WO2010139099A1 - 用于对储能器件的电压进行均衡的装置和方法 - Google Patents

用于对储能器件的电压进行均衡的装置和方法 Download PDF

Info

Publication number
WO2010139099A1
WO2010139099A1 PCT/CN2009/001197 CN2009001197W WO2010139099A1 WO 2010139099 A1 WO2010139099 A1 WO 2010139099A1 CN 2009001197 W CN2009001197 W CN 2009001197W WO 2010139099 A1 WO2010139099 A1 WO 2010139099A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
terminal
transformer
equalization
bidirectional
Prior art date
Application number
PCT/CN2009/001197
Other languages
English (en)
French (fr)
Other versions
WO2010139099A8 (zh
Inventor
王创社
Original Assignee
深圳强能电气有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳强能电气有限公司 filed Critical 深圳强能电气有限公司
Priority to US13/321,188 priority Critical patent/US9083189B2/en
Priority to CN200980159571.7A priority patent/CN102598460B/zh
Publication of WO2010139099A1 publication Critical patent/WO2010139099A1/zh
Publication of WO2010139099A8 publication Critical patent/WO2010139099A8/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0018Circuits for equalisation of charge between batteries using separate charge circuits

Definitions

  • the present invention relates to an apparatus and method for equalizing the voltage of an energy storage device, and more particularly to an apparatus and method for voltage equalization of voltages such as capacitors, supercapacitors, batteries, and other energy storage devices. Background technique
  • the battery cells Due to the relatively low voltage of the battery cells, it is usually necessary to connect them in series to form a battery pack.
  • the battery terminal voltages are inconsistent, and some battery cells are likely to be over- or under-voltage during charging and discharging. , adversely affect the overall use and life of the battery pack, which requires voltage equalization of the terminal voltage of each individual battery.
  • supercapacitors As an energy storage device, supercapacitors have a low cell voltage. In practical applications, multiple cells are required to be connected in series to form an ultracapacitor bank.
  • the supercapacitor of each supercapacitor in the supercapacitor group may cause the voltage of the supercapacitor terminal to be inconsistent due to the change of capacity, material, manufacturing process, use conditions and environment, and it is easy to cause partial overvoltage of the supercapacitor during the charging process. It adversely affects the life and use of the ultracapacitor bank, as well as voltage equalization of the individual cell supercapacitor terminal voltages.
  • Capacitors are generally used in various power sources. Capacitors are sometimes connected in series. Due to the difference in capacitance of capacitors and the difference in leakage, etc., the voltages of the capacitors connected in series may be inconsistent, which may cause overvoltage failure of individual capacitors. The voltage of the capacitor is equalized.
  • an energy storage device group consisting of two or more sets of single cells or capacitors.
  • the number of monomers in each group may be different, and the terminal voltage may be different.
  • How to balance the terminal voltages of two or more groups of different terminal voltages and even different types of energy storage device groups during charging and discharging is also a need to be solved.
  • the problem. How to equalize each cell terminal voltage in different energy storage device groups and each cell terminal voltage in other groups is also a problem to be solved.
  • the present invention provides an apparatus and method for equalizing the voltage of an energy storage device to solve the above problems.
  • the technical solution adopted by the present invention is as follows.
  • apparatus for equalizing a voltage of an energy storage device comprising: at least one transformer comprising a voltage equalizing winding and at least one transformer winding; and at least one bidirectional Dc/
  • the Ac conversion circuit has a DC terminal for connecting the positive terminal and the negative terminal of the energy storage device, and an AC terminal connected to the transformer winding of the transformer.
  • an apparatus for equalizing a voltage of an energy storage device comprising: at least one transformer comprising at least two windings, wherein one of the windings is a transformer winding, at least One winding is a voltage equalizing winding; at least one bidirectional DC/AC conversion circuit, the DC end of each bidirectional DC/AC conversion circuit is a positive terminal and a negative terminal for connecting the energy storage device, and the AC terminal is connected to the transformer winding of the transformer And at least one bidirectional AC/DC conversion circuit, the AC terminal of the bidirectional AC/DC conversion circuit is connected to the voltage equalizing winding of the transformer.
  • an apparatus for equalizing a voltage of an energy storage device comprising: at least one transformer, the transformer comprising two or more transformer windings; and two or two More than one bidirectional DC/AC conversion circuit, the DC terminal of each bidirectional DC/AC conversion circuit is a positive terminal and a negative terminal for connecting the energy storage device, and the AC terminal is connected to the transformer winding of the transformer.
  • an energy storage device comprising the apparatus according to the first aspect, the second aspect, and/or the third aspect of the embodiments of the present invention.
  • an electrical apparatus comprising the apparatus according to the first aspect, the apparatus of the second aspect, and/or the apparatus of the third aspect.
  • a method for equalizing a voltage of an energy storage device comprising the steps of: using a bidirectional AC/DC conversion according to a voltage ratio required to be implemented by each of the energy storage devices.
  • the terminal voltages of the energy storage devices whose circuit voltages are too high are DC/AC converted respectively; the DC/AC converted voltage is coupled to the same pair of equalization lines through the transformer; and the voltage is separately converted from the equalization line by the transformer to
  • the bidirectional DC/AC conversion circuit corresponding to each energy storage device whose terminal voltage is too low is then AC/DC converted to each energy storage device whose terminal voltage is too low.
  • a method for equalizing a voltage of an energy storage device comprising the steps of: following a predetermined voltage ratio of each energy storage device;
  • the bidirectional DC/AC conversion circuit performs DC/AC conversion on the terminal voltages of the respective energy storage devices with excessive terminal voltages; and the DC/AC converted voltages are respectively converted to the terminal voltages through the multi-winding transformers.
  • the bidirectional DC/AC conversion circuit corresponding to the energy storage device is then AC/DC converted to each energy storage device with a low terminal voltage.
  • FIG. 1 is a block diagram showing the circuit principle of an equalization apparatus according to a first embodiment of the present invention
  • Figure 2 is a block diagram showing the circuit principle of an equalization apparatus according to a second embodiment of the present invention.
  • Figure 3 is a block diagram showing the circuit principle of an equalization apparatus according to a third embodiment of the present invention.
  • Figure 4 is a block diagram showing the circuit principle of an equalization apparatus according to a fourth embodiment of the present invention.
  • Figure 5 is a block diagram showing the circuit principle of an equalization apparatus according to a fifth embodiment of the present invention.
  • Figure 6 is a block diagram showing the circuit principle of an equalization apparatus according to a sixth embodiment of the present invention.
  • Figure 7 is a block diagram showing the circuit principle of an equalization apparatus according to a seventh embodiment of the present invention.
  • Figure 8 is a block diagram showing the circuit principle of an equalization apparatus according to an eighth embodiment of the present invention.
  • Figure 9 is a block diagram showing the circuit principle of an equalization apparatus according to a ninth embodiment of the present invention.
  • Figure 10 is a schematic diagram of a push-pull bidirectional voltage conversion circuit that can be used in an equalization apparatus in accordance with an embodiment of the present invention
  • Figure 11 is a block diagram showing the circuit principle of a power supply system for sampling an equalization apparatus according to an embodiment of the present invention
  • Figure 12 is a circuit diagram for equalizing a voltage of a 10-cell lithium battery using an equalization apparatus according to an embodiment of the present invention
  • Figure 13 is a circuit diagram showing another circuit for equalizing the voltage of a 10-cell lithium battery using an equalization apparatus according to an embodiment of the present invention.
  • 1 first equalization line
  • 2 second equalization line
  • 3 equalization device
  • 4 energy storage device
  • 5 synchronous control line
  • 35 bidirectional DC/AC conversion circuit
  • 37 bidirectional AC/DC conversion Circuit
  • 36 Transformer
  • 28, 29 Transformer drive winding
  • 26, 27 Transformer transformer winding
  • 30 Transformer voltage equalizing winding
  • 21, 66, 67, 68 Capacitor
  • 22, 24 Diode
  • 23 Semiconductor switches
  • an energy storage device refers to a device capable of extracting and discharging DC power, including a battery, a capacitor, a super capacitor, etc., and may be a single body or a combination of cells having a positive terminal and a negative terminal.
  • the energy storage devices There is no limitation on the relationship between the energy storage devices, and they may or may not be connected to each other, and may be connected in series or in parallel.
  • the first equalization line and the second equalization line refer to two wires, and the voltage between the first equalization line and the second equalization line is an equalized line voltage.
  • the equalization line voltage can be set arbitrarily, but not equal to zero.
  • the equalization line voltage may be a DC voltage or an AC voltage. Depending on the circuit used, if the equalization line voltage is an AC voltage, it is equivalent to a DC voltage when the circuit is analyzed and compared.
  • the theoretical basis of the voltage proportional equalization of the present invention is: a multi-winding transformer wound on the same magnetic core, the ratio of the alternating voltage across the windings of each winding is equal to the ratio of the turns of the corresponding winding; the terminal voltages of all the electronic components connected in parallel are equal If the terminal voltages of the electronic devices are not equal before the parallel connection, the current in parallel will flow from the electronic device with the high terminal voltage to the electronic device with the low terminal voltage, and finally the terminal voltages of all the electronic devices connected in parallel are equal.
  • Proportional equalization means that the terminal voltage of each energy storage device is maintained at a certain ratio after equalization.
  • FIG. 1 is a circuit block diagram of an apparatus for equalizing the voltage of an energy storage device according to a first embodiment of the present invention, including a bidirectional DC/AC conversion circuit 35 and a transformer 36.
  • the bidirectional DC/AC conversion circuit 35 has a DC terminal and an AC terminal; the transformer 36 includes two windings, one of which is a transformer winding and the other of which is a voltage equalizing winding.
  • Equalization device 3 has four terminals, respectively, 31, a negative terminal 32, a first balanced terminal 33, the second balanced terminal 34, the positive terminal of the DC terminals 31 and negative terminal 32 from the bidirectional DC / AC conversion circuit positive terminal lead 35
  • the AC terminal of the bidirectional DC/AC conversion circuit 35 is connected to the transformer winding of the transformer 36, and the voltage equalization winding of the transformer 36 leads out two terminals as the first equalization terminal 33 and the second equalization terminal 34.
  • two or more pairs of positive terminal 31 and negative terminal ⁇ of the device shown in Fig. 1 can be connected to the positive and negative terminals of the energy storage device, respectively, and the first equalization terminal 33 of each device 3 can be used. And the second equalization terminal 34 are respectively connected together. Therefore, the circuit shown in FIG. 1 can convert the DC voltage applied between the positive terminal 31 and the negative terminal 32 into an AC voltage through the bidirectional DC/AC conversion circuit 35, and then is transformed into the first equalization terminal 33 by the transformer 36.
  • the alternating voltage between the two equalization terminals 34; or, the alternating voltage between the first equalization terminal 33 and the second equalization terminal 34 is isolated and transformed by the transformer 36 to the alternating current end of the bidirectional DC/AC conversion circuit 35, and then through the bidirectional DC
  • the /AC conversion circuit 35 shifts to a DC voltage between the positive terminal 31 and the negative terminal 32.
  • the bidirectional DC/AC conversion circuit 35 in the equalization device 3 synchronizes the circuit of the equalization device 3 by using an external signal and other means.
  • the equalization device 3 is optionally provided with a synchronization terminal 38, and the synchronization terminal 38 is connected to the bidirectional DC/ AC conversion circuit 35.
  • FIG. 2 is a circuit block diagram of an apparatus for equalizing the voltage of an energy storage device in accordance with a second embodiment of the present invention.
  • the circuit shown in FIG. 2 adds a bidirectional AC/DC conversion circuit 37 to the circuit shown in FIG. 1.
  • the AC terminal of the bidirectional AC/DC conversion circuit 37 is connected to the voltage equalization winding of the transformer 36, and the bidirectional AC/DC conversion circuit 37
  • the DC terminal leads two terminals as the first equalization terminal 33 and the second equalization terminal 34.
  • the circuit shown in Fig. 2 converts the DC voltage applied between the positive terminal 31 and the negative terminal 32 into an AC voltage through the bidirectional DC/AC conversion circuit 35, and is then isolated by the transformer 36. Pressing to the AC terminal of the bidirectional AC/DC converter circuit 37, and finally converting the DC voltage between the first equalization terminal 33 and the second equalization terminal 34 by the bidirectional AC/DC conversion circuit 37; or, the first equalization terminal 33 and the first The DC voltage between the two equalization terminals 34 is converted into an AC voltage by the bidirectional AC/DC conversion circuit 37, and then is isolated by the transformer 36 to the AC terminal of the bidirectional DC/AC conversion circuit 35, and finally passed through the bidirectional DC/AC conversion circuit 35. The DC voltage is changed between the positive terminal 31 and the negative terminal 32.
  • the bidirectional DC/AC conversion circuit 35 and the bidirectional AC/DC conversion circuit 37 in the equalization device 3 may be synchronized with the equalization device 3 if an external signal or other means is required, and the equalization device 3 is optionally provided with a synchronization terminal 38,
  • the sync terminals 38 are connected to the bidirectional DC/AC conversion circuit 35 and/or the bidirectional AC/DC conversion circuit 37, respectively.
  • FIG. 3 is a circuit block diagram of an apparatus for equalizing the voltage of an energy storage device in accordance with a third embodiment of the present invention.
  • the circuit comprises two bidirectional DC/AC conversion circuits 35 and a transformer 36, each bidirectional DC/AC conversion circuit 35 has a DC terminal and an AC terminal, and the transformer 36 comprises three windings, two of which are transformer windings, the other The winding is a voltage equalizing winding.
  • the equalization device 3 has six terminals, which are two pairs of positive terminal 31 and negative terminal 32, first equalization terminal 33, and second equalization terminal 34, respectively. Each pair of positive terminal 31 and negative terminal 32 is taken from the DC terminal of each bidirectional DC/AC conversion circuit 35 for connection to the energy storage device.
  • Each bidirectional DC / AC conversion circuit 35 and AC side transformer winding 36 is connected to a transformer, the transformer voltage winding 36 are led out as the two terminals of the first terminal 33 and the second balanced terminal 34 equalization.
  • the circuit shown in FIG. 3 converts the DC voltage applied between each pair of positive terminal 31 and negative terminal 32 into an alternating current voltage through respective bidirectional DC/AC conversion circuits 35, and then is isolated and transformed by transformer 36.
  • the AC voltage between the terminal 33 and the second equalization terminal 34 is isolated and transformed by the transformer 36 to the AC terminal of each bidirectional DC/AC conversion circuit 35, and then converted to each pair by each bidirectional DC/AC conversion circuit 35.
  • the two bidirectional DC/AC conversion circuits 35 in the equalization device 3 operate synchronously. If the external signal and other means are needed to synchronize the equalization device 3 circuit, the equalization device 3 is optionally provided with a synchronization terminal 38, and the synchronization terminal 38. Connected to each bidirectional DC/AC conversion circuit 35.
  • the ratio of the ratio of the number of transformer winding turns of the transformer 36 corresponding to the positive terminal 31 and the negative terminal 32 to the ratio of the number of turns of the voltage equalizing winding is set equal to the application between each pair of positive terminal 31 and negative terminal 32.
  • the equalizing means 3 can isolate the voltage applied between each pair of the positive terminal 31 and the negative terminal 32 and the voltage between the first equalizing terminal 33 and the second equalizing terminal 34 from each other and between the two. Both can be converted in both directions.
  • the transformer 36 transformer winding connected to the second bidirectional DC/AC conversion circuit 35 The ratio of the number of turns to the number of turns of the equalizing winding is k2, and the voltage ratio between the voltage between the first pair of positive terminals 31 and the negative terminal 32 and the first equalizing terminal 33 and the second equalizing terminal 34 is kl, The ratio between the voltage between the two pairs of positive terminals 31 and the negative terminal 32 and the first equalization terminal 33 and the second equalization terminal 34 is k2.
  • the circuit of Figure 3 includes two bidirectional DC/AC conversion circuits 35 for voltage proportionaling of two energy storage devices connected between two pairs of positive terminal 31 and negative terminal 32.
  • a bidirectional DC/AC conversion circuit 35 is added, and at the same time, the transformer 36 increases the transformer winding, and the equalization device 3 increases the positive terminal 31 and the negative terminal 32, so that the circuit can apply voltage to more than two energy storage devices.
  • the proportional equalization, circuit equalization principle refers to the circuit analysis of the equalization device 3 including two bidirectional DC/AC conversion circuits 35.
  • two or more of the devices shown in Fig. 3 can also be used together. At this time, the respective positive terminal 31 and negative terminal 32 are respectively connected to the positive and negative terminals of the energy storage device, and the first equalization terminal 33 and the second equalization terminal 34 of each device 3 are respectively connected together.
  • FIG. 4 is a circuit block diagram of an apparatus for equalizing the voltage of an energy storage device in accordance with a fourth embodiment of the present invention.
  • the circuit shown in FIG. 4 adds a bidirectional AC/DC conversion circuit 37 to the circuit shown in FIG. 3, the AC terminal of the bidirectional AC/DC conversion circuit 37 and the voltage equalizing winding connection of the transformer 36, and the bidirectional AC/DC conversion circuit.
  • the DC terminal of 37 leads out two terminals as the first equalization terminal 33 and the second equalization terminal 34.
  • the number of device equalization energy storage devices shown in Fig. 4 can be expanded, and the usage and equalization principle are similar to those shown in Fig. 3.
  • FIG. 5 is a circuit block diagram of a device for equalizing the voltage of an energy storage device according to a fifth embodiment of the present invention, comprising two bidirectional DC/AC conversion circuits 35 and a transformer 36.
  • Each bidirectional DC/AC conversion circuit has a DC terminal and an AC terminal, and the transformer 36 includes two (or more) transformer windings.
  • the equalization device 3 has two pairs (or more pairs) of positive terminals 31 and two negative terminals 32, and each pair of positive terminal 31 and negative terminal 32 are respectively taken out from the DC terminal of each bidirectional DC/AC conversion circuit 35 for connection.
  • Each of the energy storage devices, the AC terminal of each of the bidirectional DC/AC conversion circuits 35 is connected to a transformer winding of the transformer 36.
  • the circuit shown in FIG. 5 converts a DC voltage between a pair of positive terminal 31 and negative terminal 32 into an alternating current voltage through a bidirectional DC/AC conversion circuit 35 connected thereto, and is isolated and transformed to another bidirectional via transformer 36.
  • the AC terminal of the DC/AC conversion circuit 35 is finally converted by this bidirectional DC/AC conversion circuit 35 into a DC voltage between the other pair of positive terminal 31 and negative terminal 32, and vice versa.
  • the two bidirectional DC/AC conversion circuits 35 in the equalization device 3 operate synchronously in the equalization device 3.
  • the ratio of the number of transformer winding turns of the transformer 36 corresponding to each of the pair of positive terminals 31 and the negative terminal 32 is set to be equal to that required for the energy storage device applied between each pair of positive terminal 31 and negative terminal 32.
  • the voltage ratio which is the equalization ratio.
  • the equalizing means 3 isolates the voltage between the two pairs (or more) of the positive terminal 31 and the negative terminal 32 from each other and bidirectionally.
  • the ratio of the number of turns of the transformer winding of the transformer 36 connected to the first bidirectional DC/AC conversion circuit 35 to the number of turns of the transformer winding of the transformer 36 connected to the second bidirectional DC/AC conversion circuit 35 is k
  • the voltage ratio between the pair of positive terminal 31 and negative terminal 32 and the voltage between the second pair of positive terminal 31 and negative terminal 32 is k.
  • the circuit shown in FIG. 5 includes only two bidirectional DC/AC conversion circuits 35, a bidirectional DC/AC conversion circuit 35 can be added to the circuit of the equalization device 3 of FIG. 5, while the transformer 36 increases the transformer winding accordingly, and is balanced.
  • the device 3 adds a positive terminal 31 and a negative terminal 32.
  • the equalization means 3 isolates the voltages between all of the positive terminals 31 and the negative terminals 32 from each other and bidirectionally to achieve a proportional equalization of the voltages of the two or more energy storage devices.
  • the apparatus includes a first equalization line in addition to the two equalization devices 3 shown in FIG. 1 and the second equalization line 2.
  • the first equalization terminal 33 of each equalization device 3 is connected to the first equalization line 1
  • the second equalization terminal 34 is connected to the second equalization line 2
  • the equalization line voltage is an alternating voltage.
  • the synchronous control line 5 may be included.
  • the synchronous control line 5 is a wire or a group of wires, and the equalizing device 3 is provided with a synchronizing terminal 38, and the synchronizing terminal 38 of each equalizing device 3 is connected to the synchronizing control line 5.
  • the ratio of the ratio of the number of transformer winding turns of the transformer 36 corresponding to the positive terminal 31 and the negative terminal 32 in each equalizing device 3 to the number of turns of the equalizing winding is equal to the positive terminal 31 and the negative terminal 32 of each equalizing device.
  • the ratio of the voltages required to be applied between the energy storage devices that is, the equalization ratio.
  • each equalizing means 3 can bidirectionally convert the voltage between the positive terminal 31 and the negative terminal 32 and the voltage between the equalizing lines. If the transformer winding 36 of the first equalization device 3 is transformed The ratio of the number of turns to the number of turns of the equalizing winding is kl, and the ratio of the number of turns of the transformer winding of the transformer 36 of the second equalizing device 3 to the number of turns of the equalizing winding is k2, then the positive terminal of the first equalizing device 3 The ratio between the voltage between 31 and the negative terminal 32 and the voltage between the equalizing lines is k1, and the ratio between the voltage between the positive terminal 31 and the negative terminal 32 of the second equalizing device 3 and the voltage between the equalizing lines is k2.
  • the voltage applied between the positive terminal 31 and the negative terminal 32 of the two equalizing devices 3 is proportionally balanced.
  • Figure 7 is a circuit block diagram of an apparatus for equalizing the voltage of an energy storage device in accordance with a seventh embodiment of the present invention.
  • the apparatus shown in Fig. 6 is obtained by replacing the equalizing means 3 shown in Fig. 1 in the apparatus shown in Fig. 6 with the equalizing means 3 shown in Fig. 2.
  • the equalization line voltage is DC voltage. Its usage and equalization principle are similar to those in Figure 6, which can achieve proportional equalization of voltages of two or more energy storage devices.
  • Figure 8 is a circuit block diagram of an apparatus for equalizing the voltage of an energy storage device according to an eighth embodiment of the present invention, comprising two equalization means 3 shown in the circuit of Figure 3, further comprising a first equalization line 1 and a second Equilibrium line 2.
  • the first equalization terminal 33 of each equalization device 3 is connected to the first equalization line 1
  • the second equalization terminal 34 is connected to the second equalization line 2
  • the equalization line voltage is an alternating voltage.
  • a synchronous control line 5 may be included, and the synchronous control line 5 is a wire or a group of wires.
  • the equalizing means 3 is provided with a synchronizing terminal 38, and the synchronizing terminal 38 of each equalizing means 3 is connected to the synchronizing control line 5.
  • each equalizing device 3 has two pairs of positive terminal 31 and negative terminal 32, and each positive terminal 31 and negative terminal 32 correspond to the transformer winding 36 of the equalizing device 3 of the transformer 36 and the voltage equalizing winding
  • the ratio of the turns ratio is equal to the ratio of the voltages required to be realized by the energy storage devices applied between each pair of positive terminals 31 and negative terminals of each equalization device 3, that is, the equalization ratio.
  • each equalizing means 3 bidirectionally converts the voltage between each pair of positive terminal 31 and negative terminal 32 with the equalization line voltage.
  • the ratio of the number of turns of the transformer winding of the transformer 36 of the DC/AC conversion circuit 35 to the number of turns of the equalization winding is k1, and the number of turns of the transformer winding of the transformer 36 connected to the second bidirectional DC/AC conversion circuit 35 and the equalization winding
  • the ratio of the number of turns is k2
  • the ratio of the voltage between the first pair of positive terminals 31 and the negative terminal 32 to the equalized line voltage is kl
  • the ratio between the voltage between the second pair of positive terminals 31 and the negative terminal 32 and the equalized line voltage For k2.
  • the fourth bidirectional DC/AC is connected.
  • the ratio of the number of turns of the transformer winding of the transformer 36 of the converter circuit 35 to the number of turns of the equalization winding is k4, and the ratio of the voltage between the third pair of positive terminals 31 and the negative terminal 32 to the equalization line voltage is k3, and the fourth pair is positive.
  • the ratio of the voltage between the terminal 31 and the negative terminal 32 to the equalization line voltage is k4.
  • Each of the equalizing means 3 in Fig. 8 includes two bidirectional DC/AC converting circuits 35 for voltage proportional equalization of two energy storage devices connected between the pair of positive terminals 31 and negative terminals 32.
  • the bidirectional DC/AC conversion circuit 35 can be added to any of the equalization devices 3 or the two equalization devices 3 of FIG. 8, and the transformer windings of the transformer 36 can be increased accordingly, so that the circuit can enable more energy storage devices to implement voltages. Proportional balance.
  • the circuit equalization principle refers to the circuit analysis of Figure 1, Figure 3, Figure 6, and Figure 8.
  • Figure 9 is a circuit block diagram of an apparatus for equalizing the voltage of an energy storage device in accordance with a ninth embodiment of the present invention.
  • Fig. 9 shows the equalization device 3 shown in Fig. 3 in the circuit of Fig. 8 replaced by the equalization device 3 shown in Fig. 4.
  • the equalization line voltage in Figure 9 is the DC voltage.
  • the operation of the circuit shown in Figure 9 and the equalization principle are similar to those shown in Figure 8.
  • the synchronous control line and the synchronous control terminal are optional.
  • the synchronization of each equalization device 3 can also be realized by the first equalization line 1 and the second equalization line 2 and the transformer 36, as shown in FIG. 12 and FIG. That way.
  • the sync terminal 38 and the sync control line 5 may not be required.
  • the bidirectional DC/AC conversion circuit 35 or the bidirectional AC/DC conversion circuit 37 can employ a plurality of voltage conversion circuits, and can be used as long as the DC power can be inverted into an alternating current and the alternating current is rectified into a direct current.
  • Inverter can use forward circuit, flyback circuit, push Pul l circuit, half bridge (Ha lf Br idge) circuit, full bridge (Ful l Br idge ) circuit, etc. It works in a self-excited mode, or it can work in a stimulating manner; the circuit rectifies the alternating current into a direct current in the reverse direction.
  • the circuit can use soft switching technology and synchronous rectification technology to improve efficiency.
  • a semiconductor switch adapted to be used in the embodiment of the present invention refers to a fully-controlled power electronic device including a power transistor (GTR), a field effect transistor (MOSFET), and an insulated gate bipolar transistor (IGBT).
  • GTR power transistor
  • MOSFET field effect transistor
  • IGBT insulated gate bipolar transistor
  • the terminal of the semiconductor switch is defined as follows: the collector of the power transistor, the drain of the field effect transistor, the collector of the insulated gate bipolar transistor or the corresponding functional terminal of other fully controlled power electronic devices, defined as a semiconductor 1 pole of the switch.
  • the emitter of the power transistor, the source of the field effect transistor is the 2 pole of the semiconductor switch.
  • the base of the power transistor, the gate of the FET, the gate of the IGBT, or the corresponding functional terminals of other fully-controlled power electronics are defined as the three poles of the semiconductor switch.
  • Figure 10 shows a bidirectional voltage conversion circuit using a push-pull circuit having a positive terminal 61 and a negative terminal 62.
  • the circuit is changed by a capacitor 21, a diode 22, a semiconductor switch 23, a diode 24, a semiconductor switch 25, and a transformer 36.
  • the voltage winding 26 is composed of a transformer winding 27 of the transformer 36, and the transformer winding 26 and the transformer winding 27 are connected in series and have the same number of turns.
  • the transformer winding 26, the transformer winding 27 and the windings of the other bidirectional voltage conversion circuits in the same equalization device 3 share a magnetic core and are identical to the same name of the corresponding windings in the other bidirectional voltage conversion circuits, in the same equalization device 3
  • the semiconductor switch 23, the semiconductor switch 25, and the other bidirectional voltage conversion circuits the corresponding semiconductor switch 23 and the semiconductor switch 25 are simultaneously turned on and turned off.
  • the semiconductor switch 23 and the semiconductor switch 25 are alternately turned on and off.
  • the circuit When energy flows between the positive terminal 61 and the negative terminal 62 to the transformer 36, the circuit operates in an inverter mode to convert direct current into alternating current. In the case where energy flows from the transformer 36 to between the positive terminal 61 and the negative terminal 62, the circuit operates in a rectifying manner to rectify the alternating current into direct current.
  • the circuit shown in Fig. 10 can be used as a bidirectional DC/AC conversion circuit 35 and a bidirectional AC/DC conversion circuit 37 in accordance with an embodiment of the present invention.
  • the positive terminal 61 is the positive terminal 31 of the equalization device 3, and the negative terminal 62 is the negative terminal 32 of the equalization device 3.
  • the positive terminal 61 is the first equalization terminal 33 of the equalization device 3, and the negative terminal 62 is the second equalization terminal 34 of the equalization device 3.
  • the bidirectional voltage conversion circuit of other circuit configurations can also be used as the bidirectional DC/AC conversion circuits 35 and 37 in the present invention, which will not be shown here.
  • the bidirectional DC/AC conversion circuit 35 in the circuit of the embodiment of the present invention may have the same or different circuit configuration between each other and the bidirectional AC/DC conversion circuit 37.
  • a device for proportionally equalizing a voltage of an energy storage device in application, as long as the positive terminal of the energy storage device is connected to the positive terminal 31 of the equalization device 3, the negative terminal of the energy storage device and the equalization device
  • the negative terminal 32 of 3 can be connected, and there is no restriction on the use and connection manner of the energy storage device 4.
  • the connection and combination of the energy storage device 4 and the use of charging and discharging can be performed in a manner without increasing the proportional equalization circuit. .
  • the voltage equalization of the cells in the battery pack or the capacitor bank connected in series can be realized, and the energy storage device is a battery cell or a capacitor cell.
  • the proportional equalization voltage circuit and method of the present invention it is also possible to proportionally equalize the terminal voltages of two or more sets of energy storage device groups composed of a plurality of single cells or capacitors. If the terminal voltage of each cell in the different energy storage device group and each cell terminal voltage in the other groups are to be balanced with each other, since the connection of the energy storage device is not required by the present invention, all the monomers are Treat as an energy storage device.
  • the first, second, third, and fourth equalization devices 3 shown in FIG. 1, FIG. 2, FIG. 3, and FIG. 4 of the present invention are added, By adding the first equalization line 1 and the second equalization line 2, the first equalization terminals 33 of all the equalization means 3 are connected to the first equalization line 1, and the second equalization terminals 34 of all the equalization means 3 are connected to the second equalization line 2 If the equalization device 3 has the synchronization terminal 38, the synchronization control line 5 can be added, and all the synchronization terminals 38 can be connected to the synchronous control line 5, so that the voltage proportionalization of all connected energy storage devices can be achieved.
  • first equalization line 1 and the second equalization line 2 not only can any one of the consumers use the energy of any of the energy storage devices installed in different places, but also can be implemented for any one or a group of energy storage devices. When charging, all other energy storage devices are charged at the same time.
  • 12V, 24V, 36V, 288V, etc. if the energy storage device used in the device has a nominal 2V lead-acid battery, a voltage of 2. 5V supercapacitor, a nominal 3. 6V lithium battery, can be used according to the invention
  • the equalization mode of the embodiment is configured. As shown in FIG. 11, the positive terminal 41 and the negative terminal 42 of the energy storage device 4 are respectively connected to the positive terminal 31 and the negative terminal 32 of each equalizing device 3, and 12V is provided in series by a 6-section nominal 2V lead-acid battery, 24V.
  • the 10 volt supercapacitors are supplied in series by a voltage of 1.5 V.
  • the 288 V is provided by a series of 80 3.6 volt lithium batteries in series, and the 36 volts is provided by 10 sections of the 80 3.7 volt lithium battery.
  • the capacity of each energy storage device is determined by the needs of the consumer. Lead-acid batteries, lithium batteries, and supercapacitors can be placed in different places of the device. It is assumed that an AC equalization scheme is employed, and the synchronization of the equalization device 3 is realized by the first equalization line 1, the second equalization line 2, and the transformer 36.
  • a series of lead-acid batteries connected in series as a group uses an equalization device 3 shown in Fig.
  • the connected 10 supercapacitors and the series connected 80-cell lithium batteries each use a equalization device 3 as shown in FIG. 1 to achieve voltage proportionalization between each other through equalization lines and with other energy storage devices 4
  • the voltage is proportionally balanced. If the maximum voltage allowed for a single-cell lead-acid battery is 2. 4V, the maximum voltage allowed for the supercapacitor is 2. 5V, the maximum voltage allowed for the lithium battery is 4. 2V, and the equalization line voltage can be arbitrarily set. U.
  • the equalization device 3 is designed such that the ratio of the voltage between the positive terminal 31 and the negative terminal 32 of the equalization device 3 connected to each of the lead-acid batteries to the equalization line voltage is 2. 4U, and the equalization device 3 of each supercapacitor is connected.
  • the ratio of the voltage between the terminal 31 and the negative terminal 32 to the equalization line voltage is 2. 5U, and the ratio between the voltage between the positive terminal 31 and the negative terminal 32 of the equalization device 3 connected to each lithium battery is equal to the mean square line voltage. 4. 2U, this way, after the circuit works, it can make:
  • the power supply system shown in the circuit of FIG. 11 charges the energy storage device 4, for example, only 80-cell lithium battery is charged, and all the energy storage devices 4 are realized by voltage proportional equalization. Charging.
  • UPS uninterruptible power supply
  • each of which is provided with a battery
  • an equalization mode according to an embodiment of the present invention is applied to not only enable all battery voltages.
  • the ratio is balanced, and the battery can be flexibly configured for each electrical device, so that each electrical device shares each battery, so that each battery is fully utilized.
  • the energy storage device for the electric vehicle can be distributed and installed in different places to realize voltage proportional equalization and electric energy sharing, and not only can fully utilize the electric vehicle.
  • the limited space and can obtain a voltage source that is an integral multiple of the voltage of a plurality of single energy storage devices, and eliminates the DC/DC converter used for different voltages required by different electrical appliances.
  • the voltage of each single lithium battery in the 10-cell lithium battery pack is equalized by the sixth equalizing device shown in FIG. 6, and the bidirectional DC/AC conversion circuit 35 adopts the push-pull circuit bidirectional voltage conversion circuit shown in FIG.
  • the synchronization of each equalization device 3 is realized by the first equalization line 1 and the second equalization line 2 and the transformer 36, and the specific circuit is as shown in FIG.
  • the bidirectional DC/AC conversion circuit 35 adds a self-excited driving circuit to the circuit shown in FIG. 10, and a resistor 43, a resistor 44, a resistor 45, a resistor 46, and a driving winding 28 of the transformer 36 and a transformer 36 are added to the circuit.
  • the number of turns of the drive winding 29, the transformer winding 26, the transformer winding 27 and the voltage equalizing winding 30 is the same, and the equalization voltage equivalent DC voltage is equal to the terminal voltage at which each lithium battery is equalized.
  • the equalization device 3 in Fig. 12 is a self-excited push-pull bidirectional voltage conversion circuit.
  • the lithium battery voltage is divided by the resistor 43 and the resistor 44, and a voltage is generated across the resistor 44, which is applied to the 3 poles of the semiconductor switch 23 through the driving winding 28 and the resistor 45.
  • the drive winding 29 and the resistor 46 are applied to the three poles of the semiconductor switch 25.
  • one of the semiconductor switches is always turned on first, assuming that the semiconductor switch 23 is turned on first, and a 1-pole current of the semiconductor switch 23 flows through the transformer winding 26 to magnetize the core of the transformer 36 while The other windings generate an induced potential.
  • the induced potential generated on the drive winding 29 is such that the three poles of the semiconductor switch 25 are at a negative potential and remain in an off state.
  • Potential generated in the driving coil 28 is further increased the semiconductor switch 23 is a current electrode, the semiconductor switch 23 is turned on quickly reach saturation Status. At this time, almost all of the battery voltage is applied across the transformer winding 26, and the current in the transformer winding 26 and the magnetic flux generated by the current also linearly increase.
  • the 1-pole current of the semiconductor switch 23 sharply increases to form a peak, and the rate of change of the magnetic flux is close to zero, so that all the windings of the transformer 36 are The induced potential is also close to zero. Since the induced potential across the drive winding 28 is close to zero, the 3-pole current of the semiconductor switch 23 is reduced, and the 1-pole current of the semiconductor switch 23 begins to drop, thereby inverting the induced potential of all the windings of the transformer 36, followed by the transformer 36. The core is out of saturation, causing the semiconductor switch 23 to quickly enter an off state, and the semiconductor 25 quickly enters a saturated conduction state.
  • the second equalizing terminals 34 of all the equalizing means 3 are connected to the second equalizing line 2, thus making all equalizations
  • the voltage equalizing windings 30 of the transformer 36 in the device 3 are connected in parallel such that the voltage across the voltage equalizing windings 30 in all equalizing devices 3 changes simultaneously.
  • the first turn-on of the semiconductor switch 23 in any of the equalization means 3 causes the semiconductor switch 25 therein to be turned off, and the other equalization means is made by the transfer of the first equalization line 1 and the second equalization line 2 and the coupling of the corresponding transformer 36.
  • the semiconductor switch 23 is turned on, and the semiconductor switch 25 is turned off, so that all of the semiconductor switches 23 are turned on almost simultaneously, and the semiconductor switches 25 are turned off almost simultaneously.
  • the core flux of the transformer 36 in any of the equalizing devices 3 is saturated, and the transmission of the first equalizing line 1 and the second equalizing line 2 saturates the core flux of the transformer 36 in the other equalizing means 3, thereby All of the semiconductor switches 23 are turned off almost simultaneously, and the semiconductor switches 25 are turned on almost simultaneously.
  • the semiconductor switches 23 in all of the equalizing devices are turned on and off almost simultaneously, and the semiconductor switches 25 are turned on and off almost simultaneously, thereby realizing the synchronizing operation of all the equalizing means 3.
  • the voltage of each single lithium battery in the 10-cell lithium battery pack is equalized by the fifth equalizing device shown in FIG. 5, and the bidirectional DC/AC conversion circuit 35 adopts the push-pull circuit bidirectional voltage conversion circuit shown in FIG. Working in self-excited mode, the specific circuit is shown in Figure 13.
  • the bidirectional DC/AC conversion circuit 35 adds a self-excited driving circuit to the circuit shown in Fig. 10, and a resistor 63, a resistor 64, a resistor 65, a capacitor 66, a capacitor 67, and a capacitor 68 are added to the circuit.
  • FIG. 13 is a common winding of a transformer winding of a bidirectional DC/AC conversion circuit 35 corresponding to each of the energy storage devices 4, and all of the bidirectional DC/AC conversion circuits 35 share a transformer 36.
  • a transformer winding of a bidirectional DC/AC conversion circuit 35 corresponding to each of the energy storage devices 4, and all of the bidirectional DC/AC conversion circuits 35 share a transformer 36.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)

Description

用于对储能器件的电压进行均衡的装置和方法 技术领域
本发明涉及一种对储能器件的电压进行均衡的装置和方法, 特别是涉及一 种对诸如电容器、 超级电容器、 蓄电池及其他储能器件的电压按照比例进行电 压均衡的装置和方法。 背景技术
蓄电池单体由于电压比较低, 应用时通常需要串联连接以组成蓄电池组。 对于组成蓄电池组的蓄电池单体, 由于容量、 内阻、 以及使用条件及环境的变 化, 就会造成蓄电池单体端电压不一致, 在充电和放电过程中容易造成部分蓄 电池单体过压或欠压, 对蓄电池组的整体使用和寿命造成不利影响, 这就需要 对各个单体蓄电池端电压进行电压均衡。
超级电容器作为一种储能器件, 其单体电压也比较低。 在实际应用中, 需 要多个单体串联构成超级电容器组。 超级电容器组中各个单体超级电容器, 由 于容量、 材料、 制作工艺及使用条件及环境的变化, 也会造成超级电容器单体 端电压不一致, 在充电过程中容易造成部分超级电容器单体过压, 对超级电容 器组的寿命和使用带来不利影响, 同样需要对各个单体超级电容器端电压进行 电压均衡。
在各种电源中一般要用到电容器, 电容器有时是串联连接, 由于电容器的 容量差异和漏电差异等, 会造成串联连接的各个电容器电压不一致, 容易造成 个别电容器过压故障, 需要对相互串联连接的电容器的电压进行均衡。
在实际使用中,有可能用到由两组或多组单体蓄电池或电容器组成的储能器 件组。 每组中的单体数量可能不同、 端电压可能不同, 如何在充电和放电过程 中使两组或多组不同端电压甚至不同类型的储能器件組的端电压按比例均衡, 也是一个需要解决的问题。 如何使不同储能器件组中的每个单体端电压和其他 组中的每个单体端电压相互均衡, 同样是一个需要解决的问题。
另外, 在一个系统设备或一个区域内, 如果分散布置有各种储能器件, 如何 使各个储能器件的电压比例均衡并且能量共享, 也是一个需要解决的问题。
1
确 认 本 发明内容
本发明提供了对储能器件的电压进行均衡的装置和方法, 以解决上述问题。 本发明所采取的技术方案如下。
按照本发明实施例的第一方面,提供一种用于对储能器件的电压进行均衡的 装置, 包括: 至少一个变压器, 包含一个均压绕组和至少一个变压绕组; 以及 至少一个双向 Dc/Ac变换电路, 各双向 DC/AC变换电路的直流端为用于连接储 能器件的正端子和负端子, 交流端连接所述变压器的变压绕组。
按照本发明实施例的第二方面,还是提供一种用于对储能器件的电压进行均 衡的装置, 包括: 至少一个变压器, 包含至少两个绕组, 其中有一个绕组为变 压绕组, 有至少一个绕组为均压绕组; 至少一个双向 DC/AC 变换电路, 各双向 DC/AC变换电路的直流端为用于连接储能器件的正端子和负端子,交流端连接所 述变压器的变压绕组; 以及至少一个双向 AC/DC变换电路, 该双向 AC/DC变换 电路的交流端连接所述变压器的均压绕组。
按照本发明实施例的第三方面,还是提供一种用于对储能器件的电压进行均 衡的装置, 包括: 至少一个变压器, 变压器包含两个或两个以上变压绕组; 以 及两个或两个以上双向 DC/AC变换电路, 各双向 DC/AC变换电路的直流端为用 于连接储能器件的正端子和负端子, 交流端连接所述变压器的变压绕组。
按照本发明实施例的第四方面, 提供一种储能器件, 包括按照本发明实施例 第一方面、 第二方面的装置、 和 /或第三方面的装置。
按照本发明实施例的第五方面, 提供一种电气设备, 包括按照本发明实施例 第一方面、 第二方面的装置、 和 /或第三方面的装置。
按照本发明实施例的第六方面, 提供一种对储能器件的电压进行均衡方法, 包括以下步骤: 按照预先设定的各储能器件所需要实现的电压比列, 利用双向 AC/DC变换电路对端电压过高的各储能器件的端电压分别进行 DC/AC变换;通过 变压器将经过 DC/AC 变换后的电压耦合到同一对均衡线; 以及通过变压器从均 衡线分别将电压变换到端电压过低的各储能器件所对应的双向 DC/AC变换电路, 接着分别 AC/DC变换到端电压过低的各储能器件。。
按照本发明实施例的第七方面,还是提供一种对储能器件电压的进行均衡方 法, 包括以下步骤: 按照预先设定的各储能器件所需要实现的电压比列, 通过 双向 DC/AC变换电路对端电压过高的各储能器件的端电压分别进行 DC/AC变换; 以及通过多绕组的变压器将经过 DC/AC 变换后的电压分别变换到端电压过低的 各储能器件对应的双向 DC/AC变换电路, 接着分别 AC/DC变换到端电压过低的 各储能器件。 附图说明
图 1 是按照本发明第一种实施例的均衡装置的电路原理方框图;
图 2 是按照本发明第二种实施例的均衡装置的电路原理方框图;
图 3 是按照本发明第三种实施例的均衡装置的电路原理方框图;
图 4 是按照本发明第四种实施例的均衡装置的电路原理方框图;
图 5 是按照本发明第五种实施例的均衡装置的电路原理方框图;
图 6 是按照本发明第六种实施例的均衡装置的电路原理方框图;
图 7 是按照本发明第七种实施例的均衡装置的电路原理方框图;
图 8 是按照本发明第八种实施例的均衡装置的电路原理方框图;
图 9 是按照本发明第九种实施例的均衡装置的电路原理方框图;
图 10是可用于按照本发明实施例的均衡装置的推挽双向电压变换电路原理 图;
图 11是采样了按照本发明实施例的均衡装置的电源系统电路原理方框图; 图 12 利用按照本发明实施例的均衡装置对 10节锂电池电压进行均衡的电 路原理图;
图 13 是另一种利用按照本发明实施例的均衡装置对 10节锂电池电压进行 均衡的电路原理图。
图中: 1: 第一均衡线, 2: 第二均衡线, 3: 均衡装置, 4: 储能器件, 5: 同步控制线, 35: 双向 DC/AC变换电路, 37: 双向 AC/DC变换电路, 36: 变压 器, 28、 29: 变压器驱动绕组, 26、 27: 变压器变压绕组, 30: 变压器均压绕 组, 21、 66、 67、 68: 电容, 22、 24: 二极管, 23、 25: 半导体开关, 43、 44、 45、 46、 63、 64、 65: 电阻。 具体实施方式 在本发明说明书中, 储能器件是指能够汲取和释放直流电能的器件, 包括 蓄电池, 电容器和超级电容器等, 可以是单体, 也可以是单体的组合, 具有正 端子和负端子。 其中对储能器件相互之间的关系没有限制, 可以相互连接或者 不连接, 可以是串联连接, 也可以是并联连接。
本发明说明书中, 第一均衡线和第二均衡线是指两条导线, 第一均衡线和 第二均衡线之间的电压为均衡线电压。 均衡线电压可以任意设定, 但不等于零。 均衡线电压可能是直流电压, 也可能是交流电压, 根据所采用的电路有关, 如 果均衡线电压是交流电压, 在电路分析比较时, 将其等效为直流电压。
本发明的电压比例均衡的理论基础是: 在同一个磁芯上绕制的多绕组变压 器, 其各个绕组两端的交流电压比例等于对应绕组的匝数比例; 并联连接的所 有电子器件的端子电压相等; 如果在并联前电子器件的端子电压不相等, 那么 并联后电流会从端子电压高的电子器件流向端子电压低的电子器件, 最终使所 有并联连接的电子器件的端子电压相等。 比例均衡是指经过均衡后各个储能器 件的端电压保持一定的比例。 下面通过具体实施例对本发明进行详细说明。
图 1 是按照本发明第一种实施例的对储能器件的电压进行均衡的装置的电 路原理框图, 包括双向 DC/AC变换电路 35和变压器 36。 双向 DC/AC变换电路 35具有直流端子和交流端子; 变压器 36包含两个绕组, 其中一个绕组为变压绕 组, 另一个绕组为均压绕组。 均衡装置 3有四个端子, 分别为正端子 31、 负端 子 32、第一均衡端子 33、第二均衡端子 34 ,正端子 31和负端子 32从双向 DC/AC 变换电路 35的直流端引出, 用于连接储能器件, 双向 DC/AC变换电路 35的交 流端和变压器 36的变压绕组连接, 变压器 36的均压绕组引出两个端子作为第 一均衡端子 33和第二均衡端子 34。
在使用时,可以将两个或更多个图 1所示装置的各对正端子 31和负端子 ΎΙ 分别连接到储能器件的正、 负端子, 并将各装置 3的第一均衡端子 33和第二均 衡端子 34分别接在一起。 于是, 图 1所示电路可以将正端子 31和负端子 32之 间施加的直流电压经过双向 DC/AC变换电路 35变换成交流电压, 再经过变压器 36隔离变压为第一均衡端子 33和第二均衡端子 34之间交流电压; 或者, 将第 一均衡端子 33和第二均衡端子 34之间交流电压, 经过变压器 36隔离变压到双 向 DC/AC变换电路 35的交流端, 再经过双向 DC/AC变换电路 35变换到正端子 31和负端子 32之间的直流电压。 另外, 均衡装置 3中的双向 DC/AC变换电路 35如果需要采用外接信号和其 它方式使均衡装置 3电路同步, 均衡装置 3还可选地设置有同步端子 38, 同步 端子 38连接到双向 DC/AC变换电路 35。
图 2 是按照本发明第二种实施例的对储能器件的电压进行均衡的装置的电 路原理框图。 图 2所示电路在图 1所示电路基础上增加了一个双向 AC/DC变换 电路 37 , 双向 AC/DC变换电路 37的交流端子和变压器 36的均压绕组连接, 双 向 AC/DC变换电路 37的直流端子引出两个端子作为第一均衡端子 33和第二均 衡端子 34。
与图 1所示装置类似, 在使用时, 图 2所示电路将正端子 31和负端子 32 之间施加的直流电压经过双向 DC/AC变换电路 35变换成交流电压, 再经过变压 器 36隔离变压到双向 AC/DC变换电路 37的交流端, 最后由双向 AC/DC变换电 路 37变换成第一均衡端子 33和第二均衡端子 34之间直流电压; 或者, 将第一 均衡端子 33和第二均衡端子 34之间直流电压, 经过双向 AC/DC变换电路 37变 换成交流电压, 再经过变压器 36隔离变压到双向 DC/AC变换电路 35的交流端, 最后经过双向 DC/AC变换电路 35变换到正端子 31和负端子 32之间的直流电压。
另外, 均衡装置 3中的双向 DC/AC变换电路 35和双向 AC/DC变换电路 37 如果需要采用外接信号和其它方式使均衡装置 3电路同步, 均衡装置 3还可选 地设置有同步端子 38,同步端子 38分别连接到双向 DC/AC变换电路 35和 /或双 向 AC/DC变换电路 37。
图 3 是按照本发明第三种实施例的对储能器件的电压进行均衡的装置的电 路原理框图。 电路包括两个双向 DC/AC变换电路 35和一个变压器 36, 每个双向 DC/AC变换电路 35具有直流端子和交流端子, 变压器 36包含三个绕组, 其中两 个绕组为变压绕组, 另一个绕组为均压绕组。 均衡装置 3 有六个端子, 分别为 两对正端子 31和负端子 32、 第一均衡端子 33、 第二均衡端子 34。 每对正端子 31和负端子 32从每个双向 DC/AC变换电路 35的直流端引出, 用来连接储能器 件。 每个双向 DC/AC变换电路 35的交流端和变压器 36的一个变压绕组连接, 变压器 36的均压绕组引出两个端子作为第一均衡端子 33和第二均衡端子 34
在使用时, 图 3所示电路将每对正端子 31和负端子 32之间施加的直流电 压经过相应的双向 DC/AC 变换电路 35分别变换成交流电压, 再经过变压器 36 隔离变压到第一均衡端子 33和第二均衡端子 34之间交流电压; 或将第一均衡 端子 33和第二均衡端子 34之间交流电压, 经过变压器 36隔离变压到每个双向 DC/AC变换电路 35的交流端,再经过每个双向 DC/AC变换电路 35分别变换到每 对正端子 31和负端子 32之间的直流电压; 同时, 将其中一对正端子 31和负端 子 32之间的直流电压经过与其连接的双向 DC/AC变换电路 35变换成交流电压, 经过变压器 36隔离变压到另一个双向 DC/AC变换电路 35的交流端, 最后由这 个双向 DC/AC变换电路 35变换成另一对正端子 31和负端子 32之间的直流电压。 另外, 均衡装置 3中的两个双向 DC/AC变换电路 35同步工作, 如果需要采用外 接信号和其它方式使均衡装置 3 电路同步, 均衡装置 3还可选地设置有同步端 子 38, 同步端子 38连接到每个双向 DC/AC变换电路 35。
图 3所示电路中, 各对正端子 31和负端子 32对应的变压器 36的变压绕组 匝数与均压绕组匝数的比值之比设置为等于各对正端子 31和负端子 32 间施加 的储能器件所需要实现的电压之比, 也就是均衡比。
图 3所示电路中, 均衡装置 3可以将施加在每对正端子 31和负端子 32之 间的电压以及第一均衡端子 33和第二均衡端子 34之间的电压相互隔离并且两 两之间都可以双向变换。 如果连接第一个双向 DC/AC变换电路 35 的变压器 36 的变压绕组的匝数与均衡绕组的匝数的比为 kl , 连接第二个双向 DC/AC变换电 路 35的变压器 36变压绕组的匝数与均衡绕组的匝数的比为 k2, 则第一对正端 子 31和负端子 32之间的电压与第一均衡端子 33和第二均衡端子 34之间的电 压比为 kl ,第二对正端子 31和负端子 32之间的电压与第一均衡端子 33和第二 均衡端子 34之间的电压比为 k2。 电路工作时, 如果第 j对正端子 31和负端子 32之间所加的电压与第一均衡端子 33和第二均衡端子 34之间的电压的比大于 kj , 1 < j < 2 , 则能量自动从第 j对正端子 31和负端子 32之间流向变压器 36; 反之, 能量自动从变压器 36流向第 j对正端子 31和负端子 32之间, 最终, 使 付:
第一对正端子 31和负端子 32之间所加的电压: 第二对正端子 31和负端子 32之间所加的电压: 第一均衡端子 33和第二均衡端子 34之间的电压 = kl : k2: 1 ,
从而, 使加在两个双向 DC/AC变换电路 35的正端子 31和 32之间的电压达 到比例均衡。 图 3电路包含两个双向 DC/AC变换电路 35,可对连接在两对正端子 31和负 端子 32之间的两个储能器件进行电压比例均衡。 在图 3均衡装置 3的电路中增 加双向 DC/AC变换电路 35 , 同时变压器 36增加变压绕组, 均衡装置 3增加正端 子 31和负端子 32, 则电路可对两个以上储能器件进行电压比例均衡, 电路均衡 原理参照对包含两个双向 DC/AC变换电路 35的均衡装置 3的电路分析。 此外, 也可以将两个或更多个图 3所示装置一起使用。 此时, 将各对正端子 31和负端 子 32分别连接到储能器件的正、 负端子, 并将各装置 3的第一均衡端子 33和 第二均衡端子 34分别接在一起。
图 4 是按照本发明第四种实施例的对储能器件的电压进行均衡的装置的电 路原理框图。 图 4所示电路在图 3所示电路的基础上增加了一个双向 AC/DC变 换电路 37 , 双向 AC/DC变换电路 37的交流端子和变压器 36的均压绕组连接, 双向 AC/DC变换电路 37的直流端子引出两个端子作为第一均衡端子 33和第二 均衡端子 34。 同样, 可以对图 4所示装置均衡储能器件的数量进行扩展, 其使 用方式以及均衡原理与图 3所示装置类似。
图 5 是本发明第五种实施例的对储能器件的电压进行均衡的装置的电路原 理框图, 包括两个双向 DC/AC变换电路 35和一个变压器 36。 每个双向 DC/AC变 换电路具有直流端子和交流端子, 变压器 36包含两个 (或更多个) 变压绕组。 均衡装置 3有两对 (或更多对)正端子 31和两个负端子 32 , 每对正端子 31和 负端子 32分别从每个双向 DC/AC变换电路 35的直流端引出, 用来连接每个储 能器件, 每个双向 DC/AC变换电路 35的交流端和变压器 36的一个变压绕组连 接。
使用时, 图 5所示电路将其中一对正端子 31和负端子 32之间的直流电压 经过与其连接的双向 DC/AC变换电路 35变换成交流电压, 经过变压器 36隔离 变压到另一个双向 DC/AC变换电路 35的交流端, 最后由这个双向 DC/AC变换电 路 35变换成另一对正端子 31和负端子 32之间的直流电压, 反之亦然。 均衡装 置 3中的两个双向 DC/AC变换电路 35在均衡装置 3内同步工作。
图 5所示电路中, 各对正端子 31和负端子 32对应的变压器 36的变压绕组 匝数的比值设置成等于各对正端子 31和负端子 32 间施加的储能器件所需要实 现的电压比例, 也就是均衡比。 图 5所示电路中, 均衡装置 3将两对 (或更多对) 正端子 31和负端子 32 之间的电压相互隔离并且双向变换。 如果连接第一个双向 DC/AC变换电路 35的 变压器 36的变压绕组的匝数与连接第二个双向 DC/AC变换电路 35的变压器 36 变压绕组的匝数的比为 k,则第一对正端子 31和负端子 32之间的电压与第二对 正端子 31和负端子 32之间的电压比为 k。 电路工作时, 如果第一对正端子 31 和负端子 32之间所加的电压与第二对正端子 31和负端子 32之间所加的电压比 大于 k, 则能量自动从第一对正端子 31和负端子 32之间流向第二对正端子 31 和负端子 32之间; 反之, 能量自动从第二对正端子 31和负端子 32之间流向第 一对正端子 31和负端子 32之间。 最终, 使得:
第一对正端子 31和负端子 32之间所加的电压: 第二对正端子 31和负端子
32之间所加的电压= k,
从而, 使加在两个双向 DC/ AC变换电路 35的正端子 31和 32之间的电压达 到比例均衡。
尽管图 5所示电路只包含两个双向 DC/AC变换电路 35, 但是可以在图 5均 衡装置 3的电路中增加双向 DC/AC变换电路 35, 同时变压器 36相应地增加变压 绕组, 且均衡装置 3增加正端子 31和负端子 32。 从而, 均衡装置 3将所有正端 子 31和负端子 32之间的电压两两之间相互隔离并且双向变换, 实现两个以上 储能器件电压的比例均衡。
图 6 是按照本发明第六种实施例的对储能器件的电压进行均衡的装置的电 路原理框图, 该装置除包括两个图 1所示的均衡装置 3夕卜, 还包括第一均衡线 1 和第二均衡线 2。 每个均衡装置 3的第一均衡端子 33连接到第一均衡线 1 , 第 二均衡端子 34连接到第二均衡线 2 , 均衡线电压为交流电压。 另外, 如果需要 采用外接信号使两个均衡装置 3电路同步, 还可包括同步控制线 5。 同步控制线 5是一条或一组导线, 均衡装置 3设置有同步端子 38, 每个均衡装置 3的同步 端子 38连接到同步控制线 5上。
图 6所示电路中, 各个均衡装置 3中正端子 31和负端子 32对应的变压器 36的变压绕组匝数与均压绕组匝数的比值之比等于各个均衡装置的正端子 31和 负端子 32间施加的储能器件所需要实现的电压之比, 也就是均衡比。
图 6所示电路中, 每个均衡装置 3可对正端子 31和负端子 32间的电压与 均衡线间的电压进行双向变换。 如果第一个均衡装置 3的变压器 36的变压绕组 的匝数与均衡绕组的匝数的比为 kl ,第二个均衡装置 3的变压器 36变压绕组的 匝数与均衡绕组的匝数的比为 k2 , 则第一个均衡装置 3的正端子 31 和负端子 32之间的电压与均衡线间电压的比为 kl, 第二个均衡装置 3的正端子 31和负 端子 32之间的电压与均衡线间电压的比为 k2。 电路工作时, 如杲第 j个均衡装 置 3的正端子 31和负端子 32之间所加的电压与均衡线间电压的比大于 kj, 1 < j < 2 , 则能量自动从第 j对正端子 31和负端子 32之间流向均衡线; 反之, 能量自动从均衡线流向第 j对正端子 31和负端子 32之间, 最终, 使得:
第一个均衡装置 3的正端子 31和负端子 32之间所加的电压: 第二个均衡 装置 3的正端子 31和负端子 32之间所加的电压: 均衡线电压 = kl : k2 : 1, 从而, 使加在两个均衡装置 3的正端子 31和负端子 32之间的电压达到比 例均衡。
增加图 6中的均衡装置 3 ,则可实现对两个以上储能器件进行电压比例均衡, 均衡原理与上述包括两个均衡装置 3的情形类似。
图 7 是按照本发明第七种实施例的对储能器件的电压进行均衡的装置的电 路原理框图。图 Ί所示装置是将图 6所示装置中的图 1所示的均衡装置 3用图 2 所示的均衡装置 3代替所得。 图 7 中均衡线电压为直流电压, 其使用方式与均 衡原理与图 6类似, 可以实现对两个或两个以上储能器件电压的比例均衡。
图 8 是按照本发明第八种实施例的对储能器件的电压进行均衡的装置的电 路原理框图, 包括两个图 3电路所示的均衡装置 3 , 还包括第一均衡线 1和第二 均衡线 2。 每个均衡装置 3的第一均衡端子 33连接到第一均衡线 1, 第二均衡 端子 34连接到第二均衡线 2, 均衡线电压为交流电压。 另外, 如果需要采用外 接信号使两个均衡装置 3电路同步, 还可包括同步控制线 5, 同步控制线 5是一 条或一组导线。 均衡装置 3设置具有同步端子 38 , 每个均衡装置 3的同步端子 38连接到同步控制线 5上。
图 8所示电路中, 每个均衡装置 3有两对正端子 31和负端子 32, 每个正端 子 31和负端子 32对应的均衡装置 3的变压器 36的变压绕组匝数与均压绕组匝 数的比值之比等于每个均衡装置 3的每对正端子 31和负端子 Ώ间施加的储能 器件所需要实现的电压比例, 也就是均衡比。
图 8所示电路中, 每个均衡装置 3将每对正端子 31和负端子 32之间的电 压与均衡线电压进行双向变换。 在第一个均衡装置 3 中, 如果连接第一个双向 DC/AC变换电路 35的变压器 36的变压绕组的匝数与均衡绕组的匝数的比为 kl, 连接第二个双向 DC/AC变换电路 35的变压器 36变压绕组的匝数与均衡绕组的 匝数的比为 k2 , 则第一对正端子 31和负端子 32之间的电压与均衡线电压比为 kl , 第二对正端子 31和负端子 32之间的电压与均衡线电压比为 k2。 在第二个 均衡装置 3中, 如果连接第三个双向 DC/AC变换电路 35的变压器 36的变压绕 组的匝数与均衡绕组的匝数的比为 k3 ,连接第四个双向 DC/AC变换电路 35的变 压器 36变压绕组的匝数与均衡绕组的匝数的比为 k4, 则第三对正端子 31和负 端子 32之间的电压与均衡线电压比为 k3,第四对正端子 31和负端子 32之间的 电压与均衡线电压比为 k4。 电路工作时, 如果第 j对正端子 31和负端子 32之 间所加的电压与均衡线电压的比大于 kj, 1 < j < 4 , 则能量自动从第 j对正端子 31和负端子 32之间流向均衡线; 反之, 能量自动从均衡线流向第 j对正端子 31和负端子 32之间。 最终, 使得:
第一对正端子 31和负端子 32之间所加的电压: 第二对正端子 31和负端子 32之间所加的电压: 第三对正端子 31和负端子 32之间所加的电压: 第四对正 端子 31和负端子 32之间所加的电压: 均衡线电压 = kl : k2 : k3: k4: 1 ,
从而, 使加在两个均衡装置 3的四个正端子 31和负端子 32之间的电压达 到比例均衡。
图 8中的每个均衡装置 3包含两个双向 DC/ AC变换电路 35, 可对连接在两 对正端子 31和负端子 32之间的两个储能器件进行电压比例均衡。 可在图 8中 的任意一个均衡装置 3或两个均衡装置 3中增加双向 DC/AC变换电路 35, 同时 相应地增加变压器 36的变压绕组, 则电路可以使更多的储能器件实现电压比例 均衡。 或者, 在图 8电路中增加图 1或图 3所示的均衡装置 3 , 也可以使更多的 储能器件实现电压比例均衡。 电路均衡原理参照对图 1、 图 3、 图 6和图 8的电 路分析。
图 9 是按照本发明第九种实施例的对储能器件的电压进行均衡的装置的电 路原理框图。 图 9是将图 8电路中的图 3所示的均衡装置 3用图 4所示的均衡 装置 3代替所得。 图 9中均衡线电压为直流电压, 图 9所示电路的工作方式和 均衡原理与图 8 所示电路类似。 但是, 其中的同步控制线和同步控制端是可选 的。 图 6、 图 7、 图 8、 图 9电路中, 各个均衡装置 3的同步也可以通过第一均 衡线 1和第二均衡线 2以及变压器 36来实现, 如下面图 12和图 13所示电路那 样。 这样, 可以不需要同步端子 38和同步控制线 5。
双向 DC/AC变换电路 35或双向 AC/DC变换电路 37,可以采用多种电压变换 电路, 只要能够将直流电逆变成交流电, 同时逆向将交流电整流成直流电的电 路, 都可以采用。 逆变可以采用正激(Forward ) 电路, 反激(Flyback ) 电路, 推挽(Push Pul l ) 电路, 半桥(Ha l f Br idge ) 电路, 全桥 ( Ful l Br idge ) 电 路等, 电路可以是自激方式工作, 也可以是他激方式工作; 电路在逆向时将交 流电整流成直流电。 电路可以采用软开关技术和同步整流技术提高效率。
适应于本发明实施例中的半导体开关, 是指全控型电力电子器件, 包括功 率晶体管(GTR)、 场效应晶体管(M0SFET;)、 绝缘栅双极晶体管(IGBT)。 为了叙述 方便, 将半导体开关的引出端子定义如下: 功率晶体管的集电极、 场效应晶体 管的漏极、 绝缘栅双极晶体管的集电极或其他全控型电力电子器件的相应功能 端子, 定义为半导体开关的 1极。 功率晶体管的发射极、 场效应晶体管的源极、 为半导体开关的 2 极。 功率晶体管的基极、 场效应晶体管的门极、 绝缘栅双极 晶体管的门极或其他全控型电力电子器件的相应功能端子, 定义为半导体开关 的 3极。
图 10所示是一种采用推挽电路的双向电压变换电路, 电路有正端子 61和 负端子 62, 电路由电容 21、 二极管 22、 半导体开关 23、 二极管 24、 半导体开 关 25、 变压器 36的变压绕组 26、 变压器 36的变压绕组 27组成, 变压绕组 26 和变压绕组 27 串联连接并且匝数相同。 变压绕组 26、 变压绕组 27和同一个均 衡装置 3 中的其他双向电压变换电路的绕组共用一个磁芯, 并和其他双向电压 变换电路中的相应绕组同名端相同, 在同一个均衡装置 3中, 半导体开关 23、 半导体开关 25 和其他双向电压变换电路中对应的半导体开关 23、 半导体开关 25同时开通同时关断。
电路工作时, 半导体开关 23和半导体开关 25 交替开通和关断。 在能量从 正端子 61与负端子 62之间流向变压器 36的情况下, 电路工作在逆变方式, 将 直流电变换成交流电。 在能量从变压器 36流向正端子 61与负端子 62之间的情 况下, 电路工作在整流方式, 将交流电整流成直流电。 图 10所示电路, 可以作为按照本发明实施例的双向 DC/AC变换电路 35和 双向 AC/DC变换电路 37。 如果作为双向 DC/AC变换电路 35用, 正端子 61就是 均衡装置 3的正端子 31 , 负端子 62就是均衡装置 3的负端子 32。 如果作为双 向 AC/DC变换电路 37用, 正端子 61就是均衡装置 3的第一均衡端子 33, 负端 子 62就是均衡装置 3的第二均衡端子 34。 其他电路结构的双向电压变换电路, 也可以作为本发明中的双向 DC/AC变换电路 35和 37 , 这里不再画出。
本发明实施例的电路中的双向 DC/AC变换电路 35相互之间和双向 AC/DC变 换电路 37之间, 电路结构可以相同, 也可以不同。
按照本发明实施例的对储能器件的电压进行比例均衡的装置, 在应用时, 只要将储能器件的正端子和均衡装置 3的正端子 31连接, 将储能器件的负端子 和均衡装置 3的负端子 32连接即可, 而对储能器件 4的使用和连接方式不加任 何限制, 储能器件 4 的连接和组合以及充电和放电等使用可按照没有增加比例 均衡电路前的方式进行。
采用本发明的比例均衡电压电路和方法, 就可以实现串联连接组成蓄电池 组或电容器组中的单体的电压均衡, 储能器件就是蓄电池单体或电容器单体。 此外, 采用本发明的比例均衡电压电路和方法, 还可以按比例均衡两组或多组 不同数量的单体蓄电池或电容器等組成的储能器件组的端电压。 如果要使不同 储能器件组中的每个单体的端电压和其他组中的每个单体端电压相互均衡, 由 于本发明对储能器件的连接没有要求, 只要将所有的单体都作为一个储能器件 对待即可。
在一个或多个储能器件上, 如果加上本发明中图 1、 图 2、 图 3、 图 4所示 的第一、 第二、 第三、 第四均衡装置 3, 在应用时, 可通过增加第一均衡线 1和 第二均衡线 2 , 将所有均衡装置 3的第一均衡端子 33连接到第一均衡线 1 , 所 有均衡装置 3的第二均衡端子 34连接到第二均衡线 2 , 如果均衡装置 3有同步 端子 38 , 可增加同步控制线 5 , 将所有同步端子 38连接到同步控制线 5, 就可 以实现所有连接的储能器件的电压比例均衡。
按照本发明实施例的均衡装置与方法的有益效果主要体现在: 对于一个带 有大量储能器件并需要多个电压等级进行供电的设备或系统, 使用按照本发明 实施例的装置, 不但可以实现所有储能器件的端电压按比例均衡, 而且, 可以 将储能器件分散安装在设备的不同地方, 按照设备中的每个用电器所需要的电 压和电流, 配备该用电器附近的储能器件的数量和连接方式, 从而实现整个设 备的供电优化和空间优化, 而且可以省掉由于各个用电器所需要的电压不同而 采用的 DC/DC变换器。 另外, 通过第一均衡线 1和第二均衡线 2, 不但可以实现 任何一个用电器都可以使用任何一个安装在不同地方的储能器件的能量, 而且 可以实现给任何一个或一组储能器件充电时, 同时给所有其他的储能器件充电。
比如在用储能器件供电的设备中, 假如该设备中的用电器需要多种电压, 如
12V、 24V、 36V , 288V等, 假如该设备中使用的储能器件有标称 2V的铅酸蓄电 池, 电压 2. 5V的超级电容器, 标称 3. 6V的锂电池, 则可以采用按照本发明实 施例的均衡方式进行配置。 如图 1 1所示, 储能器件 4的正端子 41和负端子 42 分別和各个均衡装置 3的正端子 31和负端子 32连接, 12V由 6节标称 2V的铅 酸蓄电池串联提供, 24V由电压 1. 5V的 10节超级电容器串联提供, 288V由 80 节标称 3. 6V的锂电池串联提供, 36V由 80节标称 3. 6V的锂电池中的 10节提供。 各个储能器件的容量由用电器的需要来确定, 铅酸蓄电池、 锂电池、 超级电容 器可以分别放置在设备的不同地方。 假设采用交流均衡方案, 且均衡装置 3 的 同步通过第一均衡线 1、 第二均衡线 2和变压器 36来实现。 图 11中, 串联连接 的 6节铅酸电池作为一个组使用一个图 3所示的均衡装置 3来实现相互之间的 电压均衡, 通过均衡线实现和其他储能器件 4的电压比例均衡; 串联连接的 1 0 节超级电容器和串联连接的 80节锂电池每个都是用一个图 1所示的均衡装置 3, 通过均衡线来实现相互之间的电压比例均衡以及和其他储能器件 4 的电压比例 均衡。 假如单节铅酸电池允许的最高电压为 2. 4V, 超级电容器允许的最高电压 为 2. 5V, 锂电池允许的最高电压为 4. 2V , 均衡线电压可以任意设定, 设均衡线 电压为 U。 设计均衡装置 3 , 使连接每一个铅酸电池的均衡装置 3 的正端子 31 和负端子 32之间的电压与均衡线电压的比为 2. 4U, 连接每一个超级电容器的均 衡装置 3的正端子 31和负端子 32之间的电压与均衡线电压的比为 2. 5U, 连接 每一个锂电池的均衡装置 3的正端子 31和负端子 32之间的电压与均街线电压 的比为 4. 2U, 这样, 电路工作后, 就能够使得:
每节铅酸电池上的电压 : 每个超级电容器上的电压 : 每节锂电池上的电压 = 2. 4 : 2. 5 : 4. 2 ,
由此, 实现比例均衡。 图 11 电路所示的供电系统对储能器件 4的充电, 可 以例如只对 80节锂电池充电, 通过电压比例均衡, 就实现对所有储能器件 4的 充电。
再比如在一栋建筑或一个区域内, 有多个不间断供电 (UPS ) 系统, 每个不 间断供电系统都配置有蓄电池, 应用按照本发明实施例的均衡方式, 不但可以 使所有的蓄电池电压比例均衡, 还可以对各个用电设备灵活配置蓄电池, 使每 个用电设备共享每一个蓄电池, 使得每一个蓄电池得到充分利用。
在例如电动车的电气设备中应用按照本发明实施例的方法和装置,可以将电 动车用的储能器件分布安装在不同的地方实现电压比例均衡和电能共享, 不但 可以充分利用电动车中的有限空间, 而且可以得到多种单体储能器件电压整数 倍的电压源, 省掉因不同用电器所需要的电压不同而采用的 DC/DC变换器。
采用图 6所示的第六种均衡装置对 10节串联锂电池组中各个单体锂电池电 压进行均衡, 双向 DC/AC变换电路 35采用图 10所示推挽电路双向电压变换电 路, 电路以自激方式工作, 各个均衡装置 3的同步通过第一均衡线 1和第二均 衡线 2和变压器 36来实现, 具体电路如图 12所示。 图 12中, 双向 DC/AC变换 电路 35为图 10所示电路中增加自激驱动电路, 电路中增加了电阻 43、电阻 44、 电阻 45、 电阻 46和变压器 36的驱动绕组 28、 变压器 36的驱动绕组 29 , 变压 绕组 26、 变压绕组 27和均压绕组 30的匝数一样, 均衡电压等效直流电压等于 各个锂电池均衡时的端电压。
图 12中, 当某节锂电池的电压大于均衡线电压时, 能量从该节锂电池流向 第一均衡线 1和第二均衡线 2; 当某节锂电池的电压小于均衡线电压时, 能量从 第一均衡线 1和第二均衡线 2流向该节锂电池, 最终使 10节锂电池的电压达到 均衡。
图 12中的均衡装置 3, 是一种自激推挽双向电压变换电路。 当其中任何一 个均衡装置 3接入电路开始工作时, 锂电池电压经过电阻 43和电阻 44分压后, 在电阻 44上产生一个电压,通过驱动绕组 28和电阻 45加在半导体开关 23的 3 极, 同时通过驱动绕组 29和电阻 46加在半导体开关 25的 3极。 由于电路元件 不可能完全对称, 所以总会使其中某一个半导体开关先导通, 假定半导体开关 23先导通, 半导体开关 23的 1极电流流过变压绕组 26, 使变压器 36的铁芯磁 化, 同时使其他的绕组产生感应电势。 在驱动绕组 29上产生的感应电势, 使半 导体开关 25的 3极处于负电位而保持截止状态。 在驱动绕组 28上产生的电势 使半导体开关 23的 1极电流进一步增加, 使半导体开关 23很快达到饱和导通 状态。 这时几乎全部的电池电压都加在变压绕组 26 两端, 变压绕组 26 中的电 流以及由此电流所产生的磁通也会线性的增加。 当变压器 36的铁芯磁通接近或 达到饱和值时, 半导体开关 23的 1极电流就会急剧地增大, 形成一个尖峰, 这 时磁通量的变化率接近于零,所以变压器 36的所有绕组的感应电势也接近于零。 由于驱动绕组 28两端的感应电势接近于零, 于是半导体开关 23的 3极电流减 小, 半导体开关 23的 1极电流开始下降, 从而使变压器 36的所有绕组的感应 电势反向, 紧接着变压器 36的铁芯脱离饱和, 促使半导体开关 23很快进入截 止状态, 半导体 25很快进入饱和导通状态。 这时几乎全部的电池电压加到变压 绕组 27两端, 使变压器铁芯中的磁通直线下降, 4艮快就达到反向饱和, 此时驱 动绕组 29的感应电势下降, 使半导体 25脱离饱和状态, 然后转换到截止状态, 而半导体开关 23又转换到饱和导通状态。 上述过程周而复始, 这样就在两个半 导体开关的 1极形成了方波电压, 从而在均压绕组 30的两端形成方波电压, 也 就是在第一均衡均衡端子 33和第二均衡端子 34之间形成方波电压。
由于所有的均衡装置 3的第一均衡端子 33都连接在第一均衡线 1上, 所有 的均衡装置 3的第二均衡端子 34都连接在第二均衡线 2上, 这样, 就使所有的 均衡装置 3 中的变压器 36的均压绕组 30并联连接在一起, 使所有均衡装置 3 中的均压绕组 30两端的电压同时变化。任何一个均衡装置 3中的半导体开关 23 的率先导通, 会使其中的半导体开关 25截止, 通过第一均衡线 1和第二均衡线 2的传递和相应变压器 36的耦合, 使其他均衡装置中的半导体开关 23导通、 半 导体开关 25截止, 从而使所有的半导体开关 23几乎同时导通、 半导体开关 25 几乎同时截止。 任何一个均衡装置 3中的变压器 36的铁芯磁通饱和, 通过第一 均衡线 1和第二均衡线 2的传递, 会使其他均衡装置 3中的变压器 36的铁芯磁 通饱和, 从而使所有的半导体开关 23几乎同时截止、 半导体开关 25几乎同时 开通。 这样, 就使所有的均衡装置中的半导体开关 23几乎同时导通和关断、 半 导体开关 25几乎同时导通和关断, 从而实现所有的均衡装置 3的同步工作。
采用图 5所示的第五种均衡装置对 10节串联锂电池组中各个单体锂电池电 压进行均衡, 双向 DC/AC变换电路 35采用图 10所示推挽电路双向电压变换电 路, 电路以自激方式工作, 具体电路如图 13所示。 图 13 中, 双向 DC/AC变换 电路 35为图 10所示电路中增加自激驱动电路, 电路中增加了电阻 63、电阻 64、 电阻 65、 电容 66、 电容 67、 电容 68。 图 13中的变压器 36, 是将对应于每个储能器件 4的双向 DC/AC变换电路 35的变压绕组共同绕在一个变压器磁芯,所有的双向 DC/AC变换电路 35共用一 个变压器 36, 对图 13电路工作过程的分析, 可参照本发明中对图 10电路和图 12电路以及开关电源电路中对推挽自激电路的分析, 这里不再赘述。
上面关于按照本发明实施例的均衡装置的描述中, 已经清楚地说明了按照 本发明实施例的对储能器件的电压进行均衡的方法的步骤和过程, 为了清楚起 见, 在此不再重复描述。
上面通过具体实施例对本发明进行了说明, 但这些实施例仅仅是说明性的, 并不是限制。 本领域普通技术人员明白, 还可以对上述实施例做各种变换、 修 改、 组合、 以及等同替换等等, 以将按照本发明的装置应用于各种场合。 另夕卜, 本申请说明书和权利要求书中所使用的一些术语, 仅仅是为了便于描述, 并不 是限制。 因此, 只要未背离本发明的精神各种实现方式, 都应属于本发明的保 护范围。

Claims

权利要求书
1.一种用于对储能器件的电压进行均衡的装置, 包括:
至少一个变压器, 包含至少一个均压绕组和至少一个变压绕组; 以及 至少一个双向 DC/AC变换电路,各双向 DC/AC变换电路的直流端为用于连接 储能器件的正端子和负端子, 交流端连接所述变压器的变压绕组。
2.如权利要求 1所述的装置, 还包括:
至少一个双向 AC/DC变换电路, 其交流端连接所述变压器的均压绕组。
3.如权利要求 1所述的装置, 还包括:
第一均衡线; 以及
第二均衡线;
其中所述变压器的均压绕组连接到第一均衡线和第二均衡线。
4.如权利要求 2所述的装置, 还包括:
第一均衡线; 以及
第二均衡线;
其中双向 AC/DC变换电路的直流端连接到第一均衡线和第二均衡线。
5.如权利要求 3或 4所述的装置,其中第一均衡线与第二均衡线间的电压可 以设定为不等于零的任意值。
6.如权利要求 1至 4任一项所述的装置, 其中所述双向 DC/AC变换电路和 / 或双向 AC/DC变换电路还包括同步端子。
7.如权利要求 6所述的装置, 还包括:
同步控制线, 用于连接所述同步端子, 以实现各双向 DC/AC变换电路和 /或 双向 AC/DC变换电路的同步工作。
8.如权利要求 1至 7中任一项所述的装置,其中各对正端子和负端子对应的 变压器的变压绕组匝数与均压绕组匝数的比值之比设置成等于各对正端子和负 端子间所需要实现的电压之比。
9.一种用于对储能器件的电压进行均衡的装置, 包括:
至少一个变压器, 变压器包含两个或两个以上变压绕组; 以及
两个或两个以上双向 DC/AC变换电路,各双向 DC/AC变换电路的直流端为用 于连接储能器件的正端子和负端子, 交流端连接所述变压器的变压绕组。
10.如权利要求 9所述的装置, 其中各对正端子和负端子对应的变压器的变 压绕组匝数的比值设置成等于各对正端子和负端子间所需要实现的电压之比。
11.一种储能器件, 包括权利要求 1至 10中任一项所述的装置
12.一种电气设备, 包括权利要求 1至 10中任一项所述的装置。
13.一种对储能器件的电压进行均衡方法, 包括以下步骤:
按照预先设定的各储能器件所需要实现的电压比列,利用双向 AC/DC变换电 路对端电压过高的各储能器件的端电压分別进行 DC/AC变换;
通过变压器将经过 DC/AC变换后的电压耦合到同一对均衡线; 以及 通过变压器从均衡线分别将电压变换到端电压过低的各储能器件所对应的 双向 DC/AC变换电路, 接着分别 AC/DC变换到端电压过低的各储能器件。
14.如权利要求 1 3所述的方法, 还包括以下步骤:
在变压器与均衡线之间进行双向 AC/DC变换。
15.如权利要求 13或 14所述的方法, 还包括以下步骤:
对双向 DC/AC变换和 /或双向 AC/DC变换进行同步。
16.一种对储能器件电压的进行均衡方法, 包括以下步骤:
按照预先设定的各储能器件所需要实现的电压比列,通过双向 DC/AC变换电 路对端电压过高的各储能器件的端电压分别进行 DC/AC变换; 以及
通过多绕组的变压器将经过 DC/AC 变换后的电压分别变换到端电压过低的 各储能器件对应的双向 DC/AC变换电路, 接着分别 AC/DC变换到端电压过低的 各储能器件。
PCT/CN2009/001197 2009-06-03 2009-10-27 用于对储能器件的电压进行均衡的装置和方法 WO2010139099A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/321,188 US9083189B2 (en) 2009-06-03 2009-10-27 Device and method for equalizing voltages of energy-storage elements
CN200980159571.7A CN102598460B (zh) 2009-06-03 2009-10-27 用于对储能器件的电压进行均衡的装置和方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910107641.6 2009-06-03
CNA2009101076416A CN101567574A (zh) 2009-06-03 2009-06-03 一种比例均衡储能器件电压的方法及电路

Publications (2)

Publication Number Publication Date
WO2010139099A1 true WO2010139099A1 (zh) 2010-12-09
WO2010139099A8 WO2010139099A8 (zh) 2012-06-07

Family

ID=41283599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/001197 WO2010139099A1 (zh) 2009-06-03 2009-10-27 用于对储能器件的电压进行均衡的装置和方法

Country Status (3)

Country Link
US (1) US9083189B2 (zh)
CN (2) CN101567574A (zh)
WO (1) WO2010139099A1 (zh)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8148942B2 (en) 2009-11-05 2012-04-03 O2Micro International Limited Charging systems with cell balancing functions
CN101867292A (zh) * 2010-06-17 2010-10-20 西安交通大学 一种基于正激拓扑的远距离供电通信电路
CN101917122A (zh) * 2010-07-15 2010-12-15 北京交通大学 均压模块、带有均压模块的串联超级电容器组
CN102122836B (zh) * 2011-04-01 2014-06-18 北京航空航天大学 一种锂离子动力电池组充放电主动均衡电路
CN102291001B (zh) * 2011-08-26 2014-01-01 广州金升阳科技有限公司 一种自激推挽式变换器
US9425631B2 (en) * 2012-02-27 2016-08-23 Infineon Technologies Austria Ag System and method for battery management
CN102769316B (zh) * 2012-07-20 2014-10-15 上海交通大学 电池选择性均衡方法
CN103490491A (zh) * 2013-06-12 2014-01-01 中国船舶重工集团公司第七一二研究所 锂电池充放电保护装置
CN103633691A (zh) * 2013-11-13 2014-03-12 华南理工大学 半桥zvs电池串均衡电路及其控制方法
CN103618360B (zh) * 2013-12-05 2015-05-27 哈尔滨工业大学 串联电池组多单体直接均衡装置及方法
CN103825328B (zh) * 2014-02-28 2017-01-11 杭州金恒电源科技有限公司 高效大功率超级电容器模组电压均衡装置及方法
CN105262182B (zh) * 2015-11-13 2017-09-29 全天自动化能源科技(东莞)有限公司 一种电池组双向均衡充放电电路及其充放电控制实现方法
CN105406729A (zh) * 2015-12-21 2016-03-16 付强 一种升压系统及其控制方法
CN105703434A (zh) * 2016-03-21 2016-06-22 南京金龙新能源汽车研究院有限公司 一种具有主动均衡功能的电池管理系统
CN106026285B (zh) * 2016-07-06 2024-02-06 肖兴龙 由多绕组变压器构成的电池均衡器
CN110679074B (zh) 2017-05-25 2020-12-25 华为技术有限公司 用于载波同步的装置、逆变系统和方法
CN107425727B (zh) * 2017-06-09 2023-03-28 黑龙江大学 输入串联型辅助电源
US10374440B2 (en) * 2017-06-22 2019-08-06 Rockwell Collins, Inc. System and method for supercapacitor charging and balancing
CN107565183B (zh) * 2017-09-07 2020-05-22 山东大学 面向全生命周期应用的模块化分布式电池管理系统及方法
JP7073669B2 (ja) * 2017-10-27 2022-05-24 株式会社デンソー 蓄電システム
US10444295B2 (en) * 2017-12-20 2019-10-15 National Chung Shan Institute Of Science And Technology Battery balance management circuit
CN108683245B (zh) * 2018-05-21 2020-03-06 山东亿昌照明科技有限公司 一种基于人工智能学习的户外照明直流供电系统
CN108616158A (zh) * 2018-05-22 2018-10-02 南京理工大学 多联机群控型电梯驱动控制系统的节能装置
CN117713296A (zh) * 2018-12-12 2024-03-15 济南昱泉自动化研究所 一种串联电池组主动均衡方法
US20220416549A1 (en) * 2019-03-21 2022-12-29 Hefei Gotion High-Tech Power Energy Co., Ltd. Active equalization circuit, battery management system, power source system, and electronic device
CN110112808A (zh) * 2019-05-30 2019-08-09 重庆大学 基于总线式push-pull隔离式总线均衡电路及其工作方法
JP7334508B2 (ja) * 2019-07-04 2023-08-29 スミダコーポレーション株式会社 Dc/dc変換機
CN110912389B (zh) * 2019-12-11 2021-02-12 阳光电源股份有限公司 多电容串联支路的均压放电电路及其控制方法
CN111391708A (zh) * 2020-03-26 2020-07-10 江西优特汽车技术有限公司 一种缩小均衡电路电压差和提高均衡效率的方法
CN118017631A (zh) * 2021-03-31 2024-05-10 华为数字能源技术有限公司 一种储能系统
CN113783247B (zh) * 2021-08-12 2024-05-24 西安交通大学 一种液态金属电池组两级双向均衡系统及控制方法
CN113708466B (zh) * 2021-10-25 2022-03-11 广东希荻微电子股份有限公司 一种电池充放电电路和终端设备
CN116207831B (zh) * 2023-05-05 2023-08-29 惠州市乐亿通科技有限公司 功率均衡电路及电源装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001022554A1 (en) * 1999-09-22 2001-03-29 Abb Oy Voltage balancing in intermediate circuit capacitors
JP2008005630A (ja) * 2006-06-22 2008-01-10 Fdk Corp 直列セルの電圧バランス回路
CN101119037A (zh) * 2007-06-30 2008-02-06 杭州中恒电气股份有限公司 后备电源的均压电路

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6021052A (en) * 1997-09-22 2000-02-01 Statpower Technologies Partnership DC/AC power converter
DE102004031216A1 (de) * 2004-06-28 2006-01-19 Siemens Ag Vorrichtung und Verfahren zum Ladungsausgleich in Reihe geschalteter Energiespeicher
US8692515B2 (en) * 2006-06-22 2014-04-08 Fdk Corporation Series-connected rechargeable cells, series-connected rechargeable cell device, voltage-balance correcting circuit for series-connected cells
CN101127449A (zh) * 2007-07-16 2008-02-20 范明亮 直流电能量双向流动的节能电路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001022554A1 (en) * 1999-09-22 2001-03-29 Abb Oy Voltage balancing in intermediate circuit capacitors
JP2008005630A (ja) * 2006-06-22 2008-01-10 Fdk Corp 直列セルの電圧バランス回路
CN101119037A (zh) * 2007-06-30 2008-02-06 杭州中恒电气股份有限公司 后备电源的均压电路

Also Published As

Publication number Publication date
US20120062038A1 (en) 2012-03-15
CN102598460A (zh) 2012-07-18
WO2010139099A8 (zh) 2012-06-07
CN101567574A (zh) 2009-10-28
US9083189B2 (en) 2015-07-14
CN102598460B (zh) 2015-08-26

Similar Documents

Publication Publication Date Title
WO2010139099A1 (zh) 用于对储能器件的电压进行均衡的装置和方法
Kim et al. Center-cell concentration structure of a cell-to-cell balancing circuit with a reduced number of switches
KR102113936B1 (ko) 마찰식 나노 발전기의 에너지 관리 방법, 회로 및 장치
CN102263427B (zh) 储能器装置
EP3944452B1 (en) Active equalization circuit, battery management system, power source system, and electronic device
US20180205238A1 (en) Voltage equalization circuit system
CN102007677A (zh) 双向dc/dc变换器和电力调节器
WO2023040448A1 (zh) 一种储能系统、不间断电源及电池均衡的方法
CN102823104A (zh) 用于电池的充电均衡系统
CN208386212U (zh) 一种不间断电源
Moghaddam et al. Multi-winding equalization technique for lithium ion batteries for electrical vehicles
WO2018127054A1 (zh) 具有多输入的混联变换器和使用其的充换电设施
CN109088462B (zh) 一种含交流模块的电池主动均衡装置
CN101783521A (zh) 一种充放电动态均压电路及使用该电路的供电电源
CN110266018B (zh) 统一电能质量控制器及其控制方法和控制系统
WO2013031934A1 (ja) 電力連系システム
CN104716680A (zh) 具有可再生能源的离线式不间断电源及其控制方法
CN102904317A (zh) 一种双向电能转移电路
CN202856422U (zh) 一种双向电能转移电路
CN107681677A (zh) 一种双向反激原边集成式的电池储能系统
CN204290428U (zh) 一种集成电机驱动和电池充电功能模块
CN219181416U (zh) 电源电路及储能装置
CN108808833A (zh) 一种ups电路
CN108494229B (zh) 一种交直流通用型电力路由器拓扑及其控制方法
CN205846773U (zh) 一种电池双向均衡电路、系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980159571.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09845380

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13321188

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09845380

Country of ref document: EP

Kind code of ref document: A1