WO2019045465A1 - 무인 비행체의 통신시스템 - Google Patents

무인 비행체의 통신시스템 Download PDF

Info

Publication number
WO2019045465A1
WO2019045465A1 PCT/KR2018/010026 KR2018010026W WO2019045465A1 WO 2019045465 A1 WO2019045465 A1 WO 2019045465A1 KR 2018010026 W KR2018010026 W KR 2018010026W WO 2019045465 A1 WO2019045465 A1 WO 2019045465A1
Authority
WO
WIPO (PCT)
Prior art keywords
unmanned aerial
aerial vehicle
message
module
control system
Prior art date
Application number
PCT/KR2018/010026
Other languages
English (en)
French (fr)
Inventor
윤동호
Original Assignee
주식회사 호그린에어
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 호그린에어 filed Critical 주식회사 호그린에어
Publication of WO2019045465A1 publication Critical patent/WO2019045465A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/40Network security protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/26Network addressing or numbering for mobility support

Definitions

  • the present invention relates to a communication system for an unmanned aerial vehicle, and more particularly, to a communication system for a unmanned aerial vehicle that can control data acquired from an unmanned air vehicle through the use of a mobile communication network, will be.
  • Unmanned Aerial Vehicle is an airplane that maneuvers itself by recognizing and judging the surrounding environment according to the remote control or pre-input program on the ground without pilot.
  • FIG. 1 is a perspective view showing a general unmanned aerial vehicle (unmanned aerial vehicle) in which a plurality of propellers 11 are installed to fly up / down / left / right, Can be installed.
  • unmanned aerial vehicle unmanned aerial vehicle
  • the unmanned aerial vehicle control system consists of a flight system equipped with an automatic flight device and a ground control system for remote control from the ground.
  • the ground control system receives the status information of the aircraft and assigns the mission, And displays the image information transmitted from the mobile terminal.
  • This unmanned aerial vehicle is operated by a method using a RC transceiver which is a radio controller of 2.4 GHz band and a wireless communication method using RF communication of 400 MHz or 933 MHz band, Bluetooth, WiFi and LTE, There is a problem in that the operation of the air vehicle must be operated within a limited distance for smooth data transmission and reception.
  • a RC transceiver which is a radio controller of 2.4 GHz band and a wireless communication method using RF communication of 400 MHz or 933 MHz band, Bluetooth, WiFi and LTE
  • the frequency-based wireless communication is easily exposed to the risk of frequency hacking, and thus there is a problem that security of data transmitted and received is very weak.
  • the present invention aims to provide a communication system of an unmanned aerial vehicle which can control an unmanned air vehicle using a mobile communication network and protect data acquired from an unmanned air vehicle through encryption of communication data.
  • a mobile communication system including: a mobile communication system for transmitting and receiving encrypted message data using an arbitrary mobile communication format, generating a predetermined control command message by restoring the received encrypted message data, An unmanned aerial vehicle that operates in accordance with; And a ground control system for accessing the unmanned aerial vehicle through socket communication using an arbitrary communication network and transmitting and receiving the encrypted message data through a predetermined encryption process with the connected unmanned air vehicle to control the unmanned air vehicle.
  • the unmanned aerial vehicle includes a mobile communication module connected to the ground control system through a mobile communication network and transmitting and receiving message data using the arbitrary communication format with the ground control system; An embedded module for restoring the received message data through a predetermined encryption program, generating a control command message corresponding to the restored message, and transmitting the generated control command message to the flight control module; And a flight control module for controlling the unmanned air vehicle to fly according to the generated control command message and transmitting the flight control result to the embedded module.
  • the embedded module according to the present invention is characterized in that data is transmitted and received through a serial communication with the flight control module.
  • the embedded module according to the present invention is characterized in that the flight control result transmitted from the flight control module is encrypted and transmitted to the ground control system.
  • the embedded module includes an encryption module module for decrypting and restoring message data received from the terrestrial control system using a pre-stored encryption program, and for encrypting the flight control result transmitted from the flight control module; And a message conversion unit for analyzing the restored message data, converting the restored message data into a previously stored command message for flight control, and outputting the command message to the flight control module.
  • the ground control system according to the present invention is characterized in that the ground control system is connected by a socket communication using an unmanned aerial vehicle and an arbitrary IP.
  • the ground control system according to the present invention is characterized in that when the unmanned air vehicle is completed, the socket communication connection with the unmanned air vehicle is canceled.
  • an unmanned aerial vehicle using a mobile communication network, so that an operator can access and operate an unmanned aerial vehicle irrespective of the position of the unmanned aerial vehicle.
  • the present invention has an advantage that data acquired from an unmanned aerial vehicle can be safely protected through encryption and decryption of communication data.
  • the present invention is advantageous in that it can transmit and receive data by real-time communication with a unmanned aerial vehicle even in a remote place, and can operate an unmanned aerial vehicle.
  • FIG. 1 is a perspective view showing a general unmanned aerial vehicle.
  • FIG. 3 is a block diagram illustrating a configuration of an unmanned aerial vehicle of a communication system of an unmanned aerial vehicle according to the present invention.
  • FIG. 4 is a block diagram illustrating an embedded module configuration of the unmanned aerial vehicle according to FIG. 3;
  • FIG. 5 is a flowchart illustrating a process of operating a communication system of an unmanned aerial vehicle according to the present invention.
  • FIG. 3 is a block diagram illustrating a configuration of an unmanned aerial vehicle in a communication system for an unmanned aerial vehicle according to the present invention
  • FIG. 4 is a block diagram illustrating a configuration of an unmanned aerial vehicle according to an embodiment of the present invention.
  • FIG. 5 is a flowchart illustrating a process of operating an unmanned aerial vehicle communication system according to the present invention. Referring to FIG.
  • the unmanned air vehicle communication system includes an unmanned aerial vehicle 100 and a ground control system 200 that use a LTE-based communication network 300 capable of long distance communication and socket communication
  • the ground maneuvering system 200 performs encryption and decryption of a message transmitted and received through a preset encryption program and generates a dual security structure by generating a control command corresponding to the message, .
  • the UAV 100 transmits and receives encrypted message data using an LTE based mobile communication format, generates a predetermined control command message by restoring the received encrypted message data, And includes a mobile communication module 110, an embedded module 120, and a flight control module 130.
  • the mobile communication module 110 connects the unmanned air vehicle 100 to the ground control system 200 through the mobile communication network 310 and transmits the message through the mobile communication network 310 using the LTE- Data is transmitted and received, preferably an LTE router, so that the message data is transmitted to the ground control system 200 by socket communication using IP.
  • the embedded module 120 restores the message data received through the mobile communication module 110 through a predetermined encryption program, generates a control command message corresponding to the restored message, and transmits the message to the flight control module 130 And transmits the flight control result transmitted from the flight control module 130 through the encryption program to the ground control system 200.
  • the embedded module 120 encrypts and decrypts a message defined between the unmanned air vehicle 100 and the ground control system 200, and transmits the generic message transmitted from the LTE mobile communication network, the embedded module 120, So that the exchange of the control command message defined for the control of the unmanned air vehicle 100 can be performed between the modules 130.
  • the general message is any defined message that is not related to the unmanned aerial vehicle.
  • the control command message is a message corresponding to the operation and status of the unmanned air vehicle 100, and is a message related to the direct control of the unmanned air vehicle 100.
  • the encryption module unit 121 decrypts and restores the message data received from the terrestrial control system 200 using a previously stored encryption program, encrypts the flight control result transmitted from the flight control module 130, To be transmitted to the system 200.
  • the message conversion unit 122 analyzes the restored message data to search for a previously stored command message for flight control, converts the message into a corresponding control command message, transmits the converted control command message to the flight control module 130, Preferably, the data is transmitted using serial communication.
  • the flight control module 130 controls the unmanned air vehicle 100 to fly according to the control command message transmitted from the embedded module 120 and transmits the flight control result to the embedded module 120.
  • the ground control system 200 is connected to the unmanned air vehicle 100 through the LTE-based communication network 300 and transmits the encrypted message data to the connected unmanned air vehicle 100 through a predetermined encryption process And controls the unmanned air vehicle 100.
  • the control unit 100 preferably connects with the control target unmanned air vehicle 100 through socket communication using an IP assigned in advance.
  • the ground control system 200 transmits the encrypted general message to the embedded module 120 of the unmanned air vehicle 100 via the communication network 300 and transmits the encrypted message data received from the unmanned air vehicle 100 Decodes and restores the restored message data, displays the restored message data for the operator to confirm, and stores the restored message data in a database (not shown).
  • ground control system 200 releases the socket communication connection with the unmanned air vehicle 100 when the unmanned air vehicle 100 completes its flight.
  • the communication network 300 is a configuration for connecting the unmanned air vehicle 100 and the ground control system 200 and includes an IP network 310, a mobile communication network 320, and a plurality of base stations 330 do.
  • the IP network 310 is a high speed backbone network of a large communication network capable of providing large capacity, long distance voice and data services, and can be, for example, the Internet.
  • the IP network 310 may be a next-generation wired network for providing a high-speed multimedia service based on an ALL IP (Internet Protocol).
  • ALL IP Internet Protocol
  • the mobile communication network 320 may be a synchronous mobile communication network, an asynchronous mobile communication network, a 3G LTE network, a 4G LTE network, a next generation mobile communication network, and a WCDMA (Wideband Code Division Multiple Access) And the mobile communication network 320 transmits and receives message data to and from the UAV 100 through a plurality of base stations 330.
  • a synchronous mobile communication network an asynchronous mobile communication network
  • a 3G LTE network a 4G LTE network
  • a next generation mobile communication network a next generation mobile communication network
  • WCDMA Wideband Code Division Multiple Access
  • the IP network 310 and the mobile communication network 320 are connected to each other through a gateway (G / W), the gateway (G / W) is one of protocol converters, And a proxy server connected to the IP network through a wired connection.
  • the gateway may be a wap gateway and may include a protocol stack for accessing the ground control system 200 by the unmanned air vehicle 100 corresponding to the wireless terminal.
  • the ground control system 200 establishes connection with the unmanned air vehicle 100 via the communication socket through the IP network 310 and the LTE based mobile communication network 320 (S100) And reads and writes the flight data through the encryption and decryption operation of the unmanned air vehicle 100 and the predefined message (S110).
  • the ground control system 200 connects to the unmanned air vehicle 110 through the IP allocated to the unattended air vehicle 100, transmits and receives the encrypted data to and from the unmanned air vehicle 110, And the write and read operations of the memory unit are confirmed.
  • the ground control system 200 converts the mission to be performed by the unmanned air vehicle 100 into a general message encrypted through the communication network 300 and transmits the message to the unmanned air vehicle 100 So that the unmanned flight vehicle 100 can fly (S120).
  • the unmanned air vehicle 100 recovers a generic message received through the LTE-based communication network 300 from the embedded module 9120 through decryption and transmits a control command for controlling the unmanned air vehicle 100 corresponding to the restored message And transmits the message to the flight control module 130 so that the flight control module 130 can fly the unmanned air vehicle 100 according to the generated control command message,
  • the position and status information of the mobile terminal 100 is transmitted to the ground control system 200 in real time (S130).
  • step S130 the ground control system 200 analyzes the message information of the unmanned air vehicle 100 to determine whether the flight is terminated (S140). If it is determined in step S140 that the flight is not in progress, Step S120 and step S130 are performed.
  • step S140 If it is determined in step S140 that the flight has ended, the ground control system 200 releases the connection with the unmanned air vehicle 100 (S150) and terminates the operation of the unmanned air vehicle 100.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Databases & Information Systems (AREA)
  • Selective Calling Equipment (AREA)

Abstract

본 발명은 이동통신망을 사용하여 무인 비행체를 조종하고, 통신 데이터의 암호화를 통해 무인 비행체에서 취득한 데이터의 보호가 가능한 무인 비행체의 통신시스템을 제공하는 것을 목적으로 한다. 이를 위해, 본 발명은 임의의 이동통신 포맷을 이용하여 암호화된 메시지 데이터를 송수신하고, 수신된 상기 암호화된 메시지 데이터를 복원하여 미리 설정된 제어 명령 메시지를 생성하며, 상기 생성된 제어 명령에 따라 동작하는 무인 비행체; 상기 무인 비행체와 임의의 통신 네트워크를 이용한 소켓 통신으로 접속하고, 접속된 상기 무인 비행체와 미리 설정된 임의의 암호화 과정을 통해 암호화된 메시지 데이터를 송수신하여 상기 무인 비행체를 제어하는 지상 관제 시스템을 포함한다. 따라서, 본 발명은 이동통신망을 사용하여 무인 비행체를 조종하는 것이 가능하여 무인 비행체의 위치에 상관없이 운용자가 무인 비행체에 접속하여 조작할 수 있고, 통신 데이터의 암호화 및 복호화를 통해 무인 비행체에서 취득한 데이터를 안전하게 보호할 수 있는 장점이 있다.

Description

무인 비행체의 통신시스템
본 발명은 무인 비행체의 통신시스템에 관한 발명으로서, 더욱 상세하게는 이동통신망을 사용하여 무인 비행체를 조종하고, 통신 데이터의 암호화를 통해 무인 비행체에서 취득한 데이터의 보호가 가능한 무인 비행체의 통신시스템에 관한 것이다.
무인 비행체(Unmanned Aerial Vehicle, UAV)는 조종사 없이 지상에서의 원격조종 되거나 사전에 입력된 프로그램에 따라 비행체가 주위환경을 인식하고 판단하여 스스로 비행하는 비행체다.
이러한 무인 비행체는 군사용으로 개발되었지만, 최근에는 고공 촬영, 배달 및 키덜트 제품으로 재탄생되어 민간용, 산업용 등 다양한 분야에서 수요가 증가하고 있다.
도 1은 일반적인 무인 비행체를 나타낸 사시도로서, 무인 비행체(10)는 복수의 프로펠러(11)가 설치되어 상/하/좌/우 방향으로 비행할 수 있도록 구성되고, 촬영을 위한 카메라(12)가 설치될 수 있다.
최근에는 12kg 이상의 무인 비행체에 대하여 국가 기관에서 발급한 자격증을 소지한 사용자가 운용하도록 관련법이 제정되었다.
일반적으로 무인 비행체 제어시스템은 자동비행장치가 탑재된 비행체 시스템과 이를 지상에서 원격 통제하기 위한 지상통제 시스템으로 구성되며, 지상통제 시스템은 비행체의 상태정보 수신 및 임무할당과 더불어 비행체에 탑재된 감시 장비에서 전송되는 영상정보를 시현하는 역할을 수행한다.
지상통제 시스템이 상기의 역할을 수행하기 위해서는 비행체와 통제시스템 사이의 상호 실시간 정보전달이 필수적이며, 현재 운용되는 모든 무인 비행체는 다양한 무선통신기법에 의해 이를 수행하고 있다.
이러한 무인 비행체는 2.4GHz 대역의 무선 콘트롤러인 RC 송수신기를 이용한 방법과, 400MHz, 또는 933MHz 대역의 RF 통신, 블루투스, 와이파이, LTE 등을 이용한 무선통신방법으로 조작되고, RC 송수신기와 RF 통신을 이용한 무인 비행체의 조작은 원활한 데이터의 송수신을 위해서 제한된 거리내에서 운용해야 하는 문제점 이있다.
또한, 주파수 기반의 무선통신은 주파수 해킹 위험에 쉽게 노출되어 송수신되는 데이터의 보안이 매우 취약한 문제점이 있다.
또한, LTE 등의 이동통신망을 활용한 무인 비행체 제어의 경우 LTE 망과 GNU General Public License v3을 기준으로 개발된 MAVProxy를 사용하여 지상 관제 시스템과 무인 비행체를 직접 연결 후 기존의 개발된 라이브러리를 활용하여 직접 데이터를 송수신하여 무인 비행체를 조종하는 방식을 취하고 있다.
그러나 이러한 종래의 데이터 교환 방식은 새로운 기능을 추가하는 확장성이 부족하고 이에 따라 시스템 관리가 쉽지 않은 문제점이 있다.
또한, 단순하게 LTE 망을 사용하여 연결한 후 바로 데이터를 송수신하기 때문에 데이터 보안이 적용되지 않아서 무인 비행체에서 취득한 데이터가 해킹 등의 위험에 노출되는 문제점이 있다.
또한, 무인 비행체의 일부 구성요소만이라도 침해를 받게 되면, 무인 비행체 전체의 안전과 보안이 위험에 노출되는 문제점이 있다.
이러한 문제점을 해결하기 위하여, 본 발명은 이동통신망을 사용하여 무인 비행체를 조종하고, 통신 데이터의 암호화를 통해 무인 비행체에서 취득한 데이터의 보호가 가능한 무인 비행체의 통신시스템을 제공하는 것을 목적으로 한다.
상기한 목적을 달성하기 위하여 본 발명은 임의의 이동통신 포맷을 이용하여 암호화된 메시지 데이터를 송수신하고, 수신된 상기 암호화된 메시지 데이터를 복원하여 미리 설정된 제어 명령 메시지를 생성하며, 상기 생성된 제어 명령에 따라 동작하는 무인 비행체; 상기 무인 비행체와 임의의 통신 네트워크를 이용한 소켓 통신으로 접속하고, 접속된 상기 무인 비행체와 미리 설정된 임의의 암호화 과정을 통해 암호화된 메시지 데이터를 송수신하여 상기 무인 비행체를 제어하는 지상 관제 시스템을 포함한다.
또한, 본 발명에 따른 상기 무인 비행체는 지상 관제 시스템과 이동통신망을 통해 접속하고, 상기 지상 관제 시스템과 임의의 통신포맷을 이용하여 메시지 데이터를 송수신하는 이동통신 모듈; 상기 수신된 메시지 데이터를 미리 설정된 암호화 프로그램을 통해 복원하고, 상기 복원된 메시지에 대응하는 제어 명령 메시지를 생성하여 비행제어 모듈로 전송하는 임베디드 모듈; 및 상기 생성된 제어 명령 메시지에 따라 무인 비행체가 비행하도록 제어하고, 상기 비행 제어결과를 임베디드 모듈로 전송하는 비행제어 모듈을 포함하는 것을 특징으로 한다.
또한, 본 발명에 따른 상기 임베디드 모듈은 비행제어 모듈과 시리얼 통신으로 데이터를 송수신하는 것을 특징으로 한다.
또한, 본 발명에 따른 상기 임베디드 모듈은 상기 비행제어 모듈로부터 전송되는 비행 제어결과를 암호화하여 지상 관제 시스템으로 전송하는 것을 특징으로 한다.
또한, 본 발명에 따른 상기 임베디드 모듈은 미리 저장된 암호화 프로그램을 이용하여 지상 관제 시스템에서 수신된 메시지 데이터를 복호화하여 복원하고, 비행제어 모듈에서 전송된 비행제어 결과를 암호화하는 암호화 모듈부; 및 상기 복원된 메시지 데이터를 분석하여 미리 저장된 비행 제어용 명령 메시지로 변환하여 비행제어 모듈로 출력하는 메시지 변환부를 포함하는 것을 특징으로 한다.
또한, 본 발명에 따른 상기 지상 관제 시스템은 무인 비행체와 임의의 IP를 이용한 소켓 통신으로 접속하는 것을 특징으로 한다.
또한, 본 발명에 따른 상기 지상 관제 시스템은 무인 비행체의 비행이 종료되면, 상기 무인 비행체와의 소켓 통신 접속을 해제하는 것을 특징으로 한다.
본 발명은 이동통신망을 사용하여 무인 비행체를 조종하는 것이 가능하여 무인 비행체의 위치에 상관없이 운용자가 무인 비행체에 접속하여 조작할 수 있는 장점이 있다.
또한, 본 발명은 통신 데이터의 암호화 및 복호화를 통해 무인 비행체에서 취득한 데이터를 안전하게 보호할 수 있는 장점이 있다.
또한, 본 발명은 비행 범위가 넓고, 멀리 떨어진 장소에서도 무인 비행체와 실시간 통신으로 데이터를 송수신하며 무인 비행체의 조작이 가능한 장점이 있다.
도 1은 일반적인 무인 비행체를 나타낸 사시도.
도 2는 본 발명에 따른 무인 비행체의 통신시스템 구성을 개략적으로 나타낸 예시도.
도 3은 본 발명에 따른 무인 비행체의 통신시스템의 무인 비행체 구성을 나타낸 블록도.
도 4는 도 3에 따른 무인 비행체의 임베디드 모듈 구성을 나타낸 블록도.
도 5는 본 발명에 따른 무인 비행체의 통신시스템이 동작하는 과정을 나타낸 흐름도.
한편, 도면에 사용된 부호는 다음과 같다.
100 : 무인 비행체
110 : 이동통신 모듈
120 : 임베디드 모듈
121 : 암호화 모듈부
122 : 메시지 변환부
130 : 비행제어 모듈
200 : 지상 관제 시스템
300 : 통신 네트워크
310 : IP 네트워크
320 : 이동통신망
330 : 기지국
이하, 첨부된 도면을 참조하여 본 발명에 따른 무인 비행체의 통신시스템의 바람직한 실시예를 상세하게 설명한다.
도 2는 본 발명에 따른 무인 비행체의 통신시스템 구성을 개략적으로 나타낸 예시도이고, 도 3은 본 발명에 따른 무인 비행체의 통신시스템의 무인 비행체 구성을 나타낸 블록도이며, 도 4는 도 3에 따른 무인 비행체의 임베디드 모듈 구성을 나타낸 블록도이고, 도 5는 본 발명에 따른 무인 비행체의 통신시스템이 동작하는 과정을 나타낸 흐름도이다.
도 2 내지 도 5에 나타낸 바와 같이, 본 발명에 따른 무인 비행체의 통신시스템은 무인 비행체(100)와 지상 관제 시스템(200)은 장거리 통신이 가능한 LTE 기반의 통신 네트워크(300)와 소켓 통신을 이용하여 연결되고, 상기 무인 비행체(100)와, 지상 관제 시스템(200)은 미리 설정된 암호화 프로그램을 통해 송수신되는 메시지의 암호화 및 복호화를 수행하고, 상기 메시지에 대응하는 제어 명령의 생성을 통해 이중 보안구조를 형성한다.
상기 무인 비행체(100)는 LTE 기반의 이동통신 포맷을 이용하여 암호화된 메시지 데이터를 송수신하고, 수신된 상기 암호화된 메시지 데이터를 복원하여 미리 설정된 제어 명령 메시지를 생성하며, 상기 생성된 제어 명령에 따라 동작하는 구성으로서, 이동통신 모듈(110)과, 임베디드 모듈(120)과, 비행제어 모듈(130)을 포함하여 구성된다.
상기 이동통신 모듈(110)은 무인 비행체(100)가 지상 관제 시스템(200)과 이동통신망(310)을 통해 접속되도록 하고, 상기 지상 관제 시스템(200)과 LTE 기반의 이동통신포맷을 이용하여 메시지 데이터가 송수신되도록 하며, 바람직하게는 LTE 라우터로 구성되어 상기 메시지 데이터가 IP를 이용한 소켓 통신으로 상기 지상 관제 시스템(200)에 전송되도록 한다.
상기 임베디드 모듈(120)은 이동통신 모듈(110)을 통해 수신된 메시지 데이터를 미리 설정된 암호화 프로그램을 통해 복원하고, 상기 복원된 메시지에 대응하는 제어 명령 메시지를 생성하여 비행제어 모듈(130)로 전송하며, 상기 비행제어 모듈(130)로부터 전송되는 비행 제어결과를 상기 암호화 프로그램을 통해 암호화하여 지상 관제 시스템(200)으로 전송되도록 하는 구성으로서, 암호화 모듈부(121)와, 메시지 변환부(122)를 포함하여 구성된다.
즉 상기 임베디드 모듈(120)은 무인 비행체(100)와 지상 관제 시스템(200) 사이에 정의된 메시지에 대하여 암호화 및 복호화하는데, LTE 이동통신망에서 전송되는 일반 메시지와, 임베디드 모듈(120)과 비행제어 모듈(130) 사이에 무인 비행체(100)의 제어를 위해 정의된 제어 명령 메시지의 교환이 이루어질 수 있도록 한다.
상기 일반 메시지는 무인 비행체와 관련이 없는 임의의 정의한 메시지이고, 상기 제어 명령 메시지는 무인 비행체(100)의 동작과 상태에 해당하는 메시지로서, 상기 무인 비행체(100)의 직접적인 제어와 관련된 메시지이다.
상기 암호화 모듈부(121)는 미리 저장된 암호화 프로그램을 이용하여 지상 관제 시스템(200)에서 수신된 메시지 데이터를 복호화하여 복원하고, 비행제어 모듈(130)에서 전송된 비행제어 결과를 암호화하여 상기 지상 관제 시스템(200)으로 전송되도록 한다.
상기 메시지 변환부(122)는 복원된 메시지 데이터를 분석하여 미리 저장된 비행 제어용 명령 메시지를 검색하여 대응하는 제어 명령 메시지로 변환하고, 상기 변환된 제어 명령 메시지를 비행제어 모듈(130)로 전송하며, 바람직하게는 시리얼 통신을 이용하여 전송한다.
상기 비행제어 모듈(130)은 임베디드 모듈(120)에서 전송된 제어 명령 메시지에 따라 무인 비행체(100)가 비행하도록 제어하고, 상기 비행 제어결과를 임베디드 모듈(120)로 전송한다.
상기 지상 관제 시스템(200)은 무인 비행체(100)와 LTE 기반의 통신 네트크(300)를 통해 접속하고, 접속된 상기 무인 비행체(100)와 미리 설정된 임의의 암호화 과정을 통해 암호화된 메시지 데이터를 송수신하여 상기 무인 비행체(100)를 제어하는 구성으로서, 바람직하게는 미리 할당된 IP를 이용한 소켓 통신을 통해 제어대상 무인 비행체(100)와 접속한다.
또한, 상기 지상 관제 시스템(200)은 암호화된 일반 메시지를 통신 네트워크(300)를 통해 무인 비행체(100)의 임베디드 모듈(120)로 전송하고, 상기 무인 비행체(100)에서 수신된 암호화된 메시지 데이터는 복호화하여 복원시키며, 상기 복원된 메시지 데이터를 운용자가 확인할 수 있도록 디스플레이하고, 데이터베이스(미도시)에 저장되도록 한다.
또한, 상기 지상 관제 시스템(200)은 무인 비행체(100)의 비행이 종료되면, 상기 무인 비행체(100)와의 소켓 통신 접속을 해제한다.
상기 통신 네트워크(300)는 무인 비행체(100)와 지상 관제 시스템(200)을 연결하기 위한 구성으로서, IP 네트워크(310)와, 이동통신망(320)과, 복수의 기지국(330)을 포함하여 구성된다.
상기 IP 네트워크(310)는 대용량, 장거리 음성 및 데이터 서비스가 가능한 대형 통신망의 고속 기간망이며, 예를 들면, 인터넷(Internet)이 될 수 있다.
또한, 상기 IP 네트워크(310)는 ALL IP(Internet Protocol) 기반의 고속의 멀티미디어 서비스를 제공하기 위한 차세대 유선 망일 수 있다.
상기 이동통신망(320)은 동기식 이동 통신망일 수도 있고, 비동기식 이동 통신망일 수도 있으며, 3G LTE망, 4G LTE망, 차세대 이동통신망으로 구성되고, WCDMA(Wideband Code Division Multiple Access) 방식의 통신망으로 구성될 수도 있으며, 상기 이동통신망(320)은 복수의 기지국(330)을 통해 무인 비행체(100)와 메시지 데이터의 송수신을 수행한다.
또한, 상기 IP 네트워크(310)와 이동통신망(320)은 게이트웨이(G/W)를 통해 연결되고, 상기 게이트웨이(G/W)는 프로토콜 변환기의 하나이며, 이동통신망을 통해 무선으로 접속하는 무선단말과 IP 망을 통해 유선으로 접속하는 프록시서버 간의 데이터 송수신이 가능할 수 있게 한다.
또한, 상기 게이트웨이는 왑 게이트웨이(Wap Gateway)로서, 무선단말에 해당하는 무인 비행체(100)가 지상 관제 시스템(200)에 액세스(Access)하기 위한 프로토콜 스택을 포함할 수도 있다.
다음은 본 발명에 따른 무인 비행체의 통신 시스템이 동작하는 과정을 설명한다.
우선, 지상 관제 시스템(200)이 IP 네트워크(310)와 LTE를 기반으로 하는 이동통신망(320)을 통해 무인 비행체(100)와의 사이에 통신 소켓에 의한 연결을 확립(S100)하고, 상기 접속된 무인 비행체(100)와 사전에 정의한 메시지를 암호화 및 복호화 작업을 통해 비행 데이터의 읽기 및 쓰기를 수행(S110)한다.
즉 상기 지상 관제 시스템(200)은 접속 대상 무인 비행체(100)에 할당된 IP를 통해 해당 무인 비행체(110)에 접속하고, 상기 무인 비행체(110)와의 암호화된 데이터의 송수신과, 상기 송수신되는 데이터의 읽기 및 쓰기 동작을 확인한다.
상기 S100 단계 및 S110 단계를 수행한 다음, 지상 관제 시스템(200)은 무인 비행체(100)가 수행할 임무를 통신 네트워크(300)를 통해 암호화된 일반 메시지로 변환하여 상기 무인 비행체(100)로 전송함으로써, 무인 비행체(100)가 비행(S120)할 수 있도록 한다.
상기 무인 비행체(100)는 LTE 기반의 통신 네트워크(300)를 통해 수신된 일반 메시지를 임베디드 모듈9120)에서 복호화를 통해 복원하고, 상기 복원된 메시지에 대응하는 무인 비행체(100)를 제어할 제어 명령 메시지를 생성하여 비행제어 모듈(130)로 전송함으로써, 상기 비행제어 모듈(130)이 무인 비행체(100)를 생성된 제어 명령 메시지에 따라 비행할 수 있도록 하며, 상기 제어 명령에 따라 동작한 무인 비행체(100)의 위치 및 상태 정보는 지상 관제 시스템(200)으로 실시간 송신(S130)한다.
상기 S130 단계를 수행한 다음, 지상 관제 시스템(200)은 무인 비행체(100)의 메시지 정보를 분석하여 비행이 종료되었는지 여부를 확인(S140)하고, 상기 S140 단계의 확인 결과, 비행중이면, 상기 S120 단계 및 S130 단계를 수행한다.
또한, 상기 S140 단계의 확인 결과, 비행이 종료되었으면, 지상 관제 시스템(200)은 무인 비행체(100)와의 접속을 해제(S150)하고, 상기 무인 비행체(100)의 조종을 종료한다.
따라서, 무선 주파수 방식의 거리상의 제약과 주파수 간섭 등의 문제점을 해결하고, 기존의 상용화된 이동통신망을 사용하여 무인 비행체의 취약한 보안성을 해결할 수 있으며, 소켓 통신을 이용하여 연결을 확립한 다음 암호화 과정을 통해 해킹 등의 위험으로부터 보호될 수 있고, 제어 명령에 대한 교환이 무인 비행체의 임베디드 모듈과 비행제어 모듈 사이에서 이루어질 수 있도록 구성하여 데이터 유출을 방지할 수 있게 된다.
또한, LTE 통신망을 이용하여 지역과 위치에 상관없이 무인 비행체의 접속 및 조작이 가능하여 해안이나 임야 등의 넓은 비행범위와 지역에서도 실시간으로 데이터를 송수신하며 조작할 수 있다.
상기와 같이, 본 발명의 바람직한 실시 예를 참조하여 설명하였지만 해당 기술 분야의 숙련된 당업자라면 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
또한, 본 발명의 실시예를 설명하는 과정에서 도면에 도시된 선들의 두께나 구성요소의 크기 등은 설명의 명료성과 편의상 과장되게 도시되어 있을 수 있으며, 상술된 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있으므로, 이러한 용어들에 대한 해석은 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.

Claims (7)

  1. 임의의 이동통신 포맷을 이용하여 암호화된 메시지 데이터를 송수신하고, 수신된 상기 암호화된 메시지 데이터를 복원하여 미리 설정된 제어 명령 메시지를 생성하며, 상기 생성된 제어 명령에 따라 동작하는 무인 비행체(100);
    상기 무인 비행체(100)와 임의의 통신 네트워크(300)를 이용한 소켓 통신으로 접속하고, 접속된 상기 무인 비행체(100)와 미리 설정된 임의의 암호화 과정을 통해 암호화된 메시지 데이터를 송수신하여 상기 무인 비행체(100)를 제어하는 지상 관제 시스템(200)을 포함하는 무인 비행체의 통신시스템.
  2. 제 1 항에 있어서,
    상기 무인 비행체(100)는 지상 관제 시스템(200)과 이동통신망(310)을 통해 접속하고, 상기 지상 관제 시스템(200)과 임의의 통신포맷을 이용하여 메시지 데이터를 송수신하는 이동통신 모듈(110);
    상기 수신된 메시지 데이터를 미리 설정된 암호화 프로그램을 통해 복원하고, 상기 복원된 메시지에 대응하는 제어 명령 메시지를 생성하여 비행제어 모듈(130)로 전송하는 임베디드 모듈(120); 및
    상기 생성된 제어 명령 메시지에 따라 무인 비행체(100)가 비행하도록 제어하고, 상기 비행 제어결과를 임베디드 모듈(120)로 전송하는 비행제어 모듈(130)을 포함하는 것을 특징으로 하는 무인 비행체의 통신시스템.
  3. 제 2 항에 있어서,
    상기 임베디드 모듈(120)은 비행제어 모듈(130)과 시리얼 통신으로 데이터를 송수신하는 것을 특징으로 하는 무인 비행체의 통신시스템.
  4. 제 2 항에 있어서,
    상기 임베디드 모듈(120)은 상기 비행제어 모듈(130)로부터 전송되는 비행 제어결과를 암호화하여 지상 관제 시스템(200)으로 전송하는 것을 특징으로 하는 무인 비행체의 통신시스템.
  5. 제 2 항에 있어서,
    상기 임베디드 모듈(120)은 미리 저장된 암호화 프로그램을 이용하여 지상 관제 시스템(200)에서 수신된 메시지 데이터를 복호화하여 복원하고, 비행제어 모듈(130)에서 전송된 비행제어 결과를 암호화하는 암호화 모듈부(121); 및
    상기 복원된 메시지 데이터를 분석하여 미리 저장된 비행 제어용 명령 메시지로 변환하여 비행제어 모듈(130)로 출력하는 메시지 변환부(122)를 포함하는 것을 특징으로 하는 무인 비행체의 통신시스템.
  6. 제 1 항에 있어서,
    상기 지상 관제 시스템(200)은 무인 비행체(100)와 임의의 IP를 이용한 소켓 통신으로 접속하는 것을 특징으로 하는 무인 비행체의 통신시스템.
  7. 제 6 항에 있어서,
    상기 지상 관제 시스템(200)은 무인 비행체(100)의 비행이 종료되면, 상기 무인 비행체(100)와의 소켓 통신 접속을 해제하는 것을 특징으로 하는 무인 비행체의 통신시스템.
PCT/KR2018/010026 2017-08-30 2018-08-30 무인 비행체의 통신시스템 WO2019045465A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0110164 2017-08-30
KR20170110164 2017-08-30

Publications (1)

Publication Number Publication Date
WO2019045465A1 true WO2019045465A1 (ko) 2019-03-07

Family

ID=65525827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/010026 WO2019045465A1 (ko) 2017-08-30 2018-08-30 무인 비행체의 통신시스템

Country Status (1)

Country Link
WO (1) WO2019045465A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110808773A (zh) * 2019-12-09 2020-02-18 西南大学 无人机机载功能模块的数据收发系统
CN111726780A (zh) * 2020-06-28 2020-09-29 北京星际荣耀空间科技有限公司 一种箭地无线测发方法、系统及控制设备
CN113904874A (zh) * 2021-11-30 2022-01-07 北京中超伟业信息安全技术股份有限公司 一种无人机数据安全传输方法
WO2023046177A1 (zh) * 2021-09-27 2023-03-30 深圳市道通智能航空技术股份有限公司 无人机数据加密传输方法、装置、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080033604A1 (en) * 2006-04-19 2008-02-07 Jed Margolin System and Method For Safely Flying Unmanned Aerial Vehicles in Civilian Airspace
KR20110003986A (ko) * 2009-07-07 2011-01-13 고경완 이종의 이동통신 시스템을 이용한 무인항공기 탑재용 통신 시스템
KR20140078192A (ko) * 2012-12-17 2014-06-25 한국항공우주연구원 스푸핑을 방지하기 위한 암호화 장치 및 방법
KR20150117879A (ko) * 2014-04-11 2015-10-21 부산대학교 산학협력단 모바일 통신 기반 무인항공기 관제 시스템
KR20150129459A (ko) * 2014-05-12 2015-11-20 한국전자통신연구원 화이트 박스 암호화 장치 및 그 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080033604A1 (en) * 2006-04-19 2008-02-07 Jed Margolin System and Method For Safely Flying Unmanned Aerial Vehicles in Civilian Airspace
KR20110003986A (ko) * 2009-07-07 2011-01-13 고경완 이종의 이동통신 시스템을 이용한 무인항공기 탑재용 통신 시스템
KR20140078192A (ko) * 2012-12-17 2014-06-25 한국항공우주연구원 스푸핑을 방지하기 위한 암호화 장치 및 방법
KR20150117879A (ko) * 2014-04-11 2015-10-21 부산대학교 산학협력단 모바일 통신 기반 무인항공기 관제 시스템
KR20150129459A (ko) * 2014-05-12 2015-11-20 한국전자통신연구원 화이트 박스 암호화 장치 및 그 방법

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110808773A (zh) * 2019-12-09 2020-02-18 西南大学 无人机机载功能模块的数据收发系统
CN111726780A (zh) * 2020-06-28 2020-09-29 北京星际荣耀空间科技有限公司 一种箭地无线测发方法、系统及控制设备
WO2023046177A1 (zh) * 2021-09-27 2023-03-30 深圳市道通智能航空技术股份有限公司 无人机数据加密传输方法、装置、设备及存储介质
CN113904874A (zh) * 2021-11-30 2022-01-07 北京中超伟业信息安全技术股份有限公司 一种无人机数据安全传输方法
CN113904874B (zh) * 2021-11-30 2022-03-04 北京中超伟业信息安全技术股份有限公司 一种无人机数据安全传输方法

Similar Documents

Publication Publication Date Title
WO2019045465A1 (ko) 무인 비행체의 통신시스템
US4903262A (en) Hardware interface and protocol for a mobile radio transceiver
EP3188477A1 (en) Facilitating communication with a vehicle via a uav
WO2017114503A1 (en) Facilitating communication with a vehicle via a uav
CN110879613A (zh) 一种飞行器控制方法、终端及飞行器
WO2020032546A1 (ko) Nr v2x에서 자원 예약을 수행하는 방법 및 장치
EP3998784A1 (en) Method for transmitting and receiving signal by terminal in wireless communication system
CN109743771A (zh) 一种实现车机网络共存的方法及其系统
WO2020251335A1 (ko) 무선 통신 시스템에서 단말의 신호 송수신 방법
WO2019204997A1 (zh) 一种自主移动平台、控制端以及自主移动平台系统
WO2020085732A1 (ko) 무선 통신 시스템에서 사이드링크 단말의 자원 선택 방법 및 상기 방법을 이용하는 단말
EP2383935A2 (en) Wireless network setup and configuration distribution system
WO2020076011A1 (ko) 무선 통신 시스템에서 단말의 동기화 수행 방법 및 상기 방법을 이용하는 단말
WO2022025615A1 (ko) 무선통신시스템에서 사이드링크 디스커버리에 관련된 동작 방법
CN107231604B (zh) 一种数字通信方法及系统
US5265093A (en) Hardware interface and protocol for a mobile radio transceiver
CN111752289A (zh) 无人机控制方法及相关装置
US5109543A (en) Hardware interface and protocol for a mobile radio transceiver
WO2020251314A1 (ko) 무선 통신 시스템에서 rsu 간의 신호 송수신 방법
CN110021155A (zh) 事故现场多源数据融合及多用户共享的方法
WO2020167044A1 (en) Identification of sidelink connection associated with multiple sessions
KR101987242B1 (ko) 무인 비행체의 조종 시스템
WO2020067675A1 (ko) 무선 통신 시스템에서 전송 단말의 사이드링크 동작 방법 및 상기 방법을 이용하는 단말
JP6659759B2 (ja) 無線中継システム及びその運用方法
CN115022116B (zh) 一种电台拉远通信系统及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18850863

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18850863

Country of ref document: EP

Kind code of ref document: A1