WO2019043766A1 - Motor and air conditioning device - Google Patents

Motor and air conditioning device Download PDF

Info

Publication number
WO2019043766A1
WO2019043766A1 PCT/JP2017/030821 JP2017030821W WO2019043766A1 WO 2019043766 A1 WO2019043766 A1 WO 2019043766A1 JP 2017030821 W JP2017030821 W JP 2017030821W WO 2019043766 A1 WO2019043766 A1 WO 2019043766A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
shaft
stator
motor
core
Prior art date
Application number
PCT/JP2017/030821
Other languages
French (fr)
Japanese (ja)
Inventor
知毅 林
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019538771A priority Critical patent/JP6861830B2/en
Priority to PCT/JP2017/030821 priority patent/WO2019043766A1/en
Publication of WO2019043766A1 publication Critical patent/WO2019043766A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator

Definitions

  • the present invention relates to an inner rotor type motor and an air conditioner provided with the motor.
  • the inner rotor type motor is configured such that a rotor disposed inside a stator rotates (see, for example, Patent Document 1).
  • the rotor core and the stator core are each formed of laminated steel plates in which a plurality of electromagnetic steel plates are laminated.
  • a rotor has a permanent magnet in the perimeter side of a rotor core.
  • the motor is mounted on various devices such as an air conditioner and driven as a power source such as a fan.
  • the air conditioner has a plurality of motors for driving a fan or a compressor, and the output range required for each motor differs depending on the object to be driven. As the size of the device on which the motor is mounted is increased, the output of the motor is required to be increased. Therefore, conventionally, the output of the motor is increased by increasing the thickness of laminated steel plates in the rotor core and the stator core.
  • An object of the present invention is to provide a motor and an air conditioner.
  • a motor according to the present invention includes a plurality of core modules including a shaft, a rotor into which the shaft is inserted, a stator provided on the outer peripheral side of the rotor, and a plurality of core modules including frame portions covering the outer periphery of the stator The respective frame parts of are connected along the axial direction of the shaft.
  • An air conditioner according to the present invention includes the above-described motor and a fan that rotates using the motor as a power source.
  • the overall output can be set by combining two or more core modules. Therefore, even in the case of increasing the types of output to be exhibited, it is possible to suppress the new construction of the manufacturing equipment and the mold and to improve the productivity.
  • FIG. 3 is an exploded perspective view of the motor shown in FIGS. 1 and 2; It is a perspective view which shows the shaft of FIG. 3 partially.
  • FIG. 4 is a perspective view of the rotor of FIG. 3; It is the perspective view which illustrated the state which assembled the shaft of FIG. 4 and the rotor of FIG. It is the schematic which looked at the rotor of FIG. 3 from the axial direction side. It is explanatory drawing which shows schematic structure of the rotor core which comprises the rotor of FIG. FIG.
  • FIG. 9 is a schematic cross-sectional view along the line Y-Y of FIG. 8; It is a perspective view which shows the stator of FIG. It is the schematic which saw the stator of FIG. 3 from the axial direction side. It is a perspective view which shows the flame
  • FIG. 14 is a schematic cross-sectional view along the line AA of FIG. 13;
  • FIG. 14 is a schematic cross-sectional view along the line BB of FIG. 13; It is the enlarged view which extracted the periphery of the positioning groove and protrusion of FIG. 15 partially.
  • FIG. 5 is a schematic cross-sectional view illustrating another configuration of the motor according to the first embodiment of the present invention.
  • FIG. 1 is an external perspective view of an air conditioning apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a front view of the air conditioner of FIG. 1 as viewed from the front side. The overall configuration of the air conditioner according to the present embodiment will be described based on FIGS. 1 and 2.
  • the air conditioning apparatus 100 is connected to a heat source machine (not shown) installed outdoors or the like through a pipe that circulates a heat medium.
  • the air conditioning apparatus 100 performs air conditioning of a space to be air-conditioned by circulating a heat medium subjected to exhaust heat or heat absorption by a heat source machine and circulating air in the space to be air-conditioned.
  • the air conditioning apparatus 100 has a housing 101. At an upper portion of the housing 101, an air outlet 102 for blowing air is provided. A front suction port 103 for sucking air is provided on the front side of the housing 101. In addition, although not shown, the rear side of the housing 101 is provided with a rear suction port for drawing air.
  • the air conditioning apparatus 100 is installed, for example, on the floor surface of the air conditioning target space, and a blowout flange 102a formed around the blowout port 102 is connected to a blowout duct disposed on a ceiling of the air conditioning target space.
  • the air conditioning apparatus 100 includes a motor 10 and a fan 150 that rotates using the motor 10 as a power source.
  • the motor 10 and the fan 150 are provided inside the housing 101.
  • the air conditioning apparatus 100 has a heat exchanger that exchanges heat between a heat medium flowing from a heat source unit and air sucked from the front suction port 103 or the like.
  • the heat exchanger is, for example, a fin-and-tube heat exchanger, and is disposed obliquely in the housing 101.
  • the fan 150 is, for example, a centrifugal sirocco fan, and a plurality of blades are arranged in a cylindrical shape.
  • a dual suction type sirocco fan is illustrated as the fan 150.
  • the fan 150 sucks air from the front suction port 103 or the like and sends the air that has passed through the heat exchanger to the blowout port 102.
  • the air sent to the air outlet 102 by the fan 150 passes through the air outlet duct and is supplied again to the air conditioning target space.
  • FIG. 3 is an exploded perspective view of the motor shown in FIGS. 1 and 2.
  • the motor 10 includes a shaft 21, a rotor 22 into which the shaft 21 is inserted, a stator 31 provided on the outer peripheral side of the rotor 22, and a plurality of frame portions 35 surrounding the outer periphery of the stator 31. And a core module 80.
  • the frame portions 35 of the plurality of core modules 80 are connected along the axial direction Ax of the shaft 21.
  • the motor 10 includes the rotor assembly 20 and a plurality of stator assemblies 30.
  • the motor 10 also has a first cover 40 and a second cover 50.
  • the rotor assembly 20 includes a shaft 21, a plurality of rotors 22 into which the shaft 21 is inserted, a first bearing 24, and a second bearing 25.
  • the rotor assembly 20 has a structure in which the same number of rotors 22 as the stator assembly 30 are fixed to one shaft 21.
  • the shaft 21 is made of, for example, a steel material made of carbon steel for machine structure such as S45C.
  • a plurality of rotors 22 are fixed to the shaft 21.
  • Each of the plurality of rotors 22 is provided with a rotor side key groove 22c.
  • the first bearing 24 is press-fitted and fixed to the shaft 21 at one end side of the plurality of rotors 22.
  • the second bearing 25 is press-fit and fixed to the shaft 21 at the other end side of the plurality of rotors 22.
  • a fan 150 as a load is provided on the axial direction Ax side of the shaft 21. That is, the first bearing 24 supports the shaft 21 via the first cover 40 on the load side of the motor 10, and the second bearing 25 via the second cover 50 on the non-load side of the motor 10. Support the shaft 21.
  • the axial direction Ax is the direction on the load side of the shaft 21 and corresponds to each direction such as up, down, left, and right according to the direction in which the motor 10 is attached.
  • the stator assembly 30 includes a stator 31 provided on the outer peripheral side of the rotor 22 and a frame portion 35 covering the outer periphery of the stator 31.
  • the stator assembly 30 is one in which the stator 31 and the frame portion 35 are integrally assembled by welding or the like.
  • the frame portion 35 is an outer shell component that forms an outer shell of the stator assembly 30.
  • a male portion 35a is formed at one end in the axial direction Ax, and a female portion 35b is formed at the other end. Therefore, in the two frame parts 35, the male part 35a of one frame part 35 is fitted into the female part 35b of the other frame part 35 and connected.
  • the frame portion 35 has a protrusion 35 c on the inner side wall 351 facing the stator core.
  • a groove 35 d corresponding to the protrusion 35 c is formed on the outer peripheral side of the female portion 35 b of the frame 35. That is, in the two adjacent frame portions 35, the protrusions 35c of one frame portion 35 are fitted in the grooves 35d of the other frame portion 35.
  • the protrusion 35 c and the groove 35 d are for determining the positions of the plurality of frame portions 35 in the rotational direction R.
  • the protrusion 35 c and the groove 35 d are formed along the axial direction Ax.
  • the first lid 40 is attached to the frame 35 at one end of the plurality of stator assemblies 30. That is, the first lid portion 40 is attached to the frame portion 35 closest to the axial direction Ax among the plurality of frame portions 35 by screwing or the like.
  • a lid-side female portion 40b into which the male portion 35a of the frame portion 35 is fitted is formed on the first lid portion 40 on the side facing the frame portion 35.
  • a lid-side protrusion 40d to be fitted into the groove 35d of the frame portion 35 is formed on the inner peripheral side of the lid-side female portion 40b.
  • the lid side protrusion 40 d is used to position the first lid 40 in the rotational direction R.
  • the second lid 50 is attached to the frame 35 on the other end side of the plurality of stator assemblies 30. That is, the second lid 50 is attached to the frame portion 35 closest to the axial direction among the plurality of frame portions 35 by screwing or the like.
  • the anti-axial direction is the direction opposite to the axial direction Ax.
  • the lid side male portion 50a to be fitted into the female portion 35b of the frame portion 35 is formed in the second lid portion 50.
  • a lid-side groove 50c to which the projection 35c of the frame 35 is fitted is formed on the outer peripheral side of the lid-side male portion 50a.
  • the lid-side groove 50 c is used to position the second lid 50 in the rotational direction R.
  • a through hole 41 through which the shaft 21 passes is formed at the center of the first lid 40.
  • a bearing housing 44 in which the first bearing 24 is fitted is formed on the side of the first lid 40 opposite to the frame 35.
  • the first bearing 24 is press-fit into the bearing housing 44.
  • the second bearing 25 is press-fit into the bearing housing 55. That is, the rotor assembly 20 is fixed by the first bearing 24 and the second bearing 25.
  • the first lid 40 and the second lid 50 are formed of a resin such as steel or fiber reinforced plastic.
  • the 1st cover part 40 and the 2nd cover part 50 can be formed by the aluminum die-cast manufacturing method.
  • the first lid 40 and the second lid 50 may be castings formed by a method other than the aluminum die casting method.
  • FIG. 4 is a perspective view partially showing the shaft of FIG.
  • FIG. 5 is a perspective view showing the rotor of FIG. 6 is a perspective view illustrating the shaft of FIG. 4 and the rotor of FIG. 5 in an assembled state.
  • the structure for fixing the rotor 22 at a predetermined position of the shaft 21 will be described with reference to FIGS. 4 to 6.
  • the rotor assembly 20 has a bar-shaped key portion 23 for determining the position of the shaft 21 and the rotor 22 in the rotational direction R.
  • the shaft 21 has a shaft side key groove 21 c in which the key portion 23 is fitted.
  • the rotor 22 has an insertion hole 22 a into which the shaft 21 is inserted, and a rotor-side key groove 22 c into which the key portion 23 is fitted.
  • the rotor side key groove 22 c is for preventing the phases of the respective rotors 22 from shifting, and the key portion 23 described later is fitted.
  • the key portion 23 has the same number as that of the rotor 22, and the shaft 21 has the same number of shaft-side key grooves 21c as that of the rotor 22. Then, one key portion 23, one shaft side key groove 21c, and one rotor side key groove 22c are arranged in association with each other. With this structure, the motor 10 can also position the plurality of rotors 22 in the axial direction Ax.
  • FIG. 7 is a schematic view of the rotor of FIG. 3 viewed from the axial direction side.
  • the rotor 22 has a rotor core 220 made of laminated steel plates.
  • an IPM (Interior Permanent Magnet) motor is illustrated as the motor 10.
  • the IPM motor is a permanent magnet embedded type motor having a rotor in which permanent magnets are embedded in a rotor core, and has a sensor magnet for detecting each phase of a three-phase winding, and a Hall sensor for detecting magnetism. ing.
  • a plurality of magnet insertion holes 22d are formed in the rotor core 220, and permanent magnets 22e are respectively inserted into the magnet insertion holes 22d.
  • permanent magnet 22e for example, a sintered magnet such as a rare earth magnet, a ferrite magnet, or an alnico magnet is used.
  • FIG. 8 is an explanatory view showing a schematic configuration of a rotor core constituting the rotor of FIG.
  • FIG. 9 is a schematic cross-sectional view taken along the line YY of FIG.
  • the rotor core 220 is formed by laminating a plurality of plate-like electromagnetic steel plates in order to suppress eddy current.
  • the plurality of electromagnetic steel plates are fixed by caulking portions 220a. That is, projections and grooves for caulking are respectively formed on the plurality of electromagnetic steel plates, and the caulking portion 220a is a portion where the projections are fitted into the grooves of the laminated electromagnetic steel plates as shown in FIG. is there.
  • FIG. 9 exemplifies a case where V-crimping is applied to the crimped portion 220a
  • circular crimping or the like may be applied to the crimped portion 220a.
  • FIG. 10 is a perspective view showing the stator of FIG.
  • FIG. 11 is a schematic view of the stator of FIG. 3 viewed from the axial direction side.
  • the outer side wall 311 of the stator 31 is provided with a positioning groove 31 c for determining the position in the rotational direction R.
  • the positioning groove 31c is formed along the axial direction Ax.
  • the stator 31 has a stator core 310 made of laminated steel plates, and a winding 320 made of three phases of U phase, V phase and W phase.
  • the stator core 310 is formed by laminating a plurality of electromagnetic steel plates in order to suppress eddy currents. Then, the plurality of electromagnetic steel plates constituting the stator core 310 are fixed by caulking or rivets, as with the rotor core 220.
  • the stator 31 has a terminal block provided with terminals, and lead wires extending from the windings 320 of the stator 31 are connected to the terminals. From the terminals of the stator 31, lead wires and the like for connecting the plurality of stators 31 in series extend to the outside.
  • a stator core 310 is formed by connecting 18 divided cores in an annular shape. Then, one of the dovetail grooves provided on the outer peripheral side of the 18 divided cores is a positioning groove 31c.
  • FIG. 12 is a perspective view showing the frame of FIG.
  • the frame portion 35 has a male portion 35 a which is a step formed along the outer periphery of one end portion.
  • the frame portion 35 has, at the other end thereof, a female portion 35b into which the male portion 35a is fitted.
  • the female portion 35b may not be processed at all as shown in FIG. 12, and may have, for example, one or a plurality of protrusions with which the tip of the male portion 35a abuts.
  • the frame portion 35 is formed using a steel material.
  • the frame portion 35 may be formed by rounding an iron pipe, or may be formed by processing a plate-like member into an annular shape.
  • FIG. 3 illustrates a configuration in which the protrusion 35 c and the groove 35 d are integrally formed. That is, the projection 35 c and the groove 35 d are formed in the entire area along the axial direction Ax by bending the frame 35 into a V-shaped cross section. In the case of such a configuration, when the protrusion 35 c and the groove 35 d of the frame 35 are attached to the stator 31, they may be formed in accordance with the positioning groove 31 c.
  • FIG. 13 is a side view showing a state in which the motor of FIG. 3 is assembled.
  • FIG. 14 is a schematic cross-sectional view taken along the line AA of FIG.
  • the core module 80 is configured of one rotor 22, one stator 31, and one frame portion 35.
  • the motor 10 has two core modules 80.
  • the rotors 22 of the plurality of core modules 80 are fixed to the shaft 21 at a predetermined interval.
  • the stator 31 is fixed to the frame portion 35.
  • the two frame portions 35 are fixed by welding or the like in a state in which the male portion 35a of the other frame portion 35 is fitted into the female portion 35b of one frame portion 35. That is, the frame portion 35 for fixing the stator 31 is a male portion 35a having a male shape, and a female having a female shape so that the motor 10 can combine any number of stators 31 according to a required output. And a portion 35b.
  • the distal end portion of the frame portion 35 in the other core modules 80 Length from the rear end portion of the stator 31 in one of the core module 80 and the length T 1 of the to the rear end of the frame portion 35, the distal end portion of the frame portion 35 in the other core modules 80 to the distal end to the stator 31 T 2 and is reserved for the connection work of the lead wire. That is, the gaps between the plurality of stators 31 are spaces for connecting the lead wires extending from the terminals of the respective stators 31 in order to connect the plurality of stators 31 in series. Therefore, the length T 1 and length T 2 are, suffices respectively about 1 cm. The shorter the length T 1 and long T 2, it is possible to shorten the length of the shaft 21 and the frame portion 35, it is possible to reduce the cost.
  • the electrical connection between the stators 31 is performed at the time of terminal line processing.
  • the first lid portion 40 is fixed by screwing or the like in a state in which the male portion 35a of the one frame portion 35 is fitted into the lid-side female portion 40b.
  • the second lid 50 is fixed by screwing or the like in a state in which the lid-side male portion 50 a is fitted into the female portion 35 b of the other frame 35.
  • FIG. 15 is a schematic cross-sectional view taken along the line BB of FIG.
  • FIG. 16 is an enlarged view of a part of the periphery of the positioning groove and the projection of FIG.
  • the projection 35 c of the frame 35 is fitted in the positioning groove 31 c of the stator 31 to position the frame 35 and the stator 31.
  • the positioning groove 31c is provided in the stator 31 so that the phases of the plurality of stators 31 do not shift when the stator assembly 30 is combined, and the stator 31 and the frame portion 35 can be positioned. It has become. Therefore, the assembly variation of the stator assembly 30 and the phase shift of the plurality of stators 31 can be suppressed.
  • the positioning of the shaft 21 and the rotor 22 is performed using the key portion 23. That is, by inserting the key portion 23 into the space formed by the shaft side key groove 21 c of the shaft 21 and the rotor side key groove 22 c of the rotor 22, positioning in the rotational direction R and the axial direction Ax is performed.
  • FIG. 16 exemplifies a state in which a gap is generated between the positioning groove 31c and the projection 35c, the invention is not limited thereto.
  • the entire surface of the projection 35c on the stator 31 side is the positioning groove 31c. You may contact it.
  • motor 10 may have three or more core modules 80. That is, with the configuration in the first embodiment, the motor 10 that exhibits various outputs can be manufactured by changing the number of core modules 80 to be combined. More specifically, the laminated thickness of the rotor core 220 and the stator core 310 is A [mm], and the number of core modules 80 that the motor 10 has is n (n is an arbitrary natural number). Then, the motor 10 can exhibit the same output as that in the case where the laminated thickness of the rotor core and the stator core, that is, the laminated thickness of the laminated steel plates is “nA”.
  • the motor 10 can be 40 [mm], 80 [mm], 120 [mm] ... by combining a plurality of core modules 80.
  • the output corresponding to the thickness of the stack can be exhibited.
  • FIG. 17 is a schematic cross-sectional view illustrating another configuration of the motor according to the first embodiment of the present invention.
  • the frame portion 35 of the motor 10 may have the female portion 35b disposed on the side in the axial direction Ax and the male portion 35a disposed on the opposite side in the axial direction.
  • the projection 35c of the frame 35 can be fitted into the positioning groove 31c of the stator 31, so that the stator 31 and the frame 35 can be positioned in the rotational direction R.
  • the male portion 35a of one frame portion 35 can be fitted into the female portion 35b of the other frame portion 35.
  • the motor 10 may have the second cover 50 provided on the side in the axial direction Ax and the first cover 40 provided on the opposite side in the axial direction. Then, the through hole 51 through which the shaft 21 passes may be provided in the second lid 50. In this case, the through hole 41 may not be provided in the first lid 40.
  • the second lid portion 50 may be fixed by screwing or the like in a state in which the lid-side male portion 50a is fitted in the female portion 35b of the one frame portion 35.
  • the first lid 40 may be fixed by screwing or the like in a state in which the male portion 35a of one frame portion 35 is fitted into the lid-side female portion 40b.
  • the frame portions 35 of the plurality of core modules 80 are connected along the axial direction Ax of the shaft 21, combining two or more core modules 80 Can change the overall output. Therefore, even in the case of increasing the types of output to be exhibited, it is possible to suppress the new construction of the manufacturing equipment and the mold and to improve the productivity. That is, since the motor 10 can exhibit various outputs by combining the core module 80 in which the rotor core 220 and the stator core 310 are modularized, costs such as equipment investment can be reduced.
  • a method of caulking is used at the time of pressing, a method of fixing using a rivet, or the like is used.
  • the limit is correlated with the height of the projections provided on the magnetic steel sheets. That is, when the laminated thickness of the laminated steel sheet exceeds a certain value, it becomes difficult to maintain the laminated strength. Therefore, conventionally, when the laminated thickness of the laminated steel sheet exceeds a certain value, additional processing using a rivet or the like is performed in order to suppress a fall during lamination.
  • the motor 10 is configured to connect in series a plurality of core modules 80 obtained by modularizing the rotor core 220 and the stator core 310 made of laminated steel plates.
  • an increase in the number of electromagnetic steel sheets constituting one rotor core 220 and one stator core 310 can be prevented, so that the laminated steel sheets can be stabilized.
  • the fixing operation using a rivet or the like can be reduced.
  • the motor 10 may be disposed such that the male portion 35 a of the frame portion 35 faces the axial direction Ax side. Then, in the motor 10, the first lid 40 is attached to the frame 35 of the core module 80 disposed closest to the axial direction Ax, and the second lid 50 is disposed core opposite to the axial direction. It may be attached to the frame portion 35 of the module 80. Further, as shown in FIG. 17, the motor 10 may be disposed so that the female portion 35b of the frame portion 35 faces the axial direction Ax side. Then, in the motor 10, the second lid 50 is attached to the frame 35 of the core module 80 disposed on the most axial direction Ax side, and the first lid 40 is disposed on the opposite axial direction side. It may be attached to the frame portion 35 of the module 80.
  • the motor 10 of the first embodiment can be changed in structure by changing the arrangement of the same parts.
  • FIG. 18 is a schematic cross-sectional view of a motor of the air conditioning apparatus according to Embodiment 2 of the present invention.
  • the overall configuration of the air conditioning apparatus of the second embodiment is the same as that of the first embodiment described above, so the same reference numerals will be used for the respective constituent members and the description will be omitted.
  • the motor 10 of the first embodiment is configured by combining a plurality of core modules 80 having the same laminated thickness of laminated steel plates.
  • the motor 110 of the second embodiment has at least two types of core modules having different laminated thicknesses of laminated steel plates.
  • the motor 110 has a core module 80A with a relatively small output and a core module 80B with a relatively large output.
  • the core module 80A has a rotor 22A and a stator 31A.
  • the length of the axial direction Ax of the frame portion 35 of the core module 80A is adjusted in accordance with the length of the axial direction Ax of the stator 31A.
  • the core module 80B has a rotor 22B and a stator 31B.
  • the length of the axial direction Ax of the frame portion 35 of the core module 80B is adjusted in accordance with the length of the axial direction Ax of the stator 31B. Therefore, by changing the respective numbers of core modules 80A and core modules 80B having different laminated thicknesses of the laminated steel plates, it is possible to configure the motor 110 that exerts a plurality of different outputs.
  • the laminated thickness of the rotor core 220A and the stator core 310A is A [mm]
  • the laminated thickness of the rotor core 220B and the stator core 310B is B [mm].
  • the number of core modules 80A included in the motor 110 is n (n is 0 or any natural number), and the number of core modules 80B included in the motor 110 is m (m is 0 or any natural number). Then, the motor 110 can exhibit the same output as in the case where the laminated thickness of the rotor core and the stator core, that is, the laminated thickness of the laminated steel plates is “nA + mB”.
  • a motor 110 having a stack thickness of five types of laminated steel plates of 40 [mm], 60 [mm], 80 [mm], 100 [mm], and 120 [mm].
  • FIG. 19 is a table exemplifying the configuration of a motor that can be realized by two types of core modules according to the second embodiment of the present invention.
  • a motor 110 having a laminated thickness of 40 [mm] can be manufactured. If one core module 80B is used, the motor 110 having a laminated thickness of 60 mm can be manufactured. If two core modules 80A are used, a motor 110 having a laminated thickness of 80 mm can be manufactured. By using one core module 80A and one core module 80B, it is possible to manufacture a motor 110 having a laminated thickness of 100 [mm].
  • the motor 110 having a laminated steel plate thickness of 120 mm can also be manufactured using two core modules 80B. By using two core modules 80A and one core module 80B, it is possible to manufacture the motor 110 having a laminated thickness of 140 [mm].
  • a motor 110 having a laminated thickness of 160 [mm] can also be manufactured using one core module 80A and two core modules 80B.
  • a motor 110 having a laminated thickness of 180 [mm] can be manufactured.
  • the motor 110 having a laminated thickness of 180 [mm] can also be manufactured using three core modules 80B.
  • the motor 110 according to the second embodiment can exhibit various outputs by combining two types of rotor cores and stator cores according to the output required for driving the load. That is, in the conventional motor structure, when the required output changes, it is necessary to newly manufacture the motor, so it is necessary to newly install a manufacturing facility and a mold.
  • the motor 110 is manufactured by combining two types of core modules modularized including a rotor core and a stator core.
  • the number of molds can be reduced compared to the conventional case, and the cost of equipment investment can be reduced. That is, if the structure of the motor 110 is adopted, the amount of investment can be greatly reduced.
  • FIGS. 18 and 19 show an example in which the motor 110 is configured by combining two core modules
  • the invention is not limited thereto, and the motor 110 may be configured by combining three or more core modules. Good.
  • the motor 110 in the plurality of core modules of the motor 110, all of the laminated thicknesses of the laminated steel plates may be different, or those having the same laminated thickness of the laminated steel plates may be included. In this way, although the number of molds is slightly increased, the output of the motor 110 can be changed more finely.
  • the motor 110 can adopt a configuration in which the arrangement of the frame portion 35, the first lid portion 40, and the second lid portion 50 is reversed.
  • the above-mentioned embodiment is a suitable example in a motor and an air harmony device, and the technical scope of the present invention is not limited to these modes.
  • the permanent magnet embedded motor having a rotor in which permanent magnets are embedded in the rotor core that is, an IPM motor
  • the invention is not limited thereto.
  • the motors 10 and 110 may be surface magnet type motors having a rotor having permanent magnets attached to the outer peripheral surface of the rotor core, that is, SPM (Surface Permanent Magnet) motors.
  • SPM Surface Permanent Magnet
  • the IPM motor can obtain reluctance torque in addition to the magnet torque resulting from the attraction and repulsion between the coil and the permanent magnet. Therefore, if the motors 10 and 110 adopt the structure of the IPM motor, they have higher torque and higher efficiency than the structure of the SPM motor.
  • the motor 10 in which the load is connected in only one direction is illustrated in each of the above-described embodiments, the present invention is not limited to this.
  • the motor 10 may be connected in both directions.
  • the axial direction Ax in this case is the direction of one of the loads on the shaft 21.
  • the through hole 51 for allowing the shaft 21 to penetrate is provided at the center of the second lid 50.
  • the shaft 21 extends in the opposite axial direction side with respect to the second bearing 25 and, similarly to the axial direction Ax side, passes through the through hole 51 of the second lid 50 and protrudes to the outside.
  • FIG. 14 and FIG. 18 the through hole 51 for allowing the shaft 21 to penetrate is provided at the center of the second lid 50.
  • the through hole 41 for allowing the shaft 21 to penetrate is provided at the center of the first lid 40.
  • the shaft 21 extends in the opposite axial direction side with respect to the second bearing 25 and, similarly to the axial direction Ax side, passes through the through hole 41 of the first lid 40 and protrudes to the outside.
  • one core module includes one stator 31 and one rotor 22.
  • One core module includes one stator 31 and one stator 31.
  • a plurality of rotors 22 may be included.
  • the key part 23 is the same number as the rotor 22 and the shaft 21 has the shaft side key groove 21c of the same number as the rotor 22 was illustrated in each said embodiment, it does not restrict to this.
  • the number of 23 and the shaft side key groove 21 c may be smaller than the number of rotors 22.
  • one key portion 23 may be provided, and the shaft side key groove 21 c may be provided at one position.
  • the length in the axial direction Ax of the key portion 23 and the shaft side key groove 21 c may be determined according to the length in the axial direction Ax of the plurality of rotors 22.
  • the positions of the shaft 21 and the plurality of rotors 22 in the rotational direction R can be determined.
  • the shaft 21 may be provided with a predetermined number of shaft-side key grooves 21c. In this way, an arbitrary number of rotors 22 equal to or less than the set number can be fixed to the shaft 21 according to the required output.
  • the dual suction type sirocco fan is illustrated as the fan 150, but the present invention is not limited to this. That is, the fan 150 may be a single suction type sirocco fan or a propeller fan.
  • FIG. 11 illustrates the stator 31 of 18 slots, the number of slots of the stator 31 is not limited thereto, and may be less than 18 or more than 18.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Motor Or Generator Frames (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

A motor having a plurality of core modules that comprise a rotor into which a shaft is inserted, a stator provided on the outer peripheral side of the rotor, and a frame part covering the outer periphery of the stator. The respective frame parts of the plurality of core modules are linked along the axial direction of the shaft.

Description

モータ及び空気調和装置Motor and air conditioner
 本発明は、インナーロータ型のモータ及びそのモータを備えた空気調和装置に関する。 The present invention relates to an inner rotor type motor and an air conditioner provided with the motor.
 インナーロータ型のモータは、ステータの内側に配置されたロータが回転するようになっている(例えば、特許文献1参照)。特許文献1のモータにおいて、ロータコア及びステータコアは、それぞれ、複数枚の電磁鋼板が積層された積層鋼板により形成されている。そして、ロータは、ロータコアの外周側に永久磁石を有している。 The inner rotor type motor is configured such that a rotor disposed inside a stator rotates (see, for example, Patent Document 1). In the motor of Patent Document 1, the rotor core and the stator core are each formed of laminated steel plates in which a plurality of electromagnetic steel plates are laminated. And a rotor has a permanent magnet in the perimeter side of a rotor core.
 モータは、空気調和装置などの種々の機器に搭載され、ファンなどの動力源として駆動する。空気調和装置は、ファン又は圧縮機などを駆動するための複数のモータを有しており、各モータに要求される出力範囲は、駆動する対象により異なっている。モータを搭載する機器の大型化が進むと共に、モータの出力の増大が求められている。そこで、従来は、ロータコア及びステータコアにおける積層鋼板の積厚を大きくすることにより、モータの出力を増やしている。 The motor is mounted on various devices such as an air conditioner and driven as a power source such as a fan. The air conditioner has a plurality of motors for driving a fan or a compressor, and the output range required for each motor differs depending on the object to be driven. As the size of the device on which the motor is mounted is increased, the output of the motor is required to be increased. Therefore, conventionally, the output of the motor is increased by increasing the thickness of laminated steel plates in the rotor core and the stator core.
特開2007-228736号公報JP 2007-228736 A
 しかしながら、特許文献1のようなモータにおいて、ロータコア及びステータコアにおける積層鋼板の積厚を大きくすると、製造設備及び金型の改造又は新設が必要となる。そして、異なる出力のモータごとに、ロータコア及びステータコアの大きさが異なるため、金型交換などの製造時における段取り替えに時間がかかり、生産性が低下するという課題がある。 However, in the motor as disclosed in Patent Document 1, when the laminated thickness of the laminated steel plates in the rotor core and the stator core is increased, it is necessary to remodel or install the manufacturing equipment and the mold. And since the size of a rotor core and a stator core differs for every motor of a different output, it takes time for setup change at the time of manufacture of mold exchange etc., and there is a subject that productivity falls.
 本発明は、上記のような課題を解決するためになされたものであり、出力の異なる種々のモータを製造する場合でも、製造設備及び金型の新設等を抑制し、生産性の向上を図るモータ及び空気調和装置を提供することを目的とする。 The present invention has been made to solve the above-described problems, and, even when manufacturing various motors having different outputs, it is possible to suppress the installation of manufacturing facilities and molds and to improve the productivity. An object of the present invention is to provide a motor and an air conditioner.
 本発明に係るモータは、シャフトと、シャフトが挿入されるロータ、ロータの外周側に設けられるステータ、及びステータの外周を覆うフレーム部からなる複数のコアモジュールと、を有し、複数のコアモジュールのそれぞれのフレーム部は、シャフトの軸方向に沿って連結されている。本発明に係る空気調和装置は、上記のモータと、モータを動力源として回転するファンと、を有している。 A motor according to the present invention includes a plurality of core modules including a shaft, a rotor into which the shaft is inserted, a stator provided on the outer peripheral side of the rotor, and a plurality of core modules including frame portions covering the outer periphery of the stator The respective frame parts of are connected along the axial direction of the shaft. An air conditioner according to the present invention includes the above-described motor and a fan that rotates using the motor as a power source.
 本発明によれば、複数のコアモジュールのそれぞれのフレーム部がシャフトの軸方向に沿って連結されることから、2以上のコアモジュールを組み合わせることにより、全体での出力を設定することができる。そのため、発揮する出力の種類を増やす場合でも、製造設備及び金型の新設等を抑制し、生産性の向上を図ることができる。 According to the present invention, since the respective frame parts of the plurality of core modules are connected along the axial direction of the shaft, the overall output can be set by combining two or more core modules. Therefore, even in the case of increasing the types of output to be exhibited, it is possible to suppress the new construction of the manufacturing equipment and the mold and to improve the productivity.
本発明の実施の形態1に係る空気調和装置の外観斜視図である。It is an external appearance perspective view of the air conditioning apparatus which concerns on Embodiment 1 of this invention. 図1の空気調和装置を前面側からみた正面図である。It is the front view which saw the air conditioning apparatus of FIG. 1 from the front side. 図1及び図2に示すモータの分解斜視図である。FIG. 3 is an exploded perspective view of the motor shown in FIGS. 1 and 2; 図3のシャフトを部分的に示す斜視図である。It is a perspective view which shows the shaft of FIG. 3 partially. 図3のロータを示す斜視図である。FIG. 4 is a perspective view of the rotor of FIG. 3; 図4のシャフトと図5のロータとを組み立てた状態を例示した斜視図である。It is the perspective view which illustrated the state which assembled the shaft of FIG. 4 and the rotor of FIG. 図3のロータを軸方向側からみた概略図である。It is the schematic which looked at the rotor of FIG. 3 from the axial direction side. 図3のロータを構成するロータコアの概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the rotor core which comprises the rotor of FIG. 図8のY-Y線に沿った概略断面図である。FIG. 9 is a schematic cross-sectional view along the line Y-Y of FIG. 8; 図3のステータを示す斜視図である。It is a perspective view which shows the stator of FIG. 図3のステータを軸方向側からみた概略図である。It is the schematic which saw the stator of FIG. 3 from the axial direction side. 図3のフレームを示す斜視図である。It is a perspective view which shows the flame | frame of FIG. 図3のモータを組み立てた状態を示す側面図である。It is a side view which shows the state which assembled the motor of FIG. 図13のA-A線に沿った概略断面図である。FIG. 14 is a schematic cross-sectional view along the line AA of FIG. 13; 図13のB-B線に沿った概略断面図である。FIG. 14 is a schematic cross-sectional view along the line BB of FIG. 13; 図15の位置決め溝及び突起部の周辺を部分的に抜き出した拡大図である。It is the enlarged view which extracted the periphery of the positioning groove and protrusion of FIG. 15 partially. 本発明の実施の形態1のモータの他の構成を例示する概略断面図である。FIG. 5 is a schematic cross-sectional view illustrating another configuration of the motor according to the first embodiment of the present invention. 本発明の実施の形態2に係る空気調和装置が有するモータの概略断面図である。It is a schematic sectional drawing of the motor which the air conditioning apparatus which concerns on Embodiment 2 of this invention has. 本発明の実施の形態2につき、2種類のコアモジュールで実現できるモータの構成を例示した表である。It is the table | surface which illustrated the structure of the motor which can be implement | achieved by two types of core modules about Embodiment 2 of this invention.
実施の形態1.
 図1は、本発明の実施の形態1に係る空気調和装置の外観斜視図である。図2は、図1の空気調和装置を前面側からみた正面図である。図1及び図2に基づき、本実施の形態の空気調和装置の全体的な構成について説明する。
Embodiment 1
FIG. 1 is an external perspective view of an air conditioning apparatus according to Embodiment 1 of the present invention. FIG. 2 is a front view of the air conditioner of FIG. 1 as viewed from the front side. The overall configuration of the air conditioner according to the present embodiment will be described based on FIGS. 1 and 2.
 本実施の形態1における空気調和装置100は、熱媒体を循環させる配管を介して、屋外などに設置された熱源機(図示せず)に接続されている。空気調和装置100は、熱源機にて排熱又は吸熱された熱媒体を循環させ、空調対象空間の空気を循環させることにより、空調対象空間の空気調和を行うものである。 The air conditioning apparatus 100 according to the first embodiment is connected to a heat source machine (not shown) installed outdoors or the like through a pipe that circulates a heat medium. The air conditioning apparatus 100 performs air conditioning of a space to be air-conditioned by circulating a heat medium subjected to exhaust heat or heat absorption by a heat source machine and circulating air in the space to be air-conditioned.
 図1及び図2に示すように、空気調和装置100は筐体101を有している。筐体101の上部には、空気を吹き出す吹出口102が設けられている。筐体101の前面側には、空気を吸い込む前面吸込口103が設けられている。加えて、図示はしていないが、筐体101の背面側には、空気を吸い込む背面吸込口が設けられている。空気調和装置100は、例えば、空調対象空間の床面に設置され、吹出口102の周囲に形成された吹出フランジ102aが、空調対象空間の天井などに配置された吹出ダクトに接続されている。 As shown in FIG. 1 and FIG. 2, the air conditioning apparatus 100 has a housing 101. At an upper portion of the housing 101, an air outlet 102 for blowing air is provided. A front suction port 103 for sucking air is provided on the front side of the housing 101. In addition, although not shown, the rear side of the housing 101 is provided with a rear suction port for drawing air. The air conditioning apparatus 100 is installed, for example, on the floor surface of the air conditioning target space, and a blowout flange 102a formed around the blowout port 102 is connected to a blowout duct disposed on a ceiling of the air conditioning target space.
 空気調和装置100は、モータ10と、モータ10を動力源として回転するファン150と、を有している。モータ10及びファン150は、筐体101の内部に設けられている。空気調和装置100は、図示はしていないが、熱源機から流入する熱媒体と、前面吸込口103などから吸い込まれる空気との間で熱交換させる熱交換器を有している。熱交換器は、例えばフィンアンドチューブ型熱交換器からなり、筐体101内に斜めに配置されている。 The air conditioning apparatus 100 includes a motor 10 and a fan 150 that rotates using the motor 10 as a power source. The motor 10 and the fan 150 are provided inside the housing 101. Although not shown, the air conditioning apparatus 100 has a heat exchanger that exchanges heat between a heat medium flowing from a heat source unit and air sucked from the front suction port 103 or the like. The heat exchanger is, for example, a fin-and-tube heat exchanger, and is disposed obliquely in the housing 101.
 ファン150は、例えば遠心式のシロッコファンからなり、複数の羽根が円筒形状に配置されている。図1及び図2では、ファン150として、両吸込形のシロッコファンを例示している。ファン150は、前面吸込口103などから吸い込まれ、熱交換器を通過した空気を吹出口102へ送るものである。ファン150により吹出口102へ送られた空気は、吹出ダクトを通過し、再び空調対象空間へ供給される。 The fan 150 is, for example, a centrifugal sirocco fan, and a plurality of blades are arranged in a cylindrical shape. In FIGS. 1 and 2, a dual suction type sirocco fan is illustrated as the fan 150. The fan 150 sucks air from the front suction port 103 or the like and sends the air that has passed through the heat exchanger to the blowout port 102. The air sent to the air outlet 102 by the fan 150 passes through the air outlet duct and is supplied again to the air conditioning target space.
 図3は、図1及び図2に示すモータの分解斜視図である。図3に示すように、モータ10は、シャフト21と、シャフト21が挿入されるロータ22、ロータ22の外周側に設けられるステータ31、及びステータ31の外周を囲うフレーム部35を備えた複数のコアモジュール80と、を有している。複数のコアモジュール80のそれぞれのフレーム部35は、シャフト21の軸方向Axに沿って連結されている。言い換えると、モータ10は、ロータ組立体20と、複数のステータ組立体30と、を有している。また、モータ10は、第1蓋部40と、第2蓋部50と、を有している。 FIG. 3 is an exploded perspective view of the motor shown in FIGS. 1 and 2. As shown in FIG. 3, the motor 10 includes a shaft 21, a rotor 22 into which the shaft 21 is inserted, a stator 31 provided on the outer peripheral side of the rotor 22, and a plurality of frame portions 35 surrounding the outer periphery of the stator 31. And a core module 80. The frame portions 35 of the plurality of core modules 80 are connected along the axial direction Ax of the shaft 21. In other words, the motor 10 includes the rotor assembly 20 and a plurality of stator assemblies 30. The motor 10 also has a first cover 40 and a second cover 50.
 ロータ組立体20は、シャフト21と、シャフト21が挿入される複数のロータ22と、第1ベアリング24と、第2ベアリング25と、により構成されている。ロータ組立体20は、ステータ組立体30と同数のロータ22が一本のシャフト21に固定された構造となっている。 The rotor assembly 20 includes a shaft 21, a plurality of rotors 22 into which the shaft 21 is inserted, a first bearing 24, and a second bearing 25. The rotor assembly 20 has a structure in which the same number of rotors 22 as the stator assembly 30 are fixed to one shaft 21.
 シャフト21は、例えばS45Cなどの機械構造用炭素鋼を材料とする鋼材で形成されている。シャフト21には、複数のロータ22が固定されている。複数のロータ22には、それぞれ、ロータ側キー溝22cが設けられている。 The shaft 21 is made of, for example, a steel material made of carbon steel for machine structure such as S45C. A plurality of rotors 22 are fixed to the shaft 21. Each of the plurality of rotors 22 is provided with a rotor side key groove 22c.
 第1ベアリング24は、複数のロータ22の一端側において、シャフト21に圧入されて固定されている。第2ベアリング25は、複数のロータ22の他端側において、シャフト21に圧入されて固定されている。本実施の形態1では、シャフト21の軸方向Ax側に、負荷としてのファン150が設けられる。つまり、第1ベアリング24は、モータ10の負荷側において、第1蓋部40を介してシャフト21を支え、第2ベアリング25は、モータ10の反負荷側において、第2蓋部50を介してシャフト21を支える。ここで、本実施の形態1において、軸方向Axは、シャフト21における負荷側の方向であり、モータ10を取り付ける方向に応じて上下左右などの各方向となる。 The first bearing 24 is press-fitted and fixed to the shaft 21 at one end side of the plurality of rotors 22. The second bearing 25 is press-fit and fixed to the shaft 21 at the other end side of the plurality of rotors 22. In the first embodiment, a fan 150 as a load is provided on the axial direction Ax side of the shaft 21. That is, the first bearing 24 supports the shaft 21 via the first cover 40 on the load side of the motor 10, and the second bearing 25 via the second cover 50 on the non-load side of the motor 10. Support the shaft 21. Here, in the first embodiment, the axial direction Ax is the direction on the load side of the shaft 21 and corresponds to each direction such as up, down, left, and right according to the direction in which the motor 10 is attached.
 ステータ組立体30は、ロータ22の外周側に設けられるステータ31と、ステータ31の外周を覆うフレーム部35と、により構成される。ステータ組立体30は、ステータ31とフレーム部35とが溶接などにより一体的に組立てられたものである。 The stator assembly 30 includes a stator 31 provided on the outer peripheral side of the rotor 22 and a frame portion 35 covering the outer periphery of the stator 31. The stator assembly 30 is one in which the stator 31 and the frame portion 35 are integrally assembled by welding or the like.
 フレーム部35は、ステータ組立体30の外郭を形成する外郭部品である。フレーム部35は、軸方向Axにおける一方の端部にオス部35aが形成され、他方の端部にメス部35bが形成されている。よって、2つのフレーム部35は、一方のフレーム部35のオス部35aが、他方のフレーム部35のメス部35bに嵌め込まれて連結されている。 The frame portion 35 is an outer shell component that forms an outer shell of the stator assembly 30. In the frame portion 35, a male portion 35a is formed at one end in the axial direction Ax, and a female portion 35b is formed at the other end. Therefore, in the two frame parts 35, the male part 35a of one frame part 35 is fitted into the female part 35b of the other frame part 35 and connected.
 フレーム部35は、ステータコアに対向する内側壁351に突起部35cを有している。フレーム部35のメス部35bの外周側には、突起部35cに対応する溝部35dが形成されている。すなわち、隣接する2つのフレーム部35では、一方のフレーム部35の突起部35cが、他方のフレーム部35の溝部35dに嵌められている。突起部35c及び溝部35dは、複数のフレーム部35同士の回転方向Rにおける位置を決めるためのものである。本実施の形態1において、突起部35c及び溝部35dは、軸方向Axに沿って形成されている。 The frame portion 35 has a protrusion 35 c on the inner side wall 351 facing the stator core. A groove 35 d corresponding to the protrusion 35 c is formed on the outer peripheral side of the female portion 35 b of the frame 35. That is, in the two adjacent frame portions 35, the protrusions 35c of one frame portion 35 are fitted in the grooves 35d of the other frame portion 35. The protrusion 35 c and the groove 35 d are for determining the positions of the plurality of frame portions 35 in the rotational direction R. In the first embodiment, the protrusion 35 c and the groove 35 d are formed along the axial direction Ax.
 第1蓋部40は、複数のステータ組立体30の一端側のフレーム部35に取り付けられる。すなわち、第1蓋部40は、複数のフレーム部35のうちで最も軸方向Ax側のフレーム部35に、ネジ止めなどによって取り付けられる。本実施の形態1において、第1蓋部40には、フレーム部35と対向する側に、フレーム部35のオス部35aが嵌め込まれる蓋側メス部40bが形成されている。蓋側メス部40bの内周側には、フレーム部35の溝部35dに嵌められる蓋側突起40dが形成されている。蓋側突起40dは、第1蓋部40の回転方向Rの位置決めに用いられる。 The first lid 40 is attached to the frame 35 at one end of the plurality of stator assemblies 30. That is, the first lid portion 40 is attached to the frame portion 35 closest to the axial direction Ax among the plurality of frame portions 35 by screwing or the like. In the first embodiment, a lid-side female portion 40b into which the male portion 35a of the frame portion 35 is fitted is formed on the first lid portion 40 on the side facing the frame portion 35. On the inner peripheral side of the lid-side female portion 40b, a lid-side protrusion 40d to be fitted into the groove 35d of the frame portion 35 is formed. The lid side protrusion 40 d is used to position the first lid 40 in the rotational direction R.
 第2蓋部50は、複数のステータ組立体30の他端側のフレーム部35に取り付けられる。すなわち、第2蓋部50は、複数のフレーム部35のうちで最も反軸方向側のフレーム部35に、ネジ止めなどによって取り付けられる。ここで、反軸方向とは、軸方向Axとは反対側の方向である。本実施の形態1において、第2蓋部50には、フレーム部35と対向する側に、フレーム部35のメス部35bに嵌め込まれる蓋側オス部50aが形成されている。蓋側オス部50aの外周側には、フレーム部35の突起部35cが嵌められる蓋側溝部50cが形成されている。蓋側溝部50cは、第2蓋部50の回転方向Rの位置決めに用いられる。 The second lid 50 is attached to the frame 35 on the other end side of the plurality of stator assemblies 30. That is, the second lid 50 is attached to the frame portion 35 closest to the axial direction among the plurality of frame portions 35 by screwing or the like. Here, the anti-axial direction is the direction opposite to the axial direction Ax. In the first embodiment, on the side facing the frame portion 35, the lid side male portion 50a to be fitted into the female portion 35b of the frame portion 35 is formed in the second lid portion 50. A lid-side groove 50c to which the projection 35c of the frame 35 is fitted is formed on the outer peripheral side of the lid-side male portion 50a. The lid-side groove 50 c is used to position the second lid 50 in the rotational direction R.
 第1蓋部40の中心部には、シャフト21が貫通する貫通穴41が形成されている。第1蓋部40のフレーム部35に対向する側には、第1ベアリング24が嵌め込まれるベアリングハウジング44が形成されている。第1ベアリング24は、ベアリングハウジング44に圧入される。第2蓋部50のフレーム部35に対向する側には、第2ベアリング25が嵌め込まれるベアリングハウジング55が形成されている。第2ベアリング25は、ベアリングハウジング55に圧入される。すなわち、ロータ組立体20は、第1ベアリング24と第2ベアリング25とにより固定されている。 A through hole 41 through which the shaft 21 passes is formed at the center of the first lid 40. A bearing housing 44 in which the first bearing 24 is fitted is formed on the side of the first lid 40 opposite to the frame 35. The first bearing 24 is press-fit into the bearing housing 44. On the side of the second lid 50 opposite to the frame portion 35, a bearing housing 55 in which the second bearing 25 is fitted is formed. The second bearing 25 is press-fit into the bearing housing 55. That is, the rotor assembly 20 is fixed by the first bearing 24 and the second bearing 25.
 第1蓋部40及び第2蓋部50は、鋼材又は繊維強化プラスチックなどの樹脂により形成される。第1蓋部40及び第2蓋部50は、材料として鋼材を用いる場合、アルミダイカスト製法により形成することができる。もっとも、第1蓋部40及び第2蓋部50は、アルミダイカスト製法以外の製法により形成された鋳物であってもよい。 The first lid 40 and the second lid 50 are formed of a resin such as steel or fiber reinforced plastic. When using a steel material as a material, the 1st cover part 40 and the 2nd cover part 50 can be formed by the aluminum die-cast manufacturing method. However, the first lid 40 and the second lid 50 may be castings formed by a method other than the aluminum die casting method.
 図4は、図3のシャフトを部分的に示す斜視図である。図5は、図3のロータを示す斜視図である。図6は、図4のシャフトと図5のロータとを組み立てた状態を例示した斜視図である。図4~図6に基づき、ロータ22をシャフト21の所定の位置に固定するための構造について説明する。 FIG. 4 is a perspective view partially showing the shaft of FIG. FIG. 5 is a perspective view showing the rotor of FIG. 6 is a perspective view illustrating the shaft of FIG. 4 and the rotor of FIG. 5 in an assembled state. The structure for fixing the rotor 22 at a predetermined position of the shaft 21 will be described with reference to FIGS. 4 to 6.
 図6に示すように、ロータ組立体20は、シャフト21とロータ22との回転方向Rにおける位置を決めるための棒状のキー部23を有している。図4に示すように、シャフト21は、キー部23が嵌められる軸側キー溝21cを有している。図5に示すように、ロータ22は、シャフト21が挿入される挿入孔22aと、キー部23が嵌められるロータ側キー溝22cと、を有している。ロータ側キー溝22cは、各ロータ22同士の位相がズレないようにするためのものであり、後述するキー部23が嵌められる。 As shown in FIG. 6, the rotor assembly 20 has a bar-shaped key portion 23 for determining the position of the shaft 21 and the rotor 22 in the rotational direction R. As shown in FIG. 4, the shaft 21 has a shaft side key groove 21 c in which the key portion 23 is fitted. As shown in FIG. 5, the rotor 22 has an insertion hole 22 a into which the shaft 21 is inserted, and a rotor-side key groove 22 c into which the key portion 23 is fitted. The rotor side key groove 22 c is for preventing the phases of the respective rotors 22 from shifting, and the key portion 23 described later is fitted.
 すなわち、図6のように、軸側キー溝21cとロータ側キー溝22cとの間にキー部23を嵌め込むことにより、複数のロータ22同士の回転方向Rにおける位置を揃えることができる。よって、ロータ組立体20の組立ばらつきと、複数のロータ22同士の位相のズレとを抑制することができる。すなわち、シャフト21と複数のロータ22とは、キー部23によって固定される。 That is, as shown in FIG. 6, by fitting the key portion 23 between the shaft side key groove 21c and the rotor side key groove 22c, the positions of the plurality of rotors 22 in the rotational direction R can be aligned. Therefore, assembly variation of the rotor assembly 20 and a phase shift between the plurality of rotors 22 can be suppressed. That is, the shaft 21 and the plurality of rotors 22 are fixed by the key portion 23.
 また、モータ10において、キー部23は、ロータ22と同数であり、シャフト21は、ロータ22と同数の軸側キー溝21cを有している。そして、1つのキー部23と、1つの軸側キー溝21cと、1つのロータ側キー溝22cとが対応づけて配置される。かかる構造により、モータ10は、複数のロータ22の軸方向Axにおける位置決めも行うことができる。 In the motor 10, the key portion 23 has the same number as that of the rotor 22, and the shaft 21 has the same number of shaft-side key grooves 21c as that of the rotor 22. Then, one key portion 23, one shaft side key groove 21c, and one rotor side key groove 22c are arranged in association with each other. With this structure, the motor 10 can also position the plurality of rotors 22 in the axial direction Ax.
 図7は、図3のロータを軸方向側からみた概略図である。図7に示すように、ロータ22は、積層鋼板からなるロータコア220を有している。本実施の形態1では、モータ10として、IPM(Interior Permanent Magnet)モータを例示している。IPMモータは、ロータコアに永久磁石が埋め込まれたロータを有する永久磁石埋め込み型モータであり、三相巻線の各相を検知するセンサーマグネットと、磁気を検知するためのホールセンサと、を有している。 7 is a schematic view of the rotor of FIG. 3 viewed from the axial direction side. As shown in FIG. 7, the rotor 22 has a rotor core 220 made of laminated steel plates. In the first embodiment, an IPM (Interior Permanent Magnet) motor is illustrated as the motor 10. The IPM motor is a permanent magnet embedded type motor having a rotor in which permanent magnets are embedded in a rotor core, and has a sensor magnet for detecting each phase of a three-phase winding, and a Hall sensor for detecting magnetism. ing.
 すなわち、ロータコア220には、複数の磁石挿入穴22dが形成されており、各磁石挿入穴22dには、それぞれ、永久磁石22eが挿入されている。永久磁石22eとしては、例えば、希土類磁石、フェライト磁石、又はアルニコ磁石などの焼結磁石が用いられる。 That is, a plurality of magnet insertion holes 22d are formed in the rotor core 220, and permanent magnets 22e are respectively inserted into the magnet insertion holes 22d. As permanent magnet 22e, for example, a sintered magnet such as a rare earth magnet, a ferrite magnet, or an alnico magnet is used.
 図8は、図3のロータを構成するロータコアの概略構成を示す説明図である。図9は、図8のY-Y線に沿った概略断面図である。ロータコア220は、渦電流の抑制を図るため、複数枚の板状の電磁鋼板が積層されて形成されている。ロータコア220において、複数の電磁鋼板は、カシメ部220aにより固定されている。すなわち、複数の電磁鋼板には、それぞれ、カシメ用の突起及び溝が形成されており、カシメ部220aは、図9に示すように、積層された電磁鋼板の溝に突起が嵌め込まれた部分である。 FIG. 8 is an explanatory view showing a schematic configuration of a rotor core constituting the rotor of FIG. FIG. 9 is a schematic cross-sectional view taken along the line YY of FIG. The rotor core 220 is formed by laminating a plurality of plate-like electromagnetic steel plates in order to suppress eddy current. In the rotor core 220, the plurality of electromagnetic steel plates are fixed by caulking portions 220a. That is, projections and grooves for caulking are respectively formed on the plurality of electromagnetic steel plates, and the caulking portion 220a is a portion where the projections are fitted into the grooves of the laminated electromagnetic steel plates as shown in FIG. is there.
 図9では、カシメ部220aにVカシメを適用した場合を例示しているが、カシメ部220aには丸カシメなどを適用してもよい。ところで、カシメによって固定できる電磁鋼板の枚数には限界がある。そのため、電磁鋼板の枚数が一定枚数を超える場合は、複数の電磁鋼板を、リベットなどを用いて固定してもよい。 Although FIG. 9 exemplifies a case where V-crimping is applied to the crimped portion 220a, circular crimping or the like may be applied to the crimped portion 220a. By the way, there is a limit to the number of electromagnetic steel plates that can be fixed by caulking. Therefore, when the number of electromagnetic steel sheets exceeds a certain number, a plurality of electromagnetic steel sheets may be fixed using rivets or the like.
 図10は、図3のステータを示す斜視図である。図11は、図3のステータを軸方向側からみた概略図である。図10及び図11に示すように、ステータ31の外側壁311には、回転方向Rの位置を決めるための位置決め溝31cが設けられている。本実施の形態1において、位置決め溝31cは、軸方向Axに沿って形成されている。図11に示すように、ステータ31は、積層鋼板からなるステータコア310と、U相、V相、及びW相の三相からなる巻線320と、を有している。 FIG. 10 is a perspective view showing the stator of FIG. FIG. 11 is a schematic view of the stator of FIG. 3 viewed from the axial direction side. As shown in FIGS. 10 and 11, the outer side wall 311 of the stator 31 is provided with a positioning groove 31 c for determining the position in the rotational direction R. In the first embodiment, the positioning groove 31c is formed along the axial direction Ax. As shown in FIG. 11, the stator 31 has a stator core 310 made of laminated steel plates, and a winding 320 made of three phases of U phase, V phase and W phase.
 つまり、ステータコア310は、ロータコア220と同様、渦電流の抑制を図るため、複数の電磁鋼板が積層されて形成されている。そして、ステータコア310を構成する複数の電磁鋼板は、ロータコア220と同様、カシメ又はリベットなどによって固定されている。また、図示はしていないが、ステータ31は、端子が設けられた端子台を有しており、ステータ31の巻線320から延びるリード線は端子に接続されている。ステータ31の端子からは、複数のステータ31を直列に接続するためのリード線などが外部に延びている。 That is, as in the case of the rotor core 220, the stator core 310 is formed by laminating a plurality of electromagnetic steel plates in order to suppress eddy currents. Then, the plurality of electromagnetic steel plates constituting the stator core 310 are fixed by caulking or rivets, as with the rotor core 220. Although not shown, the stator 31 has a terminal block provided with terminals, and lead wires extending from the windings 320 of the stator 31 are connected to the terminals. From the terminals of the stator 31, lead wires and the like for connecting the plurality of stators 31 in series extend to the outside.
 図11に例示する18スロットのステータ31において、ステータコア310は、18個の分割コアが円環状に接続されたものである。そして、18個の分割コアの外周側に設けられたアリ溝のうちの1つが位置決め溝31cとなっている。 In an 18-slot stator 31 illustrated in FIG. 11, a stator core 310 is formed by connecting 18 divided cores in an annular shape. Then, one of the dovetail grooves provided on the outer peripheral side of the 18 divided cores is a positioning groove 31c.
 図12は、図3のフレームを示す斜視図である。フレーム部35は、一方の端部の外周に沿って形成された段差であるオス部35aを有している。また、フレーム部35は、他方の端部に、オス部35aが嵌められるメス部35bを有している。メス部35bは、図12のように、何ら加工が施されていなくてもよく、例えばオス部35aの先端部が当接する1又は複数の突起を有していてもよい。 FIG. 12 is a perspective view showing the frame of FIG. The frame portion 35 has a male portion 35 a which is a step formed along the outer periphery of one end portion. In addition, the frame portion 35 has, at the other end thereof, a female portion 35b into which the male portion 35a is fitted. The female portion 35b may not be processed at all as shown in FIG. 12, and may have, for example, one or a plurality of protrusions with which the tip of the male portion 35a abuts.
 フレーム部35は、鋼材を使用して形成されている。フレーム部35は、鉄管を輪切りにすることで形成してもよく、板状の部材を環状に加工することにより形成してもよい。ところで、図3では、突起部35cと溝部35dとが一体的に形成された構成を例示している。すなわち、突起部35c及び溝部35dは、フレーム部35が断面V字状に曲げられることにより、軸方向Axに沿った全域に形成されている。かかる構成の場合、フレーム部35の突起部35c及び溝部35dは、ステータ31に取り付ける際に、位置決め溝31cに合わせて形成するようにしてもよい。 The frame portion 35 is formed using a steel material. The frame portion 35 may be formed by rounding an iron pipe, or may be formed by processing a plate-like member into an annular shape. By the way, FIG. 3 illustrates a configuration in which the protrusion 35 c and the groove 35 d are integrally formed. That is, the projection 35 c and the groove 35 d are formed in the entire area along the axial direction Ax by bending the frame 35 into a V-shaped cross section. In the case of such a configuration, when the protrusion 35 c and the groove 35 d of the frame 35 are attached to the stator 31, they may be formed in accordance with the positioning groove 31 c.
 図13は、図3のモータを組み立てた状態を示す側面図である。図14は、図13のA-A線に沿った概略断面図である。図13及び図14に示すように、コアモジュール80は、1つのロータ22と、1つのステータ31と、1つのフレーム部35とにより構成されている。図13及び図14の例において、モータ10は、2つのコアモジュール80を有している。 FIG. 13 is a side view showing a state in which the motor of FIG. 3 is assembled. FIG. 14 is a schematic cross-sectional view taken along the line AA of FIG. As shown in FIGS. 13 and 14, the core module 80 is configured of one rotor 22, one stator 31, and one frame portion 35. In the example of FIG. 13 and FIG. 14, the motor 10 has two core modules 80.
 複数のコアモジュール80のそれぞれのロータ22は、シャフト21に一定の間隔を隔てて固定されている。各コアモジュール80において、ステータ31は、フレーム部35に固定されている。2つのフレーム部35は、一方のフレーム部35のメス部35bに、他方のフレーム部35のオス部35aが嵌め込まれた状態で、溶接などにより固定されている。すなわち、モータ10は、要求される出力に応じて任意の数のステータ31を組み合わせることができるよう、ステータ31を固定するフレーム部35が、オス形状であるオス部35aと、メス形状であるメス部35bと、を有している。 The rotors 22 of the plurality of core modules 80 are fixed to the shaft 21 at a predetermined interval. In each core module 80, the stator 31 is fixed to the frame portion 35. The two frame portions 35 are fixed by welding or the like in a state in which the male portion 35a of the other frame portion 35 is fitted into the female portion 35b of one frame portion 35. That is, the frame portion 35 for fixing the stator 31 is a male portion 35a having a male shape, and a female having a female shape so that the motor 10 can combine any number of stators 31 according to a required output. And a portion 35b.
 一方のコアモジュール80におけるステータ31の後端部からフレーム部35の後端部までの長さTと、他方のコアモジュール80におけるフレーム部35の先端部からステータ31に先端部までの長さTとは、リード線の接続作業用に確保されている。すなわち、複数のステータ31の間の隙間は、複数のステータ31を直列接続するために、各ステータ31の端子から延びるリード線を接続するための空間である。したがって、長さTと長さTとは、それぞれ1cm程度あればよい。長さT及び長さTを短くすれば、シャフト21及びフレーム部35の長さを短くすることができるため、コストの削減を図ることができる。なお、各ステータ31間の電気的接続は、端末線処理時に実施される。 Length from the rear end portion of the stator 31 in one of the core module 80 and the length T 1 of the to the rear end of the frame portion 35, the distal end portion of the frame portion 35 in the other core modules 80 to the distal end to the stator 31 T 2 and is reserved for the connection work of the lead wire. That is, the gaps between the plurality of stators 31 are spaces for connecting the lead wires extending from the terminals of the respective stators 31 in order to connect the plurality of stators 31 in series. Therefore, the length T 1 and length T 2 are, suffices respectively about 1 cm. The shorter the length T 1 and long T 2, it is possible to shorten the length of the shaft 21 and the frame portion 35, it is possible to reduce the cost. The electrical connection between the stators 31 is performed at the time of terminal line processing.
 第1蓋部40は、蓋側メス部40bに、一方のフレーム部35のオス部35aが嵌め込まれた状態で、ネジ止めなどにより固定されている。第2蓋部50は、他方のフレーム部35のメス部35bに蓋側オス部50aが嵌め込まれた状態で、ネジ止めなどにより固定されている。 The first lid portion 40 is fixed by screwing or the like in a state in which the male portion 35a of the one frame portion 35 is fitted into the lid-side female portion 40b. The second lid 50 is fixed by screwing or the like in a state in which the lid-side male portion 50 a is fitted into the female portion 35 b of the other frame 35.
 図15は、図13のB-B線に沿った概略断面図である。図16は、図15の位置決め溝及び突起部の周辺を部分的に抜き出した拡大図である。図15及び図16に示すように、ステータ組立体30においては、フレーム部35の突起部35cが、ステータ31の位置決め溝31cに嵌められることにより、フレーム部35とステータ31との位置決めが行われる。すなわち、モータ10は、ステータ組立体30を組み合わせたとき、複数のステータ31のそれぞれの位相がズレないよう、ステータ31に位置決め溝31cを設け、ステータ31とフレーム部35との位置決めを行えるようになっている。そのため、ステータ組立体30の組立ばらつきと、複数のステータ31同士の位相のズレとを抑制することができる。 FIG. 15 is a schematic cross-sectional view taken along the line BB of FIG. FIG. 16 is an enlarged view of a part of the periphery of the positioning groove and the projection of FIG. As shown in FIG. 15 and FIG. 16, in the stator assembly 30, the projection 35 c of the frame 35 is fitted in the positioning groove 31 c of the stator 31 to position the frame 35 and the stator 31. . That is, in the motor 10, the positioning groove 31c is provided in the stator 31 so that the phases of the plurality of stators 31 do not shift when the stator assembly 30 is combined, and the stator 31 and the frame portion 35 can be positioned. It has become. Therefore, the assembly variation of the stator assembly 30 and the phase shift of the plurality of stators 31 can be suppressed.
 また、シャフト21とロータ22との位置決めは、キー部23を用いて行われる。すなわち、シャフト21の軸側キー溝21cと、ロータ22のロータ側キー溝22cとにより形成される空間にキー部23を嵌め込むことで、回転方向R及び軸方向Axの位置決めが行われる。なお、図16では、位置決め溝31cと突起部35cとの間に間隙が生じている状態を例示しているが、これに限らず、突起部35cのステータ31側の面全体が、位置決め溝31cに接触するようにしてもよい。 Further, the positioning of the shaft 21 and the rotor 22 is performed using the key portion 23. That is, by inserting the key portion 23 into the space formed by the shaft side key groove 21 c of the shaft 21 and the rotor side key groove 22 c of the rotor 22, positioning in the rotational direction R and the axial direction Ax is performed. Although FIG. 16 exemplifies a state in which a gap is generated between the positioning groove 31c and the projection 35c, the invention is not limited thereto. The entire surface of the projection 35c on the stator 31 side is the positioning groove 31c. You may contact it.
 ここで、上記の各図では、モータ10が2つのコアモジュール80を有する場合を例示したが、これに限らず、モータ10は、3つ以上のコアモジュール80を有してもよい。すなわち、本実施の形態1における構成を採れば、組み合わせるコアモジュール80の数量を変更することにより、様々な出力を発揮するモータ10を製作することができる。より具体的に、ロータコア220及びステータコア310の積厚をA[mm]とし、モータ10が有するコアモジュール80の数量をn(nは任意の自然数)とする。すると、モータ10は、ロータコア及びステータコアの積厚、すなわち積層鋼板の積厚が「nA」の場合と同等の出力を発揮することができる。例えば、ロータコア220及びステータコア310の積厚を40[mm]とした場合、モータ10は、複数のコアモジュール80を組み合わせることにより、40[mm]、80[mm]、120[mm]・・・といった積厚に応じた出力を発揮することができる。 Here, although the case where motor 10 has two core modules 80 was illustrated in each above-mentioned figure, not only this but motor 10 may have three or more core modules 80. That is, with the configuration in the first embodiment, the motor 10 that exhibits various outputs can be manufactured by changing the number of core modules 80 to be combined. More specifically, the laminated thickness of the rotor core 220 and the stator core 310 is A [mm], and the number of core modules 80 that the motor 10 has is n (n is an arbitrary natural number). Then, the motor 10 can exhibit the same output as that in the case where the laminated thickness of the rotor core and the stator core, that is, the laminated thickness of the laminated steel plates is “nA”. For example, when the laminated thickness of the rotor core 220 and the stator core 310 is 40 [mm], the motor 10 can be 40 [mm], 80 [mm], 120 [mm] ... by combining a plurality of core modules 80. The output corresponding to the thickness of the stack can be exhibited.
 図17は、本発明の実施の形態1のモータの他の構成を例示する概略断面図である。図17に示すように、モータ10は、フレーム部35は、軸方向Ax側にメス部35bが配置され、反軸方向側にオス部35aが配置されるようにしてもよい。このようにしても、ステータ31の位置決め溝31cに、フレーム部35の突起部35cを嵌めることができるため、ステータ31とフレーム部35との回転方向Rにおける位置決めを行うことができる。そして、隣接する2つのフレーム部35において、一方のフレーム部35のオス部35aを、他方のフレーム部35のメス部35bに嵌め込むことができる。 FIG. 17 is a schematic cross-sectional view illustrating another configuration of the motor according to the first embodiment of the present invention. As shown in FIG. 17, the frame portion 35 of the motor 10 may have the female portion 35b disposed on the side in the axial direction Ax and the male portion 35a disposed on the opposite side in the axial direction. Also in this configuration, the projection 35c of the frame 35 can be fitted into the positioning groove 31c of the stator 31, so that the stator 31 and the frame 35 can be positioned in the rotational direction R. Then, in the two adjacent frame portions 35, the male portion 35a of one frame portion 35 can be fitted into the female portion 35b of the other frame portion 35.
 また、フレーム部35を図17のように配置する場合、モータ10は、第2蓋部50を軸方向Ax側に設け、第1蓋部40を反軸方向側に設けるとよい。そして、シャフト21が貫通する貫通穴51を第2蓋部50に設けるとよい。この場合、第1蓋部40には、貫通穴41を設けなくてもよい。第2蓋部50は、一方のフレーム部35のメス部35bに蓋側オス部50aを嵌め込んだ状態で、ネジ止めなどにより固定するとよい。第1蓋部40は、蓋側メス部40bに、一方のフレーム部35のオス部35aを嵌め込んだ状態で、ネジ止めなどにより固定するとよい。 When the frame portion 35 is arranged as shown in FIG. 17, the motor 10 may have the second cover 50 provided on the side in the axial direction Ax and the first cover 40 provided on the opposite side in the axial direction. Then, the through hole 51 through which the shaft 21 passes may be provided in the second lid 50. In this case, the through hole 41 may not be provided in the first lid 40. The second lid portion 50 may be fixed by screwing or the like in a state in which the lid-side male portion 50a is fitted in the female portion 35b of the one frame portion 35. The first lid 40 may be fixed by screwing or the like in a state in which the male portion 35a of one frame portion 35 is fitted into the lid-side female portion 40b.
 以上のように、本実施の形態1のモータ10は、複数のコアモジュール80のそれぞれのフレーム部35がシャフト21の軸方向Axに沿って連結されるため、2以上のコアモジュール80を組み合わせることにより、全体での出力を変化させることができる。よって、発揮する出力の種類を増やす場合でも、製造設備及び金型の新設等を抑制し、生産性の向上を図ることができる。すなわち、モータ10は、ロータコア220とステータコア310とをモジュール化したコアモジュール80を組み合わせることにより、様々な出力を発揮することができるため、設備投資などのコストを削減することができる。 As described above, in the motor 10 of the first embodiment, since the frame portions 35 of the plurality of core modules 80 are connected along the axial direction Ax of the shaft 21, combining two or more core modules 80 Can change the overall output. Therefore, even in the case of increasing the types of output to be exhibited, it is possible to suppress the new construction of the manufacturing equipment and the mold and to improve the productivity. That is, since the motor 10 can exhibit various outputs by combining the core module 80 in which the rotor core 220 and the stator core 310 are modularized, costs such as equipment investment can be reduced.
 ところで、積層鋼板の固定には、一般に、プレス実施時にカシメを用いて行う方法、又はリベットを用いて固定する方法などが用いられる。カシメによって固定できる電磁鋼板の枚数には限界があり、その限界は、電磁鋼板に設けられた突起の高さとの間に相関がある。すなわち、積層鋼板の積厚が一定値を超えると、積層強度を保つことが難しくなる。そのため、従来は、積層鋼板の積厚が一定値を超える場合、積層時の倒れを抑制するために、リベットなどを用いた追加加工を行っている。また、電磁鋼板には厚み偏差があるため、要求される出力の実現に必要な高さまで電磁鋼板を積み上げた場合、電磁鋼板の厚み偏差により、ロータコアの平行度及び真円度を保つことが難しくなる。したがって、積層鋼板の積厚の増大は、ギャップ不均一によるコギングトルクの発生にも繋がり得る。 By the way, for fixing of laminated steel plates, generally, a method of caulking is used at the time of pressing, a method of fixing using a rivet, or the like is used. There is a limit to the number of electromagnetic steel sheets that can be fixed by caulking, and the limit is correlated with the height of the projections provided on the magnetic steel sheets. That is, when the laminated thickness of the laminated steel sheet exceeds a certain value, it becomes difficult to maintain the laminated strength. Therefore, conventionally, when the laminated thickness of the laminated steel sheet exceeds a certain value, additional processing using a rivet or the like is performed in order to suppress a fall during lamination. In addition, since electromagnetic steel sheets have thickness deviations, it is difficult to maintain the parallelism and roundness of the rotor core due to the thickness deviations of the electromagnetic steel sheets when the electromagnetic steel sheets are stacked to the height necessary to realize the required output. Become. Therefore, the increase in the laminated thickness of the laminated steel sheet can also lead to the generation of cogging torque due to gap non-uniformity.
 この点、本実施の形態1のモータ10は、積層鋼板からなるロータコア220及びステータコア310をモジュール化した複数のコアモジュール80を直列に接続するようになっている。よって、1つのロータコア220及び1つのステータコア310を構成する電磁鋼板の枚数の増加を防ぐことができるため、積層鋼板の安定化を図ることができる。加えて、ロータコア220及びステータコア310をカシメ加工のみで製作できるケースが増えるため、リベットなどを用いた固定作業を低減することができる。 In this respect, the motor 10 according to the first embodiment is configured to connect in series a plurality of core modules 80 obtained by modularizing the rotor core 220 and the stator core 310 made of laminated steel plates. Thus, an increase in the number of electromagnetic steel sheets constituting one rotor core 220 and one stator core 310 can be prevented, so that the laminated steel sheets can be stabilized. In addition, since the number of cases where the rotor core 220 and the stator core 310 can be manufactured only by caulking increases, the fixing operation using a rivet or the like can be reduced.
 ここで、モータ10は、図14のように、フレーム部35のオス部35aが軸方向Ax側を向くように配置してもよい。そして、モータ10では、第1蓋部40が、最も軸方向Ax側に配置されたコアモジュール80のフレーム部35に取り付けられ、第2蓋部50が、最も反軸方向側に配置されたコアモジュール80のフレーム部35に取り付けられてもよい。また、モータ10は、図17のように、フレーム部35のメス部35bが軸方向Ax側を向くように配置してもよい。そして、モータ10では、第2蓋部50が、最も軸方向Ax側に配置されたコアモジュール80のフレーム部35に取り付けられ、第1蓋部40が、最も反軸方向側に配置されたコアモジュール80のフレーム部35に取り付けられてもよい。このように、本実施の形態1のモータ10は、同一の部品の配置を変えることにより、構造を変更することができる。 Here, as shown in FIG. 14, the motor 10 may be disposed such that the male portion 35 a of the frame portion 35 faces the axial direction Ax side. Then, in the motor 10, the first lid 40 is attached to the frame 35 of the core module 80 disposed closest to the axial direction Ax, and the second lid 50 is disposed core opposite to the axial direction. It may be attached to the frame portion 35 of the module 80. Further, as shown in FIG. 17, the motor 10 may be disposed so that the female portion 35b of the frame portion 35 faces the axial direction Ax side. Then, in the motor 10, the second lid 50 is attached to the frame 35 of the core module 80 disposed on the most axial direction Ax side, and the first lid 40 is disposed on the opposite axial direction side. It may be attached to the frame portion 35 of the module 80. Thus, the motor 10 of the first embodiment can be changed in structure by changing the arrangement of the same parts.
実施の形態2.
 図18は、本発明の実施の形態2に係る空気調和装置が有するモータの概略断面図である。本実施の形態2の空気調和装置の全体的な構成は、前述した実施の形態1と同様であるため、各構成部材については同一の符号を用いて説明は省略する。
Second Embodiment
FIG. 18 is a schematic cross-sectional view of a motor of the air conditioning apparatus according to Embodiment 2 of the present invention. The overall configuration of the air conditioning apparatus of the second embodiment is the same as that of the first embodiment described above, so the same reference numerals will be used for the respective constituent members and the description will be omitted.
 実施の形態1のモータ10は、積層鋼板の積厚が等しい複数のコアモジュール80を組み合わせて構成されている。これに対し、本実施の形態2のモータ110は、積層鋼板の積厚が異なる少なくとも2種類のコアモジュールを有している。 The motor 10 of the first embodiment is configured by combining a plurality of core modules 80 having the same laminated thickness of laminated steel plates. On the other hand, the motor 110 of the second embodiment has at least two types of core modules having different laminated thicknesses of laminated steel plates.
 図18の例において、モータ110は、出力が相対的に小さなコアモジュール80Aと、出力が相対的に大きなコアモジュール80Bと、を有している。コアモジュール80Aは、ロータ22Aと、ステータ31Aと、を有している。コアモジュール80Aのフレーム部35は、軸方向Axの長さが、ステータ31Aの軸方向Axの長さに応じて調整されている。コアモジュール80Bは、ロータ22Bと、ステータ31Bと、を有している。コアモジュール80Bのフレーム部35は、軸方向Axの長さが、ステータ31Bの軸方向Axの長さに応じて調整されている。したがって、積層鋼板の積厚が異なるコアモジュール80A及びコアモジュール80Bのそれぞれの数量を変更することにより、異なる複数の出力を発揮するモータ110を構成することができる。 In the example of FIG. 18, the motor 110 has a core module 80A with a relatively small output and a core module 80B with a relatively large output. The core module 80A has a rotor 22A and a stator 31A. The length of the axial direction Ax of the frame portion 35 of the core module 80A is adjusted in accordance with the length of the axial direction Ax of the stator 31A. The core module 80B has a rotor 22B and a stator 31B. The length of the axial direction Ax of the frame portion 35 of the core module 80B is adjusted in accordance with the length of the axial direction Ax of the stator 31B. Therefore, by changing the respective numbers of core modules 80A and core modules 80B having different laminated thicknesses of the laminated steel plates, it is possible to configure the motor 110 that exerts a plurality of different outputs.
 ここで、ロータコア220A及びステータコア310Aの積厚をA[mm]とし、ロータコア220B及びステータコア310Bの積厚をB[mm]とする。また、モータ110が有するコアモジュール80Aの数量をn(nは0又は任意の自然数)とし、モータ110が有するコアモジュール80Bの数量をm(mは0又は任意の自然数)とする。すると、モータ110は、ロータコア及びステータコアの積厚、すなわち積層鋼板の積厚が「nA+mB」である場合と同等の出力を発揮することができる。 Here, the laminated thickness of the rotor core 220A and the stator core 310A is A [mm], and the laminated thickness of the rotor core 220B and the stator core 310B is B [mm]. The number of core modules 80A included in the motor 110 is n (n is 0 or any natural number), and the number of core modules 80B included in the motor 110 is m (m is 0 or any natural number). Then, the motor 110 can exhibit the same output as in the case where the laminated thickness of the rotor core and the stator core, that is, the laminated thickness of the laminated steel plates is “nA + mB”.
 例えば、40[mm]、60[mm]、80[mm]、100[mm]、120[mm]の5種類の積層鋼板の積厚を有するモータ110を製作したい状況を想定する。この場合、例えば、A=40[mm]のロータコア220A及びステータコア310Aと、B=60[mm]のロータコア220B及びステータコア310Bとを製作しておけばよい。 For example, it is assumed that it is desired to manufacture a motor 110 having a stack thickness of five types of laminated steel plates of 40 [mm], 60 [mm], 80 [mm], 100 [mm], and 120 [mm]. In this case, for example, a rotor core 220A and a stator core 310A of A = 40 [mm] and a rotor core 220B and a stator core 310B of B = 60 [mm] may be manufactured.
 図19は、本発明の実施の形態2につき、2種類のコアモジュールで実現できるモータの構成を例示した表である。図18及び図19を参照して、A=40[mm]とし、B=60[mm]とした場合に実現可能なモータ110の構成について具体的に説明する。 FIG. 19 is a table exemplifying the configuration of a motor that can be realized by two types of core modules according to the second embodiment of the present invention. The configuration of the motor 110 that can be realized when A = 40 [mm] and B = 60 [mm] will be specifically described with reference to FIGS. 18 and 19.
 図19に示すように、1つのコアモジュール80Aを用いれば、積層鋼板の積厚が40[mm]のモータ110を製作することができる。1つのコアモジュール80Bを用いれば、積層鋼板の積厚が60[mm]のモータ110を製作することができる。2つのコアモジュール80Aを用いれば、積層鋼板の積厚が80[mm]のモータ110を製作することができる。1つのコアモジュール80Aと1つのコアモジュール80Bとを用いれば、積層鋼板の積厚が100[mm]のモータ110を製作することができる。 As shown in FIG. 19, if one core module 80A is used, a motor 110 having a laminated thickness of 40 [mm] can be manufactured. If one core module 80B is used, the motor 110 having a laminated thickness of 60 mm can be manufactured. If two core modules 80A are used, a motor 110 having a laminated thickness of 80 mm can be manufactured. By using one core module 80A and one core module 80B, it is possible to manufacture a motor 110 having a laminated thickness of 100 [mm].
 3つのコアモジュール80Aを用いれば、積層鋼板の積厚が120[mm]のモータ110を製作することができる。積層鋼板の積厚が120[mm]のモータ110は、2つのコアモジュール80Bを用いて製作することもできる。2つのコアモジュール80Aと1つのコアモジュール80Bとを用いれば、積層鋼板の積厚が140[mm]のモータ110を製作することができる。 If three core modules 80A are used, it is possible to manufacture a motor 110 having a laminated thickness of 120 [mm]. The motor 110 having a laminated steel plate thickness of 120 mm can also be manufactured using two core modules 80B. By using two core modules 80A and one core module 80B, it is possible to manufacture the motor 110 having a laminated thickness of 140 [mm].
 4つのコアモジュール80Aを用いれば、積層鋼板の積厚が160[mm]のモータ110を製作することができる。積層鋼板の積厚が160[mm]のモータ110は、1つのコアモジュール80Aと2つのコアモジュール80Bを用いて製作することもできる。3つのコアモジュール80Aと1つのコアモジュール80Bを用いれば、積層鋼板の積厚が180[mm]のモータ110を製作することができる。積層鋼板の積厚が180[mm]のモータ110は、3つのコアモジュール80Bを用いて製作することもできる。 If four core modules 80A are used, it is possible to manufacture a motor 110 having a laminated thickness of 160 [mm]. The motor 110 having a laminated thickness of 160 [mm] can also be manufactured using one core module 80A and two core modules 80B. By using three core modules 80A and one core module 80B, a motor 110 having a laminated thickness of 180 [mm] can be manufactured. The motor 110 having a laminated thickness of 180 [mm] can also be manufactured using three core modules 80B.
 上記のとおり、図19に示す例の場合は、積層鋼板の積厚が20[mm]違いである複数のモータ110を製作することができる。そして、A[mm]とB[mm]とは任意に変更することができるため、A[mm]及びnと、B[mm]及びmとの組み合わせを変更することにより、様々な出力を発揮するモータ110を製作することができる。 As described above, in the case of the example shown in FIG. 19, it is possible to manufacture a plurality of motors 110 in which the laminated thickness of laminated steel plates is different by 20 [mm]. And, since A [mm] and B [mm] can be arbitrarily changed, various outputs are exhibited by changing the combination of A [mm] and n with B [mm] and m. The motor 110 can be manufactured.
 以上のように、本実施の形態2のモータ110によっても、実施の形態1のモータ10と同様に、発揮する出力の種類を増やす場合でも、製造設備及び金型の新設等を抑制し、生産性の向上を図ることができる。また、本実施の形態2のモータ110は、負荷の駆動に求められる出力に応じて、2種類のロータコア及びステータコアを組み合わせることにより、様々な出力を発揮することができる。すなわち、従来のモータの構造では、要求される出力が変化した場合、モータを新たに製作する必要が生じるため、製造設備及び金型の新設などを要する。これに対し、モータ110は、ロータコア及びステータコアを含んでモジュール化された2種類のコアモジュールを組み合わせて製作される。よって、2種類のコアモジュールを製作するための製造設備及び金型があればよいため、従来よりも、金型の数量を減らすことができ、設備投資の費用を削減することができる。つまり、モータ110の構造を採れば、投資額を大きく削減することができる。 As described above, even with the motor 110 according to the second embodiment, as in the motor 10 according to the first embodiment, even when the types of output to be exhibited are increased, the production facility and the new mold of the mold are suppressed, It is possible to improve the quality. In addition, the motor 110 according to the second embodiment can exhibit various outputs by combining two types of rotor cores and stator cores according to the output required for driving the load. That is, in the conventional motor structure, when the required output changes, it is necessary to newly manufacture the motor, so it is necessary to newly install a manufacturing facility and a mold. On the other hand, the motor 110 is manufactured by combining two types of core modules modularized including a rotor core and a stator core. Therefore, since it is only necessary to have manufacturing equipment and a mold for manufacturing two types of core modules, the number of molds can be reduced compared to the conventional case, and the cost of equipment investment can be reduced. That is, if the structure of the motor 110 is adopted, the amount of investment can be greatly reduced.
 ところで、図18及び図19では、モータ110が2つのコアモジュールを組み合わせて構成される例を示したが、これに限らず、モータ110は、3つ以上のコアモジュールを組み合わせて構成してもよい。この場合、モータ110が有する複数のコアモジュールは、積層鋼板の積厚が全て異なっていてもよいし、積層鋼板の積厚が同じものが含まれていてもよい。このようにすれば、金型の数量は多少増えることになるが、さらに細かくモータ110の出力を変更することができる。また、モータ110は、図17の例と同様、フレーム部35、第1蓋部40、及び第2蓋部50の配置を反転させる構成を採ることができる。 Although FIGS. 18 and 19 show an example in which the motor 110 is configured by combining two core modules, the invention is not limited thereto, and the motor 110 may be configured by combining three or more core modules. Good. In this case, in the plurality of core modules of the motor 110, all of the laminated thicknesses of the laminated steel plates may be different, or those having the same laminated thickness of the laminated steel plates may be included. In this way, although the number of molds is slightly increased, the output of the motor 110 can be changed more finely. Further, as in the example of FIG. 17, the motor 110 can adopt a configuration in which the arrangement of the frame portion 35, the first lid portion 40, and the second lid portion 50 is reversed.
 上記実施の形態は、モータ及び空気調和装置における好適な具体例であり、本発明の技術的範囲は、これらの態様に限定されるものではない。例えば、上記の各実施の形態では、モータ10及び110として、ロータコアに永久磁石が埋め込まれたロータを有する永久磁石埋め込み型モータ、すなわちIPMモータを例示したが、これに限定されない。例えば、モータ10及び110は、ロータコアの外周面に永久磁石が貼着されたロータを有する表面磁石型モータ、すなわちSPM(Surface Permanent Magnet)モータであってもよい。ただし、IPMモータは、コイルと永久磁石との吸引力及び反発力に起因するマグネットトルクに加えてリラクタンストルクを得ることができる。そのため、モータ10及び110は、IPMモータの構造を採った方が、SPMモータの構成を採るよりも、高トルクかつ高効率となる。 The above-mentioned embodiment is a suitable example in a motor and an air harmony device, and the technical scope of the present invention is not limited to these modes. For example, although the permanent magnet embedded motor having a rotor in which permanent magnets are embedded in the rotor core, that is, an IPM motor is exemplified as the motors 10 and 110 in the above embodiments, the invention is not limited thereto. For example, the motors 10 and 110 may be surface magnet type motors having a rotor having permanent magnets attached to the outer peripheral surface of the rotor core, that is, SPM (Surface Permanent Magnet) motors. However, the IPM motor can obtain reluctance torque in addition to the magnet torque resulting from the attraction and repulsion between the coil and the permanent magnet. Therefore, if the motors 10 and 110 adopt the structure of the IPM motor, they have higher torque and higher efficiency than the structure of the SPM motor.
 また、上記の各実施の形態では、一方向だけに負荷が接続されるモータ10を例示したが、これに限らず、モータ10は、両方向に負荷が接続されるものであってよい。なお、この場合の軸方向Axは、シャフト21における何れか一方の負荷側の方向となる。例えば、図14及び図18に例示する構造であれば、第2蓋部50の中心部に、シャフト21を貫通させる貫通穴51を設ける。これにより、シャフト21は、第2ベアリング25よりも反軸方向側に延び、軸方向Ax側と同様、第2蓋部50の貫通穴51を通過して外部へ突出する。また、図17に例示する構造であれば、第1蓋部40の中心部に、シャフト21を貫通させる貫通穴41を設ける。これにより、シャフト21は、第2ベアリング25よりも反軸方向側に延び、軸方向Ax側と同様、第1蓋部40の貫通穴41を通過して外部へ突出する。さらに、上記の各実施の形態では、1つのコアモジュールが、1つのステータ31と1つのロータ22とを含む例を示したが、これに限らず、1つのコアモジュールは、1つのステータ31と複数のロータ22とを含んでいてもよい。 Further, although the motor 10 in which the load is connected in only one direction is illustrated in each of the above-described embodiments, the present invention is not limited to this. The motor 10 may be connected in both directions. The axial direction Ax in this case is the direction of one of the loads on the shaft 21. For example, in the structure illustrated in FIG. 14 and FIG. 18, the through hole 51 for allowing the shaft 21 to penetrate is provided at the center of the second lid 50. Thereby, the shaft 21 extends in the opposite axial direction side with respect to the second bearing 25 and, similarly to the axial direction Ax side, passes through the through hole 51 of the second lid 50 and protrudes to the outside. Further, in the case of the structure illustrated in FIG. 17, the through hole 41 for allowing the shaft 21 to penetrate is provided at the center of the first lid 40. Thereby, the shaft 21 extends in the opposite axial direction side with respect to the second bearing 25 and, similarly to the axial direction Ax side, passes through the through hole 41 of the first lid 40 and protrudes to the outside. Furthermore, in each of the above-described embodiments, an example is shown in which one core module includes one stator 31 and one rotor 22. However, the present invention is not limited to this. One core module includes one stator 31 and one stator 31. A plurality of rotors 22 may be included.
 加えて、上記の各実施の形態では、キー部23がロータ22と同数であり、シャフト21がロータ22と同数の軸側キー溝21cを有する場合を例示したが、これに限らず、キー部23及び軸側キー溝21cの数は、ロータ22の数よりも少なくてよい。例えば、キー部23は1つであってもよく、軸側キー溝21cは1箇所に設けられもよい。この場合、キー部23及び軸側キー溝21cの軸方向Axの長さは、複数のロータ22の軸方向Axの長さに応じて決めるとよい。このようにしても、シャフト21と複数のロータ22との回転方向Rにおける位置を決めることができる。また、シャフト21には、予め決められた設定数の軸側キー溝21cが設けられていてもよい。このようにすれば、要求される出力に応じて、設定数以下の任意の数のロータ22をシャフト21に固定することができる。 In addition, although the case where the key part 23 is the same number as the rotor 22 and the shaft 21 has the shaft side key groove 21c of the same number as the rotor 22 was illustrated in each said embodiment, it does not restrict to this. The number of 23 and the shaft side key groove 21 c may be smaller than the number of rotors 22. For example, one key portion 23 may be provided, and the shaft side key groove 21 c may be provided at one position. In this case, the length in the axial direction Ax of the key portion 23 and the shaft side key groove 21 c may be determined according to the length in the axial direction Ax of the plurality of rotors 22. Also in this case, the positions of the shaft 21 and the plurality of rotors 22 in the rotational direction R can be determined. Further, the shaft 21 may be provided with a predetermined number of shaft-side key grooves 21c. In this way, an arbitrary number of rotors 22 equal to or less than the set number can be fixed to the shaft 21 according to the required output.
 上記の各実施の形態では、ファン150として、両吸込形のシロッコファンを例示したが、これに限定されない。すなわち、ファン150は、片吸込形のシロッコファンであってもよいし、プロペラファンであってもよい。さらに、図11では、18スロットのステータ31を例示したが、これに限らず、ステータ31のスロット数は、18より少なくてもよく、18より多くてもよい。 In each of the above-described embodiments, the dual suction type sirocco fan is illustrated as the fan 150, but the present invention is not limited to this. That is, the fan 150 may be a single suction type sirocco fan or a propeller fan. Furthermore, although FIG. 11 illustrates the stator 31 of 18 slots, the number of slots of the stator 31 is not limited thereto, and may be less than 18 or more than 18.
 10、110 モータ、20 ロータ組立体、21 シャフト、21c 軸側キー溝、22、22A、22B ロータ、22a 挿入孔、22c ロータ側キー溝、22d 磁石挿入穴、22e 永久磁石、23 キー部、24 第1ベアリング、25 第2ベアリング、30 ステータ組立体、31、31A、31B ステータ、31c 位置決め溝、35 フレーム部、35a オス部、35b メス部、35c 突起部、35d 溝部、40 第1蓋部、40b 蓋側メス部、40d 蓋側突起、41 貫通穴、44、55 ベアリングハウジング、50 第2蓋部、50a 蓋側オス部、50c 蓋側溝部、51 貫通穴、80、80A、80B コアモジュール、100 空気調和装置、101 筐体、102 吹出口、102a 吹出フランジ、103 前面吸込口、150 ファン、220、220A、220B ロータコア、220a カシメ部、310、310A、310B ステータコア、311 外側壁、320 巻線、351 内側壁。 10, 110 motor, 20 rotor assembly, 21 shaft, 21c shaft side key groove, 22, 22A, 22B rotor, 22a insertion hole, 22c rotor side key groove, 22d magnet insertion hole, 22e permanent magnet, 23 key portion, 24 First bearing, 25 second bearing, 30 stator assembly, 31, 31A, 31B stator, 31c positioning groove, 35 frame portion, 35a male portion, 35b female portion, 35c protrusion portion, 35d groove portion, 40 first lid portion, 40b Lid-side female part, 40d Lid-side projection, 41 through hole, 44, 55 bearing housing, 50 second lid part, 50a Lid side male part, 50c Lid side groove part, 51 through hole, 80, 80A, 80B core module, 100 air conditioner, 101 case, 102 outlet, 102 Outlet flange 103 front inlet, 150 fan, 220,220A, 220B rotor core, 220a caulking portion, 310, 310a, 310B stator core, 311 outer walls, 320 windings, 351 inner wall.

Claims (10)

  1.  シャフトと、
     前記シャフトが挿入されるロータ、前記ロータの外周側に設けられるステータ、及び前記ステータの外周を囲うフレーム部を備えた複数のコアモジュールと、を有し、
     複数の前記コアモジュールのそれぞれのフレーム部は、前記シャフトの軸方向に沿って連結されている、モータ。
    With the shaft,
    It has a rotor into which the shaft is inserted, a stator provided on the outer peripheral side of the rotor, and a plurality of core modules provided with a frame portion surrounding the outer periphery of the stator,
    The frame part of each of the plurality of core modules is connected along the axial direction of the shaft.
  2.  前記フレーム部は、
     前記軸方向における一方の端部にオス部を有すると共に、他方の端部にメス部を有し、
     隣接する2つの前記フレーム部は、一方の前記フレーム部のオス部が、他方の前記フレーム部のメス部に嵌め込まれている、請求項1に記載のモータ。
    The frame unit is
    While having a male portion at one end in the axial direction and a female portion at the other end,
    2. The motor according to claim 1, wherein two adjacent ones of the frame parts have male parts of one of the frame parts fitted in female parts of the other frame part.
  3.  連結された複数の前記コアモジュールの一方の端部に配置された前記フレーム部に取り付けられる第1蓋部と、
     連結された複数の前記コアモジュールの他方の端部に配置された前記フレーム部に取り付けられる第2蓋部と、を有し、
     前記第1蓋部は、
     前記フレーム部の前記オス部が嵌め込まれる蓋側メス部を有し、
     前記第2蓋部は、
     前記フレーム部の前記メス部に嵌め込まれる蓋側オス部を有する、請求項2に記載のモータ。
    A first lid attached to the frame disposed at one end of the plurality of coupled core modules;
    And a second lid attached to the frame disposed at the other end of the plurality of coupled core modules.
    The first lid is
    It has a lid-side female part into which the male part of the frame part is fitted,
    The second lid is
    The motor according to claim 2, further comprising a lid side male portion fitted to the female portion of the frame portion.
  4.  前記フレーム部は、
     前記ステータに対向する内側壁に突起部を有し、
     前記ステータは、
     前記フレーム部の前記突起部が嵌まる位置決め溝を有する、請求項2又は3に記載のモータ。
    The frame unit is
    It has a projection on the inner wall facing the stator,
    The stator is
    The motor according to claim 2 or 3, further comprising a positioning groove in which the projection of the frame portion is fitted.
  5.  前記フレーム部は、
     前記メス部の外周側に溝部を有し、
     前記突起部は、
     前記溝部に嵌められている、請求項4に記載のモータ。
    The frame unit is
    It has a groove on the outer peripheral side of the female part,
    The protrusion is
    The motor according to claim 4, which is fitted in the groove.
  6.  複数の前記コアモジュールのそれぞれの前記ロータは、前記シャフトに一定の間隔を隔てて固定されている、請求項1~5の何れか一項に記載のモータ。 The motor according to any one of claims 1 to 5, wherein the rotor of each of the plurality of core modules is fixed to the shaft at a predetermined interval.
  7.  前記ロータは、
     棒状のキー部が嵌められるロータ側キー溝を有し、
     前記シャフトは、
     前記キー部が嵌められる軸側キー溝を有し、
     前記シャフトと複数の前記シャフトとは、前記キー部によって固定される、請求項1~6の何れか一項に記載のモータ。
    The rotor is
    It has a rotor side key groove in which a rod-like key portion is fitted,
    The shaft is
    It has a shaft side key groove in which the key part is fitted,
    The motor according to any one of claims 1 to 6, wherein the shaft and the plurality of shafts are fixed by the key portion.
  8.  前記キー部は、前記ロータと同数であり、
     前記シャフトは、前記ロータと同数の前記軸側キー溝を有し、
     前記各キー部は、それぞれ、前記各ロータのそれぞれの前記ロータ側キー溝と、前記各軸側キー溝とに嵌められている、請求項7に記載のモータ。
    The number of key parts is the same as that of the rotor,
    The shaft has the same number of shaft side key grooves as the rotor, and
    The motor according to claim 7, wherein each of the key portions is fitted in the respective rotor side key groove of each of the rotors and each of the shaft side key grooves.
  9.  前記ステータは、積層鋼板からなるステータコアを有し、
     前記ロータは、積層鋼板からなるロータコアを有し、
     複数の前記コアモジュールは、
     前記ステータコア及び前記ロータコアの積厚が異なる少なくとも2種類の前記コアモジュールを含む、請求項1~8の何れか一項に記載のモータ。
    The stator has a stator core made of laminated steel plates,
    The rotor has a rotor core made of laminated steel plates,
    The plurality of core modules are
    The motor according to any one of claims 1 to 8, comprising at least two types of core modules having different stack thicknesses of the stator core and the rotor core.
  10.  請求項1~9の何れか一項に記載のモータと、
     前記モータを動力源として回転するファンと、を有する空気調和装置。
    A motor according to any one of claims 1 to 9;
    An air conditioner comprising: a fan that rotates using the motor as a power source.
PCT/JP2017/030821 2017-08-29 2017-08-29 Motor and air conditioning device WO2019043766A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019538771A JP6861830B2 (en) 2017-08-29 2017-08-29 Motor and air conditioner
PCT/JP2017/030821 WO2019043766A1 (en) 2017-08-29 2017-08-29 Motor and air conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/030821 WO2019043766A1 (en) 2017-08-29 2017-08-29 Motor and air conditioning device

Publications (1)

Publication Number Publication Date
WO2019043766A1 true WO2019043766A1 (en) 2019-03-07

Family

ID=65526375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030821 WO2019043766A1 (en) 2017-08-29 2017-08-29 Motor and air conditioning device

Country Status (2)

Country Link
JP (1) JP6861830B2 (en)
WO (1) WO2019043766A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0522909A (en) * 1991-07-11 1993-01-29 Shinko Electric Co Ltd Rotary machine of multi-step type
JPH09182387A (en) * 1995-12-27 1997-07-11 Aisin Aw Co Ltd Motor
JP2006027355A (en) * 2004-07-13 2006-02-02 Nsk Ltd Electric power steering device
JP2007166798A (en) * 2005-12-14 2007-06-28 Daikin Ind Ltd Dynamo-electric machine, compressor, blower, and air conditioner
JP2012115084A (en) * 2010-11-26 2012-06-14 Hitachi Appliances Inc Self-start axial gap synchronous motor, and compressor and refrigeration cycle device using the same
JP2017017912A (en) * 2015-07-03 2017-01-19 日立オートモティブシステムズエンジニアリング株式会社 Electric motor
JP6081040B1 (en) * 2016-04-27 2017-02-15 三菱電機株式会社 Rotating motor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008067571A (en) * 2006-09-11 2008-03-21 Jtekt Corp Motor and electric pump
CN105703582A (en) * 2016-02-04 2016-06-22 精进电动科技(北京)有限公司 Integrated type electric motor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0522909A (en) * 1991-07-11 1993-01-29 Shinko Electric Co Ltd Rotary machine of multi-step type
JPH09182387A (en) * 1995-12-27 1997-07-11 Aisin Aw Co Ltd Motor
JP2006027355A (en) * 2004-07-13 2006-02-02 Nsk Ltd Electric power steering device
JP2007166798A (en) * 2005-12-14 2007-06-28 Daikin Ind Ltd Dynamo-electric machine, compressor, blower, and air conditioner
JP2012115084A (en) * 2010-11-26 2012-06-14 Hitachi Appliances Inc Self-start axial gap synchronous motor, and compressor and refrigeration cycle device using the same
JP2017017912A (en) * 2015-07-03 2017-01-19 日立オートモティブシステムズエンジニアリング株式会社 Electric motor
JP6081040B1 (en) * 2016-04-27 2017-02-15 三菱電機株式会社 Rotating motor

Also Published As

Publication number Publication date
JPWO2019043766A1 (en) 2020-05-28
JP6861830B2 (en) 2021-04-21

Similar Documents

Publication Publication Date Title
US9318927B2 (en) Amorphous stator, and electric motor using same
US20070138894A1 (en) Rotor assembly for use in line start permanent magnet synchronous motor
EP1942571A1 (en) Motor with two rotors and apparatus with the same
US9667106B2 (en) Motor housing and methods of assembling the same
KR20100134570A (en) Permanent magnet embedded type rotor, electric motor using the same, and electric equipment
CN103378701A (en) Rotor for a motor and a motor
US20070138893A1 (en) Rotor assembly for use in line start permanent magnet synchronous motor
JP2010233346A (en) Permanent magnet motor
CN112821608B (en) Rotor punching sheet, rotor core, motor rotor, assembling method and motor
JP2009005421A (en) Rotary electric machine
US11309772B2 (en) Electric motor, air conditioner, vacuum cleaner, and method for producing electric motor
WO2018037529A1 (en) Rotary electric machine
JP2011120392A (en) Stator core, stator, motor, and compressor
WO2019043767A1 (en) Motor and air conditioning device
JP2002223538A (en) Rotor for motor
JP2002064950A (en) Motor, manufacturing method therefor, and electric vacuum cleaner
WO2019043766A1 (en) Motor and air conditioning device
JP2009240146A (en) Rotor of brushless dc motor, compressor equipped with rotor, and apparatus with compressor mounted thereon
EP2600501A2 (en) Segmented armature motor
JP6226654B2 (en) Rotating electric machine and air conditioner equipped with the same
JPWO2017208317A1 (en) Rotor, electric motor, compressor, blower, and air conditioner
JP2005269831A (en) Brushless dc motor
CN112821591B (en) Core component of modularized claw pole permanent magnet motor
WO2021171476A1 (en) Electric motor, fan, and air conditioner
JPH1189145A (en) Permanent magnet type motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17923099

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019538771

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17923099

Country of ref document: EP

Kind code of ref document: A1