WO2019044512A1 - Electromagnetic wave shield film - Google Patents

Electromagnetic wave shield film Download PDF

Info

Publication number
WO2019044512A1
WO2019044512A1 PCT/JP2018/030380 JP2018030380W WO2019044512A1 WO 2019044512 A1 WO2019044512 A1 WO 2019044512A1 JP 2018030380 W JP2018030380 W JP 2018030380W WO 2019044512 A1 WO2019044512 A1 WO 2019044512A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
noise suppression
electromagnetic wave
resin
film
Prior art date
Application number
PCT/JP2018/030380
Other languages
French (fr)
Japanese (ja)
Inventor
昭吾 鴻池
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to JP2018562273A priority Critical patent/JP6711423B2/en
Publication of WO2019044512A1 publication Critical patent/WO2019044512A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting

Definitions

  • the present invention relates to a film for electromagnetic wave shielding.
  • this metal can shield is applied to an assembly (component assembly) of electronic components arranged on a circuit board according to type, and there is a restriction in the arrangement of each electronic component on the circuit substrate. For this reason, the design freedom of the circuit board is not necessarily the best in terms of functions. Furthermore, since the assembly of parts is sealed by the metal can shield, a space is generated between the metal can shield and the assembly of parts, which causes a problem of increasing the size of the electronic device provided with the assembly of parts. .
  • an electronic component sealing body is formed by sealing an electronic component disposed on a circuit substrate with a sealing material, and the upper surface and the side surface of the electronic component sealing body are made of metal thin film
  • a method of coating with a noise suppression layer constituted of a layer or the like has been proposed (see, for example, Patent Document 1).
  • the noise suppression layer is mainly manufactured using a sputtering method.
  • the apparatus used for the sputtering method is complicated and expensive in operation and low in productivity.
  • An object of the present invention is to provide an electromagnetic wave shielding film capable of forming a noise suppression layer relatively easily and with excellent productivity on an electronic component sealing body provided with electronic components.
  • the electromagnetic wave shielding film includes a base material layer and a noise suppression layer laminated on one surface side of the base material layer.
  • the sealing portion contains an epoxy resin as a main material
  • the base material layer contains polymethylpentene as a main material
  • the noise suppression layer is configured to cover the upper surface and the side surface of the sealing portion, According to JIS G 3469, the noise suppression layer of 25 mm in width is attached onto the plate-like sealing portion, and then the noise suppression layer is oriented 90 ° at 25 ° C. from one end thereof.
  • Peel strength measured when peeled off at a speed of 300 mm / min is A [N / mm], and based on JIS G 3469, the noise suppression of 25 mm in width on the plate-like base material layer
  • the layer was attached and then the peel strength measured when the noise suppression layer was peeled from one end at a speed of 300 mm / min in the direction of 90 ° at 25 ° C. was B [N / mm].
  • a film for electromagnetic wave shielding characterized by satisfying a relation of 1 ⁇ A / B.
  • the noise suppression layer contains a particulate conductive material and a binder resin.
  • the conductive material is at least one of a metal material, a metal oxide material, a conductive polymer material, and a conductive ceramic material.
  • the binder resin described in the above (2) or (3) which contains at least one of an epoxy resin, a urethane resin, a polyolefin resin, a polyester resin, a polyamide resin, a silicone resin, a phenol resin, and an acrylic elastomer. Electromagnetic shielding film.
  • the base material layer is a laminate having a three-layer structure in which a first layer, a second layer, and a third layer are laminated in this order, and the third layer is the above-mentioned
  • the electromagnetic wave shielding film according to any one of the above (1) to (4), which is bonded to the noise suppression layer.
  • the binder resin contains an epoxy resin, The film for an electromagnetic wave shield as described in said (2) whose content of the said epoxy resin in the said noise suppression layer is 2 weight% or more and 32 weight% or less.
  • a film for electromagnetic wave shielding having a base material layer and a noise suppression layer laminated on the base material layer is attached to the upper surface side of the electronic component package, and then from the noise suppression layer to the base
  • the film for electromagnetic wave shielding which can provide a noise suppression layer in an electronic component sealing body by a comparatively easy method which says peeling a material layer can be provided.
  • a plurality of electronic component sealing bodies can be manufactured collectively from one electronic component sealing and coupling body. Productivity of body and electronic devices can be improved.
  • FIG. 1 is a longitudinal sectional view showing an embodiment of a semiconductor device manufactured using the film for electromagnetic wave shielding of the present invention.
  • FIG. 2 is a longitudinal sectional view for illustrating a method of manufacturing the semiconductor device shown in FIG.
  • FIG. 3 is a longitudinal sectional view for illustrating a method of manufacturing the semiconductor device shown in FIG.
  • FIG. 4 is a longitudinal sectional view of an electromagnetic wave shielding film of the present invention used to manufacture the semiconductor device shown in FIG.
  • FIG. 1 is a longitudinal sectional view showing an embodiment of a semiconductor device manufactured using the film for electromagnetic wave shielding of the present invention.
  • the upper side in FIG. 1 is referred to as “upper” and the lower side as “lower”.
  • the semiconductor device 20 shown in FIG. 1 includes an interposer (substrate) 25 having conductor posts (not shown) disposed penetrating in the thickness direction, a semiconductor element 26 and a capacitor disposed on the interposer 25, A sealing portion 27 (mold portion) for sealing the electronic element 28 such as a coil, the semiconductor element 26 and the electronic element 28, a noise suppression layer 3 for covering the sealing portion 27 and the interposer 25, a conductor post Wiring 23 electrically connected, bump 21 (terminal) electrically connected to wiring 23, and covering portion 22 provided to cover wiring 23 and expose bump 21. ing.
  • the interposer 25 is a substrate for supporting the semiconductor element 26 and the electronic element 28.
  • the plan view shape thereof is usually a square such as a square or a rectangle.
  • the interposer 25 is formed with a plurality of through holes (not shown) penetrating in the thickness direction, and conductor posts are provided corresponding to the through holes.
  • the semiconductor element 26 and the electronic element 28 are disposed on the interposer 25 such that the electrode pads provided on the lower surface side of the semiconductor element 26 and the electronic element 28 correspond to the conductor posts, respectively.
  • one semiconductor element 26 and two electronic elements 28 are disposed on the interposer 25 respectively.
  • the semiconductor element 26 and the electronic element 28 constitute an electronic component included in the semiconductor device 20.
  • the sealing portion 27 is formed to cover the upper surface side of the semiconductor element 26, the electronic element 28 and the interposer 25.
  • the conductor post formed correspondingly to the through hole of the interposer 25 is electrically connected to the electrode pad (terminal) of the semiconductor element 26 or the electronic element 28 at the upper end thereof.
  • a wire 23 formed in a predetermined shape is provided, and a portion thereof is electrically connected to the lower end of the conductor post.
  • a spherical bump 21 is electrically connected to the lower surface of the wiring 23, whereby the semiconductor element 26 or the electronic element 28 and the bump 21 are connected to an electrode pad (terminal), a conductor post, and a wiring. It is electrically connected through 23. Further, a covering portion 22 provided with an opening 221 for exposing the bump 21 from the lower side thereof is provided to cover the wiring 23.
  • the noise suppression layer 3 is provided to cover the upper surface of the sealing portion 27, the side surface of the sealing portion 27, and the side surface of the interposer 25.
  • the noise suppression layer 3 blocks (shields) the electromagnetic waves and suppresses the noise due to the electromagnetic waves.
  • the semiconductor element 26 and the electronic element 28 provided on the interposer 25 and the outside of the semiconductor element 26 and the electronic element 28 via the noise suppression layer 3, that is, the semiconductor device 20 By blocking (shielding) the electromagnetic wave generated from at least one of the other electronic components and the like located outside of the above, noise due to the electromagnetic wave is suppressed.
  • the noise suppression layer 3 is electrically grounded via a wiring (not shown) on the side of the interposer 25.
  • the semiconductor device 26 includes the semiconductor element 26 and the electronic element 28 that constitute the electronic component, one and two each.
  • the present invention is not limited to this configuration, and the semiconductor device (electronic device)
  • the semiconductor device 26 and the electronic device 28 described above may be provided, and further, electronic components different from the semiconductor device 26 and the electronic device 28 may be provided.
  • the semiconductor device 20 configured as described above is manufactured by the method for manufacturing the semiconductor device 20 described below, using the film for shielding electromagnetic waves of the present invention.
  • the manufacturing method of the semiconductor device 20 using the film for electromagnetic wave shielding of the present invention prepares a sheet material which makes flat form, arranges a plurality of electronic parts on the sheet material, and the electronic parts are arranged.
  • a sealing portion forming process for obtaining an electronic component sealing and coupling body by forming a sealing portion so as to cover the sheet material and the electronic component on the upper surface side of the sheet material, and the electronic component sealing and coupling body
  • the electronic component sealing assembly is cut in the thickness direction so as to correspond to each body to form a recess, thereby obtaining an electronic component sealed body attached to the adhesive tape;
  • a release layer and a noise suppression layer laminated on the release layer on the upper surface side of the stopper By attaching the noise suppression layer to the electronic component sealing body side and pressing the noise suppression
  • FIGS. 2 to 4 are longitudinal sectional views for explaining a manufacturing method of manufacturing the semiconductor device shown in FIG. 1, and FIG. 4 is an electromagnetic wave shield of the present invention used for manufacturing the semiconductor device shown in FIG. It is a longitudinal cross-sectional view of a film.
  • the upper side in FIGS. 2 to 4 is referred to as “upper” and the lower side as “lower”.
  • a flat sheet material 25 ' is prepared as shown in FIG. 2 (a). Thereafter, a plurality of semiconductor elements 26 and electronic elements 28 are placed (placed) on the sheet material 25 '(see FIG. 2 (b); placement step).
  • the sheet 25 includes a plurality of through holes (not shown) formed in advance, and further includes conductor posts (not shown) embedded corresponding to the through holes.
  • the conductor post is formed at a position where the electrode pad (terminal) provided in the semiconductor element 26 and the electronic element 28 corresponds. That is, the sheet material 25 'includes the number of conductor posts provided corresponding to the through holes and the total number of electrode pads (terminals) provided on the plurality of semiconductor elements 26 and the electronic elements 28 disposed on the sheet material 25'. And are formed to be the same.
  • the sheet material 25 ' is cut in the thickness direction to be separated into individual pieces, thereby becoming an interposer 25 (substrate) of the semiconductor device 20 and exhibiting a function of supporting the semiconductor element 26 and the electronic element 28. .
  • the sheet material 25 ′ is not particularly limited as long as it has a hardness sufficient to support the semiconductor element 26 and the electronic element 28.
  • the sheet material 25 ′ may be either a core substrate composed of a core material, a rigid substrate (hard substrate) like a buildup substrate composed of a buildup material, or a flexible substrate (flexible substrate). It is also good.
  • buildup substrates are particularly preferred.
  • the buildup substrate is preferably used particularly because of its excellent processability.
  • the buildup material is not particularly limited, but, for example, a cured product such as a resin composition containing a thermosetting resin such as phenol resin, urea resin, melamine resin, epoxy resin, a curing agent, and an inorganic filler. Is the main material.
  • the core substrate is not particularly limited, but is mainly composed of, for example, a thermosetting resin such as cyanate resin, epoxy resin, bismaleimide-triazine resin, or the like.
  • the flexible substrate is not particularly limited, and examples thereof include polyimide, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), polytetrafluoroethylene (PTFE), polyimide benzoxazole (PIBO), It is composed of a thermoplastic resin such as liquid crystal polymer.
  • the semiconductor element 26 and the electronic element 28 are disposed on the sheet material 25 ′, the semiconductor element 26 and the electronic element 28 are respectively disposed at the positions of the conductor posts provided in the sheet material 25 ′. Are arranged on the sheet material 25 ′ so that the electrode pads of the corresponding elements correspond to each other. Then, with such an arrangement, the semiconductor element 26 and the electronic element 28 are disposed on the sheet material 25 ′ at the position where the semiconductor element 26 and the electronic element 28 included in the semiconductor device 20 to be formed should be disposed. Become.
  • the semiconductor element 26 and the electronic element 28 may or may not be fixed on the sheet 25 ', but an adhesive such as an epoxy adhesive (underfill material) Are preferably fixed by Thereby, in the next step [2], when the semiconductor element 26 and the electronic element 28 are sealed by the sealing portion 27, the positional deviation of the semiconductor element 26 and the electronic element 28 is effectively prevented. be able to.
  • the sheet 25 ', the semiconductor element 26, and the electronic element 28 are covered on the surface on the upper surface side of the sheet 25' (the surface on which the semiconductor element 26 and the electronic element 28 are disposed).
  • the sealing part 27 is formed (refer FIG.2 (c) .; sealing part formation process).
  • the sealing portion 27 contains an epoxy resin as a main material. Although it does not specifically limit as a method to form such a sealing part 27, for example, the following methods are mentioned. First, a thermosetting resin composition such as a granular epoxy resin composition is melted, and the thermosetting resin composition in this state is a sheet so as to cover the sheet material 25 ′, the semiconductor element 26 and the electronic element 28. It supplies to the upper surface of material 25 '. Thereafter, the molten thermosetting resin composition is compression molded. Thereby, the sealing portion 27 is formed. According to this method, the semiconductor element 26 and the electronic element 28 can be easily and densely sealed by the sealing portion 27 on the sheet material 25 ′.
  • a thermosetting resin composition such as a granular epoxy resin composition is melted, and the thermosetting resin composition in this state is a sheet so as to cover the sheet material 25 ′, the semiconductor element 26 and the electronic element 28. It supplies to the upper surface of material 25 '. Thereafter, the molten thermosetting resin composition is compression molded. There
  • the adhesive tape 100 having the base 4 and the adhesive layer 2 laminated on the base 4 is prepared, and as shown in FIG. 2 (d), the semiconductor element 26 etc.
  • the adhesive tape 100 is laminated (adhered) to the electronic component sealing connector 270 with the adhesive layer 2 on the electronic component sealing connector 270 side on the side (lower surface side) on which the Sticking process).
  • the sticking of the adhesive tape 100 to the electronic component sealing connection 270 can be performed, for example, as follows. First, the adhesive tape 100 is placed on a dicer table (not shown). The electronic component sealing connector 270 is placed on the adhesive layer 2 so that the surface of the sheet material 25 ′ opposite to the semiconductor element 26 and the like faces the adhesive layer 2. In this state, the electronic component sealing connector 270 is lightly pressed. Thereby, the electronic component sealing connection body 270 is stuck on the adhesive tape 100. The electronic component sealing connector 270 may be attached to the adhesive tape 100 in advance, and then installed on a dicer table.
  • the adhesive tape 100 (dicing tape) supports the electronic component sealing connection 270 by the base material 4 via the adhesive layer 2 and applies energy to the adhesive layer 2 to seal the electronic component of the adhesive layer 2 It has a function of reducing the adhesion to the connector 270.
  • the substrate 4 is mainly made of a resin material, and has a hardness sufficient to support the electronic component sealing connector 270 attached onto the substrate 4 via the pressure-sensitive adhesive layer 2.
  • the resin material include polyethylene, polypropylene, polyolefin resin, ionomer, olefin copolymer, polyester resin, polyether ketone and the like, and one or more of them are used in combination. be able to.
  • the electronic component sealing connection body 270 (electronic component It has a function to adhere to and support the sealing body 290).
  • adhesion of the adhesive layer 2 to the electronic component sealed body 290 is reduced by the application of energy to the adhesive layer 2.
  • the adhesive layer 2 is in a state where peeling can be easily caused between the adhesive layer 2 and the electronic component sealing body 290.
  • the adhesive layer 2 having such a function is constituted of, for example, a resin composition containing (1) a base resin having adhesiveness and (2) a curable resin for curing the adhesive layer 2 as main materials.
  • a base resin (1) for example, acrylic resins (adhesives), silicone resins (adhesives), polyester resins (adhesives), polyvinyl acetate resins (adhesives), polyvinyl ether resins
  • acrylic resins silicone resins
  • polyester resins adhesives
  • polyvinyl acetate resins adhesives
  • polyvinyl ether resins a base resin used as an adhesive layer component like resin (adhesive) or urethane type resin (adhesive) is mentioned.
  • curable resin (2) is provided with the hardenability hardened
  • the base resin being taken into the crosslinked structure of the curable resin by this curing, the adhesive strength of the adhesive layer 2 is reduced.
  • a curable resin (2) for example, at least two or more polymerizable carbon-carbon double bonds which can be three-dimensionally cross-linked by irradiation of energy rays such as ultraviolet rays and electron beams are contained in a molecule as a functional group.
  • energy rays such as ultraviolet rays and electron beams
  • the low molecular weight compound which it has is used.
  • a photoinitiator in the resin composition which comprises the adhesion layer 2, a photoinitiator, a crosslinking agent, an antistatic agent, a tackifier, aging as other components other than each component (1), (2) mentioned above
  • a photoinitiator in the resin composition which comprises the adhesion layer 2, a photoinitiator, a crosslinking agent, an antistatic agent, a tackifier, aging as other components other than each component (1), (2) mentioned above
  • At least one of an inhibitor, an adhesive modifier, a filler, a colorant, a flame retardant, a softener, an antioxidant, a plasticizer, a surfactant, and the like may be contained.
  • the electronic component sealing connector 270 to which the adhesive tape 100 is attached is fixed using, for example, a wafer ring or the like. Thereafter, using a dicing saw (blade), a position corresponding to each semiconductor device 20 (electronic component package 290) to be formed, that is, one semiconductor element 26 and two electronic elements 28 to be provided in the semiconductor device 20. Cutting (dicing) the electronic component sealing connection body 270 in the thickness direction corresponding to each region sealed with the sealing portion 27 to form a recess 62 (cutting step (dicing step); See FIG. 2 (e)).
  • the electronic component sealing body 290 in which the electronic component sealing and coupling body 270 is singulated corresponding to each combination of one semiconductor element 26 and two electronic elements 28 is attached onto the adhesive tape 100. It is obtained in
  • the adhesive tape 100 has a buffer action, and exhibits the function to prevent the crack at the time of cut
  • the cutting of the electronic component sealing and coupling body 270 using the dicing blade reaches the middle of the base material 4 in the thickness direction of the base material 4 as shown in FIG. To be implemented. Thereby, singulation of the electronic component sealing connection body 270 can be implemented reliably. Further, in a state where the electronic component sealing body 290 is attached to the adhesive tape 100, the side surface of the electronic component sealing body 290 formed by singulation, that is, the side surface of the sealing portion 27 and the interposer 25 Can be reliably exposed.
  • a film 300 for electromagnetic wave shielding having the peeling layer 1 (base material layer) and the noise suppression layer 3 laminated on the peeling layer 1 is prepared, and the electronic component sealing obtained by singulation is performed.
  • Vacuum pressure forming is a method of covering the upper surface and the side surface of the electronic component sealing body 290 obtained by singulation with the film 300 for electromagnetic wave shielding using, for example, a vacuum pressure type laminator.
  • the film 300 for electromagnetic wave shielding using, for example, a vacuum pressure type laminator.
  • FIG. 2F the surface of the electronic component sealing body 290 on the opposite side to the adhesive tape 100 and the noise suppression layer 3 side of the film 300 for shielding electromagnetic waves in a closed space which can be in a vacuum atmosphere.
  • the electronic component sealing body 290 and the electromagnetic wave shielding film 300 are set in a state of being superimposed so that the surface of the electronic component sealing body faces the surface of the electronic component sealing body.
  • the closed space is placed under a vacuum atmosphere so that the electromagnetic wave shielding film 300 and the electronic component sealing body 290 approach each other uniformly from the electromagnetic wave shielding film 300 side, and then pressure is applied. In this way, vacuum pressure forming is performed.
  • the peeling layer 1 pushes the noise suppression layer 3 corresponding to the shape of the recess 62 by making the closed space under a vacuum atmosphere while uniformly pressing from the electromagnetic wave shielding film 300 side.
  • the noise suppression layer 3 positioned closer to the electronic component package 290 than the release layer 1 is deformed in correspondence with the shape of the recess 62.
  • the upper surface and the side surface of the electronic component sealing body 290 are covered with the noise suppression layer 3 in a state in which the noise suppression layer 3 is pressed corresponding to the shape of the recess 62.
  • the temperature to be attached in such a second attaching step is not particularly limited, but is preferably 15 ° C. or more and 220 ° C. or less, more preferably 20 ° C. or more and 210 ° C. or less, still more preferably 150 ° C. or more and 200 ° C. or less It is.
  • the pressure to be attached is not particularly limited, but is preferably 0.1 MPa or more and 20.0 MPa or less, and more preferably 0.5 MPa or more and 15.0 MPa or less.
  • the time for sticking is not particularly limited, but is preferably 5 seconds to 90 minutes, and more preferably 30 seconds to 10 minutes.
  • the noise suppression layer 3 is pushed into the recesses 62 between the adjacent electronic component sealing bodies 290, and the noise suppression layer 3 is used to make the electronic components
  • the top and side surfaces of the sealing body 290 can be reliably covered.
  • the press molding method is, for example, the following method.
  • the electromagnetic wave shielding film 300 is disposed on the electronic component sealing body 290 attached on the adhesive tape 100.
  • a cushioning material is disposed on the electromagnetic wave shielding film 300. In this state, they are held by two flat plates from the upper surface side and the lower surface side. After that, the two flat plates are brought close and pressed. Thus, the press molding method is implemented.
  • the peeling layer 1 corresponds to the shape of the recess 62 also by bringing the film for electromagnetic shielding 300 and the electronic component sealing body 290 closer to each other in a state where the cushioning material is disposed on the film for electromagnetic shielding 300. Then, the noise suppression layer 3 can be pressed, and the noise suppression layer 3 located closer to the electronic component sealed body 290 than the peeling layer 1 can be deformed according to the shape of the recess 62 in accordance with the pressing. Therefore, as shown in FIG. 3A, the noise suppression layer 3 covers the upper surface and the side surface of the electronic component sealing body 290 in a state where the noise suppression layer 3 is pressed in according to the shape of the recess 62. Can.
  • the film 300 for an electromagnetic shielding used in the present step [5] is the electronic component sealing body 290 in a state where the noise suppression layer 3 is pushed into the concave portion 62 between the electronic component sealing bodies 290 adjacent to each other. Is used to cover the noise suppression layer 3. That is, the electromagnetic wave shielding film 300 is configured to form the noise suppression layer 3 covering the upper surface and the side surface of the sealing portion 27 and the side surface of the interposer 25 on the electronic component sealed body 290.
  • the electromagnetic wave shielding film 300 has a peeling layer 1 (base material layer) and a noise suppression layer 3 laminated on one side of the peeling layer 1, and the noise suppression layer 3 and the electronic component sealing body 290 Are disposed on the electronic component sealing body 290 side so as to face each other (see FIG. 2 (f) and FIG. 4).
  • the peeling layer 1 is pushed in when covering the upper surface and the side surface of the electronic component sealed body 290 by pushing the noise suppression layer 3 following the shape of the concave portion 62.
  • the noise suppression layer 3 functions as a protective (buffer) material that prevents breakage.
  • the peeling layer 1 is peeled from the noise suppression layer 3 in the next step [6].
  • the storage elastic modulus at 100 ° C. of the peeling layer 1 is preferably 1.0E + 04 Pa or more and 1.0E + 11 Pa or less, more preferably 1.0E + 05 Pa or more and 1.0E + 10 Pa or less, and 1.0E + 06 Pa or more and 1.0E + 09 Pa or more. It is further preferred that Thus, it can be said that the peeling layer 1 has flexibility by setting the storage elastic modulus at 100 ° C. of the peeling layer 1 within the above range. For this reason, when covering the upper surface and the side surface of the electronic component sealed body 290 using the film 300 for electromagnetic shielding, the noise suppression layer 3 is made to correspond to the shape of the recess 62 without causing the noise suppression layer 3 to break.
  • the upper surface and the side surface of the electronic component sealing body 290 are covered with the noise suppression layer 3 in a state where the noise suppression layer 3 is pressed in according to the shape of the recess 62.
  • the electromagnetic wave shielding (blocking) property by the noise suppression layer 3 is improved. It will be done.
  • the peeling layer 1 is composed of the third layer 13, the second layer 12, and the first layer 11, and the noise suppression layer 3 of the peeling layer 1 is laminated on each of these layers.
  • the layers are stacked in this order from the surface side.
  • the types, thicknesses, and the like of the layers 11 to 13 are appropriately combined (see FIG. 4) so that the characteristics of the release layer 1 described above can be exhibited.
  • the first layer 11 is a pressing portion of the vacuum pressure type laminator or the like when the noise suppression layer 3 is pressed using the vacuum pressure type laminator or the like corresponding to the shape of the concave portion 62 in the second bonding step. It exerts the function of releasability with In addition, the first layer 11 propagates the pressing force from the pressing portion to the second layer 12 side.
  • the constituent material of the first layer (first release layer) 11 is not particularly limited.
  • a resin such as syndiotactic polystyrene, polymethylpentene, polybutylene terephthalate, polypropylene, cyclic olefin polymer, and silicone Materials can be mentioned.
  • polymethylpentene it is preferable to use polymethylpentene.
  • the first layer 11 having polymethylpentene by using the first layer 11 having polymethylpentene, the releasability of the first layer 11 from the device, and further, the heat resistance and the shape followability can be improved.
  • polymethylpentene When polymethylpentene is used for the first layer 11, its content is not particularly limited, but is preferably 60% by weight or more, and more preferably 70% by weight or more and 95% by weight or less. If the content of polymethylpentene is less than the lower limit value, the releasability of the first layer 11 may be reduced. Moreover, when content of polymethyl pentene exceeds the said upper limit, there exists a possibility that shape following property of the 1st layer 11 may run short.
  • the first layer 11 may be made of only polymethylpentene. In addition to polymethylpentene, the first layer 11 may further contain a styrenic elastomer, polyethylene, polypropylene or the like.
  • the average thickness of the first layer 11 is not particularly limited, but is preferably 5 ⁇ m or more and 100 ⁇ m or less, and more preferably 10 ⁇ m or more and 65 ⁇ m or less. If the average thickness of the first layer 11 is less than the lower limit value, the first layer 11 may be broken and its releasability may be reduced. In addition, when the average thickness of the first layer 11 exceeds the upper limit value, the shape following property of the peeling layer 1 may be reduced, and the shape following property of the noise suppression layer 3 may be reduced.
  • the storage elastic modulus at 100 ° C. of the first layer 11 is preferably 1.0E + 05 Pa or more and 1.0E + 11 Pa or less, and more preferably 5.0E + 06 Pa or more and 1.0E + 10 Pa or less.
  • the first layer 11 has excellent stretchability at the time of heating of the film 300 for shielding an electromagnetic wave, and hence the recesses of the noise suppression layer 3
  • the shape followability to 62 can be more reliably improved.
  • the storage elastic modulus as the whole peeling layer 1 can be set comparatively easily in the range mentioned above.
  • the surface tension of the first layer 11 is preferably 20 to 40 mN / m, and more preferably 25 to 35 mN / m. It can be said that the first layer 11 having a surface tension within this range has excellent releasability. For this reason, the 1st layer 11 can be made to exfoliate from a press part after pushing in using a vacuum pressurization type laminator etc.
  • the third layer 13 is a peeling layer in the first peeling step [6] after the pressing of the noise suppression layer 3 into the recess 62 is performed using the vacuum pressure type laminator or the like in the second bonding step [5].
  • the peeling layer 1 is provided with a peelable function.
  • the third layer 13 has a function of following the shape of the recess 62 and also has a function of transmitting the pressure from the pressing portion on the side of the noise suppression layer 3.
  • the constituent material of the third layer (second release layer) 13 is not particularly limited.
  • a resin such as syndiotactic polystyrene, polymethylpentene, polybutylene terephthalate, polypropylene, cyclic olefin polymer, silicone Materials can be mentioned.
  • polymethylpentene it is preferable to use polymethylpentene.
  • releasability with the noise suppression layer 3 of the third layer 13 can be improved, and further, heat resistance and shape followability can be improved.
  • the content of polymethylpentene in the third layer 13 is not particularly limited, but is preferably 60% by weight or more, and more preferably 70% by weight or more and 95% by weight or less.
  • the content of polymethylpentene is less than the lower limit value, the releasability of the third layer 13 may be reduced.
  • content of polymethyl pentene exceeds the said upper limit, there exists a possibility that shape following property of the 3rd layer 13 may run short.
  • the third layer 13 may be made of only polymethylpentene, it may further contain styrene elastomer, polyethylene, polypropylene or the like in addition to the polymethylpentene. Moreover, the resin material which comprises the 3rd layer 13 and the 1st layer 11 may be same or different.
  • the average thickness of the third layer 13 is not particularly limited, but is preferably 5 ⁇ m or more and 100 ⁇ m or less, and more preferably 10 ⁇ m or more and 65 ⁇ m or less.
  • the average thickness of the third layer 13 is less than the lower limit, the heat resistance is insufficient, the heat resistance of the base material layer is insufficient in the second bonding step [5], and deformation occurs, and the noise suppression layer 3 may be deformed.
  • the average thickness of the third layer 13 exceeds the upper limit, the total thickness of the whole film for an electromagnetic shielding film may be increased, and the workability such as cutting may be deteriorated. It is not target.
  • the thicknesses of the first layer 11 and the third layer 13 may be the same or different.
  • the storage elastic modulus at 100 ° C. of the third layer 13 is preferably 1.0E + 05 Pa or more and 1.0E + 11 Pa or less, and more preferably 5.0E + 06 Pa or more and 1.0E + 10 Pa or less.
  • the third layer 13 has excellent stretchability at the time of heating the film 300 for shielding an electromagnetic wave. For this reason, the shape followability to the third layer 13 and the concave portion 62 of the noise suppression layer 3 can be more reliably improved.
  • the surface tension of the third layer 13 is preferably 20 to 40 mN / m, and more preferably 25 to 35 mN / m. It can be said that the third layer 13 having a surface tension within this range has excellent releasability. Therefore, when peeling off the peeling layer 1 from the noise suppression layer 3 after pressing using a vacuum pressure type laminator or the like, the peeling layer 1 is reliably made at the interface between the third layer 13 and the noise suppression layer 3 It can be peeled off.
  • the second layer 12 is used as the third layer 13 when pressing the noise suppression layer 3 into the recess 62 using the peeling layer 1 as a base for pressing in the second bonding step [5].
  • 62 has a cushion function for pushing in (embedding).
  • the second layer 12 has a function of causing the pressing force to act uniformly on the third layer 13 and further on the noise suppression layer 3 via the third layer 13.
  • the noise suppression layer 3 can be pushed into the recess 62 with excellent sealing performance (followability) without generating a void between the noise suppression layer 3 and the recess 62.
  • the constituent material of the second layer 12 is, for example, an ⁇ -olefin polymer such as polyethylene or polypropylene, ethylene, propylene, butene, pentene, hexene, methylpentene or the like as a copolymer component
  • Engineering plastics resin such as ⁇ -olefin copolymer, polyether sulfone and polyphenylene sulfide may be mentioned, and these may be used alone or in combination. Among these, it is preferable to use an ⁇ -olefin copolymer.
  • a copolymer of an ⁇ -olefin such as ethylene and a (meth) acrylic ester, a copolymer of ethylene and vinyl acetate, a copolymer of ethylene and (meth) acrylic acid (EMMA), And partial ion cross-linked products thereof.
  • the ⁇ -olefin copolymer is excellent in shape followability and further excellent in flexibility as compared with the constituent material of the first layer 11. From this, it is possible to reliably provide the second layer 12 made of such a constituent material with a cushion function for pushing (embedding) the first layer 11 into the recess 62.
  • the second layer 12 may be a blend of the constituent materials listed in the first layer 11 and the third layer 13 described above and the constituent material of the second layer 12.
  • the average thickness of the second layer 12 is not particularly limited, but is preferably 20 ⁇ m or more and 500 ⁇ m or less, and more preferably 100 ⁇ m or more and 400 ⁇ m or less.
  • the average thickness of the second layer 12 is less than the lower limit value, there is a fear that the shape following property of the second layer 12 is insufficient and the following property to the concave part 62 is insufficient in the second pasting step [5]. There is.
  • the average thickness of the second layer 12 exceeds the upper limit value, in the second bonding step [5], the resin exudation from the second layer 12 is increased. For this reason, there is a possibility that the resin which stained out will adhere to the heating board of a compression bonding apparatus, and workability may fall.
  • the storage elastic modulus at 100 ° C. of the second layer 12 is preferably 1.0E + 04 Pa or more and 1.0E + 10 Pa or less, and more preferably 1.0E + 05 Pa or more and 1.0E + 09 Pa or less.
  • the second layer 12 has better elasticity than the first layer 11 when the film for electromagnetic shielding 300 is heated. Can be easily applied. Therefore, the shape followability of the second layer 12 and further the third layer 13 and the recess 62 of the noise suppression layer 3 can be more reliably improved.
  • the storage elastic modulus of each of the layers 11 to 13 can be easily set within the range of 1.0E + 04 Pa or more and 1.0E + 11 Pa or less by setting the storage elastic modulus of each of the layers 11 to 13 appropriately within the above-described range. It can be set.
  • the peeling layer (base material layer) 1 containing polymethylpentene as a main material can be prepared.
  • the total thickness of the release layer 1 is not particularly limited, but is preferably 20 ⁇ m to 1000 ⁇ m, and more preferably 70 ⁇ m to 500 ⁇ m.
  • the third layer 13 may be broken and the releasability of the release layer 1 may be reduced.
  • the average thickness of the whole peeling layer 1 exceeds the said upper limit, there exists a possibility that the shape following property of the peeling layer 1 will fall and the shape following property with respect to the recessed part 62 of the noise suppression layer 3 may fall.
  • the number of constituent layers of the release layer 1 is not particularly limited, and may be a multilayer structure of two or more layers including the three-layer structure as described above, or may be a single layer structure.
  • the peeling layer 1 when making the peeling layer 1 into a single layer structure, it does not specifically limit as a constituent material of this peeling layer 1, For example, syndiotactic polystyrene, polymethyl pentene, polybutylene terephthalate, polyethylene terephthalate, non-axially stretched polypropylene And polypropylene such as biaxially oriented polypropylene, cyclic olefin polymers, silicone, styrene elastomer resin, styrene butadiene rubber, acrylic rubber, epoxy resin, polyphenol, and resin materials such as polyurethane. Among these, it is preferable to use polymethylpentene.
  • the indentation property of the peeling layer 1 to the noise suppression layer 3 and further the heat resistance can be improved, and the peeling layer 1 with good releasability from the noise suppression layer 3 at the time of the first peeling step [6] described later. Can be peeled off.
  • the thickness of the peeling layer 1 in this case is not particularly limited, but is preferably 3 ⁇ m or more and 2000 ⁇ m or less, and more preferably 5 ⁇ m or more and 500 ⁇ m or less.
  • the peeling layer 1 and hence the noise suppression layer 3 may be broken, and the electromagnetic wave shielding properties may be reduced.
  • the average thickness of the peeling layer 1 exceeds the above upper limit, the pressing force from the peeling layer 1 to the noise suppression layer 3 is not sufficiently transmitted, and the pushability of the noise suppression layer 3 to the concave portion 62 is sufficiently obtained. There is no fear.
  • the noise suppression layer 3 includes the semiconductor element 26 and the electronic element 28 provided in the electronic component sealing body 290, and the other electronic components and the like located on the opposite side of the electronic component sealing body 290 via the noise suppression layer 3. Has a function to block (shield) electromagnetic waves generated from at least one of them.
  • the noise suppression layer 3 is not particularly limited, and may block electromagnetic waves in any form.
  • a form of the noise suppression layer 3 for example, a reflection layer that blocks (shields) the electromagnetic wave that has entered the noise suppression layer 3 by reflecting it and a shield layer that absorbs the electromagnetic wave that has entered the noise suppression layer 3 (blocks) And an absorbent layer.
  • the reflection layer and the absorption layer both have a configuration containing a particulate conductive material and a binder resin.
  • the conductive material preferably contains at least one of a metal material, a metal oxide material, a conductive polymer material, and a conductive ceramic material.
  • the reflective layer exhibits electromagnetic wave shielding properties by reflecting an electromagnetic wave incident on the reflective layer.
  • the reflective layer include a surface treatment of a conductive material such as a conductive adhesive layer, a metal thin film layer, a metal mesh, and ITO. These may be used alone or in combination. Among these, it is preferable to use a conductive adhesive layer.
  • the conductive adhesive layer is preferably used as a reflective layer because it exhibits excellent electromagnetic wave shielding properties even when its film thickness (average thickness) is set relatively thin.
  • the conductive adhesive layer is configured to include metal powder (metal material) and a binder resin.
  • metal powder metal material
  • the metal powder include gold, silver, copper or silver-coated copper, nickel and the like.
  • silver is preferable because it is excellent in electromagnetic wave shielding properties.
  • various resin materials such as a thermosetting resin or a thermoplastic resin, can be used as binder resin.
  • epoxy resin epoxy resin, phenol resin such as phenol novolac resin, amino resin, unsaturated polyester resin, urethane resin, silicone resin, acrylic resin, polyester resin, vinyl chloride resin, styrene resin, polyamide resin, polyolefin resin, acrylic resin
  • Acrylic elastomers such as rubber, styrene elastomers, elastomers such as olefin elastomers, etc. may be mentioned, and one or more of these may be used in combination.
  • the binder resin it is preferable to use a thermosetting resin such as an epoxy resin and an acrylic elastomer such as an acrylic rubber in combination.
  • the binder resin contains a thermosetting resin and an acrylic elastomer
  • the content ratio of the metal powder to the binder resin in the conductive adhesive layer is not particularly limited, but is preferably 20:80 to 95: 5 by weight ratio, and is 40:60 to 85:15. More preferable.
  • the content of the binder resin in the conductive adhesive layer (noise suppression layer) is preferably 5 to 80% by weight, and more preferably 15 to 60% by weight.
  • the conductive adhesive layer may further contain a flame retardant, a leveling agent, a viscosity modifier and the like in addition to the metal powder and the binder resin.
  • the average thickness (E1) of the reflective layer is not particularly limited, but is preferably 100 nm or more and 100 ⁇ m or less, and more preferably 1 ⁇ m or more and 20 ⁇ m or less.
  • the absorbing layer absorbs electromagnetic waves incident on the absorbing layer and converts the electromagnetic waves into heat energy to exhibit electromagnetic wave shielding properties.
  • a conductive absorption layer for example, a conductive absorption layer mainly composed of a conductive absorption material such as metal powder (metal material) and a conductive polymer material, a dielectric absorption material such as a carbon-based material and a conductive polymer material And magnetic absorbing layers composed mainly of magnetic absorbing materials such as soft magnetic metals, etc., and these may be used alone or in combination.
  • this absorption layer contains the binder resin mentioned above other than the said main material.
  • the conductive absorption layer absorbs electromagnetic waves by converting electromagnetic energy into thermal energy by a current flowing inside the material when an electric field is applied.
  • the dielectric absorption layer absorbs electromagnetic waves by converting the electromagnetic waves into heat energy by dielectric loss.
  • the magnetic absorption layer absorbs electromagnetic waves by converting energy of radio waves into heat and consuming it by magnetic losses such as overcurrent loss, hysteresis loss, magnetic resonance and the like.
  • a dielectric absorption layer and a conductive absorption layer are preferably used as an absorption layer because they exhibit excellent electromagnetic wave shielding properties even when the film thickness (average thickness) is set relatively thin.
  • the film thickness can be set relatively easily and weight reduction is also possible.
  • Examples of the conductive absorption material include conductive polymer materials, metal oxide materials such as ATO, and conductive ceramic materials.
  • the conductive polymer material for example, polyacetylene, polypyrrole, PEDOT (poly-ethylenedioxythiophene), PEDOT / PSS, polythiophene, polyaniline, polyaniline, poly (p-phenylene), polyfluorene, polycarbazole, polysilane or derivatives thereof, etc. These may be used alone or in combination of two or more.
  • dielectric absorbing material examples include carbon-based materials, conductive polymer materials, ceramic materials and the like.
  • carbon-based material for example, single-walled carbon nanotubes, carbon nanotubes such as multi-walled carbon nanotubes, carbon nanofibers, CN nanotubes, CN nanotubes, CN nanofibers, BCN nanotubes, BCN nanofibers, graphene, carbon microcoils, carbon Nanocoils, carbon nanohorns, carbon such as carbon nanowalls, etc. may be mentioned, and one or more of these may be used in combination.
  • the ceramic material may, for example, be barium titanate, perovskite-type barium calcium zirconate titanate crystal particles, titania, alumina, zirconia, silicon carbide or aluminum nitride, and one or more of these may be used in combination. be able to.
  • the magnetic absorption material for example, iron, silicon steel, magnetic stainless steel (Fe-Cr-Al-Si alloy), sendust (Fe-Si-Al alloy), permalloy (Fe-Ni alloy), silicon copper (Fe Soft magnetic metals such as —Cu—Si alloy), Fe—Si alloy, Fe—Si—B (—Cu—Nb) alloy, ferrite and the like.
  • the average thickness (E2) of the absorbing layer is not particularly limited, but is preferably 1 ⁇ m to 300 ⁇ m, and more preferably 2 ⁇ m to 100 ⁇ m.
  • the sealing portion 27 contains an epoxy resin as a main material
  • the peeling layer (base material layer) 1 contains polymethylpentene as a main material.
  • the noise suppression layer 3 with a width of 25 mm is attached at 100 ° C.
  • the noise suppression layer 3 is Peel strength measured when peeled off at a speed of 300 mm / min in the direction of 90 ° in A direction is A [N / mm], and in accordance with JIS G 3469, plate-like peeling layer 1 (base layer A) the noise suppression layer 3 with a width of 25 mm is attached at 100 ° C., and then the noise suppression layer 3 is peeled from one end at a speed of 300 mm / min in the direction of 90 ° at 25 ° C.
  • the peel strength to be measured is B [N / mm]
  • the constituent materials of the noise suppression layer 3, the thickness and the like are appropriately combined so as to satisfy the relationship of 1 ⁇ A / B.
  • the peeling layer 1 can be reliably peeled from the film 300 for an electromagnetic wave shield stuck on the electronic component sealing body 290 (upper surface and side surface of the sealing part 27) in the following process [6].
  • the binder resin of the noise suppression layer 3 it is particularly preferable to use an epoxy resin, a phenol resin and an acrylic elastomer in combination.
  • the binder resin of the noise suppression layer 3 contains an epoxy resin, a phenol resin and an acrylic elastomer
  • the adhesiveness of the noise suppression layer 3 and the sealing part 27 which has an epoxy resin as a main material can be improved.
  • the peel strength (peel strength A) between the noise suppression layer 3 and the sealing portion 27 is higher than the peel strength (peel strength B) between the noise suppression layer 3 and the peeling layer 1 . Therefore, when the peeling layer 1 is peeled from the noise suppression layer 3, the noise suppression layer 3 easily stays on the sealing portion 27 side, and the resin residue derived from the noise suppression layer 3 hardly occurs on the peeling layer 1 side. It is considered to be.
  • the content of the epoxy resin in the noise suppression layer 3 is preferably 2% by weight or more and 32% by weight or less, and more preferably 6% by weight or more and 24% by weight or less. Thereby, generation
  • the peel strength A and the peel strength B may satisfy the relation 1 ⁇ A / B, but preferably satisfy the relation 1.5 ⁇ A / B, and the relation 2 ⁇ A / B It is more preferable to satisfy, to satisfy the relation of 3.0 ⁇ A / B is further preferable, and to satisfy the relation of 4.0 ⁇ A / B ⁇ 6.0 is particularly preferable.
  • the peeling layer 1 can be more reliably peeled from the film 300 for an electromagnetic wave shield, and in the present step [5], the noise suppression layer 3 is removed from the recess 62. At the time of pressing, occurrence of positional deviation between the third layer 13 and the noise suppression layer 3 can be appropriately suppressed or prevented.
  • the peel strength A [N / mm] and the peel strength B [N / mm] should be measured using, for example, a tensile tester (manufactured by A & D Co., "TENSILON RTG-1310"). Can.
  • the peeling layer 1 is peeled off from the electromagnetic wave shielding film 300 attached to the electronic component sealing body 290 (first peeling step).
  • the peeling layer 1 is peeled from the noise suppression layer 3.
  • the upper surface and the side surface of the electronic component sealed body 290 are covered with the noise suppression layer 3 in a state where the peeling layer 1 is peeled from the noise suppression layer 3.
  • the noise suppression layer 3 is provided on the upper surface and the side surface of the electronic component sealing body 290 in a state where the electronic component sealing body 290 is attached onto the adhesive tape 100.
  • a plurality of electronic component sealing bodies 290 in such a state are collectively formed.
  • peeling layer 1 it does not specifically limit as a method to peel the peeling layer 1, For example, peeling by a manual work is mentioned.
  • the peeling layer 1 is gripped, and the peeling layer 1 is peeled from the noise suppression layer 3 from the gripped end. Then, the peeling layer 1 is peeled from the noise suppression layer 3 by peeling the peeling layer 1 sequentially from this end to the center of the peeling layer 1 and further to the other end.
  • the peeling layer 1 can be relatively easily peeled from the noise suppression layer 3 without leaving the noise suppression layer 3 in the peeling layer 1. That is, the noise suppression layer 3 can be transferred from the peeling layer 1 to the upper surface and the side surface of the electronic component sealed body 290 (the sealing portion 27).
  • the peeling temperature is preferably 180 ° C. or less, more preferably 165 ° C. or less, and still more preferably 20 ° C. or more and 150 ° C. or less.
  • the upper surface and the side surface of the electronic component sealing body 290 can be covered with the noise suppression layer 3 in a state where the peeling layer 1 is peeled from the noise suppression layer 3.
  • the noise suppression layer 3 can be provided on the electronic component package 290 by a relatively easy method. Specifically, when the noise suppression layer 3 is formed on the electronic component sealed body 290 using a sputtering method, there is a problem that the operation of the apparatus used becomes complicated or the apparatus becomes expensive. In the present invention, there is no such problem, and it is said that the peeling layer 1 is peeled after the film 300 for electromagnetic wave shielding having the peeling layer 1 and the noise suppression layer 3 is attached to the electronic component sealing body 290 side.
  • the noise suppression layer 3 can be provided on the electronic component sealing body 290 in a very easy way.
  • the adhesive tape 100 is peeled off from the electronic component sealed body 290 (second peeling step).
  • the adhesiveness of the adhesive layer 2 to the electronic component sealed body 290 is reduced. Thereby, it is set as the state which peeling arises between the adhesion layer 2 and the electronic component sealing body 290. FIG. Thereafter, the adhesive tape 100 is peeled off from the electronic component sealed body 290.
  • a plurality of electronic component sealing bodies 290 whose upper surfaces and side surfaces are covered by the noise suppression layer 3 can be collectively formed in a plurality, so that the productivity of the electronic component sealing body 290 can be improved.
  • the method of irradiating an energy ray to the adhesion layer 2 the method of heating the adhesion layer 2, etc. are mentioned.
  • Such a method does not require the semiconductor element 26 and the electronic element 28 to go through unnecessary heat history, and energy can be applied to the adhesive layer 2 relatively easily and efficiently. Are preferably used.
  • the energy ray for example, an ultraviolet ray, an electron beam, a particle beam such as an ion beam and the like can be mentioned. Note that these energy rays may be used in combination of two or more. Among these, it is particularly preferable to use ultraviolet light. According to the ultraviolet light, the adhesiveness of the adhesive layer 2 to the electronic component sealing body 290 can be efficiently reduced.
  • the interposer 25 side of the electronic component package 290 that is, the surface side (lower surface side) opposite to the semiconductor element 26 and the electronic element 28 of the interposer 25.
  • the wiring 23 patterned in a predetermined shape is formed so as to be electrically connected to the conductor post (wiring formation step).
  • the method of forming the wiring 23 is not particularly limited.
  • I a method of forming the wiring 23 using a plating method such as electrolytic plating method, electroless plating method, II: containing a conductive material
  • a method of forming the wiring 23 by supplying the liquid material to the surface of the electronic component sealing body 290 on the interposer 25 side, and drying and solidifying it.
  • the method I in particular, the electrolytic plating method.
  • the wiring 23 which exhibits excellent adhesion to the conductor post can be easily and surely formed.
  • the interposer 25 side of the electronic component sealing body 290 that is, the surface side (lower surface side) opposite to the semiconductor element 26 and the electronic element 28 of the interposer 25.
  • the covering portion 22 including the opening 221 is formed so that a part of the wiring 23 is exposed (covering portion forming step).
  • the opening 221 is formed to correspond to the position where the bump 21 is to be formed in the next process [10].
  • Such a covering portion (covering layer) 22 is usually formed of a laminate in which an upper layer mainly composed of Au is laminated on a lower layer mainly composed of Ni, and is formed, for example, using an electroless plating method. Be done.
  • the bumps 21 are formed to be electrically connected to the wiring 23 exposed from the opening 221 (bump connecting step).
  • the connection between the conductor post and the bump 21 is performed via the wiring 23, so that the bump 21 has a position different from that of the conductor post in the planar direction of the interposer 25. Can be placed. In other words, they can be arranged such that the central portions of the bumps 21 and the conductor posts do not overlap. Therefore, the bumps 21 can be formed at desired positions on the lower surface of the obtained semiconductor device 20.
  • the method of bonding the bumps 21 to the wires 23 is not particularly limited, and for example, it is performed by interposing a flux having viscosity between the bumps 21 and the wires 23.
  • a brazing material such as solder, silver brazing, copper brazing, phosphorous copper brazing, etc. may be mentioned.
  • the semiconductor device 20 is manufactured through the above-described steps.
  • the operation of the device used becomes complicated, or the device is expensive.
  • the electromagnetic wave shielding film 300 having the peeling layer 1 and the noise suppression layer 3 is attached to the electronic component sealed body 290 in the step [5], and then peeling is performed in the step [6].
  • the noise suppression layer 3 can be provided on the electronic component sealing body 290 by a relatively easy method of peeling the layer 1.
  • a plurality of electronic component sealed bodies 290 are collectively manufactured from the one electronic component sealing and coupling body 270 obtained in the step [2] through the steps [3] to [7].
  • the productivity of the semiconductor device 20 obtained from the electronic component package 290 and thus the electronic component package 290 can be improved.
  • the noise suppression layer 3 is provided on the upper surface of the sealing portion 27 of the electronic component sealing body 290, the side surface of the sealing portion 27, and the side surface of the interposer 25.
  • the noise suppression layer 3 may be formed at least on the upper surface of the sealing portion 27 and the side surface of the sealing portion 27. Therefore, the formation of the noise suppression layer 3 on the side surface of the interposer 25 can be omitted.
  • the semiconductor device 20 manufactured by applying the film for electromagnetic wave shielding of the present invention is, for example, a mobile phone, a medical device, a digital camera, a video camera, a car navigation, a personal computer, a game machine, a liquid crystal television, a liquid crystal display, It can be widely used in organic electroluminescent displays, printers and the like.
  • the film for shielding an electromagnetic wave according to the present invention is not only applied to the manufacture of a device having such a configuration, but, for example, is an electronic device independently provided with an electronic component such as a semiconductor device of CSP (Chip Size Package) type, a capacitor, and a coil. It can also be used for the production of
  • CSP Chip Size Package
  • the film 300 for electromagnetic wave shielding of this invention was comprised by the laminated body of the peeling layer 1 (base material layer) and the noise suppression layer 3, it is not limited to this.
  • the electromagnetic wave shielding film 300 may include another layer different from the peeling layer 1 (base material layer) and the noise suppression layer 3.
  • the noise suppression layer 3 is provided also on the side surface of the interposer 25 in the embodiment, the present invention is not limited to this, as long as the noise suppression layer 3 is provided at least on the upper surface of the sealing portion 27 and the side surface The formation of the noise suppression layer 3 on the side surface of the interposer 25 may be omitted.
  • one or more steps for any purpose may be added to the method of manufacturing the electronic component package and the method of manufacturing the electronic device.
  • Example 1A Production of film for electromagnetic shielding
  • polymethylpentene manufactured by Mitsui Chemicals, Inc., trade name: TPX DX231
  • TPX DX231 As a resin material for forming the third layer, polymethylpentene (manufactured by Mitsui Chemicals, Inc., trade name: TPX DX231) was prepared.
  • a resin material for forming the second layer 35 wt% of ethylene-methyl acrylate copolymer (Mitsui Dupont Polychemicals Co., Ltd., trade name: Nucrel AN4214C), polypropylene (Prime Polymer Co., Ltd., trade name)
  • ethylene-methyl acrylate copolymer Mitsubishi Chemicals, Ltd., trade name: Nucrel AN4214C
  • polypropylene Principal Polymer Co., Ltd., trade name
  • a mixture containing 30 wt% of E-203GP) and 35 wt% of polymethylpentene manufactured by Mitsui Chemicals, Inc., trade name: TPX DX231) was prepared.
  • a resin material (liquid material) for forming the noise suppression layer was prepared.
  • silver particles manufactured by Fukuda Metal Foil & Powder Industry Co., Ltd., trade name: Ag-XF301
  • epoxy resin trade name: EPICRON N-670, manufactured by DIC Corporation
  • acrylic rubber manufactured by Nagase ChemteX, trade name: SG-708-6
  • phenol novolac resin manufactured by Sumitomo Bakelite, trade name: PR-HF-3
  • a resin material for forming a noise suppression layer was applied to the release layer and then dried to form a noise suppression layer, thereby producing a film for electromagnetic wave shielding.
  • the average thickness of the whole film for electromagnetic wave shielding of Example 1A is 240 micrometers
  • the average thickness of a 1st layer is 20 micrometers
  • the average thickness of a 3rd layer is 20 micrometers
  • the average of a 2nd layer The thickness was 180 ⁇ m
  • the average thickness of the noise suppression layer was 20 ⁇ m.
  • the storage elastic modulus at 100 ° C. of the first layer, the second layer and the third layer in the film for electromagnetic wave shielding of Example 1A is 2.0E + 08Pa, 5.0E + 07Pa and 2.0E + 08Pa, respectively.
  • Example 2A to 6A An electromagnetic wave shielding film was produced in the same manner as in Example 1A except that the resin material for forming the noise suppression layer was changed as shown in Table 1.
  • the resin material (liquid material) for forming the noise suppression layer contains silver particles (manufactured by Fukuda Metal Foil Powder Industry Co., Ltd., trade name: Ag-XF301) as a particulate metal material, and a fluorine resin (binder resin)
  • a film for electromagnetic wave shielding was produced in the same manner as in Example 1A except that a resin material containing Obrigard PS 325R (solid content: 10%) manufactured by AGC Cortec Co., Ltd. was prepared.
  • a noise suppression layer having a width of 25 mm was formed using a resin material for forming a noise suppression layer prepared when producing the films for electromagnetic wave shielding of Examples 1A to 6A and Comparative Example 1A. And these noise suppression layers were stuck at 100 degreeC on the plate-like sealing part which consists of an epoxy resin composition (Sumitomo Bakelite Co., Ltd. make, "XF8680") which has an epoxy resin as a main material, respectively. Then, according to JIS G 3469, the peel strength A measured when the noise suppression layer is peeled from one end at a speed of 300 mm / min at 25 ° C. in the direction of 90 ° at 25 ° C. It measured using an A & D company "TENSILON RTG-1310"). The measurement results are shown in Table 1.
  • ⁇ Peel strength B> A noise suppression layer having a width of 25 mm was formed using a resin material for forming a noise suppression layer prepared when producing the films for electromagnetic wave shielding of Examples 1A to 6A and Comparative Example 1A. And these noise suppression layers were stuck at 100 degreeC on the plate-like peeling layer which consists of polymethyl pentene (made by Mitsui Chemicals, "TPX DX231"), respectively. Then, according to JIS G 3469, the peel strength B measured when the noise suppression layer is peeled from one end at a speed of 300 mm / min at 25 ° C. in the direction of 90 ° at 25 ° C. It measured using an A & D company "TENSILON RTG-1310"). The measurement results are shown in Table 1.
  • a Si substrate (pseudo semiconductor element) 10 mm long ⁇ 10 mm wide ⁇ 0.7 mm thick equipped. Thereafter, the Si substrate was subjected to heating and compression treatment under the conditions of 190 ° C./150 N / 20 sec.
  • the Si substrate is sealed by the sealing portion by compression molding.
  • a sealed semiconductor encapsulation was formed.
  • the condition for compression molding was 175 ° C./5 MPa / 5 min.
  • the films for shielding an electromagnetic wave of Examples 1A to 6A and Comparative Example 1A were respectively disposed on the semiconductor sealing connection in which the grooves were formed. Thereafter, using a vacuum pressure type laminator, by applying pressure of 2 MPa, temperature of 170 ° C., and time of 240 seconds so that the film for electromagnetic shielding and the electronic component sealing body approach each other under vacuum atmosphere. And an electromagnetic shielding film was attached to the semiconductor sealing assembly.
  • the peeling layer is peeled from the film for an electromagnetic wave shield attached to the semiconductor sealing assembly by holding one end of the peeling layer, and the ease of peeling of the peeling layer in this case is based on the evaluation criteria shown below. evaluated.
  • the evaluation results are shown in Table 1.
  • the peel strengths A and B satisfied the relationship of 1 ⁇ A / B.
  • the peeling layer can be peeled from the film for an electromagnetic wave shield stuck to the semiconductor sealing connection, without generating the resin residue originating in the noise suppression layer in the peeling layer, and the electronic component sealing body It was possible to form a noise suppression layer.
  • the peel strengths A and B do not satisfy the relationship of 1 ⁇ A / B, and due to this, from the film for an electromagnetic wave shield attached to the semiconductor sealing connection.
  • a resin residue derived from the noise suppression layer was generated in the peeling layer, and it was not possible to form a noise suppression layer having a uniform film thickness on the electronic component package.
  • the film for electromagnetic wave shields which can provide a noise suppression layer in an electronic component sealing body by a comparatively easy method can be provided. Furthermore, by using the film for electromagnetic wave shielding, a plurality of electronic component sealing bodies can be manufactured collectively from one electronic component sealing connection body. As a result, the productivity of the electronic component package and the electronic device can be improved. Thus, the present invention has industrial applicability.

Abstract

An electromagnetic wave shield film 300 according to the present invention is used for forming a noise suppressing layer 3 on an electronic component sealing body 290. The electromagnetic wave shield film 300 is provided with a peeling layer 1 (a substrate layer) and the noise suppressing layer 3 and configured to satisfy a predetermined relationship with respect to the peel strength of the noise suppressing layer 3.

Description

電磁波シールド用フィルムElectromagnetic shielding film
 本発明は、電磁波シールド用フィルムに関する。 The present invention relates to a film for electromagnetic wave shielding.
 従来、携帯電話、医療機器のように電磁波の影響を受けやすい電子部品や、半導体素子等の半導体電子部品、さらにはコンデンサー、コイル等の各種電子部品、またはこれらの電子部品が回路基板に実装された電子装置に対する、電磁波によるノイズの影響を軽減することが試みられてきた。例えば、これら電子部品または電子装置を、アルミやSUSのような金属カンシールドで封止するシールド方法が実施されてきた。 Conventionally, electronic components susceptible to electromagnetic waves such as mobile phones and medical devices, semiconductor electronic components such as semiconductor elements, various electronic components such as capacitors and coils, or electronic components thereof are mounted on a circuit board. Attempts have been made to reduce the influence of noise caused by electromagnetic waves on electronic devices. For example, shielding methods have been implemented to seal these electronic components or electronic devices with a metal can shield such as aluminum or SUS.
 しかしながら、この金属カンシールドは、種類別に回路基板に配置された電子部品の集合体(部品集合体)に対して施され、その影響で回路基板上の各電子部品の配置には制約がある。このため、回路基板の設計自由度は、機能面からは必ずしも最良というわけではない。さらに、金属カンシールドにより部品集合体を封止することから、金属カンシールドと部品集合体との間に空間が生じるため、かかる部品集合体を備える電子機器の大型化を招くという問題があった。 However, this metal can shield is applied to an assembly (component assembly) of electronic components arranged on a circuit board according to type, and there is a restriction in the arrangement of each electronic component on the circuit substrate. For this reason, the design freedom of the circuit board is not necessarily the best in terms of functions. Furthermore, since the assembly of parts is sealed by the metal can shield, a space is generated between the metal can shield and the assembly of parts, which causes a problem of increasing the size of the electronic device provided with the assembly of parts. .
 かかる問題点を解消するために、回路基板上に配置された電子部品を封止材により封止することにより電子部品封止体を形成し、電子部品封止体の上面および側面を、金属薄膜層等で構成されるノイズ抑制層で被覆する方法が提案されている(例えば、特許文献1参照)。 In order to solve such problems, an electronic component sealing body is formed by sealing an electronic component disposed on a circuit substrate with a sealing material, and the upper surface and the side surface of the electronic component sealing body are made of metal thin film A method of coating with a noise suppression layer constituted of a layer or the like has been proposed (see, for example, Patent Document 1).
 しかしながら、電子部品封止体にノイズ抑制層を形成して電磁波によるノイズの影響を軽減する方法では、このノイズ抑制層が、主として、スパッタリング法を用いて製造される。この場合、スパッタリング法に用いる装置が、その操作が煩雑かつ高価であったり、生産性が低いと言った問題があった。 However, in the method of forming a noise suppression layer on the electronic component package to reduce the influence of noise due to electromagnetic waves, the noise suppression layer is mainly manufactured using a sputtering method. In this case, there has been a problem that the apparatus used for the sputtering method is complicated and expensive in operation and low in productivity.
 また、導電性粒子を含有する金属ペーストを用いたり、メッキ法を用いることによりノイズ抑制層を形成することも考えられるが、これらの方法によっても、種々の問題を有しているのが実情であった。 Also, although it is conceivable to form a noise suppression layer by using a metal paste containing conductive particles or by using a plating method, there are also various problems by these methods. there were.
特開2015-130484号公報JP, 2015-130484, A
 本発明の目的は、電子部品を備える電子部品封止体にノイズ抑制層を、比較的容易に、かつ、優れた生産性をもって形成することができる電磁波シールド用フィルムを提供することにある。 An object of the present invention is to provide an electromagnetic wave shielding film capable of forming a noise suppression layer relatively easily and with excellent productivity on an electronic component sealing body provided with electronic components.
 このような目的は、下記(1)~(8)に記載の本発明により達成される。
 (1) 基板と、該基板上に配置された電子部品と、前記電子部品を封止する封止部とを有する電子部品封止体に適用される電磁波シールド用フィルムであって、
 前記電磁波シールド用フィルムは、基材層と、該基材層の一方の面側に積層されたノイズ抑制層とを備え、
 前記封止部は、エポキシ樹脂を主材料として含有し、
 前記基材層は、ポリメチルペンテンを主材料として含有し、
 前記ノイズ抑制層は、前記封止部の上面および側面を被覆するように構成されており、
 JIS G 3469に準拠して、板状をなす前記封止部上に、幅25mmの前記ノイズ抑制層を貼付し、次いで、前記ノイズ抑制層を、その一端から、25℃において90°の方向に300mm/分の速度で引き剥がしたときに測定されるピール強度をA[N/mm]とし、JIS G 3469に準拠して、板状をなす前記基材層上に、幅25mmの前記ノイズ抑制層を貼付し、次いで、前記ノイズ抑制層を、その一端から、25℃において90°の方向に300mm/分の速度で引き剥がしたときに測定されるピール強度をB[N/mm]としたとき、1<A/Bなる関係を満足することを特徴とする電磁波シールド用フィルム。
Such an object is achieved by the present invention described in the following (1) to (8).
(1) A film for electromagnetic wave shielding applied to an electronic component sealing body having a substrate, an electronic component disposed on the substrate, and a sealing portion for sealing the electronic component,
The electromagnetic wave shielding film includes a base material layer and a noise suppression layer laminated on one surface side of the base material layer.
The sealing portion contains an epoxy resin as a main material,
The base material layer contains polymethylpentene as a main material,
The noise suppression layer is configured to cover the upper surface and the side surface of the sealing portion,
According to JIS G 3469, the noise suppression layer of 25 mm in width is attached onto the plate-like sealing portion, and then the noise suppression layer is oriented 90 ° at 25 ° C. from one end thereof. Peel strength measured when peeled off at a speed of 300 mm / min is A [N / mm], and based on JIS G 3469, the noise suppression of 25 mm in width on the plate-like base material layer The layer was attached and then the peel strength measured when the noise suppression layer was peeled from one end at a speed of 300 mm / min in the direction of 90 ° at 25 ° C. was B [N / mm]. A film for electromagnetic wave shielding characterized by satisfying a relation of 1 <A / B.
 (2) 前記ノイズ抑制層は、粒子状をなす導電性材料と、バインダー樹脂とを含有する上記(1)に記載の電磁波シールド用フィルム。 (2) The film for electromagnetic wave shielding according to the above (1), wherein the noise suppression layer contains a particulate conductive material and a binder resin.
 (3) 前記導電性材料は、金属材料、金属酸化物材料、導電性高分子材料または導電性セラミックス材料のうちの少なくとも1種である上記(2)に記載の電磁波シールド用フィルム。 (3) The electromagnetic wave shielding film according to (2), wherein the conductive material is at least one of a metal material, a metal oxide material, a conductive polymer material, and a conductive ceramic material.
 (4) 前記バインダー樹脂は、エポキシ樹脂、ウレタン樹脂、ポリオレフィン樹脂、ポリエステル樹脂、ポリアミド樹脂、シリコーン樹脂、フェノール樹脂またはアクリル系エラストマーのうちの少なくとも1種を含む上記(2)または(3)に記載の電磁波シールド用フィルム。 (4) The binder resin described in the above (2) or (3), which contains at least one of an epoxy resin, a urethane resin, a polyolefin resin, a polyester resin, a polyamide resin, a silicone resin, a phenol resin, and an acrylic elastomer. Electromagnetic shielding film.
 (5) 前記基材層は、第1の層と、第2の層と、第3の層とがこの順で積層された3層構成をなす積層体であり、前記第3の層が前記ノイズ抑制層に接合されている上記(1)ないし(4)のいずれかに記載の電磁波シールド用フィルム。 (5) The base material layer is a laminate having a three-layer structure in which a first layer, a second layer, and a third layer are laminated in this order, and the third layer is the above-mentioned The electromagnetic wave shielding film according to any one of the above (1) to (4), which is bonded to the noise suppression layer.
 (6) 前記第1の層および前記第3の層は、それぞれ、100℃における貯蔵弾性率が1.0E+05Pa以上1.0E+11Pa以下である上記(5)に記載の電磁波シールド用フィルム。 (6) The film according to (5), wherein the first layer and the third layer each have a storage elastic modulus at 100 ° C. of 1.0E + 05 Pa or more and 1.0E + 11 Pa or less.
 (7) 前記第2の層は、100℃における貯蔵弾性率が1.0E+04Pa以上1.0E+10Pa以下である上記(5)または(6)に記載の電磁波シールド用フィルム。
 (8) 前記バインダー樹脂は、エポキシ樹脂を含み、
 前記ノイズ抑制層における前記エポキシ樹脂の含有量が、2重量%以上32重量%以下である上記(2)に記載の電磁波シールド用フィルム。
(7) The film for electromagnetic wave shielding according to (5) or (6), wherein the second layer has a storage elastic modulus at 100 ° C. of 1.0E + 04 Pa or more and 1.0E + 10 Pa or less.
(8) The binder resin contains an epoxy resin,
The film for an electromagnetic wave shield as described in said (2) whose content of the said epoxy resin in the said noise suppression layer is 2 weight% or more and 32 weight% or less.
 本発明によれば、電子部品封止体の上面側に、基材層と、この基材層に積層されたノイズ抑制層とを有する電磁波シールド用フィルムを貼付し、その後、ノイズ抑制層から基材層を剥離すると言う、比較的容易な方法で電子部品封止体にノイズ抑制層を設けることが可能な、電磁波シールド用フィルムを提供することができる。 According to the present invention, a film for electromagnetic wave shielding having a base material layer and a noise suppression layer laminated on the base material layer is attached to the upper surface side of the electronic component package, and then from the noise suppression layer to the base The film for electromagnetic wave shielding which can provide a noise suppression layer in an electronic component sealing body by a comparatively easy method which says peeling a material layer can be provided.
 さらに、電磁波シールド用フィルムを電子部品封止連結体に適用することにより、1つの電子部品封止連結体から複数の電子部品封止体を一括して製造することができるので、電子部品封止体および電子装置の生産性の向上が図られる。 Furthermore, by applying the film for electromagnetic wave shielding to the electronic component sealing and coupling body, a plurality of electronic component sealing bodies can be manufactured collectively from one electronic component sealing and coupling body. Productivity of body and electronic devices can be improved.
図1は、本発明の電磁波シールド用フィルムを用いて製造された半導体装置の実施形態を示す縦断面図である。FIG. 1 is a longitudinal sectional view showing an embodiment of a semiconductor device manufactured using the film for electromagnetic wave shielding of the present invention. 図2は、図1に示す半導体装置を製造する製造方法を説明するための縦断面図である。FIG. 2 is a longitudinal sectional view for illustrating a method of manufacturing the semiconductor device shown in FIG. 図3は、図1に示す半導体装置を製造する製造方法を説明するための縦断面図である。FIG. 3 is a longitudinal sectional view for illustrating a method of manufacturing the semiconductor device shown in FIG. 図4は、図1に示す半導体装置を製造するのに用いられる本発明の電磁波シールド用フィルムの縦断面図である。FIG. 4 is a longitudinal sectional view of an electromagnetic wave shielding film of the present invention used to manufacture the semiconductor device shown in FIG.
 以下、本発明の電磁波シールド用フィルムを添付図面に示す好適実施形態に基づいて詳細に説明する。 Hereinafter, the film for electromagnetic wave shielding of the present invention will be described in detail based on a preferred embodiment shown in the attached drawings.
 以下では、本発明の電磁波シールド用フィルムを説明するのに先立って、まず、本発明の電磁波シールド用フィルムを用いて製造された半導体装置について説明する。 In the following, prior to describing the electromagnetic wave shielding film of the present invention, first, a semiconductor device manufactured using the electromagnetic wave shielding film of the present invention will be described.
<半導体装置>
 図1は、本発明の電磁波シールド用フィルムを用いて製造された半導体装置の実施形態を示す縦断面図である。なお、以下の説明では、図1中の上側を「上」、下側を「下」と言う。
<Semiconductor device>
FIG. 1 is a longitudinal sectional view showing an embodiment of a semiconductor device manufactured using the film for electromagnetic wave shielding of the present invention. In the following description, the upper side in FIG. 1 is referred to as “upper” and the lower side as “lower”.
 図1に示す半導体装置20は、厚さ方向に貫通して配置された導体ポスト(図示せず)を備えるインターポーザー(基板)25と、インターポーザー25上に配置された半導体素子26ならびにコンデンサー、コイルのような電子素子28と、半導体素子26および電子素子28を封止する封止部27(モールド部)と、封止部27およびインターポーザー25を被覆するノイズ抑制層3と、導体ポストに電気的に接続された配線23と、配線23に電気的に接続されたバンプ21(端子)と、配線23を被覆し、かつバンプ21を露出させるように設けられた被覆部22とを有している。 The semiconductor device 20 shown in FIG. 1 includes an interposer (substrate) 25 having conductor posts (not shown) disposed penetrating in the thickness direction, a semiconductor element 26 and a capacitor disposed on the interposer 25, A sealing portion 27 (mold portion) for sealing the electronic element 28 such as a coil, the semiconductor element 26 and the electronic element 28, a noise suppression layer 3 for covering the sealing portion 27 and the interposer 25, a conductor post Wiring 23 electrically connected, bump 21 (terminal) electrically connected to wiring 23, and covering portion 22 provided to cover wiring 23 and expose bump 21. ing.
 インターポーザー25は、半導体素子26および電子素子28を支持する基板であり、その平面視形状は、通常、正方形、長方形等の四角形とされる。このインターポーザー25には、その厚さ方向に貫通する複数の貫通孔(図示せず)が形成され、この貫通孔に対応して導体ポストが設けられている。 The interposer 25 is a substrate for supporting the semiconductor element 26 and the electronic element 28. The plan view shape thereof is usually a square such as a square or a rectangle. The interposer 25 is formed with a plurality of through holes (not shown) penetrating in the thickness direction, and conductor posts are provided corresponding to the through holes.
 半導体素子26および電子素子28は、それぞれ、半導体素子26および電子素子28がその下面側に有する電極パッドが導体ポストに対応するように、インターポーザー25上に配置されている。本実施形態では、半導体素子26が1つ、電子素子28が2つそれぞれインターポーザー25上に配置されている。なお、本実施形態では、これら半導体素子26および電子素子28が、半導体装置20が備える電子部品を構成する。 The semiconductor element 26 and the electronic element 28 are disposed on the interposer 25 such that the electrode pads provided on the lower surface side of the semiconductor element 26 and the electronic element 28 correspond to the conductor posts, respectively. In the present embodiment, one semiconductor element 26 and two electronic elements 28 are disposed on the interposer 25 respectively. In the present embodiment, the semiconductor element 26 and the electronic element 28 constitute an electronic component included in the semiconductor device 20.
 かかる位置に半導体素子26および電子素子28が配置された状態で、封止部27は、半導体素子26、電子素子28およびインターポーザー25の上面側を覆うように形成される。 In a state where the semiconductor element 26 and the electronic element 28 are disposed at such a position, the sealing portion 27 is formed to cover the upper surface side of the semiconductor element 26, the electronic element 28 and the interposer 25.
 インターポーザー25の貫通孔に対応して形成された導体ポストは、その上側の端部で、半導体素子26または電子素子28が備える電極パッド(端子)と電気的に接続される。 The conductor post formed correspondingly to the through hole of the interposer 25 is electrically connected to the electrode pad (terminal) of the semiconductor element 26 or the electronic element 28 at the upper end thereof.
 また、インターポーザー25の下面には、所定形状に形成された配線23が設けられ、その一部が導体ポストの下側の端部と電気的に接続される。 Further, on the lower surface of the interposer 25, a wire 23 formed in a predetermined shape is provided, and a portion thereof is electrically connected to the lower end of the conductor post.
 さらに、配線23の下面には、球状体をなすバンプ21が電気的に接続されており、これにより、半導体素子26または電子素子28とバンプ21とが、電極パッド(端子)、導体ポストおよび配線23を介して電気的に接続される。また、バンプ21をその下側から露出させるための開口部221を備える被覆部22が配線23を被覆するように設けられている。 Furthermore, a spherical bump 21 is electrically connected to the lower surface of the wiring 23, whereby the semiconductor element 26 or the electronic element 28 and the bump 21 are connected to an electrode pad (terminal), a conductor post, and a wiring. It is electrically connected through 23. Further, a covering portion 22 provided with an opening 221 for exposing the bump 21 from the lower side thereof is provided to cover the wiring 23.
 そして、ノイズ抑制層3は、封止部27の上面、封止部27の側面およびインターポーザー25の側面を被覆して設けられている。このノイズ抑制層3により、電磁波を遮断(シールド)して、電磁波によるノイズが抑制される。具体的には、このノイズ抑制層3により、インターポーザー25上に設けられた半導体素子26および電子素子28と、ノイズ抑制層3を介して、半導体素子26および電子素子28の外側すなわち半導体装置20の外側に位置する他の電子部品等との少なくとも一方から生じる電磁波を遮断(シールド)して、電磁波によるノイズが抑制される。なお、このノイズ抑制層3は、インターポーザー25の側面側において、図示しない配線を介して電気的に接地される。 The noise suppression layer 3 is provided to cover the upper surface of the sealing portion 27, the side surface of the sealing portion 27, and the side surface of the interposer 25. The noise suppression layer 3 blocks (shields) the electromagnetic waves and suppresses the noise due to the electromagnetic waves. Specifically, with the noise suppression layer 3, the semiconductor element 26 and the electronic element 28 provided on the interposer 25 and the outside of the semiconductor element 26 and the electronic element 28 via the noise suppression layer 3, that is, the semiconductor device 20 By blocking (shielding) the electromagnetic wave generated from at least one of the other electronic components and the like located outside of the above, noise due to the electromagnetic wave is suppressed. The noise suppression layer 3 is electrically grounded via a wiring (not shown) on the side of the interposer 25.
 なお、本実施形態では、電子部品を構成する半導体素子26および電子素子28を、それぞれ、1つおよび2つずつ半導体装置20が備えるが、かかる構成に限定されず、半導体装置(電子装置)は、いずれか1つを備えてもよく、上記以上の半導体素子26および電子素子28を備えてもよいし、さらに、半導体素子26および電子素子28とは異なる電子部品を備えてもよい。 In the present embodiment, the semiconductor device 26 includes the semiconductor element 26 and the electronic element 28 that constitute the electronic component, one and two each. However, the present invention is not limited to this configuration, and the semiconductor device (electronic device) The semiconductor device 26 and the electronic device 28 described above may be provided, and further, electronic components different from the semiconductor device 26 and the electronic device 28 may be provided.
(半導体装置20の製造方法)
 以上のような構成をなす半導体装置20が、本発明の電磁波シールド用フィルムを用いた、以下に示す半導体装置20の製造方法により製造される。
(Method of Manufacturing Semiconductor Device 20)
The semiconductor device 20 configured as described above is manufactured by the method for manufacturing the semiconductor device 20 described below, using the film for shielding electromagnetic waves of the present invention.
 本発明の電磁波シールド用フィルムを用いた半導体装置20の製造方法は、平板状をなすシート材を用意し、複数の電子部品をシート材上に配置する配置工程と、電子部品が配置されているシート材の上面側に、シート材と電子部品とを覆うように封止して封止部を形成することで電子部品封止連結体を得る封止部形成工程と、電子部品封止連結体の下面側に、基材と、基材に積層された粘着層とを有する粘着テープを、粘着層を電子部品封止連結体側にして貼付する第1貼付工程と、形成すべき電子部品封止体毎に対応するように、電子部品封止連結体を厚さ方向に切断して、凹部を形成することで、粘着テープに貼付された電子部品封止体を得る切断工程と、電子部品封止体の上面側に、剥離層と、剥離層に積層されたノイズ抑制層とを有する電磁波シールド用フィルムを、ノイズ抑制層を電子部品封止体側にして貼付して、凹部の形状に対応してノイズ抑制層を押し込むことで、ノイズ抑制層により電子部品封止体の上面および側面を被覆する第2貼付工程と、電磁波シールド用フィルムから、剥離層を剥離することで、粘着テープに貼付された状態で、ノイズ抑制層が設けられた電子部品封止体を得る第1剥離工程と、電子部品封止体から粘着テープを剥離することで、ノイズ抑制層が設けられた複数の電子部品封止体を一括して得る第2剥離工程と、インターポーザー(基板)の下面側に、配線を形成する配線形成工程と、インターポーザー(基板)の下面側に、配線の一部が露出するように、開口部を備える被覆部を形成する被覆部形成工程と、開口部で露出する配線に、バンプを電気的に接続するバンプ接続工程とを有する。 The manufacturing method of the semiconductor device 20 using the film for electromagnetic wave shielding of the present invention prepares a sheet material which makes flat form, arranges a plurality of electronic parts on the sheet material, and the electronic parts are arranged. A sealing portion forming process for obtaining an electronic component sealing and coupling body by forming a sealing portion so as to cover the sheet material and the electronic component on the upper surface side of the sheet material, and the electronic component sealing and coupling body A first sticking step of sticking a pressure-sensitive adhesive tape having a base material and a pressure-sensitive adhesive layer laminated on the base material on the lower surface side of the base material with the pressure-sensitive adhesive layer facing the electronic component sealing connected body; The electronic component sealing assembly is cut in the thickness direction so as to correspond to each body to form a recess, thereby obtaining an electronic component sealed body attached to the adhesive tape; A release layer and a noise suppression layer laminated on the release layer on the upper surface side of the stopper By attaching the noise suppression layer to the electronic component sealing body side and pressing the noise suppression layer corresponding to the shape of the recess, the upper surface and the side surface of the electronic component sealing body by the noise suppression layer A second sticking step of covering the first layer, and a first peeling step of obtaining an electronic component sealed body provided with a noise suppression layer in a state of being stuck to an adhesive tape by peeling a peeling layer from an electromagnetic wave shielding film And a second peeling step of collectively obtaining a plurality of electronic component packages provided with a noise suppression layer by peeling the adhesive tape from the electronic component package, on the lower surface side of the interposer (substrate) A step of forming a wire, a step of forming a covering portion having an opening so that a portion of the wire is exposed on the lower surface side of the interposer (substrate), and a step of exposing the opening Distribution In, and a bump connecting step of electrically connecting the bumps.
 以下、これらの各工程について詳述する。
 図2~図3は、図1に示す半導体装置を製造する製造方法を説明するための縦断面図、図4は、図1に示す半導体装置を製造するのに用いられる本発明の電磁波シールド用フィルムの縦断面図である。なお、以下の説明では、図2~図4中の上側を「上」、下側を「下」と言う。
Each of these steps will be described in detail below.
2 to 3 are longitudinal sectional views for explaining a manufacturing method of manufacturing the semiconductor device shown in FIG. 1, and FIG. 4 is an electromagnetic wave shield of the present invention used for manufacturing the semiconductor device shown in FIG. It is a longitudinal cross-sectional view of a film. In the following description, the upper side in FIGS. 2 to 4 is referred to as “upper” and the lower side as “lower”.
 [1]まず、図2(a)に示すような、平板状をなすシート材25’を用意する。その後、このシート材25’上に複数の半導体素子26および電子素子28を配置(載置)する(図2(b)参照。;配置工程)。 [1] First, a flat sheet material 25 'is prepared as shown in FIG. 2 (a). Thereafter, a plurality of semiconductor elements 26 and electronic elements 28 are placed (placed) on the sheet material 25 '(see FIG. 2 (b); placement step).
 なお、このシート材25’は、予め形成された複数の貫通孔(図示せず)を備え、さらに、これら貫通孔に対応して埋設された導体ポスト(図示せず)を備える。この導体ポストは、半導体素子26および電子素子28をシート材25’上に配置させた際に、半導体素子26および電子素子28が備える電極パッド(端子)が対応する位置に形成されている。すなわち、シート材25’は、貫通孔に対応して設けられた導体ポストの数と、シート材25’上に配置される複数の半導体素子26および電子素子28が備える電極パッド(端子)の総数とが同じになるように形成されている。 The sheet 25 'includes a plurality of through holes (not shown) formed in advance, and further includes conductor posts (not shown) embedded corresponding to the through holes. When the semiconductor element 26 and the electronic element 28 are disposed on the sheet material 25 ′, the conductor post is formed at a position where the electrode pad (terminal) provided in the semiconductor element 26 and the electronic element 28 corresponds. That is, the sheet material 25 'includes the number of conductor posts provided corresponding to the through holes and the total number of electrode pads (terminals) provided on the plurality of semiconductor elements 26 and the electronic elements 28 disposed on the sheet material 25'. And are formed to be the same.
 また、シート材25’は、その厚さ方向に切断して個片化することにより、半導体装置20が有するインターポーザー25(基板)となり、半導体素子26および電子素子28を支持する機能を発揮する。 Further, the sheet material 25 'is cut in the thickness direction to be separated into individual pieces, thereby becoming an interposer 25 (substrate) of the semiconductor device 20 and exhibiting a function of supporting the semiconductor element 26 and the electronic element 28. .
 このシート材25’は、半導体素子26および電子素子28を支持し得る程度の硬度を有していればよく、特に限定されない。例えば、シート材25’は、コア材で構成されるコア基板、ビルドアップ材で構成されるビルドアップ基板のようなリジット基板(硬性基板)またはフレキシブル基板(可撓性基板)の何れであってもよい。これらの中でも、特に、ビルドアップ基板が好ましい。ビルドアップ基板は、特に、加工性に優れることから好ましく用いられる。 The sheet material 25 ′ is not particularly limited as long as it has a hardness sufficient to support the semiconductor element 26 and the electronic element 28. For example, the sheet material 25 ′ may be either a core substrate composed of a core material, a rigid substrate (hard substrate) like a buildup substrate composed of a buildup material, or a flexible substrate (flexible substrate). It is also good. Among these, buildup substrates are particularly preferred. The buildup substrate is preferably used particularly because of its excellent processability.
 ビルドアップ材料は、特に限定されないが、例えば、フェノール樹脂、ユリア樹脂、メラミン樹脂、エポキシ樹脂のような熱硬化性樹脂と、硬化剤と、無機充填材とを含有する樹脂組成物等の硬化物を主材料として構成される。 The buildup material is not particularly limited, but, for example, a cured product such as a resin composition containing a thermosetting resin such as phenol resin, urea resin, melamine resin, epoxy resin, a curing agent, and an inorganic filler. Is the main material.
 なお、コア基板は、特に限定されないが、例えば、主として、シアネート樹脂、エポキシ樹脂、ビスマレイミド-トリアジン樹脂のような熱硬化性樹脂等で構成される。 The core substrate is not particularly limited, but is mainly composed of, for example, a thermosetting resin such as cyanate resin, epoxy resin, bismaleimide-triazine resin, or the like.
 さらに、フレキシブル基板は、特に限定されないが、例えば、ポリイミド、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルスルホン(PES)、ポリテトラフルオロエチレン(PTFE)、ポリイミドベンゾオキサゾール(PIBO)、液晶ポリマーのような熱可塑性樹脂等で構成される。 Furthermore, the flexible substrate is not particularly limited, and examples thereof include polyimide, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), polytetrafluoroethylene (PTFE), polyimide benzoxazole (PIBO), It is composed of a thermoplastic resin such as liquid crystal polymer.
 また、シート材25’上に半導体素子26および電子素子28を配置する際、半導体素子26および電子素子28は、シート材25’が備える導体ポストの位置に、それぞれ、半導体素子26および電子素子28が有する電極パッドが対応するように、シート材25’上に配置される。そして、このような配置により、形成すべき半導体装置20が備える半導体素子26および電子素子28が配置されるべき位置に、半導体素子26および電子素子28がシート材25’上において配置されることとなる。 Further, when the semiconductor element 26 and the electronic element 28 are disposed on the sheet material 25 ′, the semiconductor element 26 and the electronic element 28 are respectively disposed at the positions of the conductor posts provided in the sheet material 25 ′. Are arranged on the sheet material 25 ′ so that the electrode pads of the corresponding elements correspond to each other. Then, with such an arrangement, the semiconductor element 26 and the electronic element 28 are disposed on the sheet material 25 ′ at the position where the semiconductor element 26 and the electronic element 28 included in the semiconductor device 20 to be formed should be disposed. Become.
 なお、半導体素子26および電子素子28(特に半導体素子26)は、シート材25’上に固定されていても固定されていなくてもよいが、エポキシ系接着剤等の接着剤(アンダーフィル材)により固定されているのが好ましい。これにより、次工程[2]において、半導体素子26および電子素子28を封止部27で封止する際に、半導体素子26および電子素子28の位置ずれが生じてしまうのを効果的に防止することができる。 The semiconductor element 26 and the electronic element 28 (in particular, the semiconductor element 26) may or may not be fixed on the sheet 25 ', but an adhesive such as an epoxy adhesive (underfill material) Are preferably fixed by Thereby, in the next step [2], when the semiconductor element 26 and the electronic element 28 are sealed by the sealing portion 27, the positional deviation of the semiconductor element 26 and the electronic element 28 is effectively prevented. be able to.
 [2]次に、シート材25’の上面側の面(半導体素子26および電子素子28が配置されている側の面)に、シート材25’、半導体素子26および電子素子28を覆うように封止部27を形成する(図2(c)参照。;封止部形成工程)。 [2] Next, the sheet 25 ', the semiconductor element 26, and the electronic element 28 are covered on the surface on the upper surface side of the sheet 25' (the surface on which the semiconductor element 26 and the electronic element 28 are disposed). The sealing part 27 is formed (refer FIG.2 (c) .; sealing part formation process).
 これにより、シート材25’、半導体素子26および電子素子28がシート材25’の上面側で封止部27により封止された電子部品封止連結体270が得られる。 Thereby, the electronic component sealing and coupling body 270 in which the sheet material 25 ′, the semiconductor element 26 and the electronic element 28 are sealed by the sealing portion 27 on the upper surface side of the sheet material 25 ′ is obtained.
 封止部27は、エポキシ樹脂を主材料として含有する。このような封止部27を形成する方法としては、特に限定されないが、例えば、次のような方法が挙げられる。まず、顆粒状のエポキシ樹脂組成物のような熱硬化性樹脂組成物を溶融させ、この状態の熱硬化性樹脂組成物を、シート材25’、半導体素子26および電子素子28を覆うようにシート材25’の上面に供給する。その後、この溶融状態の熱硬化性樹脂組成物を圧縮成形する。これにより、封止部27が形成される。かかる方法によれば、半導体素子26および電子素子28をシート材25’上において容易かつ高密度に封止部27で封止することができる。 The sealing portion 27 contains an epoxy resin as a main material. Although it does not specifically limit as a method to form such a sealing part 27, For example, the following methods are mentioned. First, a thermosetting resin composition such as a granular epoxy resin composition is melted, and the thermosetting resin composition in this state is a sheet so as to cover the sheet material 25 ′, the semiconductor element 26 and the electronic element 28. It supplies to the upper surface of material 25 '. Thereafter, the molten thermosetting resin composition is compression molded. Thereby, the sealing portion 27 is formed. According to this method, the semiconductor element 26 and the electronic element 28 can be easily and densely sealed by the sealing portion 27 on the sheet material 25 ′.
 [3]次に、基材4と、基材4に積層された粘着層2とを有する粘着テープ100を用意し、図2(d)に示すように、シート材25’の半導体素子26等が載置されていない面側(下面側)で、粘着テープ100を、粘着層2を電子部品封止連結体270側にして、電子部品封止連結体270に積層(貼付)する(第1貼付工程)。 [3] Next, the adhesive tape 100 having the base 4 and the adhesive layer 2 laminated on the base 4 is prepared, and as shown in FIG. 2 (d), the semiconductor element 26 etc. The adhesive tape 100 is laminated (adhered) to the electronic component sealing connector 270 with the adhesive layer 2 on the electronic component sealing connector 270 side on the side (lower surface side) on which the Sticking process).
 この電子部品封止連結体270への粘着テープ100の貼付は、例えば、次のようにして行うことができる。まず、図示しないダイサーテーブルの上に、粘着テープ100を設置する。シート材25’の半導体素子26等と反対側の面と、粘着層2とが対向するように電子部品封止連結体270を粘着層2の上に設置する。この状態で、電子部品封止連結体270を軽く押圧する。これにより、電子部品封止連結体270が粘着テープ100に貼付される。なお、粘着テープ100に電子部品封止連結体270を予め貼着した後に、ダイサーテーブルに設置しても良い。 The sticking of the adhesive tape 100 to the electronic component sealing connection 270 can be performed, for example, as follows. First, the adhesive tape 100 is placed on a dicer table (not shown). The electronic component sealing connector 270 is placed on the adhesive layer 2 so that the surface of the sheet material 25 ′ opposite to the semiconductor element 26 and the like faces the adhesive layer 2. In this state, the electronic component sealing connector 270 is lightly pressed. Thereby, the electronic component sealing connection body 270 is stuck on the adhesive tape 100. The electronic component sealing connector 270 may be attached to the adhesive tape 100 in advance, and then installed on a dicer table.
 粘着テープ100(ダイシングテープ)は、粘着層2を介して基材4により電子部品封止連結体270を支持するとともに、粘着層2にエネルギーを付与することで、粘着層2の電子部品封止連結体270に対する粘着性が低下する機能を有する。 The adhesive tape 100 (dicing tape) supports the electronic component sealing connection 270 by the base material 4 via the adhesive layer 2 and applies energy to the adhesive layer 2 to seal the electronic component of the adhesive layer 2 It has a function of reducing the adhesion to the connector 270.
 かかる構成の粘着テープ100において、基材4は、主として樹脂材料から成り、粘着層2を介して基材4上に貼付された電子部品封止連結体270を支持し得る程度の硬度を有する。この樹脂材料としては、例えば、ポリエチレン、ポリプロピレン、ポリオレフィン系樹脂、アイオノマー、オレフィン系共重合体、ポリエステル系樹脂、ポリエーテルケトン等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。 In the pressure-sensitive adhesive tape 100 having such a configuration, the substrate 4 is mainly made of a resin material, and has a hardness sufficient to support the electronic component sealing connector 270 attached onto the substrate 4 via the pressure-sensitive adhesive layer 2. Examples of the resin material include polyethylene, polypropylene, polyolefin resin, ionomer, olefin copolymer, polyester resin, polyether ketone and the like, and one or more of them are used in combination. be able to.
 粘着層2は、次工程[4]において、電子部品封止連結体270をダイシングして個片化することで電子部品封止体290を得る際に、電子部品封止連結体270(電子部品封止体290)に粘着して支持する機能を有している。また、この粘着層2は、粘着層2に対するエネルギーの付与により電子部品封止体290への粘着性が低下する。これにより、粘着層2は、粘着層2と電子部品封止体290との間で容易に剥離を生じさせ得る状態となる。 When obtaining the electronic component sealing body 290 by dicing and separating the electronic component sealing connection body 270 in the next step [4] in the subsequent step [4], the electronic component sealing connection body 270 (electronic component It has a function to adhere to and support the sealing body 290). In addition, adhesion of the adhesive layer 2 to the electronic component sealed body 290 is reduced by the application of energy to the adhesive layer 2. As a result, the adhesive layer 2 is in a state where peeling can be easily caused between the adhesive layer 2 and the electronic component sealing body 290.
 かかる機能を備える粘着層2は、例えば、(1)粘着性を有するベース樹脂と、(2)粘着層2を硬化させる硬化性樹脂とを主材料として含有する樹脂組成物で構成される。 The adhesive layer 2 having such a function is constituted of, for example, a resin composition containing (1) a base resin having adhesiveness and (2) a curable resin for curing the adhesive layer 2 as main materials.
 このようなベース樹脂(1)としては、例えば、アクリル系樹脂(粘着剤)、シリコーン系樹脂(粘着剤)、ポリエステル系樹脂(粘着剤)、ポリ酢酸ビニル系樹脂(粘着剤)、ポリビニルエーテル系樹脂(粘着剤)またはウレタン系樹脂(粘着剤)のような粘着層成分として用いられる公知のベース樹脂が挙げられる。 As such a base resin (1), for example, acrylic resins (adhesives), silicone resins (adhesives), polyester resins (adhesives), polyvinyl acetate resins (adhesives), polyvinyl ether resins The known base resin used as an adhesive layer component like resin (adhesive) or urethane type resin (adhesive) is mentioned.
 また、硬化性樹脂(2)は、例えば、エネルギーの付与により硬化する硬化性を備える。この硬化によってベース樹脂が硬化性樹脂の架橋構造に取り込まれた結果、粘着層2の粘着力が低下する。 Moreover, curable resin (2) is provided with the hardenability hardened | cured by provision of energy, for example. As a result of the base resin being taken into the crosslinked structure of the curable resin by this curing, the adhesive strength of the adhesive layer 2 is reduced.
 このような硬化性樹脂(2)としては、例えば、紫外線、電子線等のエネルギー線の照射によって三次元架橋可能な重合性炭素-炭素二重結合を、官能基として少なくとも2個以上分子内に有する低分子量化合物が用いられる。 As such a curable resin (2), for example, at least two or more polymerizable carbon-carbon double bonds which can be three-dimensionally cross-linked by irradiation of energy rays such as ultraviolet rays and electron beams are contained in a molecule as a functional group. The low molecular weight compound which it has is used.
 また、粘着層2を構成する樹脂組成物には、上述した各成分(1)、(2)の他に他の成分として、光重合開始剤、架橋剤、帯電防止剤、粘着付与剤、老化防止剤、粘着調整剤、充填剤、着色剤、難燃剤、軟化剤、酸化防止剤、可塑剤、界面活性剤等のうちの少なくとも1種が含まれていてもよい。 Moreover, in the resin composition which comprises the adhesion layer 2, a photoinitiator, a crosslinking agent, an antistatic agent, a tackifier, aging as other components other than each component (1), (2) mentioned above At least one of an inhibitor, an adhesive modifier, a filler, a colorant, a flame retardant, a softener, an antioxidant, a plasticizer, a surfactant, and the like may be contained.
 [4]次に、粘着テープ100が貼付された電子部品封止連結体270を、例えば、ウエハリング等を用いて固定する。その後、ダイシングソー(ブレード)を用いて、形成すべき半導体装置20(電子部品封止体290)毎に対応する位置、すなわち、半導体装置20が備えるべき1つの半導体素子26と2つの電子素子28とが封止部27で封止される領域毎に対応して、電子部品封止連結体270を厚さ方向に切断(ダイシング)して、凹部62を形成する(切断工程(ダイシング工程);図2(e)参照)。 [4] Next, the electronic component sealing connector 270 to which the adhesive tape 100 is attached is fixed using, for example, a wafer ring or the like. Thereafter, using a dicing saw (blade), a position corresponding to each semiconductor device 20 (electronic component package 290) to be formed, that is, one semiconductor element 26 and two electronic elements 28 to be provided in the semiconductor device 20. Cutting (dicing) the electronic component sealing connection body 270 in the thickness direction corresponding to each region sealed with the sealing portion 27 to form a recess 62 (cutting step (dicing step); See FIG. 2 (e)).
 これにより、電子部品封止連結体270が、1つの半導体素子26と2つの電子素子28との組み合わせ毎に対応して個片化された電子部品封止体290が粘着テープ100上に貼付された状態で得られる。 As a result, the electronic component sealing body 290 in which the electronic component sealing and coupling body 270 is singulated corresponding to each combination of one semiconductor element 26 and two electronic elements 28 is attached onto the adhesive tape 100. It is obtained in
 この際、粘着テープ100は、緩衝作用を有しており、電子部品封止連結体270を切断する際の割れ、欠け等を防止する機能を発揮する。 Under the present circumstances, the adhesive tape 100 has a buffer action, and exhibits the function to prevent the crack at the time of cut | disconnecting the electronic component sealing connection body 270, a chipping, etc.
 また、ダイシングブレードを用いた電子部品封止連結体270の切断は、本実施形態では、図2(e)に示すように、基材4の厚さ方向に、基材4の途中に到達するまで実施される。これにより、電子部品封止連結体270の個片化を確実に実施することができる。また、電子部品封止体290を粘着テープ100上に貼付させた状態で、個片化により形成される電子部品封止体290の側面、すなわち封止部27およびインターポーザー25の側面を凹部62において確実に露出させることができる。 Further, in the present embodiment, the cutting of the electronic component sealing and coupling body 270 using the dicing blade reaches the middle of the base material 4 in the thickness direction of the base material 4 as shown in FIG. To be implemented. Thereby, singulation of the electronic component sealing connection body 270 can be implemented reliably. Further, in a state where the electronic component sealing body 290 is attached to the adhesive tape 100, the side surface of the electronic component sealing body 290 formed by singulation, that is, the side surface of the sealing portion 27 and the interposer 25 Can be reliably exposed.
 [5]次に、剥離層1(基材層)と、剥離層1に積層されたノイズ抑制層3とを有する電磁波シールド用フィルム300を用意し、個片化で得られた電子部品封止体290の封止部27が形成されている面側(上面側)で、電子部品封止体290に、電磁波シールド用フィルム300を、ノイズ抑制層3を電子部品封止体290側にして、積層(貼付)する(第2貼付工程)。 [5] Next, a film 300 for electromagnetic wave shielding having the peeling layer 1 (base material layer) and the noise suppression layer 3 laminated on the peeling layer 1 is prepared, and the electronic component sealing obtained by singulation is performed. With the electronic component sealing body 290, the film 300 for shielding an electromagnetic wave, and the noise suppression layer 3 on the electronic component sealing body 290 side on the surface side (upper surface side) where the sealing portion 27 of the body 290 is formed Stack (paste) (second paste process).
 この電子部品封止体290に電磁波シールド用フィルム300を貼付する方法としては、特に限定されないが、例えば、真空圧空成形またはプレス成型法が挙げられる。 Although it does not specifically limit as method to affix the film 300 for electromagnetic wave shields to this electronic component sealing body 290, For example, vacuum pressure air molding or the press molding method is mentioned.
 真空圧空成形とは、例えば、真空加圧式ラミネーターを用いて、電磁波シールド用フィルム300で、個片化で得られた電子部品封止体290の上面および側面を被覆する方法である。まず、図2(f)に示すように、真空雰囲気下とし得る閉空間内に、電子部品封止体290の粘着テープ100と反対側の面と、電磁波シールド用フィルム300のノイズ抑制層3側の面とが対向するように、電子部品封止体290と電磁波シールド用フィルム300とを重ね合わせた状態でセットする。その後、これらを加熱下において、電磁波シールド用フィルム300側から均一に電磁波シールド用フィルム300と電子部品封止体290とが互いに接近するように、前記閉空間を真空雰囲気下にし、その後加圧する。このようにして、真空圧空成形が実施される。 Vacuum pressure forming is a method of covering the upper surface and the side surface of the electronic component sealing body 290 obtained by singulation with the film 300 for electromagnetic wave shielding using, for example, a vacuum pressure type laminator. First, as shown in FIG. 2F, the surface of the electronic component sealing body 290 on the opposite side to the adhesive tape 100 and the noise suppression layer 3 side of the film 300 for shielding electromagnetic waves in a closed space which can be in a vacuum atmosphere. The electronic component sealing body 290 and the electromagnetic wave shielding film 300 are set in a state of being superimposed so that the surface of the electronic component sealing body faces the surface of the electronic component sealing body. Thereafter, under heating, the closed space is placed under a vacuum atmosphere so that the electromagnetic wave shielding film 300 and the electronic component sealing body 290 approach each other uniformly from the electromagnetic wave shielding film 300 side, and then pressure is applied. In this way, vacuum pressure forming is performed.
 このように、電磁波シールド用フィルム300側から均一に加圧しつつ、前記閉空間を真空雰囲気下とすることで、剥離層1が凹部62の形状に対応してノイズ抑制層3を押し込み、この押し込みに併せて、剥離層1よりも電子部品封止体290側に位置する、ノイズ抑制層3が凹部62の形状に対応して変形する。これにより、図3(a)に示すように、凹部62の形状に対応してノイズ抑制層3が押し込まれた状態で、ノイズ抑制層3により電子部品封止体290の上面および側面が被覆される。 Thus, the peeling layer 1 pushes the noise suppression layer 3 corresponding to the shape of the recess 62 by making the closed space under a vacuum atmosphere while uniformly pressing from the electromagnetic wave shielding film 300 side. In addition, the noise suppression layer 3 positioned closer to the electronic component package 290 than the release layer 1 is deformed in correspondence with the shape of the recess 62. Thereby, as shown in FIG. 3A, the upper surface and the side surface of the electronic component sealing body 290 are covered with the noise suppression layer 3 in a state in which the noise suppression layer 3 is pressed corresponding to the shape of the recess 62. Ru.
 このような第2貼付工程において、貼付する温度は、特に限定されないが、15℃以上220℃以下であることが好ましく、より好ましくは20℃以上210℃以下、さらに好ましくは150℃以上200℃以下である。 The temperature to be attached in such a second attaching step is not particularly limited, but is preferably 15 ° C. or more and 220 ° C. or less, more preferably 20 ° C. or more and 210 ° C. or less, still more preferably 150 ° C. or more and 200 ° C. or less It is.
 また、貼付する圧力は、特に限定されないが、0.1MPa以上20.0MPa以下であることが好ましく、より好ましくは0.5MPa以上15.0MPa以下である。 The pressure to be attached is not particularly limited, but is preferably 0.1 MPa or more and 20.0 MPa or less, and more preferably 0.5 MPa or more and 15.0 MPa or less.
 さらに、貼付する時間は、特に限定されないが、5秒以上90分以下であることが好ましく、より好ましくは30秒以上10分以下である。 Furthermore, the time for sticking is not particularly limited, but is preferably 5 seconds to 90 minutes, and more preferably 30 seconds to 10 minutes.
 第2貼付工程における条件を上記範囲内に設定することにより、隣接する電子部品封止体290同士間の凹部62に対してノイズ抑制層3を押し込んだ状態で、このノイズ抑制層3により電子部品封止体290の上面および側面を確実に被覆することができる。 By setting the conditions in the second pasting step within the above range, the noise suppression layer 3 is pushed into the recesses 62 between the adjacent electronic component sealing bodies 290, and the noise suppression layer 3 is used to make the electronic components The top and side surfaces of the sealing body 290 can be reliably covered.
 また、プレス成型法とは、例えば、次のような方法である。まず、粘着テープ100上に貼付された電子部品封止体290上に電磁波シールド用フィルム300を配置する。さらに、この電磁波シールド用フィルム300上に、クッション材を配置する。この状態で、これらを、その上面側および下面側から、2つの平板で挾持する。その後、2つの平板を接近させて、加圧する。このようにして、プレス成型法が実施される。 The press molding method is, for example, the following method. First, the electromagnetic wave shielding film 300 is disposed on the electronic component sealing body 290 attached on the adhesive tape 100. Furthermore, a cushioning material is disposed on the electromagnetic wave shielding film 300. In this state, they are held by two flat plates from the upper surface side and the lower surface side. After that, the two flat plates are brought close and pressed. Thus, the press molding method is implemented.
 このように、電磁波シールド用フィルム300上に、クッション材を配置した状態で、電磁波シールド用フィルム300と電子部品封止体290とを接近させることによっても、剥離層1が凹部62の形状に対応してノイズ抑制層3を押し込み、この押し込みに併せて、剥離層1よりも電子部品封止体290側に位置する、ノイズ抑制層3を凹部62の形状に対応して変形させることができる。そのため、図3(a)に示すように、凹部62の形状に対応してノイズ抑制層3が押し込まれた状態で、ノイズ抑制層3により電子部品封止体290の上面および側面を被覆することができる。 Thus, the peeling layer 1 corresponds to the shape of the recess 62 also by bringing the film for electromagnetic shielding 300 and the electronic component sealing body 290 closer to each other in a state where the cushioning material is disposed on the film for electromagnetic shielding 300. Then, the noise suppression layer 3 can be pressed, and the noise suppression layer 3 located closer to the electronic component sealed body 290 than the peeling layer 1 can be deformed according to the shape of the recess 62 in accordance with the pressing. Therefore, as shown in FIG. 3A, the noise suppression layer 3 covers the upper surface and the side surface of the electronic component sealing body 290 in a state where the noise suppression layer 3 is pressed in according to the shape of the recess 62. Can.
 ここで、本工程[5]において用いられる電磁波シールド用フィルム300は、隣接する電子部品封止体290同士間の凹部62に対してノイズ抑制層3を押し込んだ状態で、電子部品封止体290にノイズ抑制層3を被覆するために用いられる。すなわち、電磁波シールド用フィルム300は、電子部品封止体290に、封止部27の上面および側面ならびにインターポーザー25の側面を被覆する、ノイズ抑制層3を形成するように構成されている。電磁波シールド用フィルム300は、剥離層1(基材層)と、剥離層1の一方の面側に積層されたノイズ抑制層3とを有し、ノイズ抑制層3と電子部品封止体290とが対向するように、電子部品封止体290側に配置される(図2(f)、図4参照)。 Here, the film 300 for an electromagnetic shielding used in the present step [5] is the electronic component sealing body 290 in a state where the noise suppression layer 3 is pushed into the concave portion 62 between the electronic component sealing bodies 290 adjacent to each other. Is used to cover the noise suppression layer 3. That is, the electromagnetic wave shielding film 300 is configured to form the noise suppression layer 3 covering the upper surface and the side surface of the sealing portion 27 and the side surface of the interposer 25 on the electronic component sealed body 290. The electromagnetic wave shielding film 300 has a peeling layer 1 (base material layer) and a noise suppression layer 3 laminated on one side of the peeling layer 1, and the noise suppression layer 3 and the electronic component sealing body 290 Are disposed on the electronic component sealing body 290 side so as to face each other (see FIG. 2 (f) and FIG. 4).
 このような電磁波シールド用フィルム300において、剥離層1は、凹部62の形状に追従してノイズ抑制層3を押し込むことで、電子部品封止体290の上面および側面を被覆する際に、押し込まれたノイズ抑制層3が破断するのを防止する保護(緩衝)材として機能する。また、剥離層1は、次工程[6]において、ノイズ抑制層3から剥離される。 In such a film 300 for electromagnetic wave shielding, the peeling layer 1 is pushed in when covering the upper surface and the side surface of the electronic component sealed body 290 by pushing the noise suppression layer 3 following the shape of the concave portion 62. The noise suppression layer 3 functions as a protective (buffer) material that prevents breakage. In addition, the peeling layer 1 is peeled from the noise suppression layer 3 in the next step [6].
 また、剥離層1の100℃における貯蔵弾性率は、1.0E+04Pa以上1.0E+11Pa以下であるのが好ましく、1.0E+05Pa以上1.0E+10Pa以下であるのがより好ましく、1.0E+06Pa以上1.0E+09Pa以下であるのがさらに好ましい。このように、剥離層1の100℃における貯蔵弾性率を、前記範囲内に設定することにより、剥離層1は可撓性を有すると言うことができる。このため、電磁波シールド用フィルム300を用いて、電子部品封止体290の上面および側面を被覆する際に、ノイズ抑制層3に破断を生じさせることなくノイズ抑制層3を凹部62の形状に対応した状態で押し込むことができる。これにより、凹部62の形状に対応してノイズ抑制層3が押し込まれた状態で、ノイズ抑制層3により電子部品封止体290の上面および側面が被覆される。その結果、電子部品封止体290の上面および側面が、破断の発生が防止されたノイズ抑制層3をもって、被覆されるようになるため、このノイズ抑制層3による電磁波シールド(遮断)性が向上することとなる。 The storage elastic modulus at 100 ° C. of the peeling layer 1 is preferably 1.0E + 04 Pa or more and 1.0E + 11 Pa or less, more preferably 1.0E + 05 Pa or more and 1.0E + 10 Pa or less, and 1.0E + 06 Pa or more and 1.0E + 09 Pa or more. It is further preferred that Thus, it can be said that the peeling layer 1 has flexibility by setting the storage elastic modulus at 100 ° C. of the peeling layer 1 within the above range. For this reason, when covering the upper surface and the side surface of the electronic component sealed body 290 using the film 300 for electromagnetic shielding, the noise suppression layer 3 is made to correspond to the shape of the recess 62 without causing the noise suppression layer 3 to break. It can be pushed in the state of Thereby, the upper surface and the side surface of the electronic component sealing body 290 are covered with the noise suppression layer 3 in a state where the noise suppression layer 3 is pressed in according to the shape of the recess 62. As a result, since the upper surface and the side surface of the electronic component package 290 are covered with the noise suppression layer 3 in which the occurrence of breakage is prevented, the electromagnetic wave shielding (blocking) property by the noise suppression layer 3 is improved. It will be done.
 本実施形態では、剥離層1は、第3の層13と、第2の層12と、第1の層11とで構成され、これら各層が剥離層1のノイズ抑制層3が積層されている面側から、この順で積層される。上述した剥離層1の特性が発揮されるように、これら各層11~13の種類、および厚さ等が適宜組み合わされる(図4参照)。 In the present embodiment, the peeling layer 1 is composed of the third layer 13, the second layer 12, and the first layer 11, and the noise suppression layer 3 of the peeling layer 1 is laminated on each of these layers. The layers are stacked in this order from the surface side. The types, thicknesses, and the like of the layers 11 to 13 are appropriately combined (see FIG. 4) so that the characteristics of the release layer 1 described above can be exhibited.
 以下、これら各層11~13について、それぞれ、説明する。
 第1の層11は、第2貼付工程において、凹部62の形状に対応してノイズ抑制層3を、例えば、真空加圧式ラミネーター等を用いて押し込む際に、真空加圧式ラミネーター等が有する押圧部との離型性の機能を発揮する。また、第1の層11は、第2の層12側に押圧部からの押圧力を伝播する。
Each of the layers 11 to 13 will be described below.
The first layer 11 is a pressing portion of the vacuum pressure type laminator or the like when the noise suppression layer 3 is pressed using the vacuum pressure type laminator or the like corresponding to the shape of the concave portion 62 in the second bonding step. It exerts the function of releasability with In addition, the first layer 11 propagates the pressing force from the pressing portion to the second layer 12 side.
 この第1の層(第1離型層)11の構成材料としては、特に限定されず、例えば、シンジオタクチックポリスチレン、ポリメチルペンテン、ポリブチレンテレフタレート、ポリプロピレン、環状オレフィンポリマー、シリコーンのような樹脂材料が挙げられる。これらの中でも、ポリメチルペンテンを用いることが好ましい。このように、ポリメチルペンテンを有する第1の層11を用いることにより、第1の層11の装置との離型性、さらには耐熱性および形状追従性を向上させることができる。 The constituent material of the first layer (first release layer) 11 is not particularly limited. For example, a resin such as syndiotactic polystyrene, polymethylpentene, polybutylene terephthalate, polypropylene, cyclic olefin polymer, and silicone Materials can be mentioned. Among these, it is preferable to use polymethylpentene. As described above, by using the first layer 11 having polymethylpentene, the releasability of the first layer 11 from the device, and further, the heat resistance and the shape followability can be improved.
 第1の層11にポリメチルペンテンを用いる場合、その含有量は、特に限定されないが、60重量%以上であることが好ましく、70重量%以上95重量%以下であることがより好ましい。ポリメチルペンテンの含有量が前記下限値未満である場合、第1の層11の離型性が低下するおそれがある。また、ポリメチルペンテンの含有量が前記上限値を超える場合、第1の層11の形状追従性が不足するおそれがある。 When polymethylpentene is used for the first layer 11, its content is not particularly limited, but is preferably 60% by weight or more, and more preferably 70% by weight or more and 95% by weight or less. If the content of polymethylpentene is less than the lower limit value, the releasability of the first layer 11 may be reduced. Moreover, when content of polymethyl pentene exceeds the said upper limit, there exists a possibility that shape following property of the 1st layer 11 may run short.
 なお、第1の層11は、ポリメチルペンテンのみで構成されていても構わない。また、第1の層11は、ポリメチルペンテンの他に、さらにスチレン系エラストマー、ポリエチレンまたはポリプロピレン等を含有していてもよい。 The first layer 11 may be made of only polymethylpentene. In addition to polymethylpentene, the first layer 11 may further contain a styrenic elastomer, polyethylene, polypropylene or the like.
 第1の層11の平均厚さは、特に限定されないが、5μm以上100μm以下であることが好ましく、10μm以上65μm以下であることがより好ましい。第1の層11の平均厚さが前記下限値未満である場合、第1の層11が破断し、その離型性が低下するおそれがある。また、第1の層11の平均厚さが前記上限値を超える場合、剥離層1の形状追従性が低下し、ノイズ抑制層3の形状追従性が低下するおそれがある。 The average thickness of the first layer 11 is not particularly limited, but is preferably 5 μm or more and 100 μm or less, and more preferably 10 μm or more and 65 μm or less. If the average thickness of the first layer 11 is less than the lower limit value, the first layer 11 may be broken and its releasability may be reduced. In addition, when the average thickness of the first layer 11 exceeds the upper limit value, the shape following property of the peeling layer 1 may be reduced, and the shape following property of the noise suppression layer 3 may be reduced.
 また、第1の層11の100℃における貯蔵弾性率は、1.0E+05Pa以上1.0E+11Pa以下であるのが好ましく、5.0E+06Pa以上1.0E+10Pa以下であるのがより好ましい。第1の層11の貯蔵弾性率をかかる範囲内に設定することにより、電磁波シールド用フィルム300の加熱時において、第1の層11は、優れた伸縮性を有するため、ノイズ抑制層3の凹部62に対する形状追従性をより確実に向上させることができる。また、剥離層1全体としての貯蔵弾性率を前述した範囲内に比較的容易に設定することができる。 The storage elastic modulus at 100 ° C. of the first layer 11 is preferably 1.0E + 05 Pa or more and 1.0E + 11 Pa or less, and more preferably 5.0E + 06 Pa or more and 1.0E + 10 Pa or less. By setting the storage elastic modulus of the first layer 11 within such a range, the first layer 11 has excellent stretchability at the time of heating of the film 300 for shielding an electromagnetic wave, and hence the recesses of the noise suppression layer 3 The shape followability to 62 can be more reliably improved. Moreover, the storage elastic modulus as the whole peeling layer 1 can be set comparatively easily in the range mentioned above.
 さらに、第1の層11の表面張力は、20~40[mN/m]であるのが好ましく、25~35[mN/m]であるのがより好ましい。かかる範囲内の表面張力を有する第1の層11を優れた離型性を備えると言うことができる。このため、真空加圧式ラミネーター等を用いた押し込みの後に、押圧部から第1の層11を剥離させることができる。 Furthermore, the surface tension of the first layer 11 is preferably 20 to 40 mN / m, and more preferably 25 to 35 mN / m. It can be said that the first layer 11 having a surface tension within this range has excellent releasability. For this reason, the 1st layer 11 can be made to exfoliate from a press part after pushing in using a vacuum pressurization type laminator etc.
 第3の層13は、第2貼付工程[5]において、凹部62に対するノイズ抑制層3の押し込みを、真空加圧式ラミネーター等を用いて実施した後に、第1剥離工程[6]において、剥離層1をノイズ抑制層3から剥離する際に、剥離層1に剥離性の機能を付与する。また、第3の層13は、凹部62の形状に追従する追従性の機能を有し、かつ、ノイズ抑制層3側に、押圧部からの押圧力を伝播する機能を併せ持つ。 The third layer 13 is a peeling layer in the first peeling step [6] after the pressing of the noise suppression layer 3 into the recess 62 is performed using the vacuum pressure type laminator or the like in the second bonding step [5]. When peeling 1 from the noise suppression layer 3, the peeling layer 1 is provided with a peelable function. The third layer 13 has a function of following the shape of the recess 62 and also has a function of transmitting the pressure from the pressing portion on the side of the noise suppression layer 3.
 この第3の層(第2離型層)13の構成材料としては、特に限定されず、例えば、シンジオタクチックポリスチレン、ポリメチルペンテン、ポリブチレンテレフタレート、ポリプロピレン、環状オレフィンポリマー、シリコーンのような樹脂材料が挙げられる。これらの中でも、ポリメチルペンテンを用いることが好ましい。このように、ポリメチルペンテンを用いることにより、第3の層13のノイズ抑制層3との離型性、さらには耐熱性および形状追従性を向上させることができる。 The constituent material of the third layer (second release layer) 13 is not particularly limited. For example, a resin such as syndiotactic polystyrene, polymethylpentene, polybutylene terephthalate, polypropylene, cyclic olefin polymer, silicone Materials can be mentioned. Among these, it is preferable to use polymethylpentene. Thus, by using polymethylpentene, releasability with the noise suppression layer 3 of the third layer 13 can be improved, and further, heat resistance and shape followability can be improved.
 第3の層13におけるポリメチルペンテンの含有量は、特に限定されないが、60重量%以上であることが好ましく、70重量%以上95重量%以下であることがより好ましい。ポリメチルペンテンの含有量が前記下限値未満である場合、第3の層13の離型性が低下するおそれがある。また、ポリメチルペンテンの含有量が前記上限値を超える場合、第3の層13の形状追従性が不足するおそれがある。 The content of polymethylpentene in the third layer 13 is not particularly limited, but is preferably 60% by weight or more, and more preferably 70% by weight or more and 95% by weight or less. When the content of polymethylpentene is less than the lower limit value, the releasability of the third layer 13 may be reduced. Moreover, when content of polymethyl pentene exceeds the said upper limit, there exists a possibility that shape following property of the 3rd layer 13 may run short.
 なお、第3の層13は、ポリメチルペンテンのみで構成されていても構わないが、前記ポリメチルペンテンの他に、さらにスチレン系エラストマー、ポリエチレンまたはポリプロピレン等を含有していてもよい。また、第3の層13と、第1の層11とを構成する樹脂材料は、同じであっても異なっていても構わない。 Although the third layer 13 may be made of only polymethylpentene, it may further contain styrene elastomer, polyethylene, polypropylene or the like in addition to the polymethylpentene. Moreover, the resin material which comprises the 3rd layer 13 and the 1st layer 11 may be same or different.
 第3の層13の平均厚さは、特に限定されないが、5μm以上100μm以下であることが好ましく、10μm以上65μm以下であることがより好ましい。第3の層13の平均厚さが前記下限値未満である場合、耐熱性が不足し、第2貼付工程[5]で基材層の耐熱性が不足し、変形が発生し、ノイズ抑制層3が変形するおそれがある。また、第3の層13の平均厚さが前記上限値を超える場合、電磁波シールド用フィルム全体の総厚さが厚くなり、カット等の作業性が低下するおそれがあり、また、コスト面でも経済的ではない。 The average thickness of the third layer 13 is not particularly limited, but is preferably 5 μm or more and 100 μm or less, and more preferably 10 μm or more and 65 μm or less. When the average thickness of the third layer 13 is less than the lower limit, the heat resistance is insufficient, the heat resistance of the base material layer is insufficient in the second bonding step [5], and deformation occurs, and the noise suppression layer 3 may be deformed. In addition, when the average thickness of the third layer 13 exceeds the upper limit, the total thickness of the whole film for an electromagnetic shielding film may be increased, and the workability such as cutting may be deteriorated. It is not target.
 なお、第1の層11と、第3の層13の厚さは、同じであっても異なっていても構わない。 The thicknesses of the first layer 11 and the third layer 13 may be the same or different.
 また、第3の層13の100℃における貯蔵弾性率は、1.0E+05Pa以上1.0E+11Pa以下であるのが好ましく、5.0E+06Pa以上1.0E+10Pa以下であるのがより好ましい。第3の層13の貯蔵弾性率をかかる範囲内に設定することにより、電磁波シールド用フィルム300の加熱時において、第3の層13は、優れた伸縮性を有する。このため、第3の層13、さらにはノイズ抑制層3の凹部62に対する形状追従性をより確実に向上させることができる。 The storage elastic modulus at 100 ° C. of the third layer 13 is preferably 1.0E + 05 Pa or more and 1.0E + 11 Pa or less, and more preferably 5.0E + 06 Pa or more and 1.0E + 10 Pa or less. By setting the storage elastic modulus of the third layer 13 within such a range, the third layer 13 has excellent stretchability at the time of heating the film 300 for shielding an electromagnetic wave. For this reason, the shape followability to the third layer 13 and the concave portion 62 of the noise suppression layer 3 can be more reliably improved.
 さらに、第3の層13の表面張力は、20~40[mN/m]であるのが好ましく、25~35[mN/m]であるのがより好ましい。かかる範囲内の表面張力を有する第3の層13を優れた離型性を備えると言うことができる。このため、真空加圧式ラミネーター等を用いた押し込みの後に、剥離層1をノイズ抑制層3から剥離する際に、第3の層13とノイズ抑制層3との界面において、剥離層1を確実に剥離させることができる。 Furthermore, the surface tension of the third layer 13 is preferably 20 to 40 mN / m, and more preferably 25 to 35 mN / m. It can be said that the third layer 13 having a surface tension within this range has excellent releasability. Therefore, when peeling off the peeling layer 1 from the noise suppression layer 3 after pressing using a vacuum pressure type laminator or the like, the peeling layer 1 is reliably made at the interface between the third layer 13 and the noise suppression layer 3 It can be peeled off.
 第2の層12は、第2貼付工程[5]において、剥離層1を押し込み用の基材として用いて凹部62に対してノイズ抑制層3を押し込む際に、第3の層13を、凹部62に対して押し込む(埋め込む)ためのクッション機能を有する。また、第2の層12は、この押し込む力を、第3の層13、さらには、この第3の層13を介してノイズ抑制層3に、均一に作用させる機能を有している。これにより、ノイズ抑制層3と凹部62との間にボイドを発生させることなく、ノイズ抑制層3を凹部62に対して優れた密閉性(追従性)をもって押し込むことができる。 The second layer 12 is used as the third layer 13 when pressing the noise suppression layer 3 into the recess 62 using the peeling layer 1 as a base for pressing in the second bonding step [5]. 62 has a cushion function for pushing in (embedding). Further, the second layer 12 has a function of causing the pressing force to act uniformly on the third layer 13 and further on the noise suppression layer 3 via the third layer 13. As a result, the noise suppression layer 3 can be pushed into the recess 62 with excellent sealing performance (followability) without generating a void between the noise suppression layer 3 and the recess 62.
 この第2の層12(クッション層)の構成材料としては、例えば、ポリエチレン、ポリプロプレン等のαオレフィン系重合体、エチレン、プロピレン、ブテン、ペンテン、ヘキセン、メチルペンテン等を共重合体成分として有するαオレフィン系共重合体、ポリエーテルスルホン、ポリフェニレンスルフィド等のエンジニアリングプラスチックス系樹脂が挙げられ、これらを単独あるいは複数併用してもよい。これらの中でも、αオレフィン系共重合体を用いることが好ましい。具体的には、エチレン等のαオレフィンと、(メタ)アクリル酸エステルとの共重合体、エチレンと酢酸ビニルとの共重合体、エチレンと(メタ)アクリル酸との共重合体(EMMA)、およびそれらの部分イオン架橋物等が挙げられる。αオレフィン系共重合体は、形状追従性に優れ、さらに、第1の層11の構成材料と比較して柔軟性に優れる。このことから、かかる構成材料で構成される第2の層12に、第1の層11を凹部62に対して押し込む(埋め込む)ためのクッション機能を確実に付与することができる。 The constituent material of the second layer 12 (cushion layer) is, for example, an α-olefin polymer such as polyethylene or polypropylene, ethylene, propylene, butene, pentene, hexene, methylpentene or the like as a copolymer component Engineering plastics resin such as α-olefin copolymer, polyether sulfone and polyphenylene sulfide may be mentioned, and these may be used alone or in combination. Among these, it is preferable to use an α-olefin copolymer. Specifically, a copolymer of an α-olefin such as ethylene and a (meth) acrylic ester, a copolymer of ethylene and vinyl acetate, a copolymer of ethylene and (meth) acrylic acid (EMMA), And partial ion cross-linked products thereof. The α-olefin copolymer is excellent in shape followability and further excellent in flexibility as compared with the constituent material of the first layer 11. From this, it is possible to reliably provide the second layer 12 made of such a constituent material with a cushion function for pushing (embedding) the first layer 11 into the recess 62.
 なお、第2の層12は、前述した第1の層11および第3の層13で挙げた構成材料と、第2の層12の構成材料とのブレンド体であってもよい。 The second layer 12 may be a blend of the constituent materials listed in the first layer 11 and the third layer 13 described above and the constituent material of the second layer 12.
 第2の層12の平均厚さは、特に限定されないが、20μm以上500μm以下であることが好ましく、100μm以上400μm以下であることがより好ましい。第2の層12の平均厚さが前記下限値未満である場合、第2の層12の形状追従性が不足し、第2貼付工程[5]で凹部62への追従性が不足するというおそれがある。また、第2の層12の平均厚さが前記上限値を超える場合、第2貼付工程[5]において、第2の層12からの樹脂のシミ出しが多くなる。このため、シミ出した樹脂が、圧着装置の熱盤に付着し、作業性が低下するというおそれがある。 The average thickness of the second layer 12 is not particularly limited, but is preferably 20 μm or more and 500 μm or less, and more preferably 100 μm or more and 400 μm or less. When the average thickness of the second layer 12 is less than the lower limit value, there is a fear that the shape following property of the second layer 12 is insufficient and the following property to the concave part 62 is insufficient in the second pasting step [5]. There is. In addition, when the average thickness of the second layer 12 exceeds the upper limit value, in the second bonding step [5], the resin exudation from the second layer 12 is increased. For this reason, there is a possibility that the resin which stained out will adhere to the heating board of a compression bonding apparatus, and workability may fall.
 また、第2の層12の100℃における貯蔵弾性率は、1.0E+04Pa以上1.0E+10Pa以下であるのが好ましく、1.0E+05Pa以上1.0E+09Pa以下であるのがより好ましい。第2の層12の貯蔵弾性率をかかる範囲内に設定することにより、電磁波シールド用フィルム300の加熱時において、第2の層12に、第1の層11と比較してより優れた伸縮性を容易に付与することができる。そのため、第2の層12、さらには第3の層13およびノイズ抑制層3の凹部62に対する形状追従性をより確実に向上させることができる。 The storage elastic modulus at 100 ° C. of the second layer 12 is preferably 1.0E + 04 Pa or more and 1.0E + 10 Pa or less, and more preferably 1.0E + 05 Pa or more and 1.0E + 09 Pa or less. By setting the storage elastic modulus of the second layer 12 within such a range, the second layer 12 has better elasticity than the first layer 11 when the film for electromagnetic shielding 300 is heated. Can be easily applied. Therefore, the shape followability of the second layer 12 and further the third layer 13 and the recess 62 of the noise suppression layer 3 can be more reliably improved.
 なお、各層11~13の貯蔵弾性率を、それぞれ、前述した範囲内において適宜設定することで、剥離層1の100℃における貯蔵弾性率を1.0E+04Pa以上1.0E+11Pa以下の範囲内に容易に設定することができる。また、各層11~13の構成材料を適宜選択することで、ポリメチルペンテンを主材料として含有する剥離層(基材層)1を調製することができる。 Incidentally, the storage elastic modulus of each of the layers 11 to 13 can be easily set within the range of 1.0E + 04 Pa or more and 1.0E + 11 Pa or less by setting the storage elastic modulus of each of the layers 11 to 13 appropriately within the above-described range. It can be set. In addition, by appropriately selecting the constituent material of each of the layers 11 to 13, the peeling layer (base material layer) 1 containing polymethylpentene as a main material can be prepared.
 剥離層1の全体の厚さは、特に限定されないが、20μm以上1000μm以下であることが好ましく、70μm以上500μm以下であることがより好ましい。剥離層1の全体の平均厚さが前記下限値未満である場合、第3の層13が破断し、剥離層1の離型性が低下するというおそれがある。また、剥離層1の全体の平均厚さが前記上限値を超える場合、剥離層1の形状追従性が低下し、ノイズ抑制層3の凹部62に対する形状追従性が低下するというおそれがある。 The total thickness of the release layer 1 is not particularly limited, but is preferably 20 μm to 1000 μm, and more preferably 70 μm to 500 μm. When the average thickness of the entire release layer 1 is less than the lower limit value, the third layer 13 may be broken and the releasability of the release layer 1 may be reduced. Moreover, when the average thickness of the whole peeling layer 1 exceeds the said upper limit, there exists a possibility that the shape following property of the peeling layer 1 will fall and the shape following property with respect to the recessed part 62 of the noise suppression layer 3 may fall.
 なお、この剥離層1の構成層数は、特に限定されず、上述したような3層構成を含む2層以上の多層構成であっても良いし、単層構成であっても良い。 The number of constituent layers of the release layer 1 is not particularly limited, and may be a multilayer structure of two or more layers including the three-layer structure as described above, or may be a single layer structure.
 また、剥離層1を単層構成とする場合、この剥離層1の構成材料としては、特に限定されず、例えば、シンジオタクチックポリスチレン、ポリメチルペンテン、ポリブチレンテレフタレート、ポリエチレンテレフタレート、無軸延伸ポリプロピレンおよび二軸延伸ポリプロピレン等のポリプロピレン、環状オレフィンポリマー、シリコーン、スチレンエラストマー樹脂、スチレンブタジエンゴム、アクリルゴム、エポキシ樹脂、ポリフェノール、ポリウレタンのような樹脂材料が挙げられる。これらの中でも、ポリメチルペンテンを用いることが好ましい。これにより、剥離層1のノイズ抑制層3に対する押込み性、さらには耐熱性を向上させることができ、かつ、後述する第1剥離工程[6]時にノイズ抑制層3から離型性よく剥離層1を剥がすことができる。 Moreover, when making the peeling layer 1 into a single layer structure, it does not specifically limit as a constituent material of this peeling layer 1, For example, syndiotactic polystyrene, polymethyl pentene, polybutylene terephthalate, polyethylene terephthalate, non-axially stretched polypropylene And polypropylene such as biaxially oriented polypropylene, cyclic olefin polymers, silicone, styrene elastomer resin, styrene butadiene rubber, acrylic rubber, epoxy resin, polyphenol, and resin materials such as polyurethane. Among these, it is preferable to use polymethylpentene. Thereby, the indentation property of the peeling layer 1 to the noise suppression layer 3 and further the heat resistance can be improved, and the peeling layer 1 with good releasability from the noise suppression layer 3 at the time of the first peeling step [6] described later. Can be peeled off.
 さらに、この場合の剥離層1の厚さは、特に限定されないが、3μm以上2000μm以下であることが好ましく、5μm以上500μm以下であることがより好ましい。剥離層1の平均厚さが前記下限値未満である場合、剥離層1ひいてはノイズ抑制層3が破断し、その電磁波シールド性が低下するおそれがある。また、剥離層1の平均厚さが前記上限値を超える場合、剥離層1からノイズ抑制層3に対する押し込む力が十分に伝達されず、ノイズ抑制層3の凹部62に対する押し込み性が十分に得られないおそれがある。 Furthermore, the thickness of the peeling layer 1 in this case is not particularly limited, but is preferably 3 μm or more and 2000 μm or less, and more preferably 5 μm or more and 500 μm or less. When the average thickness of the peeling layer 1 is less than the lower limit, the peeling layer 1 and hence the noise suppression layer 3 may be broken, and the electromagnetic wave shielding properties may be reduced. In addition, when the average thickness of the peeling layer 1 exceeds the above upper limit, the pressing force from the peeling layer 1 to the noise suppression layer 3 is not sufficiently transmitted, and the pushability of the noise suppression layer 3 to the concave portion 62 is sufficiently obtained. There is no fear.
 ノイズ抑制層3は、電子部品封止体290が備える半導体素子26および電子素子28と、このノイズ抑制層3を介して、電子部品封止体290と反対側に位置する他の電子部品等とを、これらの少なくとも一方から生じる電磁波を遮断(シールド)する機能を有する。 The noise suppression layer 3 includes the semiconductor element 26 and the electronic element 28 provided in the electronic component sealing body 290, and the other electronic components and the like located on the opposite side of the electronic component sealing body 290 via the noise suppression layer 3. Has a function to block (shield) electromagnetic waves generated from at least one of them.
 このノイズ抑制層3(電磁波遮断層)は、特に限定されず、如何なる形態で電磁波を遮断してもよい。ノイズ抑制層3の形態としては、例えば、ノイズ抑制層3に入射した電磁波を反射させることにより遮断(遮蔽)する反射層と、ノイズ抑制層3に入射した電磁波を吸収することにより遮断(遮蔽)する吸収層とが挙げられる。 The noise suppression layer 3 (electromagnetic wave blocking layer) is not particularly limited, and may block electromagnetic waves in any form. As a form of the noise suppression layer 3, for example, a reflection layer that blocks (shields) the electromagnetic wave that has entered the noise suppression layer 3 by reflecting it and a shield layer that absorbs the electromagnetic wave that has entered the noise suppression layer 3 (blocks) And an absorbent layer.
 これら反射層および吸収層は、ともに、粒子状をなす導電性材料と、バインダー樹脂とを含有する構成をなすことが好ましい。また、導電性材料としては、金属材料、金属酸化物材料、導電性高分子材料または導電性セラミックス材料のうちの少なくとも1種を含有することが好ましい。以下、これら反射層および吸収層について、それぞれ、説明する。 It is preferable that the reflection layer and the absorption layer both have a configuration containing a particulate conductive material and a binder resin. The conductive material preferably contains at least one of a metal material, a metal oxide material, a conductive polymer material, and a conductive ceramic material. Each of the reflection layer and the absorption layer will be described below.
 反射層は、反射層に入射した電磁波を反射させることにより電磁波シールド性を発揮する。この反射層としては、例えば、導電性接着剤層、金属薄膜層、金属メッシュ、ITOなどの導電性材料の表面処理等が挙げられる。これらを単独あるいは併用してもよい。これらの中でも、導電性接着剤層を用いることが好ましい。導電性接着剤層は、その膜厚(平均厚さ)を比較的薄く設定したとしても、優れた電磁波シールド性を発揮するため、反射層として好ましく用いられる。 The reflective layer exhibits electromagnetic wave shielding properties by reflecting an electromagnetic wave incident on the reflective layer. Examples of the reflective layer include a surface treatment of a conductive material such as a conductive adhesive layer, a metal thin film layer, a metal mesh, and ITO. These may be used alone or in combination. Among these, it is preferable to use a conductive adhesive layer. The conductive adhesive layer is preferably used as a reflective layer because it exhibits excellent electromagnetic wave shielding properties even when its film thickness (average thickness) is set relatively thin.
 前記導電性接着剤層は、金属粉(金属材料)とバインダー樹脂とを含むように構成される。金属粉は例えば、金、銀、銅または銀コート銅、ニッケル等が挙げられる。これらの中でも、電磁波シールド性に優れているという理由から、銀を用いることが好ましい。また、バインダー樹脂としては、熱硬化性樹脂または熱可塑性樹脂などの各種樹脂材料を用いることができる。具体的には、エポキシ樹脂、フェノールノボラック樹脂などのフェノール樹脂、アミノ樹脂、不飽和ポリエステル樹脂、ウレタン樹脂、シリコーン樹脂、アクリル樹脂、ポリエステル樹脂、塩化ビニル樹脂、スチレン樹脂、ポリアミド樹脂、ポリオレフィン樹脂、アクリルゴムなどのアクリル系エラストマー、スチレン系エラストマー、オレフィン系エラストマーのようなエラストマー等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。これらの中でも、バインダー樹脂としては、エポキシ樹脂などの熱硬化性樹脂およびアクリルゴムなどのアクリル系エラストマーを組み合わせて用いることが好ましい。バインダー樹脂が、熱硬化性樹脂およびアクリル系エラストマーを含む場合、バインダー樹脂の構成比率は、重量比で、熱硬化性樹脂:アクリル系エラストマー=3:2であることがより好ましい。 The conductive adhesive layer is configured to include metal powder (metal material) and a binder resin. Examples of the metal powder include gold, silver, copper or silver-coated copper, nickel and the like. Among these, silver is preferable because it is excellent in electromagnetic wave shielding properties. Moreover, various resin materials, such as a thermosetting resin or a thermoplastic resin, can be used as binder resin. Specifically, epoxy resin, phenol resin such as phenol novolac resin, amino resin, unsaturated polyester resin, urethane resin, silicone resin, acrylic resin, polyester resin, vinyl chloride resin, styrene resin, polyamide resin, polyolefin resin, acrylic resin Acrylic elastomers such as rubber, styrene elastomers, elastomers such as olefin elastomers, etc. may be mentioned, and one or more of these may be used in combination. Among these, as the binder resin, it is preferable to use a thermosetting resin such as an epoxy resin and an acrylic elastomer such as an acrylic rubber in combination. When the binder resin contains a thermosetting resin and an acrylic elastomer, the composition ratio of the binder resin is more preferably a thermosetting resin: acrylic elastomer = 3: 2 in weight ratio.
 前記導電性接着剤層における金属粉とバインダー樹脂との含有比率は、特に限定されないが、重量比で20:80~95:5であることが好ましく、40:60~85:15であることがより好ましい。換言すれば、導電性接着剤層(ノイズ抑制層)におけるバインダー樹脂の含有量は、5-80重量%が好ましく、15-60重量%がより好ましい。 The content ratio of the metal powder to the binder resin in the conductive adhesive layer is not particularly limited, but is preferably 20:80 to 95: 5 by weight ratio, and is 40:60 to 85:15. More preferable. In other words, the content of the binder resin in the conductive adhesive layer (noise suppression layer) is preferably 5 to 80% by weight, and more preferably 15 to 60% by weight.
 導電性接着剤層は、前記金属粉とバインダー樹脂との他に、さらに難燃剤、レベリング剤、粘度調整剤等を含有しても良い。 The conductive adhesive layer may further contain a flame retardant, a leveling agent, a viscosity modifier and the like in addition to the metal powder and the binder resin.
 反射層の平均厚さ(E1)は、特に限定されないが、100nm以上100μm以下であることが好ましく、1μm以上20μm以下であることがより好ましい。 The average thickness (E1) of the reflective layer is not particularly limited, but is preferably 100 nm or more and 100 μm or less, and more preferably 1 μm or more and 20 μm or less.
 吸収層は、吸収層に入射した電磁波を吸収し、熱エネルギーに変換することにより電磁波シールド性を発揮する。 The absorbing layer absorbs electromagnetic waves incident on the absorbing layer and converts the electromagnetic waves into heat energy to exhibit electromagnetic wave shielding properties.
 この吸収層としては、例えば、金属粉(金属材料)および導電性高分子材料等の導電吸収材料を主材料として構成される導電吸収層、炭素系材料および導電性高分子材料等の誘電吸収材料を主材料として構成される誘電吸収層、軟磁性金属等の磁性吸収材料を主材料として構成される磁性吸収層等が挙げられ、これらを単独あるいは併用してもよい。なお、この吸収層は、前記主材料の他に、上述したバインダー樹脂を含有することが好ましい。 As the absorption layer, for example, a conductive absorption layer mainly composed of a conductive absorption material such as metal powder (metal material) and a conductive polymer material, a dielectric absorption material such as a carbon-based material and a conductive polymer material And magnetic absorbing layers composed mainly of magnetic absorbing materials such as soft magnetic metals, etc., and these may be used alone or in combination. In addition, it is preferable that this absorption layer contains the binder resin mentioned above other than the said main material.
 なお、導電吸収層は、電界を印加した際に材料内部に流れる電流により、電磁エネルギーを熱エネルギーに変換することで、電磁波を吸収する。また、誘電吸収層は、電磁波を誘電損失により熱エネルギーに変換することで、電磁波を吸収する。また、磁性吸収層は、過電流損、ヒステリシス損、磁気共鳴等の磁性損失により、電波のエネルギーを熱に変換して消費することで、電磁波を吸収する。 Note that the conductive absorption layer absorbs electromagnetic waves by converting electromagnetic energy into thermal energy by a current flowing inside the material when an electric field is applied. In addition, the dielectric absorption layer absorbs electromagnetic waves by converting the electromagnetic waves into heat energy by dielectric loss. Further, the magnetic absorption layer absorbs electromagnetic waves by converting energy of radio waves into heat and consuming it by magnetic losses such as overcurrent loss, hysteresis loss, magnetic resonance and the like.
 これらの中でも、誘電吸収層、導電吸収層を用いることが好ましい。誘電吸収層および導電吸収層は、その膜厚(平均厚さ)を比較的薄く設定したとしても、特に優れた電磁波シールド性を発揮するため、吸収層として好ましく用いられる。また、その層中に含まれる材料の粒子径が小さいことやその添加量も少なくできることから、その膜厚を比較的容易に薄く設定することができ、また軽量化も可能である。 Among these, it is preferable to use a dielectric absorption layer and a conductive absorption layer. The dielectric absorption layer and the conductive absorption layer are preferably used as an absorption layer because they exhibit excellent electromagnetic wave shielding properties even when the film thickness (average thickness) is set relatively thin. In addition, since the particle diameter of the material contained in the layer is small and the amount of addition thereof can be reduced, the film thickness can be set relatively easily and weight reduction is also possible.
 なお、導電吸収材料としては、例えば、導電性高分子材料、ATO等の金属酸化物材料、導電性セラミックス材料が挙げられる。 Examples of the conductive absorption material include conductive polymer materials, metal oxide materials such as ATO, and conductive ceramic materials.
 また、導電性高分子材料としては、例えば、ポリアセチレン、ポリピロール、PEDOT(poly-ethylenedioxythiophene)、PEDOT/PSS、ポリチオフェン、ポリアニリン、ポリ(p-フェニレン)、ポリフルオレン、ポリカルバゾール、ポリシランまたはこれらの誘導体等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。 Moreover, as the conductive polymer material, for example, polyacetylene, polypyrrole, PEDOT (poly-ethylenedioxythiophene), PEDOT / PSS, polythiophene, polyaniline, polyaniline, poly (p-phenylene), polyfluorene, polycarbazole, polysilane or derivatives thereof, etc. These may be used alone or in combination of two or more.
 誘電吸収材料としては、炭素系材料、導電性高分子材料、セラミック材料等が挙げられる。
 また、炭素系材料としては、例えば、単層カーボンナノチューブ、多層カーボンナノチューブのようなカーボンナノチューブ、カーボンナノファイバー、CNナノチューブ、CNナノファイバー、BCNナノチューブ、BCNナノファイバー、グラフェンや、カーボンマイクロコイル、カーボンナノコイル、カーボンナノホーン、カーボンナノウォールのような炭素等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
Examples of the dielectric absorbing material include carbon-based materials, conductive polymer materials, ceramic materials and the like.
Further, as the carbon-based material, for example, single-walled carbon nanotubes, carbon nanotubes such as multi-walled carbon nanotubes, carbon nanofibers, CN nanotubes, CN nanotubes, CN nanofibers, BCN nanotubes, BCN nanofibers, graphene, carbon microcoils, carbon Nanocoils, carbon nanohorns, carbon such as carbon nanowalls, etc. may be mentioned, and one or more of these may be used in combination.
 セラミック材料としては、チタン酸バリウム、ペロブスカイト型チタン酸ジルコン酸バリウムカルシウム結晶粒子、チタニア、アルミナ、ジルコニア、炭化ケイ素および窒化アルミニウム等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。 The ceramic material may, for example, be barium titanate, perovskite-type barium calcium zirconate titanate crystal particles, titania, alumina, zirconia, silicon carbide or aluminum nitride, and one or more of these may be used in combination. be able to.
 さらに、磁性吸収材料としては、例えば、鉄、ケイ素鋼、磁性ステンレス(Fe-Cr-Al-Si合金)、センダスト(Fe-Si-Al合金)、パーマロイ(Fe-Ni合金)、ケイ素銅(Fe-Cu-Si合金)、Fe-Si合金、Fe-Si-B(-Cu-Nb)合金のような軟磁性金属、フェライト等が挙げられる。 Furthermore, as the magnetic absorption material, for example, iron, silicon steel, magnetic stainless steel (Fe-Cr-Al-Si alloy), sendust (Fe-Si-Al alloy), permalloy (Fe-Ni alloy), silicon copper (Fe Soft magnetic metals such as —Cu—Si alloy), Fe—Si alloy, Fe—Si—B (—Cu—Nb) alloy, ferrite and the like.
 吸収層の平均厚さ(E2)は、特に限定されないが、1μm以上300μm以下であることが好ましく、2μm以上100μm以下であることがより好ましい。 The average thickness (E2) of the absorbing layer is not particularly limited, but is preferably 1 μm to 300 μm, and more preferably 2 μm to 100 μm.
 また、本発明では、封止部27は、エポキシ樹脂を主材料として含有し、剥離層(基材層)1は、ポリメチルペンテンを主材料として含有する。さらに、JIS G 3469に準拠して、板状をなす封止部27上に、幅25mmのノイズ抑制層3を100℃にて貼付し、次いで、ノイズ抑制層3を、その一端から、25℃において90°の方向に300mm/分の速度で引き剥がしたときに測定されるピール強度をA[N/mm]とし、JIS G 3469に準拠して、板状をなす剥離層1(基材層)上に、幅25mmのノイズ抑制層3を100℃にて貼付し、次いで、ノイズ抑制層3を、その一端から、25℃において90°の方向に300mm/分の速度で引き剥がしたときに測定されるピール強度をB[N/mm]としたとき、1<A/Bなる関係を満足するように、ノイズ抑制層3の構成材料、および厚さ等が適宜組み合わされる。これにより、次工程[6]において、電子部品封止体290(封止部27の上面および側面)に貼付された電磁波シールド用フィルム300から、剥離層1を、確実に剥離させることができる。
 このような観点から、ノイズ抑制層3のバインダー樹脂としては、エポキシ樹脂、フェノール樹脂およびアクリル系エラストマーを組み合わせて用いることが特に好ましい。また、ノイズ抑制層3のバインダー樹脂が、エポキシ樹脂、フェノール樹脂およびアクリル系エラストマーを含む場合、バインダー樹脂におけるこれら3種の樹脂材料の含有比率(バインダー樹脂の構成比率)が、重量比で、エポキシ樹脂:フェノール樹脂:アクリル系エラストマー=2:1:2であることがさらに好ましい。これにより、ノイズ抑制層3と、エポキシ樹脂を主材料とする封止部27との密着性を向上させることができる。その結果、ノイズ抑制層3と封止部27との間のピール強度(ピール強度A)は、ノイズ抑制層3と剥離層1との間のピール強度(ピール強度B)に比べて、高くなる。このため、剥離層1をノイズ抑制層3から剥離する際に、ノイズ抑制層3が、封止部27側に留まり易く、剥離層1側にノイズ抑制層3に由来する樹脂残りが発生し難くなると考えられる。なお、ノイズ抑制層3におけるエポキシ樹脂の含有量は、2重量%以上32重量%以下であることが好ましく、6重量%以上24重量%以下であることがより好ましい。これにより、剥離層1側へのノイズ抑制層3に由来する樹脂残りの発生を、より確実に防止することができる。
Further, in the present invention, the sealing portion 27 contains an epoxy resin as a main material, and the peeling layer (base material layer) 1 contains polymethylpentene as a main material. Furthermore, in accordance with JIS G 3469, the noise suppression layer 3 with a width of 25 mm is attached at 100 ° C. on the plate-like sealing portion 27 and then the noise suppression layer 3 is Peel strength measured when peeled off at a speed of 300 mm / min in the direction of 90 ° in A direction is A [N / mm], and in accordance with JIS G 3469, plate-like peeling layer 1 (base layer A) the noise suppression layer 3 with a width of 25 mm is attached at 100 ° C., and then the noise suppression layer 3 is peeled from one end at a speed of 300 mm / min in the direction of 90 ° at 25 ° C. When the peel strength to be measured is B [N / mm], the constituent materials of the noise suppression layer 3, the thickness and the like are appropriately combined so as to satisfy the relationship of 1 <A / B. Thereby, the peeling layer 1 can be reliably peeled from the film 300 for an electromagnetic wave shield stuck on the electronic component sealing body 290 (upper surface and side surface of the sealing part 27) in the following process [6].
From such a viewpoint, as the binder resin of the noise suppression layer 3, it is particularly preferable to use an epoxy resin, a phenol resin and an acrylic elastomer in combination. Further, when the binder resin of the noise suppression layer 3 contains an epoxy resin, a phenol resin and an acrylic elastomer, the content ratio of these three resin materials in the binder resin (the composition ratio of the binder resin) is epoxy in weight ratio It is more preferable that resin: phenol resin: acrylic elastomer = 2: 1: 2. Thereby, the adhesiveness of the noise suppression layer 3 and the sealing part 27 which has an epoxy resin as a main material can be improved. As a result, the peel strength (peel strength A) between the noise suppression layer 3 and the sealing portion 27 is higher than the peel strength (peel strength B) between the noise suppression layer 3 and the peeling layer 1 . Therefore, when the peeling layer 1 is peeled from the noise suppression layer 3, the noise suppression layer 3 easily stays on the sealing portion 27 side, and the resin residue derived from the noise suppression layer 3 hardly occurs on the peeling layer 1 side. It is considered to be. The content of the epoxy resin in the noise suppression layer 3 is preferably 2% by weight or more and 32% by weight or less, and more preferably 6% by weight or more and 24% by weight or less. Thereby, generation | occurrence | production of the resin residue originating in the noise suppression layer 3 to the peeling layer 1 side can be prevented more reliably.
 なお、ピール強度Aとピール強度Bとは、1<A/Bなる関係を満足すればよいが、1.5<A/Bなる関係を満足するのが好ましく、2<A/Bなる関係を満足するのがより好ましく、3.0<A/Bなる関係を満足するのがさらに好ましく、4.0<A/B<6.0なる関係を満足するのが特に好ましい。これにより、次工程[6]において、電磁波シールド用フィルム300から、剥離層1を、より確実に剥離させることができ、かつ、本工程[5]において、凹部62に対してノイズ抑制層3を押し込む際に、第3の層13とノイズ抑制層3との間で位置ずれが生じるのを的確に抑制または防止することができる。 The peel strength A and the peel strength B may satisfy the relation 1 <A / B, but preferably satisfy the relation 1.5 <A / B, and the relation 2 <A / B It is more preferable to satisfy, to satisfy the relation of 3.0 <A / B is further preferable, and to satisfy the relation of 4.0 <A / B <6.0 is particularly preferable. Thereby, in the next step [6], the peeling layer 1 can be more reliably peeled from the film 300 for an electromagnetic wave shield, and in the present step [5], the noise suppression layer 3 is removed from the recess 62. At the time of pressing, occurrence of positional deviation between the third layer 13 and the noise suppression layer 3 can be appropriately suppressed or prevented.
 なお、ピール強度A[N/mm]およびピール強度B[N/mm]は、それぞれ、例えば、引張試験機(エー・アンド・デイ社製、「TENSILON RTG-1310」)を用いて測定することができる。 The peel strength A [N / mm] and the peel strength B [N / mm] should be measured using, for example, a tensile tester (manufactured by A & D Co., "TENSILON RTG-1310"). Can.
 [6]次に、図3(b)に示すように、電子部品封止体290に貼付された電磁波シールド用フィルム300から、剥離層1を剥離する(第1剥離工程)。 [6] Next, as shown in FIG. 3B, the peeling layer 1 is peeled off from the electromagnetic wave shielding film 300 attached to the electronic component sealing body 290 (first peeling step).
 この第1剥離工程により、電磁波シールド用フィルム300における剥離層1とノイズ抑制層3との界面において、剥離が生じ、その結果、ノイズ抑制層3から剥離層1が剥離される。これにより、ノイズ抑制層3から剥離層1を剥離した状態で、ノイズ抑制層3により電子部品封止体290の上面および側面が被覆される。 In the first peeling step, peeling occurs at the interface between the peeling layer 1 and the noise suppression layer 3 in the electromagnetic wave shielding film 300, and as a result, the peeling layer 1 is peeled from the noise suppression layer 3. Thereby, the upper surface and the side surface of the electronic component sealed body 290 are covered with the noise suppression layer 3 in a state where the peeling layer 1 is peeled from the noise suppression layer 3.
 すなわち、電子部品封止体290が、粘着テープ100上に貼付された状態で、ノイズ抑制層3が電子部品封止体290の上面および側面に設けられる。このような状態の電子部品封止体290が一括して複数形成される。 That is, the noise suppression layer 3 is provided on the upper surface and the side surface of the electronic component sealing body 290 in a state where the electronic component sealing body 290 is attached onto the adhesive tape 100. A plurality of electronic component sealing bodies 290 in such a state are collectively formed.
 また、剥離層1を剥離する方法としては、特に限定されないが、例えば、手作業による剥離が挙げられる。 Moreover, it does not specifically limit as a method to peel the peeling layer 1, For example, peeling by a manual work is mentioned.
 この手作業による剥離では、例えば、まず、剥離層1の一方の端部を把持し、この把持した端部から剥離層1をノイズ抑制層3から引き剥がす。次いで、この端部から剥離層1の中央部へさらには他方の端部へと順次剥離層1を引き剥がすことにより、ノイズ抑制層3から剥離層1が剥離される。 In this manual peeling, for example, first, one end of the peeling layer 1 is gripped, and the peeling layer 1 is peeled from the noise suppression layer 3 from the gripped end. Then, the peeling layer 1 is peeled from the noise suppression layer 3 by peeling the peeling layer 1 sequentially from this end to the center of the peeling layer 1 and further to the other end.
 この剥離層1の剥離の際に、本発明では、前述の通り、ピール強度Aとピール強度Bとが1<A/Bなる関係を満足する。そのため、本工程において、剥離層1にノイズ抑制層3を残存させることなく、比較的容易に剥離層1をノイズ抑制層3から剥離させることができる。すなわち、剥離層1から電子部品封止体290(封止部27)の上面および側面に、ノイズ抑制層3を転写することができる。 At the time of peeling of the peeling layer 1, in the present invention, as described above, the relation that the peel strength A and the peel strength B satisfy 1 <A / B is satisfied. Therefore, in the present step, the peeling layer 1 can be relatively easily peeled from the noise suppression layer 3 without leaving the noise suppression layer 3 in the peeling layer 1. That is, the noise suppression layer 3 can be transferred from the peeling layer 1 to the upper surface and the side surface of the electronic component sealed body 290 (the sealing portion 27).
 なお、剥離する温度は、180℃以下であることが好ましく、より好ましくは165℃以下、さらに好ましくは20℃以上150℃以下である。 The peeling temperature is preferably 180 ° C. or less, more preferably 165 ° C. or less, and still more preferably 20 ° C. or more and 150 ° C. or less.
 以上のような工程を経ることにより、ノイズ抑制層3から剥離層1を剥離した状態で、ノイズ抑制層3により電子部品封止体290の上面および側面を被覆することができる。 By passing through the steps as described above, the upper surface and the side surface of the electronic component sealing body 290 can be covered with the noise suppression layer 3 in a state where the peeling layer 1 is peeled from the noise suppression layer 3.
 このように、本発明では、比較的容易な方法で電子部品封止体290にノイズ抑制層3を設けることができる。具体的には、電子部品封止体290にスパッタリング法を用いてノイズ抑制層3を形成する場合、用いる装置の操作が煩雑となったり、装置が高価となる問題がある。本発明では、このような問題がなく、電子部品封止体290側に、剥離層1とノイズ抑制層3とを有する電磁波シールド用フィルム300を貼付した後に、剥離層1を剥離すると言う、比較的容易な方法で電子部品封止体290にノイズ抑制層3を設けることができる。 As described above, in the present invention, the noise suppression layer 3 can be provided on the electronic component package 290 by a relatively easy method. Specifically, when the noise suppression layer 3 is formed on the electronic component sealed body 290 using a sputtering method, there is a problem that the operation of the apparatus used becomes complicated or the apparatus becomes expensive. In the present invention, there is no such problem, and it is said that the peeling layer 1 is peeled after the film 300 for electromagnetic wave shielding having the peeling layer 1 and the noise suppression layer 3 is attached to the electronic component sealing body 290 side. The noise suppression layer 3 can be provided on the electronic component sealing body 290 in a very easy way.
 [7]次に、図3(c)に示すように、電子部品封止体290から粘着テープ100を剥離する(第2剥離工程)。 [7] Next, as shown in FIG. 3C, the adhesive tape 100 is peeled off from the electronic component sealed body 290 (second peeling step).
 この第2剥離工程では、粘着テープ100が備える粘着層2にエネルギーを付与することで、粘着層2の電子部品封止体290に対する粘着性を低下させる。これにより、粘着層2と電子部品封止体290との間で剥離が生じる状態とする。その後、電子部品封止体290から粘着テープ100を剥離する。 In the second peeling step, by applying energy to the adhesive layer 2 provided in the adhesive tape 100, the adhesiveness of the adhesive layer 2 to the electronic component sealed body 290 is reduced. Thereby, it is set as the state which peeling arises between the adhesion layer 2 and the electronic component sealing body 290. FIG. Thereafter, the adhesive tape 100 is peeled off from the electronic component sealed body 290.
 これにより、ノイズ抑制層3により上面および側面が被覆された電子部品封止体290を一括して複数形成することができることから、電子部品封止体290の生産性の向上が図られる。 As a result, a plurality of electronic component sealing bodies 290 whose upper surfaces and side surfaces are covered by the noise suppression layer 3 can be collectively formed in a plurality, so that the productivity of the electronic component sealing body 290 can be improved.
 粘着層2にエネルギーを付与する方法としては、特に限定されないが、例えば、粘着層2にエネルギー線を照射する方法、粘着層2を加熱する方法等が挙げられる。これらの中でも、粘着層2にエネルギー線を粘着テープ100の基材4側から照射する方法を用いるのが好ましい。 Although it does not specifically limit as a method to provide energy to the adhesion layer 2, For example, the method of irradiating an energy ray to the adhesion layer 2, the method of heating the adhesion layer 2, etc. are mentioned. Among these, it is preferable to use a method of irradiating the adhesive layer 2 with an energy ray from the side of the substrate 4 of the adhesive tape 100.
 かかる方法は、半導体素子26および電子素子28が不要な熱履歴を経る必要がなく、また、粘着層2に対して比較的簡単に効率よくエネルギーを付与することができるので、エネルギーを付与する方法として好適に用いられる。 Such a method does not require the semiconductor element 26 and the electronic element 28 to go through unnecessary heat history, and energy can be applied to the adhesive layer 2 relatively easily and efficiently. Are preferably used.
 また、エネルギー線としては、例えば、紫外線、電子線、イオンビームのような粒子線等が挙げられる。なお、これらのエネルギー線を2種以上組み合わせて用いてもよい。これらの中でも、特に、紫外線を用いるのが好ましい。紫外線によれば、粘着層2の電子部品封止体290に対する粘着性を効率よく低下させることができる。 Further, as the energy ray, for example, an ultraviolet ray, an electron beam, a particle beam such as an ion beam and the like can be mentioned. Note that these energy rays may be used in combination of two or more. Among these, it is particularly preferable to use ultraviolet light. According to the ultraviolet light, the adhesiveness of the adhesive layer 2 to the electronic component sealing body 290 can be efficiently reduced.
 [8]次に、図3(d)に示すように、電子部品封止体290のインターポーザー25側、すなわちインターポーザー25の半導体素子26および電子素子28とは反対の面側(下面側)に、導体ポストに電気的に接続するように、所定形状にパターニングされた配線23を形成する(配線形成工程)。 [8] Next, as shown in FIG. 3D, the interposer 25 side of the electronic component package 290, that is, the surface side (lower surface side) opposite to the semiconductor element 26 and the electronic element 28 of the interposer 25. Then, the wiring 23 patterned in a predetermined shape is formed so as to be electrically connected to the conductor post (wiring formation step).
 この配線23を形成する方法としては、特に限定されず、例えば、I:電解メッキ法、無電解メッキ法のようなメッキ法を用いて配線23を形成する方法、II:導電性材料を含有する液状材料を電子部品封止体290のインターポーザー25側の面に供給し乾燥・固化することにより配線23を形成する方法等が挙げられる。これらの中でも、Iの方法、特に電解メッキ法を用いて配線23を形成するのが好ましい。電解メッキ法によれば、導体ポストに対して、優れた密着性を発揮する配線23を容易かつ確実に形成することができる。 The method of forming the wiring 23 is not particularly limited. For example, I: a method of forming the wiring 23 using a plating method such as electrolytic plating method, electroless plating method, II: containing a conductive material There is a method of forming the wiring 23 by supplying the liquid material to the surface of the electronic component sealing body 290 on the interposer 25 side, and drying and solidifying it. Among these, it is preferable to form the wiring 23 using the method I, in particular, the electrolytic plating method. According to the electrolytic plating method, the wiring 23 which exhibits excellent adhesion to the conductor post can be easily and surely formed.
 [9]次に、図3(e)に示すように、電子部品封止体290のインターポーザー25側、すなわちインターポーザー25の半導体素子26および電子素子28とは反対の面側(下面側)に、配線23の一部が露出するように、開口部221を備える被覆部22を形成する(被覆部形成工程)。 [9] Next, as shown in FIG. 3 (e), the interposer 25 side of the electronic component sealing body 290, that is, the surface side (lower surface side) opposite to the semiconductor element 26 and the electronic element 28 of the interposer 25. Then, the covering portion 22 including the opening 221 is formed so that a part of the wiring 23 is exposed (covering portion forming step).
 なお、この開口部221は、次工程[10]において、バンプ21を形成する位置に対応するように形成される。 The opening 221 is formed to correspond to the position where the bump 21 is to be formed in the next process [10].
 このような被覆部(被覆層)22は、通常、主としてNiで構成される下層上に、主としてAuで構成される上層を積層した積層体で構成され、例えば、無電解メッキ法を用いて形成される。 Such a covering portion (covering layer) 22 is usually formed of a laminate in which an upper layer mainly composed of Au is laminated on a lower layer mainly composed of Ni, and is formed, for example, using an electroless plating method. Be done.
 [10]次に、図3(f)に示すように、開口部221から露出する配線23に電気的に接続するようにバンプ21を形成する(バンプ接続工程)。 [10] Next, as shown in FIG. 3F, the bumps 21 are formed to be electrically connected to the wiring 23 exposed from the opening 221 (bump connecting step).
 ここで、本実施形態のように、導体ポストとバンプ21との接続を、配線23を介して行う構成とすることにより、バンプ21を、インターポーザー25の面方向において、導体ポストとは異なる位置に配置することができる。換言すれば、バンプ21と導体ポストとの中心部が重ならないように、これらを配置することができる。したがって、得られる半導体装置20における下面の所望の位置にバンプ21を形成することができる。 Here, as in the present embodiment, the connection between the conductor post and the bump 21 is performed via the wiring 23, so that the bump 21 has a position different from that of the conductor post in the planar direction of the interposer 25. Can be placed. In other words, they can be arranged such that the central portions of the bumps 21 and the conductor posts do not overlap. Therefore, the bumps 21 can be formed at desired positions on the lower surface of the obtained semiconductor device 20.
 このバンプ21を配線23に接合する方法としては、特に限定されないが、例えば、バンプ21と配線23との間に、粘性を有するフラックスを介在させることにより行われる。 The method of bonding the bumps 21 to the wires 23 is not particularly limited, and for example, it is performed by interposing a flux having viscosity between the bumps 21 and the wires 23.
 また、バンプ21の構成材料としては、例えば、半田、銀ろう、銅ろう、燐銅ろうのようなろう材等が挙げられる。
 以上のような工程を経て、半導体装置20が製造される。
Moreover, as a constituent material of the bumps 21, for example, a brazing material such as solder, silver brazing, copper brazing, phosphorous copper brazing, etc. may be mentioned.
The semiconductor device 20 is manufactured through the above-described steps.
 このような半導体装置20の製造方法によれば、電子部品封止体290にスパッタリング法を用いてノイズ抑制層3を形成する場合のように、用いる装置の操作が煩雑となったり、装置が高価となることなく、前記工程[5]において、電子部品封止体290側に、剥離層1とノイズ抑制層3とを有する電磁波シールド用フィルム300を貼付した後に、前記工程[6]において、剥離層1を剥離すると言う、比較的容易な方法で電子部品封止体290にノイズ抑制層3を設けることができる。 According to such a method of manufacturing the semiconductor device 20, as in the case of forming the noise suppression layer 3 on the electronic component sealing body 290 using the sputtering method, the operation of the device used becomes complicated, or the device is expensive. In the step [5], the electromagnetic wave shielding film 300 having the peeling layer 1 and the noise suppression layer 3 is attached to the electronic component sealed body 290 in the step [5], and then peeling is performed in the step [6]. The noise suppression layer 3 can be provided on the electronic component sealing body 290 by a relatively easy method of peeling the layer 1.
 さらに、前記工程[2]において得られた1つの電子部品封止連結体270から、前記工程[3]~[7]を経ることで、複数の電子部品封止体290を一括して製造することができるので、電子部品封止体290ひいては、この電子部品封止体290から得られる半導体装置20の生産性の向上が図られる。 Furthermore, a plurality of electronic component sealed bodies 290 are collectively manufactured from the one electronic component sealing and coupling body 270 obtained in the step [2] through the steps [3] to [7]. As a result, the productivity of the semiconductor device 20 obtained from the electronic component package 290 and thus the electronic component package 290 can be improved.
 なお、本実施形態では、電子部品封止体290が備える封止部27の上面、封止部27の側面およびインターポーザー25の側面に、ノイズ抑制層3を設ける場合について、説明した。これに関して、ノイズ抑制層3は、少なくとも封止部27の上面および封止部27の側面に形成されていればよい。したがって、インターポーザー25の側面へのノイズ抑制層3の形成は省略することもできる。 In the present embodiment, the noise suppression layer 3 is provided on the upper surface of the sealing portion 27 of the electronic component sealing body 290, the side surface of the sealing portion 27, and the side surface of the interposer 25. In this regard, the noise suppression layer 3 may be formed at least on the upper surface of the sealing portion 27 and the side surface of the sealing portion 27. Therefore, the formation of the noise suppression layer 3 on the side surface of the interposer 25 can be omitted.
 また、本発明の電磁波シールド用フィルムを適用して製造される半導体装置20は、例えば、携帯電話、医療機器、デジタルカメラ、ビデオカメラ、カーナビゲーション、パーソナルコンピュータ、ゲーム機、液晶テレビ、液晶ディスプレイ、有機エレクトロルミネッセンスディスプレイ、プリンタ等に広く用いることができる。 The semiconductor device 20 manufactured by applying the film for electromagnetic wave shielding of the present invention is, for example, a mobile phone, a medical device, a digital camera, a video camera, a car navigation, a personal computer, a game machine, a liquid crystal television, a liquid crystal display, It can be widely used in organic electroluminescent displays, printers and the like.
 以上本発明の電磁波シールド用フィルムについて説明したが、本発明は、これらに限定されない。 As mentioned above, although the film for electromagnetic wave shielding of this invention was demonstrated, this invention is not limited to these.
 例えば、前記実施形態では、上述した構成の半導体装置20の製造に、本発明の電磁波シールド用フィルムを用いる電子装置の製造方法を適用する場合について説明した。本発明の電磁波シールド用フィルムは、かかる構成の装置の製造に適用されるばかりでなく、例えば、CSP(Chip Size Package)型の半導体装置、コンデンサー、コイルのような電子部品を単独で備える電子装置等の製造に用いることもできる。 For example, in the embodiment, the case of applying the method of manufacturing an electronic device using the film for electromagnetic wave shielding of the present invention to the manufacturing of the semiconductor device 20 having the above-described configuration has been described. The film for shielding an electromagnetic wave according to the present invention is not only applied to the manufacture of a device having such a configuration, but, for example, is an electronic device independently provided with an electronic component such as a semiconductor device of CSP (Chip Size Package) type, a capacitor, and a coil. It can also be used for the production of
 また、前記実施形態では、本発明の電磁波シールド用フィルム300は、剥離層1(基材層)とノイズ抑制層3との積層体で構成される場合について説明したが、これに限定されない。例えば、電磁波シールド用フィルム300は、剥離層1(基材層)およびノイズ抑制層3とは異なる他の層を備えてもよい。 Moreover, although the said embodiment demonstrated the case where the film 300 for electromagnetic wave shielding of this invention was comprised by the laminated body of the peeling layer 1 (base material layer) and the noise suppression layer 3, it is not limited to this. For example, the electromagnetic wave shielding film 300 may include another layer different from the peeling layer 1 (base material layer) and the noise suppression layer 3.
 さらに、前記実施形態では、ノイズ抑制層3は、インターポーザー25の側面にも設けられるが、これに限定されず、少なくとも封止部27の上面および封止部27の側面に設けられていればよく、ノイズ抑制層3のインターポーザー25の側面への形成は省略してもよい。 Furthermore, although the noise suppression layer 3 is provided also on the side surface of the interposer 25 in the embodiment, the present invention is not limited to this, as long as the noise suppression layer 3 is provided at least on the upper surface of the sealing portion 27 and the side surface The formation of the noise suppression layer 3 on the side surface of the interposer 25 may be omitted.
 さらに、電子部品封止体の製造方法および電子装置の製造方法には、任意の目的の工程が1または2以上追加されてもよい。 Furthermore, one or more steps for any purpose may be added to the method of manufacturing the electronic component package and the method of manufacturing the electronic device.
 以下、本発明を実施例に基づいて詳細に説明するが、本発明はこれに限定されない。 Hereinafter, the present invention will be described in detail based on examples, but the present invention is not limited thereto.
1.電磁波シールド用フィルムの製造
 (実施例1A)
 電磁波シールド用フィルムを得るために、第1の層を形成するための樹脂材料としてポリメチルペンテン(三井化学社製、商品名:TPX DX231)を用意した。第3の層を形成するための樹脂材料として、ポリメチルペンテン(三井化学社製、商品名:TPX DX231)を用意した。また、第2の層を形成するための樹脂材料として、エチレン-メチルアクリレート共重合体(三井・デュポンポリケミカル社製、商品名:ニュクレルAN4214C)を35wt%、ポリプロピレン(プライムポリマー社製、商品名:E-203GP)を30wt%、ポリメチルペンテン(三井化学社製、商品名:TPX DX231)を35wt%含む混合物を用意した。
1. Production of film for electromagnetic shielding (Example 1A)
In order to obtain a film for electromagnetic wave shielding, polymethylpentene (manufactured by Mitsui Chemicals, Inc., trade name: TPX DX231) was prepared as a resin material for forming the first layer. As a resin material for forming the third layer, polymethylpentene (manufactured by Mitsui Chemicals, Inc., trade name: TPX DX231) was prepared. In addition, as a resin material for forming the second layer, 35 wt% of ethylene-methyl acrylate copolymer (Mitsui Dupont Polychemicals Co., Ltd., trade name: Nucrel AN4214C), polypropylene (Prime Polymer Co., Ltd., trade name) A mixture containing 30 wt% of E-203GP) and 35 wt% of polymethylpentene (manufactured by Mitsui Chemicals, Inc., trade name: TPX DX231) was prepared.
 さらに、ノイズ抑制層を形成するための樹脂材料(液状材料)を用意した。具体的に、粒子状をなす金属材料として銀粒子(福田金属箔粉工業社製、商品名:Ag-XF301)を含み、バインダー樹脂としてエポキシ樹脂(DIC社製、商品名:EPICRON N-670)、アクリルゴム(ナガセケムテックス社製、商品名:SG-708-6)およびフェノールノボラック樹脂(住友ベークライト社製、商品名:PR-HF-3)を含み、さらに、溶媒としてメチルエチルケトンを含む樹脂材料を用意した。 Furthermore, a resin material (liquid material) for forming the noise suppression layer was prepared. Specifically, silver particles (manufactured by Fukuda Metal Foil & Powder Industry Co., Ltd., trade name: Ag-XF301) are contained as a particulate metal material, and epoxy resin (trade name: EPICRON N-670, manufactured by DIC Corporation) as a binder resin. And acrylic rubber (manufactured by Nagase ChemteX, trade name: SG-708-6) and phenol novolac resin (manufactured by Sumitomo Bakelite, trade name: PR-HF-3), and further, a resin material containing methyl ethyl ketone as a solvent Prepared.
 次いで、上述した第1の層を形成するための樹脂材料と、第2の層を形成するための樹脂材料と、第3の層を形成するための樹脂材料とを、フィードブロックおよびマルチマニホールドダイに投入し、これらの樹脂材料を共押出することにより、フィルム化された剥離層を得た。その後、ノイズ抑制層を形成するための樹脂材料を、剥離層に塗布した後に乾燥させることでノイズ抑制層を形成して電磁波シールド用フィルムを作製した。 Next, a resin material for forming the first layer described above, a resin material for forming the second layer, and a resin material for forming the third layer, the feed block and the multi-manifold die And coextrusion of these resin materials to obtain a filmed release layer. Thereafter, a resin material for forming a noise suppression layer was applied to the release layer and then dried to form a noise suppression layer, thereby producing a film for electromagnetic wave shielding.
 なお、実施例1Aの電磁波シールド用フィルムの全体の平均厚さは、240μmであり、第1の層の平均厚さは20μm、第3の層の平均厚さは20μm、第2の層の平均厚さは180μm、ノイズ抑制層の平均厚さは20μmであった。 In addition, the average thickness of the whole film for electromagnetic wave shielding of Example 1A is 240 micrometers, the average thickness of a 1st layer is 20 micrometers, the average thickness of a 3rd layer is 20 micrometers, and the average of a 2nd layer The thickness was 180 μm, and the average thickness of the noise suppression layer was 20 μm.
 また、実施例1Aの電磁波シールド用フィルムにおける、第1の層、第2の層および第3の層の100℃における貯蔵弾性率は、それぞれ、2.0E+08Pa、5.0E+07Paおよび2.0E+08Paであった。 The storage elastic modulus at 100 ° C. of the first layer, the second layer and the third layer in the film for electromagnetic wave shielding of Example 1A is 2.0E + 08Pa, 5.0E + 07Pa and 2.0E + 08Pa, respectively. The
 さらに、剥離層およびノイズ抑制層の100℃における貯蔵弾性率は、それぞれ、1.0E+08Paおよび5.0E+07Paであった。
 (実施例2A~6A)
 ノイズ抑制層を形成するための樹脂材料を、表1に示すように変更した以外は、実施例1Aと同様にして、電磁波シールド用フィルムを作製した。
Furthermore, the storage elastic modulus at 100 ° C. of the release layer and the noise suppression layer was 1.0E + 08Pa and 5.0E + 07Pa, respectively.
(Examples 2A to 6A)
An electromagnetic wave shielding film was produced in the same manner as in Example 1A except that the resin material for forming the noise suppression layer was changed as shown in Table 1.
 (比較例1A)
 ノイズ抑制層を形成するための樹脂材料(液状材料)について、粒子状をなす金属材料として銀粒子(福田金属箔粉工業社製、商品名:Ag-XF301)を含み、バインダー樹脂としてフッ素樹脂(AGCコーテック社製 オブリガードPS325R 固形分10%)を含む樹脂材料を用意したこと以外は、実施例1Aと同様にして、電磁波シールド用フィルムを作製した。
(Comparative example 1A)
The resin material (liquid material) for forming the noise suppression layer contains silver particles (manufactured by Fukuda Metal Foil Powder Industry Co., Ltd., trade name: Ag-XF301) as a particulate metal material, and a fluorine resin (binder resin) A film for electromagnetic wave shielding was produced in the same manner as in Example 1A except that a resin material containing Obrigard PS 325R (solid content: 10%) manufactured by AGC Cortec Co., Ltd. was prepared.
2.評価
 実施例1A~6Aおよび比較例1Aで作製した電磁波シールド用フィルムについて、以下の評価を行った。
2. Evaluation The following evaluations were performed on the films for electromagnetic wave shielding produced in Examples 1A to 6A and Comparative Example 1A.
 <ピール強度A>
 実施例1A~6Aおよび比較例1Aの電磁波シールド用フィルムを作製する際に用意した、ノイズ抑制層を形成するための樹脂材料を用いて幅を25mmとしたノイズ抑制層を形成した。そして、これらノイズ抑制層を、それぞれ、エポキシ樹脂を主材料とするエポキシ樹脂組成物(住友ベークライト社製、「XF8680」)からなる、板状をなす封止部上に100℃にて貼付した。次いで、JIS G 3469に準拠して、ノイズ抑制層を、その一端から、25℃において90°の方向に300mm/分の速度で引き剥がしたときに測定されるピール強度Aを、引張試験機(エー・アンド・デイ社製、「TENSILON RTG-1310」)を用いて測定した。その測定結果を、表1に示す。
<Peel strength A>
A noise suppression layer having a width of 25 mm was formed using a resin material for forming a noise suppression layer prepared when producing the films for electromagnetic wave shielding of Examples 1A to 6A and Comparative Example 1A. And these noise suppression layers were stuck at 100 degreeC on the plate-like sealing part which consists of an epoxy resin composition (Sumitomo Bakelite Co., Ltd. make, "XF8680") which has an epoxy resin as a main material, respectively. Then, according to JIS G 3469, the peel strength A measured when the noise suppression layer is peeled from one end at a speed of 300 mm / min at 25 ° C. in the direction of 90 ° at 25 ° C. It measured using an A & D company "TENSILON RTG-1310"). The measurement results are shown in Table 1.
 <ピール強度B>
 実施例1A~6Aおよび比較例1Aの電磁波シールド用フィルムを作製する際に用意した、ノイズ抑制層を形成するための樹脂材料を用いて幅を25mmとしたノイズ抑制層を形成した。そして、これらノイズ抑制層を、それぞれ、ポリメチルペンテン(三井化学社製、「TPX DX231」)からなる、板状をなす剥離層上に100℃にて貼付した。次いで、JIS G 3469に準拠して、ノイズ抑制層を、その一端から、25℃において90°の方向に300mm/分の速度で引き剥がしたときに測定されるピール強度Bを、引張試験機(エー・アンド・デイ社製、「TENSILON RTG-1310」)を用いて測定した。その測定結果を、表1に示す。
<Peel strength B>
A noise suppression layer having a width of 25 mm was formed using a resin material for forming a noise suppression layer prepared when producing the films for electromagnetic wave shielding of Examples 1A to 6A and Comparative Example 1A. And these noise suppression layers were stuck at 100 degreeC on the plate-like peeling layer which consists of polymethyl pentene (made by Mitsui Chemicals, "TPX DX231"), respectively. Then, according to JIS G 3469, the peel strength B measured when the noise suppression layer is peeled from one end at a speed of 300 mm / min at 25 ° C. in the direction of 90 ° at 25 ° C. It measured using an A & D company "TENSILON RTG-1310"). The measurement results are shown in Table 1.
 <半導体封止連結体からの剥離層の剥離性>
 半導体封止連結体からの剥離層の剥離性は、次のようにして評価した。
<Peelability of Peeling Layer from Semiconductor Encapsulated Coupling>
The releasability of the release layer from the semiconductor encapsulation assembly was evaluated as follows.
 すなわち、まず、FR4基板(ガラス繊維の布をエポキシ樹脂の硬化物で封止して形成された基板)上に、縦10mm×横10mm×厚さ0.7mmのSi基板(擬似半導体素子)を搭載した。その後、Si基板に対して190℃/150N/20secの条件で加熱・圧縮処理を施した。 That is, first, on a FR4 substrate (a substrate formed by sealing a cloth of glass fiber with a cured product of epoxy resin), a Si substrate (pseudo semiconductor element) 10 mm long × 10 mm wide × 0.7 mm thick equipped. Thereafter, the Si substrate was subjected to heating and compression treatment under the conditions of 190 ° C./150 N / 20 sec.
 次に、Si基板が搭載されたFR4基板上に、顆粒状のエポキシ樹脂組成物(住友ベークライト社製、「XF8680」)を供給した後、圧縮成形することで、Si基板が封止部により封止された半導体封止連結体を形成した。
 なお、圧縮成形する際の条件は、175℃/5MPa/5minとした。
Next, after supplying the granular epoxy resin composition (Sumitomo Bakelite Co., Ltd. “XF8680”) on the FR4 substrate on which the Si substrate is mounted, the Si substrate is sealed by the sealing portion by compression molding. A sealed semiconductor encapsulation was formed.
The condition for compression molding was 175 ° C./5 MPa / 5 min.
 そして、220℃/1hrの条件で封止部を硬化させた後に、ダイシングソーを用いて、封止部に対して、溝幅0.2mm、溝間隔10mm、溝深さ1.0mmの溝を格子状に形成することで、溝が形成された半導体封止連結体を得た。 Then, after curing the sealing portion under the condition of 220 ° C./1 hr, using a dicing saw, a groove with a groove width of 0.2 mm, a groove interval of 10 mm, and a groove depth of 1.0 mm with the sealing portion By forming in the shape of a lattice, the semiconductor sealing connection body in which the groove was formed was obtained.
 次に、実施例1A~6Aおよび比較例1Aの電磁波シールド用フィルムを、それぞれ、溝が形成された半導体封止連結体上に配置した。その後、真空加圧式ラミネーターを用いて、真空雰囲気下において、電磁波シールド用フィルムと電子部品封止体とが互いに接近するように、圧力2MPa、温度170℃、時間240秒の条件で加圧することで、電磁波シールド用フィルムを半導体封止連結体に貼付した。 Next, the films for shielding an electromagnetic wave of Examples 1A to 6A and Comparative Example 1A were respectively disposed on the semiconductor sealing connection in which the grooves were formed. Thereafter, using a vacuum pressure type laminator, by applying pressure of 2 MPa, temperature of 170 ° C., and time of 240 seconds so that the film for electromagnetic shielding and the electronic component sealing body approach each other under vacuum atmosphere. And an electromagnetic shielding film was attached to the semiconductor sealing assembly.
 次に、半導体封止連結体に貼付された電磁波シールド用フィルムから剥離層を、剥離層の一端を持って剥離させ、この際の剥離層の剥がれ易さについて、下記に示す評価基準に基づいて評価した。その評価結果を表1に示す。 Next, the peeling layer is peeled from the film for an electromagnetic wave shield attached to the semiconductor sealing assembly by holding one end of the peeling layer, and the ease of peeling of the peeling layer in this case is based on the evaluation criteria shown below. evaluated. The evaluation results are shown in Table 1.
[評価基準]
   A:剥離層にノイズ抑制層に由来する樹脂残りもなく、容易に剥離できる
   B:剥離層にノイズ抑制層に由来する樹脂残りはないが、剥離が若干重い
   C:剥離層にノイズ抑制層に由来する樹脂残りはないが、剥離が重い
   D:剥離層にノイズ抑制層に由来する樹脂残りが発生している
[Evaluation criteria]
A: There is no resin residue derived from the noise suppression layer in the peeling layer and can be peeled easily B: There is no resin residue originating in the noise suppression layer in the peeling layer, but peeling is slightly heavy C: In the noise suppression layer There is no resin residue derived, but peeling is heavy D: A resin residue originating from the noise suppression layer is generated in the peeling layer
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1A~6Aでは、ピール強度A、Bが1<A/Bなる関係を満足していた。これにより、半導体封止連結体に貼付された電磁波シールド用フィルムから剥離層を、剥離層にノイズ抑制層に由来する樹脂残りを発生させることなく、剥離させることができ、電子部品封止体にノイズ抑制層を形成することができた。 As shown in Table 1, in Examples 1A to 6A, the peel strengths A and B satisfied the relationship of 1 <A / B. Thereby, the peeling layer can be peeled from the film for an electromagnetic wave shield stuck to the semiconductor sealing connection, without generating the resin residue originating in the noise suppression layer in the peeling layer, and the electronic component sealing body It was possible to form a noise suppression layer.
 これに対して、比較例1Aでは、ピール強度A、Bが1<A/Bなる関係を満足しておらず、これに起因して、半導体封止連結体に貼付された電磁波シールド用フィルムからの剥離層の剥離の際に、剥離層にノイズ抑制層に由来する樹脂残りが発生し、電子部品封止体に均一な膜厚を備えるノイズ抑制層を形成することができなかった。 On the other hand, in Comparative Example 1A, the peel strengths A and B do not satisfy the relationship of 1 <A / B, and due to this, from the film for an electromagnetic wave shield attached to the semiconductor sealing connection. During the peeling of the peeling layer, a resin residue derived from the noise suppression layer was generated in the peeling layer, and it was not possible to form a noise suppression layer having a uniform film thickness on the electronic component package.
 1     剥離層
 2     粘着層
 3     ノイズ抑制層
 4     基材
 11    第1の層
 12    第2の層
 13    第3の層
 20    半導体装置
 21    バンプ
 22    被覆部
 23    配線
 25    インターポーザー
 25’   シート材
 26    半導体素子
 27    封止部
 28    電子素子
 62    凹部
 100   粘着テープ
 221   開口部
 270   電子部品封止連結体
 290   電子部品封止体
 300   電磁波シールド用フィルム
DESCRIPTION OF SYMBOLS 1 peeling layer 2 adhesive layer 3 noise suppression layer 4 base material 11 1st layer 12 2nd layer 13 3rd layer 20 semiconductor device 21 bump 22 coating part 23 wiring 25 interposer 25 'sheet material 26 semiconductor element 27 sealing Stop part 28 electronic element 62 concave part 100 adhesive tape 221 opening 270 electronic parts sealing connection body 290 electronic parts sealing body 300 film for electromagnetic wave shield
 本発明によれば、比較的容易な方法で電子部品封止体にノイズ抑制層を設けることが可能な、電磁波シールド用フィルムを提供することができる。さらに、電磁波シールド用フィルムを用いることにより、1つの電子部品封止連結体から複数の電子部品封止体を一括して製造することができる。その結果、電子部品封止体および電子装置の生産性の向上が図られる。したがって、本発明は、産業上の利用可能性を有する。 ADVANTAGE OF THE INVENTION According to this invention, the film for electromagnetic wave shields which can provide a noise suppression layer in an electronic component sealing body by a comparatively easy method can be provided. Furthermore, by using the film for electromagnetic wave shielding, a plurality of electronic component sealing bodies can be manufactured collectively from one electronic component sealing connection body. As a result, the productivity of the electronic component package and the electronic device can be improved. Thus, the present invention has industrial applicability.

Claims (8)

  1.  基板と、該基板上に配置された電子部品と、前記電子部品を封止する封止部とを有する電子部品封止体に適用される電磁波シールド用フィルムであって、
     前記電磁波シールド用フィルムは、基材層と、該基材層の一方の面側に積層されたノイズ抑制層とを備え、
     前記封止部は、エポキシ樹脂を主材料として含有し、
     前記基材層は、ポリメチルペンテンを主材料として含有し、
     前記ノイズ抑制層は、前記封止部の上面および側面を被覆するように構成されており、
     JIS G 3469に準拠して、板状をなす前記封止部上に、幅25mmの前記ノイズ抑制層を貼付し、次いで、前記ノイズ抑制層を、その一端から、25℃において90°の方向に300mm/分の速度で引き剥がしたときに測定されるピール強度をA[N/mm]とし、JIS G 3469に準拠して、板状をなす前記基材層上に、幅25mmの前記ノイズ抑制層を貼付し、次いで、前記ノイズ抑制層を、その一端から、25℃において90°の方向に300mm/分の速度で引き剥がしたときに測定されるピール強度をB[N/mm]としたとき、1<A/Bなる関係を満足することを特徴とする電磁波シールド用フィルム。
    It is a film for electromagnetic wave shielding applied to the electronic component sealed body which has a substrate, the electronic component arranged on the substrate, and the sealing part which seals the electronic component,
    The electromagnetic wave shielding film includes a base material layer and a noise suppression layer laminated on one surface side of the base material layer.
    The sealing portion contains an epoxy resin as a main material,
    The base material layer contains polymethylpentene as a main material,
    The noise suppression layer is configured to cover the upper surface and the side surface of the sealing portion,
    According to JIS G 3469, the noise suppression layer of 25 mm in width is attached onto the plate-like sealing portion, and then the noise suppression layer is oriented 90 ° at 25 ° C. from one end thereof. Peel strength measured when peeled off at a speed of 300 mm / min is A [N / mm], and based on JIS G 3469, the noise suppression of 25 mm in width on the plate-like base material layer The layer was attached and then the peel strength measured when the noise suppression layer was peeled from one end at a speed of 300 mm / min in the direction of 90 ° at 25 ° C. was B [N / mm]. A film for electromagnetic wave shielding characterized by satisfying a relation of 1 <A / B.
  2.  前記ノイズ抑制層は、粒子状をなす導電性材料と、バインダー樹脂とを含有する請求項1に記載の電磁波シールド用フィルム。 The film for electromagnetic wave shielding according to claim 1, wherein the noise suppression layer contains a particulate conductive material and a binder resin.
  3.  前記導電性材料は、金属材料、金属酸化物材料、導電性高分子材料または導電性セラミックス材料のうちの少なくとも1種である請求項2に記載の電磁波シールド用フィルム。 The film for electromagnetic wave shielding according to claim 2, wherein the conductive material is at least one of a metal material, a metal oxide material, a conductive polymer material, and a conductive ceramic material.
  4.  前記バインダー樹脂は、エポキシ樹脂、ウレタン樹脂、ポリオレフィン樹脂、ポリエステル樹脂、ポリアミド樹脂、シリコーン樹脂、フェノール樹脂またはアクリル系エラストマーのうちの少なくとも1種を含む請求項2または3に記載の電磁波シールド用フィルム。 The film for electromagnetic wave shield according to claim 2 or 3, wherein the binder resin contains at least one of an epoxy resin, a urethane resin, a polyolefin resin, a polyester resin, a polyamide resin, a silicone resin, a phenol resin, and an acrylic elastomer.
  5.  前記基材層は、第1の層と、第2の層と、第3の層とがこの順で積層された3層構成をなす積層体であり、前記第3の層が前記ノイズ抑制層に接合されている請求項1に記載の電磁波シールド用フィルム。 The base material layer is a laminate having a three-layer structure in which a first layer, a second layer, and a third layer are laminated in this order, and the third layer is the noise suppression layer. The film for electromagnetic wave shielding according to claim 1 joined to.
  6.  前記第1の層および前記第3の層は、それぞれ、100℃における貯蔵弾性率が1.0E+05Pa以上1.0E+11Pa以下である請求項5に記載の電磁波シールド用フィルム。 The film for electromagnetic wave shielding according to claim 5, wherein each of the first layer and the third layer has a storage elastic modulus at 100 ° C. of 1.0E + 05 Pa or more and 1.0E + 11 Pa or less.
  7.  前記第2の層は、100℃における貯蔵弾性率が1.0E+04Pa以上1.0E+10Pa以下である請求項5または6に記載の電磁波シールド用フィルム。 The film for electromagnetic wave shielding according to claim 5 or 6, wherein the storage elastic modulus at 100 ° C of the second layer is 1.0E + 04Pa or more and 1.0E + 10Pa or less.
  8.  前記バインダー樹脂は、エポキシ樹脂を含み、
     前記ノイズ抑制層における前記エポキシ樹脂の含有量が、2重量%以上32重量%以下である請求項2に記載の電磁波シールド用フィルム。
    The binder resin comprises an epoxy resin,
    The film for electromagnetic wave shield according to claim 2, wherein a content of the epoxy resin in the noise suppression layer is 2% by weight or more and 32% by weight or less.
PCT/JP2018/030380 2017-08-31 2018-08-15 Electromagnetic wave shield film WO2019044512A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018562273A JP6711423B2 (en) 2017-08-31 2018-08-15 Film for electromagnetic wave shielding

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017168058 2017-08-31
JP2017-168058 2017-08-31

Publications (1)

Publication Number Publication Date
WO2019044512A1 true WO2019044512A1 (en) 2019-03-07

Family

ID=65525431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030380 WO2019044512A1 (en) 2017-08-31 2018-08-15 Electromagnetic wave shield film

Country Status (3)

Country Link
JP (1) JP6711423B2 (en)
TW (1) TW201922078A (en)
WO (1) WO2019044512A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112533351A (en) * 2019-09-19 2021-03-19 宏启胜精密电子(秦皇岛)有限公司 Circuit board and manufacturing method thereof
WO2021090867A1 (en) * 2019-11-05 2021-05-14 積水化学工業株式会社 Laminate for semiconductor processing, adhesive tape for semiconductor processing, and method for manufacturing semiconductor device
TWI728480B (en) * 2019-03-26 2021-05-21 新加坡商Pep創新私人有限公司 Packaging method and panel module

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011124413A (en) * 2009-12-11 2011-06-23 Murata Mfg Co Ltd Method of manufacturing electronic component module, and electronic component module
WO2013183671A1 (en) * 2012-06-08 2013-12-12 日立化成株式会社 Method for manufacturing semiconductor device
WO2014027673A1 (en) * 2012-08-16 2014-02-20 住友ベークライト株式会社 Em-shielding film and method for covering electronic component
JP2015162636A (en) * 2014-02-28 2015-09-07 東洋インキScホールディングス株式会社 Method for manufacturing electronic component module
WO2015186624A1 (en) * 2014-06-02 2015-12-10 タツタ電線株式会社 Electroconductive adhesive film, printed circuit board, and electronic device
JP2017143210A (en) * 2016-02-12 2017-08-17 住友ベークライト株式会社 Method for manufacturing electronic component sealing body and method for manufacturing electronic device
JP6183568B1 (en) * 2017-02-10 2017-08-23 東洋インキScホールディングス株式会社 Manufacturing method of component mounting board

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02178042A (en) * 1988-12-28 1990-07-11 Somar Corp Thermosetting resin film
JP2009289840A (en) * 2008-05-28 2009-12-10 Toyo Ink Mfg Co Ltd Electromagnetic wave shieldable adhesive film
JP2016039237A (en) * 2014-08-07 2016-03-22 日本合成化学工業株式会社 Method of manufacturing magnetic substance

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011124413A (en) * 2009-12-11 2011-06-23 Murata Mfg Co Ltd Method of manufacturing electronic component module, and electronic component module
WO2013183671A1 (en) * 2012-06-08 2013-12-12 日立化成株式会社 Method for manufacturing semiconductor device
WO2014027673A1 (en) * 2012-08-16 2014-02-20 住友ベークライト株式会社 Em-shielding film and method for covering electronic component
JP2015162636A (en) * 2014-02-28 2015-09-07 東洋インキScホールディングス株式会社 Method for manufacturing electronic component module
WO2015186624A1 (en) * 2014-06-02 2015-12-10 タツタ電線株式会社 Electroconductive adhesive film, printed circuit board, and electronic device
JP2017143210A (en) * 2016-02-12 2017-08-17 住友ベークライト株式会社 Method for manufacturing electronic component sealing body and method for manufacturing electronic device
JP6183568B1 (en) * 2017-02-10 2017-08-23 東洋インキScホールディングス株式会社 Manufacturing method of component mounting board

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI728480B (en) * 2019-03-26 2021-05-21 新加坡商Pep創新私人有限公司 Packaging method and panel module
US11062917B2 (en) 2019-03-26 2021-07-13 Pep Innovation Pte. Ltd. Packaging method, panel assembly, wafer package and chip package
US11538695B2 (en) 2019-03-26 2022-12-27 Pep Innovation Pte. Ltd. Packaging method, panel assembly, wafer package and chip package
CN112533351A (en) * 2019-09-19 2021-03-19 宏启胜精密电子(秦皇岛)有限公司 Circuit board and manufacturing method thereof
CN112533351B (en) * 2019-09-19 2022-11-15 宏启胜精密电子(秦皇岛)有限公司 Circuit board and manufacturing method thereof
WO2021090867A1 (en) * 2019-11-05 2021-05-14 積水化学工業株式会社 Laminate for semiconductor processing, adhesive tape for semiconductor processing, and method for manufacturing semiconductor device

Also Published As

Publication number Publication date
TW201922078A (en) 2019-06-01
JP6711423B2 (en) 2020-06-17
JPWO2019044512A1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
JP6361709B2 (en) Manufacturing method of semiconductor device
JP2017143210A (en) Method for manufacturing electronic component sealing body and method for manufacturing electronic device
KR20120053967A (en) Adhesive film for semiconductor device and semiconductor device
JP6711423B2 (en) Film for electromagnetic wave shielding
TWI807011B (en) Electromagnetic wave shield sheet
JP2007287937A (en) Resin-sealed semiconductor device and its manufacturing method
KR102329756B1 (en) Adhesive film, dicing·die bond film, manufacturing method for semiconductor device, and semiconductor device
KR20140094443A (en) Adhesive film, dicing/die-bonding film, manufacturing method of semiconductor device, and semiconductor device
KR20140127760A (en) Adhesive film, dicing·die bond film, method for producing semiconductor device and semiconductor device
KR102344987B1 (en) Dicing·die bond film, manufacturing method for semiconductor device, and semiconductor device
WO2017168824A1 (en) Electronic device package, method of manufacturing electronic device package, and tape for electronic device package
KR101763852B1 (en) QFN semiconductor package, method of fabricating the same and mask sheet for manufacturing the same
JP5067927B2 (en) Adhesive film for semiconductor device manufacturing
KR102310226B1 (en) Adhesive film, dicing·die bond film, manufacturing method for semiconductor device, and semiconductor device
JP2019046947A (en) Method for manufacturing film for electromagnetic wave shield
JP2019029549A (en) Film set
JP2019087638A (en) Manufacturing method of electronic equipment
JP2019029550A (en) Manufacturing method of electronic component sealed body and manufacturing method of electronic device
JP2019102498A (en) Manufacturing method of electronic component encapsulation body, and manufacturing method of electronic device
JP2018170340A (en) Electronic device package tape
JP2019131746A (en) Adhesive tape
JP2019087639A (en) Manufacturing method of electronic equipment
KR102019468B1 (en) Adhesive film for semiconductor device and semiconductor device
JP2020169278A (en) Processing adhesive tape
JP2020088288A (en) Resin structure

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018562273

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18851225

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18851225

Country of ref document: EP

Kind code of ref document: A1