WO2019047378A1 - Procédé et dispositif de reconnaissance rapide de corps célestes et télescope - Google Patents
Procédé et dispositif de reconnaissance rapide de corps célestes et télescope Download PDFInfo
- Publication number
- WO2019047378A1 WO2019047378A1 PCT/CN2017/112025 CN2017112025W WO2019047378A1 WO 2019047378 A1 WO2019047378 A1 WO 2019047378A1 CN 2017112025 W CN2017112025 W CN 2017112025W WO 2019047378 A1 WO2019047378 A1 WO 2019047378A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- star
- starry sky
- image
- sky image
- angle coordinate
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 49
- 238000005259 measurement Methods 0.000 claims description 17
- 238000007781 pre-processing Methods 0.000 claims description 15
- 230000008569 process Effects 0.000 claims description 14
- 230000009467 reduction Effects 0.000 claims description 10
- 238000013507 mapping Methods 0.000 claims description 6
- 230000004044 response Effects 0.000 claims description 3
- 230000005855 radiation Effects 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012367 process mapping Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/10—Image acquisition
Definitions
- the invention relates to the field of astronomical telescope, in particular to a method, a device and a telescope for quickly identifying a star.
- a telescope is an optical instrument that uses a lens or mirror and other optics to observe distant objects. Using light refracting through the lens Or the light is reflected by the concave mirror into the aperture and converged and imaged, and then seen through a magnifying eyepiece.
- the present invention provides a method, a device and a telescope for quickly recognizing a star, using a star space database to simulate a current telescope, and realizing a fast star search and star recognition by comparing an actual star image and a simulated star image. Speed and accuracy are greatly improved.
- the technical solution is as follows:
- the present invention provides a method for rapidly identifying a star, comprising:
- the star to be recognized in the first starry sky image is identified according to the comparison result.
- the method before searching for the second starry sky image in the corresponding starry sky database, the method further includes:
- the comparing the first starry sky image with the second starry sky image comprises:
- the search result is that there is a star in the second starry sky image that satisfies the distance ratio value
- the measurement star is reselected, and the first star image and the second star image are compared one or more times, if If the search result is present, it is determined that the comparison result is that the first starry sky image matches the second starry sky image.
- the focal length of the recognition device adjusts the focal length of the recognition device, and re-uptake the image to obtain a third starry sky image, according to the target angle coordinate and the adjusted current field of view angle, corresponding to Search in the starry sky database to get the fourth starry sky image,
- the focal length of the identification device is continuously adjusted, and the comparison step is repeatedly performed until the star to be recognized is identified.
- the angle coordinate of the recognition device is further adjusted until the comparison result of the re-uptaked starry sky image and the second starry sky image is matched.
- the present invention provides a star fast identification device, comprising:
- a target star module configured to acquire star information to be identified, where the star body information includes a target angle coordinate;
- An adjustment module configured to adjust an angle coordinate of the identification device according to the target angle coordinate
- An ingest module for ingesting a first starry sky image at a current angle coordinate by using the identification device
- a star space search module configured to search for a second starry sky image in the corresponding star space database according to the target angle coordinate and the current field of view angle of the identification device;
- the comparison module is configured to compare the first starry sky image with the second starry sky image, and identify the to-be-identified star in the first starry sky image according to the comparison result.
- the apparatus further includes a starry sky database module, and the starry sky database module includes:
- a location unit configured to obtain location information of the identification device
- mapping unit configured to map, according to the location information and the time information, the corresponding star space database.
- comparison module includes:
- a preprocessing unit configured to perform noise reduction preprocessing on the first star image
- a measuring unit for selecting three or more measurement stars in the first star image of the pre-process
- a ratio value unit configured to obtain a star distance ratio value in the first star image according to the measured star body
- a star search unit configured to search for a star that satisfies the distance ratio value in the second star image, and if not, determine that the comparison result is that the first star image does not match the second star image.
- the device further includes a focus adjustment module and an angle adjustment module,
- the focus adjustment module is configured to adjust a focal length of the identification device until a star to be identified is identified;
- the angle adjustment module is configured to further adjust an angle coordinate of the recognition device in response to the first star image and the second star image do not match, until the alignment result of the re-uptake star image and the second star image is a match.
- the present invention provides a telescope comprising the star fast identification device as described above.
- FIG. 1 is a flowchart of a method for quickly identifying a star body according to an embodiment of the present invention
- FIG. 2 is a flowchart of a mapping method of a star space database according to an embodiment of the present invention
- FIG. 3 is a flowchart of an image comparison method provided by an embodiment of the present invention.
- FIG. 4 is a block diagram of a module for quickly identifying a star body according to an embodiment of the present invention
- FIG. 5 is a flowchart of a method for performing noise reduction preprocessing on a starry sky image according to an embodiment of the present invention.
- a method for quickly identifying a star includes the following processes:
- the star information includes a target angle coordinate.
- the angle coordinates of the target star to be identified are the following two ways: the first method is to consult the data, and the angle coordinate of the target star to be searched by the document data query in the prior art; the second method is Click on the query from the existing star database or query by search criteria to get the angular coordinates of the target star to be searched.
- the identification device is a telescope
- the angle coordinate of the telescope is automatically adjusted by manual mode or electronic control technology, and the angle coordinate of the telescope is adjusted to a target angle coordinate.
- the verification process is as follows:
- the camera device or the image sensor may be used to take a photo of the current angle coordinate of the telescope and the star space observed by the lens at the current field of view angle to obtain a first star image, that is, a star image to be verified, preferably,
- the imaging device or the imaging sensor is CCD sensor.
- the starry sky database is to simulate the starry sky in the current environment, see Figure 2
- the starry sky database is specifically obtained by the following process mapping:
- the location information is a geographical location information of the telescope, and specifically may include an accuracy coordinate and a latitude coordinate of the telescope;
- comparing the first starry sky image with the second starry sky image actually comparing the starry sky image to be verified with the corrected reference starry sky image, and if the matching results in two images being consistent, determining There is a target star to be identified under the current lens (in the first starry sky image), otherwise, it is determined that the target star does not exist under the current lens.
- the comparing the first starry sky image and the second starry sky image includes the following processes:
- the noise reduction preprocessing includes the following processes:
- the star body is more sensitive than the noise point, and has a stronger radiation force for denoising preprocessing, that is, the star body is more easily realized to illuminate the surrounding radiation, so that the surrounding brightness is higher than the noise.
- the brightness around the point in a preferred embodiment, the k is preferably 0.05, that is, the radiation radius of the radiation area is determined to be outwardly radiated, so that the average brightness of the radiation area is less than 95% of the brightness of the bright point pixel, if the radius of radiation If it is less than the set radius threshold, it is determined that the bright spot is noise, and the bright spot is deleted in the starry sky image; otherwise, the bright spot is determined to be a star, and r 0 described above is the latest updated radius value of the current update.
- the denoising operation of the first starry sky image in this embodiment is one of the preprocessing steps for realizing the rapid recognition of the star.
- the core of the present invention is to use the star space database to simulate the current telescope, and compare the actual image of the starry sky with the image. Simulating a starry sky image to achieve uncalibrated and fast homing, therefore, only a preferred denoising method is listed in this embodiment, which does not limit the scope of protection of the present invention, any prior art
- the image denoising method can be applied to the present invention to solve the technical problem of the uncalibrated and fast homing, that is, the denoising method in the prior art falls within the protection scope required by the present application.
- the search result is that there is a star in the second starry sky image that satisfies the distance ratio value, it is directly determined that the first starry sky image matches the second starry sky image, as described in detail below, or, in order to ensure the accuracy of the comparison result, it is necessary to The first starry sky image and the second starry sky image further perform steps S52-S55, as detailed below.
- a sufficient number of measurement stars are selected, for example, in the second star image.
- a star and there are 15 stars in the denoised first star image, 12 or more selected / All the stars are used as the measuring stars, and one of them is used as the reference star.
- the distance between the reference star and other measuring stars is measured, and then the distance ratio of the stars is obtained. The more the number of measuring stars is, the higher the accuracy is.
- the ratio of the measured star to the total number of stars is large enough, after a search for the distance ratio value of the second star image, it can directly determine whether the first star image and the second star image match.
- execution S52 When only three or four measurement stars are selected, and then after the first search for the distance ratio value of the second star image is completed, if it exists, re-select other measurement stars and repeat S53 and S54. The more the number of repetitions, the higher the accuracy of the comparison results.
- a measurement star is selected, and then two measurement stars closest to the measurement star and capable of forming a triangle are searched, and the side length of the triangle is measured to obtain a side length ratio according to the side length ratio in the second star sky.
- the three-star triangle is substantially different from the composition finder in the prior art, and the present invention is not a composition technique, and the triangle is only used to measure the side length of the triangle, based on Therefore, even if the triangle is not actually patterned, the distance between the two stars can be measured in three stars.
- the image comparison technique of the present application is faster than the prior art composition star search technique. The accuracy rate is higher.
- the distance ratio of the reference stars to other stars can also be selected, and the technical solution can also be used for the first Whether the starry sky image matches the second starry sky image is judged. Since the absolute size of the first starry sky image and the second starry sky image cannot be absolutely consistent, the determination can be made on a proportional basis, and the present invention does not limit the specific ratio of the distance in the first starry sky image.
- the technical solutions in which the ratios are used as a basis for matching are all within the scope of the claims of the present application.
- the specific process as follows:
- the focal length becomes smaller, the angle of view becomes smaller, and the target star may be out of the field of view.
- it is necessary to continuously capture the current starry sky image that is, the first starry sky image under the new field of view angle, defined as the third starry sky image.
- the third Samsung image is compared with the second star image. If the comparison result is matched, the focus of the recognition device is continuously adjusted, and the step of capturing the new first star image and the second star image is repeated. Until the target star to be identified is identified.
- the first star image does not match the second star image, and is adjusted to the target star according to the relationship between the known current star space coordinates and the target star coordinate.
- the coordinates, that is, the angle coordinates of the recognition device are further adjusted until the alignment result of the re-uptaked starry sky image and the second starry sky image is matched.
- the invention provides a star fast identification device, comprising:
- a target star module 410 configured to acquire star information to be identified, where the star body information includes target angle coordinates;
- the adjustment module 420 is configured to adjust an angle coordinate of the identification device according to the target angle coordinate;
- the ingest module 430 is configured to capture the first starry sky image at the current angle coordinate by using the identification device;
- Star search module 440 And searching for the second starry sky image in the corresponding star space database according to the target angle coordinate and the current field of view angle of the identification device;
- Alignment module 450 And comparing the first starry sky image with the second starry sky image, and identifying the to-be-identified star in the first starry sky image according to the comparison result.
- the apparatus further includes a starry sky database module 460, the starry sky database module 460 comprising:
- a location unit 461, configured to obtain location information of the identification device
- a time unit 462 configured to acquire current time information
- the mapping unit 463 is configured to map the corresponding star space database according to the location information and the time information.
- comparison module 450 includes:
- a pre-processing unit 451, configured to perform noise reduction preprocessing on the first star image
- a measuring unit 452 configured to select three or more measurement stars in the first star image that completes the preprocessing
- a ratio value unit 453 configured to obtain a star distance ratio value in the first starry sky image according to the measured star body
- Astrology search unit 454 And searching for the star in the second starry sky image that satisfies the distance ratio value, and if not, determining that the comparison result is that the first starry sky image does not match the second starry sky image.
- the device further includes a focus adjustment module 470 and an angle adjustment module 480.
- the focus adjustment module 470 is configured to adjust a focal length of the identification device until a star to be identified is identified;
- the angle adjustment module 480 And responsive to the first star image and the second star image do not match, further adjusting the angle coordinate of the recognition device until the alignment result of the re-uptake star image and the second star image is a match.
- the present invention provides a telescope comprising the star rapid identification device as described in the above embodiments.
- the star fast identification device provided by the embodiment is only illustrated by the division of the above functional modules when performing star recognition. In practical applications, the function distribution may be completed by different functional modules as needed, that is, the star body is quickly identified.
- the internal structure of the device is divided into different functional modules to perform all or part of the functions described above.
- the embodiment of the star fast identification device provided in this embodiment is the same as the method for quickly identifying the star body provided by the foregoing embodiment. For the specific implementation process, refer to the method embodiment, and details are not described herein again.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Image Analysis (AREA)
- Navigation (AREA)
Abstract
La présente invention concerne un procédé et un dispositif de reconnaissance rapide de corps célestes et un télescope, le procédé de reconnaissance comportant les étapes consistant à: acquérir les informations d'un corps céleste à reconnaître (S1), les informations du corps céleste comportant une coordonnée d'angle cible; régler la coordonnée d'angle d'un dispositif de reconnaissance selon les informations du corps céleste cible (S2); prendre une première image de ciel étoilé à une coordonnée d'angle actuelle à l'aide du dispositif de reconnaissance (S3); effectuer une recherche dans une base de données correspondante de ciel étoilé pour obtenir une seconde image de ciel étoilé selon la coordonnée d'angle cible et l'angle de vision actuel du dispositif de reconnaissance (S4); et comparer la première image de ciel étoilé à la seconde image de ciel étoilé, et reconnaître le corps céleste à reconnaître figurant dans la première image de ciel étoilé selon le résultat de comparaison (S5). Le télescope utilisant le procédé n'a pas besoin d'être étalonné après avoir été mis en marche, et la base de données de ciel étoilé est employée pour simuler le télescope actuel. Un corps céleste peut être trouvé rapidement en comparant une image de ciel étoilé réellement prise à une image de ciel étoilé simulée. En comparaison des moyens servant à trouver un corps céleste par composition, la vitesse et l'exactitude de la reconnaissance des corps célestes dans le procédé décrit sont considérablement améliorées.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710794826.3 | 2017-09-06 | ||
CN201710794826.3A CN107609547B (zh) | 2017-09-06 | 2017-09-06 | 星体快速识别方法、装置及望远镜 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019047378A1 true WO2019047378A1 (fr) | 2019-03-14 |
Family
ID=61057420
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/112025 WO2019047378A1 (fr) | 2017-09-06 | 2017-11-21 | Procédé et dispositif de reconnaissance rapide de corps célestes et télescope |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107609547B (fr) |
WO (1) | WO2019047378A1 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112418006A (zh) * | 2020-11-05 | 2021-02-26 | 北京迈格威科技有限公司 | 目标识别方法、装置和电子系统 |
CN114040112A (zh) * | 2021-11-26 | 2022-02-11 | 努比亚技术有限公司 | 寻星方法、移动终端及计算机可读存储介质 |
CN116626732A (zh) * | 2023-05-11 | 2023-08-22 | 国汽大有时空科技(安庆)有限公司 | 一种非差非组合ppp-rtk模糊度的基准星选取方法、装置和系统 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108594422A (zh) * | 2018-05-08 | 2018-09-28 | 光速视觉(北京)科技有限公司 | 电子寻星镜、包括其的天文望远镜以及电子寻星计算设备 |
WO2020051838A1 (fr) * | 2018-09-13 | 2020-03-19 | 陈加志 | Procédé et dispositif de recherche d'étoile par télescope fondé sur une reconnaissance d'image et télescope |
CN110889353B (zh) * | 2019-11-19 | 2023-04-07 | 中国科学院国家天文台长春人造卫星观测站 | 基于主焦点大视场光电望远镜的空间目标识别方法 |
CN112019745B (zh) * | 2020-08-31 | 2021-08-24 | 苏州振旺光电有限公司 | 一种获取天区目标图像的方法和天文摄影设备 |
CN112788237B (zh) * | 2020-12-30 | 2022-06-21 | 成都星时代宇航科技有限公司 | 天体拍摄方法、装置、卫星及计算机可读存储介质 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104776848A (zh) * | 2015-04-20 | 2015-07-15 | 李智 | 一种空间目标识别、定位、跟踪方法 |
CN105447094A (zh) * | 2015-11-09 | 2016-03-30 | 上海斐讯数据通信技术有限公司 | 星座识别方法及装置、移动终端 |
CN105892034A (zh) * | 2016-04-22 | 2016-08-24 | 宁波舜宇光电信息有限公司 | 星体跟踪望远镜和星体跟踪系统及其应用 |
CN106506858A (zh) * | 2016-12-01 | 2017-03-15 | 努比亚技术有限公司 | 星轨预测方法及装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100390023C (zh) * | 2006-12-01 | 2008-05-28 | 北京航空航天大学 | 一种快速星图识别方法 |
JP2009210875A (ja) * | 2008-03-05 | 2009-09-17 | Casio Comput Co Ltd | 天体観測装置 |
CN103440659B (zh) * | 2013-08-30 | 2016-04-13 | 西北工业大学 | 基于星图匹配的星空图像畸变检测与估计方法 |
CN106595702B (zh) * | 2016-09-22 | 2019-08-09 | 中国人民解放军装备学院 | 一种基于天文标定的多传感器空间配准方法 |
-
2017
- 2017-09-06 CN CN201710794826.3A patent/CN107609547B/zh not_active Expired - Fee Related
- 2017-11-21 WO PCT/CN2017/112025 patent/WO2019047378A1/fr active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104776848A (zh) * | 2015-04-20 | 2015-07-15 | 李智 | 一种空间目标识别、定位、跟踪方法 |
CN105447094A (zh) * | 2015-11-09 | 2016-03-30 | 上海斐讯数据通信技术有限公司 | 星座识别方法及装置、移动终端 |
CN105892034A (zh) * | 2016-04-22 | 2016-08-24 | 宁波舜宇光电信息有限公司 | 星体跟踪望远镜和星体跟踪系统及其应用 |
CN106506858A (zh) * | 2016-12-01 | 2017-03-15 | 努比亚技术有限公司 | 星轨预测方法及装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112418006A (zh) * | 2020-11-05 | 2021-02-26 | 北京迈格威科技有限公司 | 目标识别方法、装置和电子系统 |
CN114040112A (zh) * | 2021-11-26 | 2022-02-11 | 努比亚技术有限公司 | 寻星方法、移动终端及计算机可读存储介质 |
CN116626732A (zh) * | 2023-05-11 | 2023-08-22 | 国汽大有时空科技(安庆)有限公司 | 一种非差非组合ppp-rtk模糊度的基准星选取方法、装置和系统 |
Also Published As
Publication number | Publication date |
---|---|
CN107609547A (zh) | 2018-01-19 |
CN107609547B (zh) | 2021-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019047378A1 (fr) | Procédé et dispositif de reconnaissance rapide de corps célestes et télescope | |
WO2019047284A1 (fr) | Procédés d'extraction de caractéristiques et d'assemblage de panoramique, appareil associé, dispositif et support d'informations lisible | |
WO2020209491A1 (fr) | Dispositif de visiocasque et son procédé de fonctionnement | |
WO2020032582A1 (fr) | Dispositif électronique pour afficher un avatar correspondant à un objet externe d'après un changement dans la position de l'objet externe | |
WO2019164280A1 (fr) | Dispositif électronique flexible comprenant un capteur optique et son procédé de fonctionnement | |
WO2020019930A1 (fr) | Procédé et dispositif de stationnement automatique | |
WO2016145602A1 (fr) | Appareil et procédé de réglage de longueur focale et de détermination d'une carte de profondeur | |
WO2019231042A1 (fr) | Dispositif d'authentification biométrique | |
WO2021125395A1 (fr) | Procédé pour déterminer une zone spécifique pour une navigation optique sur la base d'un réseau de neurones artificiels, dispositif de génération de carte embarquée et procédé pour déterminer la direction de module atterrisseur | |
WO2017007166A1 (fr) | Procédé et dispositif de génération d'image projetée et procédé de mappage de pixels d'image et de valeurs de profondeur | |
WO2016200013A1 (fr) | Dispositif optique et procédé de génération d'informations de profondeur | |
WO2016206107A1 (fr) | Système et procédé de sélection d'un mode de fonctionnement d'une plate-forme mobile | |
WO2019143050A1 (fr) | Dispositif électronique et procédé de commande de mise au point automatique de caméra | |
WO2023008791A1 (fr) | Procédé d'acquisition de distance à au moins un objet situé dans une direction quelconque d'un objet mobile par réalisation d'une détection de proximité, et dispositif de traitement d'image l'utilisant | |
WO2021215688A1 (fr) | Robot nettoyeur et son procédé de commande | |
WO2023048380A1 (fr) | Procédé d'acquisition de distance par rapport à au moins un objet positionné devant un corps mobile en utilisant une carte de profondeur de vue d'appareil de prise de vues, et appareil de traitement d'image l'utilisant | |
WO2018023925A1 (fr) | Procédé et système de photographie | |
WO2019061546A1 (fr) | Procédé de photographie pour terminal mobile, dispositif, et support de stockage lisible par ordinateur | |
WO2015199354A1 (fr) | Procédé d'extraction de pupille utilisant une binarisation par agrégation de voisins et appareil de commande à extraction de pupille l'utilisant | |
WO2020091347A1 (fr) | Dispositif et procédé de mesure de profondeur tridimensionnelle | |
WO2014089801A1 (fr) | Procédé et dispositif d'inspection | |
WO2021246758A1 (fr) | Dispositif électronique et son procédé de fonctionnement | |
WO2018072182A1 (fr) | Procédé de photographie et système de photographie compatibles dans l'air et sous l'eau | |
WO2023234605A1 (fr) | Dispositif de calcul d'emplacement basé sur l'intelligence artificielle pour des produits dans une vitrine utilisant une structure d'agencement de cellules de charge | |
WO2020251299A1 (fr) | Dispositif de détection de ligne |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11.11.2020) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17924528 Country of ref document: EP Kind code of ref document: A1 |