WO2019044088A1 - 太陽電池モジュール - Google Patents

太陽電池モジュール Download PDF

Info

Publication number
WO2019044088A1
WO2019044088A1 PCT/JP2018/021114 JP2018021114W WO2019044088A1 WO 2019044088 A1 WO2019044088 A1 WO 2019044088A1 JP 2018021114 W JP2018021114 W JP 2018021114W WO 2019044088 A1 WO2019044088 A1 WO 2019044088A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas barrier
barrier layer
layer
substrate
solar cell
Prior art date
Application number
PCT/JP2018/021114
Other languages
English (en)
French (fr)
Inventor
大悟 澤木
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2019044088A1 publication Critical patent/WO2019044088A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell module.
  • a fluorine resin film having high transparency and chemical stability is used as a surface protection sheet for protecting the surface of the solar cell module.
  • a gas barrier layer on a fluororesin film is also proposed.
  • Patent Document 1 describes that a fluororesin film is used as a surface protection sheet of a solar cell module.
  • a thin film of a metal oxide is formed on a fluorine resin film for weather resistance, antifouling property and the like.
  • Patent Document 2 describes a multilayer article for a solar cell module in which a gas barrier layer is formed directly on a fluorine resin film.
  • inorganic oxides such as SiO 2 and Al 2 O 3 are described as the gas barrier layer.
  • JP 2000-103888 A Japanese Patent Application Publication No. 2013-502745
  • a resin such as ethylene-vinyl acetate copolymer (EVA) is filled as a sealing layer between the solar cell and the surface protective sheet. It is done.
  • EVA ethylene-vinyl acetate copolymer
  • metal oxide an inorganic oxide
  • the adhesion between the inorganic layer and the sealing layer was found to be inadequate. Therefore, it was found that there is a problem that the inorganic layer and the sealing layer peel off, moisture and the like intrude from between the inorganic layer and the sealing layer, and the performance of the solar battery cell is lowered.
  • the present invention is to solve the above-mentioned problems of the prior art, and to provide a solar cell module excellent in durability.
  • the present inventor found that a substrate containing a fluorine resin, a gas barrier layer formed directly on the substrate, an organic layer containing at least one of an acrylic resin and an imide resin, and a seal A sealing layer and a solar battery cell are laminated in this order, and the gas barrier layer contains an inorganic compound formed of at least one selected from the group consisting of oxygen, nitrogen and carbon, and silicon or aluminum;
  • the present inventors have found that the above problems can be solved by the residual mass of 80 mass or more in the cross cut test of JIS-K5600-5-6 (1999) between the above and the gas barrier layer, and completed the present invention. That is, it discovered that the said subject was solvable by the following structures.
  • the gas barrier layer contains an inorganic compound formed of at least one selected from the group consisting of oxygen, nitrogen and carbon, and silicon or aluminum;
  • the solar cell module whose residual mass in the cross cut test of JIS-K5600-5-6 (1999) between a board
  • the solar cell module which is excellent in durability can be provided.
  • a numerical range represented using “to” means a range including numerical values described before and after “to” as the lower limit value and the upper limit value.
  • (meth) acrylate is used in the meaning of “either or both of acrylate and methacrylate”.
  • the solar cell module of the present invention is Substrate containing fluorine-based resin, A gas barrier layer formed directly on the substrate, An organic layer containing at least one of an acrylic resin and an imide resin; A sealing layer, and PV cells are stacked in this order,
  • the gas barrier layer contains an inorganic compound formed of at least one selected from the group consisting of oxygen, nitrogen and carbon, and silicon or aluminum; It is a solar cell module in which the remaining mass in the cross-cut test of JIS-K5600-5-6 (1999) between the substrate and the gas barrier layer is 80 mass or more.
  • the gas barrier layer is preferably formed directly on the substrate by atomic layer deposition. Thereby, the adhesion between the substrate and the gas barrier layer is improved, and the remaining mass in the cross cut test can be made 80 mass or more.
  • FIG. 1 an example of the solar cell module of this invention is shown notionally.
  • the solar cell module 10 shown in FIG. 1 has a substrate 12, a gas barrier layer 14, an organic layer 16, a sealing layer 18, and solar cells 20 in this order.
  • the substrate 12 is a substrate containing a fluorine-based resin.
  • the gas barrier layer 14 is a layer containing an inorganic compound formed directly on the substrate 12 by atomic layer deposition.
  • the inorganic compound is formed of at least one selected from the group consisting of oxygen, nitrogen and carbon, and silicon or aluminum.
  • the gas barrier layer 14 is formed directly on the substrate 12 by the atomic layer deposition method, whereby the width between the substrate 12 and the gas barrier layer 14 is 100 mm in 1 mm width in accordance with JIS-K5600-5-6 (1999). The number of remaining mass in the cross-cut test of mass is 80 mass or more.
  • the solar cell module 10 has a gas barrier layer 14 containing an inorganic compound that exhibits high gas barrier properties on the surface of the substrate 12 to be a surface protective sheet, thereby suppressing the entry of moisture and the like into the solar battery cell.
  • a layer containing an inorganic compound such as a gas barrier layer is formed on the surface of the surface protective sheet, the adhesion between the gas barrier layer and the sealing layer was found to be inadequate. Therefore, it has been found that there is a problem that the gas barrier layer and the sealing layer peel off, moisture and the like enter from between the gas barrier layer and the sealing layer, and the performance of the solar battery cell is lowered.
  • the solar cell module 10 of the present invention since the solar cell module 10 of the present invention has the organic layer 16 between the gas barrier layer 14 and the sealing layer 18, the adhesion between the gas barrier layer 14 and the organic layer 16 becomes good. In addition, adhesion between the organic layer 16 and the sealing layer 18 is improved. Specifically, the number of remaining masses in the cross-cut test between the organic layer 16 and the sealing layer 18 in accordance with JIS-K 5600-5-6 (1999) can be 80 mass or more. As a result, peeling of the layer can be suppressed, and moisture and the like can be prevented from entering from between the layers, so that the performance deterioration of the solar battery cell can be prevented and a solar cell module excellent in durability can be provided. .
  • the number of remaining mass in the crosscut test between the organic layer 16 and the sealing layer 18 according to JIS-K5600-5-6 (1999) is more preferably 90 mass or more, and 100 mass or less. It is further preferred that
  • the substrate 12 is a surface protection sheet (front sheet) in the solar cell module, and is a film-like material containing a fluorine-based resin.
  • the fluorine-based resin material used as the substrate 12 include perfluoroalkoxyalkane (PFA), perfluoroethylenepropene copolymer (FEP), ethylene-tetrafluoroethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), ethylene-chlorotrifluoroethylene copolymer (ECTFE), tetrafluoroethylene-perfluorodioxole copolymer (TFE / PDD) and the like.
  • PFA perfluoroalkoxyalkane
  • FEP perfluoroethylenepropene copolymer
  • ETFE ethylene-tetrafluoroethylene copolymer
  • PCTFE polychlorotrifluoroethylene
  • ECTFE ethylene-chlorotrifluoroethylene copolymer
  • any fluorine-based resin which can be heated and melted except for PTFE (polytetrafluoroethylene) and PVF (polyvinyl fluoride) may be used, and one or a mixture of two or more thereof may be used.
  • a heat-resistant polymer material other than the above-mentioned fluorine-based resin material may be mixed with the above-mentioned fluorine-based resin material or a mixture mainly comprising the fluorine-based resin material.
  • the substrate 12 obtains various functions such as a protective layer, an adhesive layer, a light reflection layer, a light shielding layer, a flattening layer, a buffer layer, and a stress relaxation layer on the surface opposite to the surface on which the gas barrier layer is formed.
  • a functional layer for the purpose may be formed. In this case, these functional layers are not limited to one layer, and a substrate on which plural functional layers are formed may be used as the substrate 12.
  • the thickness of the substrate 12 is not particularly limited as long as the surface of the solar cell module can be protected, and 10 to 1000 ⁇ m is preferable.
  • the gas barrier layer 14 is a layer containing an inorganic compound which mainly exhibits gas barrier properties.
  • the gas barrier layer 14 is formed directly on the substrate 12 by atomic layer deposition.
  • the inorganic compound contained in the gas barrier layer 14 is an inorganic compound formed of at least one selected from the group consisting of oxygen, nitrogen and carbon, and silicon or aluminum. Specifically, silicon nitride, silicon oxynitride, silicon oxide, silicon carbide, aluminum oxide, aluminum nitride, and aluminum carbide can be mentioned. Also, mixtures of two or more of these are available.
  • silicon nitride, silicon oxide, silicon oxynitride, aluminum oxide, and a mixture of two or more of them are suitably used in that they have high transparency and can exhibit excellent gas barrier properties.
  • silicon nitride and a mixture containing silicon nitride are particularly preferably used because they have high gas barrier properties, high transparency, and high flexibility.
  • the thickness of the gas barrier layer 14 is preferably 5 nm to 25 nm. By setting the thickness of the gas barrier layer 14 to 5 nm or more, sufficient gas barrier properties can be stably ensured.
  • the gas barrier layer 14 preferably has a thicker thickness, but if it exceeds 25 nm, the flexibility is likely to be deteriorated and thus the flexibility of the gas barrier layer 14 is secured by setting it to 25 nm or less. Cracking and the like can be suitably prevented.
  • the thickness of the gas barrier layer 14 is more preferably 8 nm to 20 nm, and still more preferably 10 nm to 15 nm in that the above advantages can be obtained more preferably.
  • the water vapor transmission rate of the gas barrier layer 14 is preferably 1 ⁇ 10 ⁇ 6 g / (m 2 ⁇ day) or more and 1 ⁇ 10 ⁇ 4 g / (m 2 ⁇ day) or less, and 1 ⁇ 10 ⁇ 6 g / l. It is more preferable that it is (m 2 ⁇ day) or more and 1 ⁇ 10 -5 g / (m 2 ⁇ day) or less.
  • the water vapor permeability can be measured by the calcium corrosion method (the method described in JP-A-2005-283561).
  • the gas barrier layer 14 is directly formed on the surface of the substrate by atomic layer deposition (ALD).
  • ALD method is a method in which a surface-adsorbed substance is deposited one by one at an atomic level by a chemical reaction on the surface.
  • a special deposition method that alternately uses an active gas, also called a precursor or precursor, and a reactive gas to grow a thin film one by one at the atomic level by adsorption on the substrate surface and subsequent chemical reaction is there.
  • the specific deposition method of the ALD method utilizes so-called self-limiting effect, in which the adsorption of the gas does not occur when the substrate surface is covered with a certain kind of gas, and only one precursor is adsorbed By the way, the unreacted precursor is exhausted. Subsequently, a reactive gas is introduced to oxidize or reduce the precursor to obtain a thin film having a desired composition, and then the reactive gas is exhausted. Such processing is regarded as one cycle, and this cycle is repeated to grow a thin film. Therefore, the thin film grows two-dimensionally in the ALD method.
  • the ALD method is characterized by having less film formation defects as compared to the conventional film formation method.
  • the ALD method has features such as no oblique effect (a phenomenon in which film formation particles are obliquely incident on the substrate surface to cause film formation variation) as compared with other film formation methods, a gap into which gas can enter Uniform film formation is possible.
  • no oblique effect a phenomenon in which film formation particles are obliquely incident on the substrate surface to cause film formation variation
  • a gap into which gas can enter Uniform film formation is possible.
  • scratches with irregularities on the substrate it is possible for the ALD method to form a film so as to follow the irregularities, while it is difficult for the film forming particles to completely cover the irregularities with conventional film deposition methods. As a result, pinhole defects can be significantly reduced.
  • a method of forming a thin film containing an inorganic compound methods such as sputtering and plasma CVD (chemical vapor deposition) are known.
  • a gas barrier layer containing an inorganic compound is formed on a substrate containing a fluorine-based resin by a method such as sputtering or plasma CVD, the adhesion between the substrate and the gas barrier layer is not sufficient.
  • the gas barrier layer 14 is formed on the substrate 12 containing a fluorine-based resin by the ALD method, the adhesion between the substrate 12 and the gas barrier layer 14 can be enhanced.
  • the adhesion between the substrate 12 and the gas barrier layer 14 can be determined by the cross of JIS-K 5600-5-6 (1999) between the substrate 12 and the gas barrier layer 14.
  • the number of remaining mass in the cut test can be 80 mass or more.
  • the number of residual mass in the crosscut test between the substrate 12 and the gas barrier layer 14 is more preferably 90 mass or more, and still more preferably 100 mass.
  • the organic layer 16 is formed on the surface of the gas barrier layer 14 and is a layer for securing adhesion with the sealing layer 18.
  • the formation material of the organic layer 16 should just be a material with favorable adhesiveness with the gas barrier layer 14 and the sealing layer 18 mentioned later.
  • the organic layer 16 is formed, for example, by curing a composition for forming an organic layer containing an organic compound (monomer, dimer, trimer, oligomer, polymer and the like).
  • the composition for forming an organic layer may contain only one type of organic compound, or may contain two or more types.
  • the organic layer 16 contains, for example, a thermoplastic resin and an organic silicon compound.
  • thermoplastic resins acrylic resins, imide resins, polyethylene resins, polypropylene resins, polyvinyl chloride resins, polystyrene resins, polyvinyl acetate resins, polyurethane resins, Teflon (registered Trademark resins, ABS resins, polyamide resins, polyacetal resins, polycarbonate resins, polyester resins and the like.
  • acrylic resins and imide resins are preferable from the viewpoint of adhesion.
  • acrylic resin examples include polyester, (meth) acrylic resin, methacrylic acid-maleic acid copolymer, and polystyrene. More preferably, a bifunctional or more (meth) acrylate such as dipropylene glycol di (meth) acrylate (DPGDA), trimethylolpropane tri (meth) acrylate (TMPTA), dipentaerythritol hexa (meth) acrylate (DPHA), etc.
  • DPGDA dipropylene glycol di (meth) acrylate
  • TMPTA trimethylolpropane tri (meth) acrylate
  • DPHA dipentaerythritol hexa
  • (meth) acrylic resins containing as a main component polymers such as monomers, dimers and oligomers, and more preferably containing as a main component polymers such as trifunctional or higher functional (meth) acrylate monomers, dimers and oligomers (Meth) acrylic resin is included.
  • a plurality of these (meth) acrylic resins may be used.
  • imide resin examples include polyimide, fluorinated polyimide, polyamide, polyamide imide, and polyether imide.
  • a paint prepared by dissolving (dispersing) an organic substance, an organic monomer, a polymerization initiator, etc. in a solvent is applied onto the gas barrier layer 14 by a known coating means such as roll coating, gravure coating, spray coating, etc.
  • a coating method may be used, which is dried and, if necessary, cured by heating, ultraviolet irradiation, electron beam irradiation or the like.
  • the organic substance or the paint similar to the coating method is evaporated, the vapor is attached to the surface of the gas barrier layer 14, and it is cooled / condensed to form a liquid film, and this film is cured by ultraviolet light or electron beam. It is also possible to suitably use a flash evaporation method for forming a film by In addition, a transfer method of transferring the organic layer 16 formed into a sheet shape can also be used.
  • Irgacure (Irgacure) series As a photoinitiator contained in the coating material for forming the organic layer 16, Irgacure (Irgacure) series (For example, Irgacure 651, Irgacure 754, Irgacure 184, Irgacure 2959, Irgacure 907, Irgacure) marketed from BASF.
  • the content of the polymerization initiator in the composition for forming an organic layer (paint) is preferably 0.1 mol% or more of the total amount of organic compounds, and more preferably 0.5 to 2.0 mol%. preferable.
  • the thickness of the organic layer 16 is not particularly limited as long as adhesion with the gas barrier layer 14 and adhesion with the sealing layer 18 can be secured, and may be set as appropriate. Specifically, 0.1 to 100 ⁇ m is preferable, and 0.2 to 50 ⁇ m is more preferable. By setting the thickness of the organic layer 16 in the above-mentioned range, preferable results can be obtained in that the adhesiveness and the flexibility can be improved, and the high transparency can be maintained.
  • the organic layer 16 is not limited to be formed of a single organic film, and the organic layer 16 may be formed of a plurality of organic films.
  • a film of an organic substance formed by flash evaporation may be provided on a film of an organic substance formed by a coating method, and the organic layer 16 may be formed of the two organic films.
  • the sealing layer 18 is filled between the organic layer 16 and the solar battery cell 20 to seal the solar battery cell 20.
  • the sealing material used by the conventionally well-known solar cell module can be utilized suitably.
  • ethylene-vinyl acetate copolymer resin (EVA) ethylene / (meth) acrylic acid copolymer
  • ethylene / (meth) acrylic acid copolymer and the like can be mentioned.
  • the thickness of the sealing layer 18 is not particularly limited, and is preferably in the range of 5 ⁇ m to 2000 ⁇ m (0.005 mm to 2 mm), and more preferably in the range of 100 ⁇ m to 2000 ⁇ m (0.1 mm to 2 mm) 100 ⁇ m to 1500 ⁇ m (0.1 mm to 1.5 mm) is more preferable.
  • the adhesion between the organic layer 16 and the sealing layer 18 is such that the number of remaining mass in the cross-cut test of JIS-K5600-5-6 (1999) is 80 mass or more. Is preferable, 90 mass or more is more preferable, and 100 mass is more preferable.
  • the solar battery cell 20 is an element that converts light energy of sunlight into electric energy.
  • the solar battery cell 20 there is no limitation for the solar battery cell 20, and monocrystalline silicon, polycrystalline silicon, silicon such as amorphous silicon, copper-indium-gallium-selenium, copper-indium-selenium, cadmium-tellurium, gallium-arsenic and the like III- Solar cells (elements) used in conventionally known solar cell modules such as Group V and II-VI compound semiconductor systems can be appropriately used.
  • the gas barrier layer 14 and the organic layer 16 each have one layer, but the invention is not limited thereto, and two or more gas barrier layers 14 and two or more organic layers are alternately provided. It is good also as composition. That is, for example, the solar cell module may have a configuration in which the substrate 12, the gas barrier layer 14, the organic layer, the gas barrier layer, the organic layer 16, the sealing layer 18, and the solar cells 20 are stacked in this order. Even in the case where a plurality of gas barrier layers and a plurality of organic layers are provided, the gas barrier layer 14 is in contact with the substrate 12 and the organic layer 16 is in contact with the sealing layer 18.
  • the gas barrier layer formed on the surface of the organic layer is not limited to the one formed by the ALD method, and a gas barrier layer containing an inorganic compound is formed by a known method such as sputtering and plasma CVD. It is also good.
  • the thickness of each gas barrier layer may be the same or different, and the materials may be the same or different.
  • the thickness of each organic layer may be the same or different, and the materials may be the same or different.
  • Example 1 A solar cell module 10 as shown in FIG. 1 was produced.
  • an ETFE film (Fluon manufactured by Asahi Glass Co., Ltd.) having a thickness of 50 ⁇ m was used.
  • the gas barrier layer 14 made of aluminum oxide (Al 2 O 3 ) was formed on the surface of the substrate 12 by the ALD method.
  • the precursors used were trimethylaluminum (TMA) vapor and water vapor.
  • TMA trimethylaluminum
  • the precursors were introduced sequentially into the reactor (Cambridge Nanotech Savannah 200 from Cambridge Nano Tech (Cambridge, Mass.)).
  • the reactor was continuously purged with nitrogen gas at 20 sccm and evacuated with a small mechanical pump to a background pressure of about 40 Pa (pressure without reactant or precursor). Nitrogen gas was used as a carrier for TMA and H 2 O precursors and also as a purge gas.
  • the substrate was exposed to water vapor carried by nitrogen gas for 15 milliseconds, followed by purging the reactor with nitrogen gas for 30 seconds. The substrate was then exposed to trimethylaluminum vapor carried by nitrogen gas for 15 milliseconds, followed by a 15 second purge of nitrogen flow.
  • This reaction procedure produced an Al 2 O 3 layer on the substrate 12.
  • a gas barrier layer 14 made of Al 2 O 3 with a thickness of 25 nm was formed on the substrate 12.
  • the flow volume represented by unit sccm is the value converted into the flow volume (cc / min) in 1013 hPa and 0 degreeC.
  • the water vapor transmission rate of the formed gas barrier layer 14 was measured by the calcium corrosion method (the method described in JP-A-2005-283561). The water vapor transmission rate was 1 ⁇ 10 ⁇ 5 g / (m 2 ⁇ day).
  • An organic layer 16 made of acrylic resin was formed on the surface of the gas barrier layer 14. 28.5 g of TMPTA (manufactured by Daicel Ornex), 1.5 g of an ultraviolet polymerization initiator (manufactured by Lambertti, ESACURE KTO 46), and 170 g of 2-butanone (manufactured by Wako Pure Chemical Industries, Ltd.) are mixed, The composition for organic layer formation for forming an organic layer was prepared. The solid content concentration of the composition for forming an organic layer was 15% by mass. The prepared composition for forming an organic layer was applied to the surface of the gas barrier layer 14. The coating was performed using a die coater such that the film thickness of the organic layer was 1 ⁇ m.
  • the composition for forming an organic layer is cured by irradiating the ultraviolet rays of a high pressure mercury lamp (accumulated irradiation amount: about 600 mJ / cm 2 ) in a chamber in which the oxygen concentration is 0.1% by a nitrogen substitution method.
  • the layer 16 was formed into a laminate.
  • ⁇ Sealing of solar cells> A crystalline solar cell (Q6LMX3 manufactured by Hanwha Q CELLS), an encapsulant (Ethylene vinyl acetate copolymer (EVA) SVK-15297 manufactured by Shezhen Sveck Technology), and the laminate prepared above It piled up in this order. At this time, the organic layer 16 of the laminate was placed in contact with the sealing material (sealing layer 18). The members are adhered by laminating using a vacuum laminator (Nisshinbo Co., Ltd. product, vacuum laminator LAMINATOR 0505S) under conditions of 145 ° C., evacuation time 5 minutes, pressurization time 10 minutes, and solar cells A module was made.
  • a vacuum laminator Neshinbo Co., Ltd. product, vacuum laminator LAMINATOR 0505S
  • Example 2 and 3 A solar cell module was produced in the same manner as in Example 1 except that the thickness of the gas barrier layer 14 was 10 nm and 5 nm, respectively.
  • Example 4 A solar cell module was produced in the same manner as in Example 1 except that a PCTFE film (Neoflon manufactured by Daikin Industries, Ltd.) and an ECTFE film (Halar (registered trademark) ECTFE manufactured by Solvay) were used as the substrate 12, respectively.
  • a PCTFE film Neoflon manufactured by Daikin Industries, Ltd.
  • an ECTFE film Healar (registered trademark) ECTFE manufactured by Solvay
  • Example 6 A solar cell module was produced in the same manner as in Example 1 except that the gas barrier layer 14 made of silicon nitride (SiN) was formed on the surface of the substrate 12 by the following ALD method.
  • the precursors used were dichlorosilane (DCS; SiCl 2 H 2 ) and hexachlorodisilane (HCD; Si 2 Cl 6 ) as Si precursors.
  • the precursors were introduced sequentially into the reactor (Cambridge Nanotech Savannah 200 from Cambridge Nano Tech (Cambridge, Mass.)).
  • the reactor was continuously purged with NH 3 gas at 20 sccm and evacuated with a small mechanical pump to a background pressure (pressure without reactant or precursor) of about 40 Pa.
  • NH 3 gas was used as a carrier for dichlorosilane (DCS; SiCl 2 H 2 ), hexachlorodisilane (HCD; Si 2 Cl 6 ) and also as a purge gas.
  • the substrate is exposed to dichlorosilane (DCS; SiCl 2 H 2 ), hexachlorodisilane (HCD; Si 2 Cl 6 ) carried by NH 3 gas for 15 milliseconds, followed by purging the reactor with NH 3 gas for 30 seconds did.
  • the substrate is then exposed to dichlorosilane (DCS; SiCl 2 H 2 ), hexachlorodisilane (HCD; Si 2 Cl 6 ) carried by NH 3 gas for 15 milliseconds, followed by a 15 second purge of NH 3 gas flow Did.
  • DCS dichlorosilane
  • HCD hexachlorodisilane
  • NH 3 gas flow Did a 15 second purge of NH 3 gas flow Did.
  • This reaction procedure produced a SiN layer on the substrate 12.
  • a gas barrier layer 14 made of SiN with a thickness of 25 nm was formed on the substrate 12.
  • Example 7 and 8 A solar cell module was produced in the same manner as in Example 6 except that the thickness of the gas barrier layer 14 was 10 nm and 5 nm, respectively.
  • Example 9 A solar cell module was produced in the same manner as in Example 6 except that PCTFE film (Neoflon manufactured by Daikin Industries, Ltd.) and ECTFE film (Halar (registered trademark) ECTFE manufactured by Solvay) were used as the substrate 12, respectively.
  • PCTFE film Neoflon manufactured by Daikin Industries, Ltd.
  • ECTFE film Healar (registered trademark) ECTFE manufactured by Solvay
  • Example 11 A solar cell module was produced in the same manner as in Example 1 except that the organic layer 16 made of polyimide resin was formed on the surface of the gas barrier layer 14.
  • Neoprim transparent polyimide resin: standard grade made by Mitsubishi Gas Chemical Co., Ltd.
  • Coating was performed by bar coating so that the film thickness of the organic layer was 1 ⁇ m. After application, it was dried in an oven at 70 ° C. for 20 minutes. Next, heat curing was performed at 150 ° C. for 60 minutes under a nitrogen atmosphere to form an organic layer 16.
  • Example 12 A solar cell module was produced in the same manner as in Example 6 except that the organic layer 16 made of polyimide resin was formed on the surface of the gas barrier layer 14 in the same manner as in Example 11.
  • Example 13 and 14 A solar cell module was produced in the same manner as in Example 1 except that the thickness of the gas barrier layer 14 was 3 nm and 50 nm, respectively.
  • Example 15 and 16 A solar cell module was produced in the same manner as in Example 6 except that the thickness of the gas barrier layer 14 was 3 nm and 50 nm, respectively.
  • the gas barrier layer 14 was formed on the substrate 12 by the CVD method, and a solar cell module was produced in the same manner as in Example 1 except that the organic layer 16 was not provided.
  • the formation of the gas barrier layer was carried out by using a CCP-CVD apparatus (manufactured by Samco Inc.), setting the substrate in a vacuum container of the apparatus, evacuating to about 6 ⁇ 10 ⁇ 4 Pa, and supplying the source gas.
  • the source gases were trimethylaluminum gas (40 sccm) and H 2 O gas (20 sccm).
  • a voltage was applied at a power density of 0.6 W / cm 2 from a high frequency power supply having a frequency of 27.12 MHz to form an Al 2 O 3 film of 25 nm on the substrate 12.
  • the pressure in the chamber was 20 Pa.
  • the gas barrier layer 14 was formed on the substrate 12 by the CVD method, and a solar cell module was produced in the same manner as in Example 6 except that the organic layer 16 was not provided.
  • the formation of the gas barrier layer was carried out by using a CCP-CVD apparatus (manufactured by Samco Inc.), setting the substrate in a vacuum container of the apparatus, evacuating to about 6 ⁇ 10 ⁇ 4 Pa, and supplying the source gas.
  • the source gases were silane gas (50 sccm), ammonia gas (600 sccm), and nitrogen gas (850 sccm).
  • a voltage was applied at a power density of 0.6 W / cm 2 from a high frequency power supply having a frequency of 27.12 MHz to form a 25 nm SiN film on the substrate 12.
  • the pressure in the chamber was 20 Pa.
  • Comparative Example 3 A solar cell module was produced in the same manner as in Comparative Example 2 except that the thickness of the gas barrier layer 14 was 100 nm.
  • Comparative Example 4 A solar cell module was produced in the same manner as in Example 1 except that the organic layer was not formed.
  • the thickness of the gas barrier layer is preferably 5 nm or more and 25 nm or less. From the above results, the effects of the present invention are clear.
  • solar cell module 10 solar cell module 12 substrate 14 gas barrier layer 16 organic layer 18 sealing layer 20 solar cell

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Laminated Bodies (AREA)
  • Photovoltaic Devices (AREA)

Abstract

耐久性に優れる太陽電池モジュールを提供する。太陽電池モジュールは、フッ素系樹脂を含有する基板、基板に直接、形成されるガスバリア層、有機層、封止層、および、太陽電池セル、がこの順に積層され、ガスバリア層が、酸素、窒素および炭素からなる群から選ばれる少なくとも1種と、ケイ素またはアルミニウムと、から形成される無機化合物を含有し、基板とガスバリア層との間のJIS-K5600-5-6(1999)のクロスカット試験での残存マスが80マス以上である。

Description

太陽電池モジュール
 本発明は、太陽電池モジュールに関する。
 太陽電池モジュールにおいて、太陽電池モジュールの表面を保護する表面保護シートとして、透明性および化学的安定性の高いフッ素樹脂フィルムが用いられている。また、太陽電池セルへの水分等の侵入を防止するため、ガスバリア層をフッ素樹脂フィルム上に形成することも提案されている。
 例えば、特許文献1には、太陽電池モジュールの表面保護シートとして、フッ素樹脂フィルムを用いることが記載されている。また、耐候性、防汚性等のために、フッ素樹脂フィルム上に金属酸化物の薄膜を形成することが記載されている。
 特許文献2には、フッ素樹脂フィルムに直接ガスバリア層を成膜した太陽電池モジュール用の多層物品が記載されている。また、ガスバリア層としてSiO2、Al23等の無機酸化物が記載されている。
特開2000-103888号公報 特表2013-502745号公報
 ところで、特許文献1にも記載されるように、太陽電池モジュールにおいて、太陽電池セルと表面保護シートとの間には、封止層としてエチレン-酢酸ビニル共重合体(EVA)等の樹脂が充填されている。
 本発明者の検討によれば、表面保護シートの表面にガスバリア層等の無機酸化物(金属酸化物)の層(無機層)を形成した場合には、無機層と封止層との密着性が不十分であることがわかった。そのため、無機層と封止層とが剥離して無機層と封止層との間から水分等が侵入し、太陽電池セルの性能が低下するという問題があることがわかった。
 本発明は、上記従来技術の問題点を解決することにあり、耐久性に優れる太陽電池モジュールを提供することにある。
 本発明者は、上記課題を解決すべく鋭意検討した結果、フッ素系樹脂を含有する基板、基板に直接、形成されるガスバリア層、アクリル系樹脂およびイミド系樹脂の少なくとも一方を含む有機層、封止層、および、太陽電池セル、がこの順に積層され、ガスバリア層が、酸素、窒素および炭素からなる群から選ばれる少なくとも1種と、ケイ素またはアルミニウムとから形成される無機化合物を含有し、基板とガスバリア層との間のJIS-K5600-5-6(1999)のクロスカット試験での残存マスが80マス以上であることにより、上記課題を解決できることを見出し、本発明を完成させた。
 すなわち、以下の構成により上記課題を解決することができることを見出した。
 [1] フッ素系樹脂を含有する基板、
 基板に直接、形成されるガスバリア層、
 アクリル系樹脂およびイミド系樹脂の少なくとも一方を含む有機層、
 封止層、および、
 太陽電池セル、がこの順に積層され、
 ガスバリア層が、酸素、窒素および炭素からなる群から選ばれる少なくとも1種と、ケイ素またはアルミニウムと、から形成される無機化合物を含有し、
 基板とガスバリア層との間のJIS-K5600-5-6(1999)のクロスカット試験での残存マスが80マス以上である太陽電池モジュール。
 [2] 封止層が、エチレン-酢酸ビニル共重合樹脂を含む[1]に記載の太陽電池モジュール。
 [3] ガスバリア層は、原子層堆積法で基板に直接、形成されたものである[1]または[2]に記載の太陽電池モジュール。
 [4] ガスバリア層の厚みが5nm以上25nm以下である[1]~[3]のいずれかに記載の太陽電池モジュール。
 [5] ガスバリア層の水蒸気透過率が10-6g/(m2・day)以上10-4g/(m2・day)以下である[1]~[4]のいずれかに記載の太陽電池モジュール。
 本発明によれば、耐久性に優れる太陽電池モジュールを提供することができる。
本発明の太陽電池モジュールの一例を模式的に示す図である。
 以下、本発明の太陽電池モジュールについて、添付の図面に示される好適例を基に、詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本明細書において、「(メタ)アクリレート」は、「アクリレートおよびメタクリレートのいずれか一方または双方」の意味で使用される。
[太陽電池モジュール]
 本発明の太陽電池モジュールは、
 フッ素系樹脂を含有する基板、
 基板に直接、形成されるガスバリア層、
 アクリル系樹脂およびイミド系樹脂の少なくとも一方を含む有機層、
 封止層、および、
 太陽電池セル、がこの順に積層され、
 ガスバリア層が、酸素、窒素および炭素からなる群から選ばれる少なくとも1種と、ケイ素またはアルミニウムと、から形成される無機化合物を含有し、
 基板とガスバリア層との間のJIS-K5600-5-6(1999)のクロスカット試験での残存マスが80マス以上である太陽電池モジュールである。
 また、本発明の太陽電池モジュールにおいて、ガスバリア層は、原子層堆積法で基板に直接、形成されたものであるのが好ましい。これにより、基板とガスバリア層との密着性が向上し、上記クロスカット試験での残存マスを80マス以上とすることができる。
 図1に、本発明の太陽電池モジュールの一例を概念的に示す。
 図1に示される太陽電池モジュール10は、基板12と、ガスバリア層14と、有機層16と、封止層18と、太陽電池セル20とをこの順に有するものである。
 基板12は、フッ素系樹脂を含有する基板である。
 ガスバリア層14は、基板12に直接、原子層堆積法で形成された無機化合物を含む層である。無機化合物は、酸素、窒素および炭素からなる群から選ばれる少なくとも1種と、ケイ素またはアルミニウムとから形成される。
 また、ガスバリア層14が原子層堆積法で基板12に直接、形成されることで、基板12とガスバリア層14との間のJIS-K5600-5-6(1999)に準拠した、1mm幅で100マスのクロスカット試験での残存マスの数が80マス以上となる。
 太陽電池モジュール10は、表面保護シートとなる基板12の表面に、高いガスバリア性を発揮する無機化合物を含むガスバリア層14を有することによって、太陽電池セルへの水分等の侵入を抑制する。
 ここで、前述のとおり、本発明者の検討によれば、表面保護シートの表面にガスバリア層等の無機化合物を含む層を形成した場合には、ガスバリア層と封止層との間の密着性が不十分であることがわかった。そのため、ガスバリア層と封止層とが剥離してガスバリア層と封止層との間から水分等が侵入し、太陽電池セルの性能が低下するという問題があることがわかった。
 これに対して、本発明の太陽電池モジュール10は、ガスバリア層14と封止層18との間に有機層16を有するので、ガスバリア層14と有機層16との間で密着が良好になり、また、有機層16と封止層18との間で密着が良好になる。具体的には、有機層16と封止層18との間のJIS-K5600-5-6(1999)に準拠したクロスカット試験での残存マスの数が80マス以上とすることができる。
 これにより、層の剥離を抑制して、層間から水分等が侵入することを抑制することができるため、太陽電池セルの性能低下を防止して耐久性に優れる太陽電池モジュールを提供することができる。
 なお、有機層16と封止層18との間のJIS-K5600-5-6(1999)に準拠したクロスカット試験での残存マスの数は90マス以上であるのがより好ましく、100マスであるのがさらに好ましい。
 〔基板〕
 基板12は、太陽電池モジュールにおける表面保護シート(フロントシート)であり、フッ素系樹脂を含有するフィルム状物である。
 基板12として利用されるフッ素系樹脂材料としては、具体的には、パーフルオロアルコキシアルカン(PFA)、パーフルオロエチレンプロペンコポリマー(FEP)、エチレン-テトラフルオロエチレンコポリマー(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン-クロロトリフルオロエチレンコポリマー(ECTFE)、テトラフルオロエチレン-パーフルオロジイオキソールコポリマー(TFE/PDD)等が挙げられる。これ以外にもPTFE(ポリテトラフルオロエチレン)及びPVF(ポリフッ化ビニル)を除く加熱溶融が可能なフッ素系樹脂であればよく、これらの1種あるいは2種以上の混合物でもよい。さらに、上記のフッ素系樹脂材料あるいはフッ素系樹脂材料を主体とする混合物に、これらのフッ素系樹脂材料以外の耐熱性のある高分子材料を混合したものでもよい。
 基板12は、ガスバリア層が形成される面とは反対側の面に、保護層、接着層、光反射層、遮光層、平坦化層、緩衝層、応力緩和層等の、各種の機能を得るための機能層が形成されているものであってもよい。
 この際において、これらの機能層は、1層に限定はされず、複数層の機能層が形成されているものを、基板12として用いてもよい。
 基板12の厚みには、太陽電池モジュールの表面を保護することができれば、特に限定はなく、10~1000μmが好ましい。
 〔ガスバリア層〕
 ガスバリア層14は、主にガスバリア性を発現する、無機化合物を含む層である。ガスバリア層14は、基板12に直接、原子層堆積法で形成される。
 ガスバリア層14が含有する無機化合物は、酸素、窒素および炭素からなる群から選ばれる少なくとも1種と、ケイ素またはアルミニウムと、から形成される無機化合物である。具体的には、窒化ケイ素、酸窒化ケイ素、酸化ケイ素、炭化ケイ素、酸化アルミニウム、窒化アルミニウム、炭化アルミニウムが挙げられる。また、これらの2種以上の混合物も、利用可能である。
 特に、窒化ケイ素、酸化ケイ素、酸窒化ケイ素、酸化アルミニウム、ならびに、これらの2種以上の混合物は、透明性が高く、かつ、優れたガスバリア性を発現できる点で、好適に利用される。中でも特に、窒化ケイ素、および、窒化ケイ素を含む混合物は、優れたガスバリア性に加え、透明性も高く、また、柔軟性も高いため好適に利用される。
 ガスバリア層14の厚さは、5nm~25nmとするのが好ましい。
 ガスバリア層14の厚さを5nm以上とすることにより、十分なガスバリア性を安定して確保することができる。また、ガスバリア性は、基本的に、ガスバリア層14が厚い方が好ましいが、25nmを超えると柔軟性が低下してわれやすくなるため、25nm以下とすることにより、ガスバリア層14の柔軟性を確保して割れ等を好適に防止することができる。
 また、上記利点を、より好適に得られる等の点で、ガスバリア層14の厚さは、より好ましくは、8nm~20nmであり、さらに好ましくは、10nm~15nmである。
 ガスバリア層14の水蒸気透過率は、1×10-6g/(m2・day)以上1×10-4g/(m2・day)以下であるのが好ましく、1×10-6g/(m2・day)以上1×10-5g/(m2・day)以下であるのがより好ましい。
 水蒸気透過率は、カルシウム腐食法(特開2005-283561号公報に記載される方法)によって測定できる。
 ガスバリア層14は、基板の表面に直接、原子層堆積法(ALD(Atomic Layer Deposition))で形成される。
 ALD法は、表面吸着した物質を表面における化学反応によって原子レベルで一層ずつ成膜していく方法である。前駆体またはプリカーサとも云われる活性に富んだガスと反応性ガスを交互に用い、基板表面における吸着と、これに続く化学反応によって原子レベルで一層ずつ薄膜を成長させていく特殊な成膜方法である。
 ALD法の具体的な成膜方法は、基板表面がある種のガスで覆われると、それ以上そのガスの吸着が生じない、いわゆるセルフ・リミッテイング効果を利用し、前駆体が一層のみ吸着したところで未反応の前駆体を排気する。続いて、反応性ガスを導入して、先の前駆体を酸化または還元させて所望の組成を有する薄膜を一層のみ得たのちに反応性ガスを排気する。このような処理を1サイクルとし、このサイクルを繰り返して薄膜を成長させていくものである。したがって、ALD法では薄膜は2次元的に成長する。また、ALD法は、従来の成膜方法と比較して、成膜欠陥が少ないことが特徴である。
 また、ALD法は、他の成膜方法と比較して斜影効果(成膜粒子が基板表面に斜めに入射して成膜バラツキが生じる現象)が無いなどの特徴があるため、ガスが入り込める隙間があれば一様な成膜が可能である。基板上の凹凸のある傷について、従来の成膜方法は成膜粒子が凹凸部を完全に覆うことが困難であるのに対し、ALD法は凹凸に追従するように成膜することが可能であるため、ピンホール欠陥を著しく低減できる。
 ここで、無機化合物を含む薄膜の成膜方法として、スパッタリング、および、プラズマCVD(chemical vapor deposition)等の方法が知られている。しかしながら、フッ素系樹脂を含有する基板にスパッタリング、および、プラズマCVD等の方法で無機化合物を含むガスバリア層を形成した場合には、基板とガスバリア層との密着性が十分ではなかった。
 これに対して、本発明においては、フッ素系樹脂を含む基板12にALD法によってガスバリア層14を形成するので、基板12とガスバリア層14との密着性を高くすることができる。
 具体的に、ALD法によってガスバリア層14を形成することで、基板12とガスバリア層14との密着性を、基板12とガスバリア層14との間のJIS-K5600-5-6(1999)のクロスカット試験での残存マスの数を80マス以上とすることができる。基板12とガスバリア層14との間のクロスカット試験での残存マスの数は、90マス以上であるのがより好ましく、100マスであるのがさらに好ましい。
 〔有機層〕
 有機層16は、ガスバリア層14の表面に形成され、封止層18との密着性を確保するための層である。
 有機層16の形成材料は、ガスバリア層14と、後述する封止層18との密着性が良好な材料であればよい。
 有機層16は、例えば、有機化合物(モノマー、ダイマー、トリマー、オリゴマー、および、ポリマー等)を含有する、有機層形成用組成物を硬化して形成される。有機層形成用組成物は、有機化合物を1種のみ含んでもよく、2種以上含んでもよい。
 有機層16は、例えば、熱可塑性樹脂および有機ケイ素化合物等を含有する。
 具体的には、熱可塑性樹脂としては、アクリル系樹脂、イミド系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリ塩化ビニル系樹脂、ポリスチレン系樹脂、ポリ酢酸ビニル系樹脂、ポリウレタン系樹脂、テフロン(登録商標)系樹脂、ABS樹脂、ポリアミド系樹脂、ポリアセタール系樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂等が挙げられる。特に、密着性の観点から、アクリル系樹脂、イミド系樹脂が好ましい。
 アクリル系樹脂としては、ポリエステル、(メタ)アクリル樹脂、メタクリル酸-マレイン酸共重合体、ポリスチレンが挙げられる。より好ましくは、ジプロピレングリコールジ(メタ)アクリレート(DPGDA)、トリメチロールプロパントリ(メタ)アクリレート(TMPTA)、ジペンタエリスリトールヘキサ(メタ)アクリレート(DPHA)などの、2官能以上の(メタ)アクリレートのモノマー、ダイマーおよびオリゴマー等の重合体を主成分とする(メタ)アクリル樹脂を含み、さらに好ましくは、3官能以上の(メタ)アクリレートのモノマー、ダイマーおよびオリゴマー等の重合体を主成分とする(メタ)アクリル樹脂を含む。また、これらの(メタ)アクリル樹脂を、複数用いてもよい。
 イミド系樹脂としては、ポリイミド、フッ素化ポリイミド、ポリアミド、ポリアミドイミド、ポリエーテルイミドが挙げられる。
 有機層16の成膜方法(形成方法)には、特に限定はなく、公知の有機物の膜の成膜方法が、全て利用可能である。
 一例として、有機物や有機物モノマー、さらには重合開始剤等を溶媒に溶解(分散)して調製した塗料を、ロールコート、グラビアコート、スプレーコート、等の公知の塗布手段でガスバリア層14上に塗布して、乾燥し、必要に応じて、加熱、紫外線照射、電子線照射等によって硬化する、塗布法が例示される。また、有機物あるいは塗布法と同様の塗料を蒸発させて、その蒸気をガスバリア層14の表面に付着させて、冷却/凝縮して液体状の膜を形成し、この膜を紫外線や電子線によって硬化することで成膜を行なう、フラッシュ蒸着法も好適に利用可能である。また、シート状に成形した有機層16を転写する転写法も利用可能である。
 有機層16を形成するための塗料に含まれる光重合開始剤としては、BASF社から市販されているイルガキュア(Irgacure)シリーズ(例えば、イルガキュア651、イルガキュア754、イルガキュア184、イルガキュア2959、イルガキュア907、イルガキュア369、イルガキュア379、イルガキュア819など)、ダロキュア(Darocure)シリーズ(例えば、ダロキュアTPO、ダロキュア1173など)、クオンタキュア(Quantacure)PDO、ランベルティ(Lamberti)社から市販されているエザキュア(Ezacure)シリーズ(例えば、エザキュアTZM、エザキュアTZT、エザキュアKTO46など)等が挙げられる。有機層形成用組成物(塗料)中の重合開始剤の含量は、有機化合物の合計量の0.1モル%以上であることが好ましく、0.5~2.0モル%であることがより好ましい。
 有機層16の厚さは、ガスバリア層14との密着性、および、封止層18との密着性を確保することができれば、特に限定はなく、適宜、設定すればよい。具体的には、0.1~100μmが好ましく、0.2~50μmがより好ましい。
 有機層16の厚さを、上記範囲とすることにより、密着性、柔軟性を向上できる、高い透明性を保つことができる等の点で、好ましい結果を得ることができる。
 なお、本発明において、有機層16は、1つの有機物の膜で形成されるのに限定はされず、複数の有機物の膜によって、有機層16を形成してもよい。
 例えば、塗布法で成膜した有機物の膜の上に、フラッシュ蒸着で成膜した有機物の膜を設け、この2層の有機膜によって、有機層16を形成してもよい。
 〔封止層〕
 封止層18は、有機層16と太陽電池セル20との間に充填されて太陽電池セル20を封止するものである。
 封止層18の形成材料としては、従来公知の太陽電池モジュールで用いられている封止材が適宜利用可能である。具体的には、エチレン-酢酸ビニル共重合樹脂(EVA)、エチレン・(メタ)アクリル酸系共重合体、エチレン・(メタ)アクリル酸系共重合体等が挙げられる。
 封止層18の厚みには特に限定はなく、5μm~2000μm(0.005mm~2mm)の範囲であることが好ましく、100μm~2000μm(0.1mm~2mm)の範囲であることがより好ましく、100μm~1500μm(0.1mm~1.5mm)がさらに好ましい。
 ここで、前述のとおり、有機層16と封止層18との間の密着性は、JIS-K5600-5-6(1999)のクロスカット試験での残存マスの数が80マス以上であるのが好ましく、90マス以上がより好ましく、100マスがさらに好ましい。
 〔太陽電池セル〕 
 太陽電池セル20は、太陽光の光エネルギーを電気エネルギーに変換する素子である。
 太陽電池セル20としては限定はなく、単結晶シリコン、多結晶シリコン、アモルファスシリコンなどのシリコン系、銅-インジウム-ガリウム-セレン、銅-インジウム-セレン、カドミウム-テルル、ガリウム-砒素などのIII-V族やII-VI族化合物半導体系など、従来公知の太陽電池モジュールで用いられている太陽電池セル(素子)が適宜、利用可能である。
 ここで、図1に示す例では、ガスバリア層14および有機層16をそれぞれ1層有する構成としたが、これに限定はされず、ガスバリア層14および有機層16をそれぞれ2層以上、交互に有する構成としてもよい。すなわち、例えば、太陽電池モジュールは、基板12、ガスバリア層14、有機層、ガスバリア層、有機層16、封止層18、および、太陽電池セル20の順に積層された構成としてもよい。ガスバリア層および有機層をそれぞれ複数層有する場合でも、基板12に接するのはガスバリア層14であり、封止層18に接するのは有機層16である。
 また、有機層の表面に形成されるガスバリア層は、ALD法で形成されるものに限定はされず、従来公知のスパッタリング、および、プラズマCVD等の方法で無機化合物を含むガスバリア層を形成してもよい。
 また、ガスバリア層を複数有する場合には、各ガスバリア層の厚みは同じでも異なっていてもよく、また、材料も同じでも異なっていてもよい。同様に、有機層を複数有する場合は、各有機層の厚みは同じでも異なっていてもよく、また、材料も同じでも異なっていてもよい。
 以上、本発明の太陽電池モジュールについて詳細に説明したが、本発明は、上述の例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行なってもよい。
 [実施例1]
 図1に示すような太陽電池モジュール10を作製した。
 基板12としては、厚み50μmのETFEフィルム(旭硝子株式会社製Fluon)を用いた。
 <無機層の形成>
 ALD法によって、基板12の表面に酸化アルミニウム(Al23)からなるガスバリア層14を形成した。
 使用した前駆体は、トリメチルアルミニウム(TMA)蒸気および水蒸気であった。前駆体を順番に反応器(Cambridge Nano Tech(Cambridge,Mass.)製Cambridge Nanotech Savannah 200)に導入した。反応器を、20sccmで窒素気体で連続的にパージし、小型メカニカルポンプで約40Paのバックグラウンド圧力(反応物も前駆体もない圧力)まで排気した。窒素気体を、TMAおよびH2O前駆体の担体として、またパージ気体としても使用した。
 基板を15ミリ秒間、窒素気体によって運搬された水蒸気に曝し、続いて30秒間窒素気体で反応器をパージした。次いで、基板を15ミリ秒間、窒素気体によって運搬されたトリメチルアルミニウム蒸気に曝し、続いて15秒間、窒素流のパージを行った。この反応手順によって、基板12上にAl23層が製造された。この反応手順を250回繰り返すと、基板12上に厚さ25nmのAl23からなるガスバリア層14が形成された。
 なお、単位sccmで表す流量は、1013hPa、0℃における流量(cc/min)に換算した値である。
 成膜したガスバリア層14の水蒸気透過率をカルシウム腐食法(特開2005-283561号公報に記載される方法)によって測定した。水蒸気透過率は、1×10-5g/(m2・day)であった。
 また、サンプルとして上記と同様の方法で作製したガスバリア層14と基板12と間で、1mm幅で100マスのクロスカット試験(JIS-K5600-5-6(1999))を行い、剥離しなかったマスの数を測定した。残存マス数は100マスであった。
 <有機層の形成>
 ガスバリア層14の表面にアクリル樹脂からなる有機層16を形成した。
 TMPTA(ダイセル・オルネクス社製)を28.5g、紫外線重合開始剤(ランベルティ社製、ESACURE KTO46)を1.5g、および、2-ブタノン(和光純薬工業社製)を170g、混合し、有機層を形成するための有機層形成用組成物を調製した。有機層形成用組成物の固形分濃度は、15質量%であった。
 調製した有機層形成用組成物を、ガスバリア層14の表面に塗布した。塗布は、ダイコーターを用い、有機層の膜厚が1μmとなるように行った。塗布後、80℃のオーブンで3分間乾燥させた。次いで、窒素置換法により酸素濃度を0.1%としたチャンバー内で高圧水銀ランプの紫外線を照射(積算照射量約600mJ/cm2)することで有機層形成用組成物を硬化させて、有機層16を形成し積層体とした。
 <太陽電池セルの封止>
 結晶系太陽電池セル(Hanwha Q CELLS社製 Q6LMX3)と、封止材(Shezhen Sveck Technology社製、エチレン・ビニルアセテート共重合体(EVA) SVK-15297)と、上記で作製した積層体と、をこの順に重ね合わせた。この際、積層体の有機層16が封止材(封止層18)と接触するように配置した。
 真空ラミネータ(日清紡(株)製、真空ラミネート機 LAMINATOR0505S)を用いて、145℃、真空引き時間5分、加圧時間10分の条件下でラミネートすることで、各部材間を接着させ、太陽電池モジュールを作製した。
 また、サンプルとして上記と同様の方法で作製した有機層16と封止層18との間で、1mm幅で100マスのクロスカット試験(JIS-K5600-5-6(1999))を行い、剥離しなかったマスの数を測定した。残存マス数は80マスであった。
 [実施例2および3]
 ガスバリア層14の厚みをそれぞれ10nm、5nmとした以外は実施例1と同様にして太陽電池モジュールを作製した。
 [実施例4および5]
 基板12としてそれぞれ、PCTFEフィルム(ダイキン工業株式会社製 ネオフロン)、ECTFEフィルム(ソルベイ社製 ヘイラー(登録商標) ECTFE)を用いた以外は実施例1と同様にして太陽電池モジュールを作製した。
 [実施例6]
 下記のALD法によって、基板12の表面に窒化ケイ素(SiN)からなるガスバリア層14を形成した以外は実施例1と同様にして太陽電池モジュールを作製した。
 使用した前駆体は、Siプリカーサとして、ジクロロシラン(DCS;SiCl)、ヘキサクロロジシラン(HCD;SiCl)であった。前駆体を順番に反応器(Cambridge Nano Tech(Cambridge,Mass.)製Cambridge Nanotech Savannah 200)に導入した。反応器を、20sccmでNH3ガスで連続的にパージし、小型メカニカルポンプで約40Paのバックグラウンド圧力(反応物も前駆体もない圧力)まで排気した。NH3ガスを、ジクロロシラン(DCS;SiCl)、ヘキサクロロジシラン(HCD;SiCl)の担体として、またパージ気体としても使用した。
 基板を15ミリ秒間、NH3ガスによって運搬されたジクロロシラン(DCS;SiCl)、ヘキサクロロジシラン(HCD;SiCl)に曝し、続いて30秒間、NH3ガスで反応器をパージした。次いで、基板を15ミリ秒間、NH3ガスによって運搬されたジクロロシラン(DCS;SiCl)、ヘキサクロロジシラン(HCD;SiCl)に曝し、続いて15秒間、NH3ガス流のパージを行った。この反応手順によって、基板12上にSiN層が製造された。この反応手順を250回繰り返すと、基板12上に厚さ25nmのSiNからなるガスバリア層14が形成された。
 [実施例7および8]
 ガスバリア層14の厚みをそれぞれ10nm、5nmとした以外は実施例6と同様にして太陽電池モジュールを作製した。
 [実施例9および10]
 基板12としてそれぞれ、PCTFEフィルム(ダイキン工業株式会社製 ネオフロン)、ECTFEフィルム(ソルベイ社製 ヘイラー(登録商標) ECTFE)を用いた以外は実施例6と同様にして太陽電池モジュールを作製した。
 [実施例11]
 ガスバリア層14の表面にポリイミド樹脂からなる有機層16を形成した以外は実施例1と同様にして太陽電池モジュールを作製した。
 ネオプリム(透明ポリイミド樹脂:三菱ガス化学(株)製 標準グレード)をガスバリア層14の表面に塗布した。塗布はバー塗布で行い、有機層の膜厚が1μmとなるように行なった。塗布後、70℃のオーブンで20分間乾燥させた。次いで、窒素雰囲気下で150℃、60分間加熱硬化させて、有機層16を形成した。
 [実施例12]
 実施例11と同様の方法でガスバリア層14の表面にポリイミド樹脂からなる有機層16を形成した以外は実施例6と同様にして太陽電池モジュールを作製した。
 [実施例13および14]
 ガスバリア層14の厚みをそれぞれ3nm、50nmとした以外は実施例1と同様にして太陽電池モジュールを作製した。
 [実施例15および16]
 ガスバリア層14の厚みをそれぞれ3nm、50nmとした以外は実施例6と同様にして太陽電池モジュールを作製した。
 [比較例1]
 ガスバリア層14をCVD法によって基板12上に成膜し、有機層16を有さない以外は実施例1と同様にして太陽電池モジュールを作製した。
 ガスバリア層の形成は、CCP-CVD装置(サムコ株式会社製)を使用し、基板を装置の真空容器内に設置し、6×10-4Pa程度まで真空引きした後に、原料ガスを供給した。原料ガスは、トリメチルアリミニウムガス(40sccm)、H2Oガス(20sccm)とした。周波数27.12MHzの高周波電源により、電力密度0.6W/cm2で電圧を印加し、基板12上にAl23膜を25nm成膜した。チャンバー内の圧力は20Paとした。
 [比較例2]
 ガスバリア層14をCVD法によって基板12上に成膜し、有機層16を有さない以外は実施例6と同様にして太陽電池モジュールを作製した。
 ガスバリア層の形成は、CCP-CVD装置(サムコ株式会社製)を使用し、基板を装置の真空容器内に設置し、6×10-4Pa程度まで真空引きした後に、原料ガスを供給した。原料ガスは、シランガス(50sccm)、アンモニアガス(600sccm)、窒素ガス(850sccm)とした。周波数27.12MHzの高周波電源により、電力密度0.6W/cm2で電圧を印加し、基板12上にSiN膜を25nm成膜した。チャンバー内の圧力は20Paとした。
 [比較例3]
 ガスバリア層14の厚みを100nmとした以外は比較例2と同様にして太陽電池モジュールを作製した。
 [比較例4]
 有機層を形成しない以外は実施例1と同様にして太陽電池モジュールを作製した。
 [評価]
<発電効率(セル温度)>
 作製した太陽電池モジュールの耐久性を評価した。
 具体的には、高温高湿(85℃85%RH)に1000時間放置後に下記の評価を行った。
 モジュール作製時に太陽電池セルとEVA(封止層)との間に熱電対を設置し、セル温度を測定可能とした。ソーラーシミュレータを用い、AM1.5G(太陽光標準スペクトル)相当の光を6時間照射した際の温度を測定した。セル温度が低いほど発電効率の低下が抑制されると言える。評価基準は以下の通りである。
 A:60℃以下
 B:60℃超85℃未満
 C:85℃以上
 結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、本発明の実施例である実施例1~16は、比較例に比べて耐久性が高いことがわかる。
 また、実施例1~3の対比、ならびに、実施例6~8の対比から、ガスバリア層の厚みが厚いほど水蒸気透過率は低くなる、すなわち、ガスバリア性が高くなることがわかる。一方、ガスバリア層の厚みが薄いほど有機層のクロスカット試験の結果が高くなる、すなわち、有機層と封止層との密着性が向上することがわかる。これは、ガスバリア層の厚みが厚くなるほど、内部応力が上昇し、有機層の積層により、有機層の内部応力が加わることで、無機層と基材界面への応力集中が大きくなり、剥離が生じ易くなってしまうものと考えられる。従って、ガスバリア層の厚みは、5nm以上25nm以下であるのが好ましいことがわかる。
 以上の結果より、本発明の効果は、明らかである。
 10 太陽電池モジュール
 12 基板
 14 ガスバリア層
 16 有機層
 18 封止層
 20 太陽電池セル
 

Claims (5)

  1.  フッ素系樹脂を含有する基板、
     前記基板に直接、形成されるガスバリア層、
     アクリル系樹脂およびイミド系樹脂の少なくとも一方を含む有機層、
     封止層、および、
     太陽電池セル、がこの順に積層され、
     前記ガスバリア層が、酸素、窒素および炭素からなる群から選ばれる少なくとも1種と、ケイ素またはアルミニウムと、から形成される無機化合物を含有し、
     前記基板と前記ガスバリア層との間のJIS-K5600-5-6(1999)のクロスカット試験での残存マスが80マス以上である太陽電池モジュール。
  2.  前記封止層が、エチレン-酢酸ビニル共重合樹脂を含む請求項1に記載の太陽電池モジュール。
  3.  前記ガスバリア層は、原子層堆積法で前記基板に直接、形成されたものである請求項1または2に記載の太陽電池モジュール。
  4.  前記ガスバリア層の厚みが5nm以上25nm以下である請求項1~3のいずれか一項に記載の太陽電池モジュール。
  5.  前記ガスバリア層の水蒸気透過率が10-6g/(m2・day)以上10-4g/(m2・day)以下である請求項1~4のいずれか一項に記載の太陽電池モジュール。
     
PCT/JP2018/021114 2017-08-31 2018-06-01 太陽電池モジュール WO2019044088A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017166939A JP2020205293A (ja) 2017-08-31 2017-08-31 太陽電池モジュール
JP2017-166939 2017-08-31

Publications (1)

Publication Number Publication Date
WO2019044088A1 true WO2019044088A1 (ja) 2019-03-07

Family

ID=65525277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021114 WO2019044088A1 (ja) 2017-08-31 2018-06-01 太陽電池モジュール

Country Status (2)

Country Link
JP (1) JP2020205293A (ja)
WO (1) WO2019044088A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284610A (ja) * 2000-03-29 2001-10-12 Dainippon Printing Co Ltd 太陽電池モジュ−ル用保護シ−トおよびそれを使用した太陽電池モジュ−ル
JP2005283561A (ja) * 2004-03-04 2005-10-13 Sumitomo Bakelite Co Ltd 水蒸気透過度測定装置
JP2006332092A (ja) * 2005-05-23 2006-12-07 Toppan Printing Co Ltd 太陽電池裏面封止用シート
JP2010238736A (ja) * 2009-03-30 2010-10-21 Lintec Corp 太陽電池モジュール保護用シート及び太陽電池モジュール
WO2012020771A1 (ja) * 2010-08-13 2012-02-16 旭硝子株式会社 積層体および積層体の製造方法
US20130009264A1 (en) * 2010-02-18 2013-01-10 U.S. Department Of Energy Moisture barrier
JP2013071947A (ja) * 2011-09-26 2013-04-22 Nippon Shokubai Co Ltd (メタ)アクリル系接着剤

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284610A (ja) * 2000-03-29 2001-10-12 Dainippon Printing Co Ltd 太陽電池モジュ−ル用保護シ−トおよびそれを使用した太陽電池モジュ−ル
JP2005283561A (ja) * 2004-03-04 2005-10-13 Sumitomo Bakelite Co Ltd 水蒸気透過度測定装置
JP2006332092A (ja) * 2005-05-23 2006-12-07 Toppan Printing Co Ltd 太陽電池裏面封止用シート
JP2010238736A (ja) * 2009-03-30 2010-10-21 Lintec Corp 太陽電池モジュール保護用シート及び太陽電池モジュール
US20130009264A1 (en) * 2010-02-18 2013-01-10 U.S. Department Of Energy Moisture barrier
WO2012020771A1 (ja) * 2010-08-13 2012-02-16 旭硝子株式会社 積層体および積層体の製造方法
JP2013071947A (ja) * 2011-09-26 2013-04-22 Nippon Shokubai Co Ltd (メタ)アクリル系接着剤

Also Published As

Publication number Publication date
JP2020205293A (ja) 2020-12-24

Similar Documents

Publication Publication Date Title
JP6041039B2 (ja) ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び電子デバイス
JP5803937B2 (ja) ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び電子デバイス
KR101947796B1 (ko) 고성능 코팅들을 증착하기 위한 방법 및 캡슐화된 전자 디바이스들
JP5880442B2 (ja) ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び電子デバイス
JP6056854B2 (ja) ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び電子デバイス
JP5447022B2 (ja) ガスバリア性フィルム、その製造方法及びそのガスバリア性フィルムを用いた有機光電変換素子
US20130334511A1 (en) Method for deposition of high-performance coatings and encapsulated electronic devices
US20130157062A1 (en) Laminate and process for producing laminate
WO2011108609A1 (ja) 積層体およびその製造方法
JP5636646B2 (ja) バリアフィルムの製造方法、バリアフィルム及び有機光電変換素子の製造方法
JP5861376B2 (ja) ガスバリア性フィルム、ガスバリア性フィルムの製造方法、及びガスバリア性フィルムを有する電子デバイス
WO2019044088A1 (ja) 太陽電池モジュール
JP4397391B2 (ja) ガスバリア性プラスチックおよびプラスチックフィルムの製造方法
FR2988520A1 (fr) Utilisation d'une structure multicouche a base de polymere halogene comme feuille de protection de module photovoltaique
TW201247924A (en) Method for producing laminate
JP2001007368A (ja) 太陽電池モジュ−ル用保護シ−トおよびそれを使用した太陽電池モジュ−ル
JP4757364B2 (ja) 太陽電池モジュ−ル
JP5888314B2 (ja) ガスバリア性フィルム及びそのガスバリア性フィルムを用いた電子デバイス
KR102076705B1 (ko) 태양전지용 유무기 복합 봉지막의 제조방법
JP6909780B2 (ja) 多層バリアアセンブリを含む複合材物品及びその製造方法
JP2000340818A (ja) 太陽電池モジュ−ル用保護シ−トおよびそれを使用した太陽電池モジュ−ル
JP5578270B2 (ja) ガスバリア性フィルム、その製造方法及びそのガスバリア性フィルムを用いた有機光電変換素子
JP2001196613A (ja) 太陽電池モジュ−ル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18850526

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18850526

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP