WO2019044894A1 - コラーゲンへの結合活性を有する環状ペプチド - Google Patents

コラーゲンへの結合活性を有する環状ペプチド Download PDF

Info

Publication number
WO2019044894A1
WO2019044894A1 PCT/JP2018/031920 JP2018031920W WO2019044894A1 WO 2019044894 A1 WO2019044894 A1 WO 2019044894A1 JP 2018031920 W JP2018031920 W JP 2018031920W WO 2019044894 A1 WO2019044894 A1 WO 2019044894A1
Authority
WO
WIPO (PCT)
Prior art keywords
residue
group
drug
peptide
cyclic peptide
Prior art date
Application number
PCT/JP2018/031920
Other languages
English (en)
French (fr)
Inventor
隆規 小出
講 瀧田
和馬 平
Original Assignee
学校法人早稲田大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人早稲田大学 filed Critical 学校法人早稲田大学
Priority to JP2019539576A priority Critical patent/JP7174429B2/ja
Publication of WO2019044894A1 publication Critical patent/WO2019044894A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/78Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin or cold insoluble globulin [CIG]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology

Definitions

  • the present invention relates to a cyclic peptide having strong binding activity to denatured collagen, use of the cyclic peptide as a test reagent for research and research of denatured collagen, and diagnosis of a disease causing denatured collagen containing the cyclic peptide. And compositions for treatment and the like.
  • a triple-stranded structure of a peptide (Xaa and Yaa represents any amino acid residue) having an amino acid sequence of a primary structure consisting of repeating a basic unit of-(Xaa-Yaa-Gly)- It is a general term for the protein to be formed, and is a main component of the extracellular matrix existing between cells of animal tissue (Non-patent Document 1). It is abundant in animal connective tissue and constitutes the skeletal structure of the tissue. There are 28 reported human collagen proteins.
  • Non-patent Document 2 collagen is a disease such as cancer in which matrix metalloproteinase activity is increased, and collagen is decomposed and denatured to generate denatured collagen in which its triple helical structure is loosened. Therefore, artificial collagen-like peptides capable of binding to denatured collagen have been synthesized, and application of these denatured collagens to test agents for diagnosis of diseases having denatured collagen has been attempted (Patent Documents 1 and 2) Non Patent Literature 3).
  • test agents and research reagents capable of detecting denatured collagen with high sensitivity, and therapeutic agents for diseases associated with denatured collagen using distribution to the tissue where denatured collagen is present are not known yet.
  • the present invention relates to a drug-binding cyclic peptide having binding activity to denatured collagen, the use of the drug-binding cyclic peptide as a test drug and research reagent for denatured collagen, and a denatured collagen containing the drug-binding cyclic peptide. It is an object of the present invention to provide a composition for diagnosis and a composition for the prevention or treatment of a resulting disease.
  • the present inventors have found that a collagen-like peptide having a cyclic structure in which double-stranded peptides are bound in parallel has strong binding activity to denatured collagen, and completed the present invention.
  • the present invention may have a repeating structure of 5 to 9 times with a tripeptide group consisting of (Xaa-Yaa-Gly) as a repeating unit, may contain a linking group, and may be the same or different Containing a duplex of good peptide chains, Containing a cyclic peptide group bridged near the N-terminal end and near the C-terminal end of each peptide chain, An agent is conjugated to the side chain of at least one amino acid residue of at least one peptide chain of the peptide chain, Providing an agent conjugated cyclic peptide, or a salt or solvate thereof;
  • Xaa and Yaa are each independently proline (Pro or P) residue, hydroxyproline (Hyp or O) residue, arginine (Arg or R) residue, lysine (Lys or K) residue, valine (Val or V) residue, leucine (Leu or L) residue, isoleucine (Ile or I
  • the drug-bound cyclic peptide may be a drug-bound cyclic peptide represented by the following formula (I):
  • L 1 , L 1 ′, L 2 and L 2 ′ are each independently a crosslinking group which may contain the same or different spacer group (-Sp-), or -L 1 -L 2- or -L 1 '-L 2' - to form one amino acid residue, represents also be crosslinking group include a spacer group (-Sp-),
  • L 3 is a linking group between the cyclic peptide group and the drug group which may contain a spacer group,
  • A represents a drug group which may contain a spacer group,
  • n and m may be the same or different and are 5 to 9,
  • Xaa is Xaa 1 or Xaa 2
  • Yaa is represented as Yaa 1 or Yaa 2
  • Xaa 1, Xaa 2 , Yaa 1 and Yaa 2 are the same or
  • N-isobutyl group glycine residue may be used at the Xaa 1 position, the Xaa 2 position, the Yaa 1 position and the Yaa 2 position.
  • the repeating units of (Xaa-Yaa-Gly) are independent for each repeating unit, and may be identical or different, and Xaa may be identical or different for each repeating unit.
  • Yaa may be the same or different for each repeating unit,
  • the substituent represented by the following formula (II) on the N terminal side in the formula (I) may contain a spacer group, ⁇ Crosslinking by disulfide bond, Crosslinking by an amino acid residue having —COOH in the side chain ⁇ Crosslinking using diketopiperazine, ⁇ Crosslinking by olefin metathesis, or ⁇ Crosslinking by click chemistry, Is selected from (ii)
  • the substituent represented by the following formula (III) on the C-terminal side in formula (I) may contain a spacer group, ⁇ Crosslinking by disulfide bond, ⁇ Crosslinking by an amino acid residue having -NH 2 in the side chain, Crosslinking by an amino acid residue having —OH in the side chain ⁇ Crosslinking using diketopiperazine, ⁇ Crosslinking by olefin metathesis, or ⁇ Crosslinking by click chemistry, You can choose from
  • Crosslinking by disulfide bond is by -Cys-Cys-
  • Crosslinking by an amino acid residue having -COOH in the side chain is by an aspartic acid (Asp, D) residue or a glutamic acid (Glu, E) residue
  • Crosslinking by an amino acid residue having —NH 2 in the side chain is by lysine (lys, K)
  • Crosslinking by an amino acid residue having —OH in the side chain is by (serine residue (Ser or S), threonine residue (Thr or T) or tyrosine residue (Tyr or Y)), It may be selected from
  • the spacer group is-(Gly) p- (p is an integer of 1 to 3),-( ⁇ Ala) q- (q is an integer of 1 to 3), -PEG 4-, Alternatively, it may be selected from 6-aminohexanoic acid groups.
  • L 3 contains an amino acid residue Zaa capable of linking the drug group in the side chain
  • Zaa is an aspartic acid residue (Asp or D), a glutamic acid residue (Glu or E) ), Lysine residue (Lys or K), (serine residue (Ser or S), threonine residue (Thr or T), tyrosine residue (Tyr or Y)), cysteine residue (Cys or C), propargyl It may be selected from glycine residues.
  • the drug group may be selected from a labeling group or a drug molecule group.
  • the drug group is a labeling group
  • the labeling substance in the labeling group includes biotin, an enzyme, and carboxyfluorescein (CF or FAM: carboxy fluorescein), 5 (6) -carboxytetramethylrhodamine ( It may be at least one selected from the group consisting of TAMRA), Alexa fluor (registered trademark), Cyanine Dye, IR Dye, HiLyte fluorescent (registered trademark), a fluorescent dye, a metal complex compound, and a radioactively labeled compound.
  • CF or FAM carboxyfluorescein
  • 5 (6) -carboxytetramethylrhodamine It may be at least one selected from the group consisting of TAMRA), Alexa fluor (registered trademark), Cyanine Dye, IR Dye, HiLyte fluorescent (registered trademark), a fluorescent dye, a metal complex compound, and a radioactively labeled compound.
  • the drug group is a drug molecule group
  • the drug molecule in the drug molecule group is an antitumor drug, an osteoporosis drug, a radioactive metal complex compound, a radiolabeled compound, an antibiotic, an antifungal drug It may be at least one selected from the group consisting of cell adhesion molecule-derived peptides, Stromal-derived factor 1 (SDF-1), growth factors and anti-inflammatory agents.
  • SDF-1 Stromal-derived factor 1
  • the drug-bound cyclic peptide of the above-mentioned formula (I) may be represented by the following formulas (IV) to (XIV):
  • -Cys-Cys- represents a cystine residue in which the -SH group of the side chains of two Cys residues is disulfide-bonded
  • Ac represents an acetyl group
  • Ahx represents 6-aminohexanoic acid group
  • A may contain the aforementioned spacer group, biotin group, carboxyfluorescein (CF or carboxy fluorescein) group, IR Dye750 group, doxorubicin group, PTH group, 5 (6) -carboxytetramethylrhodamine (TAMRA) group and Stromal-derived factor
  • SDF-1 group consisting of 1
  • the metal complex compound is a metal complex of a chelating agent and a radioactive metal
  • the radioactive metal is 51 Cr, 62 Cu, 64 Cu, 67 Cu, 67 Ga, 68 Ga, 47 Sc, 88 Y, 86 Y, 90 Y, 97 Ru, 99 m Tc, 103 Ru, 105 Rh, 109 Pd, 111 In, 117 m Sn, 141 Ce, 140 La, 149 Pm, 153 Sm, 161 Tb, 165 Dy, 166 Dy, 166 Ho, 167 Tm, 168 Yb, 175 Yb, 177 Lu, 186 Re, 188 Re, 198 Au, 199 Au, 203 Pb, 211 Bi, 212 Bi, 213 Bi, 214 Bi and 225 Ac, and It may be a drug-bound cyclic peptide that is one or more radioactive metals selected from the group consisting of oxides or nitrides.
  • the metal complex compound is a metal complex of a chelating agent and a radiopaque metal
  • the radiopaque metal is bismuth (Bi), tungsten (W), tantalum ( Selected from the group consisting of Ta), hafnium (Hf), lanthanum (La), other lanthanides, barium (Ba), molybdenum (Mo), niobium (Nb), zirconium (Zr) and strontium (Sr) May be one or more metals.
  • the metal complex is a metal complex of a chelating agent and a paramagnetic metal
  • the paramagnetic metal is chromium (Cr), manganese (Mn), iron (Fe 2+ ), iron (Fe 3+ ), praseodymium (Pr), neodymium (Nd), samarium (Sm), ytterbium (Yb), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho) and erbium (Er)
  • Cr chromium
  • Mn manganese
  • Fe 2+ iron
  • Pr praseodymium
  • Nd neodymium
  • Sm samarium
  • Yb ytterbium
  • Gd gadolinium
  • Tb terbium
  • Dy dysprosium
  • Ho holmium
  • Er erbium
  • Er erbium
  • the present invention comprises the drug-bound cyclic peptide, or a salt or solvate thereof as an active ingredient, wherein the drug group is a labeling group, and as a research reagent for a sample containing collagen including a modified region,
  • compositions for detecting or detecting denatured collagen for the detection or diagnosis of a disease having collagen containing a degenerating area, or for preventing or treating a patient having a disease containing collagen having a degenerating area.
  • the present invention comprises the drug-binding cyclic peptide, or a salt or solvate thereof as an active ingredient, wherein the drug group is a drug molecule group and is selectively bound to a tissue containing denatured collagen in vivo.
  • a composition for treatment of a disease of a patient having collagen including a denatured area which is distributed in target cells or target tissues and prevents or treats a disease or disorder in said target cells or tissues.
  • the present invention comprises the drug-bound cyclic peptide, or a salt or solvate thereof as an active ingredient, wherein the drug group is a drug molecule group, and selectively bound to a tissue containing denatured collagen in vivo.
  • the present invention provides a method for preventing or treating a disease of a patient having collagen including a denatured area, which is distributed in target cells or target tissues and prevents or treats a disease or disorder in the target cells or tissues.
  • the disease is a disease accompanied by collagen degeneration, collagen remodeling and / or enhancement of matrix metalloproteinase (MMP) activity, cancer, musculoskeletal disease (Marfan It may be used for detection, diagnosis, prevention or treatment of diseases selected from syndromes, osteoporosis, bone fractures, cartilaginous diseases), wounds and corneal damage.
  • MMP matrix metalloproteinase
  • the cancer is preferably a MMP-expressing metastatic cancer.
  • a drug-binding cyclic peptide having binding activity to denatured collagen use of the drug-binding cyclic peptide as a test drug and research reagent for denatured collagen, and denatured collagen containing the drug-binding cyclic peptide
  • the present invention can provide a composition for diagnosis and a composition for the prevention or treatment of a resulting disease.
  • ssCMP represents single-strand CMP (single-stranded (single-stranded CMP), dsCMP (bCMP) double-strand CMP (double-stranded double-stranded CMP), cCMP represents cyclic CMP (cyclic CMP), n Represents the number of repetitions of the basic unit of CMP.
  • the figure which represents the evaluation result of the collagen binding activity in 37 degreeC of CMP using ELISA (mean +/- SD, n 3).
  • Figure 7 depicts the results with heated CMP.
  • ssCMP represents single-strand CMP (single-stranded (single-stranded CMP), dsCMP (bCMP) double-strand CMP (double-stranded double-stranded CMP), cCMP represents cyclic CMP (cyclic CMP), n Represents the number of repetitions of the basic unit of CMP.
  • the figure which shows the result of having compared the density
  • strand CMP10 (mean +/- SD, n 3). It shows the evaluation results of collagen binding activity of CMP (collagen like peptide) and anti-collagen antibody by western blotting.
  • the figure showing the verification result of collagen specificity of annular CMP7 The figure showing the verification result of the type
  • an anti-KDEL antibody was used.
  • the figure which represents the evaluation result of collagen binding activity in 37 degreeC of annealed CMP using ELISA about the cyclic peptide containing a spacer group (mean +/- SD, n 3).
  • a figure showing the evaluation result of collagen binding activity by ELISA of PTH (1-34) -cyclic peptide conjugate (mean ⁇ SD (n 3)).
  • Drug-bound cyclic peptide One of the embodiments of the present invention is a drug-bound cyclic peptide in which a drug group is linked to a cyclic peptide having binding activity for denatured collagen.
  • the drug-bound cyclic peptide has a repeating structure of 5 to 9 times, and may contain a linking group, with the tripeptide group consisting of (Xaa-Yaa-Gly) as the repeating unit, and may contain the same or Containing a duplex of peptide chains that may differ Containing a cyclic peptide group bridged near the N-terminal end and near the C-terminal end of each peptide chain, An agent-conjugated cyclic peptide, or a salt thereof, in which an agent is conjugated to a side chain of at least one amino acid residue of at least one peptide chain of the peptide chain Or a solvate;
  • Xaa and Yaa are each independently proline (Pro or P) residue, hydroxyproline (Hyp or O) residue, arginine (Arg or R) residue, lysine (Lys or K) residue, valine (Val or V) residue, leucine (Leu or L)
  • Collagen is an in vivo component having a triple helical structure composed of three peptide chains.
  • the drug-binding cyclic peptide of the present invention comprises a double-stranded collagen-like peptide chain, and forms a cyclic peptide by crosslinking the vicinity of both N-terminals of both peptide chains and the vicinity of both C-terminals. Then, the cyclic peptide has an activity of binding to a peptide chain in which the triple helix structure of denatured collagen is released (see FIG. 1).
  • amino acids are L-form.
  • amino acids herein are modified amino acid residues well known in the art, for example, 4 -Hydroxy-L-proline, 4-fluoro-L-proline and N-isobutyl group glycine.
  • hydroxyl proline is 3-hydroxy-L-proline or 4-hydroxy-L-proline, which is represented by "Hyp" in three-letter notation and "O" in one-letter notation.
  • collagen mimetic peptide is a non-natural or artificial peptide or polypeptide, which mimics natural collagen,-(Xaa-Yaa It refers to a peptide or polypeptide having a repeating structure having -Gly)-as a basic unit, or a plurality of peptide chains having the repeating structure further crosslinked.
  • said Xaa and Yaa are each independently proline (Pro or P) residue, hydroxyproline (Hyp or O) residue, arginine (Arg or R) residue, lysine (Lys or K) residue, Valine (Val or V) residue, leucine (Leu or L) residue, isoleucine (Ile or I) residue, serine (Ser or S) residue, threonine (Thr or T) residue, alanine (Ala or A) ) Residue, glycine (Gly or G) residue, phenylalanine (Phe or F) residue, methionine (Met or M) residue, glutamic acid (Glu or E) residue, aspartic acid (Asp or D) residue, It is selected from asparagine (Asn or N) residues, glutamine (Gln or Q) residues, histidine (His or H) residues, tryptophan (Trp or W) residues or tyrosine (T
  • a cyclic peptide in which the vicinity of the N terminus and the vicinity of the C terminus of each peptide chain are crosslinked means (1) a peptide chain having a crosslinking group attached to the N terminus and C terminus of each cyclic peptide chain.
  • a cyclic peptide having a cyclic structure by forming a crosslink (2) Crosslink formation via 1 to 3 amino acid residues in the direction from the N-terminal end and C-terminal side of each cyclic peptide chain to the opposite end And / or a cyclic peptide having a cyclic structure crosslinked by a combination of (1) and (2).
  • the crosslink-forming group may have a spacer group (Sp-).
  • the drug-bound cyclic peptide is a drug-bound cyclic peptide represented by the following formula (I):
  • L 1 , L 1 ′, L 2 and L 2 ′ each independently may be the same or different, and may be a cross-linking group which may contain a spacer group (-Sp-), or -L 1 -L 2 - or -L 1 '-L 2' - may form a single amino acid residue, represents an even or crosslinking group include a spacer group (-Sp-),
  • L 3 is a linking group between the cyclic peptide group and the drug group which may contain a spacer group,
  • A represents a drug group which may contain a spacer group,
  • n and m may be the same or different and are 5 to 9,
  • Xaa is Xaa 1 or Xaa 2
  • Yaa is represented as Yaa 1 or Yaa 2
  • Yaa 1 and Yaa 2 are
  • N-isobutyl group glycine residue may be used at the Xaa 1 position, the Xaa 2 position, the Yaa 1 position and the Yaa 2 position.
  • the repeating units of (Xaa-Yaa-Gly) are independent for each repeating unit, and may be identical or different, and Xaa may be identical or different for each repeating unit.
  • Yaa may be the same or different for each repeating unit,
  • the substituent represented by the following formula (II) on the N terminal side in the formula (I) may contain a spacer group, ⁇ Crosslinking by disulfide bond, Crosslinking by an amino acid residue having —COOH in the side chain ⁇ Crosslinking using diketopiperazine, ⁇ Crosslinking by olefin metathesis, or ⁇ Crosslinking by click chemistry, Is selected from (ii)
  • the substituent represented by the following formula (III) on the C-terminal side in formula (I) may contain a spacer group, ⁇ Crosslinking by disulfide bond, ⁇ Crosslinking by an amino acid residue having -NH 2 in the side chain, Crosslinking by an amino acid residue having —OH in the side chain ⁇ Crosslinking using diketopiperazine, ⁇ Crosslinking by olefin metathesis, or ⁇ Crosslinking by click chemistry, You can choose from
  • Crosslinking by disulfide bond is by -Cys-Cys-
  • Crosslinking by an amino acid residue having -COOH in the side chain is by an aspartic acid (Asp, D) residue or a glutamic acid (Glu, E) residue
  • Crosslinking by an amino acid residue having —NH 2 in the side chain is by lysine (lys, K)
  • Crosslinking by an amino acid residue having —OH in the side chain is by (serine residue (Ser or S), threonine residue (Thr or T) or tyrosine residue (Tyr or Y))
  • amino acid residue Zaa capable of linking a drug group to a desired linking group, spacer group, cross-linking group and / or side chain
  • a peptide chain incorporating an amino acid residue contained therein is synthesized, and a purified peptide chain can be obtained using a conventional purification method well known to those skilled in the art such as high performance liquid chromatography and molecular filtration method (eg, International Publication Pamphlet WO2013111759).
  • the crosslink-forming group may or may not contain a spacer group (-Sp-), and the crosslink-forming group may be a lysine residue (Lys, K) or an ornithine residue.
  • Cysteine residue Cysteine residue (Cys, C), aspartic acid residue (Asp, D), glutamic acid residue (Glu, E), propargylglycine residue, disulfide group, sulfide group and amide group Good.
  • the spacer group is-(Gly) p- (p is an integer of 1 to 3),-( ⁇ Ala) q- (Q is an integer of 1 to 3), and may be a peptide chain selected from-PEG (polyethylene glycol) 4-, 6-aminohexanoate.
  • the substituent represented by the formula (III) has a crosslink structure represented by the following formula (XVI).
  • the arrowhead of the arrow represents the C-terminal side of the peptide chain.
  • the substituent represented by the formula (III) has a cross-linked structure represented by the following formula (XVII).
  • the arrowhead of the arrow represents the C-terminal side of the peptide chain.
  • the substituent represented by Formula (III) has a cross-linked structure represented by the following Formula (XVIII-I).
  • Formula (XVIII-I) the arrowhead of the arrow indicates that it is on the C-terminal side of the peptide chain.
  • the substituent represented by the formula (II) has a crosslinked structure represented by the following formula (XVIII-II).
  • the direction of the arrow indicates that the direction is from the N terminal side to the C terminal side of the peptide chain.
  • the substituent represented by the formula (II) is a crosslink structure represented by the following formula (IX)
  • Crosslinking can be carried out in the same manner as Hojo H. et al. (Hojo H. et al, Tetrahedron 1997, 53, 14263).
  • the structure where the bridging group is glutamic acid is shown in Formula XIX.
  • the direction of the arrow represents the direction from the N terminal side to the C terminal side of the peptide chain.
  • crosslinking group is a propargylglycine residue and is crosslinked by click chemistry
  • crosslinking may be carried out in the same manner as Li H. et al. (Li H. et al., Molecules .; 2013, 18: 9797)
  • the substituent represented by the formula (III) has a crosslinked structure represented by the following formula (XX).
  • XX the arrowhead of the arrow indicates that it is on the C-terminal side of the peptide chain.
  • L 3 contains an amino acid residue Zaa capable of linking the drug group in the side chain
  • Zaa is an aspartic acid residue (Asp or D), a glutamic acid residue (Glu or E) ), Lysine residue (Lys or K), (serine residue (Ser or S), threonine residue (Thr or T), tyrosine residue (Tyr or Y)), cysteine residue (Cys or C) or propargyl It may be selected from glycine residues.
  • the drug-bound cyclic peptide of the present invention can be produced by crosslinking peptide chains having a crosslinking group by a crosslinking reaction. Also, the preparation of the peptide chain can be prepared by a known chemical synthesis method for peptides using commercially available amino acids, but is not limited thereto.
  • a cyclic peptide is formed by cross-linking a peptide chain having a cross-linking group which may contain the spacer and a peptide chain containing an amino acid residue for linking a drug linking group to a side chain by a cross-linking reaction Do.
  • a cyclic peptide (cyclic (POG-R ') in which the N-terminal side is linked by a disulfide bond and the C-terminal side is linked by a peptide bond is shown in FIG. 7): The synthetic scheme of SEQ ID NO: 39) is shown in FIG. 2B.
  • a drug-binding cyclic peptide can be produced by linking a drug group to the above cyclic peptide.
  • the drug group can be linked, for example, by using a conventional condensation reaction or crosslinking reaction well known to those skilled in the art (International Publication Pamphlet WO2016208673, etc.).
  • Examples of drug groups in the drug-bound cyclic peptide of the present invention include labeling groups and drug molecule groups.
  • the labeling substance in the labeling group is biotin, an enzyme, and carboxyfluorescein (CF or FAM: carboxy fluorescein), 5 (6) -carboxytetramethylrhodamine (TAMRA), Alexa fluor (registered trademark) It may be at least one selected from the group consisting of a fluorescent compound or a phosphorescent compound including Cyanine Dye, IRDye, HiLyte fluor (registered trademark), a metal complex compound, and a radioactive labeling compound.
  • CF or FAM carboxy fluorescein
  • TAMRA 5 (6) -carboxytetramethylrhodamine
  • Alexa fluor registered trademark
  • Alexa fluor 350, 405, 488, 532, 546, 555, 568, 594, 647, 680 or 750 is exemplified as Alexa fluor (registered trademark).
  • the drug-bound cyclic peptide of the present invention can be produced by linking a drug molecule to a cyclic peptide as a drug molecule group via a linking group.
  • Examples of the drug molecule include anti-drugs selected from doxorubicin, 5-FU, cisplatin, vinblastine, daunomycin, epirubicin, idarubicin, mitomycin-C, bleomycin, irinotecan, paclitaxel, cyclophosphamide, actinomycin D, taxanes, etc.
  • anti-drugs selected from doxorubicin, 5-FU, cisplatin, vinblastine, daunomycin, epirubicin, idarubicin, mitomycin-C, bleomycin, irinotecan, paclitaxel, cyclophosphamide, actinomycin D, taxanes, etc.
  • Tumor drugs such as PTH, radioactive metal complex compounds, radiolabeled compounds, antibiotics such as penicillin and tetracycline, parabens, chlorobutanol, phenol sorbic acid, nystatin, econazole, miconazole, fluconazole, ketoconazole, itraconazole or clotrimazole
  • Peptide, Stromal-derived factor 1 (SDF-1) at least one can be cited are selected from growth factors and the group consisting of anti-inflammatory agents.
  • the metal complex compound is a metal complex of a chelating agent and a metal
  • the chelating agent is EDTA (ethylenediaminetetraacetic acid), DTPA (diethylenetriaminepentaacetic acid), cyclohexyl-DTPA (cyclohexyl-diethylenetriaminepentaacetic acid), DOTA (1,4,7,10-tetra-azacyclododecane-1,4,7,10-tetraacetic acid) or NOTA (1,4,7-triazacyclononane -N, N ', N' '- C-functionalized complexane-type ligand (Japanese Patent Laid-Open No.
  • L-cysteinyl group Japanese Patent Laid-open No. 2014-
  • Japanese Patent Laid-open No. 2014- Japanese Patent Laid-open No. 2014-
  • a peptide chain having a chelating group is synthesized, and the peptide chain of the present invention is crosslinked by a crosslinking reaction to obtain the drug-bound cyclic peptide of the present invention.
  • the metal complex compound is a metal complex of a chelating agent and a radioactive metal
  • the radioactive metal is 51 Cr, 62 Cu, 64 Cu, 67 Cu, 67 Ga, 68 Ga, 47 Sc, 88 Y, 86 Y, 90 Y, 97 Ru, 99 m Tc, 103 Ru, 105 Rh, 109 Pd, 111 In, 117 m Sn, 141 Ce, 140 La, 149 Pm, 153 Sm, 161 Tb, 165 Dy, 166 Dy, 166 Ho, 166 Ho , 167 Tm, 168 Yb, 175 Yb, 177 Lu, 186 Re, 188 Re, 198 Au, 199 Au, 203 Pb, 211 Bi, 212 Bi, 213 Bi, 214 Bi and 225 Ac, and oxides or nitrides thereof.
  • One or more radioactive metals selected from the group consisting of
  • the metal complex compound is a metal complex of a chelating agent and a radiopaque metal
  • the radiopaque metal is bismuth (Bi), tungsten (W), tantalum (Ta), hafnium ( Hf), lanthanum (La), other lanthanides, barium (Ba), molybdenum (Mo), niobium (Nb), zirconium (Zr) and strontium (Sr), and at least one metal selected from the group consisting of You may use
  • the metal complex is a metal complex of a chelating agent and a paramagnetic metal
  • the metal may be chromium (Cr), manganese (Mn), iron (Fe 2+ ), iron (Fe 3+ ), praseodymium ( prase ) Pr), neodymium (Nd), samarium (Sm), ytterbium (Yb), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho) and erbium (Er) 1
  • Cr chromium
  • Mn manganese
  • Fe 2+ iron
  • praseodymium ( prase ) Pr Pr
  • Sm samarium
  • Yb ytterbium
  • Gd gadolinium
  • Tb terbium
  • Dy dysprosium
  • Ho holmium
  • Er erbium
  • -Cys-Cys- represents a cystine residue in which the -SH group of the side chains of two Cys residues is disulfide-bonded
  • Ac represents an acetyl group
  • Ahx represents 6-aminohexanoic acid group
  • A may contain the aforementioned spacer group, biotin group, carboxyfluorescein (CF or carboxy fluorescein) group, IR Dye750 group, doxorubicin group, PTH group, 5 (6) -carboxytetramethylrhodamine (TAMRA) group and Stromal-derived factor
  • SDF-1 group consisting of 1 (SDF-1), which is bonded to the -NH 2 group of the side chain of a Lys residue by an amide bond or a disulfide bond of a cystine residue
  • Such a drug-bound cyclic peptide can be obtained by separation and purification using conventional separation means well known to those skilled in the art such as high performance liquid chromatography, for example, and can be used for producing the drug-bound cyclic peptide of the present invention (International Publication Pamphlet WO2013111759 and the like).
  • the drug-binding cyclic peptide is an active ingredient of a detection agent for denatured collagen described below, a diagnostic composition (diagnostic agent) for a disease containing a denatured collagen, a preventive (prophylactic agent) or a therapeutic composition (therapeutic agent). It can also be used as a research reagent. In addition, it can be used to anchor biologically active substances to collagen as a biomaterial.
  • composition for detection or research of denatured collagen or diagnostic agent for patient with denatured collagen comprises the detection or study of a disease having collagen containing the drug-bound cyclic peptide, or a salt or solvate thereof as an active ingredient, and wherein the drug group is a labeling group and has a modified region
  • the composition for detecting denatured collagen for or for diagnosis comprises the detection or study of a disease having collagen containing the drug-bound cyclic peptide, or a salt or solvate thereof as an active ingredient, and wherein the drug group is a labeling group and has a modified region.
  • the drug-binding cyclic peptide can be bound to denatured collagen in which the triple helical structure is released, for example, by detecting the fluorescence when the drug group of the drug-binding cyclic peptide is a drug having fluorescence.
  • the presence or absence of denatured collagen, the localization position, and / or the amount of localization can be detected and measured.
  • the drug-bound cyclic peptide of the present invention can be used for denatured collagen, as a detection or as a research.
  • Examples of the above-mentioned diseases are collagen degeneration, diseases associated with collagen remodeling and / or enhancement of matrix metalloproteinase (MMP) activity, cancer, musculoskeletal diseases (Marfin's syndrome, osteoporosis, bone fracture, cartilage disease) And diseases selected from wounds or corneal injuries, which can be used for detection, diagnosis, prevention or treatment of these diseases.
  • MMP matrix metalloproteinase
  • composition for detecting denatured collagen of the present invention can be suitably used for detection or diagnosis of MMP high expression metastatic cancer.
  • composition for Prevention or Treatment of Disease Containing Denatured Collagen Another embodiment of the present invention is a composition for prevention or treatment of disease containing denatured collagen.
  • the prophylactic or therapeutic composition containing the drug-bound cyclic peptide as an active ingredient is administered to a living body by the administration.
  • a drug-binding cyclic peptide that selectively binds to a tissue containing denatured collagen in vivo is distributed to target cells or tissue, and has collagen containing a modified region that treats a disease or disorder in said target cells or tissue It can be used for the treatment of Moreover, it can be used as a composition for prevention of the said disease by administering the composition containing the said drug-binding cyclic peptide to the biological body before onset of the said disease which has the structure
  • Examples of the above-mentioned diseases are collagen degeneration, diseases associated with collagen remodeling and / or enhancement of matrix metalloproteinase (MMP) activity, cancer, musculoskeletal diseases (Marfin's syndrome, osteoporosis, bone fracture, cartilage disease) It can be used for the prevention or treatment of a disease selected from wounds or corneal damage.
  • MMP matrix metalloproteinase
  • the active ingredient is a compound of the formula (I) and the drug group in the compound of the formula (I) is a drug molecule group
  • the drug molecule in the drug molecule group is preferably doxorubicin, 5-FU, cisplatin, vinblastine, daunomycin, epirubicin, idarubicin, mitomycin-C, bleomycin, irinotecan, paclitaxel, cyclophosphamide, actinomycin D or taxane
  • the drug molecule group is a radioactive metal complex group, and as the radioactive metal, yttrium-90 ( 90 Y), or lutetium- 177 ( 177 ), which has already been used clinically . It is also possible to use therapeutic radioactive metals such as Lu).
  • this 90 Y complex substituent is bound as a drug molecule group to a patient who has been cleaved by metalloprotease and has denatured collagen in which triple helical structure has been released
  • a pharmaceutical composition containing a drug-binding cyclic peptide as an active ingredient the drug-binding cyclic peptide is distributed to cells or tissues in which metalloprotease activity is enhanced. Radiation emitted from 90 Y of this drug-binding cyclic peptide can damage cancer cells and cause them to die.
  • a pharmaceutical composition containing the drug-bound cyclic peptide of the present invention using 90 Y as an active ingredient can be used for the treatment of cancer.
  • it can be used as a composition for preventing cancer by administering a composition containing the drug-binding cyclic peptide to a living body before developing a cancer having a tissue containing denatured collagen.
  • Example 1 Cyclic peptide formed from double-stranded peptide having identical amino acid sequence
  • the peptide chain was synthesized by the Fmoc solid phase method using Rink-Amide-AM-resin LL (100-200 mesh) (Novabiochem, Merck KGaA., Germany) as a solid phase carrier.
  • Fmoc amino acids were synthesized by Fmoc-Cys (Acm) -OH, Fmoc-Lys (Boc) -OH, Fmoc-Lys (Fmoc) -OH, Fmoc-Tyr (tBu) -OH purchased from Novabiochem, and the inventors Fmoc-Ahx-OH and Fmoc-Pro-Hyp-Gly-OH were used.
  • the resin was weighed on a PD-10 column (GE Healthcare Japan Ltd., Tokyo), and stirred at room temperature in DMF (for peptide synthesis, Wako Pure Chemical Industries, Osaka) for 2 hours to swell.
  • Elongation of the peptide chain is performed by using 5 equivalents of Fmoc amino acid, 5 equivalents of HOBt (Dojin Chemical Research Institute, Kumamoto), 5 equivalents of DIC (for peptide synthesis, Wako Pure Chemical Industries, Ltd. was reacted for 2 hours with stirring at room temperature. After the reaction, washing with DMF was performed four times. After that, to check whether the condensation reaction is complete, take several tens of resin, add 0.001 M potassium cyanide / pyridine, 4 mg / ml phenol / ethanol, ninhydrin / ethanol drop by drop, 1 at 95 ° C. Heated for a minute. When the resin was colored, the Fmoc amino acid was condensed again by the above method.
  • the resin in which the amino acid was confirmed to be condensed was immersed in 20% piperidine (Wako Pure Chemical Industries, Ltd.) / DMF and stirred at room temperature for 15 minutes. After washing with DMF six times, Fmoc amino acid was condensed by the method described above. By condensing a Lys residue in which the side chain amino group is protected with an Fmoc group by the above method, an amino acid is condensed to a side chain amine, and the peptide chain is bifurcated. The N-terminus of the peptide was acetylated using 20 equivalents of pyridine and 20 equivalents of acetic anhydride, stirred in DMF for 1 hour at room temperature. After completion of the peptide chain synthesis, the resin was washed three times with methanol, then three times with ether, and then dried under reduced pressure overnight.
  • the solution was subjected to gel filtration using a column (inner diameter 2.7 cm, 35 ml) packed with Sephadex G-15 (GE Healthcare Biosciences) beads, and the eluate was fractionated into 1 ml fractions. From the absorbance value at 280 nm of each fraction, the fraction eluted with CMP was identified. At that time, 0.05% TFA / H 2 O was used as an eluent. The fractions eluted with CMP were combined and lyophilized.
  • Corrected absorbance (A 280 sample-A 280 blank) x (A 977 sample-A 900 sample) / (A 977 water-A 900 water)
  • a 280 sample Absorbance at 280 nm of sample solution
  • a 280 blank Absorbance at 280 nm of solvent
  • a 977 sample Absorbance of sample solution at 977 nm
  • a 900 sample Absorbance at 900 nm of sample solution
  • a 977 water absorbance at 977 nm per cm of water
  • a 900 water absorbance at 900 nm per 1 cm of water.
  • CMP concentration (M) corrected absorbance / (number of Tyr residues x 1490 + number of cystine residues x 125)
  • the spectrum was obtained as residue average molar ellipticity of the helical portion by multiplying residue average molar ellipticity by (total number of residues / Pro, Hyp, number of Gly residues), and its secondary structure was analyzed.
  • the three peptide chains that make up the collagen triple helix are known to have a polyproline-II like secondary structure (Duane D. J., Cindy S., Johnson W. C. Jr., Circular dichroism of collagen, gelatin, and poly (proline) II in the vacuum ultraviolet (1976) Biopolymers. 15. 513-521). All the CMPs were obtained at 4 ° C. with a polyproline-II like secondary structure (not shown).
  • the temperature change measurement result of the CD signal at ⁇ 225 of CMP showed that the double-stranded CMP4 and the cyclic CMP4 decreased the CD signal at 225 nm as a linear function (not shown). Therefore, it is thought that these two types of CMP do not form a triple helix at 4 ° C.
  • Other CMPs have confirmed cooperative CD signal reduction (not shown). Therefore, it is believed that the cyclic CMPs 5-9, double-stranded CMPs 5-9 and single-stranded CMPs 6, 8, 10 form triple helices at 4 ° C.
  • the triple helix denaturation temperatures (Tm) of these CMPs are shown in Table 2.
  • Tm was raised by about 15 ° C. by bundling two CMPs. Further, Tm was further increased by several degrees C. by cyclization. That is, it is considered that the stability of the triple helix is improved by bundling the CMP.
  • Biotin labeling of CMP CMP was prepared at 1 mg / ml in 20 mM NaHCO 3 solvent, reacted with 3 equivalents of NHS-PEG 4 -Biotin (Thermo Fisher Scientific) for 2 hours at room temperature, and biotinylated.
  • Biotin-labeled CMP was gel-filtered using a column (inner diameter 2.7 cm, 35 ml) packed with Sephadex G-15 beads, and the eluate was fractionated into 1 ml fractions. From the absorbance value at 280 nm of each fraction, the fraction eluted with CMP was identified. At that time, 0.05% TFA / H 2 O was used as an eluent. The fractions eluted with CMP were combined and lyophilized.
  • the FAM labeled single stranded CMP10 annular CMP7 of CMP was adjusted to 1 mg / ml in 20 mM NaHCO 3 in a solvent, 3 eq of 5-FAM SE (5-Carboxyfluorescein , Succinimidyl Ester, Invitrogen, USA) And FAM labeling for 2 hours at room temperature with light shielding.
  • FAM labeled CMP was preparatively purified using reverse phase HPLC with a linear gradient of 0.05% TFA / H 2 O and 0.05% TFA / MeCN. At that time, COSMOSIL 5C18-AR-II size 6.0 ⁇ 250 mm was used.
  • Mass Spectrometry of Labeled CMP Mass spectrometry of CMP labeled with biotin or FAM was performed. Mass spectrometry was performed by MALDI-TOF MS or ESI MS. The results of mass spectrometric measurement of each peptide are shown in Table 3 (SEQ ID NOS: 20 to 36).
  • the annealed CMP could hardly detect the binding to collagen.
  • CMP itself forms a triple helix, it can not bind to collagen or heat-denatured collagen.
  • K D values of cyclic CMP7 is 1.1 ⁇ 10 -7 M for non-denatured collagen, a 6.6 ⁇ 10 -8 M for denatured collagen, maximum binding of cyclic CMP7 to denatured collagen, non-denaturing It was 1.67 times that of collagen. This indicates that denaturation has increased the site to which cyclic CMP7 can bind on collagen.
  • the heat-denatured collagen coated this time is heated and annealed, there is a report that about 60% of the CD signal at 225 nm is recovered when the heat-denatured collagen is annealed (Leikina E. et al., Proc. Natl. Acad. Sci. USA. 2001, 99. 1314-1318). Therefore, this result is considered to form a triple helix structure by annealing according to the published data.
  • the dissociation constant of single-stranded CMP10 was estimated assuming that the maximum amounts of single-stranded CMP10 and cyclic CMP7 capable of binding to non-denatured and denatured collagen were the same. As a result, it was determined to be 1.1 ⁇ 10 ⁇ 7 M for non-denatured collagen and 6.6 ⁇ 10 ⁇ 8 M for denatured collagen. From here, cyclic CMP7 bound to denatured collagen about 144 times as strongly as single chain CMP10 (see FIG. 4).
  • CMP solution prepared to 20 ⁇ g / ml with 5% skimmed milk / PBS, or antibody buffer (3% BSA, 20 mM Tris-HCl (pH 7.4), 150 mM NaCl, It was immersed in a rabbit anti-type I collagen antibody (Rockland Immunochemicals Inc.) solution diluted with 0.01% Tween-20) for 1 hour at room temperature.
  • a biotin-labeled single-stranded CMP10 and a biotin-labeled cyclic CMP7 were used and heated immediately at 95 ° C. for 5 minutes.
  • the antibodies used were 1000-fold and 200-fold dilutions.
  • E. coli lysate Frozen cells of E. coli were added to 2 ml of LB medium, and shake culture was carried out at 37 ° C. overnight. The shake-cultured cells were centrifuged to remove the supernatant. To the pellet, 200 ⁇ l of SDS sample buffer B (50 mM Tris-HCl (pH 6.7), 2% SDS, 10% glycerol) was added, and a lysate was prepared by heating at 95 ° C. for 5 minutes. Protein concentration of the lysate BCA TM protein assay kit (Thermo Fisher Scientific Inc., USA) determined using, was prepared by diluting with SDS sample buffer B to 10 mg / ml.
  • SDS sample buffer B 50 mM Tris-HCl (pH 6.7), 2% SDS, 10% glycerol
  • the nitrocellulose membrane was immersed in 5% skimmed milk / TBS (50 mM Tris-HCl (pH 7.4), 150 mM NaCl) and blocked for 1 hour at room temperature. After washing three times for 5 minutes with TBS, it was immersed in a cyclic CMP 7 solution adjusted to 20 ⁇ g / ml with PBS for 1 hour at room temperature. The cyclic CMP 7 solution was used immediately after heating at 95 ° C. for 3 minutes. After washing three times for 5 minutes each with TBS, it was immersed for 30 minutes at room temperature in Streptavidin-AP conjugate (Promega Corporation, USA) diluted 2000-fold with 2% skimmed milk / TBS.
  • Streptavidin-AP conjugate Promega Corporation, USA
  • the sample is immersed in a CBB solution (0.001% CBB, 50% methanol, 10% acetic acid) for 30 minutes, and a CBB decolorizing solution (50% methanol, 10% AcOH) All proteins were stained by immersion in a CBB solution (0.001% CBB, 50% methanol, 10% acetic acid) for 30 minutes, and a CBB decolorizing solution (50% methanol, 10% AcOH) All proteins were stained by immersion in a CBB solution (0.001% CBB, 50% methanol, 10% acetic acid) for 30 minutes, and a CBB decolorizing solution (50% methanol, 10% AcOH) All proteins were stained by immersion in a CBB solution (0.001% CBB, 50% methanol, 10% acetic acid) for 30 minutes, and a CBB decolorizing solution (50% methanol, 10% AcOH) All proteins were stained by immersion in a CBB solution (0.001% CBB, 50% methanol, 10% acetic acid) for 30 minutes, and a CBB decolorizing solution (50% methanol
  • cyclic CMP7 With cyclic CMP7, all collagens from type I to type V could be detected. From this, it was shown that cyclic CMP7 did not hybridize to a specific sequence on collagen, but to a repetitive sequence of XY-Gly common to collagen. That is, it was shown that cyclic CMP7 can detect collagen comprehensively (see FIG. 7).
  • the medium was replaced with HFDM-1 (+) (Cytochemical Laboratories, Inc.) medium supplemented with 100 units / ml penicillin and 100 ⁇ g / ml streptomycin, and cultured for 3 days.
  • PBS HFDM-1
  • the cells were treated with PBS for 5 minutes at 95 ° C and PBS at room temperature were added to the cells to make a sample of the cells heat-denatured extracellularly, and non-denatured. I prepared a sample. It was then treated with 4% paraformaldehyde / PBS (-) for 15 minutes at room temperature and fixed. The fixed cells were washed three times with PBS ( ⁇ ) and then immersed in a 3% BSA / PBS ( ⁇ ) solution and blocked at room temperature.
  • collagen fibers could be detected by using cyclic CMP7.
  • the antibody was used, denatured collagen and native collagen could not be distinguished.
  • cyclic CMP7 and single chain CMP10 were strongly bound to denatured collagen. It was confirmed that the denatured collagen detectability of cyclic CMP7 had about a 100-fold difference with the detectability of single-chain CMP10, which was consistent with the result of ELISA (see FIG. 8).
  • anti-KDEL mouse monoclonal antibody (10C3) / 1% BSA-PBS ( ⁇ ) diluted to 1/500 was added and allowed to stand at room temperature for 1 hour.
  • FIG. 10 The results are shown in FIG. In FIG. 10, PC-3 cells were infused on the left as seen from the back, and LNCap cells were ingested as seen from the back. Thirty minutes after administration, IR-labeled cyclic CMP7 was confirmed to accumulate in PC-3 cells. In addition, since strong accumulation was also confirmed in the bladder and kidney, it is speculated that this CMP is excreted. At 24 hours after administration, the background was low, and accumulation in the bladder, kidney and PC-3 cells was more prominent. On the other hand, accumulation of cyclic CMP7 in LNCaP cells was not confirmed (see FIG. 10).
  • IR-labeled cyclic CMP7 was confirmed to accumulate in PC-3 cells. In addition, since strong accumulation was also confirmed in the bladder and kidney, it is speculated that this CMP is excreted. At 24 hours after administration, the background was low, and accumulation in the bladder, kidney and PC-3 cells was more prominent. On the other hand, accumulation of cyclic CMP7 in LNCaP cells was not confirmed.
  • PC-3 cells are considered to be more aggressive than LNCaP cells. Since cyclic CMP7 was able to distinguish between these two types of cancer cells, it is considered that it can be applied to imaging of malignant cancer.
  • Example 2 Synthesis of Cyclic Peptides Having Different Sequences of Two Chains and Evaluation of Binding Activity to Denatured Collagen
  • the cyclic peptides formed from two peptide chains having different sequences shown in Table 5 below were synthesized (SEQ ID NOS: 37 to 42) The binding activity to denatured collagen was evaluated.
  • E3-E'3 which showed remarkable denatured collagen binding activity even under the condition where the conformation was taken at 4 ° C., did not show denatured collagen binding activity at 18 ° C. (see FIG. 11B).
  • denatured collagen binding activity was increased for POG7-E'3 and R3-E'3 under the condition of higher order structure.
  • the binding temperature was further raised to 37 ° C., the denatured collagen binding activity was totally reduced, and the binding was detected only in cyclic CMP7, POG7-E'3 and R3-R'3 (FIG. 11C). reference).
  • the thermal stability of collagen and cyclic peptide hybrid and the thermal stability of the cyclic peptide self-triple helix may be considered.
  • Example 3 Synthesis of Cyclic Peptides Containing Various Spacers and Evaluation of Binding Activity to Denatured Collagen Cyclic peptides containing an Ahx group or Gly residue as various spacer groups shown in Table 10 below were synthesized (SEQ ID NO: 55 to 59), respectively The binding activity to denatured collagen was evaluated.
  • Cyclic CMP showed higher collagen binding activity than single stranded CMP when using heated and quenched CMP. Also, these CMPs bound strongly to heat denatured collagen. Moreover, although the direction which does not contain a spacer group tends to be high in binding activity with respect to a denatured collagen, the presence or absence of the spacer group did not necessarily have a big influence (refer FIG. 12B).
  • Example 4 Synthesis of cyclic peptides having different chain lengths of two peptide chains and evaluation of binding activity to denatured collagen : A circular peptide having an arc shape different in each chain length of the two peptide chains shown in Table 12 below was synthesized (SEQ ID NO: 65 70) The binding activity to denatured collagen was evaluated.
  • Example 5 Synthesis of cyclic peptide conjugated with parathyroid hormone peptide (PTH (1-34)) and evaluation of binding activity to denatured collagen A cyclic peptide conjugated with parathyroid hormone peptide (PTH (1-34)) was synthesized, The binding activity to the denatured collagen was evaluated.
  • the amino acid is condensed to a side chain amine by condensing the Lys residue in which the side chain amino group is protected with an Fmoc group by the above method, and the peptide chain is extended in two ways did.
  • the N-terminus was acetylated by adding 20 equivalents of pyridine and acetic anhydride to the amine and reacting at room temperature for 1 hour.
  • PTH (1-34) condensed biotin at the N-terminus for detection.
  • the reaction was carried out in DMF and 5 equivalents of biotin to amine were condensed with 5 equivalents of HOBt, 5 equivalents of DIC for 2 hours with stirring at room temperature.
  • ⁇ -alanine ( ⁇ Ala) was introduced as a spacer.
  • a blank to which only the solvent was added was prepared.
  • a peptide adjusted to 1 ⁇ M with PBS was added and allowed to stand at 37 ° C.
  • the peptide was heated at 95 ° C. for 5 minutes just before the addition and then cooled at 4 ° C. for 1 minute to use CMP.
  • Streptavidin-HRP conjugate diluted 1: 2000 was added and allowed to stand at 4 ° C. for 30 minutes.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Epidemiology (AREA)
  • Rheumatology (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Neurology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Immunology (AREA)
  • Toxicology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Dermatology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Peptides Or Proteins (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本発明は、変性コラーゲンに対して強い結合活性を有する化合物、該化合物の変性コラーゲンの検査薬及び研究用試薬としての使用、及び、該化合物を含有する変性コラーゲンを生じる疾患の診断用、又は予防若しくは治療用の組成物を提供することを課題とし、(Xaa-Yaa-Gly)からなるトリペプチド基を繰り返し単位として、5~9回の繰り返し構造を有し、連結基を含んでもよく、同一又は相違してもよいペプチド鎖の二本鎖を含み、各ペプチド鎖のN末端近傍及びC末端近傍が架橋された環状ペプチド基を含み、前記ペプチド鎖の少なくとも1方のペプチド鎖の少なくとも1つのアミノ酸残基の側鎖に薬剤基(agent)が結合(conjugate)している、薬剤結合環状ペプチド(agent-conjugated cyclic peptide)、又はその塩若しくは溶媒和物等を創製した。

Description

コラーゲンへの結合活性を有する環状ペプチド
 本発明は、変性コラーゲンに対して強い結合活性を有する環状ペプチド、該
環状ペプチドの変性コラーゲンの検査薬及び研究用試薬としての使用、並びに、該環状ペプチドを含有する変性コラーゲンを生じる疾患の診断用及び治療用の組成物等に関する。
 コラーゲンは、-(Xaa-Yaa-Gly)-の基本単位を繰り返してなる一次構造のアミノ酸配列を有するペプチド(Xaa及びYaaは任意のアミノ酸残基を表す)の3本鎖が、三重らせん構造を形成するタンパク質の総称であり、動物組織の細胞間に存在する細胞外マトリックスの主要構成成分である(非特許文献1)。動物結合組織中に豊富に含まれ、組織の骨格構造を構成している。ヒトのコラーゲンタンパク質は28種あることが報告されている。
 一方、コラーゲンは、マトリックスメタロプロテアーゼ活性が上昇したがん等の疾患で、コラーゲンが分解・変性し、その三重らせん構造が緩んだ変性コラーゲンを生じることが知られている(非特許文献2)。そこで、変性コラーゲンに結合可能な人工的なコラーゲン様ペプチドを合成し、これらの変性コラーゲンの検査薬や、変性コラーゲンを有する疾患の診断薬への応用が試みられている(特許文献1~2、非特許文献3)。
 しかし、変性コラーゲンを高い感度で検出可能な検査薬及び研究用試薬や、変性コラーゲンが存在する組織への分布を利用した変性コラーゲンが関連する疾患に対する治療薬等はまだ知られていない。
米国特許公報第8283414号 米国公開特許公報20130164220 A1
小出隆規(2010)、生化学第82巻,pp.474-483 N.Rathら、EMBO Molecular Medicine, 2016, DOI 10.15252/emmm.201606743 Yang Liら、PNAS, 2012, 109, 14767-14772
 本発明は、変性コラーゲンに対して結合活性を有する薬剤結合環状ペプチド、該薬剤結合環状ペプチドの変性コラーゲンの検査薬及び研究用試薬としての使用、並びに、該薬剤結合環状ペプチドを含有する変性コラーゲンを生じる疾患の診断用組成物及び予防若しくは治療用組成物を提供することを課題とする。
 本発明者らは、二本鎖ペプチドが平行に束ねられた環状構造を有するコラーゲン様ペプチドが、変性コラーゲンに対して強い結合活性を有することを見出し、本発明を完成させた。
 具体的には、本発明は、(Xaa-Yaa-Gly)からなるトリペプチド基を繰り返し単位として、5~9回の繰り返し構造を有し、連結基を含んでもよく、同一又は相違してもよいペプチド鎖の二本鎖を含み、
 各ペプチド鎖のN末端近傍及びC末端近傍が架橋された環状ペプチド基を含み、
 前記ペプチド鎖の少なくとも1方のペプチド鎖の少なくとも1つのアミノ酸残基の側鎖に薬剤基(agent)が結合(conjugate)している、
 薬剤結合環状ペプチド(agent conjugated cyclic peptide)、又はその塩若しくは溶媒和物を提供する;
 ただし、Xaa及びYaaは、それぞれ独立して、プロリン(Pro又はP)残基、ヒドロキシプロリン(Hyp又はO)残基、アルギニン(Arg又はR)残基、リジン(Lys又はK)残基、バリン(Val又はV)残基、ロイシン(Leu又はL)残基、イソロイシン(Ile又はI)残基、セリン(Ser又はS)残基、トレオニン(Thr又はT)残基、アラニン(Ala又はA)残基、グリシン(Gly又はG)残基、フェニルアラニン(Phe又はF)残基、メチオニン(Met又はM)残基、グルタミン酸(Glu又はE)残基、アスパラギン酸(Asp又はD)残基、アスパラギン(Asn又はN)残基、グルタミン(Gln又はQ)残基、ヒスチジン(His又はH)残基、トリプトファン(Trp又はW)残基又はチロシン(Tyr又はY)残基から選択され、プロリン残基はアミノ基又はフッ素原子で修飾されていてもよく、Xaa位及びYaa位にはN-イソブチル基グリシン残基を用いてもよく、
 (Xaa-Yaa-Gly)の繰り返し単位は、各繰り返し単位毎に独立しており、同一又は相違してもよく、Xaaが各繰り返し単位毎に同一であってもよく又は相違してもよく、Yaaが各繰り返し単位毎に同一であってもよく又は相違してもよい。
 本発明の薬剤結合環状ペプチドにおいて、前記薬剤結合環状ペプチドが、下記式(I)で表される薬剤結合環状ペプチドである場合がある;
Figure JPOXMLDOC01-appb-C000015
 式(I)において、
 L1、L1'、L2及びL2'は、それぞれ独立して同一又は相違してもよいスペーサー基(-Sp-)を含んでもよい架橋形成基、又は、-L1-L2-若しくは-L1'-L2'-が1つのアミノ酸残基を形成して、スペーサー基(-Sp-)を含んでもよい架橋形成基を表し、
 L3は、スペーサー基を含んでもよい、前記環状ペプチド基と前記薬剤基との連結基であり、
 Aは、スペーサー基を含んでもよい薬剤基を表し、
 n及びmは、同一又は相違してもよく、5~9であり、
 前記XaaはXaa1又はXaa2として、YaaはYaa1又はYaa2として表され、Xaa1、Xaa2、Yaa1及びYaa2は、同一又は相違してもよく、それぞれ独立して、プロリン(Pro又はP)残基、ヒドロキシプロリン(Hyp又はO)残基、アルギニン(Arg又はR)残基、リジン(Lys又はK)残基、バリン(Val又はV)残基、ロイシン(Leu又はL)残基、イソロイシン(Ile又はI)残基、セリン(Ser又はS)残基、トレオニン(Thr又はT)残基、アラニン(Ala又はA)残基、グリシン(Gly又はG)残基、フェニルアラニン(Phe又はF)残基、メチオニン(Met又はM)残基、グルタミン酸(Glu又はE)残基、アスパラギン酸(Asp又はD)残基、アスパラギン(Asn又はN)残基、グルタミン(Gln又はQ)残基、ヒスチジン(His又はH)残基、トリプトファン(Trp又はW)残基又はチロシン(Tyr又はY)残基から選択され、プロリン残基はアミノ基又はフッ素原子で修飾されていてもよく、Xaa1位、Xaa2位、Yaa1位及びYaa2位にはN-イソブチル基グリシン残基を用いてもよく、
 (Xaa-Yaa-Gly)の繰り返し単位は、各繰り返し単位毎に独立しており、同一又は相違してもよく、Xaaが各繰り返し単位毎に同一であってもよく、相違してもよく、Yaaが各繰り返し単位毎に同一であってもよく、相違してもよく、
(i) 式(I)におけるN末端側の下記式(II)で表される置換基は、スペーサー基を含んでもよく、
 ・ジスルフィド結合による架橋、
 ・側鎖に-COOHを有するアミノ酸残基による架橋、
 ・ジケトピペラジンを用いた架橋、
 ・オレフィンメタセシスによる架橋、又は、
 ・クリックケミストリーによる架橋、
から選択され、
Figure JPOXMLDOC01-appb-C000016
(ii) 式(I)におけるC末端側の下記式(III)で表される置換基は、スペーサー基を含んでもよく、
 ・ジスルフィド結合による架橋、
 ・側鎖に-NH2を有するアミノ酸残基による架橋、
 ・側鎖に-OHを有するアミノ酸残基による架橋、
 ・ジケトピペラジンを用いた架橋、
 ・オレフィンメタセシスによる架橋、又は、
 ・クリックケミストリーによる架橋、
から選択でき、
Figure JPOXMLDOC01-appb-C000017
 本発明の薬剤結合環状ペプチドの前記式(I)の前記架橋形成基において、
 ジスルフィド結合による架橋が、-Cys-Cys-による架橋、
 側鎖に-COOHを有するアミノ酸残基による架橋が、アスパラギン酸(Asp、D)残基若しくはグルタミン酸(Glu、E)残基による架橋、
 側鎖に-NH2を有するアミノ酸残基による架橋が、リジン(lys、K)による架橋、又は、
 側鎖に-OHを有するアミノ酸残基による架橋が、(セリン残基(Ser又はS)、トレオニン残基(Thr又はT)若しくはチロシン残基(Tyr又はY))による架橋、
から選択される場合がある。
 本発明の薬剤結合環状ペプチドにおいて、前記スペーサー基は、-(Gly)p-(pは1~3の整数)、-(βAla)q-(qは1~3の整数)、-PEG4-、又は、6-アミノヘキサン酸基から選択される場合がある。
 本発明の薬剤結合環状ペプチドにおいて、L3は、側鎖に前記薬剤基を連結可能なアミノ酸残基Zaaを含み、Zaaは、アスパラギン酸残基(Asp又はD)、グルタミン酸残基(Glu又はE)、リジン残基(Lys又はK)、(セリン残基(Ser又はS)、トレオニン残基(Thr又はT)、チロシン残基(Tyr又はY))、システイン残基(Cys又はC)、プロパルギルグリシン残基から選択される場合がある。
 本発明の薬剤結合環状ペプチドにおいて、薬剤基が、標識基又は医薬分子基から選択される場合がある。
 本発明の薬剤結合環状ペプチドにおいて、前記薬剤基が標識基であり、前記標識基における標識体は、ビオチン、酵素、並びに、カルボキシフルオレセイン(CF又はFAM: carboxy fluorescein)、5(6)-carboxytetramethylrhodamine (TAMRA)、Alexa fluor(登録商標)、Cyanine Dye 、IRDye、HiLyte fluor(登録商標)を含む蛍光色素、金属錯体化合物及び放射性標識化合物からなる群から選択される少なくとも1種である場合がある。
 本発明の薬剤結合環状ペプチドにおいて、前記薬剤基が医薬分子基であり、前記医薬分子基における医薬分子は、抗腫瘍薬、骨粗鬆症薬、放射性金属錯体化合物、放射性標識化合物、抗生物質、抗真菌薬、細胞接着分子由来ペプチド、Stromal-derived factor 1 (SDF-1)、成長因子及び抗炎症薬からなる群から選択される少なくとも1種である場合がある。
 本発明の薬剤結合環状ペプチドにおいて、前記式(I)の薬剤結合環状ペプチドが、下記式(IV)~(XIV)で表される場合がある;
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
 式(IV)~(XIV)において、
 -Cys-Cys-は、2つのCys残基の側鎖の-SH基がジスルフィド結合したシスチン残基を表し、
 Acは、アセチル基を表し、
 Ahxは、6-アミノヘキサン酸基を表し、
 Aは、前記スペーサー基を含んでもよい、ビオチン基、カルボキシフルオレセイン(CF又はFAM: carboxy fluorescein)基、IRDye750基、ドキソルビシン基、PTH基、5(6)-carboxytetramethylrhodamine (TAMRA)基及びStromal-derived factor 1 (SDF-1)からなる群から選択される少なくとも1種であり、Lys残基の側鎖の-NH2基とアミド結合又はシスチン残基のジスルフィド結合で結合し、
 n'及びm'が、同一又は相違してもよく、5~9の整数であり、及び、
 s及びtが、同一又は相違してもよく、3又は4の整数である。
 本発明の薬剤結合環状ペプチドにおいて、前記金属錯体化合物がキレート剤と放射性金属との金属錯体であり、該放射性金属が、51Cr、62Cu、64Cu、67Cu、67Ga、68Ga、47Sc、88Y、86Y、90Y、97Ru、99mTc、103Ru、105Rh、109Pd、111In、117mSn、141Ce、140La、149Pm、153Sm、161Tb、165Dy、166Dy、166Ho、167Tm、168Yb、175Yb、177Lu、186Re、188Re、198Au、199Au、203Pb、211Bi、212Bi、213Bi、214Bi及び225Ac、並びにその酸化物又は窒化物からなる群から選択される1以上の放射性金属である薬剤結合環状ペプチドである場合がある。
 本発明の薬剤結合環状ペプチドにおいて、前記金属錯体化合物がキレート剤とX線不透過性金属との金属錯体であり、該X線不透過性金属がビスマス(Bi)、タングステン(W)、タンタル(Ta)、ハフニウム(Hf)、ランタン(La)、その他のランタノイド(lanthanide)、バリウム(Ba)、モリブデン(Mo)、ニオブ(Nb)、ジルコニウム(Zr)及びストロンチウム(Sr)からなる群から選択される1以上の金属である場合がある。
 本発明の薬剤結合環状ペプチドにおいて、前記金属錯体がキレート剤と常磁性金属との金属錯体であり、該常磁性金属が、クロム(Cr)、マンガン(Mn)、鉄(Fe2+)、鉄(Fe3+)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、イッテルビウム(Yb)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)及びエルビウム(Er)からなる群から選択される1以上の金属である場合がある。
 また、本発明は、前記薬剤結合環状ペプチド、又はその塩若しくは溶媒和物を有効成分として含有し、前記薬剤基は標識基であり、変性領域を含むコラーゲンを含む試料に対する研究用試薬としての、変性領域を含むコラーゲンを有する疾患の検出若しくは診断のための変性コラーゲン検出用としての、又は、変性領域を含むコラーゲンを有する疾患を有する患者の予防若しくは治療用としての組成物を提供する。
 また、本発明は、前記薬剤結合環状ペプチド、又はその塩若しくは溶媒和物を有効成分として含有し、前記薬剤基は医薬分子基であり、生体内で変性コラーゲンを含む組織に選択的に結合し、標的細胞又は標的組織に分布し、前記標的細胞又は組織における疾患又は障害を予防若しくは治療する、変性領域を含むコラーゲンを有する患者の疾患の治療のための組成物を提供する。
 さらに、本発明は、前記薬剤結合環状ペプチド、又はその塩若しくは溶媒和物を有効成分として含有し、前記薬剤基は医薬分子基であり、生体内で変性コラーゲンを含む組織に選択的に結合し、標的細胞又は標的組織に分布し、前記標的細胞又は組織における疾患又は障害を予防若しくは治療する、変性領域を含むコラーゲンを有する患者の疾患の予防若しくは治療方法を提供する。
 本発明の組成物又は予防若しくは治療方法において、前記疾患が、コラーゲン変性、コラーゲンリモデリング及び/又はマトリックスメタロプロテアーゼ(MMP)活性の亢進を伴う疾患であり、がん、筋骨格系疾患(マルファン症候群、骨粗鬆症、骨折、軟骨性疾患)、創傷、角膜損傷から選択される疾患の検出、診断、予防又は治療に使用される場合がある。
 本発明の組成物又は予防若しくは治療方法において、前記がんがMMP高発現転移性がんが好ましい。
 本発明により、変性コラーゲンに対して結合活性を有する薬剤結合環状ペプチド、該薬剤結合環状ペプチドの変性コラーゲンの検査薬及び研究用試薬としての使用、並びに、該薬剤結合環状ペプチドを含有する変性コラーゲンを生じる疾患の診断用組成物及び予防若しくは治療用組成物を提供できる。
環状コラーゲン様ペプチド(cCMP)が、変性コラーゲンに結合する状態を表した概略図。 CMPのN末端をジスルフィド結合で、C末端側をペプチド結合で架橋させた環状コラーゲン様ペプチド(cCMP)の合成スキームの例を表す図。 CMPのN末端側とC末端側の両方をジスルフィド結合で架橋させた環状コラーゲン様ペプチド(cCMP)の合成スキーム図(環状(POG-R'7)の例)。 ELISAを用いたCMPの、37℃におけるコラーゲン結合活性の評価結果を表す図(mean ± SD、n = 3)。アニールされたコラーゲン様ペプチド(CMP)での結果を表す。ssCMPはsingle-strand CMP(一本鎖 (一本鎖 CMP)を、dsCMP(bCMP)はdouble-strand CMP(二本鎖 二本鎖 CMP)を、cCMPはcyclic CMP (環状 CMP)を表し、nは、CMPの基本ユニットの繰り返し数を表す。 ELISAを用いたCMPの、37℃におけるコラーゲン結合活性の評価結果を表す図(mean ± SD、n = 3)。加熱したCMPでの結果を表す。ssCMPはsingle-strand CMP(一本鎖 (一本鎖 CMP)を、dsCMP(bCMP)はdouble-strand CMP(二本鎖 二本鎖 CMP)を、cCMPはcyclic CMP (環状 CMP)を表し、nは、CMPの基本ユニットの繰り返し数を表す。 環状CMP7と一本鎖CMP10の、コラーゲンへの結合の濃度依存性を比較した結果表す図 (mean ± SD、n = 3)。 ウェスタンブロッティングによるCMP(コラーゲン様ペプチド)と抗コラーゲン抗体のコラーゲン結合活性の評価結果を表す。 環状CMP7のコラーゲン特異性の検証結果を表す図。 環状CMP7のコラーゲン(I型~V型)の型特異性の検証結果を表す図。 環状CMP7による細胞外に分泌されたコラーゲンの染色結果を表す写真図。 抗コラーゲン抗体を用いた染色による細胞外に分泌されたコラーゲンの染色結果を表す写真図。 環状CMP7による細胞内のコラーゲン染色結果を表す写真図。抗体は、抗KDEL抗体を使用した。 環状CMP7による担癌マウスのイメージング(背中から見て左側(PC-3細胞)、背中から見て右側(LNCap細胞))の結果を表す写真図。 アミノ酸配列が異なる2つのペプチド鎖を含む環状ペプチドについて、4℃における変性コラーゲン結合活性の評価結果を表す図。 アミノ酸配列が異なる2つのペプチド鎖を含む環状ペプチドについて、18℃における変性コラーゲン結合活性の評価結果を表す図。 アミノ酸配列が異なる2つのペプチド鎖を含む環状ペプチドについて、37℃における変性コラーゲン結合活性の評価結果を表す図。 スペーサー基を含む環状ペプチドについて、ELISAを用いたannealed CMPの、37℃におけるコラーゲン結合活性の評価結果を表す図(mean ± SD、n = 3)。 スペーサー基を含む環状ペプチドについて、ELISAを用いたheated CMPの、37℃におけるコラーゲン結合活性の評価結果を表す図(mean ± SD、n = 3)。 鎖長が異なる2つのペプチド鎖を有する環状ペプチドについて、ELISAによる環状CMPの4℃における変性コラーゲン結合活性を評価した結果を表す図。 鎖長が異なる2つのペプチド鎖を有する環状ペプチドについて、ELISAによる環状CMPの37℃における変性コラーゲン結合活性を評価した結果を表す図。 PTH(1-34)-環状ペプチドconjugateの合成スキームを表す図。 PTH(1-34)-環状ペプチドconjugateのELISAによるコラーゲン結合活性の評価結果を表す図 (mean±SD (n =3))。
1.薬剤結合環状ペプチド
 本発明の実施形態の1つは、変性コラーゲンに対して結合活性を有する環状ペプチドに薬剤基が連結された薬剤結合環状ペプチドである。
 より具体的には、前記薬剤結合環状ペプチドは、(Xaa-Yaa-Gly)からなるトリペプチド基を繰り返し単位として、5~9回の繰り返し構造を有し、連結基を含んでもよく、同一又は相違してもよいペプチド鎖の二本鎖を含み、
 各ペプチド鎖のN末端近傍及びC末端近傍が架橋された環状ペプチド基を含み、
 前記ペプチド鎖の少なくとも1方のペプチド鎖の少なくとも1つのアミノ酸残基の側鎖に薬剤基(agent)が結合(conjugate)している、薬剤結合環状ペプチド(agent-conjugated cyclic peptide)、又はその塩若しくは溶媒和物である;
 ただし、Xaa及びYaaは、それぞれ独立して、プロリン(Pro又はP)残基、ヒドロキシプロリン(Hyp又はO)残基、アルギニン(Arg又はR)残基、リジン(Lys又はK)残基、バリン(Val又はV)残基、ロイシン(Leu又はL)残基、イソロイシン(Ile又はI)残基、セリン(Ser又はS)残基、トレオニン(Thr又はT)残基、アラニン(Ala又はA)残基、グリシン(Gly又はG)残基、フェニルアラニン(Phe又はF)残基、メチオニン(Met又はM)残基、グルタミン酸(Glu又はE)残基、アスパラギン酸(Asp又はD)残基、アスパラギン(Asn又はN)残基、グルタミン(Gln又はQ)残基、ヒスチジン(His又はH)残基、トリプトファン(Trp又はW)残基又はチロシン(Tyr又はY)残基から選択され、プロリン残基はアミノ基又はフッ素原子で修飾されていてもよく、Xaa位及びYaa位にはN-イソブチル基グリシン残基を用いてもよく、
 (Xaa-Yaa-Gly)の繰り返し単位は、各繰り返し単位毎に独立しており、同一又は相違してもよく、Xaaが各繰り返し単位毎に同一であってもよく、相違してもよく、Yaaが各繰り返し単位毎に同一であってもよく、相違してもよい。
 コラーゲンは、3本のペプチド鎖によって構成される三重らせん構造を有する生体内成分である。本発明の薬剤結合環状ペプチドは、二本鎖のコラーゲン様ペプチド鎖を含み、両ペプチド鎖の両方のN末端近傍と、両方のC末端近傍がそれぞれ架橋することにより環状ペプチドを形成する。そして、該環状ペプチドが、変性コラーゲンの三重らせん構造がほどけたペプチド鎖に結合する活性を有する(図1参照)。
 なお、本明細書において、ペプチドの構造は、当業者に周知慣用のアミノ酸の3文字又は1文字による表記法で記述される。本明細書においてアミノ酸はL体である。本明細書のアミノ酸は、分子生物学で一般的なタンパク質の翻訳に用いられることが知られた20種類の標準L-アミノ酸の他、当該技術分野においてよく知られる修飾アミノ酸残基、例えば、4-ヒドロキシ-L-プロリン、4-フルオロ-L-プロリン及びN-イソブチル基グリシンを含む。本明細書において、ヒドロキシルプロリンは、3-ヒドロキシ-L-プロリン又は4-ヒドロキシ-L-プロリンであり、3文字表記で「Hyp」と、一文字表記で「O」と表される。
 本明細書において、「コラーゲン様ペプチド(collagen mimetic peptide: CMP)」とは、非天然の、即ち、人工的なペプチド又はポリペプチドであって、天然のコラーゲンを模して、-(Xaa-Yaa-Gly)-を基本単位とする繰り返し構造を有するもの、又は、該繰り返し構造を有する複数本のペプチド鎖を、さらに、架橋させたペプチド又はポリペプチドを言う。ただし、前記Xaa及びYaaは、それぞれ独立して、プロリン(Pro又はP)残基、ヒドロキシプロリン(Hyp又はO)残基、アルギニン(Arg又はR)残基、リジン(Lys又はK)残基、バリン(Val又はV)残基、ロイシン(Leu又はL)残基、イソロイシン(Ile又はI)残基、セリン(Ser又はS)残基、トレオニン(Thr又はT)残基、アラニン(Ala又はA)残基、グリシン(Gly又はG)残基、フェニルアラニン(Phe又はF)残基、メチオニン(Met又はM)残基、グルタミン酸(Glu又はE)残基、アスパラギン酸(Asp又はD)残基、アスパラギン(Asn又はN)残基、グルタミン(Gln又はQ)残基、ヒスチジン(His又はH)残基、トリプトファン(Trp又はW)残基又はチロシン(Tyr又はY)残基から選択され、プロリン残基はアミノ基又はフッ素原子で修飾されていてもよく、Xaa位及びYaa位にはN-イソブチル基グリシン残基を用いてもよく、
 (Xaa-Yaa-Gly)の繰り返し単位は、各繰り返し単位毎に独立しており、同一又は相違してもよく、Xaaが各繰り返し単位毎に同一であってもよく、相違してもよく、Yaaが各繰り返し単位毎に同一であってもよく、相違してもよい。
 本明細書において、「各ペプチド鎖のN末端近傍及びC末端近傍が架橋された環状ペプチド」とは、(1)各環状ペプチド鎖のN末端及びC末端に架橋形成基が結合したペプチド鎖によって架橋を形成して環状構造を有する環状ペプチド、(2) 各環状ペプチド鎖のN末端側及びC末端側の各末端から逆の末端の方向に、1~3のアミノ酸残基を介した架橋形成によって環状構造を有する環状ペプチド、及び/又は、(1)と(2)との組み合わせによって架橋形成される環状構造を有する環状ペプチドである。なお、架橋形成基は、スペーサー基(Sp-)を有していてもよい。
 より具体的には、前記薬剤結合環状ペプチドは、下記式(I)で表される薬剤結合環状ペプチドであって;
Figure JPOXMLDOC01-appb-C000029
 式(I)において、
 L1、L1'、L2及びL2'は、それぞれ独立して同一又は相違してもよい、スペーサー基(-Sp-)を含んでもよい架橋形成基、又は、-L1-L2-若しくは-L1'-L2'-が1つのアミノ酸残基を形成して、スペーサー基(-Sp-)を含んでもよい架橋形成基を表し、
 L3は、スペーサー基を含んでもよい、前記環状ペプチド基と前記薬剤基との連結基であり、
 Aは、スペーサー基を含んでもよい薬剤基を表し、
 n及びmは、同一又は相違してもよく、5~9であり、
 前記XaaはXaa1又はXaa2として、YaaはYaa1又はYaa2として表され、Xaa1、Xaa2、Yaa1及びYaa2は、同一又は相違してもよく、それぞれ独立して、プロリン(Pro又はP)残基、ヒドロキシプロリン(Hyp又はO)残基、アルギニン(Arg又はR)残基、リジン(Lys又はK)残基、バリン(Val又はV)残基、ロイシン(Leu又はL)残基、イソロイシン(Ile又はI)残基、セリン(Ser又はS)残基、トレオニン(Thr又はT)残基、アラニン(Ala又はA)残基、グリシン(Gly又はG)残基、フェニルアラニン(Phe又はF)残基、メチオニン(Met又はM)残基、グルタミン酸(Glu又はE)残基、アスパラギン酸(Asp又はD)残基、アスパラギン(Asn又はN)残基、グルタミン(Gln又はQ)残基、ヒスチジン(His又はH)残基、トリプトファン(Trp又はW)残基又はチロシン(Tyr又はY)残基から選択され、プロリン残基はアミノ基又はフッ素原子で修飾されていてもよく、Xaa1位、Xaa2位、Yaa1位及びYaa2位にはN-イソブチル基グリシン残基を用いてもよく、
 (Xaa-Yaa-Gly)の繰り返し単位は、各繰り返し単位毎に独立しており、同一又は相違してもよく、Xaaが各繰り返し単位毎に同一であってもよく、相違してもよく、Yaaが各繰り返し単位毎に同一であってもよく、相違してもよく、
(i) 式(I)におけるN末端側の下記式(II)で表される置換基は、スペーサー基を含んでもよく、
 ・ジスルフィド結合による架橋、
 ・側鎖に-COOHを有するアミノ酸残基による架橋、
 ・ジケトピペラジンを用いた架橋、
 ・オレフィンメタセシスによる架橋、又は、
 ・クリックケミストリーによる架橋、
から選択され、
Figure JPOXMLDOC01-appb-C000030
(ii) 式(I)におけるC末端側の下記式(III)で表される置換基は、スペーサー基を含んでもよく、
 ・ジスルフィド結合による架橋、
 ・側鎖に-NH2を有するアミノ酸残基による架橋、
 ・側鎖に-OHを有するアミノ酸残基による架橋、
 ・ジケトピペラジンを用いた架橋、
 ・オレフィンメタセシスによる架橋、又は、
 ・クリックケミストリーによる架橋、
から選択でき、
Figure JPOXMLDOC01-appb-C000031
 本発明の薬剤結合環状ペプチドの前記式(I)の前記架橋形成基において、
 ジスルフィド結合による架橋が、-Cys-Cys-による架橋、
 側鎖に-COOHを有するアミノ酸残基による架橋が、アスパラギン酸(Asp、D)残基若しくはグルタミン酸(Glu、E)残基による架橋、
 側鎖に-NH2を有するアミノ酸残基による架橋が、リジン(lys、K)による架橋、又は、
 側鎖に-OHを有するアミノ酸残基による架橋が、(セリン残基(Ser又はS)、トレオニン残基(Thr又はT)若しくはチロシン残基(Tyr又はY))による架橋、
から選択できる。
 前記ジケトピペラジンを用いた架橋形成の場合、例えば、Cavelier F.らの方法(Cavelier F. et al., "Original and General Stragegy of Dimerization of Bioactive Molecules"in Peptides: The Wave of the Future, Ed. by Michal Lebt and Richard A. Houghten, American Peptide Society, 2001)と同様の方法で、下記式(XIV)による架橋反応を利用できる。
Figure JPOXMLDOC01-appb-C000032
 なお、式(XIV)において、L1及びL2は、前記式(I)において定義された置換基を表す。
 また、オレフィンメタセシスによる架橋形成の場合、例えば、Vijaya R. ら(Vijaya R. et al., Organic Letters, 2007, 9, 699)やKhan S. N.ら(Khan S. N. et al., Organic Letters 2012, 14, 2952)の方法と同様の方法で、下記式(XV)による架橋反応を利用できる。
Figure JPOXMLDOC01-appb-C000033
 なお、式(XV)において、L1及びL2は、前記式(I)において定義された置換基を表す。
 本発明の薬剤結合環状ペプチドを製造するためのペプチド鎖の合成において、例えば、所望の連結基、スペーサー基、架橋形成基、及び/又は、側鎖に薬剤基を連結可能なアミノ酸残基Zaaを含むアミノ酸残基を組み込んだペプチド鎖を合成し、高速液体クロマトグラフィーや分子濾過法等の当業者に周知慣用の精製法を用いて、精製したペプチド鎖を取得できる(国際公開パンフレットWO2013111759等)。
 また、前記式(I)において、前記架橋形成基は、前記架橋形成基が、スペーサー基(-Sp-)を含まなくともよく又は含んでもよく、リジン残基(Lys、K)、オルニチン残基、システイン残基(Cys, C)、アスパラギン酸残基(Asp、D)、グルタミン酸残基(Glu、E)、プロパルギルグリシン残基、ジスルフィド基、スルフィド基及びアミド基からなる群から選択されてもよい。
 さらに、本発明の薬剤結合環状ペプチドは、前記架橋形成基にスペーサー基を含む場合は、該スペーサー基は、-(Gly)p-(pは1~3の整数)、-(βAla)q-(qは1~3の整数)、-PEG(polyethylene glycol)4-、6-アミノヘキサン酸基から選択されるペプチド鎖であってもよい。
 前記架橋形成基が、例えば、Lys残基の場合、前記式(III)で表される置換基は、以下の式(XVI)で表される架橋構造を有する。
Figure JPOXMLDOC01-appb-C000034
 上記式(XVI)において、矢印の矢頭が、ペプチド鎖のC末端側であることを表す。
 前記架橋形成基が、例えば、オルニチン残基の場合、前記式(III)で表される置換基は、以下の式(XVII)で表される架橋構造を有する。
Figure JPOXMLDOC01-appb-C000035
 上記式(XVII)において、矢印の矢頭が、ペプチド鎖のC末端側であることを表す。
 前記架橋形成基がシステイン残基であり、ジスルフィド結合により架橋形成する場合、前記式(III)で表される置換基は、以下の式(XVIII-I)で表される架橋構造を有する。
Figure JPOXMLDOC01-appb-C000036
 上記式(XVIII-I)において、矢印の矢頭が、ペプチド鎖のC末端側であることを表す。
 前記架橋形成基がシステイン残基であり、ジスルフィド結合により架橋形成する場合、前記式(II)で表される置換基は、以下の式(XVIII-II)で表される架橋構造を有する。
Figure JPOXMLDOC01-appb-C000037
 上記式(XVIII-II)において、矢印の方向は、ペプチド鎖のN末端側からC末端側の方向であることを表す。
 前記架橋形成基がアスパラギン酸残基又はグルタミン酸残基であり、アミド結合により架橋形成する場合、前記式(II)で表される置換基は、以下の式(IX)で表される架橋構造を有し、Hojo H.ら(Hojo H. et al, Tetrahedron 1997, 53, 14263)と同様の方法で、架橋形成を行うことができる。架橋形成基がグルタミン酸の場合の構造を式XIXに示した。
Figure JPOXMLDOC01-appb-C000038
 上記式(XIX)において、矢印の方向は、ペプチド鎖のN末端側からC末端側の方向であることを表す。
 前記架橋形成基がプロパルギルグリシン残基であり、クリックケミストリーにより架橋形成する場合、Li H.ら(Li H. et al., Molecules. ; 2013, 18: 9797)と同様の方法で架橋することができ、前記式(III)で表される置換基は、以下の式(XX)で表される架橋構造を有する。
Figure JPOXMLDOC01-appb-C000039
 上記式(XX)において、矢印の矢頭が、ペプチド鎖のC末端側であることを表す。
 また、前記式(I)において、L3は、側鎖に前記薬剤基を連結可能なアミノ酸残基Zaaを含み、Zaaは、アスパラギン酸残基(Asp又はD)、グルタミン酸残基(Glu又はE)、リジン残基(Lys又はK)、(セリン残基(Ser又はS)、トレオニン残基(Thr又はT)、チロシン残基(Tyr又はY))、システイン残基(Cys又はC)又はプロパルギルグリシン残基から選択されてもよい。
 本発明の薬剤結合環状ペプチドは、架橋形成基を有するペプチド鎖を、架橋反応によって架橋形成することによって製造することができる。また、前記ペプチド鎖の製造は、市販のアミノ酸を使用し、公知のペプチドの化学合成法によって製造できるが、これに限定されない。
 本発明の薬剤結合環状ペプチドの製造方法の例を以下に記載する。
 前記スペーサーを含んでもよい架橋形成基を有するペプチド鎖と、側鎖に薬剤連結基を連結するためのアミノ酸残基とを含むペプチド鎖とを、架橋反応により架橋形成することにより、環状ペプチドを形成する。N末端側をジスルフィド結合で、C末端側をペプチド結合で架橋する場合の合成スキームを図2Aに、N末端側とC末端側の両方をジスルフィド結合で架橋した環状ペプチド(環状(POG-R’7):配列番号39)の合成スキームを図2Bに示した。
 次に、上記環状ペプチドに薬剤基を連結することにより、薬剤結合環状ペプチドを製造することができる。薬剤基の連結方法は、例えば、当業者に周知慣用の縮合反応や架橋反応を用いることにより実施できる(国際公開パンフレットWO2016208673等)。
 本発明の薬剤結合環状ペプチドにおける薬剤基の例としては、標識基、医薬分子基が挙げられる。
 例えば、薬剤基が標識基の場合に、前記標識基における標識体は、ビオチン、酵素、並びに、カルボキシフルオレセイン(CF又はFAM: carboxy fluorescein)、5(6)-carboxytetramethylrhodamine (TAMRA)、Alexa fluor(登録商標)、Cyanine Dye 、IRDye、HiLyte fluor(登録商標)を含む蛍光化合物又はりん光化合物、金属錯体化合物及び放射性標識化合物からなる群から選択される少なくとも1種であってもよい。
 より具体的には、前記蛍光標識体の例としては、Alexa fluor(登録商標)の例として、Alexa fluor 350、405、488、532、546、555、568、594、647、680又は750が、Cyanine Dyeの例としてCy2、3、3.5、5、5.5及び7が、IRDyeの例として、 IRDye 650、680RD, 680LT、700DX、700phosphoramidite、750、800CW及び800phosphoramiditeが、HiLyte fluorの例として、HiLyte fluor 405、488、555、594、647、680及び750が、また、FITC、FAM、rhodamine、carboxytetramethylrhodamine(TAMRA)が、さらに、DyLightの例として、DyLight 350、405、550、633及び755が、さらに、Dy-405、415、430、431、478、490、495及び505が、Oyster-488、555、647、680及び800が、並びに、NorthernLight-493、557及び637等が挙げられる。
 また、薬剤基が医薬分子基である場合に、医薬分子を連結基を介して医薬分子基として環状ペプチドに連結させることによって、本発明の薬剤結合環状ペプチドを製造できる。
 前記医薬分子の例としては、ドキソルビシン、5-FU、シスプラチン、ビンブラスチン、ダウノマイシン、エピルビシン、イダルビシン、マイトマイシン-C、ブレオマイシン、イリノテカン、パクリタキセル、シクロホスファミド、アクチノマイシンD又はタキサン等から選択される抗腫瘍薬、PTH等の骨粗鬆症薬、放射性金属錯体化合物、放射性標識化合物、ペニシリン、テトラサイクリン等の抗生物質、パラベン、クロロブタノール、フェノールソルビン酸、ナイスタチン、エコナゾール、ミコナゾール、フルコナゾール、ケトコナゾール、イトラコナゾール又はクロトリマゾール等から選択される抗真菌薬、カドヘリン、フィブロネクチン、インテグリン、ラミニン又はセレクチン等から選択される細胞接着分子由来の細胞接着活性ペプチド、Stromal-derived factor 1 (SDF-1)、成長因子及び抗炎症薬からなる群から選択される少なくとも1種が挙げられる。
 また、前記金属錯体化合物がキレート剤と金属との金属錯体の場合には、該キレート剤は、EDTA(エチレンジアミン四酢酸)、DTPA(ジエチレントリアミン五酢酸)、cyclohexyl-DTPA(シクロヘキシル-ジエチレントリアミン五酢酸)、DOTA(1,4,7,10-テトラ-アザシクロドデカン-1,4,7,10-四酢酸)若しくはNOTA(1,4,7-トリアザシクロノナン -N,N',N''-三酢酸)からなる群から選択されるいずれか一つのC-ファンクショナライズド(C-functionalized)コンプレキサン型配位子(特開2015-86213号公報)、L-システイニル基(特開2014-181309号公報)等が挙げられ、これらのキレート剤の製造方法に従い、キレート基を付与したペプチド鎖を合成し、これらのペプチド鎖を架橋反応により架橋形成することにより、本発明の薬剤結合環状ペプチドを製造できる。
 さらに、前記金属錯体化合物がキレート剤と放射性金属との金属錯体の場合には、該放射性金属が、51Cr、62Cu、64Cu、67Cu、67Ga、68Ga、47Sc、88Y、86Y、90Y、97Ru、99mTc、103Ru、105Rh、109Pd、111In、117mSn、141Ce、140La、149Pm、153Sm、161Tb、165Dy、166Dy、166Ho、167Tm、168Yb、175Yb、177Lu、186Re、188Re、198Au、199Au、203Pb、211Bi、212Bi、213Bi、214Bi及び225Ac、並びにその酸化物又は窒化物からなる群から選択される1以上の放射性金属を使用できる。
 さらに、前記金属錯体化合物がキレート剤とX線不透過性金属との金属錯体の場合に、該X線不透過性金属が、ビスマス(Bi)、タングステン(W)、タンタル(Ta)、ハフニウム(Hf)、ランタン(La)、その他のランタノイド(lanthanide)、バリウム(Ba)、モリブデン(Mo)、ニオブ(Nb)、ジルコニウム(Zr)及びストロンチウム(Sr)からなる群から選択される1以上の金属を使用してもよい。
 また、前記金属錯体がキレート剤と常磁性金属との金属錯体の場合に、該金属が、クロム(Cr)、マンガン(Mn)、鉄(Fe2+)、鉄(Fe3+)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、イッテルビウム(Yb)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)及びエルビウム(Er)からなる群から選択される1以上の金属であってもよい。
 以上の実施形態のより好ましい具体的な例として、下記式(IV)~(XIV)で表される薬剤結合環状ペプチドが挙げられる;
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
 式(IV)~(XIV)において、
 -Cys-Cys-は、2つのCys残基の側鎖の-SH基がジスルフィド結合したシスチン残基を表し、
 Acは、アセチル基を表し、
 Ahxは、6-アミノヘキサン酸基を表し、
 Aは、前記スペーサー基を含んでもよい、ビオチン基、カルボキシフルオレセイン(CF又はFAM: carboxy fluorescein)基、IRDye750基、ドキソルビシン基、PTH基、5(6)-carboxytetramethylrhodamine (TAMRA)基及びStromal-derived factor 1 (SDF-1)からなる群から選択される少なくとも1種であり、Lys残基の側鎖の-NH2基とアミド結合又はシスチン残基のジスルフィド結合で結合し、
 n'及びm'が、同一又は相違してもよく、5~9の整数であり、及び、
 s及びtが、同一又は相違してもよく、3又は4の整数である。
 このような薬剤結合環状ペプチドを、例えば、高速液体クロマトグラフィー等の当業者に周知慣用の分離手段を用いて分離精製して取得し、本発明の薬剤結合環状ペプチドの製造に使用できる(国際公開パンフレットWO2013111759等)。
 係る薬剤結合環状ペプチドは、以下で説明する変性コラーゲンの検出剤や、変性コラーゲンを含む疾患の診断用組成物(診断薬)や予防(予防薬)若しくは治療用組成物(治療薬)の有効成分として、また、研究用試薬として使用できる。また、バイオマテリアルとしてのコラーゲンへの生理活性物質のアンカリングにも利用できる。
2.変性コラーゲン検出用若しくは研究用の組成物又は変性コラーゲンを有する患者の診断薬(診断用組成物)
 本発明のもう1つの実施形態は、前記薬剤結合環状ペプチド、又はその塩若しくは溶媒和物を有効成分として含有し、前記薬剤基は標識基である変性領域を含むコラーゲンを有する疾患の検出若しくは研究のための、又は診断のための変性コラーゲン検出用の組成物である。
 例えば、メタロプロテアーゼの活性が亢進した細胞や組織を有する疾患において、メタロプロテアーゼによってコラーゲンが一部切断され、コラーゲンの三重らせん構造がほどけた変性コラーゲンが生じる(非特許文献2、図1参照)。前記薬剤結合環状ペプチドは、この三重らせん構造がほどけた変性コラーゲンに結合することができ、例えば、薬剤結合環状ペプチドの薬剤基が蛍光性を有する薬剤である場合、この蛍光を検出することにより、変性コラーゲンの有無、局在位置、及び/又は局在する量等を検出し、測定することができる。そこで、本発明の薬剤結合環状ペプチドは、変性コラーゲンに対して、検出用として、又は研究用として使用できる。
 さらに、係る変性コラーゲンの発生に関与する疾患を有する患者に対する診断薬(診断用組成物)としても使用できる。
 前記疾患の例としては、コラーゲン変性、コラーゲンリモデリング及び/又はマトリックスメタロプロテアーゼ(MMP)活性の亢進を伴う疾患であり、がん、筋骨格系疾患(マルフィン症候群、骨粗鬆症、骨折、軟骨性疾患)、創傷又は角膜損傷から選択される疾患が挙げられ、これらの疾患の検出、診断、予防又は治療に使用できる。
 特に、本発明の変性コラーゲン検出用の組成物は、MMP高発現転移性がんの検出又は診断に好適に使用することができる。
3.変性コラーゲンを含む疾患の予防又は治療用組成物
 本発明のもう1つの実施形態は、変性コラーゲンを含む疾患の予防又は治療用組成物である。
 上記のように、本発明の薬剤結合環状ペプチドにおいて、前記薬剤基が医薬分子基の場合に、薬剤結合環状ペプチドを有効成分として含有する予防又は治療用組成物を生体に投与することにより、前記薬剤結合環状ペプチドは、生体内で変性コラーゲンを含む組織に選択的に結合し、標的細胞又は標的組織に分布し、前記標的細胞又は組織における疾患又は障害を治療する変性領域を含むコラーゲンを有する患者の疾患の治療に使用できる。また、変性コラーゲンを含む組織を有する前記疾患の発症前の生体に、前記薬剤結合環状ペプチドを含有する組成物を投与することにより、該疾患の予防用の組成物として使用することができる。
 前記疾患の例としては、コラーゲン変性、コラーゲンリモデリング及び/又はマトリックスメタロプロテアーゼ(MMP)活性の亢進を伴う疾患であり、がん、筋骨格系疾患(マルフィン症候群、骨粗鬆症、骨折、軟骨性疾患)、創傷又は角膜損傷から選択される疾患の予防又は治療に使用できる。
 係る疾患の予防若しくは治療薬、又は予防若しくは治療用組成物として使用する場合、その有効成分は、前記式(I)の化合物であり、前記式(I)の化合物における薬剤基が医薬分子基であり、前記医薬分子基における医薬分子は、好ましくは、ドキソルビシン、5-FU、シスプラチン、ビンブラスチン、ダウノマイシン、エピルビシン、イダルビシン、マイトマイシン-C、ブレオマイシン、イリノテカン、パクリタキセル、シクロホスファミド、アクチノマイシンD又はタキサン等から選択される抗腫瘍薬、PTH等の骨粗鬆症薬、放射性金属錯体化合物、放射性標識化合物、ペニシリン、テトラサイクリン等の抗生物質、パラベン、クロロブタノール、フェノールソルビン酸、ナイスタチン、エコナゾール、ミコナゾール、フルコナゾール、ケトコナゾール、イトラコナゾール又はクロトリマゾール等から選択される抗真菌薬、カドヘリン、フィブロネクチン、インテグリン、ラミニン又はセレクチン等から選択される細胞接着分子由来ペプチド、Stromal-derived factor 1 (SDF-1)、成長因子及び抗炎症薬からなる群から選択される少なくとも1種が挙げられる。
 また、本発明の薬剤結合環状ペプチドにおいて、前記医薬分子基としては放射性金属錯体基であり、該放射性金属として、既に臨床で使用されているイットリウム-90(90Y)、又はルテチウム-177(177Lu)等の治療用の放射性金属を使用することもできる。例えば、標的疾患が、メタロプロテアーゼ活性が亢進したがんの場合、メタロプロテアーゼによって切断され、三重らせん構造がほどけた変性コラーゲンを有する患者に、この90Yの錯体置換基が医薬分子基として結合した薬剤結合環状ペプチドを有効成分として含有する医薬組成物を投与することにより、メタロプロテアーゼ活性が亢進した細胞又は組織に、該薬剤結合環状ペプチドが分布する。この薬剤結合環状ペプチドの90Yから放出される放射線により、がん細胞に障害を与え、がん細胞を死に至らしめることができる。かかる方法によって、例えば、90Yを使用する本発明の薬剤結合環状ペプチドを有効成分とする医薬組成物は、がんの治療に使用することができる。また、変性コラーゲンを含む組織を有するがんを発症する前の生体に、前記薬剤結合環状ペプチドを含有する組成物を投与することにより、がんの予防用の組成物として使用することができる。
 本明細書において言及される全ての文献はその全体が引用により本明細書に取り込まれる。ここに記述される実施例は本発明の実施形態を例示するものであり、本発明の範囲を限定するものとして解釈されるべきではない。
略語 一覧
1 アミノ酸残基
Ahx : 6-aminohexanoic acid
Ala (A) : alanine
Arg (R) : arginine
Asn (N) : asparagine
Asp (D) : aspartic acid
Cys (C) : cysteine
Gly (G) : glycine
Gln (Q) : glutamine
Glu (E) : glutamic acid
His (H) : histidine 
Hyp (O) : 4-hydroxyproline
Ile (I) : isoleucine
Leu (L) : leucine
Lys (K) : lysine
Met (M) : methionine
Phe (F) : phenylalanine
Pro (P) : proline
Ser (S) : serine
Thr (T) : threonine
Trp (W) : tryptophan
Tyr (Y) : tyrosine
Val (V) : valine

2 保護基
Ac : acetyl
Acm : acetamidomethyl
Boc : tert-butoxycarbonyl
Fmoc : 9-fluorenylmethoxycarbonyl
Mtt : p-methyltrityl
Npys : 3-nitro-2-pyridinesulfenyl
OtBu : tert-butoxy
Pbf : 2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl
Spy : pyridine-2-sulfenyl
tBu : tert-butyl
Trt : triphenylmethyl

3 縮合剤及び関連試薬
DIC : N,N'-diisopropylcarbodiimide
HOBt : N-hydroxybenzotriazole

4 分析装置
HPLC : high-performance liquid chromatography
ESI MS : electron spray ionization mass spectrometry

5 その他
AcOH : acetic acid
ABTS : 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic Acid Ammonium Salt)
CMP : collagen-mimetic peptide
DCM : dichloromethane
DMF : N,N-dimethylformamide
EDTA : ethylenediaminetetraacetic acid
ELISA : enzyme-linked immunosorbent assay
EtOH : ethanol
FAM: Carboxyfluorescein (CF)
HFIP : 1,1,1,3,3,3-Hexafluoro-2-propanol
HRP : horseradish peroxidase
NHS : N-hydroxysuccinimide
MeCN : acetonitrile
MeOH : methanol
PEG : polyethylene glycol
PBS : phosphate buffered saline
TES : triethylsilane
TFA : trifluoroacetic acid
TFE : trifluoroethanol
TIPS : triisopropylsilane
[実施例1]
同一のアミノ酸配列を有する二本鎖のペプチドから形成される環状ペプチド
(1) ペプチドの固相合成
 ペプチド鎖はRink-Amide-AM-resin LL (100-200 mesh) (Novabiochem、Merck KGaA.、ドイツ) を固相担体とし、Fmoc固相法で合成した。Fmocアミノ酸はNovabiochemから購入したFmoc-Cys(Acm)-OH、Fmoc-Lys(Boc)-OH、Fmoc-Lys(Fmoc)-OH、Fmoc-Tyr(tBu)-OH、及び、発明者らによって合成されたFmoc-Ahx-OH、Fmoc-Pro-Hyp-Gly-OHを用いた。レジンはPD-10カラム(GEヘルスケア・ジャパン株式会社、東京)に計りとり、DMF(ペプチド合成用、和光純薬工業株式会社、大阪)中で2時間室温撹拌し、膨潤させた。ペプチド鎖の伸長はDMF中で反応点となるアミノ基に対し、5等量のFmocアミノ酸、5等量のHOBt(株式会社同仁化学研究所、熊本)、5等量のDIC(ペプチド合成用、和光純薬工業)を2時間室温撹拌しながら反応させた。反応後DMFによる洗浄を4回行った。その後、縮合反応が完結しているかの確認のため、数10個のレジンをとり、0.001 M シアン化カリウム/ピリジン、4 mg/mlフェノール/エタノール、ニンヒドリン/エタノールをそれぞれ一滴ずつ添加し、95℃で1分間加熱した。レジンが着色した場合は再度Fmocアミノ酸を上記の方法で縮合した。Fmoc-Pro-Hyp-Gly-OHに関しては反応点となるアミノ基に対し3等量加え、3等量のHOBt、3等量のDICとともに2時間室温撹拌しながら縮合させた。反応後DMFによる洗浄を4回行った。その後縮合反応が完結しているかの確認のため、数10個のレジンをとり、2%アセトアルデヒト/DMF 1滴に続き、2%p-クロラニール/DMFを1滴添加し、10秒室温で放置した。レジンが着色した場合は再度Fmoc-Pro-Hyp-Gly-OHを上記の方法で縮合した。
 アミノ酸が縮合されていることが確認できたレジンについては、20%ピペリジン(和光純薬工業株式会社)/DMFに浸漬し、15分間室温撹拌した。DMFによる洗浄を6回行ったあと、上記の方法でFmocアミノ酸を縮合した。側鎖アミノ基がFmoc基で保護されたLys残基を上記の方法で縮合させることで、側鎖アミンに対してアミノ酸を縮合させ、ペプチド鎖を二股に伸長した。ペプチドのN末端は20等量のピリジンと20等量の無水酢酸を用い、DMF中で1時間室温撹拌し、アセチル化した。ペプチド鎖が合成し終わったレジンはメタノールによる洗浄を3回行い、続いてエーテルによる洗浄を3回行った後、1晩以上減圧乾燥した。
(2) ペプチドの脱保護
 乾燥したレジンに対し、4℃のTFA、m-クレゾール、チオアニソール、エタンジチオールを(82.5:5:5:2.5)の割合となるように加え、2時間室温撹拌することでAcm基を除く全ての保護基を除去した。脱保護に用いた溶液及びカラムを洗浄したTFAを50 ml チューブにとり、40 mlの冷エーテルを加えてペプチドを沈澱させた。溶液は4℃、3500 rpmで5分間遠心した後、上清を廃棄した。沈澱に対して20 mlの冷エーテルを加え、撹拌後、冷エーテルを20 ml追加し、遠心後上清を廃棄した。この操作を3回行った後、沈殿を2時間程度室温で風乾した。この沈殿を40% MeCN/H2Oに溶解し、Sep Pak(登録商標)Plus C18カラム(Waters、米国)に通すことにより疎水性の不純物を除去し凍結後、凍結乾燥した。
(3) ペプチドの環化
 Cys残基の側鎖チオールを保護しているAcm基は、過等量のヨウ素と反応させ脱保護すると同時に分子内ジスルフィド架橋を形成させ、環状CMPとした。反応は、Pro-Hyp-Gly繰り返し数が4回、5回及び6回のものは80%酢酸水を溶媒として60℃で行い、繰り返し数が7回以上のものは20%酢酸水を溶媒とし、6 Mグアニジン塩酸塩下で行った。反応は2時間行い、溶液中のヨウ素は過剰量のアスコルビン酸を添加することでクエンチした。溶液はSephadex G-15(GE ヘルスケア バイオサイエンス)ビーズを詰めたカラム(内径2.7 cm、35 ml)を用いてゲルろ過し、溶出液を1 mlずつフラクションに分けた。各フラクションの280 nm における吸光度の値からCMPが溶出しているフラクションを特定した。その際溶出液として、0.05% TFA/H2Oを用いた。CMPが溶出しているフラクションは合わせて凍結乾燥した。
(4) CMPの精製
 一本鎖CMP及び二本鎖CMP、環状CMPは逆相HPLCを用い、0.05%TFA/H2Oと0.05%TFA/MeCNの直線濃度勾配によって分取精製した。分取は株式会社日立製作所(東京)又は日本分光株式会社(東京)のHPLCを用い、カラムはCOSMOSIL 5C18-AR-II 20 × 250 mm (ナカライテスク株式会社、京都)又はCOSMOSIL5C18-AR-II 6.0 × 250 mm (ナカライテスク株式会社)を用いた。
(5) CMPの質量分析
 精製したCMPはMALDI-TOF MS(Bruker Autoflex III MALDI-TOF MS、Bruker Daltonics, Leipzig、ドイツ))、又はESI MS(Bruker micrOTOF ESI MS、ruker Daltonics, Leipzig、ドイツ)で質量分析した。各ペプチド鎖又は環状ペプチドの測定結果を表1に示した(配列番号5~19)。
Figure JPOXMLDOC01-appb-T000051
(6) CMPの定量
 CMPを溶かしたサンプル溶液50 μlを384 Well UV-star Microplate (Greiner Bio-One)に添加し、280、900、977 nmにおける吸光度を測定した。その値を次の式を用いて光路長補正した。
補正吸光度 = (A280 sample - A280 blank) × (A977 sample - A900 sample) / ( A977 water - A900 water)
なお、
A280 sample:サンプル溶液の280 nmにおける吸光度
A280 blank:溶媒の280 nmにおける吸光度
A977 sample:サンプル溶液の977 nmにおける吸光度
A900 sample:サンプル溶液の900 nmにおける吸光度
A977 water:水1 cmあたりの977 nmにおける吸光度
A900 water:水1 cmあたりの900 nmにおける吸光度である。
 次に求められた補正吸光度から、公知の方法(Pace C. N.ら、Prorein Science 1995, 4:2411-2423)により次の式を用いてCMP濃度を算出した。
 CMP濃度(M) = 補正吸光度 / (Tyr残基数×1490 + cystine残基数×125)
(7) CMPの二次構造解析
 精製した11種類のCMP(環状CMP4~9、二本鎖CMP4~9及び一本鎖CMP6~10)の 1 mg/ml溶液を、PBSを溶媒として、200~300 μl調製した。その後溶液を95℃で5分間加熱し、室温で10分間徐冷した後4℃で一晩静置することで三重らせんを形成させた。このCMP溶液の4℃における260 nmから190 nmのCDスペクトルを連続的に測定した。測定には日本分光円二色性分光光度計J-820を用いた。スペクトルは残基平均モル楕円率に、(全残基数/Pro、Hyp、Gly残基数)をかけることで、ヘリックス部分の残基平均モル楕円率として求め、その2次構造を解析した。
 コラーゲン三重らせんを構成する3本のペプチド鎖はpolyproline-II様の二次構造をとることが知られている(Duane D. J., Cindy S., Johnson W. C. Jr., Circular dichroism of collagen, gelatin,and poly(proline) II in the vacuum ultraviolet (1976) Biopolymers. 15. 513-521)。すべてのCMPは4℃において、polyproline-II様の二次構造をとっているとの結果を得た(図示せず)。
(8) CMPの温度変化測定
 続いてCMP溶液の温度を4℃から85℃まで18℃ / hで変化させたときの225 nmにおけるCDシグナルを連続的に測定した。温度制御にはPeltier式の温度コントローラを用いた。また得られた曲線を微分し、傾きの絶対値が最も大きい点温度をTmとした。
 CMPのθ225におけるCDシグナルの温度変化測定結果では、二本鎖CMP4と環状CMP4は1次関数的に225 nmにおけるCDシグナルが減少した(図示せず)。したがって、この2種類のCMPは4℃において、三重らせんを形成していないと考えられる。他のCMPは、協同的なCDシグナルの減少が確認された(図示せず)。よってこの環状CMP5~9、二本鎖CMP5~9及び一本鎖CMP6、8、10のCMPは4℃において、三重らせんを形成していると考えられる。これらのCMPの三重らせん変性温度(Tm)を表2に示した。
Figure JPOXMLDOC01-appb-T000052
 CMPを二本に束ねることでTmが15℃程度上昇した。また、環化することによりさらにTmは数℃上昇した。すなわち、CMPを束ねることで、三重らせんの安定性が向上したと考えられる。
(9) CMPのビオチン標識
 CMPを20 mM NaHCO3溶媒中で1 mg/mlに調製し、3等量のNHS-PEG4-Biotin (Thermo Fisher Sientific)と2時間室温で反応させ、ビオチン標識した。ビオチン標識したCMPはSephadex G-15ビーズを詰めたカラム(内径2.7 cm、35 ml)を用いてゲルろ過し、溶出液を1 mlずつフラクションに分けた。各フラクションの280 nmにおける吸光度の値からCMPが溶出しているフラクションを特定した。その際溶出液として、0.05%TFA/H2Oを用いた。CMPが溶出しているフラクションは合わせて凍結乾燥した。
(10) CMPのFAM標識
 一本鎖CMP10と環状CMP7について20 mM NaHCO3溶媒中で1 mg/mlに調製し、3等量の5-FAM SE (5-Carboxyfluorescein, Succinimidyl Ester、Invitrogen、米国)と2時間室温で遮光しながら反応させ、FAM標識した。FAM標識したCMPは逆相HPLCを用い、0.05%TFA/H2Oと0.05%TFA/MeCNの直線濃度勾配によって分取精製した。その際、COSMOSIL 5C18-AR-II size 6.0 ×250 mmを用いた。
 FAM標識したCMPをH2Oに溶解し、95℃で5分間加熱後1分間氷上で冷却し、0.1 M NaOH水に溶解し、480 nmにおける吸光度を測定し、FAMのモル吸光係数(76,900 cm-1M-1)からFAM-CMP conjugate溶液の濃度を求めた(R. Sjobackら、Spectrochimica Acta Part A, 1995, 51, L7-L21)。
(11) 標識CMPの質量分析
 ビオチン又はFAM標識したCMPの質量分析を行った。質量分析は、MALDI-TOF MS又はESI MSで行った。各ペプチドの質量分析を測定した結果を表3に示した(配列番号20~36)。
Figure JPOXMLDOC01-appb-T000053
(12) ELISAによるCMPのコラーゲン結合活性の評価
 Atelo collagen IPC(株式会社高研、東京)を10 mM AcOH/H2Oに希釈し、10 μg/mlに調製した。Nunc Microwell 96マイクロウェルプレート(Thermo Fisher Scientific)上にこの溶液を50 μl添加し、クリーンベンチ内で3日間放置することでコラーゲンをコートした。その際、溶液を95℃で3分間処理した熱変性コラーゲンと、非変性コラーゲンの2種類を用いた。コートしたコラーゲンに0.5%スキムミルク/ELISA緩衝液(20 mM HEPES-Na (pH 7.5)、100mM NaCl, 0.005% Tween-20)を50 μl添加し、室温で1時間ブロッキングした。その後コラーゲンに対し、0.5%スキムミルク/PBS溶媒で5 μg/mlに調製したビオチン標識CMPを、三重らせんを形成させた状態(annealed)、及び95℃で5分間加熱し熱変性させ4℃で1分間急冷させた状態(heated)でそれぞれ50 μl添加し、37℃で1時間結合させた。次にstreptavidin-HRPコンジュゲート(Thermo Fisher Scientific、米国)を0.5%スキムミルク/ELISA緩衝液で3000倍に希釈した溶液を50 μl添加し、ビオチンと酵素標識したアビジンを4℃で30分間反応させて結合させた。
 最後にABTSをABTS緩衝液(pH5.0) (100 mMリン酸、200 mMクエン酸)に溶解し、0.5 mg/mlに調製した溶液を50 μl添加し、ABTSとHRPを37℃で10分間反応させ、基質の発色の強さを405 nmにおける吸光度から測定した。なお、全ての過程の間に、ELISA緩衝液50 μlによる洗浄を3回行った。
 その結果、アニーリングしたCMPは、コラーゲンへの結合をほとんど検出することができなかった。CDのデータとともに考えると、CMP自身が三重らせんを形成している場合、コラーゲン又は熱変性コラーゲンに結合することができないと考えられる。
 環状CMP及び二本鎖CMPはPOGの繰り返し数が増えるに従い、405 nmにおける吸光度が上昇した。つまり、POGの繰り返し数が増えるに従い、コラーゲンへの結合活性が上昇するとの結果を得た。また、非変性コラーゲンよりも変性コラーゲンに、より多く結合した。これはCMPがコラーゲン上のほどけた部位に結合したことを示している。環状CMP7及び二本鎖CMP7は、従来より知られる一本鎖CMP10よりも強い結合活性を示し、環状の方が二本鎖のものより強く結合しているとの結果を得た(図3参照)。
(13) ELISAによるCMPの、コラーゲンに対する解離定数算出実験
 一本鎖CMP10と環状CMP7について、0.5%スキムミルク/PBS溶媒で30、 10、3、1、0.3、0.1、0.03 μg/mlに調製した。上記の方法で96マイクロウェルプレート上に熱変性コラーゲン及びコラーゲンをコートし、ブロッキングを行った。各CMP溶液を95℃で5分間加熱し熱変性させ、4℃で1分間急冷した後50 μl添加し、4℃で1時間反応し、結合させた。その後上記の方法で基質を発色させ、405 nmにおける吸光度を測定した。測定結果からCMPのコラーゲン及び変性コラーゲンに対する解離定数(KD)を算出した。その結果を表4に示した。
Figure JPOXMLDOC01-appb-T000054
 環状CMP7のKD値は、非変性コラーゲンに対しては1.1×10-7 M、変性コラーゲンに対しては6.6×10-8 Mであり、変性コラーゲンに対する環状CMP7の最大結合量は、非変性コラーゲンの1.67倍であった。これは変性によりコラーゲン上の環状CMP7が結合できる部位が増加したことを示す。今回コートした熱変性コラーゲンは加熱後徐冷させているが、熱変性コラーゲンをアニーリングさせたとき、225 nmにおけるCDシグナルが6割程度回復したという報告がある(Leikina E. et al., Proc. Natl. Acad. Sci. USA. 2001, 99. 1314-1318) 。よってこの結果は既報のデータに準じ、アニーリングにより三重らせん構造を形成していると考えられる。
 この濃度範囲からでは一本鎖CMP10の非変性、変性コラーゲンに対する解離定数を直接求めることができない。そこで、非変性及び変性コラーゲンに結合することのできる一本鎖CMP10と環状CMP7の最大量は同じであると仮定し、解離定数を概算した。その結果、非変性コラーゲンに対しては1.1×10-7 M、変性コラーゲンに対しては6.6×10-8 Mと求まった。ここから変性コラーゲンに対し環状CMP7は、一本鎖CMP10より144倍程度強く結合していた(図4参照)。
(14) ウェスタンブロッティングによる抗コラーゲン抗体とのコラーゲン検出能の比較
 3 mg/mlのatelo collagen IPCをSDSサンプルバッファー A (50 mM Tris-HCl (pH 6.7)、2%SDS、10%グリセロール、0.002% BPB)に希釈し、30、10、3、1、0.3、0.1 μg/mlとした。これらの溶液を95℃で5分間処理した。これらの溶液各10 μlを8%ゲルを用いたSDS-PAGE後、ニトロセルロース膜上に転写した。このニトロセルロース膜を5%スキムミルク/TBS (50 mM Tris-HCl (pH 7.4)、150 mM NaCl)に浸漬し、室温で1時間ブロッキングした。TBSで5分間洗浄を3回行った後、5%スキムミルク/PBSで20 μg/mlに調製したCMP溶液、又は抗体緩衝液(3% BSA、20mM Tris-HCl (pH 7.4)、150 mM NaCl、0.01% Tween-20)で希釈したウサギ抗I型コラーゲン抗体 (Rockland Immunochemicals Inc.)溶液に室温で1時間浸漬した。CMPとしてはビオチン標識一本鎖CMP10とビオチン標識環状CMP7を用い、95℃で5分間加熱しすぐに使用した。抗体は1000倍希釈のものと、200倍希釈のものを用いた。TBSで5分間の洗浄を3回行った後、CMP溶液に浸漬したものについてはstreptavidin-AP conjugate (Promega)を2%スキムミルク/TBSで2000倍に希釈したものに、抗体溶液に浸漬したものについてはヒツジ抗ウサギIgG-AP conjugate (Santa Cruz Biotechnology, INC)を2%スキムミルク/TBSで2000倍に希釈したものに室温で30分間浸漬した。TBS-T (50 mM Tris-HCl (pH 7.4)、150 mM NaCl、0.1% Tween-20)でそれぞれ5、10、25分間の洗浄を行った後、AP-conjugate substitute kit (Bio-Rad Laboratories, Inc.、米国)を用いて20分間発色させてコラーゲンを検出した。
 環状CMP7を用いることにより、10 ngのコラーゲンを検出することができた。これは抗コラーゲン抗体を濃い濃度で使用したときと同等程度のコラーゲン検出能であった。一本鎖CMP10では300 ngに薄いバンドが確認され、推奨濃度の抗体も一本鎖CMP10と同程度であった(図5参照)。
(15) 大腸菌のライセート作製
 E.coli (ATCC 25922)の凍結菌体を2 mlのLB培地に添加し、37℃で一晩振盪培養した。振盪培養した菌体を遠心して上清を除去した。ペレットに対し、200 μlのSDS sample buffer B (50 mM Tris-HCl (pH 6.7)、2%SDS、10%グリセロール)を添加し、95℃で5分間加熱することでライセートを作製した。ライセートのタンパク質濃度はBCATM protein assay kit (Thermo Fisher Scientific Inc.、米国)を用いて求め、SDS sample buffer Bで希釈して10 mg/mlに調製した。
(16) ウェスタンブロッティングによる環状CMP7のコラーゲン特異性の評価
 3 mg/mlのatelo collagen IPCをSDS sample buffer Aに希釈し100 μg/mlとした。この溶液を95℃で5分間処理した。コラーゲン溶液5 μl、コラーゲン溶液5 μlと大腸菌のライセート2 μlの混合溶液、及び大腸菌のライセート2 μlを8%ゲルを用いたSDS-PAGE後、ニトロセルロース膜上に転写した。このニトロセルロース膜を5%スキムミルク/TBS (50 mM Tris-HCl (pH 7.4)、150 mM NaCl)に浸漬し、室温で1時間ブロッキングした。TBSで5分間の洗浄を3回行った後、PBSで20 μg/mlに調製した環状CMP7溶液に室温で1時間浸漬した。環状CMP7溶液は95℃で3分間加熱しすぐに使用した。TBSで5分間の洗浄を3回行った後streptavidin-AP conjugate (Promega Corporation、米国)を2%スキムミルク/TBSで2000倍に希釈したものに室温で30分間浸漬した。TBS-T (50 mM Tris-HCl (pH 7.4)、150 mM NaCl、0.1%Tween-20)でそれぞれ5、10、25分間の洗浄を行った後、AP-conjugate substitute kit (Bio-Rad Laboratories, Inc.)を用いて20分間発色させコラーゲンを検出した。
 また、同サンプルを上記の方法でニトロセルロース膜に転写したのち、CBB溶液(0.001%CBB、50%メタノール、10%酢酸)に30分間浸漬し、CBB脱色液(50%メタノール、10%AcOH)に浸すことですべてのタンパク質を染色した。
 環状CMP7で検出した場合には、大腸菌ライセートのみを泳動したものにバンドは確認されず、I型コラーゲン及び大腸菌ライセートとI型コラーゲンを混ぜて泳動したものにはバンドが確認された。ここから、環状CMP7はI型コラーゲンを特異的に検出できていることがわかる。また、CBBで検出した際にはI型コラーゲンのバンドは薄く、大腸菌ライセートでは多量のバンドが検出させている。ここから、環状CMP7は、多量のタンパク質の中から、I型コラーゲンのみを検出しているとの結果を得た(図6参照)。
(17) コラーゲンの型特異性の検証
 3 mg/mlのI、II、III、IV、V型コラーゲン(I型:Atelo Cell IPC (株式会社高研)、II型:Type II collagen (株式会社高研)、III型:Type III collagen (株式会社高研)、IV型:Cell Matrix Type IV (新田ゼラチン株式会社、大阪)、V型:Type V collagen (株式会社高研) )をSDS sample buffer Aに希釈し30 μg/mlとした。この溶液を95℃で5分間処理した。これらの溶液10 μlにタンパク質分子量マーカー(Bio-Rad Laboratories, Inc.、プレシジョンPlusプロテイン未着色スタンダード) 5 μlを混ぜて8%ゲルを用いたSDS-PAGE後上記の方法で、ビオチン標識環状CMP7を用いてウェスタンブロッティングした。
 環状CMP7により、I型からV型までの全てのコラーゲンを検出することがで
きた。これより、環状CMP7はコラーゲン上の特定の配列ではなく、コラーゲンに共通するX-Y-Glyの繰り返し配列に対してハイブリダイズしていることが示された。すなわち、環状CMP7はコラーゲンを網羅的に検出できることが示された(図7参照)。
(18) 細胞外に分泌されたコラーゲン蛍光染色
 野生型マウス胚性線維芽細胞を、内径35 mmのグラスベースディッシュ(IWAKI、AGCテクノグラス株式会社、静岡)に1 ml(10×104 cells)を播種し、10%FBS (Invitrogen、Thermo Fisher Scientific Inc.)、100 units/mlのペニシリン、及び100 μg/mlのストレプトマイシン (Sigma-Aldrich Co. LLC.、米国)を添加したD-MEM (和光純薬工業株式会社)培地中で培養した。細胞がコンフルエントになったときに100 units/mlのペニシリン、及び100 μg/mlのストレプトマイシンを添加したHFDM-1(+)(株式会社細胞化学研究所)培地に交換し、3日間培養した。PBS(-)による洗浄を3回行った後、PBSを95℃で5分間処理したものと、室温のPBSそれぞれを細胞に添加することで、細胞外を熱変性させたサンプルと、未変性のサンプルを用意した。その後4%パラホルムアルデヒド/PBS(-)を用いて15分間室温で処理し、固定した。固定した細胞はPBS(-)による洗浄を3回行った後、3%BSA/PBS(-)溶液に浸漬し、室温でブロッキングした。
(19) 抗体による染色
 3%BSA/PBS(-)溶液に浸漬し、室温で1時間ブロッキングした細胞に対し、PBS(-)による洗浄を3回行った後、1/100 ウサギ抗I型コラーゲン抗体/1%BSA-PBS(-)を添加した。一時間室温で静置後、PBS(-)による洗浄を3回行い、1/100に希釈したヒツジ抗ウサギIgG(H+L)二次抗体、FITC conjugate (Thermo Fisher Scientific Inc.)/1%BSA-PBS(-)を添加し、1時間室温で静置した。PBS(-)による洗浄を5分間3セット行ったのち、FV1200共焦点レーザー顕微鏡(オリンパス工業株式会社、東京)で観察した。
(20) CMPによる染色
 3%BSA/PBS(-)溶液に浸漬し、室温で2時間ブロッキングした細胞に対し、FAM標識したCMPをPBS(-)中で30、3、0.3 μg/mlに調製したものを添加した。CMPは環状CMP7と一本鎖CMP10を用い、95℃で5分間加熱した後1分間氷上で冷却し添加した。1時間室温で静置した後、PBS(-)による洗浄を5分間3セット行ったのち、FV1200共焦点レーザー顕微鏡で観察した。
 その結果、環状CMP7を用いることで、コラーゲン繊維を検出することができた。抗体を用いた場合は変性コラーゲンと未変性コラーゲンを見分けることはできなかった。一方で環状CMP7及び一本鎖CMP10は変性コラーゲンに強く結合しているとの結果を得た。環状CMP7の変性コラーゲン検出能は一本鎖CMP10の検出能と100倍程度の差があることが確認され、これはELISAの結果と一致した(図8参照)。
 一方でELISAの結果では、環状CMP7は未変性のコラーゲンにも、変性コラーゲンの70%程度結合している結果が得られたが、細胞外に分泌されたコラーゲンの染色では変性コラーゲンと未変性コラーゲンとの検出に10倍以上の差を認めた。これは、コラーゲンは繊維形成をすることで、ほどけた部分が減ることを示している。
(21) 培養細胞内のコラーゲン染色
 上記の方法で野生型マウス胚性線維芽細胞を培養した。PBS(-)による洗浄を3回行った後、4%パラホルムアルデヒド/PBS(-)を用いて15分間処理し、固定した。固定した細胞はPBS(-)による洗浄を3回行った後、0.5%TritonX-100/PBS(-)溶液に5分間室温で浸漬し、透過処理を行った。透過処理を行った細胞はPBS(-)による洗浄を3回行った後、3%BSA/PBS(-)溶液に浸漬し、室温1時間でブロッキングした。PBS(-)による洗浄を3回行った後、1/500に希釈した抗KDELマウスモノクローナル抗体(10C3)/1%BSA-PBS(-)を添加し、室温で一時間静置した。PBS(-)による5分間の洗浄を3セット行ったのち、30 μg/ml FAM-CMP・1/200に希釈したヒツジ抗マウス(H+L)抗体、Alexa Fluore594 conjugate/1%BSA-PBS(-)の混合溶液を添加し、1時間室温で静置した。混合溶液は33 μg/ml FAM-CMP溶液を95℃で5分間加熱し、1分間氷冷したのち、11%BSA溶液及び抗体と混合した後、添加した。CMPとしては環状CMP7と一本鎖CMP10を使用した。PBS(-)による5分間の洗浄を3セット行った後、FV1200共焦点レーザー顕微鏡で観察した。
 結果を図9に示した。抗体は小胞体を染色し、環状CMP7により、小胞体が染色された。コラーゲンは小胞体内で生合成されるので、環状CMP7は小胞体内のコラーゲンを染色することができたとの結果を得た。一方、一本鎖CMP10では、同条件で細胞内のコラーゲンを染色できなかった(図9参照)。
(22) CMPのIRDye750標識
 環状CMP7を20 mM NaHCO3溶液中で1 mg/mlに調製し、それに対して3等量のIR750Dye NHS esterを遮光条件で、室温で2時間反応させた。CMPはSephadex G-25 (GE Healthcare Life Sciences)を用いてゲルろ過し、溶出液を500 mlずつフラクションに分けた。各フラクションの220 nmにおける吸光度の値からCMPが溶出しているフラクションを特定した。その際溶出液として、0.05%TFA/H2Oを用いた。CMPが溶出しているフラクションは合わせて凍結乾燥した。
 このIR標識したCMPをMALDI-TOF MS又はESI MSで質量分析すると以下の結果であった。
 IR-環状CMP7
  [M+3H]3+計算値 = 1974.532
  実測値 MS = 1974.596
 このCMPをH2Oに溶解し、95℃で5分間加熱後760 nmにおける吸光度を測定し、IRDyeのモル吸光係数(252,000 cm-1M-1)からIR-CMPconjugateの濃度を求めた。
(23) In vivoがん細胞イメージング
 PBS中で150 μg/mlに調製したCMP溶液を95℃で5分間加熱後、37℃に設定したポットプレート上に置いたシリンジに充填した。この溶液をPC-3細胞、及びLNCaP細胞をそれぞれ左脇腹、右脇腹に担癌したマウス(雄性C.B-17/Ice scid/scid)に対し、37℃程度で尾静脈から投与した。なお、PC-3細胞は骨転移型の前立腺がんであり、LNCaP細胞はリンパ転移型の前立腺がんである。
 結果を図10に示した。図10において、背中から見て左側はPC-3細胞、背中からみて右側はLNCap細胞が注入された。IR標識した環状CMP7は投与後30分でPC-3細胞への集積が確認された。また、膀胱と腎臓にも強い集積が確認されたため、このCMPは尿排出されることが推測される。投与後24時間ではバックグラウンドは低くなり、膀胱、腎臓、PC-3細胞への集積がより顕著に確認された。一方で環状CMP7の、LNCaP細胞への集積は確認されなかった(図10参照)。
 IR標識した環状CMP7は投与後30分でPC-3細胞への集積が確認された。また、膀胱と腎臓にも強い集積が確認されたため、このCMPは尿排出されることが推測される。投与後24時間ではバックグラウンドは低くなり、膀胱、腎臓、PC-3細胞への集積がより顕著に確認された。一方で環状CMP7の、LNCaP細胞への集積は確認されなかった。
 また、PC-3細胞はLNCaP細胞と比較して悪性度が高いとされている。環状CMP7はこの2種類のがん細胞の違いを見分けることができたので、悪性がんのイメージングに応用することができると考えられる。
[実施例2]
2つの鎖の配列が異なる環状ペプチドの合成と変性コラーゲンに対する結合活性の評価
 下記表5に示した、配列が異なる2本のペプチド鎖から形成される環状ペプチドを合成し(配列番号37~42)、変性コラーゲンに対する結合活性を評価した。
Figure JPOXMLDOC01-appb-T000055
(1) ペプチドの固相合成
 ペプチド鎖chain A及びchain Bを、実施例1と同様の方法で、Fmoc法で固相合成した。
(2) ペプチドの脱保護
[Chain Aの脱保護]
 脱保護を実施例1と同様の方法で行い、chain Aとして下記表6に示したペプチドを合成した(配列番号43~45)。
Figure JPOXMLDOC01-appb-T000056
[Chain Bの脱保護]
 乾燥したレジンに対し、4℃のTFA、m-クレゾール、チオアニソール、TIPSを(82.5:5:5:2.5)の割合となるように加え、4時間室温撹拌することでAcm基を除く全ての保護基を除去した。また脱保護溶液に150 mMとなるように2,2'-ジチオジピリジンを添加することで、Cys(Trt)のトリチル基を脱保護すると同時にSpy化し、Cys(Spy)とした。その後の操作は、実施例と同様の操作を行い、凍結した後、凍結乾燥した。
 合成したchain Bの構造を表7に示した(配列番号46~48)。
Figure JPOXMLDOC01-appb-T000057
(3) ペプチドの二量体形成
 Chain AおよびChain Bをそれぞれ20 mg/mlとなるようにbuffer (50 mM NH4OAc、2mM EDTA、6M guanidine-HCl、pH 5.5) に溶解した。それぞれの溶液を混合し、室温で1時間反応させて二本鎖ペプチドを得た。溶液はSephadex G-15 (GEヘルスケア バイオサイエンス) ビーズを詰めたカラム (内径2.7 cm、35 ml) を用いてゲルろ過し、溶出液を1 mlずつフラクションに分けた。各フラクションの280 nmにおける吸光度の値からCMPが溶出しているフラクションを特定した。その際溶出液として、0.05% TFA/H2Oを用いた。CMPが溶出しているフラクションは合わせて凍結乾燥し、下記表8に示した二本鎖CMPを取得した(配列番号49~54)。
Figure JPOXMLDOC01-appb-T000058
(4) ペプチドの環化、精製及びビオチン標識
 表8に示したペプチドの二本鎖に対して、実施例1と同様の方法で、架橋反応を行うことにより環化し、環状ペプチドを合成し、精製後、ビオチン標識を行い、ビオチン標識環状ペプチドを取得した。
(5) 環状ペプチドの質量分析
 環状ペプチド及びビオチン標識環状ペプチドの質量分析をESI MS法で行った。結果を表9に示した。
Figure JPOXMLDOC01-appb-T000059
(6) ELISAによる環状ペプチドのコラーゲン結合活性の評価
 Atelo collagen IPC (高研) を10 mM AcOH/H2Oに希釈し、10 μg/mlに調製した。Nunc Microwell 96マイクロウェルプレート (Thermo Fisher Scientific) 上にこの溶液を50 μl添加し、クリーンベンチ内で2日間放置することでコラーゲンをコートした。コートしたコラーゲンに0.5% skim milk/ELISA buffer (20 mM HEPES-Na (pH 7.5)、100mM NaCl、0.005% Tween-20)を50 μl添加し、室温で1時間ブロッキングした。その後コラーゲンに対し、95℃に加熱したPBSを添加して熱変性させ、PBS溶媒で5 μg/mlに調製したビオチン標識環状ペプチドを、4℃ (annealed)、又は95℃で5分間加熱し熱変性後急冷した状態(heated)でそれぞれ50 μlを添加し、4℃、18℃又は37℃で1時間反応させることにより結合させた。
 その後のELISAによる環状ペプチドの結合活性の評価は、実施例1と同様の方法で行った。
(7) 実験結果
 POG7-R'3、POG7-R'7を除く加熱後急冷した(heated)CMPは4℃において変性コラーゲン結合活性を示した。また、アニーリング(annealed)した、すなわち高次構造(三重らせん構造)を形成したE3-E'3も変性コラーゲン結合活性を示した(図11A参照)。
 また、4℃において高次構造をとった条件でも顕著な変性コラーゲン結合活性を示していたE3-E'3は、18℃では変性コラーゲン結合活性を示さなかった(図11B参照)。一方でPOG7-E'3とR3-E'3に関しては、高次構造をとった条件における変性コラーゲン結合活性が上昇した。さらに結合温度を37℃へと上げると、全体的に変性コラーゲン結合活性が低下し、結合が検出されたのは環状CMP7、POG7-E'3及びR3-R'3のみであった(図11C参照)。
 温度変化させたときの変性コラーゲン結合活性の変化の原因として、コラーゲンと環状ペプチドhybridの熱安定性、及び、環状ペプチドの自己三重らせんの熱安定性等の寄与が考えられる。
[実施例3]
様々なスペーサーを含む環状ペプチドの合成と変性コラーゲンに対する結合活性の評価
 下記表10に示した様々なスペーサー基としてAhx基又はGly残基を含む環状ペプチドを合成し(配列番号55~59)、それぞれの変性コラーゲンに対する結合活性を評価した。
Figure JPOXMLDOC01-appb-T000060
(1) ペプチドの固相合成及び脱保護
 ペプチド鎖は、実施例1と同様の方法で、Fmoc法で固相合成後、脱保護することにより、表11に示した二本鎖コラーゲン様ペプチド(CMP)を取得した(配列番号60~64)。
Figure JPOXMLDOC01-appb-T000061
(2) ペプチドの環化、精製及びビオチン標識
 上記表11に示された二本鎖コラーゲン様ペプチド(dsCMP)を用いて、実施例1と同様の方法で、環化し、精製後、ビオチン標識を行い、ビオチン標識環状ペプチドを取得した。
(3) CMPの質量分析
 精製したCMPはMALDI-TOF MS又はESI MS法で質量分析した。結果を表12に示した。
Figure JPOXMLDOC01-appb-T000062
(4) ELISAによるCMPのコラーゲン結合活性の評価
 Atelo collagen IPC (高研) を10 mM AcOH/H2Oに希釈し、10 μg/mlに調製した。Nunc Microwell 96マイクロウェルプレート (Thermo Fisher Scientific) 上にこの溶液を50 μl添加し、クリーンベンチ内で3日間放置することでコラーゲンをコートした。その際、95℃で5分間加熱した熱変性コラーゲンと、非変性コラーゲンを用いた。コートしたコラーゲンに0.5% skim milk/ELISA buffer (20 mM HEPES-Na (pH 7.5)、100mM NaCl、0.005% Tween-20) を50 μl添加し、室温で1時間ブロッキングした。その後、コラーゲンに対して、PBS溶媒で3.0×10-7 Mに調製したビオチン標識CMPを、三重らせんを形成させた状態(annealed)、又は、95℃で3分間加熱し熱変性させ4℃で1分間急冷させた状態(heated)でそれぞれ50 μlを添加し、37℃で1時間結合させた。
 その後のELISAによる環状ペプチドの結合活性の評価は、実施例1と同様の方法で行った。
(5) 実験結果
 アニーリング(annealed)条件でCMPを用いた場合、コラーゲンへの結合をほとんど検出することができなかった(図12A参照)。
 加熱後急冷(heated)したCMPを用いた場合、環状CMPは一本鎖CMPよりも高いコラーゲン結合活性を示した。また、これらのCMPは熱変性コラーゲンにより強く結合した。また、スペーサー基を含まないほうが変性コラーゲンに対して結合活性が高い傾向を示したが、スペーサー基の有無は必ずしも大きな影響を与えなかった(図12B参照)。
[実施例4]
2つのペプチド鎖の鎖長が異なる環状ペプチドの合成と変性コラーゲンに対する結合活性の評価
 下記表12に示される2つのペプチド鎖の各鎖長が異なる弓型形状の環状ペプチドを合成し(配列番号65~70)、変性コラーゲンに対する結合活性を評価した。
Figure JPOXMLDOC01-appb-T000063
(1) ペプチドの固相合成
 ペプチド鎖の固相合成は、実施例1と同様にFmoc法により固相合成した。
(2) ペプチドの脱保護
 ペプチドの脱保護は、実施例1と同様の方法で実施した。
 合成した二本鎖ペプチドの配列を表13に示した(配列番号71~76)。
Figure JPOXMLDOC01-appb-T000064
(3) ペプチドの環化、精製及びビオチン標識化
 上記表13に示した二本鎖ペプチドの環化、精製及びビオチン標識は、実施例1と同様に行い、ビオチン標識環状ペプチドを取得した。
(4) 環状ペプチドの質量分析
 上記環状ペプチド及びビオチン標識環状ペプチドの質量分析を行った。質量分析は、ESI MS法で行った。表14に環状ペプチドの質量分析の理論値と測定値とを示した。
Figure JPOXMLDOC01-appb-T000065
(5) ELISAによる環状ペプチドの変性コラーゲン結合活性の評価
 Atelo collagen IPC (高研) を10 mM AcOH/H2Oに希釈し、10 μg/mlに調製した。Nunc Microwell 96マイクロウェルプレート (Thermo Fisher Scientific) 上にこの溶液を50 μl添加し、クリーンベンチ内で2日間放置することでコラーゲンをコートした。コートしたコラーゲンに0.5% skim milk/ELISA buffer (20 mM HEPES-Na (pH 7.5)、100mM NaCl、0.005% Tween-20) を50 μl添加し、室温で1時間ブロッキングした。その後コラーゲンに対し、95℃に加熱したPBSを添加して熱変性させ、PBS溶媒で5 μg/mlに調製したビオチン標識環状ペプチドを、4℃ (annealed)又は95℃で5分間加熱し熱変性させた状態(heated)でそれぞれ50 μl添加し、4℃又は37℃で1時間結合させた。
 その後のELISAによる環状ペプチドの結合活性の評価は、実施例1と同様の方法で行った。
(6) 実験結果
 全ての環状ペプチドは4℃において使用直前に加熱した場合は変性コラーゲンに対して結合活性を示した。一方で直前にペプチド溶液を加熱しなかった場合は、変性コラーゲン結合活性が低かった(図13A参照)。
 Arch 5-7及びarch 5-8を除く環状ペプチドは37℃において変性コラーゲン結合活性を示した。また、arch 6-7及びarch 6-8についてはペプチド溶液の使用直前の加熱の有無に関わらず、コラーゲン結合活性を示した。その中、arch 6-7の方が、より高い変性コラーゲン結合活性を示した(図13B参照)。
[実施例5]
副甲状腺ホルモンペプチド(PTH(1-34))を結合させた環状ペプチドの合成と変性コラーゲンに対する結合活性の評価
 副甲状腺ホルモンペプチド(PTH(1-34))を結合させた環状ペプチドを合成し、その変性コラーゲンに対する結合活性を評価した。
(1) 合成方法
 副甲状腺ホルモンペプチド(PTH(1-34))を結合させた環状ペプチドの合成の概要を図14Aに示した。
 環状ペプチドを形成するためのペプチド鎖の合成は、実施例1と同様の方法でFmoc法で固相合成した。
 二本鎖ペプチドを合成する際、側鎖アミノ基がFmoc基で保護されたLys残基を上記の方法で縮合させることで、側鎖アミンに対してアミノ酸を縮合させ、ペプチド鎖を二股に伸長した。N末端はアミンに対して20等量のピリジンと無水酢酸を加えて室温で1時間反応させることでアセチル化した。
 PTH(1-34)は、検出のため、N末端にビオチンを縮合した。反応はDMF中で行い、アミンに対して5等量のビオチンを、5等量のHOBt、5等量のDICとともに2時間室温撹拌しながら縮合させた。また、スペーサーとしてβアラニン(βAla)を導入した。
(2) ペプチドの脱保護
 ペプチドの脱保護は、実施例1と同様の方法で行った。
 以下に固相合成で構築したペプチド(配列番号77)と、ビオチン標識したPTH(1-34)のアミノ酸配列(下線部: PTH 1-34:配列番号78)を示した。
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
(3) 空気酸化による二本鎖ペプチドの環化
 二本鎖ペプチドの粗精製物に50 mM Tris-HCl (pH 8.8)を加え、ペプチド濃度を0.2 mg/mLに調製し、60°Cで一晩静置した。反応終了はエルマン試薬で確認した。ペプチド溶液48 μLに対してエルマン試薬を2 μL加え、384 Well UV-starR Microplate (Greiner Bio-One社製、オーストリア) に全量を添加し、Multi-spectophotometer VientoR XS (DSファーマバイオメディカル社製、大阪)を使い412 nmでの吸光度を測定した。測定値が反応直後の吸光度と比較して、95%以上減少したことを確認した時点で反応が完結したと判断した。
(4) 環状ペプチドの精製
 環状ペプチド(配列番号79)及びビオチン標識したPTH(1-34)は逆相HPLCを用い、0.05%TFA/H2Oと0.05%TFA/MeCNの直線濃度勾配によって分取精製した。分取はHPLCを用い、カラムはCOSMOSIL 5C18-AR-II 6.0 × 250 mm (ナカライテスク社製) を用いた。
(5) 環状ペプチドのC末端に存在するCys残基の側鎖チオールを保護するAcm基のNpys化
 TFA:AcOH (1:2, v/v) に溶解した精製済みの環状ペプチドに、2当量のNpys-Clを加え、10 mg/mLに調製した後、室温・窒素雰囲気下・遮光条件下で30分間反応させた。反応の終了をRP-HPLC分析で確認した後、氷冷したH2Oで反応溶液を10倍に希釈した。希釈した反応溶液中の主生成物をRP-HPLCで精製した。
(6) Npys化した環状ペプチドとビオチン標識したPTH(1-34)の結合
 Npys化した環状ペプチドをbuffer A (6 M guanidine HCl、50 mM AcONa、2 mM EDTA・2Na、pH 5.4)で10 mg/mLに調製し、ビオチン標識したPTH(1-34)を0.5等量加え、窒素雰囲気下・遮光・室温・pH 5.4の条件下で1.5時間反応させた。反応終了をRP-HPLCで確認し、主生成物 1 (図14A参照)をRP-HPLCで精製した(配列番号80)。
(7) PTH(1-34)-環状ペプチドconjugateの質量分析
 上記ビオチン標識化したペプチドをESI MSで質量分析した。その結果、測定値(Found MS): 1904.729、理論値(Calcd MS):([M+5H]5+/5): 1904.517であった。
(8) ELISAによるコラーゲン結合活性の評価
 PTH(1-34)-環状ペプチド結合体(conjugate)の変性コラーゲンへの結合活性をビオチン標識した環状CMP7(Bio-cCMP7)及びビオチン標識したPTH (1-34) (Bio-PTH (1-34)-cCMP)と比較した。96ウェルプレートにAtelocollagen I-PCを添加し、ドライ法でコートをした。Atelocollagen I-PCは何も処理せずそのまま添加したもの (非変性コラーゲン) と湯浴で加熱処理したもの (熱変性コラーゲン) をコートした。また、プラスチックとブロッキング剤への吸着を見るため、溶媒のみを添加したブランクも用意した。次に、それぞれのウェルをスキムミルクでブロッキング後、PBSで1 μMに調整したペプチドを添加し、37°Cで静置した。ペプチドは添加直前に95℃で5分間加熱した後4℃で1分間冷却したCMPを使用した。次に、結合したペプチドを検出するため、1/2000倍に希釈したstreptavidin-HRP conjugateを加え、4℃で30分間静置した。最後に0.5 mg/mL ABTS /100 mM phosphate-200 mM citrate buffer (pH 5.0)、0.05% (v/v) H2O2を加えて、37°Cで20 min静置してABTSを発色させた。発色させたABTSの波長405 nmの吸光度をMulti-spectophotometer VientoR XSを使い測定した。
(9) 実験結果
 PTH(1-34)-環状ペプチド結合体は、PTH(1-34)が結合していない環状ペプチド(Bio-cCMP7)と同等のコラーゲン結合活性を示した(図14B参照)。本結果は、PTH(1-34)を環状ペプチドに結合させても、立体障害を惹起することなく、変性コラーゲンに結合できることを示すものである。

Claims (10)

  1.  (Xaa-Yaa-Gly)からなるトリペプチド基を繰り返し単位として、5~9回の繰り返し構造を有し、連結基を含んでもよく、同一又は相違してもよいペプチド鎖の二本鎖を含み、
     各ペプチド鎖のN末端近傍及びC末端近傍が架橋された環状ペプチド基を含み、
     前記ペプチド鎖の少なくとも1方のペプチド鎖の少なくとも1つのアミノ酸残基の側鎖に薬剤基(agent)が結合(conjugate)していることを特徴とする、
     薬剤結合環状ペプチド(agent conjugated cyclic peptide)、又はその塩若しくは溶媒和物;
     ただし、Xaa及びYaaは、それぞれ独立して、プロリン(Pro又はP)残基、ヒドロキシプロリン(Hyp又はO)残基、アルギニン(Arg又はR)残基、リジン(Lys又はK)残基、バリン(Val又はV)残基、ロイシン(Leu又はL)残基、イソロイシン(Ile又はI)残基、セリン(Ser又はS)残基、トレオニン(Thr又はT)残基、アラニン(Ala又はA)残基、グリシン(Gly又はG)残基、フェニルアラニン(Phe又はF)残基、メチオニン(Met又はM)残基、グルタミン酸(Glu又はE)残基、アスパラギン酸(Asp又はD)残基、アスパラギン(Asn又はN)残基、グルタミン(Gln又はQ)残基、ヒスチジン(His又はH)残基、トリプトファン(Trp又はW)残基又はチロシン(Tyr又はY)残基から選択され、プロリン残基はアミノ基又はフッ素原子で修飾されていてもよく、Xaa位及びYaa位にはN-イソブチル基グリシン残基を用いてもよく、
     (Xaa-Yaa-Gly)の繰り返し単位は、各繰り返し単位毎に独立しており、同一又は相違してもよく、Xaaが各繰り返し単位毎に同一であってもよく又は相違してもよく、Yaaが各繰り返し単位毎に同一であってもよく又は相違してもよい。
  2.  前記薬剤結合環状ペプチドが、下記式(I)で表される薬剤結合環状ペプチドであることを特徴とする、請求項1に記載の薬剤結合環状ペプチド;
    Figure JPOXMLDOC01-appb-C000001
     式(I)において、
     L1、L1'、L2及びL2'は、それぞれ独立して同一又は相違してもよいスペーサー基(-Sp-)を含んでもよい架橋形成基、又は、-L1-L2-若しくは-L1'-L2'-が1つのアミノ酸残基を形成して、スペーサー基(-Sp-)を含んでもよい架橋形成基を表し、
     L3は、スペーサー基を含んでもよい、前記環状ペプチド基と前記薬剤基との連結基であり、
     Aは、スペーサー基を含んでもよい薬剤基を表し、
     n及びmは、同一又は相違してもよく、5~9であり、
     前記XaaはXaa1又はXaa2として、YaaはYaa1又はYaa2として表され、Xaa1、Xaa2、Yaa1及びYaa2は、同一又は相違してもよく、それぞれ独立して、プロリン(Pro又はP)残基、ヒドロキシプロリン(Hyp又はO)残基、アルギニン(Arg又はR)残基、リジン(Lys又はK)残基、バリン(Val又はV)残基、ロイシン(Leu又はL)残基、イソロイシン(Ile又はI)残基、セリン(Ser又はS)残基、トレオニン(Thr又はT)残基、アラニン(Ala又はA)残基、グリシン(Gly又はG)残基、フェニルアラニン(Phe又はF)残基、メチオニン(Met又はM)残基、グルタミン酸(Glu又はE)残基、アスパラギン酸(Asp又はD)残基、アスパラギン(Asn又はN)残基、グルタミン(Gln又はQ)残基、ヒスチジン(His又はH)残基、トリプトファン(Trp又はW)残基又はチロシン(Tyr又はY)残基から選択され、プロリン残基はアミノ基又はフッ素原子で修飾されていてもよく、Xaa1位、Xaa2位、Yaa1位及びYaa2位にはN-イソブチル基グリシン残基を用いてもよく、
     (Xaa-Yaa-Gly)の繰り返し単位は、各繰り返し単位毎に独立しており、同一又は相違してもよく、Xaaが各繰り返し単位毎に同一であってもよく、相違してもよく、Yaaが各繰り返し単位毎に同一であってもよく、相違してもよく、
    (i) 式(I)におけるN末端側の下記式(II)で表される置換基は、スペーサー基を含んでもよく、
     ・ジスルフィド結合による架橋、
     ・側鎖に-COOHを有するアミノ酸残基による架橋、
     ・ジケトピペラジンを用いた架橋、
     ・オレフィンメタセシスによる架橋、又は、
     ・クリックケミストリーによる架橋、
    から選択され、
    Figure JPOXMLDOC01-appb-C000002
    (ii) 式(I)におけるC末端側の下記式(III)で表される置換基は、スペーサー基を含んでもよく、
     ・ジスルフィド結合による架橋、
     ・側鎖に-NH2を有するアミノ酸残基による架橋、
     ・側鎖に-OHを有するアミノ酸残基による架橋、
     ・ジケトピペラジンを用いた架橋、
     ・オレフィンメタセシスによる架橋、又は、
     ・クリックケミストリーによる架橋、
    から選択される。
    Figure JPOXMLDOC01-appb-C000003
  3.  前記架橋形成基において、
     ジスルフィド結合による架橋が、-Cys-Cys-による架橋、
     側鎖に-COOHを有するアミノ酸残基による架橋が、アスパラギン酸(Asp、D)残基若しくはグルタミン酸(Glu、E)残基による架橋、
     側鎖に-NH2を有するアミノ酸残基による架橋が、リジン(lys、K)による架橋、又は、
     側鎖に-OHを有するアミノ酸残基による架橋が、(セリン残基(Ser又はS)、トレオニン残基(Thr又はT)若しくはチロシン残基(Tyr又はY))による架橋、
    から選択されることを特徴とする、請求項2に記載の薬剤結合環状ペプチド。
  4.  前記スペーサー基は、-(Gly)p-(pは1~3の整数)、-(βAla)q-(qは1~3の整数)、-PEG4-、又は、6-アミノヘキサン酸基から選択されることを特徴とする、請求項2又は3に記載の薬剤結合環状ペプチド。
  5.  L3は、側鎖に前記薬剤基を連結可能なアミノ酸残基Zaaを含み、Zaaは、アスパラギン酸残基(Asp又はD)、グルタミン酸残基(Glu又はE)、リジン残基(Lys又はK)、(セリン残基(Ser又はS)、トレオニン残基(Thr又はT)、チロシン残基(Tyr又はY))、システイン残基(Cys又はC)、プロパルギルグリシン残基から選択されることを特徴とする請求項2~4のいずれか1項に記載の薬剤結合環状ペプチド。
  6.  前記薬剤結合環状ペプチドにおいて、薬剤基が、標識基又は医薬分子基から選択されることを特徴とする、請求項1~5のいずれか1項に記載の薬剤結合環状ペプチド。
  7.  前記薬剤結合環状ペプチドにおいて、前記薬剤基が標識基であり、前記標識基における標識体は、ビオチン、酵素、並びに、カルボキシフルオレセイン(CF又はFAM: carboxy fluorescein)、5(6)-carboxytetramethylrhodamine (TAMRA)、Alexa fluor(登録商標)、Cyanine Dye 、IRDye、HiLyte fluor(登録商標)を含む蛍光色素、金属錯体化合物及び放射性標識化合物からなる群から選択される少なくとも1種であることを特徴とする請求項6に記載の薬剤結合環状ペプチド。
  8.  前記式薬剤結合環状ペプチドにおいて、前記薬剤基が医薬分子基であり、前記医薬分子基における医薬分子は、抗腫瘍薬、骨粗鬆症薬、放射性金属錯体化合物、放射性標識化合物、抗生物質、抗真菌薬、細胞接着分子由来ペプチド、Stromal-derived factor 1 (SDF-1)、成長因子及び抗炎症薬からなる群から選択される少なくとも1種であることを特徴とする、請求項6に記載の薬剤結合環状ペプチド。
  9.  前記式(I)の薬剤結合環状ペプチドが、下記式(IV)~(XIV)で表されることを特徴とする、請求項2~8のいずれか1項に記載の薬剤結合環状ペプチド;
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
    Figure JPOXMLDOC01-appb-C000010
    Figure JPOXMLDOC01-appb-C000011
    Figure JPOXMLDOC01-appb-C000012
    Figure JPOXMLDOC01-appb-C000013
    Figure JPOXMLDOC01-appb-C000014
     式(IV)~(XIV)において、
     -Cys-Cys-は、2つのCys残基の側鎖の-SH基がジスルフィド結合したシスチン残基を表し、
     Acは、アセチル基を表し、
     Ahxは、6-アミノヘキサン酸基を表し、
     Aは、前記スペーサー基を含んでもよい、ビオチン基、カルボキシフルオレセイン(CF又はFAM: carboxy fluorescein)基、IRDye750基、ドキソルビシン基、PTH基、5(6)-carboxytetramethylrhodamine (TAMRA)基及びStromal-derived factor 1 (SDF-1)からなる群から選択される少なくとも1種であり、Lys残基の側鎖の-NH2基とアミド結合又はシスチン残基のジスルフィド結合で結合し、
     n'及びm'が、同一又は相違してもよく、5~9の整数であり、及び、
     s及びtが、同一又は相違してもよく、3又は4の整数である。
  10.  請求項1~9のいずれか1項に記載の薬剤結合環状ペプチド、又はその塩若しくは溶媒和物を有効成分として含有し、前記薬剤基は標識基であることを特徴とする、変性領域を含むコラーゲンを含む試料に対する研究用試薬としての、変性領域を含むコラーゲンを有する疾患の検出若しくは診断のための変性コラーゲン検出用としての、又は、変性領域を含むコラーゲンを有する疾患を有する患者の予防若しくは治療用としての組成物。
PCT/JP2018/031920 2017-08-31 2018-08-29 コラーゲンへの結合活性を有する環状ペプチド WO2019044894A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019539576A JP7174429B2 (ja) 2017-08-31 2018-08-29 コラーゲンへの結合活性を有する環状ペプチド

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-166687 2017-08-31
JP2017166687 2017-08-31

Publications (1)

Publication Number Publication Date
WO2019044894A1 true WO2019044894A1 (ja) 2019-03-07

Family

ID=65527482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031920 WO2019044894A1 (ja) 2017-08-31 2018-08-29 コラーゲンへの結合活性を有する環状ペプチド

Country Status (2)

Country Link
JP (1) JP7174429B2 (ja)
WO (1) WO2019044894A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023127888A1 (en) * 2021-12-29 2023-07-06 Kola-Gen Pharma Inc. Novel peptides

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5576419A (en) * 1993-06-30 1996-11-19 Regents Of The University Of Minnesota Mild solid-phase synthesis of aligned branched triple-helical peptides
JP2009537624A (ja) * 2006-05-25 2009-10-29 ジーイー・ヘルスケア・リミテッド 新規造影剤
WO2013078091A1 (en) * 2011-11-22 2013-05-30 The Johns Hopkins University Collagen mimetic peptides for targeting collagen strands for in vitro and in vivo imaging and therapeutic use

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5576419A (en) * 1993-06-30 1996-11-19 Regents Of The University Of Minnesota Mild solid-phase synthesis of aligned branched triple-helical peptides
JP2009537624A (ja) * 2006-05-25 2009-10-29 ジーイー・ヘルスケア・リミテッド 新規造影剤
WO2013078091A1 (en) * 2011-11-22 2013-05-30 The Johns Hopkins University Collagen mimetic peptides for targeting collagen strands for in vitro and in vivo imaging and therapeutic use

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TAKITA, KO ET AL.: "Development of cyclic collagen coupled to modified collagen and its application to in vivo", PROGRAMS AND ABSTRACTS OF THE ACADEMIC CONFERENCE OF THE JAPANESE SOCIETY FOR MATRIX BIOLOGY AND MEDICINE, vol. 50, 29 June 2018 (2018-06-29), pages 102 *
TAKITA, KOH K. ET AL.: "Cyclic Peptides for Efficient Detection of Collagen", LECTURE ABSTRACTS OF THE 54TH INTERNATIONAL PEPTIDE SYMPOSIUM, vol. 54, 20 October 2017 (2017-10-20), pages 25 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023127888A1 (en) * 2021-12-29 2023-07-06 Kola-Gen Pharma Inc. Novel peptides

Also Published As

Publication number Publication date
JP7174429B2 (ja) 2022-11-17
JPWO2019044894A1 (ja) 2020-10-08

Similar Documents

Publication Publication Date Title
JP7417432B2 (ja) 新規リンカー、その製造方法およびその応用
US20230151068A1 (en) Peptide compositions and methods of use thereof for disrupting tead interactions
KR101216008B1 (ko) 바이포달 펩타이드 바인더
US11952432B2 (en) Cell-permeable stapled peptide modules for cellular delivery
JP5677453B2 (ja) Bpbベースのカーゴ運搬システム
JP2018508492A (ja) 二量体のコラーゲンハイブリダイゼーションペプチドと使用方法
WO2011071280A9 (ko) 세포내 타겟 결합용 바이포달 펩타이드 바인더
EP4108676A1 (en) Human transferrin receptor binding peptide
AU2014228777B2 (en) BH4 stabilized peptides and uses thereof
Takita et al. Structural optimization of cyclic peptides that efficiently detect denatured collagen
JP7174429B2 (ja) コラーゲンへの結合活性を有する環状ペプチド
WO2011103668A1 (en) Cancer specific peptides and arrays for screening same
Adachi et al. Investigation on cellular uptake and pharmacodynamics of DOCK2-inhibitory peptides conjugated with cell-penetrating peptides
JPWO2008084652A1 (ja) 血管内皮細胞結合性ペプチド
Mukhopadhyay Chemically-modified peptides targeting the PDZ domain of GIPC as a therapeutic approach for cancer
US20060275213A1 (en) Tumor targeting agents and uses thereof
US20210253639A1 (en) Heterodimeric peptide reagents and methods
Joseph Poly (Arginine) Derived Cancer-Targeting Peptides for the Development of a Cancer-Targeted Gene Therapy Approach in HepG2 Liver Cancer Cells
WO2024033929A1 (en) Peptides for the treatment of fibrosis
US20060263294A1 (en) Tumor targeting agents and uses thereof
TW202340242A (zh) Dll3結合肽及其用途
JPWO2020066343A1 (ja) 細胞膜透過性ペプチド
CN117677628A (zh) Ghr结合未决肽及包含所述肽的组合物
Vezenkov SYNTHESIS, STRUCTURAL AND BIOLOGICAL ANALYSIS OF ORGANIZED BIOMIMETIC SYSTEMS
JP2001517201A (ja) 溶解性ペプチド

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18849557

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019539576

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18849557

Country of ref document: EP

Kind code of ref document: A1