WO2019042381A1 - 一种时空混合复用的三维显示系统及方法 - Google Patents

一种时空混合复用的三维显示系统及方法 Download PDF

Info

Publication number
WO2019042381A1
WO2019042381A1 PCT/CN2018/103374 CN2018103374W WO2019042381A1 WO 2019042381 A1 WO2019042381 A1 WO 2019042381A1 CN 2018103374 W CN2018103374 W CN 2018103374W WO 2019042381 A1 WO2019042381 A1 WO 2019042381A1
Authority
WO
WIPO (PCT)
Prior art keywords
display unit
guiding device
array
aperture
clear aperture
Prior art date
Application number
PCT/CN2018/103374
Other languages
English (en)
French (fr)
Inventor
刘立林
滕东东
Original Assignee
中山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中山大学 filed Critical 中山大学
Publication of WO2019042381A1 publication Critical patent/WO2019042381A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof

Definitions

  • the present invention relates to the field of three-dimensional image display technology, and in particular, to a three-dimensional display system for space-time hybrid multiplexing and a method thereof.
  • the mainstream two-dimensional display can not clearly and accurately express the third-dimensional depth information, so people have been working on three-dimensional image display technology that can realize three-dimensional information presentation.
  • the main three-dimensional technology mainly uses the grating to guide the pixels of the display screen to different viewpoints, thereby realizing the presentation of the corresponding views in different positions of the space.
  • the observer can observe the corresponding view in the area corresponding to each viewpoint.
  • this technique only increases the number of views by spatial multiplexing of pixels, and the number of views and angular density that can be rendered is highly limited by the pixel density of the display screen.
  • the patent adopts space-time hybrid multiplexing, and on the basis of pixel spatial multiplexing, by adding time multiplexing, the effective multiplexing degree of the display screen is further improved, and the number and angular density of the presented views can be effectively improved, and the observer is improved. Three-dimensional look and feel.
  • the present invention further improves the multiplexing degree from the time domain by the hybrid multiplexing of time and space. Compared with the traditional technology, the number and angular density of the rendered views can be effectively improved.
  • a space-time hybrid multiplexing three-dimensional display system comprising:
  • each display unit of the display unit array is composed of surface-arranged pixels for displaying optical information
  • a guiding device placed at a position corresponding to the display unit array for imaging each display unit and guiding the images of the respective display units to overlap or intersect in the projection area or the projection space, and naming the overlapping or intersecting images as corresponding The main image of the display unit;
  • the aperture array is disposed in front of the guiding device along the output beam direction of the display unit array, and is composed of at least two sets of clear aperture sub-arrays of the programmable switch array, and the respective apertures of the aperture aperture array are respectively
  • the clear aperture is used to strobe or cut off the light corresponding to the corresponding spatial reference point, which is equivalent to the main image of the display unit, wherein each of the clear aperture corresponding to the reference point is selected to be The light rays corresponding to the reference points of the same clear aperture sub-array corresponding to the reference point are derived from different pixels of the display unit array;
  • control unit coupled to the display unit array and the clear aperture array for controlling timing switches of the respective sets of clear aperture sub-arrays and for partially or all of the clear apertures of the set of clear aperture sub-arrays When turned on, some or all of the pixels of the display unit array are controlled to synchronously load corresponding optical information.
  • control unit is capable of controlling the sequential opening or closing of all or a portion of the clear apertures of each set of clear aperture sub-arrays.
  • a plurality of display units can be imaged and the image spaces thereof can be superimposed or intersected; at the same time, a plurality of corresponding views are respectively emitted through a set of clear apertures; Multiple sets of timing switches with clear apertures project more dense views, thereby increasing the number of views presented by the system, reducing the angular separation between views, and improving the rendering of three-dimensional information.
  • the method further includes a guiding device gating unit, wherein the guiding device gating unit comprises a P group of optical switches capable of being sequentially switched, and the groups of the optical fibers arranged in the phase can be sequentially turned on, and the respective pupils respectively correspond to the different displays.
  • the guiding device gating unit comprises a P group of optical switches capable of being sequentially switched, and the groups of the optical fibers arranged in the phase can be sequentially turned on, and the respective pupils respectively correspond to the different displays.
  • a unit and only allows optical information equivalent to the main image of the corresponding display unit to pass through when opened; or the guiding device gating unit is composed of at least two sets of optical elements having an exclusive function, each group of light pupils being arranged, each The apertures respectively correspond to different display units, allowing optical information equivalent to the corresponding main unit to pass through, but not allowing other groups of apertures to pass through the corresponding display unit, where P ⁇ 2.
  • the guiding device gating unit can be directly controlled by the human control, or can be connected to the control unit and controlled by the control unit, thereby controlling all or a part of the apertures of the guiding device gating unit to be turned on or off in sequence. shut down.
  • the space-time hybrid multiplexed three-dimensional display system further includes an array of light barriers disposed between the display unit array and the guiding device for constraining the output beams of the display units respectively through the corresponding apertures Exit.
  • the space-time hybrid multiplexed three-dimensional display system further comprises a tracking unit for tracking and determining the observer's dual-purpose spatial position.
  • the space-time hybrid multiplexed three-dimensional display system further includes an adjustment unit for adjusting a relative position between each display unit and the guiding device in the display unit array, or for changing the guiding
  • the optical properties of the device cause the display units of the display unit array to be translated by the guiding device to form a main image relative to the guiding device.
  • the adjustment unit can be arranged to be able to adjust the spatial attitude of the light barrier as needed.
  • the space-time hybrid multiplexed three-dimensional display system further includes a diffusion sheet that scatters incident light in a one-dimensional direction.
  • the guiding device comprises a lenslet array and a large-sized concave lens
  • the guiding device comprises a lenslet array and a large-sized concave lens, wherein each lenslet of the lenslet array and the display unit of the display cell array are in one-to-one correspondence,
  • Each display unit is on a focal plane of the corresponding lenslet, wherein the large-sized concave lens aperture covers at least a portion of the lenslets in the lenslet array
  • the guiding device can be named an I-type guiding device.
  • the guiding device comprises a lenslet array and a large-sized convex lens, wherein each lenslet of the lenslet array and the display unit of the display cell array are in one-to-one correspondence, and each display unit is located on a focal plane of the corresponding lenslet, wherein
  • the large-sized convex lens aperture covers at least a portion of the lenslets in the lenslet array, and the guiding device may be named a type II guiding device.
  • the guiding device comprises a lenslet array, wherein each lenslet of the lenslet array and the display unit of the display cell array are in one-to-one correspondence, and each display unit is a virtual image via a corresponding lenslet, and the guiding device can be named III. Type guiding device.
  • the guiding device comprises a lenslet array, wherein each lenslet of the lenslet array and the display unit of the display cell array are in one-to-one correspondence, and each display unit is formed into a real image via a corresponding lenslet, and the guiding device can be named as IV. Type guiding device.
  • the guiding device further comprises a plurality of offset elements capable of folding or translating the image formed by the lenslets such that the images formed by the lenslets can overlap or intersect the projection area or the projection space.
  • the lenslets are replaced with equivalent optical elements or optical components, and/or the large-sized concave lenses are replaced with equivalent optical elements or optical components; or the lenslet arrays are equivalent optical elements or The optical component is replaced, and/or the large-sized convex lens is replaced with an equivalent optical component or optical component.
  • the lenslets are replaced with equivalent optical elements or optical components, or the lenslet arrays are replaced with equivalent optical elements or optical components.
  • the optical element may be a diffractive optical element having a phase modulation function
  • the optical component may be a diffractive optical component having a phase modulation function.
  • the space-time hybrid multiplexed three-dimensional display system further comprises an auxiliary steering device disposed between the display unit array and the guiding device for equivalently placing each display unit on a focal plane of the corresponding lenslet Or placed parallel to the corresponding lenslet.
  • the auxiliary steering device may be an auxiliary steering unit array, the function of which is to allow the display unit array display units and the corresponding lenslets to be placed non-parallel, the auxiliary steering unit array being disposed between the display unit array and the guiding device
  • the auxiliary steering unit and the display unit in the display unit array are in one-to-one correspondence, and the auxiliary steering unit is correspondingly placed on the focal plane of the corresponding lenslet or parallel to the corresponding lenslet.
  • an auxiliary synthesizing device is further disposed between the display unit array and the guiding device, and when each display unit of the display unit array is composed of at least two discrete pixel screens, The exiting beams of the at least two discrete pixel panels of the display unit are combined such that they are incident on the guiding device.
  • the auxiliary synthesizing device may be an auxiliary synthesizing unit array, wherein each auxiliary synthesizing unit and the display unit in the display unit array have a one-to-one correspondence, and when the display unit is composed of at least a discrete pixel screen, the at least The two separate pixel panel exit beams are incident on the corresponding lenslets via the corresponding synthesizing unit.
  • Another object of the present invention is to provide a three-dimensional display method of space-time hybrid multiplexing as follows.
  • the first time-space hybrid multiplexing three-dimensional display method which uses a space-time hybrid multiplexing three-dimensional display system according to any one of the above aspects, comprising the following steps:
  • S1 divides the clear aperture array into N sets of clear aperture sub-arrays, and for each clear aperture, through ray tracing, determine the corresponding spatial reference point, and the equivalent light from the main image of the display unit is displayed on the display unit
  • the source pixel on the array and its image on the main image of the display unit that is, the pixel corresponding to each spatial reference point and its image, where N ⁇ 1;
  • S3 pairs the pixels corresponding to the spatial reference point opened in the step s2 corresponding to the spatial reference point, and correspondingly the spatial reference point as the viewpoint, and synchronously loads the projection information of the target object on the image thereof;
  • S4 performs s2 to s3 steps correspondingly for at least part of the time points of the adjacent N time points, respectively, at each time point of the at least part of the time points.
  • the first time-space hybrid multiplexing three-dimensional display method further includes the step s5: repeating the step s4.
  • the three-dimensional display system includes a tracking unit for tracking and determining the spatial position of the observer's dual purpose;
  • An adjusting unit configured to adjust a relative position between each display unit and the guiding device in the display unit array, or to change an optical property of the guiding device, so that each display unit of the display unit array passes through The main image of the guiding device is translated relative to the guiding device;
  • the three-dimensional display method of the space-time hybrid multiplexing further includes the step s6: adjusting the relative position between each display unit and the guiding device in the display unit array by the adjusting unit according to the position of the observer's binocular, or changing the guiding
  • the optical properties of the device are such that the display unit of the display unit array is translated by the guiding device into a main image relative to the guiding device to ensure that the observer's binocular position can receive the light emitted by the system, and Steps s1 to s5 are re-executed for a new positional relationship between the display unit and the guiding device.
  • the present invention provides a second time-space hybrid multiplexing three-dimensional display method, which uses a space-time hybrid multiplexing three-dimensional display system according to any of the above aspects, wherein the three-dimensional display system includes a guiding device gating unit
  • the guiding device gating unit comprises a P group of optical switches capable of timing switches, and the groups of optical fibers arranged in phase can be sequentially opened, each of the apertures respectively corresponding to the different display units, and only the corresponding display unit is allowed to be open only when opened.
  • the light-emitting information of the equivalent emission is passed; or the guiding device gating unit is composed of at least two sets of optical signals having an exclusive function, and each set of pupils is arranged in phase, and each of the apertures respectively corresponds to the different display unit, allowing corresponding The light information corresponding to the main image of the display unit passes, but the other group of light stops are not allowed to pass the light output information corresponding to the display unit, wherein P ⁇ 2; the following steps are included:
  • Ss1 divides the clear aperture array into N sets of clear aperture sub-arrays, and for each clear aperture, through ray tracing, determines the corresponding spatial reference point, and the equivalent light from the main image of the display unit is displayed on the display unit
  • the source pixel on the array and its image on the main image of the display unit that is, the pixel corresponding to each spatial reference point and its image, where N ⁇ 1;
  • Ss3 pairs the pixels corresponding to the spatial reference points of the respective apertures opened in step ss2, and uses the corresponding spatial reference point as the viewpoint to synchronously load the projection information of the target object on the image, wherein at least the open aperture Corresponding pixel loading information of each display unit;
  • the P group of ss4 has only one set of P states in the strobe and the N sets of clear aperture subarrays have only N states of at least part of the clear aperture strobe of the set of clear aperture subarrays And combining to form PN states respectively corresponding to PN adjacent time points, wherein at least part of the time points of the PN adjacent time points are respectively correspondingly executed at each time point of the at least part of the time points Ss2 ⁇ ss3 steps.
  • the second time space-time hybrid multiplexing three-dimensional display method further includes the step ss5: repeating the step ss4.
  • the three-dimensional display system includes a tracking unit for tracking and determining the spatial position of the observer's dual purpose;
  • An adjusting unit configured to adjust a relative position between each display unit and the guiding device in the display unit array, or to change an optical property of the guiding device, so that each display unit of the display unit array passes through The main image of the guiding device is translated relative to the guiding device;
  • the three-dimensional display method of the space-time hybrid multiplexing further includes the step ss6: adjusting the relative position between each display unit and the guiding device in the display unit array by the adjusting unit according to the position of the observer's binocular, or changing the The optical properties of the guiding device are such that the display unit of the display unit array is translated by the guiding device into a main image relative to the guiding device to ensure that the observer with the position change can receive the light information of the system.
  • the steps ss1 to ss5 are re-executed for a new positional relationship between the display unit and the guiding device.
  • the third time-space hybrid multiplexing three-dimensional display method which uses a space-time hybrid multiplexing three-dimensional display system according to any one of the above aspects, comprising the following steps:
  • Sss1 divides the clear aperture array into M groups of clear aperture sub-arrays in a one-dimensional row direction; wherein M ⁇ 1;
  • Sss2 for each of the clear apertures, through ray tracing, determines the corresponding spatial reference point, the source pixel equivalent to the light source from the main image of the display unit on the display unit array and its image on the main image of the display unit, That is, the pixels corresponding to the spatial reference points and their images;
  • Sss4 takes a line of clear aperture as the reference clear aperture row, and each of the apertures opened in the reference aperture aperture row corresponds to the pixel corresponding to the spatial reference point, and the corresponding reference point of the space is taken as the viewpoint, and the target object is synchronously loaded on the image.
  • the pixels corresponding to the spatial reference points of the respective apertures are opened, and the projection information corresponding to the pixel corresponding to the spatial reference point corresponding to the same aperture aperture in the reference aperture aperture row is synchronously loaded;
  • Sss5 performs sss3 ⁇ sss4 steps correspondingly for at least part of the time points of the adjacent M time points, respectively, at each time point of the at least part of the time points.
  • the third time-space hybrid multiplexing three-dimensional display method further includes the step sss6: repeating the step sss5.
  • the three-dimensional display system includes a tracking unit for tracking and determining a spatial position of the observer's dual purpose;
  • An adjusting unit configured to adjust a relative position between each display unit and the guiding device in the display unit array, or to change an optical property of the guiding device, so that each display unit of the display unit array passes through The main image of the guiding device is translated relative to the guiding device;
  • the three-dimensional display method of the space-time hybrid multiplexing further includes the step sss6: adjusting the relative position between each display unit and the guiding device in the display unit array by the adjusting unit according to the position of the observer's binocular, or changing the position
  • the optical properties of the guiding device are such that the display units of the display unit array are translated by the guiding device with respect to the guiding device to ensure that the position of the observer changes to receive the light information of the system. And re-execute steps sss1 to sss5 for a new positional relationship between the display unit and the guiding device.
  • the present invention provides a fourth time-space hybrid multiplexing three-dimensional display method, which uses a space-time hybrid multiplexing three-dimensional display system according to any one of the above aspects, wherein the space-time hybrid multiplexing three-dimensional display system comprises a guiding device gating unit, the guiding device gating unit comprises a P group of optical switches capable of timing switches, the groups of optical fibers arranged in phase can be sequentially opened, each of the apertures respectively corresponding to the different display units, and only when opened The light information corresponding to the main image of the corresponding display unit is allowed to pass; or the guiding device gating unit is composed of at least two groups of optical signals having an exclusive function, and the groups of the pupils are arranged in phase, and the respective pupils respectively correspond to different ones.
  • the display unit allows the light information corresponding to the main image of the corresponding display unit to pass, but does not allow the other group of light to pass the corresponding information of the display unit, wherein P ⁇ 2 includes the following steps:
  • Ssss1 divides the clear aperture array into a group of clear aperture sub-arrays in a one-dimensional row direction; wherein M ⁇ 1;
  • Ssss2 determines the source pixel of the corresponding spatial reference point, the equivalent light source from the main image of the display unit on the display unit array and the image on the main image of the display unit through the ray tracing. That is, the pixels corresponding to the spatial reference points and their images;
  • Ssss3 selects one of the adjacent PN time points, at least part of the apertures of one of the groups of pupils of the P group of apertures, and a set of clear aperture subarrays of the N sets of clear aperture subarrays At least part of the clear aperture is opened, and the clear apertures in the other clear aperture sub-arrays are closed;
  • Ssss4 takes a line of clear aperture as the reference clear aperture row, and the reference aperture aperture row opens the pixel corresponding to the spatial reference point of each aperture aperture, and takes the corresponding reference point of the space as the viewpoint, and synchronously loads the target object on its image.
  • Projection information at the same time, for the pixels corresponding to the spatial reference points corresponding to the open apertures in the other rows, the projection information corresponding to the pixel corresponding to the spatial reference point corresponding to the same column of the aperture apertures in the reference aperture aperture row is synchronously loaded, at least Pixel loading information of each display unit corresponding to the opened pupil;
  • the P group of ssss5 has only one set of P states in the strobe and the N sets of clear aperture subarrays have only one set of N states in the strobe, and are combined to form PN states, respectively corresponding to PN And an adjacent time point, wherein, for each of the PN adjacent time points, the ssss3 to ssss4 steps are correspondingly performed at each time point of the at least part of the time points.
  • the fourth time-space hybrid multiplexing three-dimensional display method further includes the step sssss6: repeating the step ssss5.
  • the three-dimensional display system includes a tracking unit for tracking and determining the spatial position of the observer's dual purpose;
  • An adjusting unit configured to adjust a relative position between each display unit and the guiding device in the display unit array, or to change an optical property of the guiding device, so that each display unit of the display unit array passes through The main image of the guiding device is translated relative to the guiding device;
  • the three-dimensional display method of the space-time hybrid multiplexing further includes the step ssss7: adjusting the relative position between each display unit and the guiding device in the display unit array by the adjusting unit according to the position of the observer binocular, or changing the position
  • the optical properties of the guiding device are such that the display units of the display unit array are translated by the guiding device with respect to the guiding device to ensure that the position of the observer changes to receive the light information of the system.
  • the fifth spatial-time hybrid multiplexing three-dimensional display method which uses a space-time hybrid multiplexing three-dimensional display system according to any one of the above aspects, comprising the following steps:
  • Sssss1 divides the clear aperture array into M groups of clear aperture sub-arrays in a one-dimensional row direction, and all the line aperture apertures are arranged in a row direction corresponding to the spatial reference points; wherein M ⁇ 1;
  • Sssss2 determines the source pixel of the corresponding spatial reference point, the equivalent source light from the main unit of the display unit on the display unit array and the image on the main image of the display unit by ray tracing. That is, the pixels corresponding to the spatial reference points and their images;
  • Sssss4 takes a line of light-passing apertures as reference light-passing aperture lines, and each of the open light-aperture apertures corresponds to a pixel corresponding to the spatial reference point, and the corresponding reference point of the spatial reference point is used to synchronously load the projection information of the target object on the image thereof;
  • Each of the apertures opened in the other row corresponds to the pixel corresponding to the spatial reference point, and the virtual reference point of the translation is taken as the viewpoint under the premise of the virtual translation of the corresponding spatial reference point to the reference clear aperture row, and the synchronization is performed.
  • the fifth time-space hybrid multiplexing three-dimensional display method further includes the step sssss6: repeating the step sssss5.
  • the three-dimensional display system includes a tracking unit for tracking and determining a spatial position of the observer's dual purpose;
  • An adjusting unit configured to adjust a relative position between each display unit and the guiding device in the display unit array, or to change an optical property of the guiding device, so that each display unit of the display unit array passes through The main image of the guiding device is translated relative to the guiding device;
  • the three-dimensional display method of the space-time hybrid multiplexing further includes the step of sssss7: adjusting the relative position between each display unit and the guiding device in the display unit array by the adjusting unit according to the position of the observer's binocular, or changing the position
  • the optical properties of the guiding device are such that the display units of the display unit array are translated by the guiding device with respect to the guiding device to ensure that the position of the observer changes to receive the light information of the system. And re-execute the steps ssss1 ⁇ ssss6 for the new positional relationship between the display unit and the guiding device.
  • the sixth time-space hybrid multiplexing three-dimensional display method which uses a space-time hybrid multiplexing three-dimensional display system according to any one of the above aspects, wherein the space-time hybrid multiplexing three-dimensional display system comprises a guiding device gating unit, the guiding device gating unit comprises a P group of optical switches capable of timing switches, the groups of optical fibers arranged in phase can be sequentially opened, each of the apertures respectively corresponding to the different display units, and only when opened
  • the light information corresponding to the main image of the corresponding display unit is allowed to pass; or the guiding device gating unit is composed of at least two groups of optical signals having an exclusive function, and the groups of the pupils are arranged in phase, and the respective pupils respectively correspond to different ones.
  • the display unit allows the light information corresponding to the main image of the corresponding display unit to pass, but does not allow the other group of light to pass the corresponding information of the display unit, wherein P ⁇ 2 includes the following steps:
  • Ssssss1 divides the clear aperture array into M groups of clear aperture sub-arrays along the one-dimensional row direction, and all the line aperture apertures are arranged in a row direction corresponding to the spatial reference points; wherein M ⁇ 1;
  • Ssssss2 determines the source pixel of the corresponding spatial reference point, the equivalent light source from the main image of the display unit on the display unit array and the image on the main image of the display unit by ray tracing. That is, the pixels corresponding to the spatial reference points and their images;
  • Ssssss3 selects one of the adjacent PN time points, at least part of the apertures of one of the groups of pupils of the P group of apertures, and a set of clear aperture sub-arrays of the group of N aperture aperture subarrays At least part of the clear aperture is opened, and the clear apertures of the other groups of clear aperture sub-arrays are closed;
  • Ssssss4 takes a line of clear aperture as the reference clear aperture row, and the reference aperture aperture row opens the pixel corresponding to the spatial reference point of each clear aperture, and takes the corresponding reference point as the viewpoint, and synchronously loads the target object on its image.
  • Projection information at the same time, for the pixels corresponding to the spatial reference points corresponding to the open apertures in the other rows, under the premise of the virtual translation corresponding space reference point to the reference clear aperture row, corresponding to the translated virtual space
  • the reference point is a viewpoint, and the projection information of the target object on the image is synchronously loaded, wherein at least the pixels of each display unit corresponding to the opened group of apertures are loaded with optical information;
  • the P group of pupils respectively have only one set of P states in the strobe and the N sets of clear aperture subarrays respectively have only one set of N states in the strobe, and are combined to form PN states, respectively corresponding to PN adjacent time points, wherein for each of the PN adjacent time points, the ssssss3 ⁇ sssss4 steps are correspondingly performed at each time point of the at least part of the time points.
  • the sixth time-space hybrid multiplexing three-dimensional display method further includes the step ssssss6: repeating the step ssssss5.
  • the three-dimensional display system includes a tracking unit for tracking and determining a spatial position of the observer's dual purpose;
  • An adjusting unit configured to adjust a relative position between each display unit and the guiding device in the display unit array, or to change an optical property of the guiding device, so that each display unit of the display unit array passes through The main image of the guiding device is translated relative to the guiding device;
  • the three-dimensional display method of the space-time hybrid multiplexing further includes the step of ssssss7: adjusting the relative position between each display unit and the guiding device in the display unit array by the adjusting unit according to the position of the observer's binocular, or changing the position
  • the optical properties of the guiding device are such that the display units of the display unit array are translated by the guiding device with respect to the guiding device to ensure that the position of the observer changes to receive the light information of the system. And re-execute the steps ssssss1 ⁇ sssss6 for the new positional relationship between the display unit and the guiding device.
  • the invention has the beneficial effects that the present invention can effectively improve the number of rendered views by adding space-time hybrid multiplexing, and by adding time multiplexing to further improve the effective multiplexing degree of the display screen.
  • the angular density enhances the observer's three-dimensional look and feel.
  • FIG. 1 is a light path diagram of a three-dimensional display system for displaying by using an I-type guiding device according to the present invention.
  • FIG. 2 is a schematic diagram showing the principle of setting a single selection area when displaying by using an I-type guiding device according to the present invention.
  • FIG. 3 is a schematic view showing the distribution of the viewing zone when the I-type guiding device is used for display according to the present invention.
  • FIG. 4 is a schematic view showing the distribution of the resectable area when the position of the binocular space of the observer is relatively fixed according to the present invention.
  • Figure 5 is a block diagram of the auxiliary steering device of the present invention.
  • Figure 6 is a block diagram showing the structure of the auxiliary synthesizing device of the present invention.
  • FIG. 7 is a schematic diagram of a pixel discrete screen based on orthogonal polarization states.
  • Figure 8 is a schematic diagram of a pixel discrete screen based on the direction of beam propagation.
  • Figure 9 is a diagram showing the optical path of a system using a type I guiding device for display with a timing characteristic guiding device gating unit.
  • FIG. 10 is a schematic diagram showing the operation principle of the timing characteristic guiding device gating unit strobing the different lens apertures of the I-type guiding device.
  • Figure 11 shows the occlusion effect of the guiding device gating unit on the non-main image near the display surface.
  • FIG. 12 is a light path diagram of a three-dimensional display system for displaying by using a type II guiding device according to the present invention.
  • FIG. 13 is a light path diagram of a three-dimensional display system for displaying a planar type III guiding device according to the present invention.
  • FIG. 14 is a schematic view showing the formation of a single-selection region when displaying by using a type III guiding device according to the present invention.
  • Fig. 15 is a view showing the optical path of a three-dimensional display system for displaying a planar type IV guiding device according to the present invention.
  • Fig. 16 is a view showing the optical path of a three-dimensional display system for displaying a type III guiding device using a curved structure according to the present invention.
  • 17 is a light path diagram of a three-dimensional display system for displaying a curved guide structure of the IV type guide device according to the present invention.
  • FIG. 18 is a schematic view showing the structure of a small lens/small prism group which realizes the effect of a curved surface structure by a planar arrangement structure according to the present invention.
  • Control unit 60 Tracking unit
  • Adjustment unit 80 Auxiliary steering device
  • auxiliary synthesis device 100 guiding device gating unit
  • An I-type guiding device 20 composed of a small lens array (21, 21', etc.) and a large-sized concave lens 22, as shown in Fig. 1, each display unit (11, 11', etc.) of the display unit array 10 and an I-type guiding device Each of the small lenses (21, 21', etc.) of 20 corresponds one-to-one.
  • the display unit is located on the focal plane of the corresponding lenslet (focal length f 1 ), and each display unit and each lenslet are placed in the same relative spatial positional relationship.
  • Each display unit can also be a different pixel portion of a single display screen.
  • Each display unit is named as its main image by the corresponding small lens and the large-sized concave lens 22, and the main image of each display unit coincides with the projection area on the focal plane of the large-sized concave lens 22 (focal length f 2 ), that is, in FIG. P x1 P x2 area on the image plane. If the aperture of the large-sized concave lens 22 cannot collect all the light emitted by the display chip through the corresponding lenslet, that is, the aperture of the large-sized concave lens 22 cannot completely cover all the small lenses, and the output beam on the display chip passes through the pixel corresponding to the small lens and not incident on the concave lens. Invalid pixels in the following process.
  • a light barrier array 30 is placed between the display cell array 10 and the I-type guiding device 20, as shown in FIG. Through the occlusion of the light blocking plates (31, 31', etc.) of the light barrier array 30, each display unit can only emit light information through the apertures of the respective corresponding lenslets.
  • the clear aperture array 40 is placed in front of the I-type guiding device, and is composed of a plurality of clear apertures, each of which corresponds to a spatial reference point, and the switch can be gated or Light rays corresponding to the spatial reference point of the corresponding display unit array 10 are displayed.
  • the clear aperture array 40 is further divided into two or more sets of clear aperture sub-arrays. Taking FIG.
  • the three sets of clear aperture sub-arrays respectively correspond to spatial reference points VP x11 , VP x12 , VP x13 , VP x14 , VP x15 , VP x16 , VP x17 , VP x18 , VP x19 , spatial reference point VP x21 , VP x22 , VP x23 , VP x24 , VP x25 , VP x26 , VP x27 , VP x28 , and spatial reference point VP x31 , VP x32, VP x33, VP x34, VP x35, VP x36, VP x37, VP x38.
  • These spatial reference points have the characteristic that the light passing through the same set of clear aperture sub-arrays corresponding to different spatial reference points, equivalent to the main image of the display unit, originates from different pixels on the display unit array 10.
  • the same group of clear aperture sub-arrays correspond to spatial reference points
  • adjacent spatial reference points such as VP x11 and VP x12
  • the cover size of the large-sized concave lens 22 of 20 is equal to or larger than the adjacent small lens pitch
  • the light passing through the set of spatial reference points and equivalently derived from the main image of the display unit will be derived from different pixels on the display unit array 10. .
  • each spatial reference point is placed on a plane.
  • each spatial reference point may be non- Coplanar, this also applies to the other embodiments described below.
  • each spatial reference point is placed on the corresponding clear aperture surface, and in the following example, for a clear and simple illustration effect, the spatial reference point is placed on the corresponding clear aperture surface.
  • each spatial reference point is also It may not be on the corresponding clear aperture surface, and even the apertures themselves are non-planar, and each of the apertures may be a plurality of shape structures, or even a combination of two or more arbitrary shape holes, which is also applicable to the following Other embodiments.
  • the same set of clear aperture sub-arrays shown in FIG. 1 are arranged in a manner of approximately uniform angular spacing corresponding to spatial reference points, and this arrangement is advantageous for obtaining a better three-dimensional display effect.
  • this uniform or nearly uniform distribution is not mandatory.
  • the light emitted from the same display unit and incident on the large-sized concave lens 22 via the corresponding lenslet, the reverse extension line after the large-sized concave lens 22 is respectively concentrated on the two parallel rays of the display unit image on the image plane, in the large size
  • the concave lens 22 collectively covers an area, as shown in FIG. region.
  • each display unit corresponds to a single selection area.
  • the spatial reference points corresponding to the same clear aperture sub-array are respectively located in different single-selection regions, the light passing through the set of clear aperture sub-arrays corresponding to different spatial reference points and equivalent to the main image of the display unit will be respectively from the display unit.
  • the different display units of the array 10 also satisfy the requirement that the same set of clear aperture sub-arrays correspond to different spatial reference points, and the light originating from the main image of the display unit originates from different pixels on the display unit array 10.
  • the N ( ⁇ 1) group of light-passing aperture sub-arrays and their corresponding spatial reference points are determined.
  • the source pixels of the corresponding spatial reference points, the equivalent light rays originating from the main image of the display unit on the display unit array 10, and the source pixels are determined by the I-type guiding device 20 by reverse tracking of the light.
  • the image formed on the projection area that is, the pixel corresponding to each spatial reference point and its image.
  • a set of clear aperture sub-arrays is opened, and other clear apertures are closed; each open aperture aperture corresponds to each pixel corresponding to the spatial reference point, and the spatial reference point is taken as the viewpoint, and the control unit 50 synchronously loads the target.
  • the spatial reference point distribution is sufficiently dense, based on the visual retention, along the beam transmission direction, in a region in front of the spatial reference point, ie in the viewing zone shown in FIG. Three-dimensional information of the target object can be observed. The same direction along the column.
  • a part of the clear apertures of the set of light-passing aperture sub-arrays may be opened.
  • the corresponding apertures of the spatial aperture reference holes are not opened in the set of clear aperture sub-arrays. There is no need to load information at this point in time.
  • the aperture aperture array in the column direction is composed of only one set of clear aperture sub-arrays, that is, when one column corresponds to one aperture aperture to one display unit, or all of the aperture aperture sub-arrays are divided along the row direction.
  • there is another information loading method taking a line of clear aperture as a reference clear aperture row, and when each aperture aperture is opened, corresponding to the pixel corresponding to the spatial reference point, taking the spatial reference point as a viewpoint, by control
  • the unit 50 synchronously loads the projection information of the target object on the image; but when the apertures of the other non-reference aperture aperture rows are opened, the pixels corresponding to the spatial reference points are synchronously loaded with the same column in the reference aperture aperture row.
  • the corresponding spatial reference point corresponds to the optical information loaded by the pixel.
  • the 3D disparity information is no longer displayed in the column direction, and only the 3D information is presented in the row direction.
  • a part of the clear apertures of the set of light-passing aperture sub-arrays may be opened.
  • the corresponding apertures of the spatial aperture reference holes are not opened in the set of clear aperture sub-arrays. There is no need to load information at this point in time.
  • Tracking unit 60 is enabled to determine the binocular position of the viewer. According to the observer's binocular position, the control system can display only the information needed in the small space at the binocular, and reduce the amount of information calculation. When the observer's binocular position is relatively fixed to the spatial position of the system, the related device that does not contribute to or contribute to the incident observer's dual-purpose light will have an unnecessary effect on the three-dimensional display effect, and may be removed as shown in the figure.
  • the display unit, the lenslet, and even the portion of the large-sized concave lens 22 in the resectable region are shown in 4.
  • the observer binocular specific position obtained by the tracking unit adjusts each display unit in the display unit array 10 and the above I through the adjusting unit 70 shown in FIG.
  • the relative positions between the type of guiding devices 20 cause the images formed by the display units of the display unit array 10 to be translated by the I-type guiding device 20 relative to the I-shaped guiding device 20, and also the relative movement of the viewing zone relative to the guiding device 20, So that the binoculars are always in the viewing zone of the display system.
  • the position adjustment of the display unit relative to the I-type guiding device 20 can be realized by moving the display unit array 10, or by moving the I-type guiding device 20, even when each display unit is a different part of the pixel of the whole display screen, even This can be achieved by re-dividing the display unit pixels corresponding to the respective lenslets.
  • the spatial attitude of the light barrier array 30 also changes.
  • the movement of the viewing zone can also be achieved by changing the optical properties of the above-described I-type guiding device 20. For example, when the lenslet in the I-type guiding device 20 is an optically-centered variable lens, the lenslets are changed according to the eyes of the observer. The optical center can also cause the image and the viewing zone of each display unit to be translated relative to the I-type guiding device 20.
  • the tracking unit 60 and the adjustment unit 70 are equally applicable to other embodiments of the present invention.
  • each display unit and the corresponding lenslet are placed in parallel to ensure that the display unit is in the focal plane of the corresponding lenslet.
  • the display units are also placed in parallel with the I-type guiding device 20 or the corresponding lenslets included therein to ensure that the display unit is in the focal plane of the corresponding lenslet or correspondingly small.
  • the lens is ideal for imaging.
  • the auxiliary steering device 8 comprises one or more steering units, in which the steering units of the invention can be equivalent to a display unit in which the relatively small lens or I-guide device 20 is placed non-parallel Place them in parallel, as shown in Figure 5.
  • the auxiliary steering device 80 of the special example herein is an array of right-angle reflecting devices, and only one unit thereof is shown in FIG. 5, and a more complicated structure, such as a curved deflecting device, a holographic device, etc., under the premise of realizing the steering function, It can be used as the auxiliary steering device 80 or its unit.
  • the auxiliary steering device 80 is equally applicable to other embodiments of the present invention.
  • the auxiliary synthesizing device 90 can cause the two or more discrete pixel screens to emit light beams through the corresponding synthesizing unit.
  • the incident lens or the I-type guiding device 20 is incident.
  • the auxiliary synthesizing device of the special example herein is a spectroscopic reflective prism array, and FIG. 6 specifically uses a pair of display unit/splitting reflection prism pairs in the array. The principle of operation of the auxiliary synthesis device is explained.
  • the different discrete screens corresponding to the display unit are equivalent to being incident on the I-type guiding device 20 in a manner parallel to the lenslets, and then imaged.
  • Different display units have two cases of imaging: imaging at different depths and imaging at the same depth.
  • the system will form a plurality of image planes on two or more different depth planes, and each image plane is responsible for displaying three-dimensional information of the area near the image plane, thereby increasing the display depth of the system.
  • the apertures of the lenslets corresponding to the discrete pixel screens of the display unit can be equivalently viewed as different display surfaces that can be loaded with different optical information at the same depth.
  • each of the clear aperture sub-arrays is further divided into q sub-sub-arrays, the clear apertures belonging to each sub-subarray have the same characteristics, and the clear apertures of different sub-subarrays of the same clear aperture sub-array.
  • the corresponding units in the auxiliary synthesizing device have two orthogonal polarization states of horizontal "-" and vertical ".” directions, respectively.
  • the light apertures A 1 and A 3 are open to allow only horizontally polarized light to pass, while A 2 and A 4 are open to allow only vertically polarized light to pass.
  • Two of the four clear apertures belong to the same set of clear aperture sub-arrays, for example, A 1 and A 2 together belong to a set of clear aperture sub-arrays, but at the same time different characteristics of A 1 and A 2 belong to Two different sub-subarrays of the sub-array; likewise, A 3 and A 4 belong to another set of clear aperture sub-arrays, but at the same time different characteristics of A 3 and A 4 belong to two different sub-childs of the sub-array Array.
  • a 1 and A 2 of the same clear aperture sub-array are opened, and each spatial reference point corresponding to the sub-sub-array of A 1 is located on the corresponding pixel on the discrete screen 1 , and the spatial reference point is taken as the viewpoint,
  • the control unit 50 synchronously loads the projection information of the target object on the image thereof; the corresponding pixel of the spatial reference point corresponding to the sub-sub-array of A 2 is located on the discrete screen 2, and the spatial reference point is taken as the viewpoint, and is synchronously loaded by the control unit 50.
  • Other display units perform the above process simultaneously in the same manner. In the example shown in FIG.
  • the pixel discrete screen 1 and the pixel discrete screen 2 may have orthogonal polarization states of their own outgoing light, or may have orthogonal polarization states after corresponding units in the auxiliary synthesis device, such as auxiliary synthesis.
  • the unit of the device is a polarization beam splitter.
  • Figure 7 shows the polarization state as a characteristic to distinguish different pixel discrete screens. This characteristic can also be used in other orthogonal characteristics, such as spin state, complementary color, etc., as long as the aperture apertures of different sub-subarrays in each pass aperture sub-array. Optical information from different pixel discrete screens can be exclusively accessed when turned on.
  • Figure 8 shows a principle for discriminating different pixel discrete screens of a display unit by the direction of light transmission.
  • the unit is an array composed of prisms P 1 , P 2 , P 3 , and P 4 .
  • the deflection angles of the prisms P 2 and P 4 are simply 0°. Due to the refraction of the prism, the refraction image of the pixel discrete screen 1 via the prisms P 2 and P 4 and the refraction image of the pixel discrete screen 2 via the prisms P 1 and P 3 may be subsequently imaged by the guiding device 10 on the projection area of the image plane. .
  • the refraction image of the pixel discrete screen 2 through the prisms P 2 and P 4 , the refraction image of the pixel discrete screen 1 through the prisms P 1 and P 3 , after passing through the guiding device 10 , will be outside the projection area on the image plane, without affecting Display content in 3D.
  • the apertures belonging to the same sub-sub-array are placed on the aperture of the same type of prism, and the apertures of the different sub-subarrays are respectively placed in the apertures of different types of prisms.
  • the different pixel discrete screens corresponding to the same display unit can be distinguished by the light transmission direction.
  • the auxiliary synthesis device 90 and other embodiments are equally applicable to the present invention.
  • the display unit/lens array arrangement direction is described by taking the display unit size not larger than the small lens pitch as an example.
  • each display unit size may be larger than the corresponding lenslet size.
  • the guiding device gating unit 100 is composed of two or more sets of apertures for gating the set of sub-arrays of the lenslet array of the guiding device 20 at each moment, while blocking the clear aperture of the other lenslets, each small The lenslets of the lens sub-array are sequentially spaced apart.
  • the lenslets of the two small lens sub-arrays are arranged in phase.
  • the guiding device gating unit 100 allows the apertures of the lenslets formed by the lenslets 21, 21" and the like to be small lens sub-arrays to pass light while blocking the clear aperture of other lenslets;
  • One of the time points opens a set of clear aperture sub-arrays and simultaneously closes other clear apertures; each open aperture aperture corresponds to each pixel corresponding to the spatial reference point, and the spatial reference point is taken as the viewpoint, and is synchronously loaded by the control unit 50.
  • the guiding device gating unit 100 allows the apertures of the lenslets of the lenslet sub-array formed by the lenslets 21', 21"' and the like to pass light while blocking the clear aperture of the other lenslets, as shown in FIG. 10;
  • a set of clear aperture sub-arrays is opened, and other clear apertures are closed at the same time; each open aperture aperture corresponds to each pixel corresponding to the spatial reference point, and the spatial reference point is taken as the viewpoint.
  • the projection information of the target object on the image is synchronously loaded by the control unit 50; the adjacent N time points, the N sets of clear aperture sub-arrays are sequentially turned on, and the information is synchronously loaded to each pixel of the display unit array based on the previous step method.
  • each display unit is a different part of the pixels of the whole display screen, and the display units corresponding to the adjacent small lenses are partially overlapped from the whole display screen at different times. Different area pixels.
  • there are 2N states corresponding to the PN 2N time point, and the timing of the 2N states may be arbitrarily adjusted. If the lenslet array is divided into more groups of sub-arrays, the same processing.
  • the adjustment unit 10 needs to adjust the spatial posture of each light blocking plate of the light barrier array 30 as needed, as shown in FIG. 9 to FIG.
  • the light barrier array 30 is used to cause the light emitted by each display unit to exit only through the corresponding lenslet aperture in the guiding device 20.
  • each display unit emits light through the non-corresponding lenslet, and simultaneously images outside the area where the main image is located. Although it is not superimposed as noise on the projection area, it may enter the observer's binocular and affect the display.
  • the timing device strobe unit 100 of the timing characteristics is closed by the timing of different groups of small lens sub-arrays arranged at intervals, so that the useless non-main image near the projection area where the main image is located can be removed, and the display effect can be improved.
  • the lenslets of the two lenslet sub-arrays are arranged in phase, as shown in FIG.
  • the guiding device gating unit 100 gates a set of sub-arrays of the lenslet array of the guiding device 20 while obscuring the clear aperture of the other lenslets.
  • the guiding device gating unit 100 allows the apertures of the lenslets of the lenslet sub-arrays 21, 21" and the like to form a small lens, while blocking the clear aperture of the other lenslets, while
  • the display unit corresponding to the occluded lenslet does not display optical information at the N time points; at one of the time points, a set of clear aperture sub-arrays is opened, and other clear apertures are closed; each open aperture aperture corresponding spatial reference Pointing on each pixel corresponding to each of the small lens corresponding display units, with the spatial reference point as a viewpoint, the control unit 50 synchronously loads the projection information of the target object on the image thereof.
  • the guiding device gating unit 100 allows the apertures of the lenslets of the lenslet sub-array formed by the lenslets 21', 21'' and the like to pass light while blocking the clear aperture of the other lenslets while being blocked by the corresponding display unit of the lenslet.
  • the optical information is not displayed at the N time points; the N sets of clear aperture sub-arrays are sequentially turned on, and the information is synchronously loaded based on the previous step method to the respective small lens corresponding display unit arrays. Pixel.
  • each of the strobe lenslets corresponding to the display unit pixel exiting light beam cannot be incident due to the limited divergence angle and simultaneously aligns the adjacent lenslets in the lenticular lens, in the case of the light barrier array 30, the non-master can be realized.
  • Three-dimensional rendering like interference If a strobe lenslet corresponding to the display unit pixel exiting beam can be incident and simultaneously strobing adjacent lenslets in the lenslet, the interfering non-main image formed by the lenslet is also far away from the projection area, and the influence on the three-dimensional display is limited.
  • the adjacent device of the guiding device gating unit 100 is two polarizing plates orthogonal to the light passing direction, and the adjacent through display unit emits light. They also have corresponding polarization states, and the light emitted by each display unit passes through the corresponding pupil of the corresponding small lens, and cannot pass through the corresponding aperture of the corresponding small lens corresponding to the small lens. Since the light emitted by each display unit cannot pass through the adjacent non-corresponding lenslets, the three-dimensional display without the main image interference or the non-main image interference distance from the projection area can be realized in the same manner.
  • a part of the apertures of a group of apertures and a part of the aperture apertures of the set of aperture aperture sub-arrays may be opened, and the open apertures corresponding to the spatial reference points corresponding to the pixels are opened.
  • the equivalent light emitted by the corresponding main image is blocked by the aperture, the pixel does not need to load information.
  • a large-sized convex lens can be used instead of the large-sized concave lens in the I-type guiding device, that is, a type II guiding device is used, as shown in FIG.
  • a system employing a Type II guiding device can also achieve three-dimensional display.
  • the main image of each display unit is a real image
  • the one-dimensional scattering sheet 110 can be disposed in the display area where the main image of the display unit coincides, such as the scattering sheet 110 of the incident light scattered vertically in FIG.
  • the main image of the display unit coincides, such as the scattering sheet 110 of the incident light scattered vertically in FIG.
  • the scattering sheet 110 of the incident light scattered vertically in FIG. 12 along the horizontal x-axis, one row of display unit/lens pairs are arranged as shown in FIG. 12; along the vertical y-direction, multi-row display unit/lens pairs of the same structure are sequentially arranged, but different row display unit/lens pairs corresponding spatial reference points , arranged in a horizontal direction in a wrong position.
  • the clear aperture of a set of clear aperture sub-arrays is opened, and the other clear apertures are closed; the clear aperture along the x-axis is taken as the reference clear aperture row, and each open aperture aperture corresponds to a spatial reference point
  • Corresponding pixels using the spatial reference point as a viewpoint, synchronously loading the projection information of the target object on the image thereof; at the same time, the other pixels open the respective apertures corresponding to the spatial reference points corresponding to the pixels, and the virtual translation is performed along the column direction Under the premise of the spatial reference point to the reference clear aperture line, the virtual virtual reference point after the translation is taken as the viewpoint, and the projection information of the target object on the image is synchronously loaded.
  • the plurality of sets of clear aperture sub-arrays are sequentially turned on, and the information is synchronously loaded as above. This process is repeated and scattered in the y direction by the diffusion sheet 110, ultimately achieving a three-dimensional representation with only x-direction parallax.
  • the guiding device gating unit 100 can also be introduced in the structure shown in FIG. 12, and the information is synchronously loaded on the corresponding pixels via the common gating of the guiding device gating unit 100 and the clear aperture array 40.
  • a group of apertures of a clear aperture sub-array and a navigation device gating unit 100 may be partially turned on.
  • the type III guiding device 20 shown in Fig. 13 is composed of a plane-arranged lenslet array (21, 21', etc.), each display unit (11, 11', etc.) of the display unit array 10 and each lenslet of the guiding device 20 (21) , 21', etc.) one-to-one correspondence.
  • Each display unit is placed at an object distance u with respect to the corresponding lenslet, and each display unit/lens pair is placed at a specific eccentric distance, such as ⁇ 1 , ⁇ 2 , ⁇ 3 , etc. in FIG. 13 , so that the respective display units are small in relation to each other.
  • the main image of the lens coincides with the area of the projection area P x1 P x2 of the image plane.
  • P x1 P x2 the projection area
  • the values of the eccentric distances can be set to other values as long as the setting of the eccentric distances ensures that the images of the respective display units coincide with a common area of the image plane.
  • Each of the apertures of the guiding device gating unit 100 is respectively located on each of the small lens apertures of the guiding device 20. If the guiding device gating unit 100 adopts the timing characteristic, each group of small lens sub-groups corresponding to the guiding units of the guiding device gating unit 100 The array will be gated.
  • each display unit needs to have the same light that can pass through the corresponding aperture of the corresponding lenslet. Oh, but not through the characteristics of the pupils of the group different from the pupil.
  • the clear aperture array 40 is placed in front of the guiding device, and is composed of a plurality of clear apertures, each of which corresponds to a spatial reference point, and the switch can be gated or cut off. The equivalent of the spatial reference point originates from the display unit array 10 displaying the light of the array main image.
  • the clear aperture array 40 is further divided into two or more sets of clear aperture sub-arrays. Taking FIG.
  • the three sets of clear aperture sub-arrays respectively correspond to spatial reference points VP x11 , VP x12 , VP x13 , VP x14 , VP x15 , VP x16 , VP x17 , VP x18 , VP x19 , spatial reference point VP x21 , VP x22 , VP x23 , VP x24 , VP x25 , VP x26 , VP x27 , VP x28 , and spatial reference point VP x31 , VP x32, VP x33, VP x34, VP x35, VP x36, VP x37, VP x38.
  • spatial reference points have the characteristic that the light rays equivalent to the main image of the display unit corresponding to different spatial reference points passing through the same set of clear aperture sub-arrays are derived from different pixels on the display unit array 10.
  • adjacent spatial reference points such as VP x11 and VP x12
  • the facet of the lenslet of the guiding device 20 covers a size equal to or greater than the adjacent lenslet pitch, the light passing through the set of spatial reference points will originate from different pixels on the display cell array 10.
  • each spatial reference point is placed on a plane.
  • each spatial reference point may be non-coplanar, which also applies to Other embodiments are described.
  • each spatial reference point is placed on the corresponding clear aperture surface, and in the following example, for a clear and simple illustration effect, the spatial reference point is placed on the corresponding clear aperture surface.
  • the spatial reference points may not be Corresponding to the clear aperture surface, even the respective apertures are non-planar, which is also applicable to other embodiments described below.
  • the spatial reference points of the same group of clear aperture sub-arrays shown in FIG. 13 are arranged in a manner of approximately uniform angular spacing, which is advantageous for obtaining a better three-dimensional display effect.
  • uniform or nearly uniform angular spacing is not mandatory.
  • the side points of the lenslets 21' be q 1 and q 2 , as shown in FIG. 14 , connecting the two points of the two points corresponding to the small lens corresponding to the display unit image, that is, the points P x1 and P x1 in FIG. 11 , Pay at points q 3 and q 4 .
  • Named area Is the single-selection area (including the boundary) corresponding to the display unit.
  • each display unit corresponds to a single selection area.
  • the spatial reference points corresponding to the same clear aperture sub-array are respectively located in different single-selection regions, regardless of whether or not they are arranged in an equiangular pitch, the equivalent of the spatial reference sub-arrays corresponding to different spatial reference points
  • the light that shows the main image of the cell will originate from different pixels on the display cell array 10.
  • each spatial reference point in different single-selection areas should be selected on the premise of non-coincidence.
  • the principle of selection of the spatial reference point also applies to the following examples.
  • each of the small lenses is a convex lens, and each of the small lenses in FIG. 13 may also be a concave lens under the premise that the respective display units are superimposed with a virtual image via the corresponding small lenses.
  • the N ( ⁇ 1) group of light-passing aperture sub-arrays and corresponding spatial reference points are determined.
  • the source pixel of the corresponding spatial reference point, the equivalent light source from the main unit of the display unit on the display unit array 10, and the guided device 20 in the display unit main image are determined by reverse tracking of the light.
  • a set of clear aperture sub-arrays is opened, and other clear apertures are closed, and each open aperture corresponds to each pixel corresponding to the spatial reference point, and the spatial reference point is taken as the viewpoint, and the control unit 50 synchronously loads the target.
  • the projection information of the object on the image when the exclusive characteristic is used to guide the device gating unit 100, the adjacent N time points, the N sets of clear aperture sub-arrays are sequentially turned on, and the loading information is similarly applied to the display unit array. Pixel. Repeat the above process, passing each spatial reference point, and presenting a view corresponding to the spatial reference point on the projection area.
  • the switching frequency of the clear aperture sub-array is sufficiently high, the spatial reference point distribution is sufficiently dense, based on visual stagnation, in the direction of beam propagation, in a region in front of the spatial reference point, ie, similar to the viewing zone shown in FIG. Inside, you can observe the three-dimensional information of the target object. Similar in the y direction.
  • a part of the clear apertures of the set of clear aperture sub-arrays may be opened.
  • the corresponding apertures of the set of aperture aperture sub-arrays corresponding to the spatial reference points are not turned on. There is no need to load information at this point in time.
  • the guiding device gating unit 100 gates a set of sub-arrays of the lenslet array of the guiding device 20 while obscuring the clear aperture of the other lenslets.
  • the guiding device gating unit 100 allows the apertures of the lenslets of the lenslet sub-arrays 21, 21" and the like to form a small lens, while blocking the clear aperture of the other lenslets, while
  • the display unit corresponding to the occluded lenslet does not display optical information at the N time points; at one of the time points, a set of clear aperture sub-arrays is opened, and other clear apertures are closed; each open aperture aperture corresponding spatial reference Pointing on each pixel corresponding to each of the small lens corresponding display units, with the spatial reference point as a viewpoint, the control unit 50 synchronously loads the projection information of the target object on the image thereof.
  • the guiding device gating unit 100 allows the apertures of the lenslets of the lenslet sub-array formed by the lenslets 21', 21'' and the like to pass light while blocking the clear aperture of the other lenslets while being blocked by the corresponding display unit of the lenslet.
  • the optical information is not displayed at the N time points; the N sets of clear aperture sub-arrays are sequentially turned on, and the information is synchronously loaded based on the previous step method to the respective small lens corresponding display unit arrays.
  • the display units corresponding to the adjacent lenslets are also allowed to spatially overlap each other, similar to the case shown in FIGS. 9 and 10.
  • the above process no longer considers the switches of the lenslets of the guiding device 20, as long as the timing switches of the N sets of clear aperture sub-arrays are considered.
  • the N sets of clear aperture sub-arrays are sequentially turned on, and the information is loaded onto the pixels of the display unit array by the same principle as described above. Repeat the above process, passing each spatial reference point, and presenting a view corresponding to the spatial reference point on the projection area.
  • the spatial reference point distribution is sufficiently dense, based on visual stagnation, in the direction of beam propagation, in a region in front of the spatial reference point, ie, similar to the viewing zone shown in FIG. Inside, you can observe the three-dimensional information of the target object.
  • each of the display units is formed as a useless information by a non-main image formed by the adjacent lens of the small lens, and is displayed at a position closer to the projection area where the main image is located.
  • a light barrier array 30 is placed in the system. Similar to FIG. 1, each of the light barriers of the light barrier array 30 will block the non-main image of each display unit.
  • the guide device gating unit 100 can also be introduced with timing characteristics so that the respective small lens corresponding display units have a large size.
  • the control unit 50 synchronously loads the projection information of the target object on the image;
  • the respective apertures belonging to the other non-reference light-passing aperture rows are opened, the pixels corresponding to the spatial reference points are synchronously loaded, and the same-pass aperture apertures in the reference-pass aperture aperture row are loaded corresponding to the spatial reference points corresponding to the pixels.
  • Light information In this information loading mode, the 3D disparity information is no longer displayed in the y direction, and only the 3D information is presented in the x direction.
  • the binocular position of the observer can be determined.
  • the control system can display only the information needed in the small space at the binocular, and reduce the amount of information calculation.
  • the observer's binocular position is relatively fixed to the spatial position of the system, in the structure of Fig. 13, part of the display unit/lens pair can be removed, and only the display unit that contributes all or part of the optical information entering the observer's dual purpose is retained. / lenslet pair.
  • auxiliary steering device 80 and the auxiliary synthesizing device 90 described in Figs. 5 to 8 in the first embodiment can be similarly applied to the system shown in Fig. 13.
  • the main image of each display unit is a real image
  • the one-dimensional scattering sheet 110 can be placed in the display area where the main image of the display unit coincides, such as the scattering sheet 110 of the incident light scattered vertically in FIG.
  • the main image of the display unit coincides, such as the scattering sheet 110 of the incident light scattered vertically in FIG.
  • one row of display unit/lens pairs are arranged as shown in FIG. 15; along the vertical y-direction, multi-row display unit/lens pairs of the same structure are sequentially arranged, but different row display unit/lens pairs corresponding spatial reference points , arranged in a horizontal direction in a wrong position.
  • the clear aperture of a set of clear aperture sub-arrays is opened, and the other clear apertures are closed; the clear aperture along the x-axis is taken as the reference clear aperture row, and each open aperture aperture corresponds to a spatial reference point
  • Corresponding pixels using the spatial reference point as a viewpoint, synchronously loading the projection information of the target object on the image thereof; at the same time, the other pixels open the respective apertures corresponding to the spatial reference points corresponding to the pixels, and the virtual translation is performed along the column direction Under the premise of the spatial reference point to the reference clear aperture line, the virtual virtual reference point after the translation is taken as the viewpoint, and the projection information of the target object on the image is synchronously loaded.
  • the plurality of sets of clear aperture sub-arrays are sequentially turned on, and the information is synchronously loaded as above. This process is repeated and scattered in the y direction by the diffusing sheet 110, ultimately achieving a three-dimensional representation with only x-direction parallax.
  • the type III guiding device 20 can adopt a curved surface arrangement lenslet array (21, 21', etc.), as shown in FIG. 16, each display unit (11, 11', etc.) of the display unit array 10 and each small lens of the guiding device 20 (21, 21', etc. one-to-one correspondence.
  • Each of the display units intersects at a point O by a main image formed by the corresponding lenslets.
  • FIG. 16 only takes two sets of display unit/lens pairs as an example.
  • Each of the apertures of the guiding device gating unit 100 is respectively located on each lenslet aperture of the guiding device 20.
  • each of the display units needs to have a set of pupils that can only pass through the corresponding pupil of the corresponding lenslet, but cannot pass the characteristics of the other group.
  • the clear aperture array 40 is placed in front of the guiding device, and is composed of a plurality of clear apertures, each of which corresponds to a spatial reference point, and the switch can be gated or cut off.
  • the light corresponding to the spatial reference point is equivalently derived from the light of the display unit array 10 displaying the main image of the unit.
  • the clear aperture array 40 is further divided into two or more sets of clear aperture sub-arrays.
  • the three sets of clear aperture sub-arrays respectively correspond to spatial reference points VP h11 , VP h12 , spatial reference point VP h21 , VP h22 , and spatial reference points VP h31 , VP h32 .
  • the spatial reference points have characteristics that the different spatial reference points corresponding to the same set of clear aperture sub-arrays, and the light rays equivalent to the main unit of the display unit array 10 are derived from different pixels on the display unit array 10. . For example, as shown in FIG.
  • the same group of clear aperture sub-arrays correspond to spatial reference points, and adjacent spatial reference points, such as VP h11 and VP h12 , are equal to or larger than the adjacent display unit/lens lens with respect to the O point.
  • adjacent spatial reference points such as VP h11 and VP h12
  • the angle is relative to the O point, the light passing through the set of spatial reference points, equivalently derived from the display unit main image of the display unit array 10, will originate from different pixels on the display unit array 10.
  • each spatial reference point is placed on the corresponding clear aperture surface, and in the following example, for a clear and simple illustration effect, the spatial reference point is placed on the corresponding clear aperture surface.
  • the spatial reference points may not be Corresponding to the clear aperture surface, even the apertures themselves are non-planar.
  • the same group of clear aperture sub-arrays shown in FIG. 16 are arranged in a uniform angular interval corresponding to the spatial reference points, and this arrangement is advantageous for obtaining a better three-dimensional display effect.
  • the arrangement of the approximate uniform angular spacing is also not mandatory.
  • the side points of the lenslets 21 be q 1 and q 2 , as shown in FIG. 16 , connect the two points and the two points of the display unit image corresponding to the lenslet, that is, the points E and F in FIG. 16 , at the point q 3 and q 4 .
  • Named area It is a single-selection area (including an edge line) corresponding to the display unit 11.
  • each display unit corresponds to a single selection area.
  • the set of clear aperture sub-arrays corresponding to different spatial reference points equivalent to the display
  • the unit array 10 displays the light of the main image of the unit, and the different display units from the display unit array 10 respectively satisfy the different spatial reference points of the same set of clear aperture sub-arrays, and are equivalently derived from the main image of the display unit of the display unit array 10. Light is derived from the requirements of different pixels on display cell array 10.
  • the lenslet arrays may be arranged along a straight line or along a curved line; wherein, when arranged in a straight line, the center of each display unit has a specific spatial offset along the column direction with respect to the optical axis of the corresponding lenslet to ensure column up.
  • the image of the display unit is coincident; when arranged along the column to the curve, it is similar to the case where the row-to-surface is arranged as shown in FIG.
  • the N ( ⁇ 1) group of light-passing aperture sub-arrays and corresponding spatial reference points are determined.
  • the source pixels of the respective light rays corresponding to the main unit of the display unit array 10 on the display unit array 10 and the guided device 20 thereof are determined by the reverse tracking of the light.
  • the image is displayed on the main image of the display unit.
  • a set of clear aperture sub-arrays is opened, and other clear apertures are closed, and each open aperture corresponds to each pixel corresponding to the spatial reference point, and the spatial reference point is taken as the viewpoint, and the control unit 50 synchronously loads the target.
  • the projection information of the object on the image when the exclusive characteristic is used to guide the device gating unit 100, the adjacent N time points, the N sets of clear aperture sub-arrays are sequentially turned on, and the loading information is similarly applied to the display unit array. Pixel. Repeat the above process, passing each spatial reference point, and presenting a view corresponding to the spatial reference point on the image plane.
  • the spatial reference point distribution is sufficiently dense, based on the visual retention, along the beam transmission direction, in a region in front of the spatial reference point, ie in the viewing zone shown in FIG. Three-dimensional information of the target object can be observed. In the direction of another dimension, the same reason.
  • the guiding device gating unit 100 gates a set of sub-arrays of the lenslet array of the guiding device 20 while obscuring the clear aperture of the other lenslets.
  • the guiding device gating unit 100 allows the apertures of the lenslets of the lenslet sub-array in which the lenslets 21 are located to pass light while blocking the clear apertures of the other lenslets while being blocked by the lenslets.
  • the display unit does not display optical information at the N time points; at one of the time points, a set of clear aperture sub-arrays is turned on, while other clear apertures are closed, and each open aperture aperture corresponds to a spatial reference point in the strobe
  • the lenslet corresponds to each pixel corresponding to the display unit, and the spatial reference point is taken as the viewpoint, and the projection information of the target object on the image thereof is synchronously loaded by the control unit 50.
  • the guiding device gating unit 100 allows the apertures of the lenslets of the lenslet sub-array of the lenslet 21' to pass light while blocking the clear aperture of other lenslets while being blocked by the lenslet.
  • the corresponding display unit does not display optical information at the N time points; the N sets of clear aperture sub-arrays are sequentially turned on, and the information is synchronously loaded based on the previous step method to strobe each pixel of each lenslet corresponding to the display unit array. Repeat the above process to achieve three-dimensional display.
  • the switches of the lenslets of the guiding device 20 are no longer considered in the above process, as long as the timing switches of the N sets of clear aperture sub-arrays are considered.
  • the N sets of clear aperture sub-arrays are sequentially turned on, and the information is loaded onto the pixels of the display unit array by the same principle as described above.
  • each spatial reference point passes each spatial reference point, and presenting a view corresponding to the spatial reference point on the image plane.
  • the spatial reference point distribution is sufficiently dense, based on the visual stagnation, in the direction of the beam transmission, a three-dimensional information of the target object can be observed in a viewing area in front of the spatial reference point.
  • each of the display units is formed as a useless information by a non-main image formed by the adjacent lens of the small lens, and is displayed at a position closer to the projection area where the main image is located.
  • a light barrier array 30 is placed in the system. Similar to FIG. 1, each of the light barriers of the light barrier array 30 will block the non-main image of each display unit.
  • the control unit 50 synchronously loads the target object on the image thereof. Projection information; however, when the apertures of the other non-reference aperture aperture rows are opened, the pixels corresponding to the spatial reference points are synchronously loaded, and the apertures along the column in the same direction are simultaneously opened.
  • the corresponding spatial reference point corresponds to the optical information loaded by the pixel.
  • the three-dimensional disparity information is no longer displayed in the column direction, and only three-dimensional information is presented along the row direction.
  • the binocular position of the observer can be determined.
  • the control system can display only the information needed in the small space at the binocular, and reduce the amount of information calculation.
  • part of the display unit/lens pair can be removed, and only all or part of the optical component contributing to the optical information of the observer is retained. .
  • auxiliary steering device 80 and the auxiliary synthesizing device 90 described in Figs. 5 to 8 in the first embodiment can be similarly applied to the system shown in Fig. 16.
  • each display unit in Fig. 16 is a real image through the corresponding lenslet, that is, when the IV type guiding device is used, as shown in Fig. 17, a three-dimensional display can also be realized by a similar method and process as described above.
  • the lenslets are arranged in a curved surface.
  • the present invention is characterized in that the guiding device 20 images the display units of the display unit array 10 to the coincident or intersecting regions, and presents a three-dimensional target object from different pixels on the display unit array 10 via a set of clear aperture sub-arrays.
  • a set of views; using different sets of light-aperture sub-arrays capable of timing switches, at different time points, through a series of timing switches of different sets of clear aperture sub-arrays, a large number of views are presented, and a three-dimensional effect is presented based on visual retention.
  • the technology proposed by the patent Due to the introduction of the clear aperture array 40 of the timing switch, compared with the conventional three-dimensional display method, the technology proposed by the patent further improves the rendering amount of the three-dimensional information through time multiplexing, and effectively improves the three-dimensional display effect.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)

Abstract

本发明公开了一种时空混合复用的三维显示系统。该时空混合间复用的三维显示系统,通过时分混合复用,可以提高目标三维图像的信息呈现量,改善观察舒适度。本发明提出的导向器件,可以成像多个显示单元,并引导其像空间重叠或相交;经挡光板阵列,约束各显示单元出射光束经不同孔径出射;在同一时刻,通过一组通光孔径出射其分别对应的多个视图;在不同时刻,利用多组通光孔径的时序开关,投射更多更密集的视图,由此提高系统呈现视图的数目,降低各视图间的角间距,提升三维信息呈现效果。同时,本发明还提供时空混合复用的三维显示方法。

Description

一种时空混合复用的三维显示系统及方法 技术领域
本发明涉及三维图像显示技术领域,特别涉及一种时空混合复用的三维显示系统及其方法。
背景技术
人们日常生活在三维的世界中,主流的二维显示无法清楚准确地表达第三维的深度信息,所以,人们一直在致力于可实现三维信息呈现的三维图像显示技术的研究。目前主要的三维技术主要是通过光栅,将显示屏的像素分别导向不同的视点,由此实现空间不同位置对应视图出的呈现。观察者在各视点对应的区域内,分别可以观察到对应视图。但这种技术仅通过像素的空间复用来增加视图数量,其所能呈现视图的数量和角密度高度受限于显示屏的像素密度。
本专利通过时空混合复用,在像素空间复用的基础上,由加入了时间复用,进一步提高的显示屏的有效复用度,可以有效提高呈现视图的数量和角密度,提升观察者的三维观感效果。
发明内容
针对传统三维显示技术仅通过像素的空间复用来显示多个视图时所面临的呈现视图数量和角密度非常有限的问题,本发明通过时空的混合复用,从时域上进一步提升复用度,相对于传统技术,可以有效提升呈现视图的数量和角密度。
为达到上述目的,本发明采用的技术方案如下:
一种时空混合复用的三维显示系统,包括:
显示单元阵列,该显示单元阵列的各显示单元由面排列像素组成,用于显示光学信息;
导向器件,该导向器件置于与显示单元阵列相对应的位置,用于成像各显示单元,并引导各显示单元的像在投影区或投影空间重叠或相交,命名该重叠或相交的像为对应显示单元的主像;
通光孔径阵列,该光孔径阵列沿显示单元阵列出射光束传输方向置于导向器件前,由可时序开关的至少两组的通光孔径子阵列组成,该通光孔径阵列的各通光孔径分别对应一个空间参考点,该通光孔径用于选通或截止过其对应空间参考点的、等效源自于显示单元主像的光线,其中,各通光孔径对应参考点被选取为使得过同一通光孔径子阵列 各通光孔径对应参考点的、等效源自于显示单元主像的光线来自于显示单元阵列的不同像素;
控制单元,该控制单元与显示单元阵列以及通光孔径阵列连接,用于控制所述各组通光孔径子阵列的时序开关,并在一组通光孔径子阵列的的部分或全部通光孔径打开时,控制所述显示单元阵列的部分或全部像素同步加载对应光信息。具体地,该控制单元能够控制每组通光孔径子阵列的全部或者部分通光孔径时序性的打开或关闭。
在上述方案中,通过利用导向器件,可以成像多个显示单元,并引导其像空间重叠或相交;在同一时刻,通过一组通光孔径出射其分别对应的多个视图;在不同时刻,利用多组通光孔径的时序开关,投射更多更密集的视图,由此提高系统呈现视图的数目,降低各视图间的角间距,提升三维信息呈现效果。
优选地,还包括还包括导向器件选通单元,该导向器件选通单元包括可时序开关的P组光阑,相间排列的各组光阑可时序打开,各光阑分别对应不同的所述显示单元,并且只在打开时允许对应显示单元主像等效出射的光信息通过;或该导向器件选通单元由至少两组具有排它性功能的光阑组成,各组光阑相间排列,各光阑分别对应不同的上述显示单元,允许对应显示单元主像等效出射的光信息通过,但不允许其它组光阑对应显示单元出射光信息通过,其中P≧2。具体地,该导向器件选通单元可以直接通过人为控制,也可以与控制单元连接而由控制单元控制,从而控制该导向器件选通单元的每组光阑全部或者部分光阑时序性的打开或关闭。
优选地,所述时空混合复用的三维显示系统还包括挡光板阵列,该挡光板阵列置于所述显示单元阵列和所述导向器件之间,用于约束各显示单元出射光束分别经对应孔径出射。
优选地,所述时空混合复用的三维显示系统还包括追踪单元,该追踪单元用于追踪和确定观察者双目的空间位置。
优选地,所述时空混合复用的三维显示系统还包括调节单元,该调节单元用于调节所述显示单元阵列中各显示单元和所述导向器件间的相对位置,或用于改变所述导向器件的光学性质,使所述显示单元阵列各显示单元经所述导向器件所成主像相对所述导向器件发生平移。在更优选的实施方式中,该调节单元可以被设置为能够根据需要调整挡光板的空间姿态。
优选地,所述时空混合复用的三维显示系统还包括散射片,其沿一维方向散射入射光。
优选地,所述导向器件包括小透镜阵列和大尺寸凹透镜组成,所述导向器件包括小 透镜阵列和大尺寸凹透镜,其中小透镜阵列各小透镜和所述显示单元阵列各显示单元一一对应,各显示单元处于对应小透镜的焦平面上,其中所述大尺寸凹透镜孔径覆盖小透镜阵列中的至少部分小透镜,该导向器件可以命名为I型导向器件。
优选地,所述导向器件包括小透镜阵列和一个大尺寸凸透镜,其中小透镜阵列各小透镜和所述显示单元阵列各显示单元一一对应,各显示单元处于对应小透镜的焦平面上,其中所述大尺寸凸透镜孔径覆盖小透镜阵列中的至少部分小透镜,该导向器件可以命名为II型导向器件。
优选地,所述导向器件包括小透镜阵列,其中小透镜阵列各小透镜和所述显示单元阵列各显示单元一一对应,且各显示单元经对应小透镜成虚像,该导向器件可以命名为III型导向器件。
优选地,所述导向器件包括小透镜阵列,其中小透镜阵列各小透镜和所述显示单元阵列各显示单元一一对应,且各显示单元经对应小透镜成实像,该导向器件可以命名为IV型导向器件。
优选地,所述导向器件还包括多个能够对小透镜所成的像进行折转或平移的偏移元件,以使各小透镜所成的像能够投影区或投影空间重叠或相交。
优选地,所述小透镜用等效的光学元件或光学组件代替,和/或所述大尺寸凹透镜用等效的光学元件或光学组件代替;或者所述小透镜阵列用等效的光学元件或光学组件代替,和/或所述大尺寸凸透镜用等效的光学元件或光学组件代替。
优选地,所述小透镜用等效的光学元件或光学组件代替,或者所述小透镜阵列用等效的光学元件或光学组件代替。其中,该光学元件可以是具有位相调制功能的衍射光学元件,该光学组件可以是具有位相调制功能的衍射光学组件。
优选地,所述时空混合复用的三维显示系统还包括辅助转向装置,置于所述显示单元阵列和导向器件之间,用于使各显示单元等效地置于对应小透镜的焦平面上、或平行于对应小透镜放置。更优选地,该辅助转向装置可以是辅助转向单元阵列,其功能在于允许显示单元阵列各显示单元和对应小透镜非平行放置,该辅助转向单元阵列置于所述显示单元阵列和导向器件之间,其辅助转向单元和所述显示单元阵列中的显示单元一一对应,对应辅助转向单元使各显示单元等效地置于对应小透镜的焦平面上、或平行于对应小透镜放置。
优选地,还包括辅助合成装置,该辅助成像装置置于所述显示单元阵列和导向器件之间,并在所述显示单元阵列的各显示单元由至少两个分立像素屏组成时,能够对各显示单元的该至少两个分立像素屏的出射光束进行合成,使其都入射所述导向器件。更优 选地,该辅助合成装置可以是辅助合成单元阵列,其各辅助合成单元和上述显示单元阵列中的显示单元一一对应,在所述显示单元由至少分立的像素屏组成时,使该至少两个分立的像素屏出射光束经对应合成单元,入射对应小透镜。
本发明的另一个目的是提供以下时空混合复用的三维显示方法。
本发明的提供的第一种时空混合复用的三维显示方法,该方法使用所述任意一种方案所述的一种时空混合复用的三维显示系统,包括以下步骤:
s1将所述通光孔径阵列划分为N组通光孔径子阵列,对各通光孔径,通过光线追踪,确定过其对应空间参考点、等效源自显示单元主像的各光线在显示单元阵列上的来源像素及其在显示单元主像上的像,也即各空间参考点对应的像素及其像,其中N≧1;
s2在一个时间点,其中一组通光孔径子阵列的至少部分通光孔径打开,其它组通光孔径子阵列的通光孔径关闭;
s3对步骤s2中所打开的各通光孔径对应空间参考点所对应的像素,以对应空间参考点为视点,同步加载目标物体在其像上的投影信息;
s4对于相邻的N个时间点的至少部分时间点,分别在该至少部分时间点的每个时间点,对应地执行s2~s3步骤。
优选地,上述第一种时空混合复用的三维显示方法,还包括步骤s5:重复步骤s4。
更优选地,上述第一种时空混合复用的三维显示方法中,所述三维显示系统包括追踪单元,该追踪单元用于追踪和确定观察者双目的空间位置;和
调节单元,该调节单元用于调节所述显示单元阵列中各显示单元和所述导向器件间的相对位置,或用于改变所述导向器件的光学性质,使所述显示单元阵列各显示单元经所述导向器件所成主像相对所述导向器件发生平移;
所述时空混合复用的三维显示方法还包括步骤s6:根据观察者双目所在位置,通过调节单元调节所述显示单元阵列中各显示单元和上述导向器件间的相对位置,或改变所述导向器件的光学性质,使所述显示单元阵列各显示单元经所述导向器件所成主像相对所述导向器件平移,以保证位置发生了变化的观察者双目可以接收到系统出射光信息,并针对显示单元和导向器件间新的位置关系,重新执行步骤s1~s5。
本发明提供的第二种时空混合复用的三维显示方法,该方法使用上述任意一种方案所述的一种时空混合复用的三维显示系统,其中所述三维显示系统包括导向器件选通单元,该导向器件选通单元包括可时序开关的P组光阑,相间排列的各组光阑可时序打开,各光阑分别对应不同的所述显示单元,并且只在打开时允许对应显示单元主像等效出射的光信息通过;或该导向器件选通单元由至少两组具有排它性功能的光阑组成,各组光 阑相间排列,各光阑分别对应不同的上述显示单元,允许对应显示单元主像等效出射的光信息通过,但不允许其它组光阑对应显示单元出射光信息通过,其中P≧2;包括以下步骤:
ss1将所述通光孔径阵列划分为N组通光孔径子阵列,对各通光孔径,通过光线追踪,确定过其对应空间参考点、等效源自显示单元主像的各光线在显示单元阵列上的来源像素及其在显示单元主像上的像,也即各空间参考点对应的像素及其像,其中N≧1;
ss2在一个时间点,P组光阑的其中一组光阑的至少部分光阑打开,所述N组通光孔径子阵列的一组通光孔径子阵列的至少部分通光孔径打开,其它组通光孔径子阵列中的通光孔径关闭;
ss3对步骤ss2中所打开各通光孔径对应空间参考点所对应的像素,以对应空间参考点为视点,同步加载目标物体在其像上的投影信息,其中至少对所述打开的光阑所对应的各显示单元的像素加载光信息;
ss4所述P组光阑分别只有一组选通时的P种状态和所述N组通光孔径子阵列分别只有一组通光孔径子阵列的至少部分通光孔径选通时的N种状态,组合成形成PN个状态,分别对应PN个相邻时间点,其中,对于该PN个相邻时间点中的至少部分时间点,分别在该至少部分时间点的每个时间点,对应地执行ss2~ss3步骤。
优选地,上述第二种时空混合复用的三维显示方法,还包括步骤ss5:重复步骤ss4。
更优选地,上述第二种时空混合复用的三维显示方法中,所述三维显示系统包括追踪单元,该追踪单元用于追踪和确定观察者双目的空间位置;和
调节单元,该调节单元用于调节所述显示单元阵列中各显示单元和所述导向器件间的相对位置,或用于改变所述导向器件的光学性质,使所述显示单元阵列各显示单元经所述导向器件所成主像相对所述导向器件发生平移;
所述时空混合复用的三维显示方法还包括步骤ss6:根据观察者双目所在位置,通过调节单元调节所述显示单元阵列中各显示单元和所述导向器件间的相对位置,或改变所述导向器件的光学性质,使所述显示单元阵列各显示单元经所述导向器件所成主像相对所述导向器件平移,以保证位置发生了变化的观察者双目可以接收到系统出射光信息,并针对显示单元和导向器件间新的位置关系,重新执行步骤ss1~ss5。
本发明的提供的第三种时空混合复用的三维显示方法,该方法使用上述任意一种方案所述的一种时空混合复用的三维显示系统,包括以下步骤:
sss1将所述通光孔径阵列沿一维行方向划分为M组通光孔径子阵列;其中M≧1;
sss2对各通光孔径,通过光线追踪,确定过其对应空间参考点、等效源自显示单元 主像的各光线在显示单元阵列上的来源像素及其在显示单元主像上的像,也即各空间参考点对应的像素及其像;
sss3在一个时间点,其中一组通光孔径子阵列的至少部分通光孔径打开,其它组通光孔径子阵列的通光孔径关闭;
sss4取一行通光孔径作为基准通光孔径行,基准通光孔径行中打开的各通光孔径对应空间参考点所对应的像素,以对应空间参考点为视点,同步加载目标物体在其像上的投影信息;同时,其它行中打开各通光孔径对应空间参考点所对应的像素,同步加载基准通光孔径行中同列通光孔径所对应空间参考点对应像素加载的投影信息;
sss5对于相邻的M个时间点的至少部分时间点,分别在该至少部分时间点的每个时间点,对应地执行sss3~sss4步骤。
优选地,上述第三种时空混合复用的三维显示方法,还包括步骤sss6:重复步骤sss5。
优选地,上述第三种时空混合复用的三维显示方法中,所述三维显示系统包括追踪单元,该追踪单元用于追踪和确定观察者双目的空间位置;和
调节单元,该调节单元用于调节所述显示单元阵列中各显示单元和所述导向器件间的相对位置,或用于改变所述导向器件的光学性质,使所述显示单元阵列各显示单元经所述导向器件所成主像相对所述导向器件发生平移;
所述时空混合复用的三维显示方法还包括步骤sss6:根据观察者双目所在位置,通过调节单元调节所述显示单元阵列中各显示单元和所述述导向器件间的相对位置,或改变所述导向器件的光学性质,使所述显示单元阵列各显示单元经所述导向器件所成主像相对所述导向器件平移,以保证位置发生了变化的观察者双目可以接收到系统出射光信息,并针对显示单元和导向器件间新的位置关系,重新执行步骤sss1~sss5。
本发明的提供的第四种时空混合复用的三维显示方法,该方法使用上述任意一种方案所述的一种时空混合复用的三维显示系统,所述时空混合复用的三维显示系统包括导向器件选通单元,该导向器件选通单元包括可时序开关的P组光阑,相间排列的各组光阑可时序打开,各光阑分别对应不同的所述显示单元,并且只在打开时允许对应显示单元主像等效出射的光信息通过;或该导向器件选通单元由至少两组具有排它性功能的光阑组成,各组光阑相间排列,各光阑分别对应不同的上述显示单元,允许对应显示单元主像等效出射的光信息通过,但不允许其它组光阑对应显示单元出射光信息通过,其中P≧2,包括以下步骤:
ssss1将所述通光孔径阵列沿一维行方向划分为M组通光孔径子阵列;其中M≧1;
ssss2对各通光孔径,通过光线追踪,确定过其对应空间参考点、等效源自显示单 元主像的各光线在显示单元阵列上的来源像素及其在显示单元主像上的像,也即各空间参考点对应的像素及其像;
ssss3选取相邻的PN个时间点中的一个时间点,P组光阑的其中一组光阑的至少部分光阑打开,所述N组通光孔径子阵列的一组通光孔径子阵列的至少部分通光孔径打开,其它通光孔径子阵列中的通光孔径关闭;
ssss4取一行通光孔径作为基准通光孔径行,基准通光孔径行中打开各通光孔径对应空间参考点所对应的像素,以对应空间参考点为视点,同步加载目标物体在其像上的投影信息;同时,对其它行中各打开通光孔径对应空间参考点所对应的像素,同步加载基准通光孔径行中同列通光孔径所对应空间参考点对应像素加载的投影信息,其中至少对所述打开的光阑所对应的各显示单元的像素加载光信息;
ssss5所述P组光阑分别只有一组选通时的P种状态和所述N组通光孔径子阵列分别只有一组选通时的N种状态,组合成形成PN个状态,分别对应PN个相邻时间点,其中,对于该PN个相邻时间点中的至少部分时间点,分别在该至少部分时间点的每个时间点,对应地执行ssss3~ssss4步骤。
优选地,上述第四种时空混合复用的三维显示方法,还包括步骤sssss6:重复步骤ssss5。
更优选地,上述第四种时空混合复用的三维显示方法中,所述三维显示系统包括追踪单元,该追踪单元用于追踪和确定观察者双目的空间位置;和
调节单元,该调节单元用于调节所述显示单元阵列中各显示单元和所述导向器件间的相对位置,或用于改变所述导向器件的光学性质,使所述显示单元阵列各显示单元经所述导向器件所成主像相对所述导向器件发生平移;
所述时空混合复用的三维显示方法还包括步骤ssss7:根据观察者双目所在位置,通过调节单元调节所述显示单元阵列中各显示单元和所述述导向器件间的相对位置,或改变所述导向器件的光学性质,使所述显示单元阵列各显示单元经所述导向器件所成主像相对所述导向器件平移,以保证位置发生了变化的观察者双目可以接收到系统出射光信息,并针对显示单元和导向器件间新的位置关系,重新执行步骤ssss1~ssss6。
本发明的提供的第五种时空混合复用的三维显示方法,该方法使用上述任意一种方案所述的一种时空混合复用的三维显示系统,包括以下步骤:
sssss1将所述通光孔径阵列沿一维行方向划分为M组通光孔径子阵列,所有行通光孔径对应空间参考点沿行方向错位排列;其中M≧1;
sssss2对各通光孔径,通过光线追踪,确定过其对应空间参考点、等效源自显示单 元主像的各光线在显示单元阵列上的来源像素及其在显示单元主像上的像,也即各空间参考点对应的像素及其像;
sssss3在一个时间点,其中一组通光孔径子阵列的至少部分通光孔径打开,其它组通光孔径子阵列的通光孔径关闭;
sssss4取一行通光孔径作为基准通光孔径行,其各打开通光孔径对应空间参考点所对应的像素,以对应空间参考点为视点,同步加载目标物体在其像上的投影信息;同时,其它行中打开的各通光孔径对应空间参考点所对应的像素,在沿列向虚拟平移对应空间参考点至基准通光孔径行的前提下,以平移后的虚拟空间参考点为视点,同步加载目标物体在其像上的投影信息;
sssss5相邻的M个时间点的至少部分时间点,分别在该至少部分时间点的每个时间点,对应地执行sssss3~sssss4步骤。
优选地,上述第五种时空混合复用的三维显示方法,还包括步骤sssss6:重复步骤sssss5。
更优选地,上述第五种时空混合复用的三维显示方法中,所述三维显示系统包括追踪单元,该追踪单元用于追踪和确定观察者双目的空间位置;和
调节单元,该调节单元用于调节所述显示单元阵列中各显示单元和所述导向器件间的相对位置,或用于改变所述导向器件的光学性质,使所述显示单元阵列各显示单元经所述导向器件所成主像相对所述导向器件发生平移;
所述时空混合复用的三维显示方法还包括步骤sssss7:根据观察者双目所在位置,通过调节单元调节所述显示单元阵列中各显示单元和所述述导向器件间的相对位置,或改变所述导向器件的光学性质,使所述显示单元阵列各显示单元经所述导向器件所成主像相对所述导向器件平移,以保证位置发生了变化的观察者双目可以接收到系统出射光信息,并针对显示单元和导向器件间新的位置关系,重新执行步骤sssss1~sssss6。
本发明的提供的第六种时空混合复用的三维显示方法,该方法使用上述任意一种方案所述的一种时空混合复用的三维显示系统,所述时空混合复用的三维显示系统包括导向器件选通单元,该导向器件选通单元包括可时序开关的P组光阑,相间排列的各组光阑可时序打开,各光阑分别对应不同的所述显示单元,并且只在打开时允许对应显示单元主像等效出射的光信息通过;或该导向器件选通单元由至少两组具有排它性功能的光阑组成,各组光阑相间排列,各光阑分别对应不同的上述显示单元,允许对应显示单元主像等效出射的光信息通过,但不允许其它组光阑对应显示单元出射光信息通过,其中P≧2,包括以下步骤:
ssssss1将所述通光孔径阵列沿一维行方向划分为M组通光孔径子阵列,所有行通光孔径对应空间参考点沿行方向错位排列;其中M≧1;
ssssss2对各通光孔径,通过光线追踪,确定过其对应空间参考点、等效源自显示单元主像的各光线在显示单元阵列上的来源像素及其在显示单元主像上的像,也即各空间参考点对应的像素及其像;
ssssss3选取相邻的PN个时间点中的一个时间点,P组光阑的其中一组光阑的至少部分光阑打开,所述N组通光孔径子阵列的一组通光孔径子阵列的至少部分通光孔径打开,其它组通光孔径子阵列中的通光孔径关闭;
ssssss4取一行通光孔径作为基准通光孔径行,基准通光孔径行中打开各通光孔径对应空间参考点所对应的像素,以对应空间参考点为视点,同步加载目标物体在其像上的投影信息;同时,对其它行中各打开通光孔径对应空间参考点所对应的像素,在沿列向虚拟平移对应空间参考点至基准通光孔径行的前提下,以对应平移后的虚拟空间参考点为视点,同步加载目标物体在其像上的投影信息,其中至少对所述打开的一组光阑所对应的各显示单元的像素加载光信息;
ssssss 5所述P组光阑分别只有一组选通时的P种状态和所述N组通光孔径子阵列分别只有一组选通时的N种状态,组合成形成PN个状态,分别对应PN个相邻时间点,其中,对于该PN个相邻时间点中的至少部分时间点,分别在该至少部分时间点的每个时间点,对应地执行ssssss3~ssssss4步骤。
优选地,上述第六种时空混合复用的三维显示方法,还包括步骤sssssss6:重复步骤ssssss5。
优选地,上述第六种时空混合复用的三维显示方法中,所述三维显示系统包括追踪单元,该追踪单元用于追踪和确定观察者双目的空间位置;和
调节单元,该调节单元用于调节所述显示单元阵列中各显示单元和所述导向器件间的相对位置,或用于改变所述导向器件的光学性质,使所述显示单元阵列各显示单元经所述导向器件所成主像相对所述导向器件发生平移;
所述时空混合复用的三维显示方法还包括步骤ssssss7:根据观察者双目所在位置,通过调节单元调节所述显示单元阵列中各显示单元和所述述导向器件间的相对位置,或改变所述导向器件的光学性质,使所述显示单元阵列各显示单元经所述导向器件所成主像相对所述导向器件平移,以保证位置发生了变化的观察者双目可以接收到系统出射光信息,并针对显示单元和导向器件间新的位置关系,重新执行步骤ssssss1~ssssss6。
本发明的有益效果是:本发明通过时空混合复用,在像素空间复用的基础上,由于 加入了时间复用,进一步提高的显示屏的有效复用度,可以有效提高呈现视图的数量和角密度,提升观察者的三维观感效果。
附图说明
图1为本发明所述采用I型导向器件进行显示的三维显示系统光路图。
图2为本发明所述采用I型导向器件进行显示时单选区的设定原理示意图。
图3为本发明所述采用I型导向器件进行显示时视区分布示意图。
图4为本发明所述采用I型导向器件,观察者双目空间位置相对固定时,可切除区分布示意图。
图5为本发明所述辅助转向装置的一个单元结构图。
图6为本发明所述辅助合成装置的一个单元结构图。
图7基于正交偏振态的像素分立屏甄别示意图。
图8基于光束传输方向的像素分立屏甄别示意图。
图9为引入具有时序特性导向器件选通单元的、采用I型导向器件进行显示的系统光路图。
图10为时序特性导向器件选通单元选通I型导向器件不同组小透镜孔径时的工作原理示意图。
图11导向器件选通单元对显示面附近非主像的遮挡效应。
图12为本发明所述采用II型导向器件进行显示的三维显示系统光路图。
图13为本发明所述采用平面结构的III型导向器件进行显示的三维显示系统光路图。
图14为本发明所述采用III型导向器件进行显示时单选区的形成示意图。
图15为本发明所述采用平面结构的IV型导向器件进行显示的三维显示系统光路图。
图16为本发明所述采用曲面结构的III型导向器件进行显示的三维显示系统光路图。
图17为本发明所述采用曲面结构的IV型导向器件进行显示的三维显示系统光路图。
图18为本发明所述以平面排列结构实现曲面结构效果的小透镜/小棱镜组结构示意图。
10:显示单元阵列                    11:显示单元
20:导向器件                        21:小透镜
22:大尺寸凹透镜                    23:大尺寸凸透镜
24:小棱镜                          30:挡光板阵列
31:挡光板                          40:通光孔径阵列
50:控制单元                        60:追踪单元
70:调节单元                        80:辅助转向装置
90:辅助合成装置                    100:导向器件选通单元
110:散射片
具体实施方式
为了更详细的解释本专利所提出的一种时空混合复用的三维显示方法,以下结合附图,对本发明进行详细阐述。应当理解,此处所描述的实施例仅仅是用以解释本发明的设计,并不用于限定本发明。
实施例1:
采用小透镜阵列(21、21′等)和大尺寸凹透镜22组成的I型导向器件20,如图1所示,显示单元阵列10的各显示单元(11、11′等)和I型导向器件20的各小透镜(21、21′等)一一对应。显示单元位于对应小透镜的焦平面上(焦距f 1),各显示单元和各小透镜之间采用同样的相对空间位置关系放置。各显示单元也可以为一整块显示屏的各不同像素部分。各显示单元经对应小透镜和大尺寸凹透镜22所成像命名为其主像,各显示单元的主像重合于大尺寸凹透镜22焦平面上(焦距f 2)的投影区,也即图1中所示像平面上的P x1P x2区域。若大尺寸凹透镜22的孔径无法收集所有显示芯片经对应小透镜出射的光,也即大尺寸凹透镜22的孔径无法完全覆盖所有小透镜,显示芯片上出射光束经对应小透镜未入射凹透镜的像素,在以下过程中作为无效像素。挡光板阵列30置于显示单元阵列10和I型导向器件20之间,如图1所示。经挡光板阵列30各挡光板(31、31′等)的遮挡,各显示单元只能通过各自对应小透镜的孔径出射光信息。沿显示单元阵列10出射光束的传输方向,通光孔径阵列40置于I型导向器件的前面,由多个通光孔径组成,各通光孔径分别对应一个空间参考点,其开关可以选通或截止过对应空间参考点的、等效源自显示单元阵列10显示单元主像的光线。通光孔径阵列40又分为两组或多组通光孔径子阵列,以图1为例,其3组通光孔径子阵列分别对应空间参考点VP x11、VP x12、VP x13、VP x14、VP x15、VP x16、VP x17、VP x18、VP x19,空间参考点VP x21、VP x22、VP x23、VP x24、VP x25、VP x26、VP x27、VP x28,和空间参考点VP x31、VP x32、VP x33、VP x34、VP x35、VP x36、VP x37、VP x38。这些空间参考点所具有的特性在于,过同一组通光孔径子阵列对应不同空间参考点、等效源自显示单元主像的光线,来源于显示单元阵列10上的不同 像素。图1中,同一组通光孔径子阵列对应空间参考点中,相邻空间参考点,如VP x11和VP x12,相对于像平面上一点,如点P x1,的夹角在I型导向器件20的大尺寸凹透镜22所在面上覆盖尺寸等于或大于相邻小透镜间距时,过该组空间参考点、等效源自显示单元主像的光线,将源自显示单元阵列10上的不同像素。
图1中,各空间参考点置于了一个平面上。实际上,在满足过同一组通光孔径子阵列对应不同空间参考点、等效源自显示单元主像的光线来源于显示单元阵列10上的不同像素的前提条件下,各空间参考点可以是非共面的,这也适用于下述其它实施例。图1中,各空间参考点被置于对应通光孔径面上,且以下实例中,为了清晰简单的图示效果,空间参考点都被置于对应通光孔径面上。实际上,在本实施例及以下实施例中,在一个空间孔径的开关可以选通或截止过对应空间参考点的、等效源自显示单元主像的光线的前提下,各空间参考点也可以不在对应通光孔径面上,甚至各通光孔径本身就是非平面的,且各通光孔径可以为多种形状结构,甚至两个或多个任意形状孔的组合,这也适用于下述其它实施例。
相对于像平面上的一点,图1所示同组通光孔径子阵列对应空间参考点以近似均匀角间距的方式排列的,这种排列方式有利于获得较好的三维显示效果。但该均匀或近似均匀分布的排列方式也并不是强制性的。由同一显示单元出射,经对应小透镜入射大尺寸凹透镜22的光线中,经大尺寸凹透镜22后反向延长线分别会聚于该显示单元像在像平面上边点的两组平行光线,在大尺寸凹透镜22上共同覆盖一个区域,如图2中的
Figure PCTCN2018103374-appb-000001
区域。对应显示单元像的边点和
Figure PCTCN2018103374-appb-000002
区域边点的连线交于两点,如图2中的点q 3和q 4。命名区域
Figure PCTCN2018103374-appb-000003
为该显示单元对应的单选区(包含边线)。同理,各显示单元都分别对应一个单选区。只要同一通光孔径子阵列对应的各空间参考点分别位于不同单选区时,过该组通光孔径子阵列对应不同空间参考点、等效源自显示单元主像的光线,将分别来自显示单元阵列10的不同显示单元,也满足过同一组通光孔径子阵列对应不同空间参考点、等效源自显示单元主像的光线源自显示单元阵列10上的不同像素的要求。
图1和图2所示光学结构及其相关空间参考点的选取原理都是沿一维x方向(行方向)进行解释和说明的,同理可以扩展至第二维y方向(列方向)。
根据上述空间参考点的选取原理及通光孔径的设计原则,确定N(≧1)组通光孔径子阵列及其对应空间参考点。对各通光孔径,通过光线逆向追踪,确定过其对应空间参考点、等效源自显示单元主像的各光线在显示单元阵列10上的来源像素及该来源像素经I型导向器件20在投影区上所成的像,也即各空间参考点对应的像素及其像。在一个时间点,打开一组通光孔径子阵列,同时关闭其它通光孔径;各打开通光孔径对应 空间参考点所对应各像素,以该空间参考点为视点,由控制单元50同步加载目标物体在其像上的投影信息;相邻的N个时间点,N组通光孔径子阵列依次打开,基于上步方法同步加载信息到显示单元阵列各像素。重复上述过程,过每一个空间参考点,像平面上即呈现一个对应该空间参考点的视图。当通光孔径子阵列的开关频率足够高,空间参考点的分布足够密集,基于视觉滞留,沿光束传输方向,在空间参考点的前面的一个区域内,即图3所示的视区内,即可观察到目标物体的三维信息。沿列方向同理。在该过程中,在一个时间点,也可以是一组通光孔径子阵列的部分通光孔径打开,此时该组通光孔径子阵列中未打开通光孔径对应空间参考点对应像素,在该时间点无需加载信息。
沿列方向的通光孔径阵列只由一组通光孔径子阵列组成时,也即沿列向一个显示单元只对应一个通光孔径时,或者说所有通光孔径子阵列是沿行方向划分的,此时存在另外一种信息加载方法:取一行通光孔径作为基准通光孔径行,其各通光孔径打开时,对应空间参考点所对应的像素,以该空间参考点为视点,由控制单元50同步加载目标物体在其像上的投影信息;但属于其它非基准通光孔径行的各通光孔径打开时,其对应空间参考点所对应的像素,同步加载基准通光孔径行中同列通光孔径在打开时对应空间参考点对应像素加载的光信息。该种信息加载方式下,列方向不再显示三维视差信息,仅沿行方向向呈现三维信息。在该过程中,在一个时间点,也可以是一组通光孔径子阵列的部分通光孔径打开,此时该组通光孔径子阵列中未打开通光孔径对应空间参考点对应像素,在该时间点无需加载信息。
追踪单元60启用,可以确定观察者的双目位置。根据观察者的双目位置,可以控制系统仅显示双目处较小空间范围内需要的信息,降低信息计算量。当观察者双目对系统的空间位置相对固定的时候,对入射观察者双目的光线没有贡献、或贡献不是必须的相关器件,将对三维显示效果产生非必须的作用,可以去除,如图4中所示可切除区内的显示单元、小透镜,甚至大尺寸凹透镜22的部分。
当观察者双目移动到图3所示视区之外时,由追踪单元得到的观察者双目具体位置,通过图4所示调节单元70,调节显示单元阵列10中各显示单元和上述I型导向器件20间的相对位置,使显示单元阵列10各显示单元经I型导向器件20所成的像相对上述I型导向器件20平移,同时也使视区相对于导向器件20发生相对移动,以使双目一直处于显示系统的视区内。显示单元相对I型导向器件20的位置调节,可以通过移动显示单元阵列10实现,也可以通过移动I型导向器件20实现,在各显示单元为一整块显示屏的各不同部分像素时,甚至可以通过重新划分各小透镜对应的显示单元像素来实现。在这一过程中,挡光板阵列30的空间姿态也要随之改变。视区的移动,也可以通过改 变上述I型导向器件20的光学性质来实现,比如当I型导向器件20中的小透镜是光心可变透镜时,根据观察者双目,改变各小透镜的光心,也可以使各显示单元的像和视区相对I型导向器件20发生平移。该追踪单元60和调节单元70同样适用于本发明专利的其它实施例。
上述图1-4对应的光学结构中,各显示单元和对应小透镜都是平行放置,以确保该显示单元处于对应小透镜的焦平面。以下实施例中相关各图中,所示显示单元也都是和I型导向器件20或其所包括的对应小透镜平行放置的,以确保该显示单元处于对应小透镜的焦平面或经对应小透镜成比较理想的成像。采用辅助转向装置8,辅助转向装置8包括一个或多个转向单元,在本发明所述系统中,其各转向单元可以使相对小透镜或I型导向器件20非平行放置的显示单元等效为平行放置,如图5所示。此处特例的辅助转向装置80为直角反射装置阵列,图5所示仅为其一个单元,更复杂的结构,比如曲面的折衍反器件、全息器件等,在实现转向功能的前提下,都可以作为辅助转向装置80或其单元。该辅助转向装置80同样适用于本发明专利的其它实施例。
上述图1-4所示光学结构中,当各显示单元是由两个或多个分立的像素屏组成时,辅助合成装置90可以使该两个或多个分立像素屏出射光束经对应合成单元,入射对应小透镜或I型导向器件20。以一个显示单元对应两个像素分立屏为例,如图6所示,此处特例的辅助合成装置为分光反射棱镜阵列,图6具体地以显示单元/分光反射棱镜对阵列中的一对来进解释辅助合成装置的工作原理。该显示单元对应的不同分立屏经对应分光反射棱镜,可以等效为以平行于小透镜的方式入射I型导向器件20,然后成像。不同的显示单元,其成像有两种情况:成像在不同深度和成像于相同深度。在第一种情况下,系统将在两个或多个不同深度面上形成多个像平面,各像平面分别负责显示该像平面附近区域的三维信息,从而增加系统的显示深度。在第二种情况下,过各小透镜孔径,该小透镜对应显示单元各分立像素屏的像可以等效看成重合于相同深度上的、可分别加载不同光信息的不同显示面。当各显示单元对应的不同像素分立屏经I型导向器件20,重合于同一像平面上时,同一显示单元不同像素分立屏要在同一时刻,显示不同信息给不同的通光孔径。也即是说,同一显示单元的q个像素分立屏,要在同一个时间点,分别排它性经q个孔径出射光信息。在这种情况下,各通光孔径子阵列进一步分为q组子子阵列,属于各子子阵列的通光孔径具有相同的特性,同一通光孔径子阵列的不同子子阵列的通光孔径,要具有甄别不同像素分光屏的能力,此处以图7所示辅助合成装置的一个特例单元为例进行说明,一个显示单元对应q=2个像素分立屏,两个像素分立屏出射光信息经辅助合成装置中对应单元后分别具有水平“-”和竖直“﹒”方向两个正交的 偏振态。通光孔径A 1和A 3打开时只允许水平偏振的光通过,A 2和A 4打开时只允许竖直偏振的光通过。该四个通光孔径中的两个不同特性的属于同一组通光孔径子阵列,例如A 1和A 2一起属于一组通光孔径子阵列,但同时不同特性的A 1和A 2又属于该子阵列的两个不同子子阵列;同样,A 3和A 4一起属于另一组通光孔径子阵列,但同时不同特性的A 3和A 4又属于该子阵列的两个不同子子阵列。在一个时间点,同属同一通光孔径子阵列的A 1和A 2打开,A 1所在子子阵列对应的各空间参考点在分立屏1上对应的像素,以该空间参考点为视点,由控制单元50同步加载目标物体在其像上的投影信息;A 2所在子子阵列对应的各空间参考点在分立屏2上对应的像素,以该空间参考点为视点,由控制单元50同步加载目标物体在其像上的投影信息;下一个相邻时间点,同属另一通光孔径子阵列的A 3和A 4打开,A 3所在子子阵列对应的各空间参考点在分立屏1上对应的像素,以该空间参考点为视点,由控制单元50同步加载目标物体在其像上的投影信息;A 4所在子子阵列对应的各空间参考点在分立屏2上对应的像素,以该空间参考点为视点,由控制单元50同步加载目标物体在其像上的投影信息;如此重复。其它显示单元也同理同步进行上述过程。在图7中所示例子中,像素分立屏1和像素分立屏2可以是本身出射光具有正交偏振态,也可以是经辅助合成装置中对应单元后具有正交的偏振态,比如辅助合成装置的单元为偏振分光镜。图7以偏振态为特性来甄别不同的像素分立屏,该特性也可以时其它正交特性,如自旋态、互补色等,只要各通光孔径子阵列中不同子子阵列的通光孔径可以在打开时排它性地通过来自不同像素分立屏的光信息。图8显示了一种通过光传输方向对显示单元不同像素分立屏进行甄别的原理。这里以辅助合成装置的一个特例单元为例进行说明,该单元为棱镜P 1、P 2、P 3、P 4组成的阵列。此处简单地令棱镜P 2和P 4的偏折角为0°。由于棱镜的折射作用,像素分立屏1经棱镜P 2和P 4的折射像和像素分立屏2经棱镜P 1和P 3的折射像重合,可以随后经导向器件10成像于像平面的投影区。同时,像素分立屏2经棱镜P 2和P 4的折射像、像素分立屏1经棱镜P 1和P 3的折射像,经过导向器件10后,将处于像平面上的投影区外,不影响三维显示内容。在这种情况下,各通光孔径子阵列中,属于相同子子阵列的各通光孔径置于同类棱镜的孔径上,属于不同子子阵列的各通光孔径分别置于不同类棱镜的孔径上,可以通过光传输方向来甄别同一显示单元对应的不同像素分立屏。该辅助合成装置90及同样适用于本发明专利的其它实施例。
图1、图4和图8相关实例中,沿显示单元/小透镜阵列排列方向,都是以显示单元尺寸不大于小透镜间距为例进行的说明。当引入具有时序特性的导向器件选通单元100时,如图9,各显示单元尺寸可以大于对应的小透镜尺寸。导向器件选通单元100由两 组或多组光阑组成,用来在每个时刻点,选通导向器件20小透镜阵列的一组子阵列,同时遮挡其它小透镜的通光孔径,各小透镜子阵列的小透镜是依次间隔排列的。以小透镜阵列分为P=2组为例进行说明,如图9,两组小透镜子阵列的小透镜相间排列。在一组相邻的N个时间点,导向器件选通单元100允许小透镜21、21″等所组成小透镜子阵列各小透镜的孔径通光,同时遮挡其它小透镜的通光孔径;在其中的一个时间点,打开一组通光孔径子阵列,同时关闭其它通光孔径;各打开通光孔径对应空间参考点所对应各像素,以该空间参考点为视点,由控制单元50同步加载目标物体在其像上的投影信息;该相邻的N个时间点,N组通光孔径子阵列依次打开,基于上步方法同步加载信息到显示单元阵列各像素。在下一组相邻的N个时间点,导向器件选通单元100允许小透镜21′、21″′等所组成小透镜子阵列各小透镜的孔径通光,同时遮挡其它小透镜的通光孔径,如图10;在其中的一个时间点,打开一组通光孔径子阵列,同时关闭其它通光孔径;各打开通光孔径对应空间参考点所对应各像素,以该空间参考点为视点,由控制单元50同步加载目标物体在其像上的投影信息;该相邻的N个时间点,N组通光孔径子阵列依次打开,基于上步方法同步加载信息到显示单元阵列各像素。相邻小透镜对应的显示单元发生空间重叠时,各显示单元为一整块显示屏的各不同部分像素,相邻小透镜对应的显示单元为不同时刻从整块显示屏上选用的部分重叠的不同区域像素。在上述过程中,PN=2N时间点对应有2N个状态,该2N个状态的时序,可以也可以任意调整。若有小透镜阵列分为更多组子阵列,同理处理。上述过程,P在不同值间切换时,需要调节单元10根据需要调整挡光板阵列30各挡光板的空间姿态,如图9到图10的变化。
图1至图8相关实例中,挡光板阵列30用来使各显示单元出射光只经导向器件20中对应小透镜孔径出射。移除挡光板阵列30时,各显示单元出射光经非对应小透镜,同时会在主像所在区域外成像,虽然不会作为噪声叠加于投影区,但也可能进入观察者双目而影响显示。在该种情况下,时序特性的导向器件选通单元100通过间隔排列的不同组小透镜子阵列的时序相间关闭,可以去除主像所在投影区附近的无用非主像,提升显示效果。以小透镜阵列分为P=2组为例进行说明,两组小透镜子阵列的小透镜相间排列,如图11。导向器件选通单元100选通导向器件20小透镜阵列的一组子阵列,同时遮挡其它小透镜的通光孔径。在一组相邻的N个时间点,导向器件选通单元100允许小透镜21、21″等所组成小透镜子阵列各小透镜的孔径通光,同时遮挡其它小透镜的通光孔径,同时被遮挡小透镜对应的显示单元在该N个时间点不显示光学信息;在其中的一个时间点,打开一组通光孔径子阵列,同时关闭其它通光孔径;各打开通光孔径对应空间参考点在选通各小透镜对应显示单元上所对应各像素,以该空间参考点为视点,由控 制单元50同步加载目标物体在其像上的投影信息。在下一组相邻的N个时间点,导向器件选通单元100允许小透镜21′、21″′等所组成小透镜子阵列各小透镜的孔径通光,同时遮挡其它小透镜的通光孔径,同时被遮挡小透镜对应的显示单元在该N个时间点不显示光学信息;N组通光孔径子阵列依次打开,基于上步方法同步加载信息到选通各小透镜对应显示单元阵列各像素。在此过程中,若各选通小透镜对应显示单元像素出射光束因发散角有限而无法入射同时选通小透镜中相邻小透镜时,在无挡光板阵列30的情况下,可以实现无非主像干扰存在的三维呈现。若某选通小透镜对应显示单元像素出射光束可以入射同时选通小透镜中相邻小透镜,其所形成的干扰性的非主像也离投影区较远,对三维显示的影响有限。上述PN=2N个时间点对应有2N个状态,该2N个状态的时序,可以也可以任意调整。若有小透镜阵列分为更多组子阵列,同理处理。若采用排它性特性的导向器件选通单元100时,比如在图11中,导向器件选通单元100相邻光阑为通光方向正交的两个偏振片,相邻通显示单元出射光也分别具有对应的偏振态,各显示单元出射光能通过对应小透镜所对应光阑,不能通过对应小透镜相邻小透镜所对应光阑。由于各显示单元出射光无法穿过相邻的非对应小透镜,可以同理实现无非主像干扰、或非主像干扰距离投影区较远的三维显示。在该过程中,在一个时间点,也可以是一组光阑中的部分光阑和一组通光孔径子阵列的部分通光孔径打开,此时过打开通光孔径对应空间参考点对应像素,在对应主像上等效发出的光线被光阑遮挡时,该像素无需加载信息。
本实施例上述结构中,可以以大尺寸凸透镜代替I型导向器件中的大尺寸凹透镜,也即采用II型导向器件,如图12。基于本实施例中上述的类似方法和过程,采用II型导向器件的系统也可以同样实现三维显示。
采用II型导向器件时,各显示单元主像为实像,可以置一维散射片110于显示单元主像重合的显示区,如图12中沿垂向散射的入射光的散射片110。沿水平x轴,一行显示单元/小透镜对如图12排列;沿垂直y向,相同结构的多行显示单元/小透镜对依次排列,但不同行显示单元/小透镜对对应的空间参考点,沿水平方向依次错位排列。在一个时间点,一组通光孔径子阵列的通光孔径打开,其它通光孔径关闭;取沿x轴的通光孔径作为基准通光孔径行,其各打开通光孔径对应空间参考点所对应的像素,以该空间参考点为视点,同步加载目标物体在其像上的投影信息;同时,其它行所打开各通光孔径对应空间参考点所对应的像素,在沿列向虚拟平移该空间参考点至基准通光孔径行的前提下,以平移后的虚拟空间参考点为视点,同步加载目标物体在其像上的投影信息。在相邻的多个时间点,多组通光孔径子阵列依次打开,如上同步加载信息。重复此过程, 并经散射片110沿y向的散射,最终实现仅有x向视差的三维呈现。类似于图10相关应用,在图12所示结构中同样可以引入导向器件选通单元100,经导向器件选通单元100和通光孔径阵列40的共同选通,在对应像素上同步加载信息。且类似地,一个时间点,一种通光孔径子阵列和导向器件选通单元100一组光阑中都可以是部分被打开。
实施例2:
图13所示III型导向器件20由平面排列的小透镜阵列(21、21′等)组成,显示单元阵列10的各显示单元(11、11′等)和导向器件20的各小透镜(21、21′等)一一对应。各显示单元相对对应小透镜以物距u放置,各显示单元/小透镜对以特定偏心距离放置,如图13中的δ 1、δ 2、δ 3等,以使各显示单元的关于对应小透镜的主像重合于像平面的投影区P x1P x2区域。图13所示的特例中,中间位置的显示单元/小透镜对中显示单元中心和小透镜光轴间的偏心距离设为了δ 5=0。实际上,各偏心距离的值可以设为其它的值,只要各偏心距离的设置可以保证使各显示单元的像重合于像平面一共同区域。导向器件选通单元100各光阑分别处于导向器件20的各小透镜孔径上,若采用时序特性的导向器件选通单元100,对应导向器件选通单元100各组光阑的各组小透镜子阵列将被时序选通,若采用排它性特性的导向器件选通单元100,各显示单元出射光需要具有只能通过其对应小透镜所对应光阑,也能通过该光阑的同组光阑,但不能通过与该光阑不同组的光阑的特性。沿显示单元阵列10出射光束的传输方向,通光孔径阵列40置于导向器件的前面,由多个通光孔径组成,各通光孔径分别对应一个空间参考点,其开关可以选通或截止过对应空间参考点的、等效源自显示单元阵列10显示阵列主像的光线。通光孔径阵列40又分为两组或多组通光孔径子阵列,以图13为例,其3组通光孔径子阵列分别对应空间参考点VP x11、VP x12、VP x13、VP x14、VP x15、VP x16、VP x17、VP x18、VP x19,空间参考点VP x21、VP x22、VP x23、VP x24、VP x25、VP x26、VP x27、VP x28,和空间参考点VP x31、VP x32、VP x33、VP x34、VP x35、VP x36、VP x37、VP x38。这些空间参考点所具有的特性在于,过同一组通光孔径子阵列对应不同空间参考点的、等效源自显示单元主像的光线,来源于显示单元阵列10上的不同像素。以图13所示为例,同一组通光孔径子阵列对应空间参考点中,相邻空间参考点,如VP x11和VP x12,相对于像平面上一点,如点P x1,的夹角在导向器件20的小透镜所在面上覆盖尺寸等于或大于相邻小透镜间距时,过该组空间参考点的光线,将源自显示单元阵列10上的不同像素。
图13中,各空间参考点置于了一个平面上。实际上,在满足过同一组通光孔径子阵列对应各空间参考点的光线来源于显示单元阵列10上的不同像素的前提条件下,各空间参考点可以是非共面的,这也适用于下述其它实施例。图13中,各空间参考点被 置于对应通光孔径面上,且以下实例中,为了清晰简单的图示效果,空间参考点都被置于对应通光孔径面上。实际上,在本实施例及以下实施例中,在一个空间孔径的开关可以选通或截止过对应空间参考点的、来源于显示单元阵列10的光线的前提下,各空间参考点也可以不在对应通光孔径面上,甚至各通光孔径本身就是非平面的,这也适用于下述其它实施例。
相对于像平面上的点,图13所示同组通光孔径子阵列对应空间参考点是以近似均匀角间距的方式排列的,这种排列方式有利于获得较好的三维显示效果。但均匀或近似均匀角间距的排列方式也并不是强制性的。令小透镜21′的边点为q 1和q 2,如图14所示,连线该两点与该小透镜对应显示单元像的两边点,即图11中的点P x1和P x1,交于点q 3和q 4。命名区域
Figure PCTCN2018103374-appb-000004
为该显示单元对应的单选区(含边界)。同样道理各显示单元都分别对应一个单选区。只要同一通光孔径子阵列对应的各空间参考点分别位于不同单选区时,无论其是否采用等角间距排列的方式,过该组通光孔径子阵列对应不同空间参考点的、等效源自显示单元主像的光线,将源自显示单元阵列10上的不同像素。在相邻小透镜毗邻放置时,相临小透镜的边点是重合的,此时,相邻单选区会出现一个重合点,如图14中的点q 1和q 2。在这种情况下,处于不同单选区的各空间参考点的选取,要以不重合为前提进行选取。该空间参考点的选取原则,也适用于以下的各实例。图13中各小透镜为凸透镜,在经对应小透镜,各显示单元成重合虚像的前提下,图13中各小透镜也可以是凹透镜。
图13和图14所示光学结构及其相关空间参考点的选取都是沿一维x方向(行方向)进行解释和说明的,同理可以扩展至第二维y方向(列方向)。
根据上述空间参考点的选取原理及通光孔径的设计原则,确定N(≧1)组通光孔径子阵列和对应空间参考点。对各通光孔径,通过光线逆向追踪,确定过其对应空间参考点、等效源自显示单元主像的各光线在显示单元阵列10上的来源像素及其经导向器件20在显示单元主像上所成的像。在一个时间点,打开一组通光孔径子阵列,同时关闭其它通光孔径,各打开通光孔径对应空间参考点所对应各像素,以该空间参考点为视点,由控制单元50同步加载目标物体在其像上的投影信息;在采用排它性特性导向器件选通单元100时,相邻的N个时间点,N组通光孔径子阵列依次打开,同理加载信息到显示单元阵列各像素。重复上述过程,过每一个空间参考点,投影区上即呈现一个对应该空间参考点的视图。当通光孔径子阵列的开关频率足够高,空间参考点的分布足够密集,基于视觉滞留,沿光束传输方向,在空间参考点的前面的一个区域内,即类似于图3所示的视区内,即可观察到目标物体的三维信息。沿y方向同理类似。在该过程中, 在一个时间点,也可以是一组通光孔径子阵列的部分通光孔径打开,此时该组通光孔径子阵列中未打开通光孔径对应空间参考点对应像素,在该时间点无需加载信息。
在采用时序特性导向器件选通单元100时,以其包含P=2组光阑为例,小透镜阵列也分为P=2组子阵列,两组小透镜子阵列的小透镜相间排列,如图13。导向器件选通单元100选通导向器件20小透镜阵列的一组子阵列,同时遮挡其它小透镜的通光孔径。在一组相邻的N个时间点,导向器件选通单元100允许小透镜21、21″等所组成小透镜子阵列各小透镜的孔径通光,同时遮挡其它小透镜的通光孔径,同时被遮挡小透镜对应的显示单元在该N个时间点不显示光学信息;在其中的一个时间点,打开一组通光孔径子阵列,同时关闭其它通光孔径;各打开通光孔径对应空间参考点在选通各小透镜对应显示单元上所对应各像素,以该空间参考点为视点,由控制单元50同步加载目标物体在其像上的投影信息。在下一组相邻的N个时间点,导向器件选通单元100允许小透镜21′、21″′等所组成小透镜子阵列各小透镜的孔径通光,同时遮挡其它小透镜的通光孔径,同时被遮挡小透镜对应的显示单元在该N个时间点不显示光学信息;N组通光孔径子阵列依次打开,基于上步方法同步加载信息到选通各小透镜对应显示单元阵列各像素。重复上述过程,同理实现三维显示。在上述过程中,也允许相邻小透镜对应的显示单元空间上相互重叠,类似于图9和图10所示情况。当导向器件选通单元100移除时,上述过程不再考虑导向器件20各小透镜的开关,只要考虑N组通光孔径子阵列的时序开关。相邻的N个时间点,N组通光孔径子阵列依次打开,采用上述同样的原理加载信息到显示单元阵列各像素。重复上述过程,过每一个空间参考点,投影区上即呈现一个对应该空间参考点的视图。当通光孔径子阵列的开关频率足够高,空间参考点的分布足够密集,基于视觉滞留,沿光束传输方向,在空间参考点的前面的一个区域内,即类似于图3所示的视区内,即可观察到目标物体的三维信息。在此时,各显示单元经对应小透镜相邻透镜所成的非主像,作为无用信息呈现于离主像所在的投影区较近的位置。进一步在系统中置入挡光板阵列30,类似于图1所示,挡光板阵列30各挡光板将挡除各显示单元的非主像。基于图9和图10所示原理,在图13所示系统中,也可以通过引入时序特性的导向器件选通单元100,使各小透镜对应显示单元具有较大尺寸。
沿y方向的通光孔径阵列只由一组通光孔径子阵列组成时,也即沿y向一个显示单元只对应一个通光孔径时,也存在另外一种信息加载方法:取一行通光孔径作为基准通光孔径行,其各通光孔径打开时,其对应空间参考点所对应各像素,以该空间参考点为视点,由控制单元50同步加载目标物体在其像上的投影信息;但属于其它非基准通光孔径行的各通光孔径打开时,其对应空间参考点所对应的像素,同步加载基准通光孔径 行中同列通光孔径在打开时所对应空间参考点对应像素加载的光信息。该种信息加载方式下,y方向不再显示三维视差信息,仅沿x方向呈现三维信息。
若追踪单元60启用,则可以确定观察者的双目位置。根据观察者的双目位置,可以控制系统仅显示双目处较小空间范围内需要的信息,降低信息计算量。当观察者双目对系统的空间位置相对固定的时候,图13结构中,可以将部分显示单元/小透镜对去除,只保留全部或部分对进入观察者双目的光学信息有贡献的显示单元/小透镜对。
实施例1中图5~8所述的辅助转向装置80和辅助合成装置90,同理可用于图13所示系统。
图13中平面排列各显示单元经对应小透镜成实像时,也即采用平面结构的IV型导向器件时,如图15,通过类似的上述过程,可以同样地实现三维显示。
采用IV型导向器件时,各显示单元主像为实像,可以置一维散射片110于显示单元主像重合的显示区,如图15中沿垂向散射的入射光的散射片110。沿水平x轴,一行显示单元/小透镜对如图15排列;沿垂直y向,相同结构的多行显示单元/小透镜对依次排列,但不同行显示单元/小透镜对对应的空间参考点,沿水平方向依次错位排列。在一个时间点,一组通光孔径子阵列的通光孔径打开,其它通光孔径关闭;取沿x轴的通光孔径作为基准通光孔径行,其各打开通光孔径对应空间参考点所对应的像素,以该空间参考点为视点,同步加载目标物体在其像上的投影信息;同时,其它行所打开各通光孔径对应空间参考点所对应的像素,在沿列向虚拟平移该空间参考点至基准通光孔径行的前提下,以平移后的虚拟空间参考点为视点,同步加载目标物体在其像上的投影信息。在相邻的多个时间点,多组通光孔径子阵列依次打开,如上同步加载信息。重复此过程,并经散射片110沿y向的散射,最终实现仅有x向视差的三维呈现。
实施例3:
III型导向器件20可以采用曲面排列小透镜阵列(21、21′等),如图16,显示单元阵列10的各显示单元(11、11′等)和导向器件20的各小透镜(21、21′等)一一对应。各显示单元经对应小透镜所成主像在O点相交。为了图像的清楚可视,图16仅以两组显示单元/小透镜对为例进行说明。导向器件选通单元100各光阑分别处于导向器件20的各小透镜孔径上,若采用时序特性的导向器件选通单元100,不同组的小透镜子阵列将被时序选通,若采用排它性特性的导向器件选通单元100,各显示单元出射光需要具有只能通过其对应小透镜所对应光阑所在组光阑,但不能通过与其它组光阑的特性。沿显示单元阵列10出射光束的传输方向,通光孔径阵列40置于导向器件的前面,由多个通光孔径组成,各通光孔径分别对应一个空间参考点,其开关可以选通或截止过对应空间参考 点的、等效来源于显示单元阵列10显示单元主像的光线。通光孔径阵列40又分为两组或多组通光孔径子阵列,以图16为例,其3组通光孔径子阵列分别对应空间参考点VP h11、VP h12,空间参考点VP h21、VP h22,和空间参考点VP h31、VP h32。这些空间参考点所具有的特性在于,过同一组通光孔径子阵列所对应不同空间参考点、等效来源于显示单元阵列10显示单元主像的光线,来源于显示单元阵列10上的不同像素。以图16所示为例,同一组通光孔径子阵列对应空间参考点中,相邻空间参考点,如VP h11和VP h12,相对于O点夹角等于或大于相邻显示单元/小透镜对相对于O点夹角时,过该组空间参考点、等效来源于显示单元阵列10显示单元主像的光线,将源自显示单元阵列10上的不同像素。
图16中,各空间参考点被置于对应通光孔径面上,且以下实例中,为了清晰简单的图示效果,空间参考点都被置于对应通光孔径面上。实际上,在本实施例中,在一个空间孔径的开关可以选通或截止过对应空间参考点的、等效来源于显示单元阵列10显示单元主像的前提下,各空间参考点也可以不在对应通光孔径面上,甚至各通光孔径本身就是非平面的。
相对于点O,图16所示同组通光孔径子阵列对应空间参考点以均匀角间距的方式排列的,这种排列方式有利于获得较好的三维显示效果。但该近似均匀角间距的排列方式也并不是强制性的。令小透镜21的边点为q 1和q 2,如图16所示,连线该两点与该小透镜对应显示单元像的两边点,即图16中的点E和F,交于点q 3和q 4。命名区域
Figure PCTCN2018103374-appb-000005
为显示单元11所对应的单选区(含边线)。同理,各显示单元都分别对应一个单选区。只要同一通光孔径子阵列对应的各空间参考点分别位于不同单选区时,无论其是否采用均匀角间距的排列方式,过该组通光孔径子阵列对应不同空间参考点、等效来源于显示单元阵列10显示单元主像的光线,将分别来自显示单元阵列10的不同显示单元,满足过同一组通光孔径子阵列对应不同空间参考点、等效来源于显示单元阵列10显示单元主像的光线源自显示单元阵列10上的不同像素的要求。
图16所示光学结构及其相关空间参考点的选取原理都是一维方向(行方向)进行解释和说明的,同理可以扩展至另一维的列方向。沿列方向,小透镜阵列可以沿直线排列,也可以沿曲线排列;其中沿直线排列时,各显示单元中心相对于对应小透镜光轴沿列向具有特定的空间偏移,以保证列向上各显示单元的像重合;沿列向曲线排列时,类似图13所示的行向曲面排列的情况。
根据上述空间参考点的选取原理及通光孔径的设计原则,确定N(≧1)组通光孔径子阵列和对应空间参考点。对各通光孔径,通过光线逆向追踪,确定过其对应空间参 考点、等效来源于显示单元阵列10显示单元主像的各光线在显示单元阵列10上的来源像素及其经导向器件20在显示单元主像上所成像。
在一个时间点,打开一组通光孔径子阵列,同时关闭其它通光孔径,各打开通光孔径对应空间参考点所对应各像素,以该空间参考点为视点,由控制单元50同步加载目标物体在其像上的投影信息;在采用排它性特性导向器件选通单元100时,相邻的N个时间点,N组通光孔径子阵列依次打开,同理加载信息到显示单元阵列各像素。重复上述过程,过每一个空间参考点,像平面上即呈现一个对应该空间参考点的视图。当通光孔径子阵列的开关频率足够高,空间参考点的分布足够密集,基于视觉滞留,沿光束传输方向,在空间参考点的前面的一个区域内,即图3所示的视区内,即可观察到目标物体的三维信息。沿另一维列向方向,同理类似。
在采用时序特性导向器件选通单元100时,以其包含P=2组光阑为例进行说明,小透镜阵列也分为P=2组子阵列。如图16,两个小透镜分属不同的子阵列。导向器件选通单元100选通导向器件20小透镜阵列的一组子阵列,同时遮挡其它小透镜的通光孔径。在一组相邻的N个时间点,导向器件选通单元100允许小透镜21所在小透镜子阵列各小透镜的孔径通光,同时遮挡其它小透镜的通光孔径,同时被遮挡小透镜对应的显示单元在该N个时间点不显示光学信息;在其中的一个时间点,打开一组通光孔径子阵列,同时关闭其它通光孔径,各打开通光孔径对应空间参考点在选通各小透镜对应显示单元上所对应各像素,以该空间参考点为视点,由控制单元50同步加载目标物体在其像上的投影信息。在下一组相邻的N个时间点,导向器件选通单元100允许小透镜21′所在小透镜子阵列各小透镜的孔径通光,同时遮挡其它小透镜的通光孔径,同时被遮挡小透镜对应的显示单元在该N个时间点不显示光学信息;N组通光孔径子阵列依次打开,基于上步方法同步加载信息到选通各小透镜对应显示单元阵列各像素。重复上述过程,同理实现三维显示。当导向器件选通单元100移除时,在上述过程不再考虑导向器件20各小透镜的开关,只要考虑N组通光孔径子阵列的时序开关。相邻的N个时间点,N组通光孔径子阵列依次打开,采用上述同样的原理加载信息到显示单元阵列各像素。重复上述过程,过每一个空间参考点,像平面上即呈现一个对应该空间参考点的视图。当通光孔径子阵列的开关频率足够高,空间参考点的分布足够密集,基于视觉滞留,沿光束传输方向,在空间参考点的前面的一个视区内,即可观察到目标物体的三维信息。在此时,各显示单元经对应小透镜相邻透镜所成的非主像,作为无用信息呈现于离主像所在的投影区较近的位置。进一步在系统中置入挡光板阵列30,类似于图1所示,挡光板阵列30各挡光板将挡除各显示单元的非主像。
沿列向的通光孔径阵列只由一组通光孔径子阵列组成时,也即沿列向一个显示单元只对应一个通光孔径时,也存在另外一种信息加载方法:沿行方向,取一行通光孔径作为基准通光孔径行,其各通光孔径打开时,其对应空间参考点所对应各像素,以该空间参考点为视点,由控制单元50同步加载目标物体在其像上的投影信息;但属于其它非基准通光孔径行的各通光孔径打开时,其对应空间参考点所对应的像素,同步加载基准通光孔径行中沿列向同列的通光孔径在打开时,所对应空间参考点对应像素加载的光信息。该种信息加载方式下,列向方向不再显示三维视差信息,仅沿行向呈现三维信息。
若追踪单元60启用,则可以确定观察者的双目位置。根据观察者的双目位置,可以控制系统仅显示双目处较小空间范围内需要的信息,降低信息计算量。当观察者双目对系统的空间位置相对固定的时候,图13结构中,可以将部分显示单元/小透镜对去除,只保留全部或部分对进入观察者双目的光学信息有贡献的光组件。
实施例1中图5~8所述的辅助转向装置80和辅助合成装置90,同理可用于图16所示系统。
图16中各显示单元经对应小透镜成实像时,也即采用IV型导向器件时,如图17,通过类似的上述方法和过程,也可以实现三维显示。
在图16和图17所示系统中,小透镜是曲面排列的。以一个小透镜和一个对该小透镜所成像进行折转或平移的偏移元件,如棱镜,代替III型导向器件或IV导向器件中的小透镜,可以以平面排列的显示单元阵列10完成图16或图17所示曲面排列的的显示单元阵列10所实现的显示效果。图18所示为平面排列的小透镜/小棱镜对代替图14所示曲面排列的小透镜时的光学结构。
综上所述,本发明的特点在于导向器件20成像显示单元阵列10各显示单元到重合或相交区域,并经一组通光孔径子阵列,由显示单元阵列10上不同像素呈现三维目标物体的一组视图;利用可时序开关的不同组通光孔径子阵列,在不同的时间点,通过不同组的通光孔径子阵列的时序开关,呈现大量视图,基于视觉滞留,实现三维效果呈现。由于时序开关的通光孔径阵列40的引入,相对于传统的三维显示方法,本专利所提出技术,通过时间复用,进一步提高三维信息的呈现量,有效提高三维显示效果。

Claims (28)

  1. 一种时空混合复用的三维显示系统,其特征在于,包括:
    显示单元阵列,该显示单元阵列的各显示单元由面排列像素组成,用于显示光学信息;
    导向器件,该导向器件置于与显示单元阵列相对应的位置,用于成像各显示单元,并引导各显示单元的像在投影区或投影空间重叠或相交,命名该重叠或相交的像为对应显示单元的主像;
    通光孔径阵列,该通光孔径阵列沿显示单元阵列出射光束传输方向置于导向器件前,由可时序开关的至少两组的通光孔径子阵列组成,该通光孔径阵列的各通光孔径分别对应一个空间参考点,该通光孔径用于选通或截止过其对应空间参考点的、等效源自于显示单元主像的光线,其中,各通光孔径对应参考点被选取为使得过同一通光孔径子阵列各通光孔径对应参考点的、等效源自于显示单元主像的光线来自于显示单元阵列的不同像素;
    控制单元,该控制单元与显示单元阵列以及通光孔径阵列连接,用于控制所述各组通光孔径子阵列的时序开关,并在一组通光孔径子阵列的部分或全部通光孔径打开时,控制所述显示单元阵列的部分或全部像素同步加载对应光信息。
  2. 根据权利要求1所述的时空混合复用的三维显示系统,其特征在于,还包括导向器件选通单元,该导向器件选通单元包括可时序开关的P组光阑,相间排列的各组光阑可时序打开,各光阑分别对应不同的所述显示单元,并且只在打开时允许对应显示单元主像等效出射的光信息通过;或该导向器件选通单元由至少两组具有排它性功能的光阑组成,各组光阑相间排列,各光阑分别对应不同的上述显示单元,允许对应显示单元主像等效出射的光信息通过,但不允许其它组光阑对应显示单元出射光信息通过,其中P≧2。
  3. 根据权利要求1所述的时空混合复用的三维显示系统,其特征在于,还包括
    挡光板阵列,该挡光板阵列置于所述显示单元阵列和所述导向器件之间,用于约束各显示单元出射光束分别经对应孔径出射;和/或
    追踪单元,该追踪单元用于追踪和确定观察者双目的空间位置;和/或
    调节单元,该调节单元用于调节所述显示单元阵列中各显示单元和所述导向器件间的相对位置,或用于改变所述导向器件的光学性质,使所述显示单元阵列各显示单元经所述导向器件所成主像相对所述导向器件发生平移;和/或
    散射片,其沿一维方向散射入射光。
  4. 根据权利要求1所述的时空混合复用的三维显示系统,其特征在于,所述导向器件包括小透镜阵列和大尺寸凹透镜,其中小透镜阵列各小透镜和所述显示单元阵列各显示单元一一对应,各显示单元处于对应小透镜的焦平面上,其中所述大尺寸凹透镜孔径覆盖小透镜阵列中的至少部分小透镜;或者
    所述导向器件包括小透镜阵列和一个大尺寸凸透镜,其中小透镜阵列各小透镜和所述显示单元阵列各显示单元一一对应,各显示单元处于对应小透镜的焦平面上,其中所述大尺寸凸透镜孔径覆盖小透镜阵列中的至少部分小透镜。
  5. 根据权利要求1所述的时空混合复用的三维显示系统,其特征在于,所述导向器件包括小透镜阵列,其中小透镜阵列各小透镜和所述显示单元阵列各显示单元一一对应,且各显示单元经对应小透镜成虚像;或者
    所述导向器件包括小透镜阵列,其中小透镜阵列各小透镜和所述显示单元阵列各显示单元一一对应,且各显示单元经对应小透镜成实像。
  6. 根据权利要求5所述的时空混合复用的三维显示系统,其特征在于,所述导向器件还包括多个能够对小透镜所成的像进行折转或平移的偏移元件。
  7. 根据权利要求4所述的时空混合复用的三维显示系统,其特征在于,所述小透镜用等效的光学元件或光学组件代替,和/或所述大尺寸凹透镜用等效的光学元件或光学组件代替;或者所述小透镜阵列用等效的光学元件或光学组件代替,和/或所述大尺寸凸透镜用等效的光学元件或光学组件代替。
  8. 根据权利要求5所述的时空混合复用的三维显示系统,其特征在于,所述小透镜用等效的光学元件或光学组件代替,或者所述小透镜阵列用等效的光学元件或光学组件代替。
  9. 根据权利要求2-8任一项所述的时空混合复用的三维显示系统,其特征在于,还包括辅助转向装置,该辅助转向装置置于所述显示单元阵列和导向器件之间,用于使各显示单元等效地置于对应小透镜的焦平面上、或平行于对应小透镜放置。
  10. 根据权利要求1-8任一项所述的时空混合复用的三维显示系统,其特征在于,还包括辅助合成装置,该辅助成像装置置于所述显示单元阵列和导向器件之间,并在所述显示单元阵列的各显示单元由至少两个分立像素屏组成时,能够对各显示单元的该至少两个分立像素屏的出射光束进行合成,使其都入射所述导向器件。
  11. 一种时空混合复用的三维显示方法,该方法使用如权利要求1至10所述的一种时空混合复用的三维显示系统,其特征在于,包括以下步骤:
    s1将所述通光孔径阵列划分为N组通光孔径子阵列,对各通光孔径,通过光线追踪,确定过其对应空间参考点、等效源自显示单元主像的各光线在显示单元阵列上的来源像素及其在显示单元主像上的像,也即各空间参考点对应的像素及其像,其中N≧1;
    s2在一个时间点,其中一组通光孔径子阵列的至少部分通光孔径打开,其它组通光孔径子阵列的通光孔径关闭;
    s3对步骤s2中所打开的各通光孔径对应空间参考点所对应的像素,以对应空间参考点为视点,同步加载目标物体在其像上的投影信息;
    s4对于相邻的N个时间点的至少部分时间点,分别在该至少部分时间点的每个时间点,对应地执行s2~s3步骤。
  12. 根据权利要求11所述的时空混合复用的三维显示方法,该其特征在于,还包括步骤s5:重复步骤s4。
  13. 根据权利要求12所述的时空混合复用的三维显示方法,所述三维显示系统包括追踪单元,该追踪单元用于追踪和确定观察者双目的空间位置;和
    调节单元,该调节单元用于调节所述显示单元阵列中各显示单元和所述导向器件间的相对位置,或用于改变所述导向器件的光学性质,使所述显示单元阵列各显示单元经所述导向器件所成主像相对所述导向器件发生平移;
    其特征在于,还包括步骤s6:根据观察者双目所在位置,通过调节单元调节所述显示单元阵列中各显示单元和上述导向器件间的相对位置,或改变所述导向器件的光学性质,使所述显示单元阵列各显示单元经所述导向器件所成主像相对所述导向器件平移,以保证位置发生了变化的观察者双目可以接收到系统出射光信息,并针对显示单元和导向器件间新的位置关系,重新执行步骤s1~s5。
  14. 一种时空混合复用的三维显示方法,该方法使用如权利要求2至10所述的一种时空混合复用的三维显示系统,其特征在于:
    ss1将所述通光孔径阵列划分为N组通光孔径子阵列,对各通光孔径,通过光线追踪,确定过其对应空间参考点、等效源自显示单元主像的各光线在显示单元阵列上的来源像素及其在显示单元主像上的像,也即各空间参考点对应的像素及其像,其中N≧1;
    ss2在一个时间点,P组光阑的其中一组光阑的至少部分光阑打开,所述N组通光孔径子阵列的一组通光孔径子阵列的至少部分通光孔径打开,其它组通光孔径子阵列中的通光孔径关闭;
    ss3对步骤ss2中所打开各通光孔径对应空间参考点所对应的像素,以对应空间参考点为视点,同步加载目标物体在其像上的投影信息,其中至少对所述打开的光阑所对应 的各显示单元的像素加载光信息;
    ss4所述P组光阑分别只有一组选通时的P种状态和所述N组通光孔径子阵列分别只有一组通光孔径子阵列的至少部分通光孔径选通时的N种状态,组合成形成PN个状态,分别对应PN个相邻时间点,其中,对于该PN个相邻时间点中的至少部分时间点,分别在该至少部分时间点的每个时间点,对应地执行ss2~ss3步骤。
  15. 根据权利要求14所述的时空混合复用的三维显示方法,其特征在于,还包括步骤ss5:重复步骤ss4。
  16. 根据权利要求15所述的时空混合复用的三维显示方法,所述三维显示系统包括追踪单元,该追踪单元用于追踪和确定观察者双目的空间位置;和
    调节单元,该调节单元用于调节所述显示单元阵列中各显示单元和所述导向器件间的相对位置,或用于改变所述导向器件的光学性质,使所述显示单元阵列各显示单元经所述导向器件所成主像相对所述导向器件发生平移;
    其特征在于,还包括步骤步骤ss6:根据观察者双目所在位置,通过调节单元调节所述显示单元阵列中各显示单元和所述导向器件间的相对位置,或改变所述导向器件的光学性质,使所述显示单元阵列各显示单元经所述导向器件所成主像相对所述导向器件平移,以保证位置发生了变化的观察者双目可以接收到系统出射光信息,并针对显示单元和导向器件间新的位置关系,重新执行步骤ss1~ss5。
  17. 一种时空混合复用的三维显示方法,该方法使用如权利要求1至10所述的一种时空混合复用的三维显示系统,其特征在于,包括以下步骤:
    sss1将所述通光孔径阵列沿一维行方向划分为M组通光孔径子阵列;其中M≧1;
    sss2对各通光孔径,通过光线追踪,确定过其对应空间参考点、等效源自显示单元主像的各光线在显示单元阵列上的来源像素及其在显示单元主像上的像,也即各空间参考点对应的像素及其像;
    sss3在一个时间点,其中一组通光孔径子阵列的至少部分通光孔径打开,其它组通光孔径子阵列的通光孔径关闭;
    sss4取一行通光孔径作为基准通光孔径行,基准通光孔径行中打开的各通光孔径对应空间参考点所对应的像素,以对应空间参考点为视点,同步加载目标物体在其像上的投影信息;同时,其它行中打开各通光孔径对应空间参考点所对应的像素,同步加载基准通光孔径行中同列通光孔径所对应空间参考点对应像素加载的投影信息;
    sss5对于相邻的M个时间点的至少部分时间点,分别在该至少部分时间点的每个时间点,对应地执行sss3~sss4步骤。
  18. 根据权利要求17所述的时空混合复用的三维显示方法,其特征在于,还包括步骤sss6:重复步骤sss5。
  19. 根据权利要求18所述的时空混合复用的三维显示方法,所述三维显示系统包括追踪单元,该追踪单元用于追踪和确定观察者双目的空间位置;和
    调节单元,该调节单元用于调节所述显示单元阵列中各显示单元和所述导向器件间的相对位置,或用于改变所述导向器件的光学性质,使所述显示单元阵列各显示单元经所述导向器件所成主像相对所述导向器件发生平移;
    其特征在于,还包括步骤sss7:根据观察者双目所在位置,通过调节单元调节所述显示单元阵列中各显示单元和所述述导向器件间的相对位置,或改变所述导向器件的光学性质,使所述显示单元阵列各显示单元经所述导向器件所成主像相对所述导向器件平移,以保证位置发生了变化的观察者双目可以接收到系统出射光信息,并针对显示单元和导向器件间新的位置关系,重新执行步骤sss1~sss6。
  20. 一种时空混合复用的三维显示方法,该方法使用如权利要求2至10所述的一种时空混合复用的三维显示系统,其特征在于,包括以下步骤:
    ssss1将所述通光孔径阵列沿一维行方向划分为M组通光孔径子阵列;其中M≧1;
    ssss2对各通光孔径,通过光线追踪,确定过其对应空间参考点、等效源自显示单元主像的各光线在显示单元阵列上的来源像素及其在显示单元主像上的像,也即各空间参考点对应的像素及其像;
    ssss3选取相邻的PN个时间点中的一个时间点,P组光阑的其中一组光阑的至少部分光阑打开,所述N组通光孔径子阵列的一组通光孔径子阵列的至少部分通光孔径打开,其它通光孔径子阵列中的通光孔径关闭;
    ssss4取一行通光孔径作为基准通光孔径行,基准通光孔径行中打开各通光孔径对应空间参考点所对应的像素,以对应空间参考点为视点,同步加载目标物体在其像上的投影信息;同时,对其它行中各打开通光孔径对应空间参考点所对应的像素,同步加载基准通光孔径行中同列通光孔径所对应空间参考点对应像素加载的信息,其中至少对所述打开的光阑所对应的各显示单元的像素加载光信息;
    ssss5所述P组光阑分别只有一组选通时的P种状态和所述N组通光孔径子阵列分别只有一组选通时的N种状态,组合成形成PN个状态,分别对应PN个相邻时间点,其中,对于该PN个相邻时间点中的至少部分时间点,分别在该至少部分时间点的每个时间点,对应地执行ssss3~ssss4步骤。
  21. 根据权利要求20所述的时空混合复用的三维显示方法,其特征在于,还包括步 骤ssss6:重复步骤ssss5。
  22. 根据权利要求21所述的时空混合复用的三维显示方法,所述三维显示系统包括追踪单元,该追踪单元用于追踪和确定观察者双目的空间位置;和
    调节单元,该调节单元用于调节所述显示单元阵列中各显示单元和所述导向器件间的相对位置,或用于改变所述导向器件的光学性质,使所述显示单元阵列各显示单元经所述导向器件所成主像相对所述导向器件发生平移;
    其特征在于,还包括步骤ssss7:根据观察者双目所在位置,通过调节单元调节所述显示单元阵列中各显示单元和所述述导向器件间的相对位置,或改变所述导向器件的光学性质,使所述显示单元阵列各显示单元经所述导向器件所成主像相对所述导向器件平移,以保证位置发生了变化的观察者双目可以接收到系统出射光信息,并针对显示单元和导向器件间新的位置关系,重新执行步骤ssss1~ssss6。
  23. 一种时空混合复用的三维显示方法,该方法使用如权利要求1至10所述的一种时空混合复用的三维显示系统,其特征在于,包括以下步骤:
    sssss1将所述通光孔径阵列沿一维行方向划分为M组通光孔径子阵列,所有行通光孔径对应空间参考点沿行方向错位排列;其中M≧1;
    sssss2对各通光孔径,通过光线追踪,确定过其对应空间参考点、等效源自显示单元主像的各光线在显示单元阵列上的来源像素及其在显示单元主像上的像,也即各空间参考点对应的像素及其像;
    sssss3在一个时间点,其中一组通光孔径子阵列的至少部分通光孔径打开,其它组通光孔径子阵列的通光孔径关闭;
    sssss4取一行通光孔径作为基准通光孔径行,其各打开通光孔径对应空间参考点所对应的像素,以对应空间参考点为视点,同步加载目标物体在其像上的投影信息;同时,其它行中打开的各通光孔径对应空间参考点所对应的像素,在沿列向虚拟平移对应空间参考点至基准通光孔径行的前提下,以平移后的虚拟空间参考点为视点,同步加载目标物体在其像上的投影信息;
    sssss5相邻的M个时间点的至少部分时间点,分别在该至少部分时间点的每个时间点,对应地执行sssss3~sssss4步骤。
  24. 根据权利要求23所述的时空混合复用的三维显示方法,其特征在于,还包括步骤sssss6:重复步骤sssss5。
  25. 根据权利要求24所述的时空混合复用的三维显示方法,所述三维显示系统包括追踪单元,该追踪单元用于追踪和确定观察者双目的空间位置;和
    调节单元,该调节单元用于调节所述显示单元阵列中各显示单元和所述导向器件间的相对位置,或用于改变所述导向器件的光学性质,使所述显示单元阵列各显示单元经所述导向器件所成主像相对所述导向器件发生平移;
    其特征在于,还包括步骤sssss7:根据观察者双目所在位置,通过调节单元调节所述显示单元阵列中各显示单元和所述述导向器件间的相对位置,或改变所述导向器件的光学性质,使所述显示单元阵列各显示单元经所述导向器件所成主像相对所述导向器件平移,以保证位置发生了变化的观察者双目可以接收到系统出射光信息,并针对显示单元和导向器件间新的位置关系,重新执行步骤sssss1~sssss6。
  26. 一种时空混合复用的三维显示方法,该方法使用如权利要求2至10所述的一种时空混合复用的三维显示系统,其特征在于,包括以下步骤:
    ssssss1将所述通光孔径阵列沿一维行方向划分为M组通光孔径子阵列,所有行通光孔径对应空间参考点沿行方向错位排列;其中M≧1;
    ssssss2对各通光孔径,通过光线追踪,确定过其对应空间参考点、等效源自显示单元主像的各光线在显示单元阵列上的来源像素及其在显示单元主像上的像,也即各空间参考点对应的像素及其像;
    ssssss3选取相邻的PN个时间点中的一个时间点,P组光阑的其中一组光阑的至少部分光阑打开,所述N组通光孔径子阵列的一组通光孔径子阵列的至少部分通光孔径打开,其它组通光孔径子阵列中的通光孔径关闭;
    ssssss4取一行通光孔径作为基准通光孔径行,基准通光孔径行中打开各通光孔径对应空间参考点所对应的像素,以对应空间参考点为视点,同步加载目标物体在其像上的投影信息;同时,对其它行中各打开通光孔径对应空间参考点所对应的像素,在沿列向虚拟平移对应空间参考点至基准通光孔径行的前提下,以对应平移后的虚拟空间参考点为视点,同步加载目标物体在其像上的投影信息,其中至少对所述打开的光阑所对应的各显示单元的像素加载光信息;
    ssssss5所述P组光阑分别只有一组选通时的P种状态和所述N组通光孔径子阵列分别只有一组选通时的N种状态,组合成形成PN个状态,分别对应PN个相邻时间点,其中,对于该PN个相邻时间点中的至少部分时间点,分别在该至少部分时间点的每个时间点,对应地执行ssssss3~ssssss4步骤。
  27. 根据权利要求26所述的时空混合复用的三维显示方法,其特征在于,还包括步骤ssssss6:重复步骤ssssss5。
  28. 根据权利要求27所述的时空混合复用的三维显示方法,所述三维显示系统包括 追踪单元,该追踪单元用于追踪和确定观察者双目的空间位置;和
    调节单元,该调节单元用于调节所述显示单元阵列中各显示单元和所述导向器件间的相对位置,或用于改变所述导向器件的光学性质,使所述显示单元阵列各显示单元经所述导向器件所成主像相对所述导向器件发生平移;
    其特征在于,还包括步骤ssssss7:根据观察者双目所在位置,通过调节单元调节所述显示单元阵列中各显示单元和所述述导向器件间的相对位置,或改变所述导向器件的光学性质,使所述显示单元阵列各显示单元经所述导向器件所成主像相对所述导向器件平移,以保证位置发生了变化的观察者双目可以接收到系统出射光信息,并针对显示单元和导向器件间新的位置关系,重新执行步骤ssssss1~ssssss6。
PCT/CN2018/103374 2017-09-01 2018-08-31 一种时空混合复用的三维显示系统及方法 WO2019042381A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710781343.X 2017-09-01
CN201710781343.XA CN109425993B (zh) 2017-09-01 2017-09-01 一种时空混合复用的三维显示系统及方法

Publications (1)

Publication Number Publication Date
WO2019042381A1 true WO2019042381A1 (zh) 2019-03-07

Family

ID=65513047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/103374 WO2019042381A1 (zh) 2017-09-01 2018-08-31 一种时空混合复用的三维显示系统及方法

Country Status (2)

Country Link
CN (1) CN109425993B (zh)
WO (1) WO2019042381A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112859362A (zh) * 2021-02-02 2021-05-28 中山大学 一种光栅单元子通光孔径时序选通复用的三维显示模组

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112305776B (zh) * 2019-07-26 2022-06-07 驻景(广州)科技有限公司 基于光波导耦出光出瞳分割-组合控制的光场显示系统
CN112925110B (zh) * 2019-12-06 2022-09-27 驻景(广州)科技有限公司 基于光出射受限像素块-孔径对的三维显示模组
CN112925098B (zh) * 2019-12-06 2022-09-27 驻景(广州)科技有限公司 基于光出射受限像素块-孔径对的近眼显示模组
CN112255820A (zh) * 2020-12-21 2021-01-22 苏州苏大维格科技集团股份有限公司 裸眼三维显示装置
CN112269271B (zh) * 2020-12-23 2021-12-10 苏州苏大维格科技集团股份有限公司 裸眼三维显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110285968A1 (en) * 2010-05-18 2011-11-24 Delta Electronics, Inc. Display apparatus for displaying multiple view angle images
CN103163719A (zh) * 2011-12-09 2013-06-19 台达电子工业股份有限公司 立体显示装置
CN104395818A (zh) * 2012-01-15 2015-03-04 泽克泰克显示系统私人有限公司 光学成像系统和3d显示设备
CN104503093A (zh) * 2014-12-08 2015-04-08 中山大学 一种用于生成空间渐变过渡视图的光线互补拼接技术及基于该技术的三维显示系统
CN105759557A (zh) * 2016-04-07 2016-07-13 中山大学 一种多视点三维显示系统和方法
CN105807438A (zh) * 2016-04-25 2016-07-27 中山大学 一种增加视点呈现数目的时分复用模组和方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2267579A (en) * 1992-05-15 1993-12-08 Sharp Kk Optical device comprising facing lenticular or parallax screens of different pitch
GB9618720D0 (en) * 1996-09-07 1996-10-16 Philips Electronics Nv Electrical device comprising an array of pixels
CN105988228B (zh) * 2015-02-13 2020-07-31 北京三星通信技术研究有限公司 三维显示设备及其三维显示方法
US9846309B2 (en) * 2015-04-17 2017-12-19 Dongseo University Technology Headquarters Depth-priority integral imaging display method using nonuniform dynamic mask array
CN105404010B (zh) * 2015-12-10 2018-06-26 中山大学 允许时间复用的光栅式三维显示系统和方法
CN106873170A (zh) * 2016-12-29 2017-06-20 中山大学 一种提高光栅式三维显示呈现视图分辨率的系统和方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110285968A1 (en) * 2010-05-18 2011-11-24 Delta Electronics, Inc. Display apparatus for displaying multiple view angle images
CN103163719A (zh) * 2011-12-09 2013-06-19 台达电子工业股份有限公司 立体显示装置
CN104395818A (zh) * 2012-01-15 2015-03-04 泽克泰克显示系统私人有限公司 光学成像系统和3d显示设备
CN104503093A (zh) * 2014-12-08 2015-04-08 中山大学 一种用于生成空间渐变过渡视图的光线互补拼接技术及基于该技术的三维显示系统
CN105759557A (zh) * 2016-04-07 2016-07-13 中山大学 一种多视点三维显示系统和方法
CN105807438A (zh) * 2016-04-25 2016-07-27 中山大学 一种增加视点呈现数目的时分复用模组和方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112859362A (zh) * 2021-02-02 2021-05-28 中山大学 一种光栅单元子通光孔径时序选通复用的三维显示模组
CN112859362B (zh) * 2021-02-02 2023-04-11 驻景(广州)科技有限公司 一种光栅单元子通光孔径时序选通复用的三维显示模组

Also Published As

Publication number Publication date
CN109425993B (zh) 2020-09-04
CN109425993A (zh) 2019-03-05

Similar Documents

Publication Publication Date Title
WO2019042381A1 (zh) 一种时空混合复用的三维显示系统及方法
JP5112326B2 (ja) 3次元表示のための光学システム
US7336326B2 (en) Image displaying unit of a 3D image system having multi-viewpoints capable of displaying 2D and 3D images selectively
EP0764869B1 (en) Autostereoscopic display apparatus
CN106104372A (zh) 定向背光源
KR100616558B1 (ko) 배경 영상을 갖는 3차원 입체 영상 디스플레이 장치
US10609362B2 (en) Projected hogel autostereoscopic display
KR20190006978A (ko) 관찰자 입사동 분할 다중에 의한 3d디스플레이 시스템 및 방법
US20120320164A1 (en) Stereoscopic camera with polarizing apertures
US20150370080A1 (en) Autostereoscopic Three Dimensional Display
EP0704071A1 (en) Stereoscopic display unit
TW200538795A (en) 3D display system and method
CN102200685B (zh) 空中三维图像显示系统
WO2020069536A9 (en) Holographic object relay for light field display
JP2011095743A (ja) 画面システムおよび三次元ディスプレイの作成方法
KR20140144617A (ko) 공간 영상 투영 장치
KR20020004296A (ko) 액정표시판의 편광 특성을 이용한 입체영상 표시장치
CN108646412A (zh) 近眼显示装置和近眼显示方法
CN110286496A (zh) 一种基于前置方向性光源的立体显示装置
CN114766013A (zh) 中继系统
KR20180076541A (ko) 플로팅 홀로그램 장치
JP2006030507A (ja) 三次元空間画像表示装置及び三次元空間画像表示方法
KR20140111553A (ko) 입체 디스플레이 장치 및 그 디스플레이 방법
KR101818853B1 (ko) 다방향 영상 제공이 가능한 테이블탑 3d 디스플레이 방법
CN102081239B (zh) 广角裸眼立体显示系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18852232

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18852232

Country of ref document: EP

Kind code of ref document: A1