculated as the MU-CQI minus the modulation and coding strategy MCS used for the current data transmission. When the CQI is fed back, the amount of data fed back can be reduced by feeding back the amount of deviation.
- the MU-CQI is exemplified here by subtracting the MCS used for the current data transmission as the deviation amount (the deviation amount of the example mentioned later is also calculated), but the technical solution of the present specification is not limited thereto, and may be current data.
- the MCS used for transmission is subtracted from MU-CQI as the amount of deviation.
- the deviation amount may include a plurality of values, such as 0, a positive deviation amount, or a negative deviation amount, and the deviation amount may be an integer value, and may also be a decimal number or have other value fineness and value range.
- the amount of deviation may be +1/-1, +2/-2, 0, and the like.
- the deviation amount +1/-1 or the like here may be an integer difference between the MCS and the MU-CQI quantized to an integer, and may also represent, for example, +0.5/-0.5, +0.25 between the MCS and the MU-CQI. /-0.25 and so on as the difference in decimals.
- Non-uniform mappings can also be used, such as +1 for +0.25 differences, +2 for +1 differences, and +3 for +2 differences, etc. where the intermediate intervals are inconsistent.
- bit 0 can be used to indicate that the deviation amount is 0 or positive (ie, a non-negative deviation amount), and bit 1 is used to indicate that the deviation amount is 0 or negative (ie, non-positive deviation) the amount).
- bit 0 or 1 can also be reversed.
- a positive deviation amount or a plurality of negative deviation amounts can improve the utilization of the bit position of the feedback information content portion, and can also more accurately represent the majority or more important information of the deviation amount, while saving system resources and simplifying system design. , reducing the amount of data transmitted signals.
- the above deviation amount is expressed as an example only, and is not limited herein.
- CSI-RS refers to a type of reference signal transmitted in the system for measuring channel state.
- the term is not a limitation, but rather an example, in fact, a request to implement a similar function (no matter what name is called) is applicable.
- the feedback information content portion may include a number of bits smaller than the number of code block sets in the data block; accordingly, the feedback information header may be based on each code of the data block The transfer status of the block set is generated.
- the feedback information content portion since the number of bits of the feedback information content portion is smaller than the number of code block sets in the data block, in this case, the feedback information content portion cannot feed back the transmission states of all the code block sets in the data block. And can only feedback the transmission status of a partial code block set.
- FIG. 4 shows an example of a specific structure of feedback information in the embodiment of the present invention, wherein FIG. 4(a) shows a structure in which all code blocks in a data block are transmitted with correct feedback information.
- the first two bits are set as feedback headers, and the bit 11 indicates that the entire block is transmitted correctly.
- the feedback information content portion in FIG. 4(a) can be used to feed back channel measurement information.
- the number of bits of the feedback information content part is smaller than the number of code block sets in the data block, and the content and examples of the channel measurement information that are fed back are as described above, and are not described herein again.
- the number of bits included in the feedback information header and the feedback information content unit in FIG. 4(a) is only an example, and may be selected according to actual conditions in a specific application, and is not limited herein.
- the feedback information headers of the first two bits in FIG. 4(b) and FIG. 4(c) are used to indicate one or more transmission failures in the data block.
- the range of locations in which the code blocks are located in the data block For example, the feedback information header 01 in FIG. 4(b) is used to indicate that the code block set in the data block fails to be located in the range of #0-#7 in all 10 code block sets (0#-9#), and
- the feedback information content part in FIG. 4(b) and FIG. 4(c) is used to indicate the feedback information header.
- FIG. 4(b) is used to indicate the respective transmission states of the code block sets in the range of #0-#7 in the data block, in the present embodiment, in #0-# In the 7-bit data block, the 0# and 3# data block transmission fails; and the feedback information header content portion in FIG. 4(c) is used to indicate the code block set in the #2-#9 range in which the transmission fails in the data block.
- the respective transmission states in the present embodiment, in the data blocks of the #2-#9 position, the transmission of the 3# and 9# data blocks fails.
- the number of bits in the feedback information content portion is smaller than the number of code block sets in the data block, the feedback information in FIGS. 4(b) and 4(c) does not completely accurately represent each code in the entire data block.
- the transmission state of the block set but considering that the probability of transmission error of a small number of code block sets (for example, 1 or 2) in the data block is the largest, and the large probability is concentrated in a certain range of the data block, so Figure 4 (b) And the feedback information in Figure 4(c) can largely feed back the specific transmission status of each code block set in the data block.
- the feedback information structure in FIG. 4(b) and FIG. 4(c) is only an example.
- the feedback information header may be used to indicate the range of positions of consecutive code block sets, and may also be preset.
- the indication manner indicates the range of positions of the non-contiguous code block sets, which is not limited herein.
- the number of bits included in each of the feedback information header and the feedback information content section is merely an example, and may be selected according to actual conditions in a specific application.
- Figure 4(d) shows a feedback information structure when 10 code block sets in a data block have a number of code block set transmission errors.
- the first two bits are also the feedback header, the bit 00 is used to indicate the entire data block transmission error, and the latter feedback information content is used to feed back the channel measurement information.
- the number of bits of the feedback information content part is smaller than the number of code block sets in the data block, and the content and examples of the channel measurement information that are fed back are as described above, and are not described herein again.
- FIG. 4(d) In another embodiment of the present invention, in the similar scenario shown in FIG. 4(d), a plurality of code block sets in the data block are failed to be transmitted, and according to FIG. 4(b) or FIG. 4(c) The structure of the feedback information cannot accurately feed back the data block location information of the specific transmission failure.
- the feedback information structure shown in FIG. 5 may be considered to further indicate the data. Transmission status information for each code block set in the block.
- the feedback information includes a feedback information header for indicating an entire data block transmission error, which may be represented by, for example, two bits 00, and the feedback information content portion
- the number of bits is less than the number of code block sets in the data block.
- the first two bits are feedback information headers
- the bit 00 is used to indicate the entire data block transmission error
- the latter feedback information content portion includes two parts: a profile indication section and a special indication section.
- the special indication unit is configured to indicate a respective transmission state of the code block set in the preset range, and the number of the preset range code block set is equal to the number of bits included in the special indication part.
- the remaining code block set is divided into at least two parts (for example, the first part, the second part, etc.) whose transmission state is indicated by the bit in the outline indication section.
- each bit in the overview indication unit is in one-to-one correspondence with the code block set of the corresponding position in the first part and the second part, and when one transmission failure in all the code block sets corresponding to a certain bit indicates For transmission failure (bit 0), the transmission is correctly indicated (bit 1) only if all code block sets corresponding to this bit are transmitted correctly.
- FIG. 6 shows a specific arrangement of the feedback information structure shown in FIG.
- the data block has 10 code block sets
- the right side of the arrow in FIG. 6 is the actual transmission state of each code block set in the data block (A is a successful transmission, N is a transmission failure), and the left side is based on the data.
- the feedback information includes a total of 10 bits, the first two bits are feedback information headers, the middle two bits are the profile indication portion of the feedback information content portion, and the last six bits are special indication portions of the feedback information content portion.
- the special indication unit is configured to indicate a specific transmission state of the #2-#7 code block set in the data block, and one-to-one correspondence with the #2-#7 code block set; the overview indication part is used to respectively indicate #0-#1 and #8-#9 The transmission status of the location code block set. It can be seen that when there are multiple code block set transmission failures in the data block, the feedback information header indicates that the data block transmission fails with the bit 00, and the special indication part of the feedback information content portion uses the bit 101111 to respectively indicate the #2-#7 code block set. The corresponding transfer status. According to the examples in FIG.
- the bit of the profile indication unit is represented as 00 because its first bit 0 corresponds to the #0 and #8 code block sets, respectively, and one code block set transmission error, so 0 is used.
- the first bit of the profile indication unit is indicated.
- the feedback information structure shown in FIG. 6 is only an example, and the specific location of the code block set indicated by the profile indication unit may be arbitrarily selected, for example, #0, #2, and #1, #3, or #0-#2. And #4-#6, there is no limit here.
- FIG. 7 shows another specific arrangement manner of the feedback information structure shown in FIG. 5.
- the specific structure is similar to that shown in FIG. 6, and is also a 2-bit feedback information header + 2-bit overview indication unit + 6-bit special indication unit.
- the arrangement of the code block set indicated by the profile indication unit in the data block is associated with the indication manner of the profile indication unit by using a preset correspondence relationship, for example, the transmission states of the code block set are AN and NN, respectively.
- the outline indication unit is indicated as 01. It is worth emphasizing that the transmission state of the code block set in FIG. 7 is not necessarily its true transmission state, but the selected transmission state acquired according to a certain rule, and FIG. 8 shows the selection of the code block set in FIG. The principle of setting the transmission status.
- the transmission state used to represent must be as close as possible to the true transmission state of the code block set.
- the true transmission states of the two sets of code blocks are respectively NN
- the selected transmission state is also necessarily NN.
- the true transmission states of the two sets of code blocks are AA and NN, respectively
- the selected transmission states corresponding to the list in FIG. 7 obtained according to the above rules need to be AN and NN.
- the number of bits of each component is not limited herein, and the overview included in the feedback information is not limited herein.
- the number of indication parts may also be multiple, which are respectively used to indicate a code block set of each different location.
- the feedback information may also be generated by encoding a respective transmission state of at least part of the code block set of the plurality of code block sets or further combining channel measurement information, for example,
- the respective transmission states of at least some of the code block sets in the code block set and the MU-CQI related offset quantities are jointly encoded.
- the coding method here may be source compression coding, which refers to finding a method according to the statistical characteristics of the source output symbol sequence, and transforming the source output symbol sequence into the shortest codeword sequence, so that the latter symbols are loaded. The average amount of information is the largest, while at the same time ensuring that the original symbol sequence is restored without distortion.
- feedback information of variable length or fixed length can be generated.
- the feedback information includes a feedback information header, and the feedback information content portion is of a variable length
- the feedback information header may be used to indicate the length of the feedback information content portion, that is, the occupied number of bits.
- the length of the feedback information content portion may be a set of a limited number of lengths, such as 4, 8, 12, 16 bits, and the like.
- the feedback information header may be set to 2 bits for indicating the 4 possible lengths, respectively.
- the effective source compression coding result included in the feedback information content portion is not one of the above four possible lengths and is smaller than a certain length thereof, it may be selected to add 0 after the coding result. Or feedback in combination with other channel feedback information to fill in one of the length values.
- the source compression coding result exceeds the preset maximum 16-bit bit, the exception condition can be expressed by outputting the set feedback value (such as all-zero or all-one of 16 bits, etc.).
- the length of the feedback information content portion is a given length
- the effective source compression coding result included in the feedback information content portion is smaller than the given length
- the same may be after the coding result Complement 0, or combine with other channel feedback information for feedback to fill the given length.
- the source compression coding result exceeds the preset given length, the exception can be expressed by outputting the set feedback value (such as all 0s or all 1s of a given length bit).
- the source compression coding employed may be performed by dividing the feedback information into a feedback information header and a feedback information content portion.
- the feedback information header is used to indicate the number of error code block sets in the data block. For example, 11 indicates that all code block sets are successfully transmitted, 01 indicates that there is one code block set transmission error, and 10 indicates that there are two code block set transmissions. Error, and 00 indicates everything except this.
- the feedback information content portion is used to indicate the location of the error code block set in the data block. For example, two 4-bit fields can be utilized to indicate the first code block set transmission error in the data block.
- Each 4-bit field is sufficient to indicate that all of the data blocks containing the 16 inner code block sets produce two errors, for example, 0010 is used to indicate the #2 code block set transmission error in the data block.
- 0010 is used to indicate the #2 code block set transmission error in the data block.
- the source compression coding used may be arithmetic coding.
- the probability of various feedback information to be represented by the arithmetic coding is first estimated, and then corresponding coding is performed.
- Figure 9 is a diagram showing arithmetic coding based on the probability of various feedback information in one embodiment of the present invention. As shown in FIG.
- each CQI deviation value level is 0-0.07, 0.07-0.14, 0.14-0.21, 0.21-0.28, and 0.28-0.35, respectively.
- the situation is similar in other probability ranges.
- the transmitting unit 1030 transmits the feedback information.
- the data block includes 10 code block sets as an example to illustrate the feedback information structure of the embodiment of the present invention.
- the data block may include any number of code block sets, and the feedback information may be adjusted according to the number of code block sets included in the data block, which is not limited herein.
- the communication device 1000 in the embodiment of the present invention may be a base station or a user equipment.
- the feedback information in the embodiment of the present invention may be uplink transmission or downlink transmission.
- the specific transmission state of at least part of the code block or the code block set included in the data block sent by the base station can be fed back, thereby improving the efficiency and reliability of data transmission and reducing the data transmission process.
- the delay in the middle is the case where the specific transmission state of at least part of the code block or the code block set included in the data block sent by the base station.
- each functional block may be implemented by one device that is physically and/or logically combined, or two or more devices that are physically and/or logically separated, directly and/or indirectly (eg, This is achieved by a plurality of devices as described above by a wired and/or wireless connection.
- the communication device 1000 or the like which can be a radio base station or a user equipment in an embodiment of the present invention can function as a computer that performs processing of the radio communication method of the present invention.
- FIG. 11 is a diagram showing an example of a hardware configuration of a communication device according to an embodiment of the present invention.
- the above-described communication device 1000 can be configured as a computer device that physically includes a processor 1101, a memory 1102, a memory 1103, a communication device 1104, an input device 1105, an output device 1106, a bus 1107, and the like.
- the hardware structure of the communication device 1000 may include one or more of the devices shown in the figures, or may not include some of the devices.
- the processor 1101 is only illustrated as one, but may be a plurality of processors.
- the processing may be performed by one processor, or may be performed by one or more processors simultaneously, sequentially, or by other methods.
- the processor 1101 can be installed by more than one chip.
- Each function in the communication device 1000 is realized, for example, by reading predetermined software (program) into hardware such as the processor 1101 and the memory 1102, thereby causing the processor 1101 to perform calculation and communication with the communication device 1104. Control is performed and control of reading and/or writing of data in the memory 1102 and the memory 1103 is performed.
- predetermined software program
- control is performed and control of reading and/or writing of data in the memory 1102 and the memory 1103 is performed.
- the processor 1101 for example, causes the operating system to operate to control the entire computer.
- the processor 1101 may be configured by a central processing unit (CPU) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
- CPU central processing unit
- the processor 1101 reads out programs (program codes), software modules, data, and the like from the memory 1103 and/or the communication device 1104 to the memory 1102, and executes various processes in accordance therewith.
- programs program codes
- software modules software modules
- data data, and the like
- the program a program for causing a computer to execute at least a part of the operations described in the above embodiments can be employed.
- the memory 1102 is a computer readable recording medium, and may be, for example, a read only memory (ROM, Read Only Memory), a programmable read only memory (EPROM), an electrically programmable read only memory (EEPROM), or a random access memory ( At least one of RAM, Random Access Memory, and other suitable storage media.
- the memory 1102 may also be referred to as a register, a cache, a main memory (primary storage device), or the like.
- the memory 1102 can store an executable program (program code), a software module, and the like for implementing the wireless communication method according to the embodiment of the present invention.
- the memory 1103 is a computer readable recording medium, and may be, for example, a flexible disk, a soft (registered trademark) disk (floppy disk), a magneto-optical disk (for example, a CD-ROM (Compact DiscROM), etc.), and a digital universal CD, Blu-ray (registered trademark) disc, removable disk, hard drive, smart card, flash device (eg card, stick, key driver), magnetic stripe, database, server And at least one of other suitable storage media.
- the memory 1003 may also be referred to as an auxiliary storage device.
- the communication device 1104 is hardware (transmission and reception device) for performing communication between computers through a wired and/or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, and the like, for example.
- the communication device 1004 may include a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc., in order to implement, for example, Frequency Division Duplex (FDD) and/or Time Division Duplex (TDD).
- FDD Frequency Division Duplex
- TDD Time Division Duplex
- the input device 1105 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts input from the outside.
- the output device 1106 is an output device (for example, a display, a speaker, a light emitting diode (LED) lamp, etc.) that performs an output to the outside.
- the input device 1105 and the output device 1106 may also be an integrated structure (for example, a touch panel).
- each device such as the processor 1101 and the memory 1102 is connected via a bus 1107 for communicating information.
- the bus 1107 may be composed of a single bus or a different bus between devices.
- the communication device 1000 may include a microprocessor, a digital signal processor (DSP, Digital Signal Processor), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA, Field Programmable Gate Array).
- DSP digital signal processor
- ASIC application specific integrated circuit
- PLD programmable logic device
- FPGA field programmable gate array
- Such hardware can be used to implement some or all of the functional blocks.
- the processor 1101 can be installed by at least one of these hardwares.
- the channel and/or symbol can also be a signal (signaling).
- the signal can also be a message.
- the reference signal may also be simply referred to as RS (Reference Signal), and may also be referred to as a pilot (Pilot), a pilot signal, or the like according to applicable standards.
- a component carrier CC, Component Carrier
- CC Component Carrier
- the time slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA, Single Carrier Frequency Division Multiple Access) symbols, etc.) in the time domain.
- the time slot can also be a time unit based on parameter configuration.
- the time slot may also include a plurality of minislots. Each minislot may be composed of one or more symbols in the time domain.
- a minislot can also be referred to as a subslot.
- Radio frames, subframes, time slots, mini-slots, and symbols all represent time units when signals are transmitted. Radio frames, subframes, time slots, mini-slots, and symbols can also use other names that correspond to each other.
- one subframe may be referred to as a transmission time interval (TTI, TransmissionTimeInterval), and a plurality of consecutive subframes may also be referred to as a TTI, and one slot or one minislot may also be referred to as a TTI.
- the subframe and/or the TTI may be a subframe (1 ms) in the existing LTE, or may be a period shorter than 1 ms (for example, 1 to 13 symbols), or may be a period longer than 1 ms.
- a unit indicating a TTI may also be referred to as a slot, a minislot, or the like instead of a subframe.
- TTI refers to, for example, a minimum time unit scheduled in wireless communication.
- the radio base station performs scheduling for all user equipments to allocate radio resources (bandwidth, transmission power, etc. usable in each user equipment) in units of TTIs.
- the definition of TTI is not limited to this.
- the TTI may be a channel-coded data packet (data block), a code block, and/or a codeword transmission time unit, or may be a processing unit such as scheduling, link adaptation, or the like.
- the time interval e.g., the number of symbols
- actually mapped to the data block, code block, and/or codeword may also be shorter than the TTI.
- TTI time slot or one mini time slot
- more than one TTI ie, more than one time slot or more than one micro time slot
- the number of slots (the number of microslots) constituting the minimum time unit of the scheduling can be controlled.
- a TTI having a length of 1 ms may also be referred to as a regular TTI (TTI in LTE Rel. 8-12), a standard TTI, a long TTI, a regular subframe, a standard subframe, or a long subframe.
- TTI shorter than a conventional TTI may also be referred to as a compressed TTI, a short TTI, a partial TTI (partial or fractional TTI), a compressed subframe, a short subframe, a minislot, or a subslot.
- a long TTI (eg, a regular TTI, a subframe, etc.) may be replaced with a TTI having a time length exceeding 1 ms
- a short TTI eg, a compressed TTI, etc.
- TTI length of the TTI may be replaced with 1 ms.
- a resource block is a resource allocation unit of a time domain and a frequency domain, and may include one or more consecutive subcarriers (subcarriers) in the frequency domain.
- the RB may include one or more symbols in the time domain, and may also be one slot, one minislot, one subframe, or one TTI.
- a TTI and a subframe may each be composed of one or more resource blocks.
- one or more RBs may also be referred to as a physical resource block (PRB, Physical RB), a sub-carrier group (SCG), a resource element group (REG, a resource element group), a PRG pair, an RB pair, and the like.
- radio frames, subframes, time slots, mini-slots, symbols, and the like are merely examples.
- the number of subframes included in the radio frame, the number of slots of each subframe or radio frame, the number of microslots included in the slot, the number of symbols and RBs included in the slot or minislot, and the number of RBs included in the RB The number of subcarriers, the number of symbols in the TTI, the symbol length, and the length of the cyclic prefix (CP, Cyclic Prefix) can be variously changed.
- the information, parameters, and the like described in the present specification may be expressed by absolute values, may be represented by relative values with predetermined values, or may be represented by other corresponding information.
- wireless resources can be indicated by a specified index.
- the formula or the like using these parameters may be different from those explicitly disclosed in the present specification.
- the information, signals, and the like described in this specification can be expressed using any of a variety of different techniques.
- data, commands, instructions, information, signals, bits, symbols, chips, etc. which may be mentioned in all of the above description, may pass voltage, current, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of them. Combined to represent.
- information, signals, and the like may be output from the upper layer to the lower layer, and/or from the lower layer to the upper layer.
- Information, signals, etc. can be input or output via a plurality of network nodes.
- Information or signals input or output can be stored in a specific place (such as memory) or managed by a management table. Information or signals input or output may be overwritten, updated or supplemented. The output information, signals, etc. can be deleted. The input information, signals, etc. can be sent to other devices.
- the notification of the information is not limited to the mode/embodiment described in the specification, and may be performed by other methods.
- the notification of the information may be through physical layer signaling (eg, Downlink Control Information (DCI), uplink control information (UCI, Uplink Control Information), upper layer signaling (eg, radio resource control (RRC, RadioResourceControl). Signaling, broadcast information (MIB (Master Information Block), System Information Block (SIB, System Information Block), etc.), Media Access Control (MAC, Medium Access Control) signaling, other signals, or a combination thereof.
- DCI Downlink Control Information
- UCI uplink control information
- RRC RadioResourceControl
- Signaling broadcast information (MIB (Master Information Block), System Information Block (SIB, System Information Block), etc.
- MIB Master Information Block
- SIB System Information Block
- MAC Medium Access Control
- the physical layer signaling may be referred to as L1/L2 (Layer 1/Layer 2) control information (L1/L2 control signal), L1 control information (L1 control signal), and the like.
- the RRC signaling may also be referred to as an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
- the MAC signaling can be notified, for example, by a MAC Control Unit (MAC CE).
- MAC CE MAC Control Unit
- the notification of the predetermined information is not limited to being explicitly performed, and may be performed implicitly (for example, by not notifying the predetermined information or by notifying other information).
- the determination can be performed by a value (0 or 1) represented by 1 bit, or by a true or false value (boolean value) represented by true (true) or false (false), and can also be compared by numerical values ( For example, comparison with a predetermined value).
- Software whether referred to as software, firmware, middleware, microcode, hardware description language, or other names, should be interpreted broadly to mean commands, command sets, code, code segments, program code, programs, sub- Programs, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, steps, functions, and the like.
- software, commands, information, and the like may be transmitted or received via a transmission medium.
- a transmission medium For example, when using wired technology (coax, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to send software from a website, server, or other remote source
- wired technology coax, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
- wireless technology infrared, microwave, etc.
- base station (BS, BaseStation)
- radio base station eNB
- gNB gNodeB
- cell a cell group
- carrier a component carrier
- the terms are used interchangeably.
- the base station is sometimes referred to by a fixed station, a NodeB, an eNodeB (eNB), an access point, a transmission point, a reception point, a femto cell, a small cell, and the like.
- a base station can accommodate one or more (eg, three) cells (also referred to as sectors). When the base station accommodates multiple cells, the entire coverage area of the base station can be divided into a plurality of smaller areas, and each smaller area can also pass through the base station subsystem (for example, a small indoor base station (RFH, remote head (RRH), RemoteRadioHead))) to provide communication services.
- the term "cell” or “sector” refers to a portion or the entirety of the coverage area of a base station and/or base station subsystem that performs communication services in the coverage.
- the base station is sometimes referred to by a fixed station, a NodeB, an eNodeB (eNB), an access point, a transmission point, a reception point, a femto cell, a small cell, and the like.
- the user equipment is also sometimes used by those skilled in the art as a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, and a wireless device. Terminals, remote terminals, handsets, user agents, mobile clients, clients, or several other appropriate terms are used.
- the wireless base station in this specification can also be replaced with a user equipment.
- each mode/embodiment of the present invention can be applied to a configuration in which communication between a wireless base station and a user equipment is replaced with communication between a plurality of user equipment (D2D).
- D2D user equipment
- the function of the above-described wireless base station 10 can be regarded as a function of the user equipment 20.
- words such as "upstream” and "downstream” can also be replaced with "side”.
- the uplink channel can also be replaced with a side channel.
- the user equipment in this specification can also be replaced with a wireless base station.
- a specific operation performed by a base station is also performed by an upper node (upper node) depending on the situation.
- various actions performed for communication with the terminal may pass through the base station and one or more network nodes other than the base station.
- MME Mobility Management Entity
- S-GW Serving-Gateway
- S-GW Serving-Gateway
- LTE Long Term Evolution
- LTE-A Advanced Long Term Evolution
- LTE-B Long Term Evolution
- LTE-Beyond Long Term Evolution
- SUPER 3G advanced international mobile communication
- IMT-Advanced 4th generation mobile communication system
- 4G 4th generation mobile communication system
- 5G 5th generation mobile communication system
- Future Radio Access FX
- Future generation radio access GSM (registered trademark), Global System for Mobile communications), Code Division Multiple Access 2000 (CDMA2000), Super Mobile Broadband (UMB, Ultra) Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, Ultra Wideband (UWB, Ultra-W
- any reference to a unit using the names "first”, “second”, etc., as used in this specification, does not fully limit the number or order of the units. These names can be used in this specification as a convenient method of distinguishing between two or more units. Thus, reference to a first element and a second element does not mean that only two elements may be employed or that the first element must prevail in the form of the second unit.
- determination used in the present specification sometimes includes various actions. For example, regarding “judgment (determination)", calculation, calculation, processing, deriving, investigating, and lookingup (eg, tables, databases, or other data) may be performed. Search in the structure, ascertaining, etc. are considered to be “judgment (determination)”. Further, regarding “judgment (determination)”, reception (for example, receiving information), transmission (for example, transmission of information), input (input), output (output), and access (for example) may also be performed (for example, Accessing data in memory, etc. is considered to be “judgment (determination)”.
- judgment (determination) it is also possible to consider “resolving”, “selecting”, selecting (choosing), establishing (comparing), comparing (comparing), etc. as “judgement (determination)”. That is to say, regarding "judgment (determination)", several actions can be regarded as performing "judgment (determination)”.
- connection means any direct or indirect connection or combination between two or more units, This includes the case where there is one or more intermediate units between two units that are “connected” or “coupled” to each other.
- the combination or connection between the units may be physical, logical, or a combination of the two.
- connection can also be replaced with "access”.
- two units may be considered to be electrically connected by using one or more wires, cables, and/or printed, and as a non-limiting and non-exhaustive example by using a radio frequency region.
- the electromagnetic energy of the wavelength of the region, the microwave region, and/or the light is "connected” or "bonded” to each other.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Quality & Reliability (AREA)
- Detection And Prevention Of Errors In Transmission (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明的实施例提供了一种反馈方法和通信设备。根据本发明实施例的反馈方法,包括:接收包括多个码块集的数据块;根据所述多个码块集的接收状态生成关于所述数据块的反馈信息,所述反馈信息用于指示所述多个码块集中的至少部分码块集各自的传输状态;发送所述反馈信息。
Description
本申请涉及通信技术领域,并且具体涉及反馈方法和通信设备。
在无线通信领域,用户设备或移动台、也被称为用户设备(UE)通过无线网络、如无线接入网(RAN)与基站(BS)通信。无线接入网(RAN)覆盖一个地理区域,该区域通常被划分成小区区域,每个小区区域由基站为本区域范围内的用户设备服务。
在无线网络的数据传输过程中,当基站以数据块(TB)为单位向用户设备发送信息时,用户设备可以向基站上报确认(ACK)信息或不确认(NACK)信息,用于反馈所接收的数据块是否正确。当用户设备向基站反馈ACK信息时,说明所接收的数据块正确;而当用户设备向基站反馈NACK信息时,说明所接收的数据块不正确,需要基站对此数据块进行重传。但是,在现有技术中,用户设备所反馈的ACK信息或NACK信息仅能够对于基站所发送的数据块的正确与否进行指示,而无法进一步反馈数据块中包含的码块(code block)或码块集(code block group)的具体传输状态。
发明内容
根据本发明的一个方面,提供了一种反馈方法,包括:接收包括多个码块集的数据块;根据所述多个码块集的接收状态生成关于所述数据块的反馈信息,所述反馈信息用于指示所述多个码块集中的至少部分码块集各自的传输状态;发送所述反馈信息。
根据本发明的另一方面,提供了一种通信设备,包括:接收单元,配置为接收包括多个码块集的数据块;处理单元,配置为根据所述多个码块集的接收状态生成关于所述数据块的反馈信息,所述反馈信息用于指示所述多个码块集中的至少部分码块集各自的传输状态;发送单元,配置为发送所述反馈信息。
利用根据本发明上述方面的反馈方法和通信设备,可以对基站所发送的 数据块中包含的至少部分码块或码块集的具体传输状态进行反馈,提高了数据传输的效率和可靠性,减少了数据传输过程中的时延。
通过结合附图对本发明的实施例进行详细描述,本发明的上述和其它目的、特征、优点将会变得更加清楚。
图1示出根据本发明实施例的反馈方法100的流程图;
图2示出了本发明实施例中反馈信息具体结构的示例,其中,图2(a)示出了当数据块中每个码块集均传输正确的反馈信息结构;图2(b)示出当数据块中具有至少一个码块集传输错误的反馈信息结构;
图3示出了当数据块传输正确时反馈信息的结构配置示意图,其中,图3(a)示出反馈信息内容部用于反馈解调参考信号DMRS CQI的偏差量的示意图;图3(b)示出反馈信息内容部部分用于反馈DMRS CQI,部分用于反馈部分CSI的示意图;
图4示出本发明实施例中反馈信息具体结构的示例,其中,图4(a)示出了当数据块中所有码块集均传输正确的反馈信息结构;图4(b)和图4(c)示出了当数据块具有至少一个码块集传输错误的反馈信息结构;图4(d)示出了当数据块中具有若干个码块集传输错误的反馈信息结构;
图5示出了本发明另一个实施例中反馈信息结构的示例;
图6示出了图5所示反馈信息结构的具体设置方式;
图7示出了图5所示反馈信息结构的另一种具体设置方式;
图8示出了图7中码块集的选定传输状态的设置原则的一个示例;
图9示出了本发明一个实施例中根据各种反馈信息的概率进行算术编码的示意图;
图10示出根据本发明实施例的通信设备的框图;
图11示出本发明一个实施例所涉及的通信设备的硬件结构的示例图。
下面将参照附图来描述根据本发明实施例的反馈方法和通信设备。在附图中,相同的参考标号自始至终表示相同的元件。应当理解:这里描述的 实施例仅仅是说明性的,而不应被解释为限制本发明的范围。
在无线网络中,当发送方所发送的数据块到达接收方时,接收方可以对其进行检错,若接收正确,返回确认(ACK)信息,错误则返回不确认(NACK)信息。当发送方收到ACK信号,就发送新的数据,否则将重新发送上次传输的数据块。一般来说,ACK或NACK信息可以用一个比特来表示。例如,可以用比特0来表示作为确认信息的ACK信息,而用比特1来表示作为不确认信息的NACK信息。当然,比特0或1的取值也可以相反。
当传输的数据块可以划分为多个码块或码块集时(其中每个码块可以是数据块中的一段数据,也即子数据块,而每个码块集可以包括一个或多个码块),若依然采用上述的例如由一个比特表示的ACK或NACK反馈信息,将无法具体反馈数据块中各个码块或码块集的传输状态,导致了不必要的数据冗余和信道负担,降低了数据传输效率。
基于上述问题,考虑提出如下反馈方法。图1示出根据本发明实施例的反馈方法100的流程图,所述方法可以由移动台或者基站执行。
如图1所述,在步骤S101中,接收包括多个码块集的数据块。具体地,每次接收的一个数据块(一个传输块TB就是一个数据块)中所包含的码块集可以分别包括一个或多个码块,码块集中所包括的码块数量可以由具体的传输设置和所传输的数据内容决定。
在步骤S102中,根据所述多个码块集的接收状态生成关于所述数据块的反馈信息,所述反馈信息用于指示所述多个码块集中的至少部分码块集各自的传输状态。本发明实施例中的反馈信息不再单纯用ACK或NACK表示整个数据块的传输状态是否成功,而是会在反馈信息中具体体现数据块中至少部分码块集分别的传输状态是否成功。因此,本发明实施例中的反馈信息可能包括多于一个比特。可选地,反馈信息中的比特数可以与数据块中码块集的数量有关,例如,反馈信息的比特数可以等于数据块中的码块集数量,当然,上述比特数的设置在此仅为举例,并不做任何限制。
在本发明的一个实施例中,反馈信息可以包括两部分:反馈信息头和反馈信息内容部。具体地,反馈信息内容部可以包括与所述数据块中的码块集个数对应的比特;反馈信息头则可以根据所述数据块的每个码块集的传输状态生成。图2示出了本发明实施例中反馈信息具体结构的示例,其中,图 2(a)示出了当数据块中具有10个码块集,且每个码块集均传输正确的反馈信息结构。在图2(a)中,第一个比特位为反馈信息头,比特1表示整个数据块传输正确;后面10个比特位共同构成反馈信息内容部,每个比特位分别对应数据块中的一个相应位置的码块集,比特1用于表示这一对应的码块集传输正确。图2(b)示出了当数据块中的10个码块集具有至少一个(图中示出为2个)码块集传输错误的反馈信息结构。在图2(b)中,第一个比特位同样为反馈信息头,比特0表示数据块中至少有一个码块传输错误;后面10个比特位共同构成反馈信息内容部,与图2(a)类似,每个比特位也分别对应数据块中的一个相应位置的码块集,比特1用于表示这一对应的码块集传输正确,比特0用于表示这一对应的码块集传输错误。根据图2(b)所示,当前所反馈的数据块中的第1个码块集和第4个码块集传输错误,其余传输均正确。
进一步地,回到图2(a),如前所述,考虑到数据块中的每个码块集均传输正确,则当反馈信息头已经反馈了整个数据块传输正确的信息时,后续的反馈信息内容部已无需逐比特反馈数据块中每个码块集的传输状态。在这种情况下,可以考虑利用此时的反馈信息内容部发送其他反馈信息,例如可以用于反馈信道测量信息。这里所反馈的信道测量信息可以为所测量的信道质量指示CQI(如多用户信道质量指示MU-CQI)、信道状态信息CSI和/或信噪比SNR,信干噪比(SINR)(即信号功率和干扰及噪声能量间的比值)等信息。图3示出了当数据块传输正确时反馈信息的结构配置示意图。如图3(a)所示,反馈信息内容部可以用于反馈解调参考信号DMRSCQI的偏差量,用于快速反馈和链路适配,剩余的比特位可通过padding填充位被补零对齐。如图3(b)所示,当CSI反馈被同时安排时,反馈信息内容部可以部分用于反馈DMRS CQI,部分用于反馈部分CSI。
在此,多用户信道质量指示符(MU-CQI)是指表征在多用户传输条件下接收信号质量的一类指示符或物理量。当然,该术语并非限制,而是举例,事实上,实现类似功能的请求(无论叫什么名称)都是可应用的。DMRS CQI的偏差量被计算为MU-CQI减去当前数据传输使用的调制与编码策略MCS。在反馈CQI时,可以通过反馈该偏差量以减少反馈的数据量。注意,在此举例了MU-CQI减去当前数据传输使用的MCS作为偏差量(后文中提 到的示例的偏差量也是如此计算),但本说明书的技术方案不限于此,也可以是当前数据传输使用的MCS减去MU-CQI作为偏差量。具体地,偏差量可以包括多种取值,如0、正偏差量或者负偏差量,偏差量的取值可以为整数,当然也可以为小数或具有其他取值精细度和取值范围。可选地,偏差量可以为+1/-1,+2/-2,0等。但这里的偏差量+1/-1等可以是量化为整数后的MCS和MU-CQI之间的整数差值,也可以表示MCS和MU-CQI之间的如+0.5/-0.5,+0.25/-0.25等以小数为单位的差值。也可以使用非均匀的映射,譬如+1代表+0.25个差值,+2代表+1个差值,+3代表+2个差值等中间间隔不一致的情况。在利用反馈信息内容部反馈偏差量时,可以用比特0来表示偏差量为0或正(即非负的偏差量),且用比特1来表示偏差量为0或负(即非正的偏差量)。当然,比特0或1的取值也可以相反。进一步地,还可以用更多的比特数表示偏差量的更多种取值,从而更加精细地报告偏差量,例如,可以考虑利用2-3位比特的4种取值对应于响应的多个正偏差量或多个负偏差量,可以提高反馈信息内容部的比特位的利用率,也可以更精细地表示出偏差量的大部分或较为重要的信息,而同时节省系统资源,简化系统设计,减少传输信号的数据量。以上偏差量的表示方式仅为示例,在此不做限制。
在此,CSI-RS是指系统中传输的一类用于测量信道状态的参考信号。当然,该术语并非限制,而是举例,事实上,实现类似功能的请求(无论叫什么名称)都是可应用的。
在本发明的另一个实施例中,可以根据数据块中码块集的数量设置相应比特位数的反馈信息。其中,反馈信息可以仅包含能够反馈每个码块集各自状态的反馈信息内容部,当然也可以包括反馈信息头和反馈信息内容部两部分。在后一种情况下,反馈信息内容部所包含的比特数必然小于数据块中码块集的个数,而所述反馈信息头可以根据所述数据块的每个码块集的传输状态生成。在本实施例中,由于反馈信息内容部的比特数小于数据块中码块集的个数,因此,在这种情况下,反馈信息内容部无法反馈数据块中所有码块集各自的传输状态,而只能反馈部分码块集的传输状态。
图4示出本发明实施例中反馈信息具体结构的示例,其中,图4(a)示出了当数据块中所有码块集均传输正确的反馈信息结构。在图4(a)中, 将前两个比特位设置为反馈信息头,比特11表示整个数据块传输正确。根据之前的讨论,在反馈信息内容部中,由于整个数据块中所有的码块集均传输正确,因此,在这种情况下,也无需反馈数据块中具体码块集的传输状态。鉴于此,图4(a)中的反馈信息内容部可以用来反馈信道测量信息。其中,反馈信息内容部的比特数小于所述数据块中的码块集个数,所反馈的信道测量信息的内容和示例如前所述,在此不再赘述。图4(a)中反馈信息头和反馈信息内容部各自所包含的比特数仅为示例,在具体应用中可以根据实际情况选择,在此不做限定。
图4(b)和图4(c)示出了当数据块的例如10个码块集中具有至少一个码块集传输错误的反馈信息结构。与图4(a)中反馈信息头所表示的含义不同,图4(b)和图4(c)中前两比特位的反馈信息头用于指示所述数据块中传输失败的一个或多个码块集在所述数据块中的位置范围。例如,图4(b)中的反馈信息头01用于指示数据块中传输失败的码块集位于全部10个码块集(0#-9#)中的#0-#7范围内,而图4(c)中的反馈信息头10用于指示数据块中传输失败的码块集位于全部10个码块集(0#-9#)中的#2-#9范围内。相应地,在本实施例中,为了更进一步地表示传输错误的码块集的具体位置信息,图4(b)和图4(c)中的反馈信息内容部用于指示所述反馈信息头所示的位置范围内的至少部分码块集各自的传输状态。具体地,图4(b)中的反馈信息内容部用于指示数据块中传输失败的#0-#7范围内的码块集各自的传输状态,在本实施例中,在#0-#7位置的数据块中,0#和3#数据块传输失败;而图4(c)中的反馈信息头内容部用于指示数据块中传输失败的#2-#9范围内的码块集各自的传输状态,在本实施例中,在#2-#9位置的数据块中,3#和9#数据块传输失败。虽然由于反馈信息内容部的比特数小于所述数据块中的码块集个数,图4(b)和图4(c)中的反馈信息并不能完全精确地表示整个数据块中每个码块集的传输状态,但考虑到数据块中少量码块集(例如1个或2个)传输错误的概率最大,并且大概率会集中于数据块的某个位置范围内,因此图4(b)和图4(c)中的反馈信息可以在很大程度上反馈数据块中各码块集的具体传输状态。当然,图4(b)和图4(c)中的反馈信息结构仅为示例,在实际应用中,反馈信息头可以用于指示连续几个码块集的位置范围,当然也可以通过预设的指示方式指示非连续的几个 码块集的位置范围,在此不做限定。另外,反馈信息头和反馈信息内容部各自所包含的比特数也仅为示例,在具体应用中可以根据实际情况选择。
图4(d)示出了当数据块中的10个码块集具有若干个码块集传输错误的反馈信息结构。在图4(d)中,前两个比特位同样为反馈信息头,比特00用于表示整个数据块传输错误,而后面的反馈信息内容部用于反馈信道测量信息。其中,反馈信息内容部的比特数小于所述数据块中的码块集个数,所反馈的信道测量信息的内容和示例如前所述,在此不再赘述。当数据块中10个码块集具有例如大于3个码块集传输错误,由此希望尽快反馈信道测量信息以进行链路适配时;或者当传输错误的码块集分散在数据块的各个部分,利用有限的反馈信息内容部的比特数无法表示各个码块集的具体传输状态时,可以考虑利用图4(d)所示的反馈信息结构来进行反馈。当然,上述所列举的适用场景仅为示例,在实际应用中,图4(d)的反馈信息结构可以应用在任何希望首先反馈信道测量信息的情况中。图4(d)中反馈信息头和反馈信息内容部各自所包含的比特数仅为示例,在具体应用中可以根据实际情况选择,在此不做限定。
在本发明的另一个实施例中,在图4(d)所示的类似场景下,数据块中有多个码块集传输失败,并且根据图4(b)或图4(c)所示的反馈信息的结构并无法精确反馈具体传输失败的数据块位置信息,当依然希望尽量反馈数据块中各码块集的状态信息时,可以考虑利用图5所示的反馈信息结构来进一步指示数据块中各码块集的传输状态信息。图5示出了本发明另一个实施例中反馈信息结构的示例,其中,反馈信息所包括的反馈信息头用于表示整个数据块传输错误,可用例如两个比特00表示,而反馈信息内容部的比特数小于所述数据块中的码块集个数。根据图5,前两个比特位为反馈信息头,比特00用于表示整个数据块传输错误,而后面的反馈信息内容部包括两部分:概况指示部和特别指示部。其中,特别指示部用于指示预设范围内的码块集各自的传输状态,预设范围码块集的个数等于特别指示部中包含的比特数。数据块中除去被特别指示部指示的码块集之外,剩余的码块集被分为至少两部分(例如第一部分、第二部分等),其传输状态利用概况指示部内的比特位指示。具体地,概况指示部内的各个比特位与所述第一部分、第二部分中相应位置的码块集一一对应,并且,当某个比特位对应的所有码 块集中有一个传输失败,则表示为传输失败(比特0),只有当此比特位对应的所有码块集均传输正确时,才指示传输正确(比特1)。图5中特别指示部和概况指示部的位置关系仅为示例,在此不做限制。
图6示出了图5所示反馈信息结构的具体设置方式。在图6中,假设数据块具有10个码块集,图6的箭头右侧为数据块中各码块集的实际传输状态(A为传输成功,N为传输失败),左侧为根据数据块中各码块集的传输状态生成的反馈信息。在本示例中,反馈信息共包括10比特,前两个比特为反馈信息头,中间两个比特为反馈信息内容部的概况指示部,最后六个比特为反馈信息内容部的特别指示部。其中,特别指示部用于指示数据块中#2-#7码块集的具体传输状态,与#2-#7码块集一一对应;概况指示部用于分别指示#0-#1和#8-#9位置码块集的传输状态。可见,当数据块中具有多个码块集传输失败时,反馈信息头用比特00表示数据块传输失败,反馈信息内容部的特别指示部用比特101111来分别指示#2-#7码块集的相应传输状态。而根据图6中的各示例,当#0-#1和#8-#9位置码块集的传输状态分别为NA时,概况指示部的比特表示为01,分别与#0-#1和#8-#9的码块集一一对应(图6上图);当#0-#1和#8-#9位置码块集的传输状态分别为AN时,概况指示部的比特表示为10,分别与#0-#1和#8-#9的码块集一一对应(图6中图);特别地,当#0-#1码块集传输状态为NN,而#8-#9码块集传输状态为AN时,概况指示部的比特表示为00,因为其第一个比特0分别对应#0和#8码块集,其中有一个码块集传输错误,因此用0来表示概况指示部的第一比特位。图6所示的反馈信息结构仅为示例,概况指示部所指示的码块集的具体位置也可以任意选择,例如可以为#0、#2和#1、#3,或#0-#2和#4-#6,在此不做限制。
图7示出了图5所示反馈信息结构的另一种具体设置方式,其具体结构与图6所示类似,同样是2位反馈信息头+2位概况指示部+6位特别指示部。图7中,利用预设的对应关系来将数据块中利用概况指示部指示的码块集的排布和概况指示部的指示方式相对应,例如,码块集的传输状态分别为AN和NN时,概况指示部表示为01。值得强调的是,图7中的码块集的传输状态并不一定为其真实传输状态,而是根据一定规则获取的选定传输状态,图8示出了图7中码块集的选定传输状态的设置原则的一个示例。其中,所 有传输失败的码块集必须被包含,并且所用来表示的传输状态须尽量最为接近码块集的真实传输状态。例如,当两组码块集的真实传输状态分别为NN时,所选定的传输状态也必然为NN。而当两组码块集真实传输状态分别为AA和NN时,根据上述规则获取的与图7中列表相对应的选定传输状态需为AN和NN。利用图6或图7所示的反馈信息的结构设置,能够尽量真实地反馈数据块中各码块集的传输状态,并尽量减少系统开销。图6和图7中的示例的各组成部分(反馈信息头、反馈信息内容部的概况指示部和特别指示部)分别的比特位数在此不做限定,此外,反馈信息中所包含的概况指示部的数量也可以为多个,分别用于指示各个不同位置的码块集。
在本发明再一个实施例中,还可以通过对所述多个码块集中的至少部分码块集各自的传输状态或进一步结合信道测量信息编码生成所述反馈信息,例如,可以对所述多个码块集中的至少部分码块集各自的传输状态以及MU-CQI相关的偏差量进行联合编码。这里的编码方式可以为信源压缩编码,指根据信源输出符号序列的统计特性来寻找某种方法,把信源输出符号序列变换为最短的码字序列,使后者的各码元所载荷的平均信息量最大,同时又能保证无失真地恢复原来的符号序列。其中,当使用信源压缩编码技术进行编码时,可以生成变长或定长的反馈信息(反馈信息内容部)。可选地,当反馈信息包括反馈信息头,且反馈信息内容部为可变长度时,反馈信息头可用于指示反馈信息内容部的长度,即所占据的比特数。反馈信息内容部的长度可以为有限个长度的集合,如4、8、12、16比特等。当反馈信息内容部的长度仅包括上述4种可能性时,反馈信息头可以设置为2比特,用于分别指示这4种可能的长度。在这种情况下,当反馈信息内容部中所包含的有效的信源压缩编码结果不为上述4种可能长度之一,并小于其中的某一长度时,可以选择在编码结果后面补0,或结合其他信道反馈信息进行反馈,以补齐为其中一种长度值。此外,当信源压缩编码结果超出预设的最大16位比特时,可以通过输出设定的反馈值(如16位的全0或全1等)来表示这一例外情况。
在另一实施例中,当反馈信息内容部的长度为给定长度时,当反馈信息内容部中所包含的有效的信源压缩编码结果小于这一给定长度时,同样可以在编码结果后补0,或结合其他信道反馈信息进行反馈,以补齐给定长度。 相反,若信源压缩编码结果超出预设的给定长度时,可以通过输出设定的反馈值(如给定长度位的全0或全1等)来表示这一例外情况。
在本发明一个实施例中,所采用的信源压缩编码可以通过如下方式进行:将反馈信息分为反馈信息头和反馈信息内容部。其中,反馈信息头用于指示数据块中错误码块集的个数,例如,11指示所有码块集均传输成功,01指示有一个码块集传输错误,10指示有两个码块集传输错误,而00指示除此之外所有情况。反馈信息内容部则用来指示错误码块集在数据块中的位置。例如,可以利用两个4比特的字段来指示数据块中第几个码块集传输错误。每个4比特字段足够指示包含16个以内码块集的数据块产生两个以内错误的所有情况,例如,0010用于指示数据块中#2码块集传输错误。当不需要这么多字段指示错误的码块集位置时,剩余的空闲字段可以用来进行信道测量反馈。
在本发明实施例中,所采用的信源压缩编码可以为算术编码,通常,首先将对算术编码所要表示的各种反馈信息的概率进行估计,然后再进行相应的编码。图9示出了本发明一个实施例中根据各种反馈信息的概率进行算术编码的示意图。如图9所示,在数据块中具有10个码块集的情况下,在概率轴上,所有码块集均传输成功的概率大致占据0-0.35,具有1种可能情况;而有其中1个码块集传输错误的概率总共大致为0.35-0.74,其中,这10个码块集分别出错的概率将各占1/10,共有10种可能的情况;进一步地,2个或2个以上码块集传输错误的概率占据0.74-1。其中,2个码块集错误具有45种可能的情况,3个码块集错误具有120种可能的情况,其他情况将不再进行区分,直接输出设定的NACK反馈值即可。
进一步地,考虑将图9中的概率值结合CQI±2,±1和0这5个等级的CQI偏差值时,每个CQI偏差值所占据的概率在每种情况下各为1/5。因此,在所有码块集均传输成功的情况下,每个CQI偏差值等级所占据的概率范围分别为0-0.07,0.07-0.14,0.14-0.21,0.21-0.28以及0.28-0.35。其他概率范围下的情况类似。在得到上述概率分布结果之后,将共10个码块集的3个以内码块集传输错误的所有情况(1+10+45+120)结合5个等级的CQI偏差值,总共将产生885种可能性。对此,结合前述的概率分布,可以考虑利用不超过10个比特位的反馈信息内容部来对这一具有5个等级CQI偏差值, 并且数据块中传输失败的码块集不超过3个的情况来进行编码。图9所示的算术编码方式仅为示例,在此不做限定。
回到图1,在步骤S103中,发送所述反馈信息。
在本发明实施例中,将数据块包括10个码块集作为示例以说明本发明实施例的反馈信息结构。在实际应用中,数据块可以包含任意数量的码块集,并且相应地反馈信息也可以根据数据块中所包含的码块集的数量进行调整,在此不做限定。
利用本发明实施例的反馈方法,可以对基站所发送的数据块中包含的至少部分码块或码块集的具体传输状态进行反馈,提高了数据传输的效率和可靠性,减少了数据传输过程中的时延。
下面,参照图10来描述根据本发明实施例的通信设备。该通信设备可以执行上述反馈方法。由于该通信设备的操作与上文所述的反馈方法的各个步骤基本相同,因此在这里只对其进行简要的描述,而省略对相同内容的重复描述。
如图10所示,通信设备1000包括接收单元1010、处理单元1020和发送单元1030。需要认识到,图10仅示出与本发明的实施例相关的部件,而省略了其他部件,但这只是示意性的,根据需要,通信设备1000可以包括其他部件。
接收单元1010接收包括多个码块集的数据块。具体地,每次接收单元1010接收的一个数据块(Transport Block,TB)中所包含的码块集可以分别包括一个或多个码块,码块集中所包括的码块数量可以由具体的传输设置和所传输的数据内容决定。
处理单元1020根据所述多个码块集的接收状态生成关于所述数据块的反馈信息,所述反馈信息用于指示所述多个码块集中的至少部分码块集各自的传输状态。与现有技术不同,本发明实施例中的反馈信息不再单纯用ACK或NACK表示整个数据块的传输状态是否成功,而是会在反馈信息中具体体现数据块中至少部分码块集分别的传输状态是否成功。因此,本发明实施例中的反馈信息可能包括多于一个比特。可选地,反馈信息中的比特数可以与数据块中码块集的数量有关,例如,反馈信息的比特数可以等于数据块中的码块集数量,当然,上述比特数的设置在此仅为举例,并不做任何限 制。
在本发明的一个实施例中,反馈信息可以包括两部分:反馈信息头和反馈信息内容部。具体地,反馈信息内容部可以包括与所述数据块中的码块集个数对应的比特;反馈信息头则可以根据所述数据块的每个码块集的传输状态生成。图2示出了本发明实施例中反馈信息具体结构的示例,其中,图2(a)示出了当数据块中具有10个码块集,且每个码块集均传输正确的反馈信息结构。在图2(a)中,第一个比特位为反馈信息头,比特1表示整个数据块传输正确;后面10个比特位共同构成反馈信息内容部,每个比特位分别对应数据块中的一个相应位置的码块集,比特1用于表示这一对应的码块集传输正确。图2(b)示出了当数据块中的10个码块集具有至少一个(图中示出为2个)码块集传输错误的反馈信息结构。在图2(b)中,第一个比特位同样为反馈信息头,比特0表示整个数据块传输错误;后面10个比特位共同构成反馈信息内容部,与图2(a)类似,每个比特位也分别对应数据块中的一个相应位置的码块集,比特1用于表示这一对应的码块集传输正确,比特0用于表示这一对应的码块集传输错误。根据图2(b)所示,当前所反馈的数据块中的第1个码块集和第4个码块集传输错误,其余传输均正确。
进一步地,回到图2(a),如前所述,考虑到数据块中的每个码块集均传输正确,则当反馈信息头已经反馈了整个数据块传输正确的信息时,后续的反馈信息内容部已无需逐比特反馈数据块中每个码块集的传输状态。在这种情况下,可以考虑利用此时的反馈信息内容部发送其他反馈信息,例如可以用于反馈信道测量信息。这里所反馈的信道测量信息可以为所测量的信道质量指示CQI(如多用户信道质量指示MU-CQI)、信道状态信息CSI和/或信噪比SNR等信息。图3示出了当数据块传输正确时反馈信息的结构配置示意图。如图3(a)所示,反馈信息内容部可以用于反馈解调参考信号DMRS CQI的偏差量,用于快速反馈和链路适配,剩余的比特位可被补零对齐。如图3(b)所示,当CSI反馈被同时安排时,反馈信息内容部可以部分用于反馈DMRS CQI,部分用于反馈部分CSI。
在此,多用户信道质量指示符(MU-CQI)是指表征在多用户传输条件下接收信号质量的一类指示符或物理量。当然,该术语并非限制,而是举例,事实上,实现类似功能的请求(无论叫什么名称)都是可应用的。DMRS CQI的偏差量被计算为MU-CQI减去当前数据传输使用的调制与编码策略MCS。在反馈CQI时,可以通过反馈该偏差量以减少反馈的数据量。注意,在此举例了MU-CQI减去当前数据传输使用的MCS作为偏差量(后文中提到的示例的偏差量也是如此计算),但本说明书的技术方案不限于此,也可以是当前数据传输使用的MCS减去MU-CQI作为偏差量。具体地,偏差量可以包括多种取值,如0、正偏差量或者负偏差量,偏差量的取值可以为整数,当然也可以为小数或具有其他取值精细度和取值范围。可选地,偏差量可以为+1/-1,+2/-2,0等。但这里的偏差量+1/-1等可以是量化为整数后的MCS和MU-CQI之间的整数差值,也可以表示MCS和MU-CQI之间的如+0.5/-0.5,+0.25/-0.25等以小数为单位的差值。也可以使用非均匀的映射,譬如+1代表+0.25个差值,+2代表+1个差值,+3代表+2个差值等中间间隔不一致的情况。在利用反馈信息内容部反馈偏差量时,可以用比特0来表示偏差量为0或正(即非负的偏差量),且用比特1来表示偏差量为0或负(即非正的偏差量)。当然,比特0或1的取值也可以相反。进一步地,还可以用更多的比特数表示偏差量的更多种取值,从而更加精细地报告偏差量,例如,可以考虑利用2-3位比特的4种取值对应于响应的多个正偏差量或多个负偏差量,可以提高反馈信息内容部的比特位的利用率,也可以更精细地表示出偏差量的大部分或较为重要的信息,而同时节省系统资源,简化系统设计,减少传输信号的数据量。以上偏差量的表示方式仅为示例,在此不做限制。
在此,CSI-RS是指系统中传输的一类用于测量信道状态的参考信号。当然,该术语并非限制,而是举例,事实上,实现类似功能的请求(无论叫什么名称)都是可应用的。
在本发明的另一个实施例中,反馈信息内容部可以包括小于所述数据块中的码块集个数的比特数;相应地,所述反馈信息头可以根据所述数据块的每个码块集的传输状态生成。在本实施例中,由于反馈信息内容部的比特数小于数据块中码块集的个数,因此,在这种情况下,反馈信息内容部无法反馈数据块中所有码块集各自的传输状态,而只能反馈部分码块集的传输状态。
图4示出本发明实施例中反馈信息具体结构的示例,其中,图4(a) 示出了当数据块中所有码块集均传输正确的反馈信息结构。在图4(a)中,将前两个比特位设置为反馈信息头,比特11表示整个数据块传输正确。根据之前的讨论,在反馈信息内容部中,由于整个数据块中所有的码块集均传输正确,因此,在这种情况下,也无需反馈数据块中具体码块集的传输状态。鉴于此,图4(a)中的反馈信息内容部可以用来反馈信道测量信息。其中,反馈信息内容部的比特数小于所述数据块中的码块集个数,所反馈的信道测量信息的内容和示例如前所述,在此不再赘述。图4(a)中反馈信息头和反馈信息内容部各自所包含的比特数仅为示例,在具体应用中可以根据实际情况选择,在此不做限定。
图4(b)和图4(c)示出了当数据块的例如10个码块集中具有至少一个码块集传输错误的反馈信息结构。与图4(a)中反馈信息头所表示的含义不同,图4(b)和图4(c)中前两比特位的反馈信息头用于指示所述数据块中传输失败的一个或多个码块集在所述数据块中的位置范围。例如,图4(b)中的反馈信息头01用于指示数据块中传输失败的码块集位于全部10个码块集(0#-9#)中的#0-#7范围内,而图4(c)中的反馈信息头10用于指示数据块中传输失败的码块集位于全部10个码块集(0#-9#)中的#2-#9范围内。相应地,在本实施例中,为了更进一步地表示传输错误的码块集的具体位置信息,图4(b)和图4(c)中的反馈信息内容部用于指示所述反馈信息头所示的位置范围内的至少部分码块集各自的传输状态。具体地,图4(b)中的反馈信息内容部用于指示数据块中传输失败的#0-#7范围内的码块集各自的传输状态,在本实施例中,在#0-#7位置的数据块中,0#和3#数据块传输失败;而图4(c)中的反馈信息头内容部用于指示数据块中传输失败的#2-#9范围内的码块集各自的传输状态,在本实施例中,在#2-#9位置的数据块中,3#和9#数据块传输失败。虽然由于反馈信息内容部的比特数小于所述数据块中的码块集个数,图4(b)和图4(c)中的反馈信息并不能完全精确地表示整个数据块中每个码块集的传输状态,但考虑到数据块中少量码块集(例如1个或2个)传输错误的概率最大,并且大概率会集中于数据块的某个位置范围内,因此图4(b)和图4(c)中的反馈信息可以在很大程度上反馈数据块中各码块集的具体传输状态。当然,图4(b)和图4(c)中的反馈信息结构仅为示例,在实际应用中,反馈信息头可以用于指示连续 几个码块集的位置范围,当然也可以通过预设的指示方式指示非连续的几个码块集的位置范围,在此不做限定。另外,反馈信息头和反馈信息内容部各自所包含的比特数也仅为示例,在具体应用中可以根据实际情况选择。
图4(d)示出了当数据块中的10个码块集具有若干个码块集传输错误的反馈信息结构。在图4(d)中,前两个比特位同样为反馈信息头,比特00用于表示整个数据块传输错误,而后面的反馈信息内容部用于反馈信道测量信息。其中,反馈信息内容部的比特数小于所述数据块中的码块集个数,所反馈的信道测量信息的内容和示例如前所述,在此不再赘述。当数据块中10个码块集具有例如大于3个码块集传输错误,由此希望尽快反馈信道测量信息以进行链路适配时;或者当传输错误的码块集分散在数据块的各个部分,利用有限的反馈信息内容部的比特数无法表示各个码块集的具体传输状态时,可以考虑利用图4(d)所示的反馈信息结构来进行反馈。当然,上述所列举的适用场景仅为示例,在实际应用中,图4(d)的反馈信息结构可以应用在任何希望首先反馈信道测量信息的情况中。图4(d)中反馈信息头和反馈信息内容部各自所包含的比特数仅为示例,在具体应用中可以根据实际情况选择,在此不做限定。
在本发明的另一个实施例中,在图4(d)所示的类似场景下,数据块中有多个码块集传输失败,并且根据图4(b)或图4(c)所示的反馈信息的结构并无法精确反馈具体传输失败的数据块位置信息,当依然希望尽量反馈数据块中各码块集的状态信息时,可以考虑利用图5所示的反馈信息结构来进一步指示数据块中各码块集的传输状态信息。图5示出了本发明另一个实施例中反馈信息结构的示例,其中,反馈信息所包括的反馈信息头用于表示整个数据块传输错误,可用例如两个比特00表示,而反馈信息内容部的比特数小于所述数据块中的码块集个数。根据图5,前两个比特位为反馈信息头,比特00用于表示整个数据块传输错误,而后面的反馈信息内容部包括两部分:概况指示部和特别指示部。其中,特别指示部用于指示预设范围内的码块集各自的传输状态,预设范围码块集的个数等于特别指示部中包含的比特数。数据块中除去被特别指示部指示的码块集之外,剩余的码块集被分为至少两部分(例如第一部分、第二部分等),其传输状态利用概况指示部内的比特位指示。具体地,概况指示部内的各个比特位与所述第一部分、 第二部分中相应位置的码块集一一对应,并且,当某个比特位对应的所有码块集中有一个传输失败,则表示为传输失败(比特0),只有当此比特位对应的所有码块集均传输正确时,才指示传输正确(比特1)。图5中特别指示部和概况指示部的位置关系仅为示例,在此不做限制。
图6示出了图5所示反馈信息结构的具体设置方式。在图6中,假设数据块具有10个码块集,图6的箭头右侧为数据块中各码块集的实际传输状态(A为传输成功,N为传输失败),左侧为根据数据块中各码块集的传输状态生成的反馈信息。在本示例中,反馈信息共包括10比特,前两个比特为反馈信息头,中间两个比特为反馈信息内容部的概况指示部,最后六个比特为反馈信息内容部的特别指示部。其中,特别指示部用于指示数据块中#2-#7码块集的具体传输状态,与#2-#7码块集一一对应;概况指示部用于分别指示#0-#1和#8-#9位置码块集的传输状态。可见,当数据块中具有多个码块集传输失败时,反馈信息头用比特00表示数据块传输失败,反馈信息内容部的特别指示部用比特101111来分别指示#2-#7码块集的相应传输状态。而根据图6中的各示例,当#0-#1和#8-#9位置码块集的传输状态分别为NA时,概况指示部的比特表示为01,分别与#0-#1和#8-#9的码块集一一对应(图6上图);当#0-#1和#8-#9位置码块集的传输状态分别为AN时,概况指示部的比特表示为10,分别与#0-#1和#8-#9的码块集一一对应(图6中图);特别地,当#0-#1码块集传输状态为NN,而#8-#9码块集传输状态为AN时,概况指示部的比特表示为00,因为其第一个比特0分别对应#0和#8码块集,其中有一个码块集传输错误,因此用0来表示概况指示部的第一比特位。图6所示的反馈信息结构仅为示例,概况指示部所指示的码块集的具体位置也可以任意选择,例如可以为#0、#2和#1、#3,或#0-#2和#4-#6,在此不做限制。
图7示出了图5所示反馈信息结构的另一种具体设置方式,其具体结构与图6所示类似,同样是2位反馈信息头+2位概况指示部+6位特别指示部。图7中,利用预设的对应关系来将数据块中利用概况指示部指示的码块集的排布和概况指示部的指示方式相对应,例如,码块集的传输状态分别为AN和NN时,概况指示部表示为01。值得强调的是,图7中的码块集的传输状态并不一定为其真实传输状态,而是根据一定规则获取的选定传输状态, 图8示出了图7中码块集的选定传输状态的设置原则。其中,所有传输失败的码块集必须被包含,并且所用来表示的传输状态须尽量最为接近码块集的真实传输状态。例如,当两组码块集的真实传输状态分别为NN时,所选定的传输状态也必然为NN。而当两组码块集真实传输状态分别为AA和NN时,根据上述规则获取的与图7中列表相对应的选定传输状态需为AN和NN。利用图6或图7所示的反馈信息的结构设置,能够尽量真实地反馈数据块中各码块集的传输状态,并尽量减少系统开销。图6和图7中的示例的各组成部分(反馈信息头、反馈信息内容部的概况指示部和特别指示部)分别的比特位数在此不做限定,此外,反馈信息中所包含的概况指示部的数量也可以为多个,分别用于指示各个不同位置的码块集。
在本发明再一个实施例中,还可以通过对所述多个码块集中的至少部分码块集各自的传输状态或进一步结合信道测量信息编码生成所述反馈信息,例如,可以对所述多个码块集中的至少部分码块集各自的传输状态以及MU-CQI相关的偏差量进行联合编码。这里的编码方式可以为信源压缩编码,指根据信源输出符号序列的统计特性来寻找某种方法,把信源输出符号序列变换为最短的码字序列,使后者的各码元所载荷的平均信息量最大,同时又能保证无失真地恢复原来的符号序列。其中,当使用信源压缩编码技术进行编码时,可以生成变长或定长的反馈信息(反馈信息内容部)。可选地,当反馈信息包括反馈信息头,且反馈信息内容部为可变长度时,反馈信息头可用于指示反馈信息内容部的长度,即所占据的比特数。反馈信息内容部的长度可以为有限个长度的集合,如4、8、12、16比特等。当反馈信息内容部的长度仅包括上述4种可能性时,反馈信息头可以设置为2比特,用于分别指示这4种可能的长度。在这种情况下,当反馈信息内容部中所包含的有效的信源压缩编码结果不为上述4种可能长度之一,并小于其中的某一长度时,可以选择在编码结果后面补0,或结合其他信道反馈信息进行反馈,以补齐为其中一种长度值。此外,当信源压缩编码结果超出预设的最大16位比特时,可以通过输出设定的反馈值(如16位的全0或全1等)来表示这一例外情况。
在另一实施例中,当反馈信息内容部的长度为给定长度时,当反馈信息内容部中所包含的有效的信源压缩编码结果小于这一给定长度时,同样可 以在编码结果后补0,或结合其他信道反馈信息进行反馈,以补齐给定长度。相反,若信源压缩编码结果超出预设的给定长度时,可以通过输出设定的反馈值(如给定长度位的全0或全1等)来表示这一例外情况。
在本发明一个实施例中,所采用的信源压缩编码可以通过如下方式进行:将反馈信息分为反馈信息头和反馈信息内容部。其中,反馈信息头用于指示数据块中错误码块集的个数,例如,11指示所有码块集均传输成功,01指示有一个码块集传输错误,10指示有两个码块集传输错误,而00指示除此之外所有情况。反馈信息内容部则用来指示错误码块集在数据块中的位置。例如,可以利用两个4比特的字段来指示数据块中第几个码块集传输错误。每个4比特字段足够指示包含16个以内码块集的数据块产生两个以内错误的所有情况,例如,0010用于指示数据块中#2码块集传输错误。当不需要这么多字段指示错误的码块集位置时,剩余的空闲字段可以用来进行信道测量反馈。
在本发明实施例中,所采用的信源压缩编码可以为算术编码,通常,首先将对算术编码所要表示的各种反馈信息的概率进行估计,然后再进行相应的编码。图9示出了本发明一个实施例中根据各种反馈信息的概率进行算术编码的示意图。如图9所示,在数据块中具有10个码块集的情况下,在概率轴上,所有码块集均传输成功的概率大致占据0-0.35,具有1种可能情况;而有其中1个码块集传输错误的概率总共大致为0.35-0.74,其中,这10个码块集分别出错的概率将各占1/10,共有10种可能的情况;进一步地,2个或2个以上码块集传输错误的概率占据0.74-1。其中,2个码块集错误具有45种可能的情况,3个码块集错误具有120种可能的情况,其他情况将不再进行区分,直接输出设定的NACK反馈值即可。
进一步地,考虑将图9中的概率值结合CQI±2,±1和0这5个等级的CQI偏差值时,每个CQI偏差值所占据的概率在每种情况下各为1/5。因此,在所有码块集均传输成功的情况下,每个CQI偏差值等级所占据的概率范围分别为0-0.07,0.07-0.14,0.14-0.21,0.21-0.28以及0.28-0.35。其他概率范围下的情况类似。在得到上述概率分布结果之后,将共10个码块集的3个以内码块集传输错误的所有情况(1+10+45+120)结合5个等级的CQI偏差值,总共将产生885种可能性。对此,结合前述的概率分布,可以考虑利 用不超过10个比特位的反馈信息内容部来对这一具有5个等级CQI偏差值,并且数据块中传输失败的码块集不超过3个的情况来进行编码。图9所示的算术编码方式仅为示例,在此不做限定。
回到图10,发送单元1030发送所述反馈信息。
在本发明实施例中,将数据块包括10个码块集作为示例以说明本发明实施例的反馈信息结构。在实际应用中,数据块可以包含任意数量的码块集,并且相应地反馈信息也可以根据数据块中所包含的码块集的数量进行调整,在此不做限定。
本发明实施例中的通信设备1000可以为基站,也可以为用户设备,相应地,本发明实施例中的反馈信息发送可以为上行传输,也可以为下行传输。
利用本发明实施例的通信设备,可以对基站所发送的数据块中包含的至少部分码块或码块集的具体传输状态进行反馈,提高了数据传输的效率和可靠性,减少了数据传输过程中的时延。
另外,上述实施方式的说明中使用的框图示出了以功能为单位的块。这些功能块(结构单元)通过硬件和/或软件的任意组合来实现。此外,各功能块的实现手段并不特别限定。即,各功能块可以通过在物理上和/或逻辑上相结合的一个装置来实现,也可以将在物理上和/或逻辑上相分离的两个以上装置直接地和/或间接地(例如通过有线和/或无线)连接从而通过上述多个装置来实现。
例如,本发明的一实施方式中的可以为无线基站或用户设备的通信设备1000等可以作为执行本发明的无线通信方法的处理的计算机来发挥功能。图11是示出本发明的一实施方式所涉及的通信设备的硬件结构的一例的图。上述的通信设备1000可以作为在物理上包括处理器1101、内存1102、存储器1103、通信装置1104、输入装置1105、输出装置1106、总线1107等的计算机装置来构成。
另外,在以下的说明中,“装置”这样的文字也可替换为电路、设备、单元等。通信设备1000的硬件结构可以包括一个或多个图中所示的各装置,也可以不包括部分装置。
例如,处理器1101仅图示出一个,但也可以为多个处理器。此外,可以通过一个处理器来执行处理,也可以通过一个以上的处理器同时、依次、 或采用其它方法来执行处理。另外,处理器1101可以通过一个以上的芯片来安装。
通信设备1000中的各功能例如通过如下方式实现:通过将规定的软件(程序)读入到处理器1101、内存1102等硬件上,从而使处理器1101进行运算,对由通信装置1104进行的通信进行控制,并对内存1102和存储器1103中的数据的读出和/或写入进行控制。
处理器1101例如使操作系统进行工作从而对计算机整体进行控制。处理器1101可以由包括与周边装置的接口、控制装置、运算装置、寄存器等的中央处理器(CPU,Central Processing Unit)构成。
此外,处理器1101将程序(程序代码)、软件模块、数据等从存储器1103和/或通信装置1104读出到内存1102,并根据它们执行各种处理。作为程序,可以采用使计算机执行在上述实施方式中说明的动作中的至少一部分的程序。
内存1102是计算机可读取记录介质,例如可以由只读存储器(ROM,ReadOnlyMemory)、可编程只读存储器(EPROM,ErasableProgrammableROM)、电可编程只读存储器(EEPROM,ElectricallyEPROM)、随机存取存储器(RAM,RandomAccessMemory)、其它适当的存储介质中的至少一个来构成。内存1102也可以称为寄存器、高速缓存、主存储器(主存储装置)等。内存1102可以保存用于实施本发明的一实施方式所涉及的无线通信方法的可执行程序(程序代码)、软件模块等。
存储器1103是计算机可读取记录介质,例如可以由软磁盘(flexible disk)、软(注册商标)盘(floppy disk)、磁光盘(例如,只读光盘(CD-ROM(CompactDiscROM)等)、数字通用光盘、蓝光(Blu-ray,注册商标)光盘)、可移动磁盘、硬盘驱动器、智能卡、闪存设备(例如,卡、棒(stick)、密钥驱动器(key driver))、磁条、数据库、服务器、其它适当的存储介质中的至少一个来构成。存储器1003也可以称为辅助存储装置。
通信装置1104是用于通过有线和/或无线网络进行计算机间的通信的硬件(发送接收设备),例如也称为网络设备、网络控制器、网卡、通信模块等。通信装置1004为了实现例如频分双工(FDD,FrequencyDivisionDuplex) 和/或时分双工(TDD,TimeDivisionDuplex),可以包括高频开关、双工器、滤波器、频率合成器等。
输入装置1105是接受来自外部的输入的输入设备(例如,键盘、鼠标、麦克风、开关、按钮、传感器等)。输出装置1106是实施向外部的输出的输出设备(例如,显示器、扬声器、发光二极管(LED,LightEmittingDiode)灯等)。另外,输入装置1105和输出装置1106也可以为一体的结构(例如触控面板)。
此外,处理器1101、内存1102等各装置通过用于对信息进行通信的总线1107连接。总线1107可以由单一的总线构成,也可以由装置间不同的总线构成。
此外,通信设备1000可以包括微处理器、数字信号处理器(DSP,DigitalSignalProcessor)、专用集成电路(ASIC,ApplicationSpecificIntegratedCircuit)、可编程逻辑器件(PLD,ProgrammableLogicDevice)、现场可编程门阵列(FPGA,FieldProgrammableGateArray)等硬件,可以通过该硬件来实现各功能块的部分或全部。例如,处理器1101可以通过这些硬件中的至少一个来安装。
另外,关于本说明书中说明的用语和/或对本说明书进行理解所需的用语,可以与具有相同或类似含义的用语进行互换。例如,信道和/或符号也可以为信号(信令)。此外,信号也可以为消息。参考信号也可以简称为RS(ReferenceSignal),根据所适用的标准,也可以称为导频(Pilot)、导频信号等。此外,分量载波(CC,ComponentCarrier)也可以称为小区、频率载波、载波频率等。
进而,时隙在时域中可以由一个或多个符号(正交频分复用(OFDM,OrthogonalFrequencyDivisionMultiplexing)符号、单载波频分多址(SC-FDMA,SingleCarrierFrequencyDivisionMultipleAccess)符号等)构成。此外,时隙也可以是基于参数配置的时间单元。此外,时隙还可以包括多个微时隙。各微时隙在时域中可以由一个或多个符号构成。此外,微时隙也可以称为子时隙。
无线帧、子帧、时隙、微时隙以及符号均表示传输信号时的时间单元。无线帧、子帧、时隙、微时隙以及符号也可以使用各自对应的其它名称。例 如,一个子帧可以被称为传输时间间隔(TTI,TransmissionTimeInterval),多个连续的子帧也可以被称为TTI,一个时隙或一个微时隙也可以被称为TTI。也就是说,子帧和/或TTI可以是现有的LTE中的子帧(1ms),也可以是短于1ms的期间(例如1~13个符号),还可以是长于1ms的期间。另外,表示TTI的单元也可以称为时隙、微时隙等而非子帧。
在此,TTI例如是指无线通信中调度的最小时间单元。例如,在LTE系统中,无线基站对各用户设备进行以TTI为单位分配无线资源(在各用户设备中能够使用的频带宽度、发射功率等)的调度。另外,TTI的定义不限于此。
TTI可以是经过信道编码的数据包(数据块)、码块、和/或码字的发送时间单元,也可以是调度、链路适配等的处理单元。另外,在给出TTI时,实际上与数据块、码块、和/或码字映射的时间区间(例如符号数)也可以短于该TTI。
另外,一个时隙或一个微时隙被称为TTI时,一个以上的TTI(即一个以上的时隙或一个以上的微时隙)也可以成为调度的最小时间单元。此外,构成该调度的最小时间单元的时隙数(微时隙数)可以受到控制。
具有1ms时间长度的TTI也可以称为常规TTI(LTE Rel.8-12中的TTI)、标准TTI、长TTI、常规子帧、标准子帧、或长子帧等。短于常规TTI的TTI也可以称为压缩TTI、短TTI、部分TTI(partial或fractional TTI)、压缩子帧、短子帧、微时隙、或子时隙等。
另外,长TTI(例如常规TTI、子帧等)也可以用具有超过1ms的时间长度的TTI来替换,短TTI(例如压缩TTI等)也可以用具有比长TTI的TTI长度短且1ms以上的TTI长度的TTI来替换。
资源块(RB,ResourceBlock)是时域和频域的资源分配单元,在频域中,可以包括一个或多个连续的副载波(子载波(subcarrier))。此外,RB在时域中可以包括一个或多个符号,也可以为一个时隙、一个微时隙、一个子帧或一个TTI的长度。一个TTI、一个子帧可以分别由一个或多个资源块构成。另外,一个或多个RB也可以称为物理资源块(PRB,PhysicalRB)、子载波组(SCG,Sub-CarrierGroup)、资源单元组(REG,Resource ElementGroup)、PRG对、RB对等。
另外,上述的无线帧、子帧、时隙、微时隙以及符号等的结构仅仅为示例。例如,无线帧中包括的子帧数、每个子帧或无线帧的时隙数、时隙内包括的微时隙数、时隙或微时隙中包括的符号和RB的数目、RB中包括的子载波数、以及TTI内的符号数、符号长度、循环前缀(CP,Cyclic Prefix)长度等的结构可以进行各种各样的变更。
此外,本说明书中说明的信息、参数等可以用绝对值来表示,也可以用与规定值的相对值来表示,还可以用对应的其它信息来表示。例如,无线资源可以通过规定的索引来指示。进一步地,使用这些参数的公式等也可以与本说明书中明确公开的不同。
在本说明书中用于参数等的名称在任何方面都并非限定性的。例如,各种各样的信道(物理上行链路控制信道(PUCCH,PhysicalUplink ControlChannel)、物理下行链路控制信道(PDCCH,PhysicalDownlink ControlChannel)等)和信息单元可以通过任何适当的名称来识别,因此为这些各种各样的信道和信息单元所分配的各种各样的名称在任何方面都并非限定性的。
本说明书中说明的信息、信号等可以使用各种各样不同技术中的任意一种来表示。例如,在上述的全部说明中可能提及的数据、命令、指令、信息、信号、比特、符号、芯片等可以通过电压、电流、电磁波、磁场或磁性粒子、光场或光子、或者它们的任意组合来表示。
此外,信息、信号等可以从上层向下层、和/或从下层向上层输出。信息、信号等可以经由多个网络节点进行输入或输出。
输入或输出的信息、信号等可以保存在特定的场所(例如内存),也可以通过管理表进行管理。输入或输出的信息、信号等可以被覆盖、更新或补充。输出的信息、信号等可以被删除。输入的信息、信号等可以被发往其它装置。
信息的通知并不限于本说明书中说明的方式/实施方式,也可以通过其它方法进行。例如,信息的通知可以通过物理层信令(例如,下行链路控制信息(DCI,DownlinkControlInformation)、上行链路控制信息(UCI,UplinkControlInformation))、上层信令(例如,无线资源控制(RRC,RadioResourceControl)信令、广播信息(主信息块(MIB, MasterInformationBlock)、系统信息块(SIB,SystemInformationBlock)等)、媒体存取控制(MAC,MediumAccessControl)信令)、其它信号或者它们的组合来实施。
另外,物理层信令也可以称为L1/L2(第1层/第2层)控制信息(L1/L2控制信号)、L1控制信息(L1控制信号)等。此外,RRC信令也可以称为RRC消息,例如可以为RRC连接建立(RRC Connection Setup)消息、RRC连接重配置(RRC Connection Reconfiguration)消息等。此外,MAC信令例如可以通过MAC控制单元(MAC CE(Control Element))来通知。
此外,规定信息的通知并不限于显式地进行,也可以隐式地(例如,通过不进行该规定信息的通知,或者通过其它信息的通知)进行。
关于判定,可以通过由1比特表示的值(0或1)来进行,也可以通过由真(true)或假(false)表示的真假值(布尔值)来进行,还可以通过数值的比较(例如与规定值的比较)来进行。
软件无论被称为软件、固件、中间件、微代码、硬件描述语言,还是以其它名称来称呼,都应宽泛地解释为是指命令、命令集、代码、代码段、程序代码、程序、子程序、软件模块、应用程序、软件应用程序、软件包、例程、子例程、对象、可执行文件、执行线程、步骤、功能等。
此外,软件、命令、信息等可以经由传输介质被发送或接收。例如,当使用有线技术(同轴电缆、光缆、双绞线、数字用户线路(DSL,DigitalSubscriberLine)等)和/或无线技术(红外线、微波等)从网站、服务器、或其它远程资源发送软件时,这些有线技术和/或无线技术包括在传输介质的定义内。
本说明书中使用的“系统”和“网络”这样的用语可以互换使用。
在本说明书中,“基站(BS,BaseStation)”、“无线基站”、“eNB”、“gNB”、“小区”、“扇区”、“小区组”、“载波”以及“分量载波”这样的用语可以互换使用。基站有时也以固定台(fixedstation)、NodeB、eNodeB(eNB)、接入点(accesspoint)、发送点、接收点、毫微微小区、小小区等用语来称呼。
基站可以容纳一个或多个(例如三个)小区(也称为扇区)。当基站容纳多个小区时,基站的整个覆盖区域可以划分为多个更小的区域,每个更小的区域也可以通过基站子系统(例如,室内用小型基站(射频拉远头(RRH, RemoteRadioHead)))来提供通信服务。“小区”或“扇区”这样的用语是指在该覆盖中进行通信服务的基站和/或基站子系统的覆盖区域的一部分或整体。
在本说明书中,“移动台(MS,MobileStation)”、“用户设备(userterminal)”、“用户装置(UE,UserEquipment)”以及“终端”这样的用语可以互换使用。基站有时也以固定台(fixedstation)、NodeB、eNodeB(eNB)、接入点(accesspoint)、发送点、接收点、毫微微小区、小小区等用语来称呼。
用户设备有时也被本领域技术人员以用户台、移动单元、用户单元、无线单元、远程单元、移动设备、无线设备、无线通信设备、远程设备、移动用户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或者若干其它适当的用语来称呼。
此外,本说明书中的无线基站也可以用用户设备来替换。例如,对于将无线基站和用户设备间的通信替换为多个用户设备间(D2D,Device-to-Device)的通信的结构,也可以应用本发明的各方式/实施方式。此时,可以将上述的无线基站10所具有的功能当作用户设备20所具有的功能。此外,“上行”和“下行”等文字也可以替换为“侧”。例如,上行信道也可以替换为侧信道。
同样,本说明书中的用户设备也可以用无线基站来替换。
在本说明书中,设为通过基站进行的特定动作根据情况有时也通过其上级节点(uppernode)来进行。显然,在具有基站的由一个或多个网络节点(networknodes)构成的网络中,为了与终端间的通信而进行的各种各样的动作可以通过基站、除基站之外的一个以上的网络节点(可以考虑例如移动管理实体(MME,MobilityManagementEntity)、服务网关(S-GW,Serving-Gateway)等,但不限于此)、或者它们的组合来进行。
本说明书中说明的各方式/实施方式可以单独使用,也可以组合使用,还可以在执行过程中进行切换来使用。此外,本说明书中说明的各方式/实施方式的处理步骤、序列、流程图等只要没有矛盾,就可以更换顺序。例如,关于本说明书中说明的方法,以示例性的顺序给出了各种各样的步骤单元,而并不限定于给出的特定顺序。
本说明书中说明的各方式/实施方式可以应用于利用长期演进(LTE,LongTermEvolution)、高级长期演进(LTE-A,LTE-Advanced)、超越长期演进(LTE-B,LTE-Beyond)、超级第3代移动通信系统(SUPER 3G)、高级国际移动通信(IMT-Advanced)、第4代移动通信系统(4G,4th generation mobile communication system)、第5代移动通信系统(5G,5th generation mobile communication system)、未来无线接入(FRA,Future Radio Access)、新无线接入技术(New-RAT,Radio Access Technology)、新无线(NR,New Radio)、新无线接入(NX,New radio access)、新一代无线接入(FX,Future generation radio access)、全球移动通信系统(GSM(注册商标),Global System for Mobile communications)、码分多址接入2000(CDMA2000)、超级移动宽带(UMB,Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(注册商标))、IEEE 802.16(WiMAX(注册商标))、IEEE 802.20、超宽带(UWB,Ultra-WideBand)、蓝牙(Bluetooth(注册商标))、其它适当的无线通信方法的系统和/或基于它们而扩展的下一代系统。
本说明书中使用的“根据”这样的记载,只要未在其它段落中明确记载,则并不意味着“仅根据”。换言之,“根据”这样的记载是指“仅根据”和“至少根据”这两者。
本说明书中使用的对使用“第一”、“第二”等名称的单元的任何参照,均非全面限定这些单元的数量或顺序。这些名称可以作为区别两个以上单元的便利方法而在本说明书中使用。因此,第一单元和第二单元的参照并不意味着仅可采用两个单元或者第一单元必须以若干形式占先于第二单元。
本说明书中使用的“判断(确定)(determining)”这样的用语有时包含多种多样的动作。例如,关于“判断(确定)”,可以将计算(calculating)、推算(computing)、处理(processing)、推导(deriving)、调查(investigating)、搜索(lookingup)(例如表、数据库、或其它数据结构中的搜索)、确认(ascertaining)等视为是进行“判断(确定)”。此外,关于“判断(确定)”,也可以将接收(receiving)(例如接收信息)、发送(transmitting)(例如发送信息)、输入(input)、输出(output)、存取(accessing)(例如存取内存中的数据)等视为是进行“判断(确定)”。此外,关于“判断(确定)”,还可以将解决(resolving)、选择(selecting)、选定(choosing)、建立(establishing)、 比较(comparing)等视为是进行“判断(确定)”。也就是说,关于“判断(确定)”,可以将若干动作视为是进行“判断(确定)”。
本说明书中使用的“连接的(connected)”、“结合的(coupled)”这样的用语或者它们的任何变形是指两个或两个以上单元间的直接的或间接的任何连接或结合,可以包括以下情况:在相互“连接”或“结合”的两个单元间,存在一个或一个以上的中间单元。单元间的结合或连接可以是物理上的,也可以是逻辑上的,或者还可以是两者的组合。例如,“连接”也可以替换为“接入”。在本说明书中使用时,可以认为两个单元是通过使用一个或一个以上的电线、线缆、和/或印刷电气连接,以及作为若干非限定性且非穷尽性的示例,通过使用具有射频区域、微波区域、和/或光(可见光及不可见光这两者)区域的波长的电磁能等,被相互“连接”或“结合”。
在本说明书或权利要求书中使用“包括(including)”、“包含(comprising)”、以及它们的变形时,这些用语与用语“具备”同样是开放式的。进一步地,在本说明书或权利要求书中使用的用语“或(or)”并非是异或。
以上对本发明进行了详细说明,但对于本领域技术人员而言,显然,本发明并非限定于本说明书中说明的实施方式。本发明在不脱离由权利要求书的记载所确定的本发明的宗旨和范围的前提下,可以作为修改和变更方式来实施。因此,本说明书的记载是以示例说明为目的,对本发明而言并非具有任何限制性的意义。
Claims (13)
- 一种反馈方法,包括:接收包括多个码块集的数据块;根据所述多个码块集的接收状态生成关于所述数据块的反馈信息,所述反馈信息用于指示所述多个码块集中的至少部分码块集各自的传输状态;发送所述反馈信息。
- 如权利要求1所述的方法,其中,所述反馈信息包括反馈信息头和反馈信息内容部。
- 如权利要求2所述的方法,其中,所述反馈信息内容部包括与所述数据块中的码块集个数对应的比特;所述反馈信息头根据所述数据块的每个码块集的传输状态生成。
- 如权利要求3所述的方法,其中,当所述反馈信息头指示所述数据块传输成功时,所述反馈信息内容部用于反馈信道测量信息。
- 如权利要求3所述的方法,其中,当所述反馈信息头指示所述数据块传输失败时,所述反馈信息内容部用于指示所述多个码块集中每个码块集各自的传输状态。
- 如权利要求2所述的方法,其中,所述反馈信息内容部包括小于所述数据块中的码块集个数的比特数;所述反馈信息头根据所述数据块的每个码块集的传输状态生成。
- 如权利要求6所述的方法,其中,当所述反馈信息头指示所述数据块传输成功时,所述反馈信息内容部用于反馈信道测量信息。
- 如权利要求6所述的方法,其中,所述反馈信息头用于指示所述数据块中传输失败的一个或多个码块集在所述数据块中的位置范围;所述反馈信息内容部用于指示所述反馈信息头所示的位置范围的至少部分码块集各自的传输状态。
- 如权利要求6所述的方法,其中,当所述反馈信息头指示所述数据块传输失败时,所述反馈信息内容部用于反馈信道测量信息。
- 如权利要求1所述的方法,其中,通过对所述多个码块集中的至少部分码块集各自的传输状态编码生成所述反馈信息;或通过对所述多个码块集中的至少部分码块集各自的传输状态以及信道测量信息联合编码生成所述反馈信息。
- 如权利要求10所述的方法,其中,所述编码的方式为信源压缩编码。
- 如权利要求11所述的方法,其中,所述反馈信息包括反馈信息头和反馈信息内容部,所述反馈信息头用于指示所述反馈信息内容部的比特数。
- 一种通信设备,包括:接收单元,配置为接收包括多个码块集的数据块;处理单元,配置为根据所述多个码块集的接收状态生成关于所述数据块的反馈信息,所述反馈信息用于指示所述多个码块集中的至少部分码块集各自的传输状态;发送单元,配置为发送所述反馈信息。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/496,107 US20200084004A1 (en) | 2017-03-23 | 2018-03-22 | Feedback method and communication device |
CN201880013660.XA CN110337791B (zh) | 2017-03-23 | 2018-03-22 | 反馈方法和通信设备 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710179842.1A CN108631956A (zh) | 2017-03-23 | 2017-03-23 | 反馈方法和通信设备 |
CN201710179842.1 | 2017-03-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018171649A1 true WO2018171649A1 (zh) | 2018-09-27 |
Family
ID=63584177
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/079930 WO2018171649A1 (zh) | 2017-03-23 | 2018-03-22 | 反馈方法和通信设备 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20200084004A1 (zh) |
CN (2) | CN108631956A (zh) |
WO (1) | WO2018171649A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020155691A1 (zh) * | 2019-02-02 | 2020-08-06 | 华为技术有限公司 | 用于无线通信的方法及装置 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018201433A1 (zh) * | 2017-05-05 | 2018-11-08 | 北京小米移动软件有限公司 | Harq反馈方法及装置、设备、计算机可读存储介质 |
CN115276915A (zh) * | 2017-11-17 | 2022-11-01 | 中兴通讯股份有限公司 | 用于确定无线通信中反馈信号的大小的方法、装置和系统 |
US11889348B2 (en) * | 2021-02-19 | 2024-01-30 | Qualcomm Incorporated | Techniques for compressing feedback values in wireless communications |
CN116170772A (zh) * | 2021-11-22 | 2023-05-26 | 上海朗帛通信技术有限公司 | 一种被用于无线通信的节点中的方法和装置 |
CN117295110A (zh) * | 2022-06-15 | 2023-12-26 | 中兴通讯股份有限公司 | 信息传输方法、装置、基站、设备、存储介质及程序产品 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1983913A (zh) * | 2005-12-17 | 2007-06-20 | 华为技术有限公司 | 一种数据传输方法及系统 |
CN102820957A (zh) * | 2012-07-19 | 2012-12-12 | 福建先创通信有限公司 | 一种数据状态反馈包及其应用 |
CN105024781A (zh) * | 2014-04-30 | 2015-11-04 | 中兴通讯股份有限公司 | 一种反馈信息的处理方法、装置及系统 |
WO2016045391A1 (zh) * | 2014-09-24 | 2016-03-31 | 中兴通讯股份有限公司 | 一种数据传输方法及装置 |
CN105515733A (zh) * | 2014-09-24 | 2016-04-20 | 中兴通讯股份有限公司 | 一种反馈方法及装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8379738B2 (en) * | 2007-03-16 | 2013-02-19 | Samsung Electronics Co., Ltd. | Methods and apparatus to improve performance and enable fast decoding of transmissions with multiple code blocks |
WO2008127184A2 (en) * | 2007-04-11 | 2008-10-23 | Telefonaktiebolaget Lm Ericsson (Publ) | Method for implicit conveying of uplink feedback information |
CN101635987B (zh) * | 2008-07-25 | 2012-03-07 | 中兴通讯股份有限公司 | 一种反馈下行接收状态的方法 |
CN102123018A (zh) * | 2010-01-11 | 2011-07-13 | 北京三星通信技术研究有限公司 | 一种混合自动重传请求中反馈接收状态的方法 |
CN102611540A (zh) * | 2011-01-20 | 2012-07-25 | 北京三星通信技术研究有限公司 | 一种反馈ack/nack信息的方法 |
WO2012150842A2 (ko) * | 2011-05-04 | 2012-11-08 | 엘지전자 주식회사 | 무선 통신 시스템에서 채널상태정보를 송수신하는 방법 및 장치 |
KR20130039644A (ko) * | 2011-10-12 | 2013-04-22 | 삼성전자주식회사 | 통신 시스템에서의 피드백 송수신 방법 및 장치 |
WO2013168969A1 (ko) * | 2012-05-07 | 2013-11-14 | 엘지전자 주식회사 | 무선통신 시스템에서 채널 상태 정보 전송 방법 및 장치 |
CN103957087B (zh) * | 2014-04-30 | 2018-01-23 | 魅族科技(中国)有限公司 | 一种无线通信方法、相关设备及系统 |
-
2017
- 2017-03-23 CN CN201710179842.1A patent/CN108631956A/zh active Pending
-
2018
- 2018-03-22 US US16/496,107 patent/US20200084004A1/en not_active Abandoned
- 2018-03-22 CN CN201880013660.XA patent/CN110337791B/zh active Active
- 2018-03-22 WO PCT/CN2018/079930 patent/WO2018171649A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1983913A (zh) * | 2005-12-17 | 2007-06-20 | 华为技术有限公司 | 一种数据传输方法及系统 |
CN102820957A (zh) * | 2012-07-19 | 2012-12-12 | 福建先创通信有限公司 | 一种数据状态反馈包及其应用 |
CN105024781A (zh) * | 2014-04-30 | 2015-11-04 | 中兴通讯股份有限公司 | 一种反馈信息的处理方法、装置及系统 |
WO2016045391A1 (zh) * | 2014-09-24 | 2016-03-31 | 中兴通讯股份有限公司 | 一种数据传输方法及装置 |
CN105515733A (zh) * | 2014-09-24 | 2016-04-20 | 中兴通讯股份有限公司 | 一种反馈方法及装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020155691A1 (zh) * | 2019-02-02 | 2020-08-06 | 华为技术有限公司 | 用于无线通信的方法及装置 |
US11864024B2 (en) | 2019-02-02 | 2024-01-02 | Huawei Technologies Co., Ltd. | Method for wireless communication and apparatus |
Also Published As
Publication number | Publication date |
---|---|
CN110337791B (zh) | 2022-08-30 |
US20200084004A1 (en) | 2020-03-12 |
CN108631956A (zh) | 2018-10-09 |
CN110337791A (zh) | 2019-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11575483B2 (en) | Devices and methods for HARQ-ACK feedback scheme on PUSCH in wireless communication systems | |
US11924139B2 (en) | Hybrid automatic repeat request-acknowledgement codebook generation and uplink transmission | |
US12022468B2 (en) | User terminal | |
US10193681B2 (en) | Method, apparatus and computer program for wireless communications | |
US11778614B2 (en) | Terminal, communication method, base station, and system for controlling transmission of uplink shared channel | |
EP3605862A1 (en) | User terminal and wireless communication method | |
US20230099086A1 (en) | Terminal, radio communication method, base station, and system | |
WO2018171649A1 (zh) | 反馈方法和通信设备 | |
US11239976B2 (en) | Receiving device and radio communication method | |
US11646849B2 (en) | User terminal and radio communication method | |
US11451338B2 (en) | User terminal and radio communication method | |
JPWO2020075233A1 (ja) | 端末、無線通信方法、基地局及びシステム | |
US12035340B2 (en) | User terminal | |
WO2020200044A1 (zh) | 一种通信方法及设备 | |
AU2017436825A1 (en) | User terminal and radio communication method | |
US20220225390A1 (en) | User terminal and radio communication method | |
US11979875B2 (en) | Method, user equipment unit and base station for transmitting and receiving uplink data | |
WO2018202058A1 (zh) | 一种混合信道质量测量方法和用户设备 | |
US20200288438A1 (en) | User terminal and radio communication method | |
US11425742B2 (en) | Method for determining an uplink scheduling manner, user equipment and base station | |
EP3735063B1 (en) | Base station and radio communication method | |
US20210067274A1 (en) | User terminal and radio communication method | |
US20230239887A1 (en) | Terminal | |
AU2018208325A1 (en) | User terminal and radio communication method | |
WO2020065978A1 (ja) | ユーザ端末 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18772611 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18772611 Country of ref document: EP Kind code of ref document: A1 |