JP2007166798A - Dynamo-electric machine, compressor, blower, and air conditioner - Google Patents

Dynamo-electric machine, compressor, blower, and air conditioner Download PDF

Info

Publication number
JP2007166798A
JP2007166798A JP2005360469A JP2005360469A JP2007166798A JP 2007166798 A JP2007166798 A JP 2007166798A JP 2005360469 A JP2005360469 A JP 2005360469A JP 2005360469 A JP2005360469 A JP 2005360469A JP 2007166798 A JP2007166798 A JP 2007166798A
Authority
JP
Japan
Prior art keywords
armature winding
side stator
magnetic flux
stator
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005360469A
Other languages
Japanese (ja)
Inventor
Shin Nakamasu
伸 中増
Yoshinari Asano
能成 浅野
Toshinari Kondo
俊成 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2005360469A priority Critical patent/JP2007166798A/en
Publication of JP2007166798A publication Critical patent/JP2007166798A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve efficiency by induced voltage, in a double armature motor excellent in downsizing and high efficiency. <P>SOLUTION: This motor is the so-called double armature motor which is equipped with a rotor 100, an inner stator 200 where an armature coil 201 is wound, and an outer stator 300 where an armature coil 301 is wound. The ratio of the number Pn of pole pairs of an inner stator 200 to the number Pg of pole pairs of an outer stator 300 is selected to be equal to the ratio of magnitude of the field magnetic flux interlinked to the armature coil 301 to the magnitude Φn of the field magnetic flux interlinked to the armature coil 201. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、回転電機の構造及びその制御方法に関する。   The present invention relates to a structure of a rotating electrical machine and a control method thereof.

回転電機、例えば電動機を小型化し、効率を高めるためには、界磁磁束を永久磁石で発生させることが望ましい。電動機を例に取れば、永久磁石励磁電動機は、小型化、高効率化の観点から望ましい。   In order to reduce the size of a rotating electrical machine, for example, an electric motor and increase efficiency, it is desirable to generate a field magnetic flux with a permanent magnet. Taking an electric motor as an example, a permanent magnet excitation motor is desirable from the viewpoint of miniaturization and high efficiency.

永久磁石励磁電動機の発生トルクは、電機子巻線の巻回数、これに流れる電流、これに鎖交する界磁磁束に比例する。電動機が大きい方が永久磁石の表面積は大きくでき、電機子巻線自体の断面積(以下「線断面積」と称す)を大きくできる。永久磁石の表面積が大きいほど界磁磁束は大きくできる。線断面積が大きいほど電機子巻線の電気抵抗は低減し、銅損は低下する。よって発生トルク(又は同一トルク発生時の効率)の増大と、電動機の小型化とはトレードオフの関係にある。   The generated torque of the permanent magnet excitation motor is proportional to the number of turns of the armature winding, the current flowing through the armature winding, and the field magnetic flux linked to the armature winding. The larger the electric motor, the larger the surface area of the permanent magnet, and the larger the sectional area of the armature winding itself (hereinafter referred to as “line sectional area”). The field magnetic flux can be increased as the surface area of the permanent magnet increases. The larger the wire cross-sectional area, the lower the electrical resistance of the armature winding and the lower the copper loss. Therefore, an increase in generated torque (or efficiency when the same torque is generated) and a reduction in size of the motor are in a trade-off relationship.

小型化、高効率化に優れた構造として、いわゆるダブルアマチュア電動機が知られている。これは一つの界磁子に、相互に反対側から対峙する一対の電機子が設けられた電動機である。下記の特許文献1,2には円筒状のダブルアマチュア電動機が開示されている。特許文献2では、界磁子として、内周側と外周側とで個別に永久磁石を設け、それぞれのインバータで電流位相を制御する技術が開示されており、トルクリプルを低減しつつ小型化かつ発生トルクの向上を企図している。   As a structure excellent in miniaturization and high efficiency, a so-called double amateur motor is known. This is an electric motor in which one field element is provided with a pair of armatures facing each other from opposite sides. Patent Documents 1 and 2 below disclose a cylindrical double amateur motor. Patent Document 2 discloses a technique in which permanent magnets are separately provided on the inner and outer peripheral sides as field elements, and the current phase is controlled by the respective inverters, which is reduced in size and generated while reducing torque ripple. It is intended to improve torque.

ダブルアマチュア電動機でおいて発生するトルクは、外周側電機子と界磁子の間に働くトルク(以下「外周側トルク」と称す)と、内周側電機子と界磁子の間に働くトルク(以下「内周側トルク」と称す)との和である。そして外周側トルクにしても、内周側トルクにしても、通常の電動機で発生するトルクと同様に、対応する電機子の電機子巻線の巻回数、これに流れる電流、及びこれに鎖交する界磁磁束の積に比例する。   The torque generated in a double amateur motor is the torque that acts between the outer armature and the field element (hereinafter referred to as “outer torque”) and the torque that acts between the inner armature and the field element. (Hereinafter referred to as “inner peripheral side torque”). Whether it is the outer peripheral torque or the inner peripheral torque, the number of turns of the armature winding of the corresponding armature, the current flowing therethrough, and the linkage to this are the same as the torque generated in a normal motor. It is proportional to the product of field magnetic flux.

永久磁石励磁の同期系電動機の一般的な指標は、下記の非特許文献1に紹介されている。冷却条件が揃えられ、寸法が同一の電動機であれば、温度上昇と放熱の関係から許容損失Wcがほぼ同一と考えることができる。トルクTと許容損失Wcは式(1)の関係にあり、係数Kmはモータコンスタントと呼ばれる。   Non-patent document 1 below introduces general indices of permanent magnet excitation synchronous motors. If the motors have the same cooling conditions and the same dimensions, the allowable loss Wc can be considered to be substantially the same from the relationship between the temperature rise and the heat dissipation. The torque T and the allowable loss Wc are in the relationship of the expression (1), and the coefficient Km is called a motor constant.

T=Wc・√Km…(1)   T = Wc · √Km (1)

つまり許容損失Wcが一定である場合には、モータコンスタントKmが大きいほどトルクTが大きくなる。よってモータコンスタントKmを、許容トルク(通常は連続定格トルク)の指標値として用いることができる。   That is, when the allowable loss Wc is constant, the torque T increases as the motor constant Km increases. Therefore, the motor constant Km can be used as an index value of the allowable torque (usually continuous rated torque).

モータコンスタントKmは式(2)で表すことができる。ここで極対数p、巻き線最大鎖交磁束Φ、占積率fs、巻線スロットの全断面積St、巻線の固有抵抗ρ、単位コイルの平均長lを導入した。また電流波形は正弦波であり、磁束が正弦波状に交番すると仮定した。また電動機の損失は、特に電動機が小型の場合には銅損が大部分であり、鉄損を省略して考慮している。   The motor constant Km can be expressed by equation (2). Here, the number p of pole pairs, the maximum winding flux linkage Φ, the space factor fs, the total cross sectional area St of the winding slot, the specific resistance ρ of the winding, and the average length l of the unit coil were introduced. The current waveform was a sine wave, and it was assumed that the magnetic flux alternated in a sine wave shape. In addition, the loss of the electric motor is considered by omitting the iron loss because the copper loss is most, especially when the electric motor is small.

Km=(1/2)pΦ√(fsSt/ρl)…(2)   Km = (1/2) pΦ√ (fsSt / ρl) (2)

従って、電動機の体積当たりの電動機効率を高めるためにはモータコンスタントKmを高める必要があり、式(2)から以下の諸方針が有効である。   Therefore, in order to increase the motor efficiency per volume of the motor, it is necessary to increase the motor constant Km, and the following policies are effective from the equation (2).

(i)巻き線の占積率fsを大きくする
(ii)単位コイルの平均長lを短くする
(iii)巻線の固有抵抗ρを小さくする
(iv)巻線最大鎖交磁束Φを大きくする
(v)極対数pを大きくする
(vi)巻線スロットの全断面積Stを大きくする。
(i) Increase winding space factor fs
(ii) Shorten the average length l of the unit coil
(iii) Reduce the specific resistance ρ of the winding
(iv) Increase the maximum winding flux linkage Φ
(v) Increase the number of pole pairs p
(vi) Increase the total cross-sectional area St of the winding slot.

よってダブルアマチュア電動機は電機子が二つ設けられるので、上記方針(vi)の観点で有利である。   Therefore, since the double armature motor is provided with two armatures, it is advantageous from the viewpoint of the policy (vi).

特開2002−335658号公報JP 2002-335658 A 特開2002−369467号公報JP 2002-369467 A 大西和夫、「永久磁石モータのトルク評価と最適構造の検討」、電気学会論文誌D産業応用部門部門誌、平成7年、第115巻、第7号、第930頁〜第935頁Kazuo Onishi, “Torque Evaluation of Permanent Magnet Motor and Examination of Optimal Structure”, IEEJ Transactions D, Industrial Application Division, 1995, Vol. 115, No. 7, pp. 930-935 特定用途指向型リラクタンストルク応用電動機の高性能化調査専門委員会、「特定用途指向型リラクタンストルク応用電動機の高性能化」、電気学会技術報告第920号、2003年3月Research Committee on Performance Improvement of Special-Use-Oriented Reluctance Torque Applied Motor, “Improvement of Performance of Special-Use-Oriented Reluctance Torque Applied Motor”, IEEJ Technical Report No. 920, March 2003

しかし、ダブルアマチュア電動機においては、磁気抵抗が増加して、永久磁石の動作点が低下するという問題点がある。これは界磁子に対して二つの電機子が相互に反対側から対峙するため、エアギャップと通称される界磁子−電機子間の空隙が二カ所に存在し、かつそれらが界磁磁束に対する磁気抵抗として直列に接続されるからである。   However, the double amateur motor has a problem that the magnetic resistance increases and the operating point of the permanent magnet decreases. This is because the two armatures face each other from the opposite side to the field element, so there are two gaps between the field element and the armature, commonly referred to as the air gap, and they are the field magnetic flux. This is because they are connected in series as a magnetic resistance against the.

ダブルアマチュア電動機における上述の動作点の低下は、電機子が一つのみ設けられた電動機と比較して、電機子に鎖交する界磁磁束の減少を招来する。つまり上記方針(iv)の観点では不利である。   The above-described decrease in operating point in a double amateur motor leads to a decrease in field magnetic flux interlinking with the armature as compared with a motor provided with only one armature. In other words, it is disadvantageous from the viewpoint of the above policy (iv).

特許文献2に開示された技術では永久磁石が内外二層に設けられているので、上記動作点の低下の問題を補償できる可能性はある。しかし永久磁石の使用量の増加や、界磁子の厚みの増大という小型化を阻害する要因をも招来する。   In the technique disclosed in Patent Document 2, since the permanent magnets are provided in the inner and outer two layers, there is a possibility that the problem of the decrease in the operating point can be compensated. However, there are also factors that hinder downsizing, such as an increase in the amount of permanent magnets used and an increase in the thickness of the field element.

本発明は上記問題点に鑑みてなされたものであり、小型化、高効率化に優れたダブルアマチュア回転電機において、更にその性能を向上させることを目的としている。   The present invention has been made in view of the above problems, and an object of the present invention is to further improve the performance of a double amateur rotating electrical machine excellent in miniaturization and high efficiency.

当該目的の例として、電動機の誘起電圧による効率の改善を挙げることができる。   As an example of the purpose, there is an improvement in efficiency due to an induced voltage of the electric motor.

この発明にかかる回転電機の第1の態様は、外周面(101a)及び内周面(101b)とを含む円筒形状を呈し、界磁磁束を供給する界磁用磁石(102)を有する回転子(100)と、前記内周面側から前記回転子に対向し、電機子巻線(201)が巻回された内周側固定子(200)と、前記外周面側から前記回転子に対向し、電機子巻線(301)が巻回された外周側固定子(300)とを備える。そして、前記内周側固定子の極対数(Pn)と前記外周側固定子の極対数(Pg)との比と、前記外周側固定子の前記電機子巻線に鎖交する前記界磁磁束の大きさ(Φg)と前記内周側固定子の前記電機子巻線に鎖交する前記界磁磁束の大きさ(Φn)との比とは、等しく選定される。   A first aspect of the rotating electrical machine according to the present invention is a rotor having a field magnet (102) that has a cylindrical shape including an outer peripheral surface (101a) and an inner peripheral surface (101b) and supplies a field magnetic flux. (100), facing the rotor from the inner peripheral surface side, facing the inner stator (200) around which the armature winding (201) is wound, and facing the rotor from the outer peripheral surface side And an outer stator (300) around which the armature winding (301) is wound. The ratio of the number of pole pairs (Pn) of the inner circumference side stator to the number of pole pairs (Pg) of the outer circumference side stator and the field magnetic flux interlinking with the armature winding of the outer circumference side stator. And the ratio of the field magnetic flux magnitude (Φn) linked to the armature winding of the inner peripheral side stator are selected to be equal.

この発明にかかる回転電機の第2の態様は、その第1の態様であって、前記内周側固定子(200)の極対数(Pn)と前記外周側固定子(300)の極対数(Pg)とは等しく、前記内周側固定子の前記電機子巻線1ターン当たりに鎖交する前記界磁磁束の大きさ(Φ0n)と前記外周側固定子の前記電機子巻線1ターン当たりに鎖交する前記界磁磁束の大きさ(Φ0g)との比と、前記外周側固定子の前記電機子巻線の巻回数(Tg)と前記内周側固定子の前記電機子巻線の巻回数(Tn)との比とは、等しく選定される。   A second aspect of the rotating electrical machine according to the present invention is the first aspect, wherein the number of pole pairs (Pn) of the inner peripheral side stator (200) and the number of pole pairs of the outer peripheral side stator (300) ( Pg) is equal to the magnitude (Φ0n) of the field magnetic flux linked per turn of the armature winding of the inner peripheral side stator and per turn of the armature winding of the outer side stator. The field magnetic flux magnitude (Φ0g) interlinked with the outer peripheral stator, the number of turns (Tg) of the armature winding of the outer stator, and the armature winding of the inner stator. The ratio with the winding number (Tn) is selected to be equal.

この発明にかかる圧縮機は、上記回転電機を電動機として採用し、当該電動機によって冷媒を圧縮する。   The compressor according to the present invention employs the rotating electric machine as an electric motor, and compresses the refrigerant by the electric motor.

この発明にかかる送風機は、上記回転電機を電動機として採用し、当該電動機によって送風する。   The blower according to the present invention employs the rotating electric machine as an electric motor and blows air using the electric motor.

この発明にかかる空気調和機は、上記圧縮機及び上記送風機の少なくともいずれか一つを搭載する。   The air conditioner according to the present invention includes at least one of the compressor and the blower.

回転子は、外周側固定子及び内周側固定子のいずれに対しても、同じ機械角速度で移動する。よって内周側固定子の電機子巻線に鎖交する界磁磁束は内周側固定子の極対数に比例して変化し、外周側固定子の電機子巻線に鎖交する界磁磁束は外周側固定子の極対数に比例して変化する。この発明にかかる回転電機の第1の態様によれば、電機子巻線に鎖交する界磁磁束の大きさとその変化する速度が、内周側固定子と外周側固定子とで等しくなるので、いずれの固定子においても無負荷時の誘起電圧を等しくすることができる。   The rotor moves at the same mechanical angular velocity with respect to both the outer peripheral side stator and the inner peripheral side stator. Therefore, the field flux interlinked with the armature winding of the inner side stator changes in proportion to the number of pole pairs of the inner side stator, and the field flux interlinked with the armature winding of the outer side stator. Changes in proportion to the number of pole pairs of the outer stator. According to the first aspect of the rotating electrical machine according to the present invention, the magnitude of the field magnetic flux interlinking with the armature winding and the changing speed thereof are equal between the inner peripheral side stator and the outer peripheral side stator. In any stator, the induced voltage at no load can be made equal.

この発明にかかる回転電機の第2の態様によれば、極対数が同じである二つの固定子において、それぞれの電機子巻線に鎖交する界磁磁束の大きさが等しく設定されるので、それぞれの固定子における無負荷時の誘起電圧を等しくすることができる。   According to the second aspect of the rotating electrical machine according to the present invention, in the two stators having the same number of pole pairs, the magnitudes of the field magnetic fluxes linked to the respective armature windings are set equal. The induced voltage at no load in each stator can be made equal.

この発明にかかる回転電機は、電動機として採用でき、これを圧縮機、送風機へと適用することができる。当該圧縮機、送風機は空気調和機へと適用することができる。   The rotating electrical machine according to the present invention can be employed as an electric motor, and can be applied to a compressor and a blower. The compressor and blower can be applied to an air conditioner.

第1の実施の形態.
図1はこの発明の第1の実施の形態にかかるダブルアマチュア電動機の構造を例示する断面図であり、回転軸Qに垂直な断面を示している。当該電動機は、回転子100、内周側固定子200及び外周側固定子300を備えている。回転子100は、内周側固定子200及び外周側固定子300に対して、回転軸Q回りに回転する。
First embodiment.
FIG. 1 is a cross-sectional view illustrating the structure of a double amateur electric motor according to a first embodiment of the present invention, and shows a cross section perpendicular to a rotation axis Q. The electric motor includes a rotor 100, an inner peripheral side stator 200, and an outer peripheral side stator 300. The rotor 100 rotates about the rotation axis Q with respect to the inner peripheral side stator 200 and the outer peripheral side stator 300.

回転子100は界磁子であり、界磁磁束を発生する界磁用磁石102及び磁性体103を有している。回転子100は外周面101a及び内周面101bとを含む円筒形状を呈している。当該円筒形状の延在方向は回転軸Qに平行であるので、図1においては外周面101a及び内周面101bはいずれも円として現れている。   The rotor 100 is a field element, and has a field magnet 102 and a magnetic body 103 that generate a field magnetic flux. The rotor 100 has a cylindrical shape including an outer peripheral surface 101a and an inner peripheral surface 101b. Since the extending direction of the cylindrical shape is parallel to the rotation axis Q, both the outer peripheral surface 101a and the inner peripheral surface 101b appear as circles in FIG.

界磁用磁石102は外周面101aに対して、周方向に交互に極性を切り替えてその磁極面を向けている。内周面101bに対しても同様である。   The field magnet 102 switches its polarity alternately in the circumferential direction with respect to the outer circumferential surface 101a and directs its magnetic pole surface. The same applies to the inner peripheral surface 101b.

内周側固定子200は内周面101b側から回転子100に対向する電機子である。外周側固定子300は外周面101a側から回転子100に対向する電機子である。内周側固定子200及び外周側固定子300にはそれぞれ電機子巻線201,301が巻回されている。   The inner peripheral side stator 200 is an armature that faces the rotor 100 from the inner peripheral surface 101b side. The outer peripheral side stator 300 is an armature that faces the rotor 100 from the outer peripheral surface 101a side. Armature windings 201 and 301 are wound around the inner periphery side stator 200 and the outer periphery side stator 300, respectively.

より具体的には内周側固定子200は歯部202を有しており、歯部202に電機子巻線201が巻回される。歯部202の回転子100側の先端は周方向に広がっている。同様にして外周側固定子300は歯部302を有しており、歯部302に電機子巻線301が巻回される。歯部302の回転子100側の先端は周方向に広がっている。   More specifically, the inner peripheral side stator 200 has a tooth portion 202, and an armature winding 201 is wound around the tooth portion 202. The tip of the tooth portion 202 on the rotor 100 side extends in the circumferential direction. Similarly, the outer peripheral side stator 300 has a tooth portion 302, and an armature winding 301 is wound around the tooth portion 302. The tip of the tooth portion 302 on the rotor 100 side extends in the circumferential direction.

このようにダブルアマチュア電動機では、電機子巻線が配置される領域である、巻線スロットの全断面積を増大させることにより、モータコンスタントKmを高めることができる。   Thus, in the double amateur motor, the motor constant Km can be increased by increasing the total cross-sectional area of the winding slot, which is the region where the armature winding is disposed.

ここでは回転子100の構造として、磁性体103に対して界磁用磁石102が埋設された、いわゆる永久磁石埋込型が例示されている。よって外周面101a及び内周面101bが磁性体103によって規定されている構造が例示されている。但し、界磁用磁石102から発生する界磁磁束が内周側固定子200及び外周側固定子300に鎖交すれば、界磁用磁石102が外周面101a及び内周面101bのいずれか一方を規定する永久磁石表面型であってもよい。あるいは磁性体103を設けることなく、径方向に磁極が現れるように着磁され、周方向に磁極の極性が交互に切り替わるリング磁石として、界磁用磁石102を構成してもよい。   Here, as the structure of the rotor 100, a so-called permanent magnet embedded type in which a field magnet 102 is embedded in a magnetic body 103 is illustrated. Therefore, a structure in which the outer peripheral surface 101 a and the inner peripheral surface 101 b are defined by the magnetic body 103 is illustrated. However, if the field magnetic flux generated from the field magnet 102 is linked to the inner peripheral side stator 200 and the outer peripheral side stator 300, the field magnet 102 is either one of the outer peripheral surface 101a and the inner peripheral surface 101b. It may be a permanent magnet surface type that defines Alternatively, the field magnet 102 may be configured as a ring magnet that is magnetized so that a magnetic pole appears in the radial direction and the polarity of the magnetic pole is alternately switched in the circumferential direction without providing the magnetic body 103.

また図1では4極6スロットの電動機が例示されたが、他の極数、スロット数でも適用できる。   Further, in FIG. 1, a four-pole six-slot motor is illustrated, but other pole numbers and slot numbers can be applied.

電動機が無負荷であって、回転子100が内周側固定子200、外周側固定子300に対して電気角速度ωen,ωegで回転している際、電機子巻線201,301にそれぞれ誘起される電圧(無負荷誘起電圧)Vn,Vgは、電機子巻線201,301にそれぞれ鎖交する界磁磁束の大きさΦn,Φgを導入して、次のように表される。   When the motor is unloaded and the rotor 100 rotates at the electrical angular velocities ωen and ωeg with respect to the inner peripheral side stator 200 and the outer peripheral side stator 300, they are induced in the armature windings 201 and 301, respectively. The voltages (no-load induced voltages) Vn and Vg are expressed as follows by introducing the field magnetic flux magnitudes Φn and Φg linked to the armature windings 201 and 301, respectively.

Vn=ωen・Φn,Vg=ωeg・Φg…(3)   Vn = ωen · Φn, Vg = ωeg · Φg (3)

回転子100は、内周側固定子200及び外周側固定子300いずれに対しても、同じ機械角速度で移動し、界磁磁束についての極数も同じである。電機子巻線201に鎖交する界磁磁束は内周側固定子200の極対数に比例して変化し、電機子巻線301に鎖交する界磁磁束は外周側固定子300の極対数に比例して変化する。   The rotor 100 moves at the same mechanical angular velocity with respect to both the inner peripheral side stator 200 and the outer peripheral side stator 300, and the number of poles for the field magnetic flux is also the same. The field magnetic flux interlinked with the armature winding 201 changes in proportion to the number of pole pairs of the inner peripheral side stator 200, and the field magnetic flux interlinked with the armature winding 301 is the number of pole pairs of the outer peripheral side stator 300. Changes in proportion to

よって内周側固定子200の極対数Pnと、外周側固定子300の極対数Pgとを導入すると、式(3)は式(4)として表される。   Therefore, when the number of pole pairs Pn of the inner peripheral side stator 200 and the number of pole pairs Pg of the outer peripheral side stator 300 are introduced, Expression (3) is expressed as Expression (4).

Vn∝Pn・Φn,Vg∝Pg・Φg…(4)   Vn∝Pn · Φn, Vg∝Pg · Φg (4)

従って、極対数Pnと極対数Pgとの比が、界磁磁束の大きさΦgと界磁磁束の大きさΦnとの比と等しく設定されれば、電機子巻線201,301に鎖交する界磁磁束の大きさとその変化する速度が等しくなる。そして無負荷誘起電圧Vn,Vgは等しく設定することができる。   Therefore, if the ratio between the number of pole pairs Pn and the number of pole pairs Pg is set equal to the ratio between the field magnetic flux magnitude Φg and the field magnetic flux magnitude Φn, the armature windings 201 and 301 are linked. The magnitude of the field magnetic flux is equal to the changing speed. The no-load induced voltages Vn and Vg can be set equal.

このようにダブルアマチュア電動機において、無負荷誘起電圧が二つの電機子において等しく設定されることは、特に無負荷回転数を最適化する事ができて望ましい。この理由を以下に述べる。   As described above, in the double amateur motor, it is desirable that the no-load induced voltage is set equal in the two armatures, in particular, because the no-load rotation speed can be optimized. The reason for this will be described below.

もし二つの電機子を別々の電源、例えばインバータ電源で駆動する場合であっても、生産コストの低減や製作の簡便さから二つの電源が出力可能な電圧の上限値は相互に等しくなる。もし、一方の電機子における無負荷誘起電圧が他方の電機子のそれよりも大きく発生する場合、一方の電機子の無負荷誘起電圧が電源電圧の上限に達すると、他方の電機子の無負荷誘起電圧が小さいにも拘わらず、それ以上に高速回転させることはできない。しかしながら、二つの電機子における無負荷誘起電圧が等しければ、そのような事態に陥ることがなく、無負荷時の回転数を最大化できる。   Even if the two armatures are driven by different power sources, for example, an inverter power source, the upper limit values of the voltages that can be output by the two power sources are equal to each other due to the reduction in production cost and the ease of production. If the no-load induced voltage in one armature is larger than that in the other armature, when the no-load induced voltage in one armature reaches the upper limit of the power supply voltage, the no-load induced in the other armature Although the induced voltage is small, it cannot be rotated at a higher speed. However, if the no-load induced voltages in the two armatures are equal, such a situation does not occur and the number of revolutions at no load can be maximized.

以上は無負荷時の説明であり、実際に電機子巻線に通電すると、この無負荷誘起電圧に加えて、電機子巻線に通電するための自己インダクタンス分の誘起電圧が重畳されることになる。しかしながら、その割合は無負荷誘起電圧と比較して極く小さいため、上記のやり方で界磁磁束の大きさや極対数を選定する場合にも、実質的には、上記効果を得ることができる。   The above is an explanation when there is no load, and when the armature winding is actually energized, in addition to this no-load induced voltage, an induced voltage for self-inductance for energizing the armature winding is superimposed. Become. However, since the ratio is extremely small compared with the no-load induced voltage, the above effect can be substantially obtained even when the field magnetic flux size and the number of pole pairs are selected in the above manner.

さて、図1で示された構成では、内周側固定子200の極対数Pnと外周側固定子300の極対数Pgとはいずれも3であり、相互に等しい。この場合には、電機子巻線201の1ターン当たりに鎖交する界磁磁束の大きさΦ0nと、電機子巻線301の1ターン当たりに鎖交する界磁磁束の大きさΦ0gとの比を、電機子巻線301の巻回数Tgと電機子巻線201の巻回数Tnとの比に等しく選定すればよい。というのは、次式が成立し、電機子巻線201,301に鎖交する界磁磁束の大きさΦn,Φgが等しくなるからである。   In the configuration shown in FIG. 1, the number of pole pairs Pn of the inner side stator 200 and the number of pole pairs Pg of the outer side stator 300 are both 3, and are equal to each other. In this case, the ratio between the field magnetic flux magnitude Φ0n linked per turn of the armature winding 201 and the field magnetic flux magnitude Φ0g linked per turn of the armature winding 301. May be selected to be equal to the ratio between the number of turns Tg of the armature winding 301 and the number of turns Tn of the armature winding 201. This is because the following equation is established and the magnitudes Φn and Φg of the field magnetic flux linked to the armature windings 201 and 301 are equal.

Φn=Tn・Φ0n,Φg=Tg・Φ0g…(5)   Φn = Tn · Φ0n, Φg = Tg · Φ0g (5)

図2は、この発明の第1の実施の形態にかかるダブルアマチュア電動機の構造を例示する断面図であり、極対数Pn,Pgはそれぞれ3,6となっている。よってこの場合には、式(4)に基づき、界磁磁束の大きさの比Φg/Φnを1/2と選定すればよい。   FIG. 2 is a cross-sectional view illustrating the structure of the double amateur motor according to the first embodiment of the present invention, and the number of pole pairs Pn and Pg are 3 and 6, respectively. Therefore, in this case, the ratio Φg / Φn of the magnitude of the field magnetic flux may be selected as 1/2 based on the equation (4).

但し、巻回数Tn,Tgは正の整数であり、界磁磁束の大きさが厳密に制御しにくい場合には、式(4)、(5)は近似的にしか成立しない場合もあり得る。   However, when the number of turns Tn and Tg is a positive integer and the magnitude of the field magnetic flux is difficult to strictly control, the expressions (4) and (5) may be established only approximately.

図3及び図4は電機子巻線201,301が接続される態様を例示する回路図である。ここで電機子巻線201は三相コイル201U,201V,201Wで、電機子巻線301は三相コイル301U,301V,301Wで、それぞれ構成されている場合が例示されている。   3 and 4 are circuit diagrams illustrating an aspect in which the armature windings 201 and 301 are connected. Here, the case where the armature winding 201 is configured by three-phase coils 201U, 201V, and 201W, and the armature winding 301 is configured by three-phase coils 301U, 301V, and 301W, respectively.

上述のように、電流In,Igを等しく設定する場合には図3に示されるように、コイル201Uはコイル301Uと、コイル201Vはコイル301Vと、コイル201Wはコイル301Wと、それぞれ中性点Nと各相電源との間で直列に接続される。   As described above, when the currents In and Ig are set to be equal, as shown in FIG. 3, the coil 201U has a coil 301U, the coil 201V has a coil 301V, and the coil 201W has a neutral point N. And each phase power supply.

他方、図4に示されるように、コイル201Uはコイル301Uと、コイル201Vはコイル301Vと、コイル201Wはコイル301Wと、それぞれ並列に接続されてもよい。   On the other hand, as shown in FIG. 4, the coil 201U may be connected in parallel to the coil 301U, the coil 201V may be connected to the coil 301V, and the coil 201W may be connected to the coil 301W.

また、電機子巻線201,301の巻回の態様は、集中巻であっても分布巻であってもよい。その巻回の態様が電機子巻線201,301とで相違してもよい。   Further, the winding manner of the armature windings 201 and 301 may be concentrated winding or distributed winding. The winding mode may be different between the armature windings 201 and 301.

本発明にかかる技術は、例えば、当該電動機によって冷媒を圧縮する圧縮機や、当該電動機によって送風を行う送風機に採用される電動機に適用することができる。当該圧縮機や送風機の少なくともいずれか一つは空気調和機に搭載することができる。特に車載用の空気調和機では小型化が要求されるので、これに本発明は大きく貢献する。   The technique according to the present invention can be applied to, for example, a compressor that compresses a refrigerant by the electric motor and an electric motor that is employed in a blower that blows air by the electric motor. At least one of the compressor and the blower can be mounted on the air conditioner. Particularly, in-vehicle air conditioners are required to be downsized, and the present invention greatly contributes to this.

この発明の実施の形態にかかる電動機の構造を例示する断面図である。It is sectional drawing which illustrates the structure of the electric motor concerning embodiment of this invention. この発明の実施の形態にかかる電動機の他の構造を例示する断面図である。It is sectional drawing which illustrates the other structure of the electric motor concerning embodiment of this invention. 電機子巻線が接続される態様を例示する回路図である。It is a circuit diagram which illustrates the aspect in which an armature winding is connected. 電機子巻線が接続される態様を例示する回路図である。It is a circuit diagram which illustrates the aspect in which an armature winding is connected.

符号の説明Explanation of symbols

100 回転子
101a 外周面
101b 内周面
200 内周側固定子
201,301 電機子巻線
300 外周側固定子
DESCRIPTION OF SYMBOLS 100 Rotor 101a Outer peripheral surface 101b Inner peripheral surface 200 Inner peripheral side stator 201, 301 Armature winding 300 Outer peripheral side stator

Claims (5)

外周面(101a)及び内周面(101b)とを含む円筒形状を呈し、界磁磁束を供給する界磁用磁石(102)を有する回転子(100)と、
前記内周面側から前記回転子に対向し、電機子巻線(201)が巻回された内周側固定子(200)と、
前記外周面側から前記回転子に対向し、電機子巻線(301)が巻回された外周側固定子(300)と
を備え、
前記内周側固定子の極対数(Pn)と前記外周側固定子の極対数(Pg)との比と、前記外周側固定子の前記電機子巻線に鎖交する前記界磁磁束の大きさ(Φg)と前記内周側固定子の前記電機子巻線に鎖交する前記界磁磁束の大きさ(Φn)との比とは、等しく選定されることを特徴とする回転電機。
A rotor (100) having a cylindrical shape including an outer peripheral surface (101a) and an inner peripheral surface (101b) and having a field magnet (102) for supplying a field magnetic flux;
An inner circumferential stator (200) around which the armature winding (201) is wound, facing the rotor from the inner circumferential surface side;
An outer peripheral stator (300) around which the armature winding (301) is wound, facing the rotor from the outer peripheral surface side;
The ratio of the number of pole pairs (Pn) of the inner circumference side stator and the number of pole pairs (Pg) of the outer circumference side stator, and the magnitude of the field magnetic flux interlinking with the armature winding of the outer circumference side stator The rotary electric machine is characterized in that the ratio between the thickness (Φg) and the magnitude of the field magnetic flux (Φn) interlinked with the armature winding of the inner peripheral side stator is selected to be equal.
前記内周側固定子(200)の極対数(Pn)と前記外周側固定子(300)の極対数(Pg)とは等しく、
前記内周側固定子の前記電機子巻線1ターン当たりに鎖交する前記界磁磁束の大きさ(Φ0n)と前記外周側固定子の前記電機子巻線1ターン当たりに鎖交する前記界磁磁束の大きさ(Φ0g)との比と、前記外周側固定子の前記電機子巻線の巻回数(Tg)と前記内周側固定子の前記電機子巻線の巻回数(Tn)との比とは、等しく選定される、請求項1記載の回転電機。
The number of pole pairs (Pn) of the inner circumference side stator (200) is equal to the number of pole pairs (Pg) of the outer circumference side stator (300),
The field magnetic flux magnitude (Φ0n) interlinked per turn of the armature winding of the inner peripheral side stator and the field interlinked per turn of the armature winding of the outer peripheral side stator The ratio to the magnitude (Φ0g) of the magnetic flux, the number of turns (Tg) of the armature winding of the outer peripheral side stator, and the number of turns (Tn) of the armature winding of the inner peripheral side stator The rotating electrical machine according to claim 1, wherein the ratio is selected to be equal.
請求項1又は請求項2のいずれか一つに記載の回転電機を電動機として採用し、当該電動機によって冷媒を圧縮する圧縮機。   The compressor which employ | adopts the rotary electric machine as described in any one of Claim 1 or Claim 2 as an electric motor, and compresses a refrigerant | coolant with the said electric motor. 請求項1又は請求項2のいずれか一つに記載の回転電機を電動機として採用し、当該電動機によって送風する送風機。   A blower that employs the rotating electric machine according to claim 1 as an electric motor and blows air using the electric motor. 請求項3記載の圧縮機及び請求項4記載の送風機の少なくともいずれか一つを搭載した空気調和機。
An air conditioner equipped with at least one of the compressor according to claim 3 and the blower according to claim 4.
JP2005360469A 2005-12-14 2005-12-14 Dynamo-electric machine, compressor, blower, and air conditioner Pending JP2007166798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005360469A JP2007166798A (en) 2005-12-14 2005-12-14 Dynamo-electric machine, compressor, blower, and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005360469A JP2007166798A (en) 2005-12-14 2005-12-14 Dynamo-electric machine, compressor, blower, and air conditioner

Publications (1)

Publication Number Publication Date
JP2007166798A true JP2007166798A (en) 2007-06-28

Family

ID=38249070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005360469A Pending JP2007166798A (en) 2005-12-14 2005-12-14 Dynamo-electric machine, compressor, blower, and air conditioner

Country Status (1)

Country Link
JP (1) JP2007166798A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160117616A (en) 2014-03-05 2016-10-10 미쓰비시덴키 가부시키가이샤 Permanent magnet rotating electric machine
WO2019043766A1 (en) * 2017-08-29 2019-03-07 三菱電機株式会社 Motor and air conditioning device
WO2019043767A1 (en) * 2017-08-29 2019-03-07 三菱電機株式会社 Motor and air conditioning device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6264182A (en) * 1985-09-13 1987-03-23 Toshiba Corp Video scrambler
JP2003009486A (en) * 2001-06-26 2003-01-10 Fuji Electric Co Ltd Variable speed motor
JP2005110483A (en) * 2003-09-30 2005-04-21 Lg Electronics Inc Stator for induction motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6264182A (en) * 1985-09-13 1987-03-23 Toshiba Corp Video scrambler
JP2003009486A (en) * 2001-06-26 2003-01-10 Fuji Electric Co Ltd Variable speed motor
JP2005110483A (en) * 2003-09-30 2005-04-21 Lg Electronics Inc Stator for induction motor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160117616A (en) 2014-03-05 2016-10-10 미쓰비시덴키 가부시키가이샤 Permanent magnet rotating electric machine
TWI569559B (en) * 2014-03-05 2017-02-01 三菱電機股份有限公司 Permanent-magnet rotating machine
WO2019043766A1 (en) * 2017-08-29 2019-03-07 三菱電機株式会社 Motor and air conditioning device
WO2019043767A1 (en) * 2017-08-29 2019-03-07 三菱電機株式会社 Motor and air conditioning device
JPWO2019043767A1 (en) * 2017-08-29 2020-03-26 三菱電機株式会社 Motor and air conditioner
JPWO2019043766A1 (en) * 2017-08-29 2020-05-28 三菱電機株式会社 Motor and air conditioner

Similar Documents

Publication Publication Date Title
AU2004247246B2 (en) Radial airgap, transverse flux motor
US9071118B2 (en) Axial motor
US8987967B2 (en) Claw-pole motor with permanent magnet and electrically exciting parts
US20040251761A1 (en) Radial airgap, transverse flux motor
US20080246362A1 (en) Radial airgap, transverse flux machine
JPWO2007123107A1 (en) motor
JP3466591B2 (en) Rotating electric machine
CN112186921A (en) Rotor for asynchronous starting permanent magnet motor and asynchronous starting permanent magnet motor
JP5605164B2 (en) Permanent magnet type synchronous motor and method for operating permanent magnet type synchronous motor
US20050168098A1 (en) Dynamo electric machine
JP5128928B2 (en) Brushless motor
KR20130067218A (en) Motor
JP2017135863A (en) Hybrid field type double gap synchronous machine
JP5538984B2 (en) Permanent magnet motor
US20170005555A1 (en) Asymmetric salient permanent magnet synchronous machine
JP5011719B2 (en) Rotating electric machine and control method thereof, compressor, blower, and air conditioner
JP2010161832A (en) Permanent magnet rotating electrical machine
JP2007166796A (en) Dynamo-electric machine and its control method, and compressor, blower, and air conditioner
US6236133B1 (en) Three-phase brushless motor
JP2007166798A (en) Dynamo-electric machine, compressor, blower, and air conditioner
JP2005057941A (en) Rotary electric machine
JP2006333544A (en) Rotor, motor, compressor, blower, and air conditioner
JP5460807B1 (en) Synchronous motor
JP3797488B2 (en) Multi-pole rotating electric machine
JP7393759B2 (en) motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080805

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A02 Decision of refusal

Effective date: 20111101

Free format text: JAPANESE INTERMEDIATE CODE: A02