WO2019045095A1 - バックライトユニットおよび液晶表示装置 - Google Patents

バックライトユニットおよび液晶表示装置 Download PDF

Info

Publication number
WO2019045095A1
WO2019045095A1 PCT/JP2018/032594 JP2018032594W WO2019045095A1 WO 2019045095 A1 WO2019045095 A1 WO 2019045095A1 JP 2018032594 W JP2018032594 W JP 2018032594W WO 2019045095 A1 WO2019045095 A1 WO 2019045095A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
lens
truncated cone
guide plate
backlight unit
Prior art date
Application number
PCT/JP2018/032594
Other languages
English (en)
French (fr)
Inventor
晋也 渡邉
恵 関口
雄二郎 矢内
直良 山田
齊藤 之人
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201880057004.XA priority Critical patent/CN111065962B/zh
Priority to KR1020207005654A priority patent/KR102303583B1/ko
Priority to JP2019539702A priority patent/JP6806911B2/ja
Publication of WO2019045095A1 publication Critical patent/WO2019045095A1/ja
Priority to US16/808,070 priority patent/US11243343B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0053Prismatic sheet or layer; Brightness enhancement element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0019Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having reflective surfaces only (e.g. louvre systems, systems with multiple planar reflectors)
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0052Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode
    • G02B19/0057Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode in the form of a laser diode array, e.g. laser diode bar
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0061Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
    • G02B19/0066Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED in the form of an LED array
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • G02B5/045Prism arrays

Definitions

  • the present invention relates to a backlight unit and a liquid crystal display device using the same.
  • the liquid crystal display device consumes less power, and its use is expanding year by year as a space-saving image display device.
  • the liquid crystal display device has a configuration in which a backlight unit, a backlight side polarizing plate, a liquid crystal panel, a viewing side polarizing plate and the like are provided in this order.
  • the backlight unit includes, for example, a light guide plate and a light source disposed on the end surface (side surface) thereof, and an edge light for guiding light incident from the light source to the end surface and irradiating the light from the entire main surface toward the liquid crystal panel.
  • a direct type in which a light source is disposed directly below a liquid crystal panel without using a mold (sometimes referred to as a side light type) or a light guide plate, and the light is directed toward the liquid crystal panel.
  • a diffusion sheet, a condensing sheet that condenses light in the normal direction (front direction) of the liquid crystal panel main surface, and the like are provided on the backlight unit.
  • the light emitted from the backlight unit and having passed through the diffusion sheet and / or the light collection sheet has a luminance distribution in the polar angle direction
  • the light is obliquely incident on the liquid crystal cell.
  • the liquid crystal cell has viewing angle dependency, and the transmittance of light incident in an oblique direction when the liquid crystal cell is displayed in black becomes high.
  • the luminance when viewed from the oblique direction at the time of black display of the liquid crystal display device is increased, which leads to the deterioration of the image quality.
  • a display device (OLED) using an organic EL that is excellent in display at the time of black display is also spreading, and it is desired to further reduce the luminance at the time of black display as a liquid crystal display device.
  • Non- Patent Document 1 and Non-patent Document 2 a configuration is proposed in which the contrast in the oblique direction is improved by making the light incident on the liquid crystal panel into parallel light and scattering the light after the light passes through the liquid crystal cell. Further, in order to collimate the light emitted from the backlight unit, light collimating members as shown in Patent Literature 1 and Non Patent Literature 3 have been proposed.
  • a lens sheet is formed of a translucent base material on which a first lens array is formed on one surface and a second lens array is formed on the back surface of the lens sheet.
  • the lens array is formed of a pattern in which one or a plurality of lenses are sandwiched between substantially flat surfaces having a width s becomes one cycle, and the cycles of the first lens array and the second lens array coincide with each other, A lens sheet is described in which the phase shift is approximately zero or approximately half a cycle.
  • Patent Document 1 proposes a light collimating member in which a trapezoidal minute solid and a lens are provided on a transparent substrate, and it is described that light traveling in the front direction is collected and collimated.
  • a trapezoidal minute solid and a lens are provided on a transparent substrate, and it is described that light traveling in the front direction is collected and collimated.
  • the luminance of light emitted obliquely from the light collimating member which affects the luminance increase in the oblique direction at the time of liquid crystal cell black display.
  • the area ratio in contact with the micro three-dimensional light guide plate is low, there is a problem that the light extraction efficiency is lowered and the luminance is lowered.
  • Non-Patent Document 3 proposes that an optical sheet having a truncated cone shape on one side of a transparent substrate and a lens shape on the other side on a light guide plate is provided to collimate light.
  • part of the light incident from the light guide plate to the truncated conical surface can not be totally reflected, and leaks from the inclined surface, as viewed from an oblique direction during black display of the liquid crystal display device. There is a problem that leads to increased brightness.
  • An object of the present invention is to provide a backlight unit provided with a light collimating member which raises the front luminance and reduces the luminance in the oblique direction in view of the above-mentioned circumstances. It is an object of the present invention to provide a backlight unit provided with a light collimating member that raises the front luminance of a liquid crystal display device and reduces light leakage in the oblique direction during black display to improve display performance. Another object of the present invention is to provide a liquid crystal display device in which the contrast is improved by having a backlight unit provided with a light collimating member.
  • a lens array is formed on one side of a transparent substrate, and a light collimating member in which a truncated cone is arranged on the other surface of the transparent substrate, a light guide plate and a light source
  • a back light unit wherein the light collimating member is disposed to face one of the main surfaces of the light guide plate, and the light source is disposed to face at least one side of the light guide plate;
  • the upper frusto-conical shape is shaped such that its width decreases in the height direction as it gets farther from the transparent substrate, and the position of each lens in the lens array is relative to the position of the frusto-conical shape corresponding to this lens In the direction connecting the center of this lens and the light source closest to this lens, it is shifted in the direction away from the light source, and the optical axis of the lens is arranged to pass through the slope of the truncated cone.
  • the transparent base material side with in contact the surface of the opposite side, frustoconical shape of
  • n1 is the refractive index of the light guide plate
  • n2 is the refractive index of the frusto-conical shape
  • ⁇ ave is a value represented by the following equation 4
  • m in equation 4 is the incident angle of light entering the truncated cone from the light guide plate
  • ⁇ i is the i-th incident angle when dividing the incident angle range of light incident on the truncated cone from the light guide plate into m
  • is the inclination angle of the truncated cone
  • R is the transparent substrate side of the lens
  • the radius r is the radius of the surface opposite to the truncated transparent substrate.
  • the frusto-conical shape of the light collimating member satisfies the following equations 5 to 6.
  • the distance L between the optical axis of the lens and the perpendicular of the truncated cone satisfy the following formula 7.
  • is the inclination angle of the truncated cone
  • h is the height of the truncated cone
  • r is the radius of the surface opposite to the transparent substrate of the truncated cone.
  • a light absorbing layer provided with an opening is provided between the truncated cone of the light collimating member and the lens, and the center of the opening of the light absorbing layer coincides with the position of the optical axis of the lens.
  • the opening of the light absorption layer is circular, and the diameter Rb of the opening satisfy Formula 9. 0.15 ⁇ Rb / R ⁇ 1.0 ⁇ Equation 10
  • the light guide plate and the surface on the opposite side of the truncated conical transparent substrate be in contact via an adhesive layer.
  • a frusto-conical or conical protrusion having a smaller inclination angle than the frusto-conical shape, and the surface of the protrusion frusto-conical side
  • the radius is equal to the radius of the face opposite the frusto-conical transparent substrate.
  • the plurality of lenses are randomly arranged.
  • the light deflection member be disposed closer to the viewing side than the light collimating member.
  • the light deflection member is a prism sheet.
  • the liquid crystal display device of the present invention includes a liquid crystal display element and the backlight unit of any of the above-described present inventions.
  • a lens array is formed on one side of a transparent substrate, and a light collimating member in which a truncated cone is arranged on the other surface of the transparent substrate, a light guide plate and a light source
  • the light collimating member is disposed facing one main surface of the light guide plate
  • the light source is disposed facing at least one side surface of the light guide plate
  • the light source is disposed on the optical sheet
  • the frusto-conical shape is shaped such that its width decreases in the height direction as it goes away from the transparent substrate, and each lens of the lens array is positioned relative to the frusto-conical position corresponding to this lens.
  • the light axis is shifted away from the light source, and the optical axis of the lens is And the frusto-conical surface of the light-transmissive plate opposite to the transparent substrate are in contact with each other, and the light-guide plate is incident on the frusto-conical surface since the relationship between the refractive index n1 of the light-guide plate and the The refracted light is refracted at the interface of the lower surface of the truncated cone so that the light incident on the truncated conical surface can be efficiently totally reflected.
  • the light totally reflected on the slope of the truncated cone is directed in the front direction (the azimuth angle when the normal direction of the main surface of the light collimating member is 0 ° It is possible to move in the direction of approximately ⁇ 40 ° centering on 0 ° polar angle 0 ° direction). Since the light totally reflected on this slope can be converted into parallel light by the lens, light with high parallelism can be emitted in the front direction.
  • Equations 1 and 2 By satisfying Equations 1 and 2, light exiting from the truncated conical slope can be significantly suppressed, so light directed in an oblique direction can be suppressed, and as a result, it is viewed from the oblique direction at the time of black display of the liquid crystal display device It is possible to suppress the increase in luminance at the time. Further, by satisfying the formula 3, the light extraction efficiency from the light guide plate can be enhanced, and as a result, the luminance in the front direction can be increased.
  • a numerical value range represented using “to” means a range including numerical values described before and after “to” as the lower limit value and the upper limit value unless otherwise noted.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a liquid crystal display device 40 according to an embodiment of the present invention.
  • the liquid crystal display device 40 includes the light source 10, the light guide plate 12, and the light collimating member 2, and the backlight unit 1 according to the first embodiment of the present invention, and the backlight incident surface opposite to the image display surface. And a liquid crystal display element 30 to which light is incident.
  • a plurality of light collimating members 2 are arranged on the transparent substrate 21 and a plurality of lenses 22 arranged on one surface of the transparent substrate 21, that is, a plurality of lens arrays and the other surface of the transparent substrate 21. And a truncated cone 20.
  • the light source 10 is disposed to face the side surface of the light guide plate 12, and the light collimating member 2 is on the main surface of the light guide plate 12 on the light emission side (liquid crystal display element 30 side) Is located in
  • the light collimating member 2 is disposed with the side of the truncated cone 20 facing the light guide plate 12.
  • the light emitted from the light source 10 is incident on the side surface of the light guide plate 12.
  • the light guide plate 12 guides the light incident from the side surface, and emits the light from the main surface on the liquid crystal display element 30 side.
  • the light emitted from the light guide plate 12 enters the light collimating member 2.
  • the light collimating member 2 condenses the incident light in the normal direction (front direction) of the main surface of the liquid crystal display element (i.e., enhances directivity) and emits the light to cause the light to be incident on the liquid crystal display element 30.
  • the light source 10 of the present embodiment may be an LED or a laser light source.
  • the laser light source is preferable in terms of the improvement of color reproducibility and the ability to spread light in the in-plane direction more efficiently.
  • the light source may be a white light source, or a plurality of light sources of different emission colors may be used.
  • the thickness of the light source is desirably small from the viewpoint of thinning the liquid crystal display device, preferably 0.2 mm to 5 mm, and more preferably 0.2 mm to 1 mm.
  • the light sources 10 are arrayed and fixed on the substrate 11.
  • the substrate 11 is disposed to face the surface of the light guide plate 12 on the opposite side to the surface on which the light is emitted.
  • the size of the surface of the substrate 11 is a size that covers the surface on the opposite side to the surface of the light guide plate 12 on which the light is emitted.
  • the substrate 11 on which the light source 10 is disposed is not particularly limited, and various known substrates can be used. In order to use light efficiently, it is preferable that the surface of the substrate 11 facing the light guide plate 12 be a reflective surface that has small absorption and high reflectance.
  • the light guide plate 12 use a transparent base material that is less absorbed at the emission wavelength of the light source 10.
  • transparent substrates such as acrylic substrates represented by PMMA (polymethyl methacrylate), glass substrates, and polycarbonate substrates are preferable.
  • Acrylic substrates are particularly preferred because they have high transparency and high surface smoothness.
  • the glass substrate is preferable because it has high rigidity and thus can be thinned and can contribute to thinning of the entire liquid crystal display device.
  • the refractive index n1 of the light guide plate is preferably 1.4 to 1.6 from the viewpoint of efficiently guiding the light from the light source and the viewpoint of suppression of light absorption.
  • An adhesive layer 13 for optically adhering the light collimating member 2 and the light guide plate 12 is provided on the light guide plate 12.
  • the adhesive layer 13 known ones such as various adhesives and adhesives, UV (ultraviolet) curable resin and the like can be used, but it is preferable to use one having low absorption at the emission wavelength and high transparency.
  • the use of a liquid type adheres to the side surfaces of the truncated cone to affect the effect, it is preferable to be composed of an adhesive in a solid form with a small amount of liquid components.
  • the elastic modulus of the adhesive layer 13 is preferably 0.1 MPa to 3.0 MPa, and the thickness of the adhesive layer 13 is preferably 1 ⁇ m to 20 ⁇ m.
  • the adhesive layer 13 may be provided so as to cover the entire surface of the light guide plate 12 from which light is emitted, or provided only on the surface 20 a of the light collimating member 2 opposite to the transparent base 21 of the truncated cone 20. Also good.
  • the refractive index n3 of the adhesive layer 13 preferably satisfies the relationship of n1 ⁇ n3 ⁇ n2 or n1 ⁇ n3 ⁇ n2 from the viewpoint of light extraction from the light guide plate 12 and the viewpoint of refracting light incident on the truncated cone 20 .
  • n1 is a refractive index of the light guide plate 12
  • n2 is a refractive index of a truncated cone.
  • the refractive index n2 of the truncated cone 20 provided in the light collimation member 2 of the present embodiment has a value larger than the refractive index n1 of the light guide plate.
  • light incident at a high angle on the surface of the light guide plate 12 is at the interface between the light guide plate 12 and the adhesive layer 13 or at the interface between the adhesive layer 13 and the conical surface 20a.
  • the refractive index n2 is less than n1, as shown in FIG. 2B, the light which leaks from the slope without increasing the total reflection by the slope 20c of the truncated cone 20 increases.
  • the light collimating member 2 includes the transparent base 21, a plurality of lenses 22 (lens array) arrayed on one side of the transparent base 21, and a plurality of arrays on the other side of the transparent base 21. And a frusto-conical shape 20.
  • the frusto-conical shape 20 has a shape in which the width (the diameter of the cross section perpendicular to the height direction) becomes narrower as the distance from the transparent substrate 21 increases in the height direction (direction perpendicular to the main surface of the transparent substrate 21). . Therefore, the side surface of the truncated cone 20 (hereinafter referred to as the slope 20c) is inclined with respect to the height direction.
  • the surface direction of the lens 22 (direction parallel to the main surface of the transparent base 21) Is shifted from the light source 10 in the direction connecting the center of the lens 22 and the light source 10 closest to the lens 22 with respect to the position in the surface direction of the truncated cone 20 corresponding to the lens 22
  • the optical axis of the lens 22 is disposed to pass through the slope of the truncated cone 20 corresponding to the lens 22.
  • the position of the lens 22 and the truncated cone 20 may be shifted as described above in at least one unit, and the positions of the lens 22 and the truncated cone 20 may be shifted as described above in all the units. Is preferred. Further, the amount of deviation between the lens 22 and the truncated cone 20 may be the same or different in all units. Also, the arrangement of the plurality of lenses 22 and the arrangement of the plurality of truncated cones 20 may be the same, and the plurality of lenses 22 may be offset with respect to 20 in a truncated cone as a whole.
  • the frusto-conical shape of the light collimating member satisfies the following Formula 1 to Formula 3.
  • n1 is the refractive index of the light guide plate
  • n2 is the refractive index of the frusto-conical shape
  • ⁇ ave is a value represented by the following equation 4
  • m in equation 4 is the incident angle of light entering the truncated cone from the light guide plate
  • ⁇ i is the i-th incident angle when dividing the incident angle range of light incident on the truncated cone from the light guide plate into m
  • is the inclination angle of the truncated cone
  • R is the transparent substrate side of the lens
  • the radius r is the radius of the surface opposite to the truncated transparent substrate.
  • FIG. 3 illustrates the definition of each value in the truncated cone.
  • the incident angle range (range of ⁇ i) of light entering the truncated cone from the light guide plate in the equation 4 can be obtained as ⁇ c ⁇ 90 ° using the critical reflection angle ⁇ c of the light guide plate.
  • ⁇ c is obtained by the following equation.
  • n0 Refractive index around the light guide plate (1.0 for air)
  • n1 Refractive index of the light guide plate
  • ⁇ ave is the average of the inclination angles of the truncated cones necessary for heading in the front direction (0 ° direction) after light incident on the truncated cones at each incident angle is totally reflected on the slopes of the truncated cones. Represents a value.
  • the distance L between the optical axis of the lens of the light collimating member and the perpendicular to the truncated cone preferably satisfies the following formula (7).
  • L The definition of L is shown in FIG.
  • the material which comprises the truncated cone 20 of the light collimation member 2 will not be specifically limited if it is a material larger than the refractive index n1 of a light-guide plate.
  • Known examples include acrylic resins such as polyethylene terephthalate, polypropylene, polycarbonate and polymethyl methacrylate, benzyl methacrylate, MS resin (polymethacrylic styrene), cycloolefin polymer, cycloolefin copolymer, cellulose acylate such as cellulose diacetate and cellulose triacetate, etc. It may be formed of a resin having high transparency similar to the light guide plate used for the backlight device of the above.
  • the resin is not limited to a thermoplastic resin, and for example, an ultraviolet curable resin such as an acrylate monomer and an epoxy monomer, an ionizing radiation curable resin such as an electron beam curable resin, and a thermosetting resin can also be used.
  • an ultraviolet curable resin such as an acrylate monomer and an epoxy monomer
  • an ionizing radiation curable resin such as an electron beam curable resin
  • a thermosetting resin can also be used.
  • inorganic fine particles may be added to the resin material.
  • zirconia fine particles, titania fine particles and the like can be mentioned. These fine particles are preferably dispersed in a particle size of several nm to several ⁇ m so that light is not scattered in the resin.
  • the radius on the transparent base side of the truncated cone 20 of the light collimating member 2 is preferably smaller than the length of one side of one pixel of the liquid crystal display element, and is preferably 1 ⁇ m to 200 ⁇ m. By adjusting to this range, it becomes possible to make light enter the pixel uniformly.
  • the transparent base 21 of the light collimating member 2 may be a base made of a highly transparent resin similar to a light guide plate used in a known backlight device.
  • a highly transparent resin similar to a light guide plate used in a known backlight device.
  • examples include acrylic resins such as polyethylene terephthalate, polypropylene, polycarbonate and polymethyl methacrylate, benzyl methacrylate, MS resin (polymethacrylic styrene), cycloolefin polymer, cycloolefin copolymer, cellulose acylate such as cellulose diacetate and cellulose triacetate, etc. It can be mentioned.
  • the thickness d of the transparent substrate 21 be in a range that satisfies the following formula 8 with respect to the focal length f of the lens.
  • h is the height of the truncated cone.
  • n4 is the refractive index of the lens
  • r 1 is the radius of curvature of the lens.
  • the thickness of the transparent substrate 21 By setting the thickness of the transparent substrate 21 in the above-mentioned range, it is possible to condense the light reflected by the inclined surface 20c of the truncated cone 20, and it is possible to suppress the increase of the front luminance and the light leakage in the oblique direction.
  • the surface of the transparent substrate 21 may be subjected to surface treatment such as corona treatment or plasma treatment to improve adhesion of the truncated cone 20 and the lens 22, or may be provided with an adhesion improving layer.
  • the lens 22 constituting the lens array of the light collimating member 2 may be a spherical lens or an aspheric lens, so that light totally reflected by the slope 20 c of the truncated cone 20 can be condensed by the lens 22. You can adjust the curved surface.
  • the material used for the lens may be formed of a resin having high transparency similar to a light guide plate used for a known backlight device.
  • acrylic resins such as polyethylene terephthalate, polypropylene, polycarbonate and polymethyl methacrylate, benzyl methacrylate, MS resin (polymethacrylic styrene), cycloolefin polymer, cycloolefin copolymer, cellulose acylate such as cellulose diacetate and cellulose triacetate, etc.
  • the resin is not limited to a thermoplastic resin, and for example, an ultraviolet curable resin such as an acrylate monomer and an epoxy monomer, an ionizing radiation curable resin such as an electron beam curable resin, and a thermosetting resin can also be used.
  • the radius of the transparent substrate side of the lens 22 of the light collimating member 2 is preferably smaller than the length of one side of one pixel of the liquid crystal display element, and is preferably 1 ⁇ m to 200 ⁇ m. By adjusting to this range, it becomes possible to make light enter the pixel uniformly.
  • FIG. 6 to 8 show arrangement examples of the lens 22 and the truncated cone 20 observed from the normal direction from which light is emitted on the main surface of the light collimating member 2.
  • FIG. The lenses 22 and the truncated cones 20 may be arranged so as to be close-packed in the square arrangement and the hexagonal arrangement as shown in FIGS. 6 and 7, or may be arranged randomly (randomly) as shown in FIG. good. That is, when one lens 22 and one truncated cone 20 corresponding to the lens 22 are one unit, a plurality of units may be arranged irregularly.
  • the arrangement density of the units may be changed according to the distance from the light source 10 to adjust so as to extract light uniformly from the surface of the light collimating member 2. By randomly arranging the units (lens 22 and truncated cone 20), it is possible to suppress the occurrence of moiré.
  • the truncated cone 20 and the light guide plate 12 are in contact with each other through the adhesive layer 13.
  • the present invention is not limited thereto.
  • the truncated cone 20 and the light guide plate 12 are in direct contact with each other. May be
  • the truncated cone 20 and the light guide plate 12 are in contact via the adhesive layer 13, as shown in FIG. 11, on the surface (lower surface) opposite to the transparent substrate 21 of the truncated cone 20.
  • it has a projection 24 in the shape of a truncated cone or a cone.
  • the inclination angle of the projection 24 is smaller than that of the truncated cone 20.
  • the radius of the surface on the side of the truncated cone 20 of the protrusion 24 is equal to the radius of the surface on the side opposite to the transparent base 21 of the truncated cone 20 (the surface on the side of the protrusion 24).
  • part of the light from the light guide plate 12 passes through the adhesive layer 13 and enters the truncated cone 20 from the slope 20c of the truncated cone 20. It will When this light is reflected by the inclined surface 20c of the truncated cone 20, the light is reflected more in the oblique direction than in the front direction, so the amount of light leakage in the oblique direction may be increased.
  • the protrusion 24 having a smaller inclination angle than the truncated cone 20 on the lower surface of the truncated cone 20 the light passing through the adhesive layer 13 is frusto-conical 20 from the protrusion 24. Incident to By this, light is reflected in the front direction by the slope 20c of the truncated cone 20, and the amount of light leakage in the oblique direction can be reduced.
  • the inclination angle ⁇ b of the protrusion 24 be 5 to 25 ° from the viewpoint of suitably suppressing light leakage.
  • the light source 10 is disposed on one side surface of the light guide plate 12.
  • the present invention is not limited to this. Even if light sources are disposed on two or more side surfaces of the light guide plate Good.
  • the light source is a truncated cone in a direction away from the light source in a direction connecting the lens and the light source closest to the light source relative to the light source.
  • the position of the lens may be offset with respect to the position.
  • the position of the lens may be offset from the position of the truncated cone with reference to at least one light source.
  • a light absorbing layer provided with an opening may be provided between the truncated cone 20 of the light collimating member 2 and the lens 22.
  • the center of the opening preferably coincides with the position of the optical axis of the lens 22.
  • the light absorbing layer 26 is provided between the truncated cone 20 and the transparent substrate 21.
  • An opening 26 a is provided in the light absorption layer 26, and the center of the opening coincides with the optical axis of the lens 22.
  • the light absorbing layer 26 is provided between the lens 22 and the transparent base 21. Also in this case, the light absorption layer 26 is provided with the opening 26 a, and the center of the opening coincides with the optical axis of the lens 22.
  • the light absorbing layer having the opening between the truncated cone and the lens by providing the light absorbing layer having the opening between the truncated cone and the lens, the light traveling toward the front direction among the light reflected by the slope of the truncated cone passes through the opening and the lens The light which is incident on the light source and directed obliquely is absorbed by the light absorption layer 26, so that the oblique light leakage can be suppressed.
  • the shape of the opening of the light absorption layer is not particularly limited, but is preferably circular.
  • the diameter Rb of the opening satisfy Expression 9. 0.15 ⁇ Rb / R ⁇ 1.0 ⁇ Formula 9
  • Rb / R By setting Rb / R to be 0.15 or more, it is possible to secure the amount of light incident on the lens, and to obtain high front luminance when used in a liquid crystal display device.
  • Rb / R By setting Rb / R to 1 or less, the light shielding effect can be reliably obtained, and oblique light leakage can be suitably suppressed.
  • the light absorbency of a light absorption layer is one or more from a viewpoint which can suppress an oblique light leak suitably.
  • a material obtained by mixing carbon black, carbon nanotubes and the like with an existing binder material can be used.
  • a resist material as the binder material, it becomes possible to pattern and form the opening of the absorption layer by UV (ultraviolet) exposure.
  • the thickness of the light absorption layer may be appropriately set depending on the material of the light absorption layer, the absorbance, the light transmittance, and the like. Specifically, 0.1 ⁇ m to 10 ⁇ m is preferable, and 0.5 ⁇ m to 5 ⁇ m is more preferable.
  • a louver film, an anisotropic light absorbing sheet (hereinafter referred to as an anisotropic light absorbing sheet) or the like may be provided on the light collimating member.
  • an anisotropic light absorbing sheet By providing the anisotropic light absorbing sheet, it is possible to further reduce the light leaking in the oblique direction.
  • a louver type optical sheet manufactured by 3M, black security / privacy filter
  • a light deflection member may be provided on the light collimation member in order to control the light emission direction (see FIG. 14).
  • a prism sheet utilizing refraction of light a lens sheet, a transmission type diffraction grating utilizing diffraction, or the like can be used.
  • a prism sheet is preferable as a member for deflecting parallel light emitted from the light collimating member in one direction.
  • the backlight unit of the present invention can emit light with little light leakage in the oblique direction and high luminance in the front direction.
  • a light deflection member to such a backlight unit of the present invention, it is possible to deflect the light emitted in the front direction to any direction and to increase the brightness in any direction.
  • a display mounted on a car can be easily viewed from a specific direction (for example, the driver's seat side) and can be hard to see from other directions.
  • a specific direction for example, the driver's seat side
  • the driver can easily view the outside through the front or side glass.
  • a diffusion film may be provided on the light deflection member in order to control the spread of the light emitted from the light deflection member.
  • a well-known diffusion film can be used as a diffusion film.
  • the light diffusion member may be a known member such as a diffusion sheet containing fine particles in a base, a diffusion sheet having surface irregularities, a diffraction grating, a member utilizing light refraction such as a microlens array or a lenticular lens, etc. Can do.
  • the side edge type light source and the direct type light source may be used in combination.
  • the side edge light source is lit (the direct light source is not lit), as described above, light leakage in the oblique direction is small, and light with high luminance in the front direction can be emitted.
  • the direct light source is lit (the side edge light source is not lit)
  • the light is refracted in various directions by each member, so the backlight light is emitted not only in the front but also in the oblique direction. That is, only by switching the light source to be lit, the viewing angle can be switched to the narrow view and the wide view with one display.
  • one person can use it with emphasis on privacy, and a plurality of people can use it to share data and images / videos.
  • Example 1 Fabrication of light collimating member >>
  • the mold I has a radius R of 30 ⁇ m, a pitch R of 30 ⁇ m, and a radius I of 62 °, a radius of 30 ⁇ m on the transparent substrate side of the truncated cone, a height h of the cone of 42 ⁇ m, and a pitch of 60 ⁇ m.
  • a UV curable resin n2 1.69 (ACHR-MOLD-19 manufactured by Aika Kogyo Co., Ltd.) is coated on one side of the transparent substrate After processing and pressing the mold I, it was cured by irradiation with ultraviolet light. The cured resin was peeled off from the mold I and a frusto-conical pattern was formed on the PET film.
  • the cured resin was peeled off from the mold II, and the lens pattern was shaped on a PET film.
  • the shaping was performed by shifting the lens and the truncated cone so that the distance between the optical axis of the lens and the perpendicular of the truncated cone is 13.3 ⁇ m, to obtain a light collimating member A1.
  • This solution was coated on a light guide plate to a dry thickness of 0.3 to 0.5 ⁇ m, and then heated at 70 ° C. for 10 minutes to form an optical bonding layer having a refractive index of 1.50. .
  • Example 2 A light collimating member A2 is manufactured in the same manner as in Example 1 except that the mold I having a conical trapezoidal inclination angle ⁇ of 57 ° is used, and the distance L between the optical axis of the lens and the perpendicular of the truncated circular cone is 9.5 ⁇ m.
  • Example 3 A light collimating member A3 is manufactured in the same manner as in Example 1 except that the mold I with the inclination angle ⁇ of the truncated cone of 70 ° is used and the distance L between the optical axis of the lens and the perpendicular of the truncated cone is 18.5 ⁇ m.
  • the light guide plate provided with the mold I with the inclination angle ⁇ of the truncated cone of 70 ° is used and the distance L between the optical axis of the lens and the perpendicular of the truncated cone is 18.5 ⁇ m.
  • the light guide plate provided with the mold I with the inclination angle ⁇ of the truncated cone of 70 ° is used and the distance L between the optical axis of the lens and the perpendicular of the truncated cone is 18.5 ⁇ m.
  • a light guide plate provided with a light collimation member A4 was produced in the same manner as in Example 1 except for the above.
  • Example 6 A light guide plate provided with a light collimation member A6 was produced in the same manner as in Example 1 except that the distance L between the optical axis of the lens and the normal of the truncated cone was set to 5.4 ⁇ m.
  • Example 7 A light guide plate provided with a light collimation member A7 was produced in the same manner as in Example 1 except that the distance L between the optical axis of the lens and the normal of the truncated cone was 20.6 ⁇ m.
  • the cured resin was peeled off from the mold to prepare a prism sheet B1 having a prism shape shaped on a PET film.
  • the liquid crystal display device LL-M220 manufactured by Sharp Corporation
  • the light guide plate with a white dot and the diffusion film were taken out.
  • a diffusion film was placed on the light guide plate, and two prism sheets B1 were placed so that the extending directions of the prisms are orthogonal to each other.
  • Comparative Example 2 A light collimating member B2 is used in the same manner as in Example 1 except that the mold I with the inclination angle ⁇ of the truncated cone of 75 ° is used and the distance L between the optical axis of the lens and the perpendicular of the truncated cone is 20.8 ⁇ m.
  • the light guide plate provided with the mold I with the inclination angle ⁇ of the truncated cone of 75 ° is used and the distance L between the optical axis of the lens and the perpendicular of the truncated cone is 20.8 ⁇ m.
  • the light guide plate provided with the mold I with the inclination angle ⁇ of the truncated cone of 75 ° is used and the distance L between the optical axis of the lens and the perpendicular of the truncated cone is 20.8 ⁇ m.
  • Comparative Example 4 A mold I with a square arrangement of a truncated cone with an inclination angle of ⁇ 57 °, a radius of 24 ⁇ m on the transparent substrate side of the truncated cone, a height h of the truncated cone of 30 ⁇ m and a pitch of 100 ⁇ m, a radius of curvature R of 52 ⁇ m, and a pitch of 100 ⁇ m
  • the mold II in which the spherical lenses were squarely arranged was prepared.
  • UV curable resin composition with n 1.47 (Nippon Kayaku Co., Ltd.
  • KAYARAD-HX220 80 parts by weight, Nippon Kayaku Co., Ltd.) on one side of a 38 ⁇ m PET film (Cosmo Shine A4300 manufactured by Toyobo Co., Ltd.) 20 parts by weight of KAYARAD-UX 4101, 1 part by weight of BASF Japan Ltd. Irgacure 184, a mixture of 0.2 parts by weight Nippon Kayaku Co., Ltd. KAYACURE-EPA, 1.5 parts by weight of BASF Japan Ltd. TINUVIN PS) And the mold I was pressed, followed by curing by irradiation with ultraviolet light. The cured resin was peeled off from the mold I and a frusto-conical pattern was formed on the PET film.
  • the cured resin was peeled off from the mold II, and the lens pattern was shaped on a PET film.
  • the lens and the frusto-conical shape were shaped so that the distance between the optical axis of the lens and the perpendicular of the frusto-conical coincided, to obtain a light collimating member B4.
  • the cured resin was peeled off from the mold and the aspheric lens pattern was shaped on a PET film.
  • the cured resin was peeled off from the mold to obtain the intended lens sheet.
  • the optical axis of the first aspheric lens and the apex of the second concave prism were shaped to coincide with each other.
  • each light collimating member is perpendicular to the frusto-conical perpendicular line by the distance L described in Table 1 (Table 1-1) in the direction (traveling direction of light from the LED) perpendicular to the end face of the light guide plate in close contact with the LED. And arranged so as to shift the optical axis of the lens.
  • the light source of the manufactured backlight unit was turned on, and the luminance distribution was measured using EZ Contrast manufactured by ELDIM.
  • the liquid crystal cell of LL-M220 was disposed on the manufactured backlight unit.
  • a lenticular lens 60 Lpi, 0.43 mm thick
  • the lenticular lens was disposed so that the extending direction of the lens was in the direction of an azimuth of 90 °.
  • the backlight unit was turned on, the liquid crystal cell was in a white display state and a black display state, and luminance was measured using EZContrast manufactured by ELDIM.
  • the brightness at a polar angle 0 ° direction (front direction), an azimuth angle of 0 ° polar angle 60 °, and an azimuth angle of 180 ° polar angle ⁇ 60 ° in white display and black display was used as an index.
  • Comparative Example 1 in which two prism sheets used in the conventional backlight are used, the luminance at a polar angle of ⁇ 60 ° is as high as about 800 Cd / m 2 and the half width at half maximum of the luminance peak in the front direction is 33 ° It can be seen that the light is not collimated.
  • Comparative Example 5 having a configuration described in JP2009-162843A also has a high luminance of about 800 Cd / m 2 at a polar angle of ⁇ 60 °, and a parallel light with a half width at half maximum of the luminance peak in the front direction of 36 °.
  • the half width at half maximum of the luminance peak in the front direction is 10 ° or less, the peak angle is in the range of 0 ° ⁇ 5 °, and the polar angle ⁇ 60 °. It can be seen that the luminance at the point can be suppressed.
  • Example 1 Example 4, and Example 5 satisfying Formula 4 and Formula 5, the luminance at a polar angle of ⁇ 60 ° is further suppressed with respect to the other Examples, and the luminance in the front direction is further suppressed. It can be seen that the
  • Example 8 On the light collimating member of Example 1, a louver film (manufactured by 3M, Black Privacy Filter PF12.1 WS) was further installed.
  • Example 9 (Preparation of anisotropic light absorbing composition) The following components were mixed and stirred at 80 ° C. for 1 hour to obtain an anisotropic light absorbing composition.
  • the dichroic dye the azo dye described in the example of JP-A-2013-101328 was used.
  • Polymerizable liquid crystal compounds 1 and 2 were synthesized according to the method described in lub et al., Recl. Trav. Chim. Pays-Bas, 115, 321-328 (1996).
  • the dried coating film is naturally cooled to room temperature and then irradiated with ultraviolet light using a high pressure mercury lamp (UNICURE VB-15201BY-A, manufactured by Ushio Electric Co., Ltd.) (in nitrogen atmosphere, wavelength: 365 nm, integrated light quantity at wavelength 365 nm: By making 1000 mJ / cm 2 ), the polymerizable liquid crystal compound was polymerized to obtain anisotropic light absorbing sheet 1.
  • a high pressure mercury lamp UNICURE VB-15201BY-A, manufactured by Ushio Electric Co., Ltd.
  • the anisotropic light-absorbing sheet 1 was placed on the light collimating member of Example 1 to obtain Example 9.
  • Table 3 shows the evaluation results of the liquid crystal display device using the backlight unit of each example in which the louver film or the anisotropic light absorbing sheet 1 is disposed.
  • Example 8 and Example 9 which arranged these, it turns out that the brightness
  • Example 10 The same shape as the lens and the truncated cone shown in Example 1 was shaped on 50 ⁇ m PET having a long side of 490 mm and a short side of 280 mm. The density of a pair of lenses and consists frustoconical structure, this time towards the other short side from one short side, as increases from 70 / mm 2 and 278 / mm 2, randomly placed A backlight unit was produced in the same manner as in Example 1 except for the above.
  • Example 10 observation results of moire of liquid crystal display devices using the backlight units of Example 1 and Example 10 are shown in Table 4.
  • the occurrence of moiré can be suppressed, and it can be seen that the visibility is excellent.
  • Examples 11 to 17 and Comparative Examples 6 to 10 A light collimating member is provided in the same manner as in Examples 1 to 7 and Comparative Examples 1 to 5 except that the light guide plate is changed to the following light guide plate and the optical adhesive layer is changed to the following adhesive layer. A light guide plate was produced.
  • Example 18 A light guide plate provided with a light collimation member A8 was produced in the same manner as in Example 11 except that the thickness of the truncated cone and the PET support (transparent substrate) for shaping the lens was 38 ⁇ m.
  • Example 19 A light guide plate provided with a light collimation member A9 was produced in the same manner as in Example 11 except that the thickness of the truncated cone and the PET support for shaping the lens was 75 ⁇ m.
  • a black pigment dispersion 1 was obtained by mixing carbon black, a dispersant, a polymer and a solvent so as to have the following composition.
  • Black pigment dispersion 1 (Black pigment dispersion 1) -Resin-coated carbon black 13.1% by mass produced according to the description of paragraphs [0036] to [0042] of Japanese Patent No. 5320652.
  • the black pigment dispersion 1, a binder, a photoacid generator and a surfactant were mixed so as to have the following composition, to prepare a light absorbing layer liquid.
  • Binder 1 and Binder 2 were synthesized according to WO 2013/161861.
  • the photoacid generator was synthesized according to WO2014 / 161861.
  • Black pigment dispersion 1 25.954% by mass -Binder 1: 6.836 mass% of random copolymers of molecular weight 13700 of the following structure -Binder 2: a random copolymer having a molecular weight of 11,500 having the following structure: 6.836% by mass -Photo acid generator: Compound having the following structure: 1.000% by mass ⁇ Surfactant: Megafuck F-554 manufactured by DIC Corporation 0.016 mass% -Propylene glycol monomethyl ether acetate 59.358% by mass
  • Ts represents a tosyl group (p-toluenesulfonyl group).
  • KOH-based developer (KOH, containing nonionic surfactant, trade name: CDK-1, manufactured by Fujifilm Electronics Materials Co., Ltd.) was diluted 100 times and used as a developer.
  • the mold II of Example 11 was used to prepare a lens-shaped sample on one side of a PET support.
  • the light absorbing layer solution prepared above was coated on the side opposite to the lens forming surface of the PET support and dried at 95 ° C. for 2 minutes to provide a 2 ⁇ m light absorbing layer.
  • An exposure mask having a ⁇ ⁇ 60 ⁇ m circular opening at the same pitch (60 ⁇ m) as that of the lens was prepared, and the alignment of the exposure mask was adjusted so that the center of the lens and the center of the opening of the exposure mask coincide.
  • Parallel UV light was irradiated so that the irradiation amount at 365 nm was 1000 mJ / cm 2 .
  • Example 21 to 23 A light guide plate provided with light collimating members A11 to A13 was produced in the same manner as in Example 20 except that the diameter ⁇ of the opening of the light absorbing layer was changed to the value described in Table 5 (Table 5-1).
  • Example 24 The mold I of Example 11 was used to prepare a sample having a frusto-conical shape formed on one side of a PET support.
  • the light absorbing layer solution prepared above was coated on the side opposite to the frusto-conical shaped shaping surface of the PET support and dried at 95 ° C. for 2 minutes to provide a 2 ⁇ m light absorbing layer.
  • Parallel UV light was irradiated so that the irradiation amount at 365 nm was 1000 mJ / cm 2 .
  • paddle development 60 seconds ⁇ 3 times
  • heat treatment was performed at 120 ° C. for 10 minutes to harden the light absorption layer, and the light absorption layer having an opening of 3030 ⁇ m was patterned
  • a lens shaping film C2 was obtained.
  • Example 25 A mold having a conical shape with a height of 2 ⁇ m formed on the bottom of the truncated cone of mold I (opposite the surface with a radius of 30 ⁇ m) to form a truncated cone having a projection as shown in FIG. Prepared.
  • a light guide plate provided with a light collimation member A15 was produced in the same manner as in Example 11 except that the frusto-conical shape was shaped by the mold III.
  • the light source of the manufactured backlight unit was turned on, the luminance distribution was measured using EZ Contrast manufactured by ELDIM, and the following four points were used as the evaluation index.
  • -Polar angle of peak brightness-Half width and half width of peak brightness-Polar angle 0 ° brightness (front brightness) ⁇ Ratio of luminance (diagonal luminance) at azimuth angle 0 °, polar angle 40 to 60 ° and azimuth angle 180 °, polar angle 40 to 60 ° with respect to frontal luminance
  • the definition of azimuth angle and polar angle is shown in FIG. That's right.
  • the liquid crystal cell of LL-M220 was disposed on the manufactured backlight unit.
  • a lenticular lens 60 Lpi, 0.43 mm thickness
  • the lenticular lens was disposed so that the extending direction of the lens was in the direction of an azimuth of 90 °.
  • the backlight unit was turned on, the liquid crystal cell was in a white display state and a black display state, luminance was measured using EZ Contrast manufactured by ELDIM, and evaluation was performed using the following two points as an index.
  • ⁇ Front luminance in white display ⁇ CR in front direction and azimuth angle 0 ° polar angle 60 ° (contrast)
  • the half width at half maximum of the luminance peak in the front direction is 10 ° or less, the peak angle is in the range of 0 ° ⁇ 5 °, and the polar angle of 40 ° to It can be seen that the luminance at 60 ° can be suppressed.
  • Example 11 Example 14, and Example 15 satisfying Formula 4 and Formula 5, the luminance at a polar angle of 40 ° to 60 ° is further suppressed as compared with the other Examples, and the front direction It can be seen that the brightness of is increased.
  • Example 11 and 18 satisfying Equation 8 the front luminance is high and the luminance with a polar angle of 40 ° to 60 ° is low, whereas in Example 19 not satisfying Expression 8, the front luminance is reduced, and the peak luminance is half.
  • the increase of the value range and the increase of the brightness of the polar angle of 40 ° to 60 ° are observed.
  • Table 6 in Examples 20 to 24 in which the light absorbing layer was introduced between the lens and the conical shape, the luminance suppression effect at a polar angle of 40 ° to 60 ° was observed.
  • the decrease in front luminance is 5% or less relative to Example 11.
  • Example 23 that does not satisfy Formula 9 the front luminance is about 30%. It has fallen.
  • Example 25 in which the conical shape is given to the lower surface of the truncated cone the front luminance decreases by about 30%, but the luminance with a polar angle of 40 to 60 ° is suppressed.
  • Example 26 and Example 27 A louver film (manufactured by 3M, Black Privacy Filter PF12.1 WS) and the anisotropic light-absorbing sheet 1 produced in Example 9 were placed on the light collimating member of Example 11 and evaluated.
  • Table 9 shows the evaluation results of the liquid crystal display devices using the backlight units of Example 26 and Example 27.
  • Examples 26 and 27 in which the anisotropic light absorbing sheet is disposed it is understood that the luminance from the oblique direction at the time of black display can be further reduced compared to Example 11 while suppressing the decrease in white luminance.
  • Example 28 The same shape as the lens and the truncated cone shown in Example 11 was shaped on 50 ⁇ m PET having a long side of 490 mm and a short side of 280 mm. The density of a pair of lenses and consists frustoconical structure, this time towards the other short side from one short side, as increases from 70 / mm 2 and 278 / mm 2, randomly placed A backlight unit was produced in the same manner as in Example 11 except for the above.
  • Example 28 observation results of moire of liquid crystal display devices using the backlight units of Example 11 and Example 28 are shown in Table 10.
  • the occurrence of moire can be suppressed, and it can be seen that the visibility is excellent.
  • the light deflection member is disposed on the light collimating member of the backlight unit of the present invention, and the light emission direction is bent in the other direction from the front.
  • the formation surface of the prism 52 having a prism angle of 40 ° is disposed on the light collimating member side.
  • the angle between the extension direction of the prism portion of the prism sheet and the direction of the azimuth angle of 90 ° is taken as ⁇ p.
  • the luminance distribution was measured when ⁇ p was changed from 0 ° to 180 °, and the polar angle, azimuth angle, and luminance value of peak luminance at each ⁇ p were determined.
  • FIGS. 19 to 22 show the azimuth angle and the polar angle position of the peak luminance in each example in the case of changing the arrangement angle ⁇ p of the prism sheet in the form of a contour.
  • 19 shows the results of Comparative Example 11
  • FIG. 20 shows the results of Comparative Example 12
  • FIG. 21 shows the results of Example 29, and FIG.
  • a position where the luminance ratio is 0.8 or more is indicated by ⁇
  • a position larger than 0.6 and smaller than 0.8 is indicated by ⁇
  • a position where it is 0.6 or less is indicated by x.
  • Example 29 only the azimuth changes while keeping the polar angle corresponding to the arrangement angle ⁇ p of the prism sheet. Further, it can be seen that the change in any peak luminance is small, and the region where the luminance ratio L can be 0.8 or more is wide. Further, from FIG. 22, it is understood that even in Example 30 in which the prism shape is changed with respect to Example 29, the behavior is the same as in Example 29, and the directivity angle of the backlight can be controlled in a wide range.
  • Example 31 A light diffusion sheet (LSD20-PC-10-12) was disposed on the viewing side of the prism sheet of Example 30.
  • the emission angle (azimuth angle / polar angle) of light and the spread width of light can be controlled in a wide range with a simple configuration in this embodiment.
  • Example 32 As a direct type light source, a white LED (NSSW157T manufactured by Nichia Corporation) was attached to a chip LED unitized substrate (manufactured by Yajima Corporation) using a solder. Taking this as one set, a total of 63 sets of 9 sets in the horizontal direction and 7 sets in the vertical direction were arranged to make a direct type light source. This was placed under the light guide plate of LL-M220 (manufactured by Sharp Corporation). Except for this point, the display images were arranged in the same manner as in Example 1 and only the side edge light source was turned on and the case where only the direct type light source was turned on.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Planar Illumination Modules (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)

Abstract

正面輝度を上昇させるとともに、黒表示時の斜め方向の光漏れを低減し表示性能を向上させる。透明基材の片面にレンズアレイが形成されており、透明基材のもう一方の面に複数の円錐台形が配列している光平行化部材と、導光板と、光源とを含むバックライトユニットであって、光平行化部材上の円錐台形は、高さ方向において透明基材から離れるにしたがって幅が狭くなる形状であり、レンズアレイの各レンズの位置がこのレンズに対応する円錐台形の位置に対して、レンズの中心とこのレンズから最も近い光源とを結んだ方向において、光源から遠い方向にずれており、レンズの光軸がこのレンズに対応する円錐台形の斜面を通るように配置されており、導光板と円錐台形の透明基材側とは反対側の表面が接しており、光平行化部材の円錐台形の形状が特定の数式を満たす。

Description

バックライトユニットおよび液晶表示装置
 本発明は、バックライトユニットおよびこれを用いた液晶表示装置に関する。
 液晶表示装置は、消費電力が小さく、省スペースの画像表示装置として年々その用途が広がっている。液晶表示装置は、一例として、バックライトユニット、バックライト側偏光板、液晶パネルおよび視認側偏光板などを、この順で設けられた構成となっている。
 バックライトユニットとしては、例えば、導光板と、その端面(側面)に配置した光源とを備え、光源から端面に入射された光を導光して主面全体から液晶パネルに向け照射するエッジライト型(サイドライト型と称する場合もある)や、導光板を用いず、液晶パネルの直下に光源を配置して、液晶パネルに向け照射する直下型が知られている。さらに、バックライトユニット上には、拡散シート、および、液晶パネル主面の法線方向(正面方向)に光を集光する集光シートなどが設けられている。
 バックライトユニットから拡散シートおよび/または集光シートを通過した射出される光は極角方向に輝度分布を有しているため、液晶セルに対して斜め方向に光が入射する。液晶セルは視野角依存性を有しており、液晶セルを黒表示した際の斜め方向に入射した光の透過率が高くなってしまう。その結果として液晶表示装置の黒表示時の斜め方向から視認した時の輝度が上昇してしまい、画質の低下に繋がってしまう。特に近年では、黒表示時の表示に優れている有機ELを使用した表示装置(OLED)も広まってきており、液晶表示装置としても黒表示時の輝度をより低減することが望まれている。
 上記問題を解決する方法として、液晶パネルに入射する光を平行光にし、光が液晶セルを通過した後に光を散乱させることで、上記斜め方向のコントラストを改良させる構成が提案されている(非特許文献1、非特許文献2)。また、バックライトユニットから射出される光を平行光にするために、特許文献1、非特許文献3に示されるような光平行化部材が提案されている。
 また、特許文献2には、一方の面に第1のレンズアレイが形成され、その裏面に第2のレンズアレイが形成された透光性の基材からなるレンズシートであって、第2のレンズアレイは、1又は複数のレンズが幅sの略平坦面で挟まれた形が一周期となるパターンで構成され、第1のレンズアレイと第2のレンズアレイとの周期が一致し、その位相ズレは略0又は略半周期であるレンズシートが記載されている。
特開平10-253808号公報 特開2009-162843号公報
SID2009 DIGEST 514~517 IDW2011 475~478 Applied Optics,vol.55,No.26、7307~7313(2016)
 特許文献1では、透明基材上に台形状の微小立体とレンズを設けた光平行化部材が提案されており、正面方向へ向かう光が集光・平行化されていることが記載されているが、液晶セル黒表示時の斜め方向の輝度上昇に影響する光平行化部材から斜め方向に射出する光の輝度については何ら記載が無い。また、微小立体の導光板に接する面積比率が低いために、光の取り出し効率が低くなり輝度が低下してしまう問題があった。
 非特許文献3には導光板上に、透明基材上の片面に円錐台形状を、もう一方の面にレンズ形状を有する光学シートを設けて光を平行化することが提案されている。しかし、記載の構成では、導光板から円錐台形状斜面に入射した光の一部が全反射しきれずに、斜面から漏れ出ることで、液晶表示装置の黒表示時の斜め方向から視認した時の輝度上昇に繋がってしまう課題がある。
 本発明は、上記事情に鑑み、正面輝度を上昇させるとともに、斜め方向の輝度は低減させる光平行化部材を備えたバックライトユニットを提供することを目的とする。液晶表示装置の正面輝度を上昇させるとともに、黒表示時の斜め方向における光漏れを低減し表示性能を向上させる光平行化部材を備えたバックライトユニットを提供することを目的とする。また、本発明は、光平行化部材を備えたバックライトユニットを有することで、コントラストを向上させた液晶表示装置を提供することを目的とする。
 本発明のバックライトユニットは、透明基材の片面にレンズアレイが形成されており、この透明基材のもう一方の面に円錐台形が配列している光平行化部材と導光板と光源とを含むバックライトユニットであって、光平行化部材は、導光板の一方の主面に対面して配置され、光源は、導光板の少なくとも1つの側面に対面して配置され、この光平行化部材上の円錐台形は、高さ方向において、透明基材から離れるにしたがってその幅が狭くなる形状であり、レンズアレイの各レンズの位置がそれぞれ、このレンズに対応する円錐台形の位置に対して、このレンズの中心とこのレンズから最も近い光源とを結んだ方向において、光源から遠い方向にずれており、レンズの光軸が円錐台形の斜面を通るように配置されており、導光板と円錐台形の透明基材側とは反対側の表面が接しているとともに、この光平行化部材の円錐台形の形状が下記式1~式3を満たすことを特徴とする。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
 ここでn1は導光板の屈折率、n2は円錐台形の屈折率、θaveは下記式4で表される値であって、式4中のmは導光板から円錐台形に入射する光の入射角度範囲の分割数、θiは上記導光板から円錐台形に入射する光の入射角度範囲をm分割した際のi番目の入射角度、θは円錐台形の傾斜角度、Rはレンズの透明基材側の半径、rは円錐台形の透明基材と反対側の面の半径である。
Figure JPOXMLDOC01-appb-M000011
 本発明では、光平行化部材の円錐台形の形状が下記式5~式6を満たすことが好ましい。
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
 本発明のバックライトユニットに含まれる光平行化部材においては、レンズの光軸と円錐台形の垂線との距離Lが下記式7を満たすことが好ましい。
Figure JPOXMLDOC01-appb-M000014
 ここで、θは円錐台形の傾斜角度、hは円錐台形の高さ、rは円錐台形の透明基材と反対側の面の半径である。
 光平行化部材の透明基材の厚みをd、レンズの焦点距離をfとした時に、式8を満たすことが好ましい。
  d≦f≦d+h ・・・ 式8
ここで、hは円錐台形の高さである。
 光平行化部材の円錐台形とレンズの間に、開口部を設けた光吸収層を有しており、光吸収層の開口部の中心とレンズの光軸の位置が一致することが好ましい。
 光吸収層の開口部が円形であり、開口部の直径Rbが式9を満たすことが好ましい。
  0.15<Rb/R≦1.0 ・・・ 式10
 導光板と円錐台形の透明基材とは反対側の表面とが接着層を介して接していることが好ましい。
 光平行化部材の円錐台形の透明基材とは反対側の面に、円錐台形よりも傾斜角度が小さい円錐台形状または円錐形状の突起部を有しており、突起部円錐台形側の面の半径が、円錐台形の透明基材とは反対側の面の半径と等しいことが好ましい。
 複数のレンズは不規則に配置されていることが好ましい。
 光平行化部材より視認側に光偏向部材が配置されていることが好ましい。
 光偏向部材がプリズムシートであることが好ましい。
 本発明の液晶表示装置は、液晶表示素子と、上記のいずれかの本発明のバックライトユニットとを備える。
 本発明のバックライトユニットは、透明基材の片面にレンズアレイが形成されており、この透明基材のもう一方の面に円錐台形が配列している光平行化部材と導光板と光源とを含むバックライトユニットであって、光平行化部材は、導光板の一方の主面に対面して配置され、光源は、導光板の少なくとも1つの側面に対面して配置され、この光学シート上の円錐台形は、高さ方向において、透明基材から離れるにしたがってその幅が狭くなる形状であり、レンズアレイの各レンズの位置がそれぞれ、このレンズに対応する円錐台形の位置に対して、このレンズの中心とこのレンズから最も近い光源とを結んだ方向において、光源から遠い方向にずれており、レンズの光軸が円錐台形の斜面を通るように一方向にずれて配置されており、導光板と円錐台形の前記透明基材とは反対側の表面が接しているとともに、導光板の屈折率n1と円錐台形の屈折率n2の関係がn2>n1を満たすため、導光板から円錐台形へ入射した光が、円錐台形下面の界面で屈折し、円錐台形斜面に入射する光を効率良く全反射させることが出来るようになる。式2を満たすように円錐台形の形状を制御することによって、円錐台形の斜面で全反射した光は、正面方向(光平行化部材の主面の法線方向を0°とした時の方位角0°極角0°方向)を中心としておおよそ±40°の方向に向かうことが出来る。この斜面で全反射した光をレンズで平行光に変換出来るため、平行度の高い光を正面方向に射出することが出来る。式1と式2を満たすことで円錐台形斜面から抜け出る光を大幅に抑制できるために、斜め方向に向かう光を抑制することが出来、結果として液晶表示装置の黒表示時の斜め方向から視認した時の輝度上昇を抑制することが出来る。さらに式3を満たすことで、導光板からの光取り出し効率を高めることが出来、その結果正面方向の輝度を上昇させることが出来る。
本発明の一実施形態の液晶表示装置1の概略構成を示す断面模式図である。 本発明のバックライトユニットの一例における導光板と円錐台形との界面における光の屈折を説明するための断面模式図である。 本発明のバックライトユニットの一例における導光板と円錐台形との界面における光の屈折を説明するための断面模式図である。 本発明のバックライトユニットが有する光平行化部材における円錐台形およびレンズの形状を説明するための断面模式図である。 光平行化部材における式4で示されるθaveを説明するための断面模式図である。 光平行化部材のレンズの光軸と円錐台形の垂線との距離Lを説明するための断面模式図である。 光平行化部材のレンズと円錐台形を正方配置で配置した例を表す平面模式図である。 光平行化部材のレンズと円錐台形を六方配置で配置した例を表す平面模式図である。 光平行化部材のレンズと円錐台形をランダムに配置した例を表す平面模式図である。 バックライトユニットおよび液晶表示装置の評価における方位角の定義を説明するための模式図である。 円錐台形と導光板との接触部分を拡大して示す断面模式図である。 円錐台形と導光板との接触部分の他の一例を拡大して示す断面模式図である。 光平行化部材の他の一例を示す断面模式図である。 光平行化部材の他の一例を示す断面模式図である。 実施例のバックライトユニットの構成を説明するための断面模式図である。 実施例のバックライトユニットの構成を説明するための断面模式図である。 比較例のバックライトユニットの構成を説明するための断面模式図である。 プリズムシートの配置角度を説明するための模式図である。 プリズムシートの配置角度と輝度比との関係を表すグラフである。 ピーク輝度の方向とピーク輝度の割合との関係を表すグラフである。 ピーク輝度の方向とピーク輝度の割合との関係を表すグラフである。 ピーク輝度の方向とピーク輝度の割合との関係を表すグラフである。 ピーク輝度の方向とピーク輝度の割合との関係を表すグラフである。 ピーク輝度の方向とピーク輝度の割合との関係を表すグラフである。 ピーク輝度の方向とピーク輝度の割合との関係を表すグラフである。 本発明の液晶表示装置の他の一例を示す断面模式図である。
 以下、図面を参照して、本発明のバックライトユニットおよび液晶表示装置の実施形態を詳細に説明する。
 なお、本明細書において「~」を用いて表される数値範囲は、特に断りが無い限り「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 図1は本発明の一実施形態の液晶表示装置40の概略構成を示す断面図である。
 この液晶表示装置40は、光源10と導光板12と光平行化部材2とを備えた、本発明の第1の実施形態のバックライトユニット1と、画像表示面と反対側のバックライト入射面から光が入射される液晶表示素子30とから構成されている。
 光平行化部材2は、透明基材21と、透明基材21の一方の面に複数配列されているレンズ22、すなわち、レンズアレイと、透明基材21の他方の面に複数配列されている円錐台形20とを有する。
 図1に示すように、光源10は導光板12の側面に対面して配置されており、光平行化部材2は導光板12の光を出射する側(液晶表示素子30側)の主面上に配置されている。光平行化部材2は円錐台形20側を導光板12に向けて配置されている。
 このような液晶表示装置40において、光源10が出射した光は、導光板12の側面に入射する。導光板12は、側面から入射した光を導光し、液晶表示素子30側の主面から出射する。導光板12から出射された光は、光平行化部材2に入射する。光平行化部材2は、入射した光を液晶表示素子の主面の法線方向(正面方向)に集光して(指向性を高めて)出射し、液晶表示素子30に光を入射させる。
 本実施形態の光源10はLEDであっても良いし、レーザー光源であってもよい。レーザー光源は、色再現性の向上と、より効率良く光を面内方向に拡げることができる点で好ましい。また、光源は白色光源であっても良いし、異なる発光色の光源が複数使用されてもよい。光源の厚みは液晶表示装置の薄型化の観点から小さいことが望ましく、0.2mm~5mmが好ましく、0.2mm~1mmが更に好ましい。
 図1に示す例においては、光源10は、基板11上に配列されて固定されている。
 基板11は、導光板12の光を出射する側の面とは反対側の面と対面して配置されている。また、基板11の表面の大きさは、導光板12の光を出射する側の面とは反対側の面を覆う大きさである。
 光源10が配置される基板11は特に制限なく、公知のものが、各種、利用可能である。光を効率的に用いるために、基板11の導光板12と対面する面は、吸収が小さく反射率が高い反射面であることが好ましい。例えば、白色PET(ポリエチレンテレフタレート)やポリエステル系樹脂を用いた多層膜フィルムからなる反射面を有するものが好ましいが、これに限るものではない。ポリエステル系樹脂を用いた多層膜フィルムとしては、例えば、3M社製のESR(商品名)が挙げられる。
 導光板12は、光源10の発光波長における吸収が少なく透明な基材を用いることが好ましい。例えば、PMMA(ポリメチルメタクリレート)に代表されるアクリル系基材、ガラス基材、ポリカーボネート系基材などの透明基材が好ましい。アクリル系基材は特に透明性が高く、表面の平滑性も高いため好ましい。また、ガラス基材は剛性が高いため薄膜化が可能であり、液晶表示装置全体の薄型化にも寄与できるため好ましい。導光板の屈折率n1は、光源からの光を効率よく導光できる観点と、光の吸収が抑制出来る観点から1.4~1.6であることが好ましい。
 導光板12上には光平行化部材2と導光板12を光学的に接着させるための接着層13が設けられる。接着層13は各種接着剤や粘着剤、UV(紫外線)硬化性樹脂などの公知のものが利用可能であるが、発光波長における吸収が少なく透明性の高いものを利用することが好ましい。また、液状のものを用いると円錐台形の側面に付着して効果に影響があるので、液体成分の少ない固体形状の接着剤から構成されることが好ましい。
 接着層13の弾性率は0.1MPa~3.0MPa、接着層13の厚みは1μm~20μmであることが好ましい。上記範囲の素材を使用することで、接着層13の変形を抑制でき、変形起因の光漏れを抑制出来る。また、円錐台形20と導光板12の接着性を高めることが出来る。
 接着層13は導光板12の光を出射する面全体を覆うように設けても良いし、光平行化部材2の円錐台形20の透明基材21と反対側の面20aの部分のみに設けても良い。接着層13の屈折率n3は導光板12からの光取り出しの観点と、円錐台形20に入射する光を屈折させる観点から、n1≦n3<n2またはn1<n3≦n2の関係を満たすことが好ましい。
 なお、n1は導光板12の屈折率であり、n2は、円錐台形の屈折率である。
 好ましい態様の一例として、n1=n3<n2の場合を図2Aに示す。本実施形態の光平行化部材2に備えられる円錐台形20の屈折率n2は導光板の屈折率n1よりも大きい値を有している。これにより、図2Aに例示するように、導光板12表面に高角度で入射する光が、導光板12と接着層13との界面、または、接着層13と円錐台形の面20aとの界面で屈折するため、円錐台形20の斜面20cにて全反射する光を増やすことが出来る。反対に屈折率n2がn1以下の場合、図2Bに示すように円錐台形20の斜面20cで全反射出来ずに斜面から漏れ出てしまう光が増えてしまう。
 前述のとおり、光平行化部材2は、透明基材21と、透明基材21の一方の面に複数配列されているレンズ22(レンズアレイ)と、透明基材21の他方の面に複数配列されている円錐台形20とを有する。
 円錐台形20は、高さ方向(透明基材21の主面に垂直な方向)において、透明基材21から離れるにしたがって、幅(高さ方向に垂直な断面の直径)が狭くなる形状である。したがって、円錐台形20の側面(以下、斜面20cという)は高さ方向に対して傾斜している。
 ここで、1つのレンズ22とこのレンズ22に対応する1つの円錐台形20を1つのユニットとすると、少なくとも1つのユニットにおいて、レンズ22の面方向(透明基材21の主面に平行な方向)の位置がレンズ22に対応する円錐台形20の面方向の位置に対して、レンズ22の中心とこのレンズ22から最も近い光源10とを結んだ方向において、光源10から遠い方向にずれており、レンズ22の光軸がレンズ22に対応する円錐台形20の斜面を通るように配置されている。
 なお、少なくとも1つのユニットにおいて、レンズ22と円錐台形20との位置が上述のようにずれていればよく、全てのユニットにおいて、レンズ22と円錐台形20との位置が上述のようにずれていることが好ましい。
 また、レンズ22と円錐台形20とのずれ量は、すべてのユニットで同じであってもよく、異なっていてもよい。
 また、複数のレンズ22の配列と複数の円錐台形20の配列とが同じ形で、複数のレンズ22が全体的に円錐台形に20に対してずれていてもよい。
 本発明のバックライトユニットに含まれる光平行化部材においては、この光平行化部材の円錐台形の形状が下記式1~式3を満たすことが好ましい。
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
 ここでn1は導光板の屈折率、n2は円錐台形の屈折率、θaveは下記式4で表される値であって、式4中のmは導光板から円錐台形に入射する光の入射角度範囲の分割数、θiは上記導光板から円錐台形に入射する光の入射角度範囲をm分割した際のi番目の入射角度、θは円錐台形の傾斜角度、Rはレンズの透明基材側の半径、rは円錐台形の透明基材と反対側の面の半径である。
 図3に円錐台形における各値の定義箇所について図示する。
Figure JPOXMLDOC01-appb-M000018
 本発明において、さらに好ましくは下記式5~6を満たすことが好ましい。
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
 円錐台形20の形状を式1~式3および式5~6の範囲に形状を制御することで、円錐台形20の斜面20cから光が抜け出ることを抑制でき、液晶表示装置40の黒表示時の斜め方向から視認した時の輝度上昇を抑制することが出来とともに、正面方向に向かう光を集光・平行化させることが出来る。さらに導光板12からの光取り出し効率を高めることができ、正面方向の輝度を上昇させることが出来る。
 式4中の導光板から円錐台形に入射する光の入射角度範囲(θiの範囲)は、導光板の臨界反射角θcを用いると、θc~90°と求めることができる。θcは次式で求められる。
Figure JPOXMLDOC01-appb-M000021
n0:導光板周囲の屈折率(空気の場合1.0)
n1:導光板の屈折率
 例えば、空気中に置かれた導光板の屈折率n1を1.5とするとθcは約41.8°となり、導光板から円錐台形に入射する光の角度範囲は41.8~90°となる。
 θaveは0.1°刻みで入射角度範囲を分割し式4に従って求める。θaveは図4に示すように、各入射角で円錐台形に入射した光が円錐台形の斜面において全反射した後に、正面方向(0°方向)に向かうために必要な円錐台形の傾斜角度の平均値を表している。
 本発明のバックライトユニットにおいて、光平行化部材のレンズの光軸と円錐台形の垂線との距離Lは下記式7を満たすことが好ましい。
Figure JPOXMLDOC01-appb-M000022
 Lの定義については図5に示す。レンズの光軸と円錐台形の垂線の距離Lが上記範囲を満たすことで、光平行化部材から射出する光のピーク角度を、正面方向へ向けることが出来、正面方向の輝度を上昇させることが出来る。
 光平行化部材2の円錐台形20を構成する材料は、導光板の屈折率n1よりも大きい材料であれば特に限定されない。一例としてポリエチレンテレフタレート、ポリプロピレン、ポリカーボネート、ポリメチルメタクリレート等のアクリル樹脂、ベンジルメタクリレート、MS樹脂(ポリメタクリルスチレン)、シクロオレフィンポリマ、シクロオレフィンコポリマ、セルロースジアセテート、セルローストリアセテートなどのセルロースアシレート等、公知のバックライト装置に用いられる導光板と同様の透明性が高い樹脂で形成すればよい。上記樹脂は熱可塑性樹脂に限らず、例えば、アクリレートモノマー、エポキシモノマーなどの紫外線硬化性樹脂、電子線硬化性樹脂等の電離放射線硬化性樹脂、熱硬化性樹脂、も使用することができる。また、屈折率上昇のために、樹脂材料中に無機微粒子を添加しても良い。一例としてはジルコニア微粒子、チタニア微粒子などが挙げられる。これら微粒子は樹脂中で光が散乱しないように、数nm~数μmの粒径で分散した状態にすることが好ましい。
 光平行化部材2の円錐台形20の透明基材側の半径は、液晶表示素子の一画素の一辺の長さよりも小さいことが好ましく、1μm~200μmであることが好ましい。この範囲に調整することで、画素に対して均一に光を入射させることが可能になる。
 光平行化部材2の透明基材21は公知のバックライト装置に用いられる導光板と同様の透明性が高い樹脂からなる基材を用いればよい。一例としてポリエチレンテレフタレート、ポリプロピレン、ポリカーボネート、ポリメチルメタクリレート等のアクリル樹脂、ベンジルメタクリレート、MS樹脂(ポリメタクリルスチレン)、シクロオレフィンポリマ、シクロオレフィンコポリマ、セルロースジアセテート、セルローストリアセテートなどのセルロースアシレート等、が挙げられる。
 透明基材21の厚みdはレンズの焦点距離fに対して、下記式8を満たす範囲とすることが好ましい。
  d≦f≦d+h ・・・ 式8
ここで、hは円錐台形の高さである。
 また、レンズの焦点距離fは、下記式で求められる。
  f=r1/(n4-1)
ここで、n4はレンズの屈折率、r1はレンズの曲率半径である。
 透明基材21の厚みを上記範囲にすることで、円錐台形20の斜面20cで反射した光を集光することができ、正面輝度の上昇および斜め方向の光漏れを抑制することが出来る。
 透明基材21の表面は円錐台形20およびレンズ22の密着向上のために、コロナ処理やプラズマ処理などの表面処理を行っても良いし、密着向上層を付与しても良い。
 光平行化部材2のレンズアレイを構成するレンズ22は、球面レンズであっても非球面レンズであっても良く、円錐台形20の斜面20cで全反射した光がレンズ22で集光出来るように曲面を調整すればよい。レンズに使用される材料は、公知のバックライト装置に用いられる導光板と同様の透明性が高い樹脂で形成すればよい。一例としてポリエチレンテレフタレート、ポリプロピレン、ポリカーボネート、ポリメチルメタクリレート等のアクリル樹脂、ベンジルメタクリレート、MS樹脂(ポリメタクリルスチレン)、シクロオレフィンポリマ、シクロオレフィンコポリマ、セルロースジアセテート、セルローストリアセテートなどのセルロースアシレート等、が挙げられる。上記樹脂は熱可塑性樹脂に限らず、例えば、アクリレートモノマー、エポキシモノマーなどの紫外線硬化性樹脂、電子線硬化性樹脂等の電離放射線硬化性樹脂、熱硬化性樹脂、も使用することができる。
 光平行化部材2のレンズ22の透明基材側の半径は、液晶表示素子の一画素の一辺の長さよりも小さいことが好ましく、1μm~200μmであることが好ましい。この範囲に調整することで、画素に対して均一に光を入射させることが可能になる。
 図6~図8に光平行化部材2の主面における光が射出する法線方向から観察したレンズ22および円錐台形20の配置例を示す。レンズ22および円錐台形20は、図6および図7のように正方配置および六方配置で最密となるように配置しても良いし、図8のようにランダム(不規則)に配置しても良い。すなわち、1つのレンズ22とこのレンズ22に対応する1つの円錐台形20とを1つのユニットとすると、複数のユニットは不規則に配置されていてもよい。光源10からの距離に応じてユニットの配置密度を変えて、光平行化部材2の面内から均一に光を取り出すように調整しても良い。
 ユニット(レンズ22および円錐台形20)をランダムに配置することで、モアレの発生を抑制できる。
 なお、図1に示す例では、円錐台形20と導光板12とは、接着層13を介して接する構成としたが、これに限定はされず、円錐台形20と導光板12とが直接接していてもよい。
 ここで、円錐台形20と導光板12とが接着層13を介して接する構成の場合には、図11に示すように、円錐台形20の透明基材21とは反対側の面(下面)に、円錐台形状または円錐形状の突起部24を有することが好ましい。突起部24の傾斜角度は円錐台形20よりも小さい。また、突起部24の円錐台形20側の面の半径は、円錐台形20の透明基材21とは反対側の面(突起部24側の面)の半径と等しい。
 突起部24を有さない構成の場合には、図10に示すように、導光板12からの光の一部は、接着層13を通って円錐台形20の斜面20cから円錐台形20に入射してしまう。この光が円錐台形20の斜面20cで反射すると、正面方向よりも斜めの方向に反射されるため、斜め方向の光漏れの量が多くなってしまうおそれがある。
 これに対して、図11に示すように、円錐台形20の下面に円錐台形20よりも傾斜角度の小さい突起部24を設けることで、接着層13を通った光が突起部24から円錐台形20に入射する。これによって、光は円錐台形20の斜面20cで正面方向に反射され、斜め方向の光漏れの量を低減することができる。このように、円錐台形20の下面に突起部24を設けることで、円錐台形20が接着層13に埋没することに起因する光漏れを抑制出来ると共に、円錐台形20の接着層13に対する接着性を向上させることが出来る。
 光漏れを好適に抑制できる観点から、突起部24の傾斜角度θbは5~25°であることが好ましい。
 また、図1に示す例では、導光板12の1つの側面に光源10が配置される構成としたが、これに限定はされず、導光板の2以上の側面に光源が配置されていてもよい。導光板の2以上の側面に光源が配置される場合には、該当するレンズから最も近い光源を基準として、このレンズと最も近い光源とを結んだ方向において、光源から遠い方向に、円錐台形の位置に対してレンズの位置がずれていればよい。また、レンズが複数の光源から等距離の位置にある場合には、少なくとも一つの光源を基準にして、円錐台形の位置に対してレンズの位置がずれていればよい。
 また、光平行化部材2の円錐台形20とレンズ22との間に、開口部を設けた光吸収層を有していてもよい。この開口部の中心はレンズ22の光軸の位置と一致するのが好ましい。
 例えば、図12に示す光平行化部材の一例では、円錐台形20と透明基材21との間に光吸収層26を有する。光吸収層26には、開口部26aが設けられており、開口部の中心がレンズ22の光軸と一致している。
 あるいは、図13に示す光平行化部材の一例では、レンズ22と透明基材21との間に光吸収層26を有する。この場合も、光吸収層26には、開口部26aが設けられており、開口部の中心がレンズ22の光軸と一致している。
 このように、円錐台形とレンズとの間に開口部を設けた光吸収層を設けることで、円錐台形の斜面で反射された光のうち、正面方向に向かう光は開口部を通過してレンズに入射され、斜め方向に向かう光は光吸収層26によって吸収されるため、斜め光漏れを抑制できる。
 ここで、光吸収層の開口部の形状には特に限定はないが、円形であるのが好ましい。
 開口部が円形の場合には、開口部の直径Rbが式9を満たすことが好ましい。
  0.15<Rb/R≦1.0 ・・・ 式9
 Rb/Rを0.15以上とすることで、レンズに入射する光量を確保することができ、液晶表示装置に使用した時に高い正面輝度を得ることができる。Rb/Rを1以下とすることで確実に遮光効果を得ることができ、斜め光漏れを好適に抑制できる。
 斜め光漏れを好適に抑制できる観点から、光吸収層の吸光度は1以上であることが好ましい。
 光吸収層としては、既存のバインダー素材にカーボンブラックやカーボンナノチューブなどを混合した材料を使用出来る。また、バインダー素材としてレジスト素材を用いることで、UV(紫外線)露光によって吸収層の開口部をパターニングして形成することが可能となる。
 光吸収層の厚みは、光吸収層の材料、吸光度、光透過率等に応じで適宜設定すればよい。具体的には、0.1μm~10μmが好ましく、0.5μm~5μmがより好ましい。
 本発明のバックライトユニットにおいては、光平行化部材の上にルーバーフィルム、異方性のある光吸収シート(以下、異方性光吸収シートという)等を設けてもよい。異方性光吸収シートを設けることで、斜め方向に漏れ出る光をさらに低減させることができる。異方性光吸収シートとしては、ルーバータイプの光学シート(3M社製、ブラックセキュリティ/プライバシーフィルター)、特許第4902516号公報などに記載の二色性色素を異方的に配向させた光学フィルム等を用いることが出来る。
 (光偏向部材)
 本発明のバックライトユニットにおいて、光の射出方向を制御するために、光平行化部材の上に光偏向部材を設けても良い(図14参照)。光偏向部材としては、光の屈折を利用するプリズムシート、レンズシート、回折を利用した透過型回折格子などを上げることが出来る。光平行化部材から射出した平行光を一方向に偏向させる部材としてはプリズムシートが好ましい。
 上述のとおり、本発明のバックライトユニットは、斜め方向への光漏れが少なく、正面方向の輝度が高い光を出射することができる。このような本発明のバックライトユニットに、さらに、光偏向部材を設けることで、正面方向に出射した光を任意の方向に偏向させて、任意の方向の輝度を高くすることができる。
 このようなバックライトユニットを用いることで、例えば、自動車に搭載されるディスプレイを特定の方向(例えば、運転席側)から視認しやすく、他の方向からは視認しにくくすることができる。その結果、自動車の正面もしくは側面ガラスへのディスプレイの写り込みを抑制させることができるため、運転者が正面もしくは側面ガラスを通して外を視認しやすくなる。
 (拡散フィルム)
 また、光偏向部材から射出した光の広がりを制御するために、光偏向部材の上に拡散フィルムを設けても良い。拡散フィルムとしては、公知の拡散フィルムを使用することが出来る。特に、表面に凹凸を有する拡散シートのような、拡散フィルム内部および表面における後方散乱が少ないものを用いることが、光の射出方向を維持するために好ましい。
 本発明の光平行化部材を備えた液晶表示装置においては、液晶パネルの視認側に光拡散部材を設けることが好ましい。光拡散部材は、基材中に微粒子を含有した拡散シート、表面の凹凸を有する拡散シート、回折格子、マイクロレンズアレイやレンチキュラーレンズなど光の屈折を利用した部材、など公知の部材を使用することが出来る。
 光拡散部材を設けることで、液晶パネルを通過した平行光を拡散することができ、液晶表示装置の視野角依存性を改良することが出来る。
 また、本発明のバックライトユニットにおいては、図25に示すように、サイドエッジ型光源と直下型光源を併用してもよい。サイドエッジ光源点灯時(直下光源は非点灯)は、これまで記載のとおり、斜め方向への光漏れがすくなく、正面方向の輝度が高い光を出射ことができる。一方、直下光源点灯時(サイドエッジ光源は非点灯)は、各部材で様々な方向に光が屈折するため、正面だけでなく斜め方向にもバックライト光が出射される。つまり、点灯する光源を切り替えるだけで、1台のディスプレイで、その視野角を狭視野と広視野に切り替えることができる。これにより、1人ではプライバシーを重視した使い方が可能であり、複数人ではデータや画像/映像を共有化する使い方が可能となる。
 以下に実施例を挙げて本発明の特徴をさらに具体的に説明する。なお、以下に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。また、本発明の趣旨を逸脱しない限り、以下に示す構成以外の構成とすることもできる。
 [実施例1]
 <<光平行化部材の作製>>
 傾斜角度θが62°、円錐台形の透明基材側の半径30μm、円錐台形の高さhが42μm、ピッチが60μmの円錐台形を正方配置した金型Iと、半径Rが30μm、ピッチが60μmの球面レンズを正方配置した金型IIを準備した。
 透明基材として50μmのPETフィルム(東洋紡社製、コスモシャインA4300)を用い、透明基材の片面に、n2=1.69の紫外線硬化性樹脂(アイカ工業製、ACHR-MOLD-19)を塗工し、金型Iを押し付けた後、紫外線を照射し硬化させた。金型Iから硬化した樹脂を剥離し、円錐台形のパターンをPETフィルム上に賦形した。
 上記円錐台形を賦形した面と反対面に、n=1.50の紫外線硬化樹脂(アイカ工業製、Z=977-9L)を塗布し、金型IIを押し付けた後、紫外線を照射し硬化させた。金型IIから硬化した樹脂を剥離し、レンズのパターンをPETフィルム上に賦形した。レンズの光軸と円錐台形の垂線の距離が13.3μmになるように、レンズと円錐台形をずらして賦形を行い、光平行化部材A1を得た。
 <<導光板と光平行化部材の貼合>>
 導光板として、厚み1.0mm、屈折率n1=1.50のアクリル板(日東樹脂工業社製、CRALEX)を用いた。次に光学接着層形成用素材として、SKダインSF-2147(綜研化学株式会社製)90.87質量部、TD-75(綜研化学株式会社製)0.04質量部、酢酸エチル9.09質量部を混合した。この液を導光板上に乾燥後の膜厚が0.3~0.5μmとなるように塗工した後、70℃10分で加熱し、屈折率が1.50の光学接着層を形成した。
 上記光学接着層を設けた導光板上に、光平行化部材の円錐台形を接着させる様に貼合した。
 [実施例2]
 円錐台形の傾斜角度θを57°にした金型Iを用い、レンズの光軸と円錐台形の垂線の距離Lを9.5μmとした以外は実施例1と同様にして、光平行化部材A2を備えた導光板を作製した。
 [実施例3]
 円錐台形の傾斜角度θを70°にした金型Iを用い、レンズの光軸と円錐台形の垂線の距離Lを18.5μmとした以外は実施例1と同様にして、光平行化部材A3を備えた導光板を作製した。
 [実施例4]
 円錐台形の作製樹脂を、実施例1に記載のn2=1.69の紫外線硬化樹脂とn=1.50の紫外線硬化樹脂を混合し、n2=1.60となるように調整したものを使用した以外は、実施例1と同様にして、光平行化部材A4を備えた導光板を作製した。
 [実施例5]
 円錐台形の作製樹脂をn2=1.75の樹脂(NTT-AT社製、インプリント用樹脂)に変更し、円錐台形の傾斜角度θを65°、レンズの光軸と円錐台形の垂線の距離Lを15.3μmに変更した以外は、実施例1と同様にして、光平行化部材A5を備えた導光板を作製した。
 [実施例6]
 レンズの光軸と円錐台形の垂線の距離Lを5.4μmとした以外は実施例1と同様にして、光平行化部材A6を備えた導光板を作製した。
 [実施例7]
 レンズの光軸と円錐台形の垂線の距離Lを20.6μmとした以外は実施例1と同様にして、光平行化部材A7を備えた導光板を作製した。
 [比較例1](円錐台形とレンズを有する部材が共にない形態)
 プリズム形状用の金型を準備した。プリズムの頂角が45°、プリズムピッチが50μmで、プリズム形状が一方向に延在した形状を有する金型を作製した。
 100μmのPETフィルム(東洋紡社製、コスモシャインA4300)の片面に、n=1.50の紫外線硬化樹脂(アイカ工業製、Z=977-9L)を塗布し、プリズム形状の金型を押し付けた後、紫外線を照射し硬化させた。金型から硬化した樹脂を剥離し、プリズム形状をPETフィルム上に賦形したプリズムシートB1を作製した。
 次にVAモードの液晶表示装置LL-M220(シャープ株式会社製)を分解し、白色ドット付きの導光板および拡散フィルムを取り出した。この導光板の上に拡散フィルムを設置し、さらにプリズムの延在方向が直交するようにプリズムシートB1を2枚設置した。
 [比較例2]
 円錐台形の傾斜角度θを75°にした金型Iを用い、レンズの光軸と円錐台形の垂線の距離Lを20.8μmとした以外は実施例1と同様にして、光平行化部材B2を備えた導光板を作製した。
 [比較例3]
 円錐台形の作製樹脂をn2=1.50の紫外線硬化樹脂(アイカ工業製、Z=977-9L)に変更した以外は、実施例1と同様にして、光平行化部材B3を備えた導光板を作製した。
 [比較例4]
 傾斜角度θ57°、円錐台形の透明基材側の半径24μm、円錐台形の高さhが30μm、ピッチが100μmの円錐台形を正方配置した金型Iと、曲率半径Rが52μm、ピッチが100μmの球面レンズを正方配置した金型IIを準備した。
 38μmのPETフィルム(東洋紡社製、コスモシャインA4300)の片面に、n=1.47の紫外線硬化性樹脂組成物(日本化薬(株)製KAYARAD-HX220 80重量部、日本化薬(株)製KAYARAD-UX4101 20重量部、BASFジャパン(株)製Irgacure184 1重量部、日本化薬(株)KAYACURE-EPA 0.2重量部、BASFジャパン(株)製TINUVIN PS1.5重量部、の混合物)を塗工し、金型Iを押し付けた後、紫外線を照射し硬化させた。金型Iから硬化した樹脂を剥離し、円錐台形のパターンをPETフィルム上に賦形した。
 上記円錐台形を賦形した面と反対面に、n=1.50の紫外線硬化樹脂(アイカ工業製、Z=977-9L)を塗布し、金型IIを押し付けた後、紫外線を照射し硬化させた。金型IIから硬化した樹脂を剥離し、レンズのパターンをPETフィルム上に賦形した。レンズの光軸と円錐台形の垂線の距離が一致するように、レンズと円錐台形を賦形し、光平行化部材B4を得た。
 [比較例5](円錐台形とレンズを有する部材が共にない形態)
 特開2009-162843号の実施例1に記載されている、第1の非球面レンズアレイと第2の凹型プリズムアレイからなるレンズシートを作製した。まず、第1の非球面レンズアレイの金型と、第2の凹型プリズムの金型を準備した。75μmのPETフィルム(東洋紡社製、コスモシャインA4300)の片面に、n=1.50の紫外線硬化樹脂(アイカ工業製、Z=977-9L)を塗布し、第1の非球面レンズアレイの金型を押し付けた後、紫外線を照射し硬化させた。金型から硬化した樹脂を剥離し、非球面レンズのパターンをPETフィルム上に賦形した。n=1.69の紫外線硬化性樹脂(アイカ工業製、ACHR-MOLD-19)を塗工し、第2の凹型プリズムの金型を押し付けた後、紫外線を照射し硬化させた。金型から硬化した樹脂を剥離し、目的のレンズシートを得た。第1の非球面レンズの光軸と、第2の凹型プリズムの頂点が一致するように賦形した。
 [評価]
 (屈折率)
 各素材の屈折率は、Metricon社製プリズムカプラーmodel2010を用い、波長532nmで計測し求めた。
 (バックライトユニットの評価)
 VAモードの液晶表示装置LL-M220(シャープ株式会社製)を分解し、導光板を取り出した後に、各実施例および比較例で作製した部材の導光板端面をLEDに密着させるようにして配置した。なお、各光平行化部材はLEDと密着させた導光板端面と垂直方向(LEDからの光の進行方向)に、表1(表1-1)記載の距離Lだけ、円錐台形の垂線に対してレンズの光軸をずらすように配置した。
 作製したバックライトユニットの光源を点灯させ、ELDIM社のEZContrastを用いて輝度分布を計測した。極角0°方向(正面方向)、方位角0°極角60°および方位角180°極角-60°の輝度の値と正面方向の輝度ピークの半値半幅を指標とした。なお、方位角および極角の定義は図9に示す。
 (バックライトユニットを備えた液晶表示装置の評価)
 作製したバックライトユニット上に、LL-M220の液晶セルを配置した。実施例1~7および比較例2~5のバックライトユニットを使用した場合では、液晶パネルの視認側最表面に、レンチキュラーレンズ(60Lpi、0.43mm厚)を配置した。レンチキュラーレンズは、レンズの延在方向を方位角90°方向となるように配置した。そして、バックライトユニットを点灯させ、液晶セルを白表示および黒表示の状態にして、ELDIM社のEZContrastを用いて輝度計測を行った。白表示および黒表示における極角0°方向(正面方向)、方位角0°極角60°および方位角180°極角-60°の輝度を指標とした。
 各実施例および比較例の計測結果を表1(表1-1および表1-2)に示す。従来のバックライトに使用されているプリズムシートを2枚使用した構成である比較例1では極角±60°における輝度がおよそ800Cd/mと高く、正面方向の輝度ピークの半値半幅が33°と光の平行光化が出来ていないことが分かる。同様に、特開2009-162843に記載の構成である比較例5も極角±60°における輝度がおよそ800Cd/m2と高く、正面方向の輝度ピークの半値半幅が36°と光の平行光化が出来ていないことが分かる。
 また、円錐台形の傾斜角度が高い比較例1、円錐台形と導光板の屈折率が等しい比較例2では、正面方向の輝度ピークの半値半幅が10°以下と光の平行光化は達成出来ているが、極角±60°における輝度がおよそ900~3000Cd/mと高い。特許文献1の実施様態である比較例4では、正面方向の輝度ピークが-7°と正面方向から傾いた方向であり、さらに正面方向の輝度が低くなっている。
 これに対して、本発明の実施例1~7では正面方向の輝度ピークの半値半幅が10°以下であり、ピーク角度が0°±5°の範囲に入っており、さらに極角±60°における輝度が抑制出来ていることが分かる。特に、式4、式5を満たしている実施例1、実施例4、実施例5では他の実施例に対して、さらに極角±60°の輝度が抑制されているとともに、正面方向の輝度は高められていることが分かる。
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
 次に各実施例および比較例のバックライトユニットを使用した液晶表示装置の評価結果を表2に示す。バックライトユニットでの輝度評価結果と同様に、本発明の実施例では、比較例に対して極角±60°における黒表示時の輝度が抑制されていることが出来ていると共に、白表示時の正面方向、極角±60°の輝度は上昇出来ており、コントラストの高い表示性能を達成できている。
Figure JPOXMLDOC01-appb-T000025
 次に本発明の光平行化部材に、異方性光吸収シートを配置した結果を示す。
 [実施例8]
 実施例1の光平行化部材の上に、さらにルーバーフィルム(3M社製、Black Privacy Filter PF12.1WS)を設置した。
 [実施例9]
 (異方性光吸収組成物の調製)
 下記の成分を混合し、80℃で1時間攪拌することで、異方性光吸収組成物を得た。二色性色素には、特開2013-101328号公報の実施例に記載のアゾ系色素を用いた。重合性液晶化合物1および2は、lub et al., Recl.Trav.Chim.Pays-Bas, 115, 321-328(1996)記載の方法に従って合成した。
 異方性光吸収組成物
―――――――――――――――――――――――――――――――――
・下記の重合性液晶化合物1               75質量部
・下記の重合性液晶化合物2               25質量部
・二色性色素1                    2.8質量部
・重合開始剤(2-ジメチルアミノ-2-ベンジル-1-(4-モルホリノフェニル)ブタン-1-オン(イルガキュア369;チバスペシャルティケミカルズ社製))
                            6部質量部
・レベリング剤(ポリアクリレート化合物(BYK-361N;BYK-Chemie社製)                           3質量部
・溶剤(o-キシレン)                 250質量部
―――――――――――――――――――――――――――――――――
 重合性液晶化合物1
Figure JPOXMLDOC01-appb-C000026
 重合性液晶化合物2
Figure JPOXMLDOC01-appb-C000027
 二色性色素1
Figure JPOXMLDOC01-appb-C000028
 (異方性光吸収シート1の作製)
 長辺490mm×短辺280mmの50μmPET(東洋紡社製、コスモシャインA4300)上に、スピンコーターを用いて上記の異方性光吸収組成物を塗布した後、110℃に設定した乾燥オーブンで1分間乾燥することで、重合性液晶化合物及び二色性色素が配向した乾燥塗膜を得た。この乾燥塗膜を室温まで自然冷却した後に高圧水銀ランプ(ユニキュアVB―15201BY-A、ウシオ電機株式会社製)を用いて、紫外線を照射(窒素雰囲気下、波長:365nm、波長365nmにおける積算光量:1000mJ/cm2)することにより、重合性液晶化合物を重合して異方性光吸収シート1を得た。
 実施例1の光平行化部材の上に、異方性光吸収シート1を設置し、実施例9とした。
 ルーバーフィルムあるいは異方性光吸収シート1を配置した各実施例のバックライトユニットを使用した液晶表示装置の評価結果を表3に示す。これらを配置した実施例8、実施例9では、白輝度が低下を抑えつつ、黒表示時の斜め方向からの輝度が実施例1に対しさらに低減出来ていることが分かる。
Figure JPOXMLDOC01-appb-T000029
 [実施例10]
 実施例1で示したレンズおよび円錐台形と同じ形状を、長辺490mm×短辺280mmの50μmPET上に賦形した。一組のレンズと円錐台形からなる構造の密度が、このとき一方の短辺からもう一方の短辺に向かって、70個/mm2から278個/mm2と増えるように、不規則に配置した以外は、実施例1と同様にしてバックライトユニットを作製した。
 次に、実施例1および実施例10のバックライトユニットを使用した液晶表示装置のモアレの観察結果を表4に示す。構造を不規則に配置した実施例10では、モアレの発生を抑制することが出来ており、視認性に優れることが分かる。
Figure JPOXMLDOC01-appb-T000030
 [実施例11~17および比較例6~10]
 導光板を下記の導光板に変更したこと、および光学接着層を下記の接着層に変更したこと以外は、実施例1~7および比較例1~5と同様にして光平行化部材を備えた導光板を作製した。
 <<導光板と光平行化部材の貼合>>
 導光板として、280mm×487mm、厚み2.0mm、屈折率n1=1.50のアクリル板(日東樹脂工業社製、CRALEX)を用いた。光学接着層として、株式会社パナック製の5μm厚みのOCA PDS1-5を使用し、光平行化部材の円錐台形を導光板に貼合した。光平行化部材のサンプルサイズは50mm角で、導光板の中央部に貼合した。
 [実施例18]
 円錐台形およびレンズを賦形するPET支持体(透明基材)の厚みを38μmとした以外は実施例11と同様にして、光平行化部材A8を備えた導光板を作製した。
 [実施例19]
 円錐台形およびレンズを賦形するPET支持体の厚みを75μmとした以外は実施例11と同様にして、光平行化部材A9を備えた導光板を作製した。
 [実施例20]
 <<光吸収層の形成>>
 (黒顔料分散液の作製)
 以下の組成となるようにカーボンブラック、分散剤、ポリマーおよび溶剤を混合し、黒顔料分散物1を得た。
 (黒顔料分散物1)
・特許5320652号公報段落番号〔0036〕~〔0042〕の記載に従って作製した樹脂被覆カーボンブラック        13.1質量%
・分散剤1〔下記構造〕          0.65質量%
・ポリマー                6.72質量%
(ベンジルメタクリレート/メタクリル酸=72/28モル比のランダム共重合体物、重量平均分子量3.7万)
・プロピレングリコールモノメチルエーテルアセテート 79.53質量%
Figure JPOXMLDOC01-appb-C000031
 (光吸収層液の調製)
 以下の組成になるように、黒顔料分散物1、バインダー、光酸発生剤、界面活性剤を混合し、光吸収層液を調製した。バインダー1およびバインダー2はWO2013/161861に従い合成した。光酸発生剤はWO2014/161861に従い合成した。
・黒顔料分散物1:                     25.954質量%
・バインダー1:下記構造の分子量13700のランダム共重合体 6.836質量%
・バインダー2:下記構造の分子量11500のランダム共重合体 6.836質量%
・光酸発生剤:下記構造の化合物                1.000質量%
・界面活性剤:DIC株式会社製メガファックF-554     0.016質量%
・プロピレングリコールモノメチルエーテルアセテート     59.358質量%
バインダー1
Figure JPOXMLDOC01-appb-C000032
バインダー2
Figure JPOXMLDOC01-appb-C000033
光酸発生剤
Figure JPOXMLDOC01-appb-C000034
ここでTsはトシル基(p-トルエンスルホニル基)を表す。
 (現像液の調製)
 KOH系現像液(KOH、ノニオン界面活性剤含有、商品名:CDK-1、富士フイルムエレクトロニクスマテリアルズ(株)製)を100倍希釈して現像液として用いた。
 (光吸収層のパターニング)
 実施例11の金型IIを用いて、PET支持体の片面にレンズを賦形したサンプルを準備した。PET支持体のレンズの賦形面と反対面に、上記で調整した光吸収層液を塗工し、95℃で2分乾燥させ、2μmの光吸収層を設けた。レンズと同一ピッチ(60μm)で、Φ60μmの円形の開口部を有する露光マスクを準備し、レンズの中心と、露光マスクの開口部の中心が一致するように露光マスクのアライメントを調整した。365nmにおける照射量が1000mJ/cmとなるように、平行UV光を照射した。UV照射後、現像液を用いてパドル現像(60秒×3回)を行った後、純水で洗浄し風乾させた。さらに365nmにおける照射量が1000mJ/cmとなるように、UV光を照射した後、120℃10分間熱処理を行い、光吸収層を硬化させ、Φ60μmの開口部を有する光吸収層がパターニングされたレンズ賦形膜C1を得た。
 <<円錐台形の賦形>>
 実施例11と同様にして、上記C1の黒層がパターニングされた面に、円錐台形の中心がレンズと13.3μmずれるように円錐台形を賦形し、光平行化部材A10を備えた導光板を作製した。
 [実施例21~23]
 光吸収層の開口部の直径Φを表5(表5-1)記載の値に変えたこと以外は実施例20と同様にして光平行化部材A11~A13を備えた導光板を作製した。
 [実施例24]
 実施例11の金型Iを用いて、PET支持体の片面に円錐台形を賦形したサンプルを準備した。PET支持体の円錐台形の賦形面と反対面に、上記で調整した光吸収層液を塗工し、95℃で2分乾燥させ、2μmの光吸収層を設けた。円錐台形と同一ピッチ(60μm)で、Φ30μmの円形の開口部を有する露光マスクを準備し、円錐台形の中心から13.3μmずれた位置が、露光マスクの開口部の中心となるように露光マスクのアライメントを調整した。365nmにおける照射量が1000mJ/cmとなるように、平行UV光を照射した。UV照射後、現像液を用いてパドル現像(60秒×3回)を行った後、純水で洗浄し風乾させた。さらに365nmにおける照射量が1000mJ/cmとなるように、UV光を照射した後、120℃10分間熱処理を行い、光吸収層を硬化させ、Φ30μmの開口部を有する光吸収層がパターニングされたレンズ賦形膜C2を得た。
 (レンズの賦形)
 実施例11と同様にして、上記C2の光吸収層がパターニングされた面に、光吸収層の開口部の中心がレンズの光軸と一致するようにレンズを賦形し、光平行化部材A14を備えた導光板を作製した。
 [実施例25]
 図11で示すような、突起部を有する円錐台形を形成するために、金型Iの円錐台形の底面(半径30μmの面と反対側)に高さ2μmの円錐形状が形成された金型IIIを準備した。円錐台形を金型IIIで賦形した以外は実施例11と同様にして、光平行化部材A15を備えた導光板を作製した。
 [評価]
 (バックライトユニットの評価)
 VAモードの液晶表示装置LL-M220(シャープ株式会社製)を分解し、導光板を取り出した後に、実施例11~25および比較例6~10で作製した部材の導光板端面をLEDに密着させるようにして配置した。なお、各光平行化部材はLEDと密着させた導光板端面と垂直方向(LEDからの光の進行方向)に、表5記載の距離Lだけ、円錐台形の垂線に対してレンズの光軸をずらすように配置した。
 作製したバックライトユニットの光源を点灯させ、ELDIM社のEZContrastを用いて輝度分布を計測し、下記4点を評価指標とした。
 ・ピーク輝度の極角
 ・ピーク輝度の半値半幅
 ・極角0°輝度(正面輝度)
 ・正面輝度に対する、方位角0°、極角40~60°と方位角180°、極角40~60°の輝度(斜め輝度)の比率なお、方位角および極角の定義は図9に示すとおりである。
 (バックライトユニットを備えた液晶表示装置の評価)
 作製したバックライトユニット上に、LL-M220の液晶セルを配置した。実施例11~25および比較例7~10のバックライトユニットを使用した場合では、液晶パネルの視認側最表面に、レンチキュラーレンズ(60Lpi、0.43mm厚)を配置した。レンチキュラーレンズは、レンズの延在方向を方位角90°方向となるように配置した。そして、バックライトユニットを点灯させ、液晶セルを白表示および黒表示の状態にして、ELDIM社のEZContrastを用いて輝度計測を行い、下記2点を指標として評価を行った。
 ・白表示時の正面輝度
 ・正面方向および方位角0°極角60°方向におけるCR(コントラスト)
 各実施例および比較例の計測結果を表5(表5-1および表5-2)、表6および表7に示す。
 表5から、従来のバックライトに使用されているプリズムシートを2枚使用した構成である比較例6では極角40~60°における輝度が正面輝度の0.1倍と高く、正面方向の輝度ピークの半値半幅が33°と光の平行光化が出来ていないことが分かる。同様に、特開2009-162843に記載の構成である比較例10も極角40~60°における輝度が正面輝度の0.14倍と高く、正面方向の輝度ピークの半値半幅が36°と光の平行光化が出来ていないことが分かる。
 また、円錐台形の傾斜角度が高い比較例6、円錐台形と導光板の屈折率が等しい比較例7では、正面方向の輝度ピークの半値半幅が10°以下と光の平行光化は達成出来ているが、極角40~60°における輝度が正面に対して0.12~0.35倍と高い。特許文献1の実施様態である比較例9では、正面方向の輝度ピークが-5°と正面方向から傾いた方向であり、さらに正面方向の輝度が低くなっている。
 これに対して、本発明の実施例11~17では正面方向の輝度ピークの半値半幅が10°以下であり、ピーク角度が0°±5°の範囲に入っており、さらに極角40°~60°における輝度が抑制出来ていることが分かる。特に、式4、式5を満たしている実施例11、実施例14、実施例15では他の実施例に対して、さらに極角40°~60°の輝度が抑制されているとともに、正面方向の輝度は高められていることが分かる。
 また、式8をみたす実施例11および実施例18では正面輝度が高く極角40°~60°の輝度が低いことに対し、式8を満たさない実施例19では正面輝度の低下、ピーク輝度半値幅の増加、極角40°~60°の輝度増加がみられる。
 表6から、レンズと円錐形状との間に光吸収層を導入した実施例20~24では、極角40°~60°の輝度抑制効果がみられた。式9を満たす実施例20~22および実施例24では実施例11に対して正面輝度の低下が5%以内であるのに対して、式9を満たさない実施例23では正面輝度が30%程度低下してしまっている。
 表7から、円錐台形の下面に円錐形状を賦与した実施例25では正面輝度が30%程度低下してしまっているが、極角40~60°の輝度は抑制されている。
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
 次に各実施例および比較例のバックライトユニットを使用した液晶表示装置の評価結果を表8に示す。バックライトユニットでの輝度評価結果と同様に、本発明の実施例では、比較例に対して正面および極角60°のコントラストが向上出来ていることが分かる。
Figure JPOXMLDOC01-appb-T000039
 次に本発明の光平行化部材に、異方性光吸収シートを配置した結果を示す。
 [実施例26および実施例27]
 実施例11の光平行化部材の上に、ルーバーフィルム(3M社製、Black Privacy Filter PF12.1WS)、および、実施例9で作製した異方性光吸収シート1をそれぞれ設置し、評価を行った。
 実施例26および実施例27のバックライトユニットを使用した液晶表示装置の評価結果を表9に示す。異方性光吸収シートを配置した実施例26、実施例27では、白輝度が低下を抑えつつ、黒表示時の斜め方向からの輝度が実施例11に対しさらに低減出来ていることが分かる。
Figure JPOXMLDOC01-appb-T000040
 [実施例28]
 実施例11で示したレンズおよび円錐台形と同じ形状を、長辺490mm×短辺280mmの50μmPET上に賦形した。一組のレンズと円錐台形からなる構造の密度が、このとき一方の短辺からもう一方の短辺に向かって、70個/mm2から278個/mm2と増えるように、不規則に配置した以外は、実施例11と同様にしてバックライトユニットを作製した。
 次に、実施例11および実施例28のバックライトユニットを使用した液晶表示装置のモアレの観察結果を表10に示す。構造を不規則に配置した実施例28では、モアレの発生を抑制することが出来ており、視認性に優れることが分かる。
Figure JPOXMLDOC01-appb-T000041
 次に本発明のバックライトユニットの光平行化部材の上に、光偏向部材を配置し、光の射出方向を正面から他の一方向に曲げる例を示す。
 [実施例29]
 図14に示すように、実施例11のバックライトユニット1上に、厚み100μmのPET支持体54の片面にプリズム角度θ1=40°、プリズムピッチP1=30μmのプリズム52が形成されたプリズムシート50を配置した。プリズムシートは、プリズム面が光平行化部材側に来るように配置した。
 [実施例30]
 図15に示すように、実施例11のバックライトユニット上に、厚み100μmのPET支持体54の片面にプリズム角度θ1=40°、プリズムピッチP1=30μmのプリズム52が形成されており、もう一方の面にプリズム角度θ2=21°、プリズムピッチP2=60μmのプリズム56が形成されたプリズムシート50を配置した。プリズム角度40°のプリズム52の形成面が光平行化部材側に来るように配置した。
 [比較例11]
 (導光板)
 背面側に特開2015-130361の実施例に記載の形状(配列ピッチP1=100μm、角度α=2°、角度β=15°)が形成され、出光側に特開2013-51149の実施例4に示される五角形形状が形成された導光板を準備した。導光板の厚みは2mmとした。
 (プリズムシート)
 特開2017-37829を参考にプリズムシートを作製した。プリズム部の各寸法はWb=18μm、Hb=14μm、Wb2=11μm、θ1=51.0°、θ2=53.5°とした(図16参照)。
 このプリズムシートをプリズム部が導光板に向くように配置した。
 [比較例12]
 比較例11のプリズム部の寸法をWb=18μm、Hb=14μm、Wb2=6μm、θ1=65.0°、θ2=67.5°とした以外は、比較例11と同様にしてプリズムシートを作製し、このプリズムシートを比較例11と同様の導光板上に配置した。
 プリズムシートのプリズム部の延在方向と方位角90°方向のなす角度をθpとする。
 θpを0°から180°と変化させた時の輝度分布を計測し、各θpでのピーク輝度の極角、方位角および輝度値を求めた。
 各例のθp=0°の時のピーク輝度に対する、各θpのピーク輝度の割合を輝度比Lとした。
 θpを変化させた場合のピーク輝度の変化を図18に示す。
 比較例11および12ではプリズムシートの配置角度θpによってピーク輝度が減少してしまうことがわかる。これに対して、本発明の実施例29および30ではプリズムシートの配置角度θpを変えてもピーク輝度はほぼ変化が無く、プリズムシートの配置角度によらず、輝度が維持できていることが分かる。
 図19~図22はプリズムシートの配置角度θpを変化させた場合の各例のピーク輝度の方位角および極角位置をコンター図で示している。図19は比較例11、図20は比較例12、図21は実施例29、図22は実施例30の結果である。また、図中、輝度比が0.8以上となる位置を〇で示し、0.6より大きく0.8より小さくなる位置を△で示し、0.6以下となる位置を×で示した。
 図19および図20から、比較例11および12ではプリズムシートの配置角度θpの変化に伴いピーク輝度の位置は非対称的な軌跡で変化していることが分かる。また、輝度比Lが0.8以上と出来る領域は特定の方位角および極角に限られていることが分かる。
 一方、図21から、実施例29ではプリズムシートの配置角度θpに対応して、極角を保ったまま方位角のみ変化していることが分かる。また、いずれのピーク輝度も変化が小さく、輝度比Lが0.8以上と出来る領域が広いことが分かる。
 また、図22から、実施例29に対してプリズム形状を変えた実施例30でも、実施例29と同様の挙動になっており、バックライトの指向角度を広い範囲で制御出来ることが分かる。
 [実施例31]
 実施例30のプリズムシートの視認側に、光拡散シート(LSD20-PC-10-12)を配置した。プリズムシートの配置角度θp=0°とした。
 図23および図24はそれぞれ、実施例29および実施例31のピーク輝度の位置を黒点で示し、また、L=0.5となる位置を実線で結んだ図である。すなわち、実線で囲んだ領域は輝度比Lが0.5以上となる領域である。図23および図24から分かるように、本実施例の構成ではプリズムシートで光の出射方向を制御した後に、拡散シートを通すことで、ピーク輝度の位置は変えずに、光の広がり幅を大きくすることも出来る。
 以上のことから、本実施例では簡便な構成で、光の出射角度(方位角・極角)および光の広がり幅を広い範囲で制御することができることがわかる。
 [実施例32]
 直下型光源として、チップLEDユニット化基板(株式会社矢島製作所製)に、白色LED(NSSW157T 日亜化学工業株式会社製)を、はんだを用いて取り付けた。これを1セットとして、横に9セット、縦に7セット、計63セットを並べて直下型光源を作製した。これをLL-M220(シャープ株式会社製)の導光板の下に配置した。それ以外は実施例1と同様に配置し、サイドエッジ光源のみを点灯させた場合と、直下型光源のみを点灯させた場合とのディスプレイ画像の見えを、正面と極角60度から比較した。サイドエッジ光源のみを点灯させた場合は、正面では非常に明るく視認できたが、60度からは画像は視認できなかった。一方、直下型光源のみを点灯させた場合は、正面輝度は下がったものの、正面でも60度からも画像は視認可能であった。
 これにより、光源の切り替えのみで、ディスプレイの視野角を切り替えること可能であることを確認した。
  1 バックライトユニット
  2 光平行化部材
 10 光源
 11 基板
 12 導光板
 13 接着層
 20 円錐台形
 20a 円錐台形の透明基材と反対側の面
 20c 円錐台形の斜面
 21 透明基材
 22 レンズ
 24 突起部
 26 光吸収層
 26a 開口部
 30 液晶表示素子
 40 液晶表示装置
 50 プリズムシート
 52、56 プリズム
 54 基材

Claims (12)

  1.  透明基材の片面にレンズアレイが形成されており、該透明基材のもう一方の面に複数の円錐台形が配列している光平行化部材と、導光板と、光源とを含むバックライトユニットであって、
     前記光平行化部材は、前記導光板の一方の主面に対面して配置され、
     前記光源は、前記導光板の少なくとも1つの側面に対面して配置され、
     該光平行化部材上の前記円錐台形は、高さ方向において、前記透明基材から離れるにしたがって幅が狭くなる形状であり、
     前記レンズアレイの各レンズの位置がそれぞれ、該レンズに対応する前記円錐台形の位置に対して、該レンズの中心と該レンズから最も近い前記光源とを結んだ方向において、前記光源から遠い方向にずれており、該レンズの光軸が該レンズに対応する前記円錐台形の斜面を通るように配置されており、
     前記導光板と前記円錐台形の前記透明基材とは反対側の表面とが接しているとともに、
     該光平行化部材の前記円錐台形の形状が下記式1~式3を満たすことを特徴とするバックライトユニット。
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
    Figure JPOXMLDOC01-appb-M000003
     ここでn1は導光板の屈折率、n2は円錐台形の屈折率、θaveは下記式4で表される値であって、式4中のmは導光板から円錐台形に入射する光の入射角度範囲の分割数、θiは上記導光板から円錐台形に入射する光の入射角度範囲をm分割した際のi番目の入射角度、θは円錐台形の傾斜角度、Rはレンズの透明基材側の半径、rは円錐台形の透明基材と反対側の面の半径である。
    Figure JPOXMLDOC01-appb-M000004
  2.  前記光平行化部材の前記円錐台形の形状が下記式5~式6を満たす請求項1に記載のバックライトユニット。
    Figure JPOXMLDOC01-appb-M000005
    Figure JPOXMLDOC01-appb-M000006
  3.  前記光平行化部材の前記レンズの光軸と該レンズに対応する前記円錐台形の垂線との距離Lが下記式7を満たす請求項1または2に記載のバックライトユニット。
    Figure JPOXMLDOC01-appb-M000007
    ここで、θは円錐台形の傾斜角度、hは円錐台形の高さ、rは円錐台形の透明基材と反対側の面の半径である。
  4.  前記光平行化部材の前記透明基材の厚みをd、前記レンズの焦点距離をfとした時に、式8を満たす請求項1~3のいずれか一項に記載のバックライトユニット。
      d≦f≦d+h ・・・ 式8
    ここで、hは円錐台形の高さである。
  5.  前記光平行化部材の前記円錐台形と前記レンズの間に、開口部を設けた光吸収層を有しており、前記光吸収層の前記開口部の中心と前記レンズの光軸の位置が一致する請求項1~4のいずれか一項に記載のバックライトユニット。
  6.  前記光吸収層の前記開口部が円形であり、前記開口部の直径Rbが式9を満たす請求項5に記載のバックライトユニット。
      0.15<Rb/R≦1.0 ・・・ 式9
  7.  前記導光板と前記円錐台形の前記透明基材とは反対側の表面とが接着層を介して接している請求項1~6のいずれか一項に記載のバックライトユニット。
  8.  前記光平行化部材の前記円錐台形の前記透明基材とは反対側の面に、前記円錐台形よりも傾斜角度が小さい円錐台形状または円錐形状の突起部を有しており、前記突起部の前記円錐台形側の面の半径が、前記円錐台形の前記透明基材とは反対側の面の半径と等しい請求項7に記載のバックライトユニット。
  9.  複数の前記レンズは不規則に配置されている請求項1~8のいずれか一項に記載のバックライトユニット。
  10.  前記光平行化部材より視認側に光偏向部材が配置されている請求項1~9のいずれか一項に記載のバックライトユニット。
  11.  前記光偏向部材がプリズムシートである請求項10に記載のバックライトユニット。
  12.  請求項1~11のいずれか一項に記載のバックライトユニットを備えた液晶表示装置。
PCT/JP2018/032594 2017-09-04 2018-09-03 バックライトユニットおよび液晶表示装置 WO2019045095A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880057004.XA CN111065962B (zh) 2017-09-04 2018-09-03 背光单元及液晶显示装置
KR1020207005654A KR102303583B1 (ko) 2017-09-04 2018-09-03 백라이트 유닛 및 액정 표시 장치
JP2019539702A JP6806911B2 (ja) 2017-09-04 2018-09-03 バックライトユニットおよび液晶表示装置
US16/808,070 US11243343B2 (en) 2017-09-04 2020-03-03 Backlight unit and liquid crystal display device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017169666 2017-09-04
JP2017-169666 2017-09-04
JP2017-230210 2017-11-30
JP2017230210 2017-11-30
JP2018095610 2018-05-17
JP2018-095610 2018-05-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/808,070 Continuation US11243343B2 (en) 2017-09-04 2020-03-03 Backlight unit and liquid crystal display device

Publications (1)

Publication Number Publication Date
WO2019045095A1 true WO2019045095A1 (ja) 2019-03-07

Family

ID=65527539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032594 WO2019045095A1 (ja) 2017-09-04 2018-09-03 バックライトユニットおよび液晶表示装置

Country Status (5)

Country Link
US (1) US11243343B2 (ja)
JP (1) JP6806911B2 (ja)
KR (1) KR102303583B1 (ja)
CN (1) CN111065962B (ja)
WO (1) WO2019045095A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020036177A1 (ja) * 2018-08-17 2021-08-12 Agc株式会社 光学素子、光学系、および光学装置
EP3923042A1 (en) * 2020-06-11 2021-12-15 Luminit Llc Anti-glare, privacy screen for windows or electronic device displays

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113534537A (zh) * 2021-07-28 2021-10-22 南京京东方显示技术有限公司 背光模组及显示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10253808A (ja) * 1997-03-13 1998-09-25 Toray Ind Inc 光学シートおよびその製造方法と指向性面状光源
JP2007299755A (ja) * 2006-04-27 2007-11-15 Samsung Electronics Co Ltd 偏光導光板ユニット、それを採用したバックライトユニット、及びディスプレイ装置
JP2014067524A (ja) * 2012-09-25 2014-04-17 Dainippon Printing Co Ltd 面光源装置及び透過型表示装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4202221B2 (ja) * 2003-09-26 2008-12-24 シャープ株式会社 光屈折素子アレイ基板、画像表示素子および画像表示装置
JP4685386B2 (ja) * 2004-08-31 2011-05-18 株式会社リコー 画像表示装置、プロジェクタ装置、及び画像観察装置
CN100585270C (zh) * 2005-08-12 2010-01-27 夏普株式会社 背光单元和液晶显示装置
KR101255000B1 (ko) * 2006-06-21 2013-04-16 삼성디스플레이 주식회사 일체형 광학판, 이를 갖는 백라이트 어셈블리 및액정표시장치
TW200831951A (en) * 2006-11-29 2008-08-01 Hitachi Maxell Optical sheet used in backlight device, backlight device and display device
JP5066957B2 (ja) * 2007-03-14 2012-11-07 凸版印刷株式会社 光学シート、それを用いたバックライトユニット、およびディスプレイ装置
JP5364998B2 (ja) 2007-12-28 2013-12-11 凸版印刷株式会社 両面レンズシート、ディスプレイ用光学シートおよびそれを用いたバックライトユニット、ディスプレイ装置
US8926157B2 (en) * 2010-12-24 2015-01-06 Sharp Kabushiki Kaisha Light diffusing member and method of manufacturing the same, and display device
JP6239978B2 (ja) * 2011-10-28 2017-11-29 シャープ株式会社 液晶表示装置
JP6103377B2 (ja) * 2013-06-19 2017-03-29 シャープ株式会社 表示装置及びその製造方法
JP5921042B2 (ja) * 2013-07-30 2016-05-24 シャープ株式会社 光拡散部材の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10253808A (ja) * 1997-03-13 1998-09-25 Toray Ind Inc 光学シートおよびその製造方法と指向性面状光源
JP2007299755A (ja) * 2006-04-27 2007-11-15 Samsung Electronics Co Ltd 偏光導光板ユニット、それを採用したバックライトユニット、及びディスプレイ装置
JP2014067524A (ja) * 2012-09-25 2014-04-17 Dainippon Printing Co Ltd 面光源装置及び透過型表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUANG ET AL.: "Integrated backlight module to provide a collimated and uniform planar light source", APPLIED OPTICS, vol. 55, no. 26, 10 September 2016 (2016-09-10), pages 7307 - 7313, XP055580432 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020036177A1 (ja) * 2018-08-17 2021-08-12 Agc株式会社 光学素子、光学系、および光学装置
EP3923042A1 (en) * 2020-06-11 2021-12-15 Luminit Llc Anti-glare, privacy screen for windows or electronic device displays
US11353639B2 (en) 2020-06-11 2022-06-07 Luminit Llc Anti-glare, privacy screen for windows or electronic device displays

Also Published As

Publication number Publication date
CN111065962B (zh) 2022-08-09
KR102303583B1 (ko) 2021-09-16
JPWO2019045095A1 (ja) 2020-10-08
US20200200961A1 (en) 2020-06-25
KR20200033314A (ko) 2020-03-27
US11243343B2 (en) 2022-02-08
CN111065962A (zh) 2020-04-24
JP6806911B2 (ja) 2021-01-06

Similar Documents

Publication Publication Date Title
US9335449B2 (en) Higher transmission light control film
JPH0833540B2 (ja) テーパ付き導波管のアレイを備えた直視型表示装置
KR20030026343A (ko) 양면 렌즈 시트 및 프로젝션 스크린
US8351119B2 (en) Multi-coated hybrid optical film structure
US10310322B2 (en) Image source unit and display device
US11243343B2 (en) Backlight unit and liquid crystal display device
JP5298569B2 (ja) レンズシート、ディスプレイ用光学シート及びそれを用いたバックライト・ユニット、ディスプレイ装置
JP4423933B2 (ja) 光学シートとそれを用いたバックライトユニットおよびディスプレイ
JP2009258621A (ja) レンズシート、ディスプレイ用光学シート及びそれを用いたバックライト・ユニット、ディスプレイ装置
JP2017167224A (ja) 空間浮遊映像表示装置
JP5003298B2 (ja) 光学シート、それを用いたバックライトユニット、およびディスプレイ装置
US20180128959A1 (en) Optical sheet, image source unit and image display device
JP2010262038A (ja) 光偏向素子、及び拡散板
JP2009053623A (ja) レンズシート、ディスプレイ用光学シート及びそれを用いたバックライト・ユニット、ディスプレイ装置
JP2009063905A (ja) 光学シートとそれを用いるバックライトユニットおよびディスプレイ
JP2008310251A (ja) 光学シート、バックライトユニット及びディスプレイ装置
JP2017167506A (ja) 映像源ユニット、及び表示装置
JP2010032781A (ja) 光デバイス、光拡散デバイス、光学シート、バックライトユニットおよびディスプレイ装置
JPH1039118A (ja) 光線指向性化シートおよびそれを用いた指向性面状光源
KR20060063669A (ko) 확산집광부재 및 이를 포함하는 면광원장치
TWI327670B (en) Optical plate and backlight module using the same
JP2010251053A (ja) 光均一素子及びそれを用いたバックライトユニット及びディスプレイ装置
JP5509532B2 (ja) 光学部材及びバックライトユニット並びにディスプレイ装置
US11635562B2 (en) Image source unit, and liquid crystal display device
JP2017219619A (ja) 映像源ユニット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18850194

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019539702

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207005654

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18850194

Country of ref document: EP

Kind code of ref document: A1