WO2019042365A1 - 电池均衡方法、系统、车辆、存储介质及电子设备 - Google Patents

电池均衡方法、系统、车辆、存储介质及电子设备 Download PDF

Info

Publication number
WO2019042365A1
WO2019042365A1 PCT/CN2018/103274 CN2018103274W WO2019042365A1 WO 2019042365 A1 WO2019042365 A1 WO 2019042365A1 CN 2018103274 W CN2018103274 W CN 2018103274W WO 2019042365 A1 WO2019042365 A1 WO 2019042365A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
soc value
equalization
control module
value
Prior art date
Application number
PCT/CN2018/103274
Other languages
English (en)
French (fr)
Inventor
罗红斌
王超
沈晓峰
曾求勇
刘苑红
张祥
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2019042365A1 publication Critical patent/WO2019042365A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present disclosure relates to the field of control technologies, and in particular, to a battery equalization method, system, vehicle, storage medium, and electronic device.
  • a vehicle power battery generally consists of a plurality of single cells connected in series to form a module. With the use of the battery, the difference between the individual cells gradually expands, and the consistency between the cells is poor. Due to the short board effect of the battery, the capacity of the battery pack is limited, so that the capacity of the battery pack cannot be fully exerted, resulting in the battery pack. The overall capacity is reduced. On the other hand, the gradual enlargement of the differences between the individual cells will cause over-charging of some single cells, over-discharge of some single cells, affecting battery life, damaging the battery, and possibly generating a large amount of heat to cause the battery. Burning or exploding.
  • the current battery equalization method may also collect battery information while also performing equalization, which may result in inaccurate battery information collected, and thus determine the unit cells that need to be balanced are not accurate.
  • An object of the present disclosure is to provide a battery equalization method, system, vehicle, storage medium, and electronic device, which can more accurately determine a single cell that needs to be balanced.
  • the present disclosure provides a battery equalization method, which is applied to a battery equalization system, where the battery equalization system includes: an equalization module, an acquisition module, and a control module, and the control module corresponds to the same single cell through one channel.
  • the acquisition module is connected to the equalization module, and the acquisition module and the equalization module time-multiplex the channels, and the method includes:
  • the control module acquires an SOC value of each single battery in the battery pack
  • the control module determines a reference SOC value according to an SOC value of each single battery in the battery pack
  • the control module determines a single cell that needs to be equalized according to an SOC value of at least one of the battery cells in the battery pack and the reference SOC value.
  • the present disclosure provides a battery equalization system, where the system includes an equalization module, an acquisition module, and a control module.
  • the control module is connected to an acquisition module and an equalization module corresponding to the same single cell through a channel.
  • the module and the equalization module time-multiplex the channels, and the control module is configured to perform the method of the first aspect.
  • the present disclosure provides a vehicle comprising the battery equalization system of the above second aspect.
  • the present disclosure provides a computer readable storage medium having stored thereon computer program instructions that, when executed by a processor, implement the method of the first aspect described above.
  • an electronic device including:
  • One or more processors for executing a computer program in the computer readable storage medium.
  • control module of the battery equalization system is connected to the acquisition module and the equalization module corresponding to the same single cell through one channel, thereby improving the utilization rate of the control module channel, and the battery information collection and equalization and time sharing are performed to avoid the battery.
  • the control module of the battery equalization system is connected to the acquisition module and the equalization module corresponding to the same single cell through one channel, thereby improving the utilization rate of the control module channel, and the battery information collection and equalization and time sharing are performed to avoid the battery.
  • FIG. 1 is a schematic diagram of a battery equalization system according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a battery equalization system in which two single cells share an equalization module according to another embodiment of the present disclosure
  • FIG. 3 is a schematic flow chart of a battery equalization method according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic flow chart of determining a single cell that needs to be balanced according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of an equalization module according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic structural diagram of a battery equalization system according to an embodiment of the present disclosure.
  • the battery equalization system includes a control module 301, an acquisition module 302, and an equalization module 303 for equalizing the battery pack 304.
  • the battery pack 304 includes a plurality of unit cells connected in series.
  • the control module 301 is connected to the acquisition module 302 and the equalization module 303 corresponding to the same single cell through a control channel 305.
  • the acquisition module 302 and the equalization module 303 time-multiplex the control channel 305 according to a unit cycle.
  • One unit period includes: an acquisition period and an equalization period.
  • the control module 301 controls the acquisition module 302 to sample the battery information of the single battery during the collection period to obtain the battery information of the single battery.
  • the battery information includes at least one of the following: voltage, current, temperature, and the like.
  • the battery information may include only voltage values, whereby voltage performance parameters of the single battery may be obtained.
  • the battery information may also include a voltage value, a current value, a temperature value, and the like, thereby obtaining a SOC (State of Charge), an internal resistance, a self-discharge rate, and the like of the single battery. parameter.
  • SOC State of Charge
  • the control module 301 determines, according to the battery information of the single battery collected by the collection module 302, the single battery that needs to be equalized. For the single cell that needs to be turned on, the control module 301 controls the equalization module corresponding to the single cell that needs to be equalized, and equalizes the cell that needs to be balanced in the equalization period.
  • the acquisition module 302 and the equalization module 303 share the same control channel, and the control module 301 controls the acquisition module 302 and the equalization module 303 to time-multiplex the control channel according to the unit cycle, thereby avoiding the battery.
  • the control module 301 controls the acquisition module 302 and the equalization module 303 to time-multiplex the control channel according to the unit cycle, thereby avoiding the battery.
  • the control channel or channel refers to a transmission path of a control command of the control module to the execution end (acquisition module and equalization module).
  • a switch K is provided, the control module 301 is connected to the switch K, and the time-sharing and acquisition module 302 or the equalization module 303 is implemented by controlling the switch K. connection.
  • the control module 301 controls the acquisition module 302 to collect battery information for the single battery during the collection cycle.
  • the control module 301 controls the equalization module 303. The corresponding single cells are equalized.
  • each of the cells in the battery is connected to an acquisition module 302 and an equalization module 303, respectively. If the battery pack includes N single cells, the number of the acquisition modules 302 is N, and the equalization module 303 is N. Thus, the control module 301 is connected to the N acquisition modules and the N equalization modules through N control channels.
  • different single cells may share an equalization module, for example, N single cells in a battery pack, may share the same equalization module, or each preset number (eg, 2, 3, or 5 equal) single cells share an equalization module and the like.
  • the equalization module and each of the at least two single cells that need to be equalized are equalized during the equalization period of the unit period.
  • the batteries are connected alternately.
  • an exemplary schematic diagram of sharing an equalization module for two single cells is shown.
  • the equalization module is alternately connected with each unit cell during the equalization period of the unit period. Alternate connections may be alternate connections at a certain period. Therefore, on the basis of the time-division of the acquisition module and the equalization module, during the equalization period, the single cells sharing the same equalization module are alternately connected with the shared equalization module to achieve equalization.
  • the battery equalization method according to an embodiment of the present disclosure includes:
  • step S11 the control module acquires the SOC value of each of the individual cells in the battery pack.
  • step S12 the control module determines the reference SOC value according to the SOC value of each of the battery cells in the battery pack.
  • step S13 the control module determines the unit cells that need to be equalized according to the SOC value of the at least one unit cell in the battery pack and the reference SOC value.
  • control module may include a control chip, and the control chip is connected to the acquisition module and the equalization module corresponding to the same single cell through one pin and one channel.
  • the pins of the control chip can be saved, and the utilization of the control chip pins can be improved.
  • the sampling module can collect battery information of each single battery in the battery pack (including, for example, a voltage value, a current value, a temperature value, and the like), and the control module can calculate the SOC value according to the battery information collected by the sampling module.
  • the SOC value of the single cell can be calculated by using the ampere-hour integration method or the ampere-hour integration combined with the voltage correction method.
  • the ampere-hour integral method refers to the SOC value of the single-cell battery obtained by integrating the current value of the collected single-cell battery with time; the ampere-hour integral combined with the voltage correction method first calculates the SOC value of the single-cell battery by using the ampere-hour integral method. Then, the calculated SOC value is corrected by the load voltage value of the single cell, and the corrected SOC value is used as the final SOC value of the single cell.
  • the voltage value of the single cell collected during the sampling period of the unit period is the load voltage value of the single cell, that is, the voltage value during charging or discharging of the single cell.
  • each single cell corresponds to an OCV-SOC curve, as shown in Fig. 4, the OCV value varies greatly in the interval [0, SOC1] and the interval [SOC2, 1], so The SOC value obtained by the voltage correction method is more accurate; within the interval (SOC1, SOC2), the variation of the OCV value is small. If the ampere-hour integral combined with the voltage correction method is used in this interval, the SOC value of the single cell may not be accurately obtained. Therefore, the cell to be equalized cannot be accurately determined, so the SOC value obtained by the ampere-time integration method is more accurate.
  • the value range of the SOC value is divided into an end value of 0 and a first SOC value according to an OCV-SOC curve of the corresponding single battery.
  • the first interval of the SOC1 (such as SOC1 in FIG. 4), the second value of the first SOC value and the second SOC value (such as SOC2 in FIG. 4), and the end value is the second SOC value and the 100%
  • the third interval, the method for calculating the SOC value includes a first calculation manner and a second calculation manner, wherein the first calculation manner corresponds to the first interval and the third interval, and the second calculation manner corresponds to the second interval.
  • the above step S11 includes the following steps:
  • control module determines the SOC value of the single battery according to the first calculation manner.
  • the control module re-determines the SOC value of the single battery according to the second calculation manner.
  • the first calculation method is an ampere-hour integration method or an ampere-hour integration combined with a voltage correction method
  • the second calculation method is a calculation method different from the first calculation method in the ampere-hour integration method and the ampere-hour integration combined with the voltage correction method.
  • the SOC value of the battery can be calculated by adjusting the real-time voltage of the battery (in this case, the load voltage). Because the rate of change of the battery voltage is small in the second interval, the accuracy of calculating the SOC value by introducing the voltage variable is not high, so the SOC value can be directly calculated by the ampere-time integration method. In this way, it is possible to further determine how to obtain the SOC value of the single cell for the difference in the SOC value interval of the single cell, so that the obtained SOC value of the single cell is relatively accurate, thereby making the determined need Balanced single cells are also more accurate.
  • the battery SOC value can also be calculated by using an open circuit voltage method, that is, the voltage value of the battery is collected (the equivalent is an open circuit voltage value), and the OCV-SOC correspondence can be checked. Calculate the battery SOC value.
  • the first calculation manner is a calculation method used by the single battery to calculate the SOC value.
  • the SOC value of the single cell can be calculated by using any of the calculation methods of the ampere-hour integration method and the ampere-hour integration combined with the voltage correction method.
  • the first calculation method is an ampere-time integration method and the first calculation method is an ampere-hour integration combined with a voltage correction method.
  • Case 1 The first calculation method is the ampere-hour integration method.
  • the second calculation method is the ampere-hour integration combined with the voltage correction method.
  • the SOC value of the unit cell is obtained based on the collected battery information (such as a current value) of the unit cell, and the section to which the calculated SOC value belongs is determined. If the calculated SOC value belongs to the first interval or the third interval, since the results obtained by using the ampere-hour integral combined with the voltage correction method in the first interval and the third interval are more accurate, the ampere-hour integral combined with the voltage correction method is used to determine The SOC value of the single battery, and the ampere-hour integration combined with the voltage correction method as the first calculation method, that is, the next calculation of the SOC value of the single battery is first calculated by using the ampere-hour integral combined with the voltage correction method; The SOC value belongs to the second interval.
  • the chrono integration method can be used as the first calculation method, that is, the next calculation of the single cell
  • the SOC value is first calculated using the ampere-time integral method.
  • the first calculation method is an ampere-hour integral combined with a voltage correction method, and correspondingly, the second calculation method is an ampere-time integration method.
  • the SOC value of the single battery is obtained according to the collected battery information (such as the load voltage value), and the interval to which the calculated SOC value belongs is determined. . If the calculated SOC value belongs to the first interval or the third interval, since the results obtained by using the ampere-hour integral combined with the voltage correction method in the first interval and the third interval are more accurate, the calculation may be performed without re-calculation. Combined with the voltage correction method as the first calculation method, the next calculation of the SOC value of the single cell is first calculated by using the ampere-hour integral combined with the voltage correction method; if the calculated SOC value belongs to the second interval, it is adopted in the second interval.
  • the result obtained by the ampere-time integral method is more accurate, and the SOC value of the single battery is re-determined by the ampere-hour integration method, and the ampere-hour integration method can be used as the first calculation method, that is, when the SOC value of the single-cell battery is calculated next time. First, it is calculated by the ampere-time integral method.
  • the reference SOC value may be determined, and the SOC value of any one of the battery cells may be used as a reference SOC value, for example, the second section in the battery pack
  • the SOC value of the body battery is taken as a reference SOC value; or, the reference SOC value may be determined according to the SOC value of each unit cell. For example, any one of the minimum SOC value, the maximum SOC value, the average value, and the like among the SOC values of the individual cells in the battery pack may be determined as the reference SOC value.
  • the single cell that needs to be equalized is determined by:
  • step S21 the control module determines a SOC difference value between the SOC value of the at least one unit cell and the reference SOC value.
  • step S22 the control module determines a single cell in which the SOC difference value of the at least one single cell is greater than or equal to the equalization on threshold as a cell that needs to be equalized.
  • the equalization on threshold may be a preset threshold for determining the equalization on condition, and the embodiment of the present disclosure is not limited to the balance open threshold, for example, 10%, and the like.
  • the at least one single cell described in steps S21 and S22 may be the one cell having the largest SOC value in the battery pack. Or a plurality of single cells having the same SOC value and being the largest; or at least one of the single cells may be all of the cells in the battery except the single cell having the lowest SOC value.
  • control module can determine the difference between the SOC value of the single cell in the battery pack having the largest SOC value and the reference SOC value, thereby determining whether the cell having the largest SOC value needs to be equalized. In this way, the control module does not need to judge all the single cells one by one, and the processing speed of the control module is faster. At the same time, when determining that the single cell with the largest SOC value needs to be equalized, only the single largest SOC value can be used. The battery is balanced, and the battery equalization system performs faster balancing.
  • control module may respectively determine a difference between the SOC value of the battery cells other than the single battery cell having the lowest SOC value and the reference SOC value in the battery pack, thereby determining Is there any cell in the other cells that needs to be balanced, and which cells need to be balanced? In this way, all the cells in the battery pack that satisfy the condition of balanced opening can be equalized, and the equalization effect of the battery equalization system is better.
  • the equalization process of the subsequent cells for determining the voltage difference in the at least one single cell that is greater than or equal to the equalization on threshold is:
  • the single cell discharge that needs to be balanced is controlled to perform passive equalization.
  • the at least one single cell described in steps S21 and S22 may be the one cell having the smallest SOC value in the battery pack. Or a plurality of single cells having the same SOC value and being the smallest; or at least one of the single cells may be all of the cells except the single cell having the largest SOC value in the battery.
  • the control module can determine the difference between the SOC value of the single cell in the battery pack having the smallest SOC value and the reference SOC value, thereby determining whether the cell with the smallest SOC value needs to be equalized. In this way, the control module does not need to judge all the single cells one by one, and the processing speed of the control module is faster. At the same time, when determining that the single cell with the smallest SOC value needs to be equalized, only the single SOC value can be minimized. The battery is balanced, and the battery equalization system performs faster balancing.
  • control module may respectively determine a difference between the SOC value of the battery cells other than the single battery cells having the maximum SOC value in the battery pack and the reference SOC value, thereby determining Is there any cell in the other cells that needs to be balanced, and which cells need to be balanced? In this way, all the cells in the battery pack that satisfy the condition of balanced opening can be equalized, and the equalization effect of the battery equalization system is better.
  • the equalization process of the subsequent cell for the determined voltage difference of the at least one cell is greater than or equal to the equalization threshold: Controlling the battery charging that needs to be balanced, performing active balancing, for example, connecting a cell that needs to be balanced to a generator or a battery of the vehicle, thereby charging the cell that needs to be balanced.
  • the control module may respectively determine a difference between the SOC value of each single battery in the battery group and the reference SOC value, thereby determining Whether there is a single cell that needs to be balanced in the entire battery pack, and which ones need to be balanced. In this way, all the cells in the battery pack that satisfy the condition of balanced opening can be equalized, and the equalization effect of the battery equalization system is better.
  • the subsequent equalization processing of the determined cell voltage difference of the at least one cell is greater than or equal to the equalization threshold: control The single battery charging with the SOC value being smaller than the reference SOC value performs active equalization; controlling the single battery discharge with the SOC value greater than the reference SOC value to perform passive equalization.
  • the equalization may be determined by other parameters than the SOC, for example, voltage, internal resistance, self-discharge rate, voltage change rate, power change rate, time change rate, and the like.
  • the self-discharge rate of the single cell is used to characterize the capacity loss and capacity loss rate of the single cell.
  • the open circuit voltage value V1 of each unit battery of the power battery pack is detected and recorded; when the battery pack starts to start again (t2 time) Detecting and recording the open circuit voltage value V2 of each single cell of the power battery pack; calculating the self-discharge rate ⁇ of each single cell and calculating the self-discharge rate value ⁇ according to the open circuit voltage values of the individual cells obtained by the two tests
  • the method is:
  • the voltage change rate of the unit cell may be a voltage change amount when the unit of the specified physical quantity of the unit cell is changed.
  • a predetermined amount of electric power is charged or discharged to a single battery, a voltage variation amount (dv/dq) of the single battery, or a preset time for charging or discharging the single battery, and a voltage change of the single battery.
  • the amount (dv/dt) is taken as an example for explanation.
  • the rate of change in the amount of electricity of the unit cell may be the amount of change in the amount of electricity when the unit of the specified physical quantity of the unit cell changes.
  • the amount of charge (dq/dv) required to increase the voltage of the unit cell by one unit voltage from the initial voltage, or the amount of decrease in the unit voltage by one unit voltage from the initial voltage (dq/) Dv) is explained as an example.
  • the time change rate of the unit cell may be the amount of time change when the unit of the specified physical quantity of the unit cell changes.
  • the charging time (dt/dv) required for the voltage of the single cell to rise by one unit voltage from the initial voltage, or the discharge time required for the voltage of the single cell to drop by one unit voltage from the initial voltage (dt/) Dv) is explained as an example.
  • the equalization judgment is performed using the performance parameters of different batteries, the judgment is made according to the corresponding manner in Table 1, and the unit cell in the battery pack that needs to be equalized is determined in combination with the judgment flow when the performance parameter is the voltage.
  • step S11 the control module may not operate, so that the equalization modules corresponding to any battery are not turned on.
  • control module may perform the following steps:
  • the control module controls the equalization of the cells that need to be balanced according to the target equalization time of the single cells that need to be balanced.
  • ⁇ Q is the difference in electric quantity
  • ⁇ SOC is the SOC difference between the SOC value of the unit cell requiring equalization and the reference SOC value
  • C n is the usable capacity of the unit cell to be equalized.
  • the equalization duty ratio refers to the ratio of the equalization period to the unit period in the unit period.
  • the equalization duty ratio may be a value set in advance according to requirements, for example, set to 50%, and the like.
  • the cell balancing After determining the target equalization period of the cell to be balanced, the cell balancing needs to be equalized according to the target equalization time to improve the equalization efficiency and reduce the equalization cost.
  • FIG. 6 a schematic diagram of an equalization module according to an embodiment of the present disclosure is shown.
  • the unit cells that need to be balanced are balanced in the equalization period of the unit period, and need to be combined with the above-mentioned equalization judgment.
  • the equalization mode of the unit cells that need to be balanced is passive equalization (that is, discharge of the single cells that need to be balanced), or active equalization (that is, charging the single cells that need to be balanced), and Turn on the corresponding equalization module.
  • the equalization module includes: a resistor 811, each of which corresponds to an equalization module, that is, a resistor is connected in parallel with each end of each unit cell.
  • the control module controls the parallel loop conduction between the cell that needs to be equalized and its corresponding resistor during the equalization period of the unit period to execute the cell. Passive equilibrium. Referring to FIG. 6, the control module is turned on by controlling the switch module 812 to realize conduction of a parallel circuit between the unit cells requiring equalization and their corresponding resistors.
  • the resistor 811 can be a fixed value resistor or a variable resistor.
  • the resistor 811 can be a positive temperature coefficient thermistor, which can change with temperature, thereby adjusting the equalization current generated during equalization, thereby automatically adjusting the heat generation of the battery equalization system, and finally The temperature of the battery equalization system is effectively controlled.
  • the equalization module includes a charging branch 94 connected in parallel with each of the unit cells 95 in the battery pack.
  • the charging branch 94 is in one-to-one correspondence with the unit cells 95, and each charging branch 94 is provided. Both are coupled to a generator 92 that is mechanically coupled to the engine 91 via a gear.
  • the control module controls the charging branch 94 corresponding to the cell that needs to be equalized to be turned on.
  • the generator 92 is driven to generate electricity, so that the amount of power generated by the generator 92 is supplied to the unit cells that need to be balanced, so that the amount of the cells that need to be balanced is increased.
  • the equalization module when the generator 92 is an alternator, the equalization module further includes a rectifier 93 in series with the generator 92, each of the charging branches 130 being connected in series with the rectifier 132. After the alternating current generated by the generator 92 is converted to direct current by the rectifier 93, the generator 92 can be enabled to charge the unit cells that need to be equalized.
  • control module can be turned on by controlling the switch 96 corresponding to the unit cell that needs to be balanced, so that the charging branch corresponding to the unit cell that needs to be balanced is turned on, and the active equalization of the unit cells that need to be balanced is performed. .
  • the single battery that needs to be balanced can be charged by the starting battery in the entire vehicle.
  • the single cell that needs to be balanced in addition to the parallel resistor and the single cell that needs to be balanced, as shown in FIG. 6, can be connected in parallel with the starting battery of the whole vehicle, and the single cell that needs to be balanced is discharged. The power is charged into the starting battery to achieve equalization of the cells that need to be balanced while effectively avoiding waste of energy.
  • a plurality of single cells may share one equalization module, and when at least two of the multi-cell cells sharing one equalization module need to be equalized, in a unit period During the equalization period, the equalization module is alternately connected with each of the at least two single cells that need to be equalized, and is separately equalized.
  • embodiments of the present disclosure also provide a vehicle including the battery equalization system described above.
  • an embodiment of the present disclosure further provides a computer readable storage medium having stored thereon computer program instructions, the computer program instructions being implemented by a processor to implement the battery equalization method described above.
  • an embodiment of the present disclosure further provides an electronic device, comprising: the foregoing computer readable storage medium; and one or more processors for executing a computer program in the computer readable storage medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种电池均衡方法、系统、车辆、存储介质及电子设备,所述电池均衡系统包括:均衡模块(303)、采集模块(302)以及控制模块(301),所述控制模块(301)通过一个通道(305)与对应于同一单体电池的采集模块(302)和均衡模块(303)连接,该采集模块(302)和该均衡模块(303)分时复用所述通道(305);所述方法包括:所述控制模块(301)获取电池组(304)中各个单体电池的SOC值;所述控制模块(301)根据所述电池组(304)中各单体电池的SOC值,确定参考SOC值;所述控制模块(301)根据所述电池组(304)中至少一个单体电池的SOC值和所述参考SOC值,确定需要均衡的单体电池。该系统提升了控制模块通道的利用率,且避免电池信息采集和均衡同时进行时,均衡电流对电池信息采集的精度的影响,获取的SOC值较为准确,进而使得判断的需要均衡的单体电池也较为准确。

Description

电池均衡方法、系统、车辆、存储介质及电子设备
相关申请的交叉引用
本申请要求比亚迪股份有限公司于2017年8月31日提交的、发明名称为“电池均衡方法、系统、车辆、存储介质及电子设备”的、中国专利申请号“201710775020.X”的优先权。
技术领域
本公开涉及控制技术领域,具体地,涉及一种电池均衡方法、系统、车辆、存储介质及电子设备。
背景技术
为电动汽车提供动力能源的大容量蓄电池常称作动力电池。车用动力电池一般由多个单体电池串联组成一个模块。随着电池的使用,各单体电池间的差异性逐渐扩大,单体电池间一致性差,由于电池的短板效应,电池组容量发挥受到限制,使电池组容量不能充分发挥,导致电池组的整体的容量减少。另一方面,各单体电池间的差异性逐渐扩大后,将造成某些单体电池过充电,某些单体电池过放电,影响电池寿命,损坏电池,而且还可能产生大量的热量引起电池燃烧或爆炸。
因此,对电动汽车动力电池进行有效的均衡管理,有利于提高动力电池组中各电池的一致性,减少电池的容量损失,延长电池的使用寿命及电动汽车续驶里程,具有十分重要的意义。
目前的电池均衡方式可能会出现采集电池信息的同时,也在进行均衡,这将可能导致采集的电池信息不准确,进而确定出的需要均衡的单体电池也不准确。
发明内容
本公开的目的是提供一种电池均衡方法、系统、车辆、存储介质及电子设备,该方法可以较为准确地确定出需要均衡的单体电池。
为了实现上述目的,本公开提供一种电池均衡方法,应用于电池均衡系统,所述电池均衡系统包括:均衡模块、采集模块以及控制模块,所述控制模块通过一个通道与对应于同一单体电池的采集模块和均衡模块连接,该采集模块和该均衡模块分时复用所述通道,所述方法包括:
所述控制模块获取电池组中各个单体电池的SOC值;
所述控制模块根据所述电池组中各单体电池的SOC值,确定参考SOC值;
所述控制模块根据所述电池组中至少一个单体电池的SOC值和所述参考SOC值,确定需要均衡的单体电池。
第二方面,本公开提供一种电池均衡系统,所述系统包括均衡模块、采集模块以及控制模块,所述控制模块通过一个通道与对应于同一单体电池的采集模块和均衡模块连接,该采集模块和该均衡模块分时复用所述通道,所述控制模块用于执行第一方面所述的方法。
第三方面,本公开提供一种车辆,包括上述第二方面所述的电池均衡系统。
第四方面,本公开提供一种计算机可读存储介质,其上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现上述第一方面所述的方法。
第五方面,本公开提供一种电子设备,包括:
第四方面所述的计算机可读存储介质;以及
一个或者多个处理器,用于执行所述计算机可读存储介质中的计算机程序。
通过上述技术方案,电池均衡系统的控制模块通过一个通道与对应于同一单体电池的采集模块和均衡模块连接,提升了控制模块通道的利用率,且电池信息采集和均衡分时进行,避免电池信息采集和均衡同时进行时,均衡电流对电池信息采集的精度的影响,获取的SOC值较为准确,进而使得判断的需要均衡的单体电池也较为准确。
本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1是本公开一实施例的电池均衡系统的示意图;
图2是本公开另一实施例的两个单体电池共用一个均衡模块的电池均衡系统的示意图;
图3是本公开一实施例的电池均衡方法的流程示意图;
图4是本公开一实施例的单体电池的开路电压OCV-剩余电量SOC曲线;
图5是本公开一实施例的确定需要均衡的单体电池的流程示意图;
图6是本公开一实施例的均衡模块的示意图。
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的 具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
参见图1,为本公开一实施例的电池均衡系统的结构示意图。
该电池均衡系统包括:控制模块301、采集模块302和均衡模块303,用于对电池组304进行均衡。其中,电池组304包括多个串联的单体电池。控制模块301通过一个控制通道305与对应于同一单体电池的采集模块302和均衡模块303连接,该采集模块302和该均衡模块303按照单位周期分时复用该控制通道305。
一个单位周期包括:采集时段和均衡时段。控制模块301控制采集模块302,在采集时段内对单体电池的电池信息进行采样,以获取单体电池的电池信息。电池信息至少包括以下其中之一:电压、电流和温度等。在一个实施例中,电池信息可以只包括电压值,由此,可得到单体电池的电压性能参数。在另一实施例中,电池信息也可以同时包括电压值、电流值和温度值等,由此,可得到单体电池的SOC(State of Charge,剩余电量)、内阻、自放电率等性能参数。
控制模块301,根据采集模块302采集的单体电池的电池信息,确定需要进行均衡的单体电池。对于需要开启均衡的单体电池,控制模块301控制与该需要均衡的单体电池对应的均衡模块,在均衡时段内,对该需要均衡的单体电池进行均衡。
由此,在本公开实施例中,采集模块302和均衡模块303间共用同一个控制通道,控制模块301控制采集模块302和均衡模块303,按照单位周期分时复用该控制通道,避免了电池信息采集和均衡同时进行时,均衡电流对电池信息采集的精度的影响;另一方面,相比于采集模块302与均衡模块303分别用不同的控制通道与控制模块301连接的方式,减少了对控制模块芯片的通道数量要求,可节省硬件成本。
所述控制通道或者通道是指控制模块的控制指令传输到执行端(采集模块和均衡模块)的传递途径。
在一个实施例中,在采集模块302和均衡模块303共用的控制通道中,设置有一开关K,控制模块301与开关K连接,并通过控制开关K,实现分时与采集模块302或均衡模块303连接。当开关K与采集模块302连接时,控制模块301控制采集模块302,在采集周期内,对单体电池进行电池信息的采集;当开关K与均衡模块303连接时,控制模块301控制均衡模块303对所对应的单体电池进行均衡。
在一个实施例中,参见图1所示,电池中的每一单体电池分别与一采集模块302和一均衡模块303连接。若电池组包括N个单体电池,则采集模块302为N个,均衡模块303为N个,由此,控制模块301通过N个控制通道,分别与N个采集模块和N个均衡模块连接。
在另一些实施例中,不同的单体电池可共用均衡模块,例如,电池组中的N个单体电 池,可共用同一个均衡模块,或每预设数量(例如,2个、3个或5个等)个单体电池共用一个均衡模块等。当共用一个均衡模块的多节单体电池中有至少两节单体电池需要均衡时,在单位周期的均衡时段内,该均衡模块与需要均衡的至少两节单体电池中的每节单体电池交替连接。
参见图2,为两个单体电池共用一个均衡模块的一示例性示意图。当共用一个均衡模块的两节单体电池均需要均衡时,在单位周期的均衡时段内,该均衡模块与每节单体电池交替连接。交替连接可为按照一定的周期交替性的连接。由此,在采集模块和均衡模块分时导通的基础上,在均衡时段时,共用同一均衡模块的单体电池交替的与该共用的均衡模块连接,实现均衡。
参见图3,基于上述图1、图2任一实施例所示的电池均衡系统,本公开一实施例的电池均衡方法包括:
在步骤S11中,控制模块获取电池组中各个单体电池的SOC值。
在步骤S12中,控制模块根据电池组中各单体电池的SOC值,确定参考SOC值。
在步骤S13中,控制模块根据电池组中至少一个单体电池的SOC值和参考SOC值,确定需要均衡的单体电池。
可选的,控制模块可以包括控制芯片,控制芯片通过一个引脚和一个通道与对应于同一单体电池的采集模块和均衡模块连接。这样,可以节约控制芯片的引脚,提升控制芯片引脚的利用率。
采样模块可以对电池组中的各单体电池的电池信息进行采集(比如包括电压值、电流值、温度值,等等),控制模块可以根据采样模块采集到的电池信息来计算出SOC值。
对于电池组中的任一单体电池,可采用安时积分法或安时积分结合电压修正法计算该单体电池的SOC值。
安时积分法是指采用采集到的单体电池的电流值对时间积分得到该单体电池的SOC值;安时积分结合电压修正法是指首先采用安时积分法计算单体电池的SOC值,然后再用该单体电池的负载电压值对计算出的SOC值进行修正,将修正后的SOC值作为该单体电池最终的SOC值。
在单位周期的采样时段内采集到的单体电池的电压值是单体电池的负载电压值,即在单体电池充电或放电过程中的电压值。根据单体电池的负载电压值与OCV值之间的对应关系,即OCV值=负载电压值+单体电池的内阻值×单体电池的充电电流值或放电电流值,可得到单体电池的OCV值。
由于每一个单体电池都对应一条OCV-SOC曲线,如图4所示,在区间[0,SOC1]和区间[SOC2,1]内,OCV值的变化幅度较大,因此采用安时积分结合电压修正法得到的SOC 值更准确;在区间(SOC1,SOC2)内,OCV值的变化幅度较小,若在该区间利用安时积分结合电压修正法可能无法准确地得到单体电池的SOC值,进而导致无法准确地确定出待均衡单体电池,因此采用安时积分法得到的SOC值更准确。
可选的,为了准确地计算出任一单体电池的SOC值,在一个实施例中,SOC值的取值范围按照对应单体电池的OCV-SOC曲线划分为端值是0和第一SOC值(如图4中的SOC1)的第一区间、端值是第一SOC值和第二SOC值(如图4中的SOC2)的第二区间以及端值是第二SOC值和100%的第三区间,计算SOC值的方法包括第一计算方式和第二计算方式,其中,第一计算方式对应与第一区间和第三区间,第二计算方式对应于第二区间。相应地,上述步骤S11包括以下步骤:
针对电池组中的任一单体电池,控制模块按照第一计算方式确定该单体电池的SOC值。
当按照第一计算方式确定的SOC值属于第二区间时,控制模块按照第二计算方式重新确定该单体电池的SOC值。
可选的,第一计算方式为安时积分法或安时积分结合电压修正法,第二计算方式为安时积分法和安时积分结合电压修正法中与第一计算方式不同的计算方式。
本公开实施例中,第一区间和第三区间由于电压变化率较大,因此可采用安时积分法,并结合电池的实时电压(此时为负载电压)进行修正来计算电池的SOC值。第二区间因电池电压变化率小,引入电压变量计算SOC值精度不高,所以可以直接采用安时积分法计算SOC值。通过这样的方式,可以针对单体电池的所处的SOC值区间的不同,来进一步确定如何获取单体电池的SOC值,因此得到的单体电池的SOC值较为准确,进而使得确定出的需要均衡的单体电池也较为准确。
在另一实施例中,在电池刚工作的瞬间,还可以采用开路电压法计算电池SOC值,即,采集电池的电压值(此时等效为开路电压值),查OCV-SOC对应关系可算出电池SOC值。
可选的,第一计算方式为该单体电池上一次计算SOC值所采用的计算方式。
对于电池组中的任一单体电池,可首先采用安时积分法和安时积分结合电压修正法中的任一种计算方式计算该单体电池的SOC值,此时采用的计算方式即为第一计算方式。接下来,对第一计算方式为安时积分法和第一计算方式为安时积分结合电压修正法这两种情况进行说明。
情况一:第一计算方式为安时积分法,相应地,第二计算方式为安时积分结合电压修正法。
针对该情况,首先基于安时积分法,根据采集到的单体电池的电池信息(如电流值等)得到该单体电池的SOC值,并判断计算出的SOC值所属的区间。若计算出的SOC值属于第一区间或第三区间,由于在第一区间和第三区间内采用安时积分结合电压修正法得到的 结果更准确,则采用安时积分结合电压修正法重新确定该单体电池的SOC值,且可将安时积分结合电压修正法作为第一计算方式,即在下一次计算单体电池的SOC值时首先采用安时积分结合电压修正法计算;若计算出的SOC值属于第二区间,由于在第二区间内采用安时积分法得到的结果更准确,则无需重新进行计算,可将安时积分法作为第一计算方式,即在下一次计算单体电池的SOC值时首先采用安时积分法计算。
情况二:第一计算方式为安时积分结合电压修正法,相应地,第二计算方式为安时积分法。
针对该情况,首先基于安时积分结合电压修正法,根据采集到的单体电池的电池信息(如负载电压值等)得到该单体电池的SOC值,并判断计算出的SOC值所属的区间。若计算出的SOC值属于第一区间或第三区间,由于在第一区间和第三区间内采用安时积分结合电压修正法得到的结果更准确,则无需重新进行计算,可将安时积分结合电压修正法作为第一计算方式,即在下一次计算单体电池的SOC值时首先采用安时积分结合电压修正法计算;若计算出的SOC值属于第二区间,由于在第二区间内采用安时积分法得到的结果更准确,则采用安时积分法重新确定该单体电池的SOC值,且可将安时积分法作为第一计算方式,即在下一次计算单体电池的SOC值时首先采用安时积分法计算。
在控制模块确定电池组中各单体电池的SOC值之后,可以确定参考SOC值,可将电池组中任一个单体电池的SOC值作为参考SOC值,例如将电池组中的第2节单体电池的SOC值作为参考SOC值;或者,可根据各单体电池的SOC值确定参考SOC值。例如,可将电池组中各单体电池的SOC值中的最小SOC值、最大SOC值、平均值等中的任一者确定为参考SOC值。
可选的,请参见图5,在本公开的一实施例中,通过以下方式确定需要均衡的单体电池:
在步骤S21中,控制模块确定至少一个单体电池的SOC值与参考SOC值之间的SOC差值。
在步骤S22中,控制模块将至少一个单体电池中SOC差值大于或等于均衡开启阈值的单体电池确定为需要均衡的单体电池。
均衡开启阈值可以是预先设定的用来判断均衡开启条件的阈值,对于均衡开启阈值究竟为多少,本公开实施例不作限定,例如,10%,等等。可选的,当参考SOC值为各单体电池的SOC值中的最小值时,在步骤S21和步骤S22中所述的至少一个单体电池可以是电池组中SOC值最大的一个单体电池或SOC值相等且为最大的多个单体电池;或者至少一个单体电池也可以是电池组中除SOC值最小的单体电池外的全部单体电池。
在一个实施例中,控制模块可以确定电池组中SOC值最大的单体电池的SOC值与参 考SOC值之间的差值,进而确定SOC值最大的单体电池是否需要均衡。这样,控制模块无需对所有的单体电池一一进行判定,控制模块的处理速度较快,同时,在确定SOC值最大的单体电池需要进行均衡时,也可以只对该SOC值最大的单体电池进行均衡,电池均衡系统进行均衡的速度较快。
或者,在另一实施例中,控制模块可以分别确定电池组中除SOC值为最小值的单体电池之外的其他单体电池的SOC值与参考SOC值之间的差值,进而可以确定出其他单体电池中是否有需要均衡的单体电池,以及需要均衡的单体电池有哪些。这样,可以对电池组中所有满足均衡开启的条件的单体电池进行均衡,电池均衡系统的均衡效果较好。
可选的,当参考SOC值为各单体电池的SOC值中的最小值时,后续对确定的至少一个单体电池中电压差值大于或等于均衡开启阈值的单体电池的均衡处理为:控制该需要均衡的单体电池放电,执行被动均衡。
可选的,当参考SOC值为各单体电池的SOC值中的最大值时,在步骤S21和步骤S22中所述的至少一个单体电池可以是电池组中SOC值最小的一个单体电池或SOC值相等且为最小的多个单体电池;或者至少一个单体电池也可以是电池组中除SOC值最大的单体电池外的全部单体电池。
控制模块可以确定电池组中SOC值最小的单体电池的SOC值与参考SOC值之间的差值,进而确定SOC值最小的单体电池是否需要均衡。这样,控制模块无需对所有的单体电池一一进行判定,控制模块的处理速度较快,同时,在确定SOC值最小的单体电池需要进行均衡时,也可以只对该SOC值最小的单体电池进行均衡,电池均衡系统进行均衡的速度较快。
或者,在另一实施例中,控制模块可以分别确定电池组中除SOC值为最大值的单体电池之外的其他单体电池的SOC值与参考SOC值之间的差值,进而可以确定出其他单体电池中是否有需要均衡的单体电池,以及需要均衡的单体电池有哪些。这样,可以对电池组中所有满足均衡开启的条件的单体电池进行均衡,电池均衡系统的均衡效果较好。
可选的,当参考SOC值为各单体电池的SOC值中的最大值时,后续对确定的至少一个单体电池中电压差值大于或等于均衡开启阈值的单体电池的均衡处理为:控制该需要均衡的单体电池充电,执行主动均衡,比如,将需要均衡的单体电池连接至车辆的发电机或蓄电池,进而对该需要均衡的单体电池充电。
可选的,当参考SOC值为各单体电池的SOC值的平均值时,控制模块可以分别确定电池组中各个单体电池的SOC值与参考SOC值之间的差值,进而可以确定出整个电池组中是否有需要均衡的单体电池,以及需要均衡的单体电池有哪些。这样,可以对电池组中所有满足均衡开启的条件的单体电池进行均衡,电池均衡系统的均衡效果较好。
可选的,当参考SOC值为各单体电池的SOC值的平均值时,后续对确定的至少一个单体电池中电压差值大于或等于均衡开启阈值的单体电池的均衡处理为:控制SOC值小于参考SOC值的单体电池充电,执行主动均衡;控制SOC值大于参考SOC值的单体电池放电,执行被动均衡。
本公开实施例中,还可以通过除SOC以外的其他参数来判断均衡,例如,电压、内阻、自放电率、电压变化率、电量变化率、时间变化率,等等。
应理解,参见下述表1,当用于判断均衡的参数分别为电压、SOC、内阻、自放电率、电压变化率、电量变化率或时间变化率时,均衡判断和均衡方式的对应关系表。
其中,单体电池的自放电率,用于表征单体电池的容量损失情况和容量损失速率。在一个实施例中,在电池组停止工作并达到稳定状态时(t1时刻),检测并记录动力电池组各单体电池的开路电压值V1;当电池组再次启动开始工作的瞬间(t2时刻),检测并记录动力电池组各单体电池的开路电压值V2;根据两次检测得到的各单体电池开路电压值,计算出各单体电池的自放电率η,自放电率值η的计算方法为:
(1)基于电池的OCV-SOC曲线,根据检测到的V1和V2找出V1对应的SOC值和V2对应的SOC值;
(2)根据分别对应与V1和V2的两个SOC值计算出电池的SOC变化值ΔSOC;
(3)根据ΔSOC与电池满电容量C,计算出电池自放电放出的电池容量,ΔQ=ΔSOC*C;
(4)计算电池自放电率η的值:η=ΔQ/(t1-t2)。
单体电池的电压变化率可以为单体电池的指定物理量发生单位改变时的电压变化量。例如,本公开中以对单体电池充入或放出预设电量,单体电池的电压变化量(dv/dq);或者对单体电池进行充电或放电预设时长,单体电池的电压变化量(dv/dt)为例进行说明。
单体电池的电量变化率可以为单体电池的指定物理量发生单位改变时的电量变化量。例如,本公开中以单体电池的电压从初始电压上升一个单位电压所需充入的电量(dq/dv),或单体电池的电压从初始电压下降一个单位电压所减少的电量(dq/dv)为例进行说明。
单体电池的时间变化率可以为单体电池的指定物理量发生单位改变时的时间变化量。例如,本公开中以单体电池的电压从初始电压上升一个单位电压所需的充电时间(dt/dv),或单体电池的电压从初始电压下降一个单位电压所需的放电时间(dt/dv)为例进行说明。
表1
Figure PCTCN2018103274-appb-000001
Figure PCTCN2018103274-appb-000002
Figure PCTCN2018103274-appb-000003
Figure PCTCN2018103274-appb-000004
由此,当采用不同的电池的性能参数进行均衡判断时,按照表1中相应的方式进行判断,结合上述性能参数为电压时的判断流程,确定出电池组中的需要均衡的单体电池。
应理解,若确定没有需要进行均衡的单体电池,则流程回到步骤S11,继续根据下一个采集时段采集的信息进行均衡的判断。当根据采集时段采集的信息,确定没有需要进行均衡的单体电池时,在均衡时段,控制模块可不进行动作,使得任一电池对应的均衡模块均不被开启。
可选的,在确定需要均衡的单体电池后,控制模块还可以执行以下步骤:
根据需要均衡的单体电池的SOC值以及参考SOC值,确定需要均衡的单体电池的目标均衡时长;
控制模块按照需要均衡的单体电池的目标均衡时长,控制需要均衡的单体电池的均衡。
以下对可能的根据需要均衡的单体电池的SOC值以及参考SOC值,确定需要均衡的单体电池的目标均衡时长的方式进行说明。
按照式(1)确定电量差:
ΔQ=ΔSOC×C n  (1)
其中,ΔQ为电量差,ΔSOC为需要均衡的单体电池的SOC值与参考SOC值之间的SOC差值,C n为需要均衡的单体电池的可用容量。
按照式(2)确定需要均衡的单体电池的目标均衡时长:
t=ΔQ/(I×τ)  (2)
其中,t为需要均衡的单体电池的预设均衡时长,I为需要均衡的单体电池的预设均衡电流,τ为均衡占空比。均衡占空比是指单位周期内的均衡时段与单位周期的比值,本公开实施例中,均衡占空比可以是预先根据需求设定好的值,比如设定为50%,等等。
当确定了需要均衡的单体电池的目标均衡时长后,按照该目标均衡时长,对需要均衡的单体电池进行均衡,以实现提高均衡效率,降低均衡成本。
以下实施例集中描述均衡过程相关实施例:
参见图6,为本公开一实施例的均衡模块的示意图。控制需要均衡的单体电池在单位周期的均衡时段进行均衡,需要结合上述均衡判断进行。根据均衡判断的步骤中,确定需要均衡的单体电池的均衡方式为被动均衡(即对需要均衡的单体电池进行放电),还是主动均衡(即对需要均衡的单体电池进行充电),并导通相应的均衡模块。
参见图6,对于被动均衡,均衡模块包括:一电阻811,每个单体电池对应一个均衡模块,即每节单体电池的两端均并联一个电阻。
对于需要进行被动均衡的需要均衡的单体电池,在单位周期的均衡时段内,控制模块控制该需要均衡的单体电池与其对应的电阻之间的并联回路导通,以执行对该单体电池的被动均衡。参见图6,控制模块通过控制开关模块812导通,实现需要均衡的单体电池与其对应的电阻之间的并联回路的导通。
电阻811可为定值电阻或可变电阻。在一个实施例总,电阻811可为正温度系数的热敏电阻,其可随温度的变化而变化,从而可调节均衡时产生的均衡电流,进而自动调节电池均衡系统的发热量,并最终对电池均衡系统的温度进行有效控制。
参见图6,对于主动均衡,均衡模块包括与电池组中的每一个单体电池95均并联的充电支路94,充电支路94与单体电池95一一对应,且每个充电支路94均连接于发电机92, 发电机92与发动机91通过齿轮机械连接。
对于需要进行主动均衡的单体电池,控制模块控制与该需要均衡的单体电池对应的充电支路94导通。发动机91转动时,则带动发电机92发电,从而将发电机92所发的电量输送给需要均衡的单体电池,使该需要均衡的单体电池的电量增加。
参见图6,当发电机92为交流发电机时,均衡模块还包括与发电机92串联的整流器93,每个充电支路130均串联所述整流器132。通过整流器93将发电机92发出的交流电转换为直流电后,可以使得发电机92能够用于对需要均衡的单体电池进行充电。
参见图6,控制模块可通过控制与需要均衡的单体电池对应的开关96导通,使得该需要均衡的单体电池对应的充电支路导通,执行对需要均衡的单体电池的主动均衡。
在另一些实施例中,除了图6所示的,利用发电机对单体电池进行充电外,还可通过整车中的启动电池为需要均衡的单体电池进行充电。
在另一实施例中,除了图6所示的,并联电阻与需要均衡的单体电池外,还可将需要均衡的单体电池与整车的启动电池并联,将需要均衡的单体电池放出的电量充入启动电池,实现对需要均衡的单体电池的均衡的同时有效避免能量的浪费。
如上所述,在本公开的实施例中,多个单体电池可共用一个均衡模块,当共用一个均衡模块的多节单体电池中有至少两节单体电池需要均衡时,在单位周期的均衡时段内,该均衡模块与需要均衡的至少两节单体电池中的每节单体电池交替连接,分别进行均衡。
相应的,本公开实施例还提供一种车辆,包括上述的电池均衡系统。
相应的,本公开实施例还提供一种计算机可读存储介质,其上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现上述的电池均衡方法。
相应的,本公开实施例还提供一种电子设备,包括:前述计算机可读存储介质;以及一个或者多个处理器,用于执行所述计算机可读存储介质中的计算机程序。
以上结合附图详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。

Claims (18)

  1. 一种电池均衡方法,其特征在于,应用于电池均衡系统,所述电池均衡系统包括:均衡模块、采集模块以及控制模块,所述控制模块通过一个通道与对应于同一单体电池的采集模块和均衡模块连接,该采集模块和该均衡模块分时复用所述通道,所述方法包括:
    所述控制模块获取电池组中各个单体电池的SOC值;
    所述控制模块根据所述电池组中各单体电池的SOC值,确定参考SOC值;
    所述控制模块根据所述电池组中至少一个单体电池的SOC值和所述参考SOC值,确定需要均衡的单体电池。
  2. 根据权利要求1所述的方法,其特征在于,所述控制模块包括控制芯片,所述控制芯片通过一个引脚和所述一个通道与对应于同一单体电池的采集模块和均衡模块连接。
  3. 根据权利要求1或2所述的方法,其特征在于,所述控制模块根据所述电池组中至少一个单体电池的SOC值和所述参考SOC值,确定需要均衡的单体电池,包括:
    所述控制模块确定所述至少一个单体电池的SOC值与所述参考SOC值之间的SOC差值;
    所述控制模块将所述至少一个单体电池中SOC差值大于或等于均衡开启阈值的单体电池确定为需要均衡的单体电池。
  4. 根据权利要求3所述的方法,其特征在于,所述控制模块根据所述电池组中各个单体电池的SOC值,确定参考SOC值,包括:
    所述控制模块将所述电池组中各单体电池的SOC值中的最小值确定为所述参考SOC值;
    所述控制模块确定所述至少一个单体电池的SOC值与所述参考SOC值之间的SOC差值,包括:
    所述控制模块确定以下单体电池的SOC值与所述参考SOC值之间的SOC差值:
    所述电池组中SOC值最大的单体电池;或,
    所述电池组中除SOC值为所述最小值的单体电池之外的其他单体电池。
  5. 根据权利要求4所述的方法,其特征在于,在所述控制模块将所述至少一个单体电池中SOC差值大于或等于均衡开启阈值的单体电池确定为需要均衡的单体电池之后,所述方法还包括:
    所述控制模块控制所述至少一个单体电池中SOC差值大于或等于所述均衡开启阈值的单体电池放电。
  6. 根据权利要求3所述的方法,其特征在于,所述控制模块根据所述电池组中各个单 体电池的SOC值,确定参考SOC值,包括:
    所述控制模块将所述电池组中各个单体电池的SOC值中的最大值确定为所述参考SOC值;
    所述控制模块确定所述至少一个单体电池的SOC值与所述参考SOC值之间的SOC差值,包括:
    所述控制模块确定以下单体电池的SOC值与所述参考SOC值之间的SOC差值:
    所述电池组中SOC值最小的单体电池;或,
    所述电池组中除SOC值为所述最大值的单体电池之外的其他单体电池。
  7. 根据权利要求6所述的方法,其特征在于,在所述控制模块将所述至少一个单体电池中SOC差值大于或等于均衡开启阈值的单体电池确定为需要均衡的单体电池之后,所述方法还包括:
    所述控制模块控制所述至少一个单体电池中SOC差值大于或等于所述均衡开启阈值的单体电池充电。
  8. 根据权利要求3所述的方法,其特征在于,所述控制模块根据所述电池组中各个单体电池的SOC值,确定参考SOC值,包括:
    所述控制模块将所述电池组中各个单体电池的SOC值的平均值确定为所述参考SOC值;
    所述控制模块确定所述至少一个单体电池的SOC值与所述参考SOC值之间的SOC差值,包括:
    所述控制模块确定所述电池组中各个单体电池的SOC值与所述参考SOC值之间的SOC差值。
  9. 根据权利要求8所述的方法,其特征在于,在所述控制模块将所述至少一个单体电池中SOC差值大于或等于均衡开启阈值的单体电池确定为需要均衡的单体电池之后,所述方法还包括:
    所述控制模块控制所述需要均衡的单体电池中SOC值小于所述参考SOC值的单体电池充电,并控制所述需要均衡的单体电池中SOC值大于所述参考SOC值的单体电池放电。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,在所述控制模块根据所述电池组中至少一个单体电池的SOC值和所述参考SOC值,确定需要均衡的单体电池之后,所述方法还包括:
    所述控制模块根据所述需要均衡的单体电池的SOC值以及所述参考SOC值,确定所述需要均衡的单体电池的目标均衡时长;
    所述控制模块按照所述需要均衡的单体电池的目标均衡时长,控制所述需要均衡的单 体电池的均衡。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,SOC值的取值范围按照对应单体电池的OCV-SOC曲线划分为端值是0和第一SOC值的第一区间、端值是所述第一SOC值和第二SOC值的第二区间,以及端值是所述第二SOC值和100%的第三区间,计算SOC值的方法包括第一计算方式和第二计算方式,所述第一计算方式对应于所述第一区间和所述第三区间,所述第二计算方式对应于所述第二区间;
    所述控制模块获取电池组中各个单体电池的SOC值,包括:
    针对所述电池组中的任一单体电池,所述控制模块按照所述第一计算方式确定该单体电池的SOC值;
    当按照所述第一计算方式确定的SOC值属于所述第二区间时,所述控制模块按照所述第二计算方式重新确定该单体电池的SOC值。
  12. 根据权利要求11所述的方法,其特征在于,所述第一计算方式为该单体电池上一次计算SOC值所采用的方式。
  13. 根据权利要求11或12所述的方法,其特征在于,所述第一计算方式为安时积分法或安时积分法结合电压修正法,所述第二计算方式为安时积分法和安时积分结合电压修正法中与所述第一计算方式不同的计算方式。
  14. 一种电池均衡系统,其特征在于,包括:
    均衡模块、采集模块以及控制模块,所述控制模块通过一个通道与对应于同一单体电池的采集模块和均衡模块连接,该采集模块和该均衡模块分时复用所述通道,所述控制模块用于执行权利要求1-13中任一项所述的方法。
  15. 根据权利要求14所述的电池均衡系统,其特征在于,所述控制模块包括控制芯片,所述控制芯片通过一个引脚和所述一个通道与对应于同一单体电池的采集模块和均衡模块连接。
  16. 一种车辆,其特征在于,所述车辆包括:电池组以及权利要求14-15任一项所述的电池均衡系统。
  17. 一种计算机可读存储介质,其上存储有计算机程序指令,其特征在于,所述计算机程序指令被处理器执行时实现权利要求1-13任一项所述的方法。
  18. 一种电子设备,其特征在于,包括:
    权利要求17中所述的计算机可读存储介质;以及
    一个或者多个处理器,用于执行所述计算机可读存储介质中的计算机程序。
PCT/CN2018/103274 2017-08-31 2018-08-30 电池均衡方法、系统、车辆、存储介质及电子设备 WO2019042365A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710775020.X 2017-08-31
CN201710775020.XA CN109435773B (zh) 2017-08-31 2017-08-31 电池均衡方法、系统、车辆、存储介质及电子设备

Publications (1)

Publication Number Publication Date
WO2019042365A1 true WO2019042365A1 (zh) 2019-03-07

Family

ID=65524906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/103274 WO2019042365A1 (zh) 2017-08-31 2018-08-30 电池均衡方法、系统、车辆、存储介质及电子设备

Country Status (2)

Country Link
CN (1) CN109435773B (zh)
WO (1) WO2019042365A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112526380A (zh) * 2020-11-19 2021-03-19 许继集团有限公司 一种电池管理单元均衡效率测试方法及系统
CN112865232A (zh) * 2021-01-14 2021-05-28 哈尔滨工业大学(深圳) 主动式电池组均衡电路及控制方法
CN113178632A (zh) * 2021-04-25 2021-07-27 上海空间电源研究所 一种锂离子蓄电池组单体一致性恢复方法
CN114325431A (zh) * 2021-12-31 2022-04-12 北京西清能源科技有限公司 一种电池直流内阻测算方法及装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110504725B (zh) * 2019-08-13 2021-03-12 国网浙江省电力有限公司电力科学研究院 一种储能电站多电池堆快速均衡控制方法及装置
CN110895310A (zh) * 2019-12-27 2020-03-20 四川长虹电器股份有限公司 一种磷酸铁锂电池soc估算系统
CN112332469A (zh) * 2020-09-08 2021-02-05 煤炭科学技术研究院有限公司 一种矿用锂离子蓄电池电源的均衡模块及均衡方法
CN113183828A (zh) * 2021-04-29 2021-07-30 爱驰汽车有限公司 电池模组的均衡方法和均衡装置
CN113394852A (zh) * 2021-07-16 2021-09-14 阳光电源股份有限公司 一种均衡控制方法及储能系统
CN115469239B (zh) * 2022-06-29 2023-09-08 四川新能源汽车创新中心有限公司 电池系统的电荷状态一致性评价方法、装置及电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102437613A (zh) * 2011-12-16 2012-05-02 奇瑞汽车股份有限公司 一种锂离子电池均衡系统及其均衡方法
CN102496979A (zh) * 2011-11-28 2012-06-13 上海交通大学 一种极性自动切换的锂离子电池组均衡电路
JP2013021821A (ja) * 2011-07-12 2013-01-31 Honda Motor Co Ltd 電池均等化回路装置
CN104852435A (zh) * 2015-05-22 2015-08-19 聊城大学 一种电动汽车用串联锂电池管理系统及其管理方法
CN105140981A (zh) * 2015-06-17 2015-12-09 广西科技大学 锂电池主动均衡控制方法
CN106026292A (zh) * 2016-07-19 2016-10-12 中国科学技术大学 一种基于a*算法的电池均衡控制方法和系统
JP2017073911A (ja) * 2015-10-08 2017-04-13 スズキ株式会社 組電池均等化装置
CN207241459U (zh) * 2017-08-31 2018-04-17 比亚迪股份有限公司 电池均衡系统及车辆

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5250928B2 (ja) * 2005-10-24 2013-07-31 日産自動車株式会社 電池システムの充電状態バランス回復方法
CN201038268Y (zh) * 2007-01-19 2008-03-19 华南理工大学 一种集散式动力电池组动态均衡管理器
JP4823974B2 (ja) * 2007-06-19 2011-11-24 古河電気工業株式会社 蓄電池の残存容量検知方法及び残存容量検知装置
JP5656415B2 (ja) * 2009-03-26 2015-01-21 プライムアースEvエナジー株式会社 二次電池の状態判定装置及び制御装置
CN102104259B (zh) * 2009-12-16 2013-08-07 比亚迪股份有限公司 一种可充电电池的电量检控方法和装置
CN102074757B (zh) * 2010-12-24 2013-02-13 惠州市亿能电子有限公司 一种锂离子电池荷电状态的估算方法
CN102088118B (zh) * 2010-12-28 2013-09-18 深圳市航盛电子股份有限公司 一种电池管理系统、电动车及荷电状态的估算方法
DE112012001144T5 (de) * 2011-03-07 2013-11-28 A123 Systems, Inc. Verfahren zum opportunistischen Ausgleichen von Ladung zwischen Batteriezellen
US9885757B2 (en) * 2011-04-01 2018-02-06 Atieva, Inc. Method and apparatus for determining the state-of-charge of a battery
CN102231546B (zh) * 2011-06-30 2013-07-17 武汉市菱电汽车电子有限责任公司 具有均衡充放电功能的电池管理系统及其控制方法
CN103323775B (zh) * 2012-03-20 2015-07-08 北汽福田汽车股份有限公司 用于电池模块的平衡监控及测试系统
US9728820B2 (en) * 2012-03-29 2017-08-08 Atieva, Inc. Margin-based battery charge balancing
CN104052087B (zh) * 2013-03-13 2016-06-15 中国科学院沈阳自动化研究所 电动车用智能锂离子电池管理系统及其均衡控制方法
CN103117595B (zh) * 2013-03-15 2015-02-04 山东鲁能智能技术有限公司 分布式直流独立供电系统
TWI627812B (zh) * 2013-04-05 2018-06-21 美商線性科技股份有限公司 電壓補償主動電池平衡的裝置、系統及方法
US9118190B2 (en) * 2013-10-30 2015-08-25 Metal Industries Research & Development Centre Charging balancing system based on battery operating process and method thereof
US9381825B2 (en) * 2014-02-20 2016-07-05 Ford Global Technologies, Llc State of charge quality based cell balancing control
CN104319425B (zh) * 2014-08-25 2016-06-22 江苏华东锂电技术研究院有限公司 对锂离子电池的容量进行管理的方法
KR101727830B1 (ko) * 2015-10-22 2017-04-17 주식회사 포스코아이씨티 개방단자전압을 이용하여 soc 평형 제어를 수행하는 전력 조절 장치, 이를 포함하는 에너지 저장 시스템, 및 개방단자전압을 이용한 배터리 랙 그룹들의 soc 평형 제어 방법
CN106501726B (zh) * 2016-11-18 2018-12-18 新誉集团有限公司 电池荷电状态的soc估算方法
CN106549454A (zh) * 2016-12-15 2017-03-29 深圳晶福源科技股份有限公司 一种电压采样与电量均衡共线的电池管理系统和管理方法
CN106602668B (zh) * 2017-01-20 2019-03-22 深圳晶福源科技股份有限公司 一种双向全时电量均衡的电池管理系统和管理方法
CN106646265A (zh) * 2017-01-22 2017-05-10 华南理工大学 一种锂电池soc估计方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013021821A (ja) * 2011-07-12 2013-01-31 Honda Motor Co Ltd 電池均等化回路装置
CN102496979A (zh) * 2011-11-28 2012-06-13 上海交通大学 一种极性自动切换的锂离子电池组均衡电路
CN102437613A (zh) * 2011-12-16 2012-05-02 奇瑞汽车股份有限公司 一种锂离子电池均衡系统及其均衡方法
CN104852435A (zh) * 2015-05-22 2015-08-19 聊城大学 一种电动汽车用串联锂电池管理系统及其管理方法
CN105140981A (zh) * 2015-06-17 2015-12-09 广西科技大学 锂电池主动均衡控制方法
JP2017073911A (ja) * 2015-10-08 2017-04-13 スズキ株式会社 組電池均等化装置
CN106026292A (zh) * 2016-07-19 2016-10-12 中国科学技术大学 一种基于a*算法的电池均衡控制方法和系统
CN207241459U (zh) * 2017-08-31 2018-04-17 比亚迪股份有限公司 电池均衡系统及车辆

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112526380A (zh) * 2020-11-19 2021-03-19 许继集团有限公司 一种电池管理单元均衡效率测试方法及系统
CN112526380B (zh) * 2020-11-19 2024-04-16 许继集团有限公司 一种电池管理单元均衡效率测试方法及系统
CN112865232A (zh) * 2021-01-14 2021-05-28 哈尔滨工业大学(深圳) 主动式电池组均衡电路及控制方法
CN113178632A (zh) * 2021-04-25 2021-07-27 上海空间电源研究所 一种锂离子蓄电池组单体一致性恢复方法
CN114325431A (zh) * 2021-12-31 2022-04-12 北京西清能源科技有限公司 一种电池直流内阻测算方法及装置
CN114325431B (zh) * 2021-12-31 2024-03-08 北京西清能源科技有限公司 一种电池直流内阻测算方法及装置

Also Published As

Publication number Publication date
CN109435773B (zh) 2022-02-08
CN109435773A (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
WO2019042365A1 (zh) 电池均衡方法、系统、车辆、存储介质及电子设备
US11292360B2 (en) Battery equalization method and system, vehicle, storage medium, and electronic device
WO2019042355A1 (zh) 电池均衡方法、系统、车辆、存储介质及电子设备
CN109435778B (zh) 电池均衡方法、系统、车辆、存储介质及电子设备
WO2019042364A1 (zh) 电池均衡方法、系统、车辆、存储介质及电子设备
CN110015178B (zh) 电池均衡方法、系统、车辆、存储介质及电子设备
WO2019042410A1 (zh) 电池均衡方法、系统、车辆、存储介质及电子设备
CN110015187B (zh) 电池均衡方法、系统、车辆、存储介质及电子设备
WO2019042401A1 (zh) 电池均衡方法、系统、车辆、存储介质及电子设备
WO2019042399A1 (zh) 电池均衡方法、系统、车辆、存储介质及电子设备
CN109428355B (zh) 电池均衡方法、系统、车辆、存储介质及电子设备
WO2019042415A1 (zh) 电池均衡方法、系统、车辆、存储介质及电子设备
WO2019042416A1 (zh) 电池均衡方法、系统、车辆及电子设备
CN109428129B (zh) 电池均衡方法、系统、车辆、存储介质及电子设备
CN110015184B (zh) 电池均衡方法、系统、车辆、存储介质及电子设备
CN110015174B (zh) 电池均衡方法、系统、车辆、存储介质及电子设备
CN109428356B (zh) 电池均衡方法、系统、车辆、存储介质及电子设备
CN110015188B (zh) 电池均衡方法、系统、车辆、存储介质及电子设备
WO2019042356A1 (zh) 电池均衡方法、系统、车辆、存储介质及电子设备
CN109435774B (zh) 电池均衡方法、系统、车辆、存储介质及电子设备
CN110015176B (zh) 电池均衡方法、系统、车辆、存储介质及电子设备
CN110015129B (zh) 电池均衡方法、系统、车辆、存储介质及电子设备
CN109435758B (zh) 电池均衡方法、系统、车辆、存储介质及电子设备
CN109428358B (zh) 电池均衡方法、系统、车辆、存储介质及电子设备
CN109428130B (zh) 电池均衡方法、系统、车辆、存储介质及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18849609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18849609

Country of ref document: EP

Kind code of ref document: A1