WO2019045395A2 - 주파수 및 전압 조절이 가능한 교류전력 발생기 - Google Patents

주파수 및 전압 조절이 가능한 교류전력 발생기 Download PDF

Info

Publication number
WO2019045395A2
WO2019045395A2 PCT/KR2018/009877 KR2018009877W WO2019045395A2 WO 2019045395 A2 WO2019045395 A2 WO 2019045395A2 KR 2018009877 W KR2018009877 W KR 2018009877W WO 2019045395 A2 WO2019045395 A2 WO 2019045395A2
Authority
WO
WIPO (PCT)
Prior art keywords
power
unit
field
output
frequency
Prior art date
Application number
PCT/KR2018/009877
Other languages
English (en)
French (fr)
Other versions
WO2019045395A3 (ko
Inventor
박찬희
유형주
황난경
최우정
서수현
정성민
Original Assignee
박찬희
유형주
황난경
최우정
서수현
정성민
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박찬희, 유형주, 황난경, 최우정, 서수현, 정성민 filed Critical 박찬희
Publication of WO2019045395A2 publication Critical patent/WO2019045395A2/ko
Publication of WO2019045395A3 publication Critical patent/WO2019045395A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K47/00Dynamo-electric converters
    • H02K47/02AC/DC converters or vice versa
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/54Conversion of dc power input into ac power output without possibility of reversal by dynamic converters

Definitions

  • An embodiment of the present invention relates to an AC power generator capable of frequency and voltage regulation.
  • Direct current can easily store electricity, but it is difficult to transform to high voltage. Conversely, alternating current can not be used to store electricity, but it can be used extensively because it is free to transform to high voltage.
  • An embodiment of the present invention provides an AC power generator capable of adjusting a frequency and a voltage. That is, a problem to be solved according to an embodiment of the present invention is to provide a high-efficiency AC power generator capable of generating an AC power using a DC power source and controlling the frequency and voltage of the AC power source to dynamically adjust the frequency and voltage thereof have.
  • An AC power generator capable of adjusting a frequency and a voltage includes: a DC power source; A control unit for providing a switching signal so that the DC power of the DC power supply unit is supplied with a frequency and a pulse width; And an AC output section for converting the DC power source to an AC power source by a switching signal of the control section, and the AC output section includes an iron core, a magnetic pole piece arranged in the longitudinal direction of the iron core, A second field winding wound in a forward direction on the iron core and supplied with the DC power, a second field winding wound in a direction opposite to the iron core between the magnetic pole pieces and supplied with the DC power, And an armature winding wound around the first and second field windings to output the AC power by an induced electromotive force by the first and second field windings.
  • the control unit may include a frequency and pulse width adjusting unit for adjusting the frequency and the pulse width, and a switching unit for adjusting the DC power to the AC output unit using the output signal of the frequency and pulse width adjusting unit.
  • the frequency and voltage of the AC power source can be dynamically adjusted by the frequency and pulse width controller.
  • the first and second field windings may be wound on the upper and lower portions of the iron core around the armature winding.
  • the pole pieces of the AC output portion may be respectively formed between the outermost sides of the first and second field windings, between the first and second field windings, and between the first and second field windings and the armature windings .
  • the iron core of the AC output portion includes a wire groove formed along a longitudinal direction and a power supply line for supplying the DC power to the first and second field windings through the wire groove may be respectively connected.
  • first field winding is spaced apart from the first field winding and the plurality of first field windings are connected in parallel
  • second field winding is spaced apart from the first field winding
  • plurality of second field windings are connected in parallel
  • the armature windings may be spaced apart from one another, and a plurality of the armature windings may be connected in series.
  • the iron core, the magnetic pole piece, the first field winding, the second field winding, and the armature winding of the AC output unit constitute a first unit, and the first field winding and the second field winding of the first unit are sequentially connected to the DC power supply Phase AC power can be output through the armature winding.
  • the direct current power is sequentially supplied to the first field winding of the third unit, the second field winding of the first unit, the second field winding of the second unit, and the second field winding of the third unit, Phase AC power can be output through the three-phase AC power source.
  • Embodiments of the present invention provide an AC power generator capable of frequency and voltage regulation. That is, an embodiment of the present invention provides a high efficiency AC power generator capable of generating an AC power using a DC power source and adjusting the frequency and voltage of the AC power source to dynamically adjust the frequency and voltage of the AC power source.
  • FIGS. 1A and 1B are a block diagram and a circuit diagram showing an AC power generator capable of adjusting a frequency and a voltage according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing a part of the AC output section among the AC and frequency adjustable AC power generators according to the embodiment of the present invention.
  • FIG. 3A and FIG. 3B are schematic diagrams showing connection states of some components (units) of an AC output unit among frequency and voltage adjustable AC power generators according to an embodiment of the present invention.
  • FIGS. 4A and 4B are schematic views showing the principle of an AC output unit among frequency and voltage adjustable AC power generators according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing the configuration of an AC output unit among frequency and voltage adjustable AC power generators according to an embodiment of the present invention.
  • 6A and 6B are waveform diagrams illustrating a concept of controlling a frequency and a pulse width of an AC power generator capable of adjusting a frequency and a voltage according to an embodiment of the present invention.
  • FIGS. 1A and 1B there is shown a block diagram and circuit diagram of an AC power generator 100 capable of frequency and voltage control according to an embodiment of the present invention.
  • an AC power generator 100 includes a DC power source 110, a controller 120, and an AC output unit 130.
  • the DC power supply unit 110 may be, for example, but not limited to, a rechargeable battery, a solar cell, a fuel cell, or the like.
  • the DC power supply unit 110 may be an electric vehicle battery or an ESS (Energy Storage System) capable of supplying DC power for a long time.
  • ESS Electronicgy Storage System
  • the control unit 120 provides a switching signal so that the DC power of the DC power supply unit 110 is supplied with a frequency and a pulse width.
  • the control unit 120 includes a frequency and pulse width adjusting unit 121 for adjusting the frequency and the pulse width and a DC power source for adjusting the DC power with the output signals of the frequency and pulse width adjusting unit 121 to be provided to the AC output unit 130 And a switching unit 122 for switching the power supply voltage.
  • the frequency and pulse width adjusting unit 121 includes a PWM IC (Pulse Width Modulation Integrated Chip) that receives and supplies a DC power of a predetermined level from the DC power supply unit 110, And a plurality of photocouplers (PC1 to PC6) (Photo Coupler) for converting them into electrical signals.
  • the PWM IC applies an electrical signal to the photocouplers PC1 to PC6 according to the frequency and pulse width set by the user.
  • the PWM IC sequentially turns on / off a plurality of photocouplers (PC1 to PC6).
  • the switching unit 122 includes a switching unit 122 having a source connected to the positive electrode of the DC power supply unit 110 and a drain connected to the negative electrode of the DC power supply unit 110, And IGBTs (TR1 to TR6) (Insulated Gate Bipolar Transistor) to which a gate is connected on the output side.
  • IGBTs TR1 to TR6 may include a body diode that is forward from the drain to the source.
  • the gates of two IGBTs are connected in parallel on the output side of each of the photocouplers PC1 to PC6 so that a high-level DC power source can pass from the source to the drain.
  • pair of IGBTs are connected to one photocoupler, and the pair of IGBTs may be provided by the number of photocouplers PC1 to PC6.
  • a conventional power MOSFET Metal Oxide Silicon Field Effect Transistor
  • having a faster switching speed may be provided instead of the IGBTs TR1 to TR6.
  • the AC output unit 130 converts the DC power to an AC power by the switching signal of the control unit 120 (that is, when the switching unit 122 is turned on / off).
  • the AC output section 130 is a circuit in which, in the case of a single-phase AC output, a first field winding 134 (for example, wound in the forward direction and connected to the anode of the DC power supply section 110) And the lower end is connected to the cathode of the DC power supply unit 110 through the first IGBT TR1) and the second field winding 135 (for example, wound in the reverse direction and connected to the anode of the DC power supply unit 110 And the lower end thereof is connected to the cathode of the DC power supply unit 110 via the second IGBT TR2) and armature windings 136 connected to each other to obtain induced electromotive force therebetween.
  • a first field winding 134 for example, wound in the forward direction and connected to the anode of the DC power supply section 110
  • the second field winding 135 for example, wound in the reverse direction and connected to the anode of the DC power supply unit 110
  • the lower end thereof is connected to the cathode of the DC power supply unit 110 via the second I
  • first and second field windings 134 and 135 and the armature winding 136 are wound around the iron core 131.
  • the lower end of the first field winding 134 is connected to the source of the first IGBT TR1 of the switching unit 122
  • the lower end of the second field winding 135 is connected to the second IGBT TR2 of the switching unit 122 Lt; / RTI >
  • the first field winding 134 is wound in the forward direction
  • the second field winding 135 is wound in the reverse direction
  • the first and second IGBTs TR1 and TR2 are sequentially turned on / Phase AC power is output through the AC power source.
  • the first and second IGBTs TR1 and TR2 are not simultaneously turned on.
  • the AC output section 130 is connected to the other first field winding 134 in the third IGBT TR3 and to the second field winding 135 in the fourth IGBT TR4.
  • Another first field winding 134 is connected to the fifth IGBT TR5 and another second field winding 135 is connected to the sixth IGBT TR6 and the first, Phase alternating current power can be outputted through the armature winding 136 by sequentially turning on the first, second, fourth, sixth IGBTs TR1, TR3, TR5, T2, TR4 and TR6.
  • the AC power generator 100 turns on / off the IGBTs TR1 to TR6 of the switching unit 122 sequentially, and adjusts the frequency and the pulse width thereof, So that the frequency and voltage of the AC power source can be dynamically adjusted.
  • FIG. 2 there is shown a schematic diagram of a part of an AC output unit 130 among frequency and voltage adjustable AC power generators 100 according to an embodiment of the present invention.
  • one unit constituting the AC output section 130 includes an iron core 131, a magnetic pole piece 133, a first field winding 134, a second field winding 135, An armature winding 136, and the like.
  • the iron core 131 has a predetermined length in the upward and downward directions and includes a wiring groove 132 through which a power supply line passes in the longitudinal direction as a ferromagnetic body.
  • the magnetic pole pieces 133 may be arranged at predetermined intervals along the longitudinal direction of the iron core 131 in the form of a disk. In the drawing, six magnetic pole pieces 133 are arranged in the upward and downward directions. In particular, the magnetic pole piece 133 is disposed between the outermost sides of the first and second field windings 134 and 135, between the first and second field windings 134 and 135, and between the first and second field windings 134 and 135 and the armature windings 136 ), Which is preferably a ferromagnetic material.
  • the first field winding 134 (electromagnet) can be wound in the forward direction to the iron core 131, for example, between the pole pieces 133.
  • the first field winding 134 may be formed on the upper portion and the lower portion of the armature winding 136, and they are connected to each other in parallel.
  • the second field winding 135 (enterprise-wide) can be wound in the opposite direction to the iron core 131, for example, between the pole pieces 133.
  • the first field winding 134 may be formed on the upper portion and the lower portion of the armature winding 136, and they are connected to each other in parallel.
  • first and second field windings 134 and 135 may be delta-connected to each other in the same direction.
  • the armature winding 136 can be wound on the iron core 131 of the upper second field winding 135 and the lower first field winding 134, for example.
  • the armature winding 136 is an output winding, which can be expanded to small, medium and large according to the shape and wiring method.
  • a plurality of armature windings 136 of the first unit may be connected in series between the units, and the units may be connected in parallel.
  • one unit of the AC output unit 130 can output the single-phase AC power to the armature winding 136 by the induced electromotive force by the first and second field windings 134 and 135.
  • FIG. 3A and 3B a schematic diagram of the connection state of a part of the AC output unit 130 among the AC and DC voltage generators 100 capable of controlling the frequency and voltage according to the embodiment of the present invention is shown in FIG. .
  • a unit constituting the AC output unit 130 has a wiring groove 132 formed along the longitudinal direction of the iron core 131, and through the wiring groove 132,
  • the cathode of the DC power supply unit 110 may be connected to the power supply line (anode of the DC power supply unit 110) of the first and second field windings 134 and 135 and to the outside of the first and second field windings 134 and 135.
  • the first and second field windings 134 and 135 and the armature winding 136 can be secured by a desired number.
  • FIGS. 4A and 4B a schematic diagram of the principle of the AC output unit 130 among the frequency and voltage adjustable AC power generator 100 according to the embodiment of the present invention is shown.
  • the magnetic field of N and S and the magnetic field of S and N form an alternating magnetic field in the armature winding 136 through the first field winding 134 and the second field winding 135, AC power is generated through the armature winding (136).
  • the anode power source of the DC power source unit 110 is supplied to the first field winding 134 for the first time to 1/4 (T) of the period and then cut off. Then, the DC power source unit 110) is supplied to the second field winding 135 for a period of 1/2 (T) to 3/4 (T) and then cut off. By repeating this operation, finally, AC power is output. It is a matter of course that the duty ratio of FIG. 4B can be adjusted to an appropriate duty ratio as an example.
  • FIG. 5 there is shown a schematic diagram of the configuration of the AC output unit 130 among the AC power generators 100 capable of frequency and voltage control according to the embodiment of the present invention.
  • the first unit U1 can be configured.
  • the second and third units U2 and U3 are also connected to the iron core 131, the pole piece 133, the first field coil 134, the second field coil 135, And an armature winding 136.
  • the positive electrode (+) of the DC power supply unit 110 is connected to the first field winding 134 (1,2,3) of the first, second and third units U1, U2 and U3,
  • the positive electrode (+) of the DC power supply unit 110 is connected to the second field winding 135 (4,5,6) of the two or three units U1, U2 and U3, U2 and U3 are connected to the cathode (-) of the DC power supply unit 110 through the power supply line GND. That is, the electromagnet power supply line (ground) is connected to the first and second field windings 134 and 135 through the connection groove 132 provided in the iron core 131.
  • first and second field windings 134 and 135 of the first, second and third units U1, U2 and U3 are connected in parallel between the anode and the cathode of the DC power supply unit 110.
  • the armature windings 136 of the first, second, and third units U1, U2, and U3 are connected in series, and the units are connected in parallel to each other and have three output terminals A, B, and C.
  • the output terminals A, B, and C of the armature winding 136 are sequentially supplied to the second field winding 135 of the third unit U3 and the second field winding 135 of the third unit U3, Three-phase AC power can be output through the AC power supply.
  • alternating currents of three phases can be obtained by alternately supplying the same DC power to the AC power output unit 130 shown in FIG.
  • three pairs of (1, 4), (2, 5) and (3, 6) have a structure for obtaining three-phase AC output, and the supply time of the DC power is adjusted so that the phase difference is 120 degrees.
  • Three pairs of (1, 4), (2, 5) and (3, 6) operate in the same manner, but are provided in three pairs for three-phase AC output. In the case of single- 4).
  • the anode of the DC power supply is repeatedly supplied and disconnected for the first time to 1/4 (T) of the cycle, and the anode of the DC power supply is switched from 1/2 (T) to 3/4 (T) Phase AC power can be outputted through the output terminal A by repeating the supply and the disconnection during the supply of the AC power.
  • the anode (+) is connected to the upper 1, 2, 3, 4, 5, 6 terminals and the cathode (-) is connected to the lower GND terminal.
  • (-) can be interchanged.
  • FIG. 6A and 6B a waveform diagram for explaining the concept of controlling the frequency and pulse width of the AC power generator 100 capable of adjusting the frequency and voltage according to the embodiment of the present invention is shown.
  • the X-axis is the time and the Y-axis is the voltage level.
  • the frequency of the switching unit 122 may be adjusted by the operation of the frequency and pulse width regulator 121 and the switching unit 122 of the controller 120 in the embodiment of the present invention , And the frequency of the AC power source can be finally adjusted by this frequency adjustment.
  • the duty cycle of the switching unit 122 is changed by the operation of the frequency and pulse width adjusting unit 121 and the switching unit 122 of the control unit 120, 1: 1, 2: 1, 3: 1 and 4: 1, where the input and output electricity are relatively small at 1: 1 and the input and output electricity at 4: Can be large. That is, the higher the input electric power of the DC power source through the switching unit 122 is, the higher the output electric power becomes.
  • the AC power generator 100 capable of controlling the frequency and the voltage according to the present invention can easily expand the unit of the above structure based on the picking theory and easily control the input current at the frequency through the electronic control unit 120 And also has a high structural stability because it does not rotate mechanically.
  • the AC power generator 100 according to the present invention is a technology intensive industry (mechanical, electric, electronic, and control), a promising industry having a great growth potential and a ripple effect, can utilize clean energy without fear of energy exhaustion, It also has the advantage that there is no danger of disposal or environmental damage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Ac-Ac Conversion (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

본 발명의 실시예는 주파수 및 전압 조절이 가능한 교류전력 발생기에 관한 것으로, 해결하고자 하는 기술적 과제는 직류 전원을 이용하여 교류 전원을 생성하되 교류 전원의 주파수 및 전압을 다이나믹하게 조절할 수 있는 주파수 및 전압 조절이 가능한 고효율 교류전력 발생기를 제공하는 데 있다. 이를 위해 본 발명은 직류 전원부; 상기 직류 전원부의 직류 전원이 주파수 및 펄스폭을 가지며 공급되도록 스위칭 신호를 제공하는 제어부; 및 상기 제어부의 스위칭 신호에 의해 상기 직류 전원이 교류 전원으로 변환되어 출력되도록 하는 교류 출력부를 포함하고, 상기 교류 출력부는 철심과, 상기 철심의 길이 방향으로 배열된 자극편과, 상기 자극편 사이의 상기 철심에 정방향으로 권취되어 상기 직류 전원이 공급되는 제1계자 권선과, 상기 자극편 사이의 상기 철심에 역방향으로 권취되어 상기 직류 전원이 공급되는 제2계자 권선과, 상기 자극편 사이의 상기 철심에 권취되어 상기 제1,2계자 권선에 의한 유도 기전력에 의해 상기 교류 전원을 출력하는 전기자 권선을 포함하는 교류전력 발생기를 개시한다.

Description

주파수 및 전압 조절이 가능한 교류전력 발생기
본 발명의 실시예는 주파수 및 전압 조절이 가능한 교류전력 발생기에 관한 것이다.
직류는 전기를 손쉽게 저장할 수 있지만 고전압으로의 변압이 어렵다. 반대로 교류는 전기를 저장할 수는 없지만 고전압으로의 변압이 자유롭기 때문에 폭넓게 사용될 수 있다.
전기 자동차 뿐만아니라, 가정의 전력 사용, 건물등의 비상전력의 사용등 고효율의 교류전력 발생기의 필요성이 점차 더 커지고 있다.
이러한 발명의 배경이 되는 기술에 개시된 상술한 정보는 본 발명의 배경에 대한 이해도를 향상시키기 위한 것뿐이며, 따라서 종래 기술을 구성하지 않는 정보를 포함할 수도 있다.
본 발명의 실시예에 따른 해결하고자 하는 과제는 주파수 및 전압 조절이 가능한 교류전력 발생기를 제공하는데 있다. 즉, 본 발명의 실시예에 따른 해결하고자 하는 과제는 직류 전원을 이용하여 교류 전원을 생성하되 교류 전원의 주파수 및 전압을 다이나믹하게 조절할 수 있는 주파수 및 전압 조절이 가능한 고효율 교류전력 발생기를 제공하는 데 있다.
본 발명의 실시예에 따른 주파수 및 전압 조절이 가능한 교류전력 발생기는 직류 전원부; 상기 직류 전원부의 직류 전원이 주파수 및 펄스폭을 가지며 공급되도록 스위칭 신호를 제공하는 제어부; 및 상기 제어부의 스위칭 신호에 의해 상기 직류 전원이 교류 전원으로 변환되어 출력되도록 하는 교류 출력부를 포함하고, 상기 교류 출력부는 철심과, 상기 철심의 길이 방향으로 배열된 자극편과, 상기 자극편 사이의 상기 철심에 정방향으로 권취되어 상기 직류 전원이 공급되는 제1계자 권선과, 상기 자극편 사이의 상기 철심에 역방향으로 권취되어 상기 직류 전원이 공급되는 제2계자 권선과, 상기 자극편 사이의 상기 철심에 권취되어 상기 제1,2계자 권선에 의한 유도 기전력에 의해 상기 교류 전원을 출력하는 전기자 권선을 포함할 수 있다.
상기 제어부는 주파수 및 펄스폭을 조절하는 주파수 및 펄스폭 조절부와, 상기 주파수 및 펄스폭 조절부의 출력 신호로 상기 직류 전원을 조절하여 상기 교류 출력부에 제공하는 스위칭부를 포함할 수 있다.
상기 주파수 및 펄스폭 조절부에 의해 상기 교류 전원의 주파수 및 전압이 다이나믹하게 조절될 수 있다.
상기 전기자 권선을 중심으로 상기 제1,2계자 권선이 상기 철심의 상,하부에 각각 권취될 수 있다.
상기 교류 출력부의 자극편은 상기 제1,2계자 권선의 최외측과, 상기 제1,2계자 권선의 사이와, 그리고 상기 제1,2계자 권선과 상기 전기자 권선의 사이에 각각 형성될 수 있다.
상기 교류 출력부의 철심은 길이 방향을 따라 형성된 결선홈을 포함하고, 상기 결선홈을 통해 상기 제1,2계자 권선에 상기 직류 전원을 공급하는 전원 공급선이 각각 결선될 수 있다.
상기 제1계자 권선은 이격되어 다수개가 구비되고, 다수개의 상기 제1계자 권선은 병렬로 연결되며, 상기 제2계자 권선은 이격되어 다수개가 구비되고, 다수개의 상기 제2계자 권선은 병렬로 연결되며, 상기 전기자 권선은 이격되어 다수개가 구비되고, 다수개의 상기 전기자 권선은 직렬로 연결될 수 있다.
상기 교류 출력부의 철심, 자극편, 제1계자 권선, 제2계자 권선 및 전기자 권선이 제1유닛을 구성하고, 상기 제1유닛의 제1계자 권선 및 상기 제2계자 권선에 순차적으로 상기 직류 전원이 공급되어 상기 전기자 권선을 통해 단상 교류 전원이 출력될 수 있다.
상기 제1유닛과 동일한 구성의 제2유닛과, 상기 제1유닛과 동일한 구성의 제3유닛을 더 포함하고, 상기 제1유닛의 제1계자 권선, 상기 제2유닛의 제1계자 권선, 상기 제3유닛의 제1계자 권선, 상기 제1유닛의 제2계자 권선, 상기 제2유닛의 제2계자 권선 및 상기 제3유닛의 제2계자 권선에 순차적으로 상기 직류 전원이 공급되어 상기 전기자 권선을 통해 삼상 교류 전원이 출력될 수 있다.
본 발명의 실시예는 주파수 및 전압 조절이 가능한 교류전력 발생기를 제공한다. 즉, 본 발명의 실시예는 직류 전원을 이용하여 교류 전원을 생성하되 교류 전원의 주파수 및 전압을 다이나믹하게 조절할 수 있는 주파수 및 전압 조절이 가능한 고효율 교류전력 발생기를 제공한다.
도 1a 및 도 1b는 본 발명의 실시예에 따른 주파수 및 전압 조절이 가능한 교류전력 발생기를 도시한 블록도 및 회로도이다.
도 2는 본 발명의 실시예에 따른 주파수 및 전압 조절이 가능한 교류전력 발생기 중에서 교류 출력부의 일부 구성(유닛)을 도시한 개략도이다.
도 3a 및 도 3b는 본 발명의 실시예에 따른 주파수 및 전압 조절이 가능한 교류전력 발생기중에서 교류 출력부의 일부 구성(유닛)에 대한 결선 상태를 도시한 개략도이다.
도 4a 및 도 4b는 본 발명의 실시예에 따른 주파수 및 전압 조절이 가능한 교류전력 발생기 중에서 교류 출력부의 원리를 도시한 개략도이다.
도 5는 본 발명의 실시예에 따른 주파수 및 전압 조절이 가능한 교류전력 발생기 중에서 교류 출력부의 구성을 도시한 개략도이다.
도 6a 및 도 6b는 본 발명의 실시예에 따른 주파수 및 전압 조절이 가능한 교류전력 발생기의 주파수 및 펄스폭을 조절하는 개념을 도시한 파형도이다.
도 1a 및 도 1b를 참조하면, 본 발명의 실시예에 따른 주파수 및 전압 조절이 가능한 교류전력 발생기(100)에 대한 블록도 및 회로도가 도시되어 있다.
도 1a 및 도 1b에 도시된 바와 같이, 본 발명의 실시예에 따른 교류전력 발생기(100)는 직류 전원부(110)와, 제어부(120)와, 교류 출력부(130)를 포함한다.
직류 전원부(110)는, 예를 들면, 한정하는 것은 아니지만, 재충전 가능한 배터리, 태양 전지, 연료 전지 등일 수 있다. 특히, 이러한 직류 전원부(110)는 장시간동안 직류 전원을 공급할 수 있는 전기 자동차용 배터리 또는 ESS(Energy Storage System)일 수 있다.
제어부(120)는 직류 전원부(110)의 직류 전원이 주파수 및 펄스폭을 가지며 공급되도록 스위칭 신호를 제공한다. 이러한 제어부(120)는 주파수 및 펄스폭을 조절하는 주파수 및 펄스폭 조절부(121)와, 주파수 및 펄스폭 조절부(121)의 출력 신호로 직류 전원을 조절하여 교류 출력부(130)에 제공하는 스위칭부(122)를 포함할 수 있다.
일례로, 주파수 및 펄스폭 조절부(121)는 직류 전원부(110)로부터 소정 레벨의 직류 전원을 공급받아 구동하는 PWM IC(Pulse Width Modulation Integrated Chip)와, PWM IC의 출력 신호에 의해 광 신호를 전기적 신호로 변환하는 다수의 포토 커플러(PC1~PC6)(Photo Coupler)를 포함한다. 여기서, PWM IC는 사용자에 의해 설정된 주파수 및 펄스폭에 따라 포토 커플러(PC1~PC6)에 전기적 신호를 인가한다. 특히, PWM IC는 다수의 포토 커플러(PC1~PC6)를 순차적으로 턴온/턴오프한다.
또한, 일례로 스위칭부(122)는 직류 전원부(110)의 양극(+)에 소스가 연결되고, 직류 전원부(110)의 음극(-)에 드레인이 연결되며, 포토 커플러(PC1~PC6)의 출력측에 게이트가 연결된 IGBT(TR1~TR6)(Insulated Gate Bipolar Transistor)를 포함할 수 있다. 여기서, IGBT(TR1~TR6)는 드레인에서 소스를 향하여 정방향인 바디 다이오드를 포함할 수 있다. 더불어, 각 포토 커플러(PC1~PC6)의 출력측에 2개의 IGBT의 게이트가 병렬로 연결되어 소스로부터 드레인으로 고레벨의 직류 전원이 통과할 수 있도록 되어 있다. 이러한 한쌍의 IGBT는 하나의 포토 커플러에 연결되며, 이러한 한쌍의 IGBT는 포토 커플러(PC1~PC6)의 개수만큼 구비될 수 있다. 물론, 이러한 IGBT(TR1~TR6) 대신 스위칭 속도가 더욱 빠른 통상의 파워 MOS FET(Metal Oxide Silicon Field Effect Transistor)이 구비될 수도 있다.
교류 출력부(130)는 제어부(120)의 스위칭 신호에 의해(즉, 스위칭부(122)의 턴온/턴오프), 직류 전원을 교류 전원으로 변환하여 출력되도록 한다.
아래에서 다시 설명하겠지만, 교류 출력부(130)는, 단상 교류 출력의 경우, 상호간 병렬로 연결된 제1계자 권선(134)(예를 들면, 정방향으로 권취되며 상단은 직류 전원부(110)의 양극에 연결되고 하단은 첫번째 IGBT(TR1)를 통하여 직류 전원부(110)의 음극에 연결됨)과 제2계자 권선(135)(예를 들면, 역방향으로 권취되며 상단은 직류 전원부(110)의 양극에 연결되고 하단은 두번째 IGBT(TR2)를 통하여 직류 전원부(110)의 음극에 연결됨) 및 이로부터 유도 기전력을 얻는 상호간 직렬로 연결된 전기자 권선(136)을 포함한다. 물론, 이러한 제1,2계자 권선(134,135)과 전기자 권선(136)은 철심(131)에 권취된다. 구체적으로, 제1계자 권선(134)의 하단은 스위칭부(122)의 첫번째 IGBT(TR1)의 소스에 연결되고, 제2계자 권선(135)의 하단은 스위칭부(122)의 두번째 IGBT(TR2)의 소스에 연결된다. 이와 같이, 제1계자 권선(134)은 정방향으로 권취되고 제2계자 권선(135)은 역방향으로 권취되며 또한 첫번째 및 두번째 IGBT(TR1,TR2)가 순차적으로 턴온/턴오프됨으로써 전기자 권선(136)을 통하여 단상 교류 전원이 출력된다. 여기서, 첫번째 및 두번째 IGBT(TR1,TR2)는 동시에 턴온되지는 않는다.
이와 유사하게, 교류 출력부(130)는, 삼상 교류 출력의 경우, 세번째 IGBT(TR3)에 다른 제1계자 권선(134)이 연결되고, 네번째 IGBT(TR4)에 다른 제2계자 권선(135)이 연결되며, 다섯번째 IGBT(TR5)에 또다른 제1계자 권선(134)이 연결되고, 여섯번째 IGBT(TR6)에 또다른 제2계자 권선(135)이 연결되며, 첫번째, 세번째, 다섯번째, 두번째, 네번째, 여섯번째 IGBT(TR1,TR3, TR5, T2, TR4, TR6)가 순차적으로 턴온됨으로써, 전기자 권선(136)을 통하여 삼상 교류 전원이 출력될 수 있다.
이와 같이 하여, 본 발명의 실시예에 따른 교류전력 발생기(100)는 스위칭부(122)의 IGBT(TR1~TR6)를 순차적으로 턴온/턴오프하되, 그 주파수 및 펄스폭을 조절함으로써, 직류 전원을 이용하여 교류 전원을 생성하는 동시에 교류 전원의 주파수 및 전압을 다이나믹하게 조절할 수 있도록 한다.
도 2를 참조하면, 본 발명의 실시예에 따른 주파수 및 전압 조절이 가능한 교류전력 발생기(100)중에서 교류 출력부(130)의 일부 구성(유닛)에 대한 개략도가 도시되어 있다.
도 2에 도시된 바와 같이, 교류 출력부(130)를 구성하는 한 유닛은 철심(131)과, 자극편(133)과, 제1계자 권선(134)과, 제2계자 권선(135)과, 전기자 권선(136)을 포함할 수 있다.
철심(131)은 상,하 방향으로 소정 길이를 가지며, 이는 강자성체로서 길이 방향으로 전원 공급선이 지나가는 결선홈(132)을 포함한다.
자극편(133)은 디스크 형태로서 철심(131)의 길이 방향을 따라 상호간 소정 간격으로 배열될 수 있다. 도면에서는 상,하 방향으로 6개의 자극편(133)이 배열됨을 도시하고 있다. 특히, 자극편(133)은 제1,2계자 권선(134,135)의 최외측과, 제1,2계자 권선(134,135)의 사이와, 그리고 제1,2계자 권선(134,135)과 전기자 권선(136)의 사이에 각각 형성될 수 있으며, 이는 강자성체가 바람직하다.
제1계자 권선(134)(전자석)은 예를 들면 자극편(133)의 사이로서 철심(131)에 정방향으로 권취될 수 있다. 이러한 제1계자 권선(134)은 전기자 권선(136)을 중심으로 그 상,하부에 각각 형성될 수 있으며, 상호간 병렬로 연결된다.
제2계자 권선(135)(전사적)은 예를 들면 자극편(133)의 사이로서 철심(131)에 역방향으로 권취될 수 있다. 이러한 제1계자 권선(134)은 전기자 권선(136)을 중심으로 그 상,하부에 각각 형성될 수 있으며, 상호간 병렬로 연결된다.
특히, 제1,2계자 권선(134,135)은 같은 방향끼리 델타 결선될 수 있다.
전기자 권선(136)은 예를 들면 상부의 제2계자 권선(135)과 하부의 제1계자 권선(134)의 사인 철심(131)에 권취될 수 있다. 이러한 전기자 권선(136)은 출력 권선이며, 이는 형상 및 결선 방법에 따라 소, 중, 대형으로 확장될 수 있다. 더불어, 제1유닛의 전기자 권선(136) 다수가 상호간 직렬로 연결되고, 유닛끼리는 병렬로 결선될 수 있다.
이와 같은 구성에 의해, 교류 출력부(130)의 한 유닛은 제1,2계자 권선(134,135)에 의한 유도 기전력에 의해 전기자 권선(136)이 단상 교류 전원을 출력할 수 있다.
도 3a 및 도 3b를 참조하면, 본 발명의 실시예에 따른 주파수 및 전압 조절이 가능한 교류전력 발생기(100)중에서 교류 출력부(130)의 일부 구성(유닛)에 대한 결선 상태에 대한 개략도가 도시되어 있다.
도 3a 및 도 3b에 도시된 바와 같이, 교류 출력부(130)를 구성하는 한 유닛은 철심(131)의 길이 방향으로 따라 결선홈(132)이 형성되고, 이러한 결선홈(132)을 통해 제1,2계자 권선(134,135)의 전원 공급선(직류 전원부(110)의 양극)이 연결되고, 제1,2계자 권선(134,135)의 외측에는 직류 전원부(110)의 음극이 연결될 수 있다. 더불어, 철심의 길이를 충분히 확장시킬 수 있으므로, 원하는 갯수만큼 제1,2계자 권선(134,135) 및 전기자 권선(136)을 확보할 수 있음을 알 수 있다.
도 4a 및 도 4b를 참조하면, 본 발명의 실시예에 따른 주파수 및 전압 조절이 가능한 교류전력 발생기(100)중에서 교류 출력부(130)의 원리에 대한 개략도가 도시되어 있다.
도 4a에 도시된 바와 같이, 직류 전원부(110)로부터의 직류 전원이 PWM IC(미도시)의 IGBT를 통해 제1계자 권선(134)(정방향 계자 코일)에 공급되면(제2계자 권선(135)(역방향 계자 코일)의 전류 공급 중단), 자극편(133)에 N,S의 극이 생성된다. 또한, 직류 전원부(110)로부터의 직류 전원이 PWM IC(미도시)의 IGBT를 통해 제2계자 권선(135)(역방향 계자 코일)에 공급되면(제1계자 권선(134)(정방향 계자 코일)의 전류 공급 중단), 자극편(133)에 S,N극이 생성된다.
따라서, 제1계자 권선(134) 및 제2계자 권선(135)을 통하여 자극편(133)에 N,S의 자기장 및 S,N의 자기장이 전기자 권선(136)에 교번자계를 형성함으로써, 결국 전기자 권선(136)을 통하여 교류 전원이 생성된다.
여기서, 제1계자 권선(134)(정방향 권선) 또는 제2계자 권선(135)(역방향 권선)에 전류가 공급될 때, 다른 방향의 권선은 이미 기전력이 형성되어 있으므로 전류 공급의 입력 비율은 적어지고, 출력은 증가하게 되며, 유닛이 증가하여도 전류 공급은 동일하게 된다
참고로, 도 4b에 도시된 바와 같이, 직류 전원부(110)의 양극 전원을 주기의 처음~1/4(T) 시간동안 제1계자 권선(134)에 공급한 후 차단하고, 이어서 직류 전원부(110)의 양극 전원을 1/2(T)~3/4(T) 시간동안 제2계자 권선(135)에 공급한 후 차단하되, 이러한 동작을 반복함으로써, 결국 전기자 권선(136)을 통해 단상 교류 전원이 출력됨을 볼 수 있다. 도 4b의 듀티비(Duty Ratio)는 예시로서 적절한 듀티비로 조정이 가능함은 물론이다.
도 5를 참조하면, 본 발명의 실시예에 따른 주파수 및 전압 조절이 가능한 교류전력 발생기(100)중에서 교류 출력부(130)의 구성에 대한 개략도가 도시되어 있다.
도 5에 도시된 바와 같이, 상술한 교류 출력부(130)의 철심(131), 자극편(133), 제1계자 권선(134), 제2계자 권선(135) 및 전기자 권선(136)이 제1유닛(U1)을 구성할 수 있다. 또한, 제2,3유닛(U2,U3) 역시 상술한 제1유닛(U1)과 동일하게 철심(131), 자극편(133), 제1계자 권선(134), 제2계자 권선(135) 및 전기자 권선(136)을 포함할 수 있다.
도면 중 제1,2,3유닛(U1,U2,U3)의 제1계자 권선(134)(1,2,3)에 직류 전원부(110)의 양극(+)이 연결되고, 또한 제1,2,3유닛(U1,U2,U3)의 제2계자 권선(135)(4,5,6)에 직류 전원부(110)의 양극(+)이 연결되며, 제1,2,3유닛(U1,U2,U3)의 제1,2계자 권선(134,135)은 전원 공급선(GND)을 통해 직류 전원부(110)의 음극(-)에 연결된다. 즉, 철심(131)에 구비된 결선홈(132)을 통해 전자석 전원 연결선(그라운드)이 제1,2계자 권선(134,135)에 연결된다. 여기서, 제1,2,3유닛(U1,U2,U3)의 제1,2계자 권선(134,135)은 직류 전원부(110)의 양극과 음극 사이에서 상호간 병렬로 연결된다. 더불어, 제1,2,3유닛(U1,U2,U3)의 전기자 권선(136)은 각각 직렬로 연결되며, 유닛끼리 병렬로 연결되어 3개의 출력 단자(A,B,C)를 갖는다.
이와 같은 구성에서, 예를 들어, 제1유닛(U1)의 제1계자 권선(134)(1) 및 상기 제2계자 권선(135)(4)에 순차적으로 상기 직류 전원(양극)이 공급되면 전기자 권선(136)의 출력 단자(A)를 통해 단상 교류 전원이 출력될 수 있다.
또한, 상술한 구성에서, 예를 들어, 제1유닛(U1)의 제1계자 권선(134)(1), 상기 제2유닛(U2)의 제1계자 권선(134)(2), 상기 제3유닛(U3)의 제1계자 권선(134)(3), 상기 제1유닛(U1)의 제2계자 권선(135)(4), 상기 제2유닛(U2)의 제2계자 권선(135)(5) 및 상기 제3유닛(U3)의 제2계자 권선(135)(6)에 순차적으로 직류 전원(양극)이 공급되면 전기자 권선(136)의 출력 단자(A,B,C)를 통해 삼상 교류 전원이 출력될 수 있다.
즉, 도 5에 도시된 교류 출력부(130)에서, 1 내지 6에 동일한 직류 전원을 번갈아가며 공급하면, 삼상(A,B,C)의 교류 전기를 얻을 수 있다. 구체적으로, 도 5에서 (1,4), (2,5) 및 (3,6)의 세쌍은 삼상 교류 출력을 얻기 위한 구조로서, 위상 차이가 120도씩 나도록 직류 전원의 공급 시간을 조절한다.
여기서, (1,4), (2,5) 및 (3,6)의 세쌍은 동일 방식으로 동작하는데, 삼상 교류 출력을 위해 세쌍으로 구비되며, 상술한 바와 같이 단상 교류 출력의 경우 (1,4)만 동작한다.
일례로, 1에는 직류 전원의 양극을 주기의 처음 내지 1/4(T) 시간동안 공급하고 끊는 것을 반복하며, 4에는 직류 전원의 양극을 1/2(T) 내지 3/4(T) 시간동안 공급하고 끊는 것으로 반복함으로써, 출력 단자(A)를 통해 단상 교류 전원을 출력할 수 있다.
한편, 도 5에서 상부의 1,2,3,4,5,6 단자에 양극(+)을 연결하고, 하부의 GND 단자에 음극(-)을 연결하는 것으로 설명하였으나, 양극(+)과 음극(-)은 서로 바뀔 수 있다.
도 6a 및 도 6b를 참조하면, 본 발명의 실시예에 따른 주파수 및 전압 조절이 가능한 교류전력 발생기(100)의 주파수 및 펄스폭을 조절하는 개념을 설명하기 위한 파형도가 도시되어 있다. 도 6a 및 도 6b에서 X축은 시간이고, Y축은 전압 레벨이다.
먼저 도 6a에 도시된 바와 같이 본 발명의 실시예에서 제어부(120)의 주파수 및 펄스폭 조절부(121) 그리고 스위칭부(122)의 동작에 의해 스위칭부(122)의 주파수가 조절될 수 있으며, 이러한 주파수 조절에 의해 결국 교류 전원의 주파수가 조절될 수 있다. 또한, 도 6b에 도시된 바와 같이 본 발명의 실시예에서 제어부(120)의 주파수 및 펄스폭 조절부(121) 그리고 스위칭부(122)의 동작에 의해 스위칭부(122)의 듀티 사이클이 예를 들면 1:1, 2:1, 3:1 및 4:1 등으로 조절될 수 있는데, 이때 1:1에서 입력 전기 및 출력 전기가 상대적으로 작고, 4:1에서 입력 전기 및 출력 전기가 상대적으로 커질 수 있다. 즉, 스위칭부(122)를 통한 직류 전원의 입력 전기가 높아질수록 출력 전기도 높아진다.
본 발명에 따른 주파수 및 전압 조절이 가능한 교류전력 발생기(100)는 편승 이론에 기초하여 상술한 구조의 유닛의 확장이 용이하고, 전자식 제어부(120)를 통해 주파수로 입력 전류를 용이하게 제어할 수 있으며, 또한 기구적으로 회전하지 않는 구조여서 구조적 안정성이 높은 장점을 갖는다. 더불어, 본 발명에 따른 교류전력 발생기(100)는 기술집약산업(기계,전기,전자, 제어)으로서, 성장잠재력과 파급효과가 큰 유망산업이며, 에너지 고갈의 염려 없는 청정에너지를 이용할 수 있고, 또한 폐기시 및 환경 훼손 위험이 없는 장점을 갖는다.

Claims (9)

  1. 직류 전원부;
    상기 직류 전원부의 직류 전원이 주파수 및 펄스폭을 가지며 공급되도록 스위칭 신호를 제공하는 제어부; 및
    상기 제어부의 스위칭 신호에 의해 상기 직류 전원이 교류 전원으로 변환되어 출력되도록 하는 교류 출력부를 포함하고,
    상기 교류 출력부는 철심과, 상기 철심의 길이 방향으로 배열된 자극편과, 상기 자극편 사이의 상기 철심에 정방향으로 권취되어 상기 직류 전원이 공급되는 제1계자 권선과, 상기 자극편 사이의 상기 철심에 역방향으로 권취되어 상기 직류 전원이 공급되는 제2계자 권선과, 상기 자극편 사이의 상기 철심에 권취되어 상기 제1,2계자 권선에 의한 유도 기전력에 의해 상기 교류 전원을 출력하는 전기자 권선을 포함함을 특징으로 하는 교류전력 발생기.
  2. 제 1 항에 있어서,
    상기 제어부는 주파수 및 펄스폭을 조절하는 주파수 및 펄스폭 조절부와, 상기 주파수 및 펄스폭 조절부의 출력 신호로 상기 직류 전원을 조절하여 상기 교류 출력부에 제공하는 스위칭부를 포함함을 특징으로 하는 교류전력 발생기.
  3. 제 1 항에 있어서,
    상기 주파수 및 펄스폭 조절부에 의해 상기 교류 전원의 주파수 및 전압이 다이나믹하게 조절됨을 특징으로 하는 교류전력 발생기.
  4. 제 1 항에 있어서,
    상기 전기자 권선을 중심으로 상기 제1,2계자 권선이 상기 철심의 상,하부에 각각 권취된 것을 특징으로 하는 교류전력 발생기.
  5. 제 4 항에 있어서,
    상기 교류 출력부의 자극편은 상기 제1,2계자 권선의 최외측과, 상기 제1,2계자 권선의 사이와, 그리고 상기 제1,2계자 권선과 상기 전기자 권선의 사이에 각각 형성된 것을 특징으로 하는 교류전력 발생기.
  6. 제 1 항에 있어서,
    상기 교류 출력부의 철심은 길이 방향을 따라 형성된 결선홈을 포함하고, 상기 결선홈을 통해 상기 제1,2계자 권선에 상기 직류 전원을 공급하는 전원 공급선이 각각 결선된 것을 특징으로 하는 교류전력 발생기.
  7. 제 1 항에 있어서,
    상기 제1계자 권선은 이격되어 다수개가 구비되고, 다수개의 상기 제1계자 권선은 병렬로 연결되며,
    상기 제2계자 권선은 이격되어 다수개가 구비되고, 다수개의 상기 제2계자 권선은 병렬로 연결되며,
    상기 전기자 권선은 이격되어 다수개가 구비되고, 다수개의 상기 전기자 권선은 직렬로 연결된 것을 특징으로 하는 교류전력 발생기.
  8. 제 1 항에 있어서,
    상기 교류 출력부의 철심, 자극편, 제1계자 권선, 제2계자 권선 및 전기자 권선이 제1유닛을 구성하고, 상기 제1유닛의 제1계자 권선 및 상기 제2계자 권선에 순차적으로 상기 직류 전원이 공급되어 상기 전기자 권선을 통해 단상 교류 전원이 출력됨을 특징으로 하는 교류전력 발생기.
  9. 제 8 항에 있어서,
    상기 제1유닛과 동일한 구성의 제2유닛과, 상기 제1유닛과 동일한 구성의 제3유닛을 더 포함하고,
    상기 제1유닛의 제1계자 권선, 상기 제2유닛의 제1계자 권선, 상기 제3유닛의 제1계자 권선, 상기 제1유닛의 제2계자 권선, 상기 제2유닛의 제2계자 권선 및 상기 제3유닛의 제2계자 권선에 순차적으로 상기 직류 전원이 공급되어 상기 전기자 권선을 통해 삼상 교류 전원이 출력됨을 특징으로 하는 교류전력 발생기.
PCT/KR2018/009877 2017-08-28 2018-08-27 주파수 및 전압 조절이 가능한 교류전력 발생기 WO2019045395A2 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0108887 2017-08-28
KR20170108887 2017-08-28
KR10-2018-0000088 2018-01-02
KR1020180000088A KR101913746B1 (ko) 2017-08-28 2018-01-02 주파수 및 전압 조절이 가능한 교류전력 발생기

Publications (2)

Publication Number Publication Date
WO2019045395A2 true WO2019045395A2 (ko) 2019-03-07
WO2019045395A3 WO2019045395A3 (ko) 2019-04-18

Family

ID=64099684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/009877 WO2019045395A2 (ko) 2017-08-28 2018-08-27 주파수 및 전압 조절이 가능한 교류전력 발생기

Country Status (2)

Country Link
KR (1) KR101913746B1 (ko)
WO (1) WO2019045395A2 (ko)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102399042B1 (ko) * 2020-03-30 2022-05-19 최우희 출력효율이 증대되는 비 회전식 교류 발생기
KR102410949B1 (ko) * 2020-03-30 2022-06-21 최우희 비회전식 직류 발전기
KR102410952B1 (ko) * 2020-03-30 2022-06-21 최우희 비회전식 코어부재를 가진 비회전식 교류 발전기
KR102344370B1 (ko) * 2020-03-30 2021-12-30 최우희 고탄성 절연판이 구비된 비회전식 교류 발전기
EP4131749A4 (en) * 2020-03-30 2023-09-06 Woo Hee Choi NON-ROTATING DIRECT CURRENT ELECTRIC GENERATOR
KR102332746B1 (ko) * 2020-03-30 2021-12-01 최우희 비회전식 교류 발생기의 유닛구조
KR102332747B1 (ko) * 2020-03-30 2021-12-01 최우희 비회전식 직류 발전기
JP2023525344A (ja) * 2020-05-13 2023-06-15 ヒ チェ、ウ 非回転式交流発電装置
KR102452610B1 (ko) * 2020-05-13 2022-10-12 최우희 비회전식 교류 발전장치
KR102452616B1 (ko) * 2020-05-13 2022-10-12 최우희 전력변환장치
KR102447626B1 (ko) * 2020-05-13 2022-09-28 최우희 비회전식 교류 발전장치

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000353627A (ja) * 1999-06-10 2000-12-19 Sony Corp 絶縁コンバータトランス及びスイッチング電源回路
KR100911122B1 (ko) 2009-05-21 2009-08-11 (주)그린파워테크놀로지스 복수의 dc 전원을 교류로 변환하는 개선된 전력변환장치
JP5881386B2 (ja) * 2011-11-24 2016-03-09 株式会社東芝 電力変換装置
JP6099951B2 (ja) * 2012-11-29 2017-03-22 株式会社東芝 電力変換装置
JP2015133779A (ja) 2014-01-09 2015-07-23 株式会社東芝 鉄道車両用電力変換装置
JP6470051B2 (ja) * 2015-01-21 2019-02-13 株式会社東芝 電力変換装置
JP6404768B2 (ja) 2015-04-24 2018-10-17 株式会社東芝 電力変換装置

Also Published As

Publication number Publication date
KR101913746B1 (ko) 2018-10-31
WO2019045395A3 (ko) 2019-04-18

Similar Documents

Publication Publication Date Title
WO2019045395A2 (ko) 주파수 및 전압 조절이 가능한 교류전력 발생기
US8106623B2 (en) Conservation of electrical energy and electro-magnetic power in battery charger with AC drive
US10840814B2 (en) Power conversion system
CN110994968B (zh) 一种预充电电路、逆变器以及发电系统
CN102859861A (zh) 可配置的混合转换器电路
CN101902050A (zh) 含pv模块和分离功率变换器的耐气候单元的太阳能发电
WO2010139099A1 (zh) 用于对储能器件的电压进行均衡的装置和方法
WO2003012966A8 (en) Fuel cell inverter
US9379627B2 (en) Power conversion circuit arrangements utilizing resonant alternating current linkage
CN109980903A (zh) 一种驱动电路和电源
CN108141041A (zh) 输电装置和用于操作输电装置的方法
CN109196766A (zh) 双向绝缘型dc/dc转换器及智能电网
CN106803719B (zh) 无桥臂电抗器的高压模块化多电平隔离型直流变压器
US20130234524A1 (en) Control method for arranging dc/ac converters in parallel
WO2016159517A1 (ko) H-브리지 멀티 레벨 인버터
TWI614963B (zh) 電源轉換模組、發電系統及其控制方法
CN104734531B (zh) 变频器
RU37884U1 (ru) Устройство выравнивания напряжения в батарее
CN110932318A (zh) 一种光伏系统
CN214281257U (zh) 一种适用于南美国家的110v光伏离网逆变器
CN217607692U (zh) 用于电动车辆的装置和电动车辆
CN211018396U (zh) 直流取电电路、风力发电机组及海上风电场
EP1303031A2 (en) Commutated electronic power converter
WO2023200103A1 (ko) 전력변환 시스템의 dc-dc 컨버터
WO2016056698A1 (ko) 단상 인버터 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18851167

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18851167

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 18851167

Country of ref document: EP

Kind code of ref document: A2

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/01/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18851167

Country of ref document: EP

Kind code of ref document: A2