WO2019042260A1 - 上电控制方法、ap芯片及移动终端 - Google Patents

上电控制方法、ap芯片及移动终端 Download PDF

Info

Publication number
WO2019042260A1
WO2019042260A1 PCT/CN2018/102567 CN2018102567W WO2019042260A1 WO 2019042260 A1 WO2019042260 A1 WO 2019042260A1 CN 2018102567 W CN2018102567 W CN 2018102567W WO 2019042260 A1 WO2019042260 A1 WO 2019042260A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip
power
short
range communication
communication chip
Prior art date
Application number
PCT/CN2018/102567
Other languages
English (en)
French (fr)
Inventor
辛桂珍
潘时林
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019042260A1 publication Critical patent/WO2019042260A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/30Payment architectures, schemes or protocols characterised by the use of specific devices or networks
    • G06Q20/32Payment architectures, schemes or protocols characterised by the use of specific devices or networks using wireless devices
    • G06Q20/322Aspects of commerce using mobile devices [M-devices]
    • G06Q20/3227Aspects of commerce using mobile devices [M-devices] using secure elements embedded in M-devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/30Payment architectures, schemes or protocols characterised by the use of specific devices or networks
    • G06Q20/32Payment architectures, schemes or protocols characterised by the use of specific devices or networks using wireless devices
    • G06Q20/327Short range or proximity payments by means of M-devices
    • G06Q20/3278RFID or NFC payments by means of M-devices
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • G07C9/20Individual registration on entry or exit involving the use of a pass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of chip technologies, and in particular, to a power-on control method, an application processor (AP) chip, and a mobile terminal.
  • AP application processor
  • the security element is used in hardware to ensure data security when swiping.
  • the SE has encryption and decryption logic circuits for encrypting and decrypting data exchanged between the mobile terminal and the card reading device during the card swiping process to improve data security.
  • the external SE solution refers to setting the SE outside the AP chip (also referred to as the “master chip”) of the mobile terminal, that is, the SE and the AP chip are two independent chips;
  • the built-in SE solution refers to integrating the SE into the mobile device.
  • SE On the AP chip of the terminal, that is, SE is a part of the AP chip.
  • PMU power management unit
  • the PMU supplies power to the AP chip, the AP is in the power-on state, and the SE is also in the power-on state; when the mobile terminal is in the power-off state, the PMU stops supplying power to the AP chip, the AP is in the power-off state, and the SE is also in the off state. Electrical state.
  • shutdown card-swapping function the function of completing the card-swapping operation in the power-off state
  • the embodiment of the present application provides a power-on control method, an AP chip, and a mobile terminal, which are used to solve the solution of the built-in SE in the prior art.
  • the mobile terminal is in a shutdown state, the SE integrated on the AP chip is broken. The electrical state, so the problem of the shutdown card function cannot be achieved.
  • an embodiment of the present application provides an AP chip.
  • the AP chip is integrated with an SE, and the SE is coupled with a short-range communication chip.
  • the AP chip is coupled to the PMU, and the short-range communication chip is also coupled to the PMU.
  • the AP chip is configured to determine whether the power is triggered by the short-range communication chip after power-on; if the power is triggered by the short-range communication chip, the SE is powered on; wherein, when the AP chip is powered off, the PMU is used. After the power-on signal is detected, the AP chip is powered, and the short-range communication chip sends a power-on signal to the PMU when detecting the radio frequency signal that meets the preset condition.
  • the SE is used to communicate with the short-range communication chip after power-on.
  • the solution for the built-in SE sends a power-on signal to the PMU when the short-range communication chip detects the radio frequency signal that meets the preset condition, and the PMU supplies power to the AP chip after detecting the power-on signal. So that the SE integrated on the AP chip is powered on, and then communicates with the short-distance communication chip to complete the card-swapping operation, thereby implementing the shutdown card-swapping function, so as to better satisfy the user's card-swapping state when the mobile terminal is in a low-power shutdown state.
  • the technical solutions provided by the embodiments of the present application have strong practical value, such as the actual application requirements of the operations such as the payment, the bus card, and the access control card.
  • the AP chip determines whether the booting by the short-range communication chip includes the following two possible implementation manners.
  • the AP chip is configured to receive, after power-on, an indication signal sent by the PMU, where the indication signal is used to indicate whether the power is triggered by the short-range communication chip, and determine whether the short-distance communication is performed according to the indication signal.
  • the chip triggers the boot.
  • the AP chip is configured to: after detecting that the preset pin receives the preset signal sent by the short-range communication chip after power-on, determining that the short-distance communication chip triggers the power-on.
  • the AP chip is powered on before the SE is powered on, and the AP chip is controlled to be powered on by the short-distance communication chip, and then the SE is powered on, which helps save power consumption.
  • the preset condition is that the radio frequency signal includes a preset identifier, or the frequency band whose preset condition is the radio frequency signal is within the preset frequency band.
  • the short-range communication chip can accurately recognize the radio frequency signal related to the card-swapping function provided by itself.
  • the AP chip is further configured to perform a normal boot operation if the boot is not triggered by the short-range communication chip, wherein the normal boot operation includes starting the operating system and displaying a user interface (UI). And the normal boot operation does not include controlling the SE to power on.
  • the normal boot operation includes starting the operating system and displaying a user interface (UI).
  • UI user interface
  • the AP chip is configured to: if the booting is triggered by the short-range communication chip, load the first booting program, where the first booting program is used to control the SE to be powered on; if not triggered by the short-distance communication chip When booting, the second boot program is loaded, and the second boot program is used to perform a normal boot operation.
  • the data amount of the first boot program is smaller than the data amount of the second boot program.
  • the SE when the AP chip determines that the short-distance communication chip triggers the booting, the SE can load and start the PC with a relatively small amount of data, and the SE can save the AP faster.
  • the processing overhead of the chip when the AP chip determines that the short-distance communication chip triggers the booting, the SE can load and start the PC with a relatively small amount of data, and the SE can save the AP faster.
  • the AP chip is also used to load the execution program of the SE from the memory outside the AP chip to the memory inside the AP chip, and the execution program is used to implement the card swipe function.
  • the SE is also used to load its execution program from the memory inside the AP chip to the memory inside the SE after power-on.
  • the execution program of the SE is stored in the memory outside the AP chip, which can save the storage space of the SE, so that the SE can be designed to be lighter and thinner.
  • the AP chip is further configured to: perform a shutdown operation after a predetermined power-on time after the SE is powered on; or start a timer after the SE is powered on; when receiving a reset command sent by the SE, The timer is reset, wherein the SE sends a reset command to the AP chip every time the signal from the short-range communication chip is received; when the timer expires, the shutdown operation is performed.
  • the embodiment of the present application provides a power-on control method, which is applied to an AP chip integrated with SE, the SE is coupled with a short-range communication chip, the AP chip is coupled with the PMU, and the short-range communication chip is also coupled with the PMU.
  • the method includes: after the power is turned on, the AP chip determines whether the power is triggered by the short-range communication chip; if the short-distance communication chip triggers the power-on, the SE is powered on; wherein, in the case that the AP chip is in the power-off state, The PMU supplies power to the AP chip after detecting the power-on signal.
  • the short-range communication chip sends a power-on signal to the PMU when detecting the RF signal that meets the preset condition; the SE communicates with the short-range communication chip after power-on.
  • the embodiment of the present application provides a mobile terminal, where the mobile terminal includes an AP chip, a short-range communication chip, a PMU, and an SE integrated on the AP chip, wherein the SE is coupled with the short-range communication chip, and the AP chip and the PMU Coupling, short-range communication chips are also coupled to the PMU.
  • the short-distance communication chip is configured to send a power-on signal to the PMU when detecting the radio frequency signal that meets the preset condition; the PMU is configured to supply power to the AP chip after detecting the power-on signal; the AP chip is used for After the power is determined, it is determined whether the power is triggered by the short-range communication chip; if the power-on is triggered by the short-range communication chip, the SE is powered on; and SE is used to communicate with the short-range communication chip after power-on.
  • the solution for the built-in SE sends a power-on signal to the PMU when the short-range communication chip detects the radio frequency signal that meets the preset condition, and the PMU detects the power-on.
  • the SE integrated on the AP chip is powered on, and then communicates with the short-distance communication chip to complete the card-swapping operation, thereby implementing the shutdown card-swapping function to better satisfy the user's presence on the mobile terminal.
  • the technical solution provided by the embodiment of the present application has strong practical value in realizing the practical application requirements of the operation of the card payment, the bus card, the access card, and the like.
  • FIG. 1 is a schematic diagram of an implementation environment provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a mobile terminal according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of an AP chip according to an embodiment of the present application.
  • FIG. 4 is a flowchart of a power-on control method provided by an embodiment of the present application.
  • FIG. 5 is a flowchart of a power-on control method provided by another embodiment of the present application.
  • FIG. 6 is a flowchart of a power-on control method provided by another embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an AP chip according to another embodiment of the present application.
  • FIG. 8 is a flowchart of a power-on control method provided by another embodiment of the present application.
  • FIG. 1 shows a schematic diagram of an implementation environment provided by an embodiment of the present application.
  • the implementation environment includes a mobile terminal 10 and a card reading device 20.
  • the mobile terminal 10 may be a portable electronic device such as a cell phone, a tablet, a wearable device, or the like.
  • the card reading device 20 can be any electronic device having a card reading function, such as a POS (Point Of Sales) machine, a bus card reader, an access card reader, and the like.
  • POS Point Of Sales
  • the mobile terminal 10 can communicate with the card reading device 20 instead of the bank card to complete the card payment operation; when the card reading device 20 is a bus card reader, the mobile terminal 10 can communicate with the card reading device 20 instead of the bus card to complete the bus card swiping operation; when the card reading device 20 is the access card reader, the mobile terminal 10 can communicate with the card reading device 20 instead of the access card to complete the access control. Swipe operation.
  • the mobile terminal 10 and the card reading device 20 are equipped with an adapted short-range communication chip, and communicate through the short-distance communication chip to complete the card-swapping operation.
  • the short-range communication chip is a Near Field Communication (NFC) chip.
  • the mobile terminal 10 adopts a scheme of built-in SE.
  • the mobile terminal 10 may include an AP chip 11, a short-range communication chip 13, a PMU 14, and an SE 12 integrated on the AP chip 11.
  • the SE12 is coupled to the short-range communication chip 13, the AP chip 11 is coupled to the PMU 14, and the short-range communication chip 13 is also coupled to the PMU 14.
  • the AP chip 11 is used to run a general operating system of the mobile terminal 10, such as an Android operating system, an iOS operating system, a Windows operating system, and the like.
  • the AP chip 11 is responsible for processing various operations of the mobile terminal 10, including power-on and power-off operations.
  • the AP chip 11 includes, in addition to the SE 12, at least one processor and at least one memory for running a program required to run the AP chip, the memory for storing the program loaded by the AP chip and the data of the processor running the program.
  • the SE 12 is used for communication with the short-range communication chip 13 and is also used for encrypting and decrypting data exchanged between the mobile terminal 10 and the card reading device 20 during the card-swapping process to improve data security.
  • the short-range communication chip 13 is used to communicate with the card reading device 20 through a short-range wireless communication protocol to implement a card swipe operation.
  • a short-range wireless communication protocol for example, when the short-range communication chip 13 is an NFC chip, the NFC chip of the mobile terminal 10 and the NFC chip of the card reading device 20 can communicate based on a Radio Frequency Identification (RFID) protocol.
  • RFID Radio Frequency Identification
  • the PMU 14 is a highly integrated power management unit for portable applications for providing stable power to chips such as the AP chip 11, SE 12 and short-range communication chip 13 described above.
  • the mobile terminal 10 further includes: a battery 15.
  • the battery 15 is coupled to the PMU 14 and the short-range communication chip 13, respectively.
  • the battery 15 is used to supply power to the mobile terminal 10.
  • the mobile terminal 10 further includes an external memory, which refers to a memory external to the AP chip 11.
  • the memory external to the AP chip 11 may be an embedded multimedia media card (eMMc) or a universal flash storage (UFS).
  • the memory external to the AP chip 11 includes a Replay Protected Memory Block (RPMB) for storing the execution program of the SE 12.
  • RPMB Replay Protected Memory Block
  • the AP chip 11 includes a main processor 111, a microprocessor 112, a read-only memory (ROM) 113, a random access memory (RAM) 114, and an SE 12.
  • ROM read-only memory
  • RAM random access memory
  • the main processor 111 of the AP chip 11 is used to process various operations of the AP chip 11, such as a normal boot operation.
  • the microprocessor 112 of the AP chip 11 is mainly used to process various operations when the AP chip 11 implements the shutdown card swiping function.
  • the main processor 111 of the AP chip 11 may be an ARM processor, and the microprocessor 112 of the AP chip 11 may be a Micro Control Unit (MCU).
  • MCU Micro Control Unit
  • the ROM 113 of the AP chip 11 is a memory of the AP chip 11 which can read only the data stored in advance.
  • the RAM 114 of the AP chip 11 is a type of memory in the AP chip 11 that can directly interact with the processor (including the main processor 111 and the microprocessor 112), and is usually stored as temporary data of a program in which the processor is running. medium.
  • the AP chip 11 further includes a Double Data Rate Controller (DDRC), and the DDRC is used to control data interaction between the AP chip 11 and the double rate memory.
  • DDRC Double Data Rate Controller
  • the SE 12 includes a processor 121, a ROM 122, and a RAM 123.
  • the ROM 122 of the SE 12 is a memory of the SE 12 which can only read data stored in advance.
  • the RAM 123 of the SE 12 is a memory of the SE 12 that is capable of directly interacting with the processor 121, typically as a storage medium for temporary data of the program in which the processor 121 is running.
  • the processor 121 of the SE 12 is used to execute the execution program of the SE 12 to implement various functions of the SE 12.
  • the SE 12 and the AP chip 11 exchange data through an Inter Process Communication (IPC) mechanism.
  • IPC Inter Process Communication
  • a technical solution capable of implementing the shutdown card swiping function is provided, so as to better meet the user's low-power shutdown state of the mobile terminal, realizing credit card payment, bus credit card, access control card swiping.
  • the technical solutions provided by the embodiments of the present application have strong practical value.
  • the short-range communication chip 13 is configured to send a power-on signal to the PMU 14 when detecting a radio frequency signal that meets a preset condition.
  • the short-range communication chip 13 in the mobile terminal 10 detects whether or not there is a radio frequency signal conforming to a preset condition.
  • the card reading device 20 capable of cooperating with the mobile terminal 10 to implement the card swiping function emits a radio frequency signal corresponding to a preset condition, and the radio frequency signal is used to enable the mobile terminal 10 around the card reading device 20 to perceive the card reading device 20 presence.
  • the card reading device 20 continues to transmit radio frequency signals outward, or transmits radio frequency signals once every predetermined time interval.
  • the short-distance communication chip 13 in the mobile terminal 10 detects whether the radio frequency signal meets a preset condition, and if the radio frequency signal meets a preset condition, sends a power-on signal to the PMU 14.
  • the short-range communication chip 13 is an NFC chip
  • the NFC chip detects a radio frequency signal that meets a preset condition
  • a power-on signal is transmitted to the PMU 14.
  • the preset condition is that the radio frequency signal includes a preset identifier.
  • the preset identifier is used by the short-range communication chip 13 in the mobile terminal 10 to recognize whether the received radio frequency signal is a radio frequency signal related to the card-swapping function provided by itself.
  • the preset condition is that the frequency of the radio frequency signal is within a preset frequency band.
  • the preset frequency band may be preset according to actual needs.
  • the preset frequency band may be a frequency band used by the NFC, or may be one of the frequency bands used by the NFC.
  • the preset condition may be that the interval of the radio frequency signal is a preset duration, and the preset duration may be a value or a range of values.
  • the preset conditions may be preset according to actual needs to ensure that the short-range communication chip 13 can accurately recognize the radio frequency signal and other unrelated radio frequency signals related to the card-swapping function provided by itself.
  • the PMU 14 is for supplying power to the AP chip 11 after detecting the power-on signal.
  • the PMU 14 supplies power to the AP chip 11 after detecting the power-on signal, so that the AP chip 11 is powered on.
  • the power-off state refers to a state in which the chip is not powered on, and the power-off state is also referred to as a power-off state.
  • the SE 12 since the SE 12 is integrated on the AP chip 11 , the SE 12 can also be powered on after the PMU 14 supplies power to the AP chip 11 .
  • the AP chip 11 and the SE 12 are powered up simultaneously.
  • the AP chip 11 and the SE 12 are connected to the same power line. When the power line is turned on, the AP chip 11 and the SE 12 are simultaneously powered on.
  • the AP chip 11 is powered up prior to the SE 12. After power-on, the AP chip 11 determines whether the power-on is triggered by the short-range communication chip 13. If the power-on is triggered by the short-range communication chip 13, the AP chip 11 controls the SE 12 to be powered on.
  • the power-on signal is a signal for instructing the PMU 14 to supply power to the AP chip 11.
  • the PMU 14 is provided with a pin for indicating a power-on signal, and the power-on signal is indicated by the high and low levels of the pin.
  • the power-on signal detected by the PMU 14 may come from the short-range communication chip 13, or it may be because the PMU 14 detects the power-on signal when the mobile terminal 10 is normally turned on. For example, when the mobile terminal 10 is powered on, periodically turned on, or powered on, the related component also sends a power-on signal to the PMU 14, and accordingly, the PMU 14 detects the power-on signal.
  • the PMU 14 supplies power to the AP chip 11 regardless of the cause of the power-on signal.
  • the AP chip 11 After power-on, the AP chip 11 needs to determine whether the power-on is triggered by the short-range communication chip 13, thereby determining whether to control the SE 12 to be powered on. If the power is turned on by the short-range communication chip 13, the AP chip 11 controls the SE 12 to be powered on. When the booting is triggered by the short-range communication chip 13, it indicates that the mobile terminal 11 needs to perform a card-swapping operation with the card reading device 10, and the card-swapping operation requires the SE 12 to communicate with the short-range communication chip 13, so that the AP chip 11 is determined to be short-distance communication. When the chip 13 triggers the power on, the SE 12 is powered on.
  • the AP chip 11 performs a normal booting operation.
  • the normal booting operation includes starting the operating system and displaying the UI, and the normal booting operation does not include controlling the SE 12 to be powered on.
  • the SE 12 is for communicating with the short-range communication chip 13 after power-on.
  • the SE 12 communicates with the short-range communication chip 13 to complete the card-swapping operation.
  • the card reading device 20 is a POS machine
  • the SE 12 communicates with the short-range communication chip 13, and the short-range communication chip 13 communicates with the POS machine to complete the card-sending operation;
  • the card-reading device 20 When the bus card reader is powered on, the SE 12 communicates with the short-distance communication chip 13 after power-on, and the short-distance communication chip 13 communicates with the bus card reader to complete the bus card swiping operation;
  • the card reading device 20 is the access card
  • the SE 12 communicates with the short-range communication chip 13 after power-on, and the short-range communication chip 13 communicates with the access card reader to complete the access card swipe operation.
  • the SE 12 can communicate with the short-range communication chip 13 through a Single Wire Protocol (SWP).
  • SWP Single Wire Protocol
  • the solution for the built-in SE sends a power-on signal to the PMU when the short-range communication chip detects the radio frequency signal that meets the preset condition, and the PMU supplies power to the AP chip after detecting the power-on signal. So that the SE integrated on the AP chip is powered on, and then communicates with the short-distance communication chip to complete the card-swapping operation, thereby implementing the shutdown card-swapping function, so as to better satisfy the user's card-swapping state when the mobile terminal is in a low-power shutdown state.
  • the technical solutions provided by the embodiments of the present application have strong practical value, such as the actual application requirements of the operations such as the payment, the bus card, and the access control card.
  • the AP chip 11 determines whether the booting is triggered by the short-range communication chip 13, and includes the following two possible implementation manners:
  • the AP chip 11 is configured to: after powering on, receive an indication signal sent by the PMU 14, the indication signal is used to indicate whether the power is triggered by the short-range communication chip 13, and determine whether the The short-range communication chip 13 triggers the power-on.
  • the PMU 14 can determine the source of the power-on signal. If the source of the power-on signal is the short-range communication chip 13, the PMU 14 sends an indication signal to the AP chip 11 indicating that the power-on is triggered by the short-range communication chip 13, for example, the indication.
  • the signal is "1"; otherwise, if the source of the power-on signal is not the short-range communication chip 13, the PMU 14 sends an indication signal to the AP chip 11 for indicating that the power-on is not triggered by the short-range communication chip 13, for example, the indication signal is " 0".
  • the AP chip 11 is configured to: after detecting that the preset pin receives the preset signal sent by the short-range communication chip 13 after power-on, determining that the short-distance communication chip is determined by the short-distance communication chip 13 triggers the boot.
  • the short-distance communication chip 13 is electrically connected to the preset pin of the AP chip 11.
  • the short-distance communication chip 13 After detecting the radio frequency signal meeting the preset condition, the short-distance communication chip 13 sends a preset signal to the AP chip 11, if the AP chip 11 When it is detected that the preset pin receives the preset signal sent by the short-distance communication chip 13, it is determined that the short-distance communication chip 13 triggers the power-on, and the control SE 12 is powered on; otherwise, if the AP chip 11 does not detect the preset pin Upon receiving the preset signal sent by the short-range communication chip 13, the normal power-on operation is performed, and the SE 12 is not controlled to be powered on.
  • the preset signal may be a power-on signal or a specific signal.
  • the above preset pins may be general purpose input output (GPIO) pins or other input and output pins that the AP chip 11 can recognize.
  • GPIO general purpose input output
  • the AP chip 11 is further configured to: if the booting is triggered by the short-range communication chip 13, load the first booting program, where the first booting program is used to control the SE. 12 is powered on; if the booting is not triggered by the short-range communication chip 13, the second booting program is loaded, and the second booting program is used to perform a normal booting operation; wherein the data amount of the first booting program is smaller than the data of the second booting program the amount.
  • the SE 12 can be powered on faster by loading and running the first boot program with a relatively small amount of data, and helps to save the AP chip. 11 processing overhead.
  • the AP chip 11 is further configured to: load an execution program of the SE 12 from a memory external to the AP chip 11 into a memory inside the AP chip 11.
  • the SE 12 executive program is used to implement the swipe function to complete the swipe operation.
  • the execution program of the SE 12 can be stored in a memory external to the AP chip 11. By acquiring the execution program of the SE from the memory external to the AP chip 11, the storage space of the SE can be saved, so that the SE can be designed to be lighter and thinner.
  • the execution program of the SE 12 may also be stored in a memory internal to the SE 12 or in a memory internal to the AP chip 11.
  • the SE 12 is also used to load its execution program from the memory inside the AP chip 11 to the memory inside the SE 12 after power-on.
  • the SE 12 loads its execution program from the memory inside the AP chip 11 into the memory inside the SE 12.
  • the SE cannot directly load the execution program of the SE 12 from the memory outside the AP chip 11, so the AP chip 11 loads the execution program of the SE 12 from the memory outside the AP chip 11 into the memory inside the AP chip 11, and the SE 12 re-passes.
  • the execution program is loaded from the internal memory of the AP chip 11 into the memory inside the SE 12, and the execution program is run.
  • the mobile terminal 10 can be restored to the power-off state, so the AP chip 11 can perform a shutdown operation after completing the card swipe operation.
  • the AP chip 11 is configured to perform a shutdown operation after the AP chip 11 passes the preset time period after the SE 12 is powered on.
  • the preset duration is 10 seconds
  • the AP chip 11 performs a shutdown operation after the SE 12 is powered on for 10 seconds.
  • the AP chip 11 is configured to: start a timer after the SE 12 is powered on; reset the timer when receiving the reset command sent by the SE 12; when the timer expires , perform a shutdown operation.
  • the SE 12 communicates with the short-range communication chip 13, each time a signal from the short-range communication chip 13 is received, a reset command is transmitted to the AP chip 11, and when the AP chip 11 receives the reset command, the timer is reset.
  • FIG. 4 is a flowchart of a power-on control method provided by an embodiment of the present application.
  • the method can be applied to the mobile terminal shown in FIG. 2.
  • the method can include the following steps:
  • Step 401 The short-range communication chip sends a power-on signal to the PMU when detecting the radio frequency signal that meets the preset condition.
  • the short-distance communication chip in the mobile terminal In the case that the mobile terminal is in the off state, the short-distance communication chip in the mobile terminal is in an idle state, and the short-range communication chip detects whether there is a radio frequency signal that meets the preset condition.
  • the card reading device capable of cooperating with the mobile terminal to implement the card swiping function emits a radio frequency signal that meets a preset condition, and the radio frequency signal is used to enable the mobile terminal around the card reading device to perceive the presence of the card reading device.
  • the short-distance communication chip in the mobile terminal After detecting the radio frequency signal, detects whether the radio frequency signal meets a preset condition, and if the radio frequency signal meets a preset condition, sends a power-on signal to the PMU.
  • the short-range communication chip is an NFC chip
  • the NFC chip detects a radio frequency signal that meets a preset condition
  • a power-on signal is transmitted to the PMU.
  • the preset condition is that the radio frequency signal includes a preset identifier.
  • the preset identifier is used by the short-range communication chip in the mobile terminal to identify whether the received radio frequency signal is a radio frequency signal related to the card-swapping function provided by itself.
  • the preset condition is that the frequency of the radio frequency signal is within a preset frequency band.
  • the preset frequency band may be preset according to actual needs.
  • the preset frequency band may be a frequency band used by the NFC, or may be one of the frequency bands used by the NFC.
  • the preset condition may be that the interval of the radio frequency signal is a preset duration, and the preset duration may be a value or a range of values.
  • the preset conditions can be preset according to actual needs to ensure that the short-range communication chip can accurately identify the RF signal and other unrelated RF signals related to the card-swapping function provided by itself.
  • Step 402 After detecting the power-on signal, the PMU supplies power to the AP chip.
  • the PMU supplies power to the AP chip after detecting the power-on signal, so that the AP chip is powered on.
  • the SE since the SE is integrated on the AP chip, the SE can also be powered on after the PMU supplies power to the AP chip.
  • the power-on signal is a signal used to instruct the PMU to supply power to the AP chip.
  • a pin for indicating a power-on signal is provided on the PMU, and a power-on signal is indicated by a high level of the pin.
  • the power-on signal detected by the PMU may come from the short-range communication chip, or it may be because the PMU detects the power-on signal when the mobile terminal is normally turned on. For example, when the mobile terminal is powered on, periodically turned on, or powered on, the related component also sends a power-on signal to the PMU, and accordingly, the PMU detects the power-on signal. The PMU will supply power to the AP chip regardless of the cause of the power-on signal.
  • Step 403 after the power is turned on, the AP chip determines whether the power is triggered by the short-range communication chip.
  • the AP chip After the power is turned on, the AP chip needs to determine whether the short-distance communication chip triggers the power-on to determine whether to control the SE to power on. Optionally, the AP chip determines whether the booting is triggered by the short-range communication chip, and includes the following two possible implementation manners:
  • the AP chip receives an indication signal sent by the PMU, where the indication signal is used to indicate whether the power is triggered by the short-range communication chip, and the AP chip determines, according to the indication signal, whether it is triggered by the short-range communication chip. Boot up.
  • the PMU can determine the source of the power-on signal. If the source of the power-on signal is a short-range communication chip, the PMU sends an indication signal to the AP chip to indicate that the short-distance communication chip triggers the power-on, for example, the indication signal is “1”.
  • the PMU sends an indication signal indicating that the power-on is not triggered by the short-range communication chip to the AP chip, for example, the indication signal is “0”.
  • the AP chip detects that the preset pin receives the preset signal sent by the short-range communication chip, and determines that the short-distance communication chip triggers the power-on.
  • the short-distance communication chip is electrically connected with the preset pin of the AP chip, and after detecting the radio frequency signal meeting the preset condition, the short-distance communication chip sends a preset signal to the AP chip, if the AP chip detects the preset reference When the foot receives the preset signal sent by the short-distance communication chip, it is determined that the short-distance communication chip triggers the power-on; otherwise, if the AP chip does not detect that the preset pin receives the preset signal sent by the short-distance communication chip, it is determined. It is not triggered by the short-range communication chip.
  • the preset signal may be a power-on signal or a specific signal.
  • the above preset pins can be GPIO pins or other input and output pins
  • Step 404 If the short-distance communication chip triggers the power-on, the AP chip controls the SE to be powered on.
  • the short-distance communication chip triggers the power-on, it means that the mobile terminal needs to perform the card-swapping operation with the card-reading device, and the card-swapping operation requires the SE to communicate with the short-distance communication chip, so the AP chip determines that the short-distance communication chip triggers the booting. , control SE power on.
  • the AP chip performs a normal booting operation, wherein the normal booting operation includes starting the operating system and displaying the UI, and the normal booting operation does not include controlling the SE to be powered on.
  • the AP chip is powered on before the SE is powered on, and the AP chip is controlled to be powered on by the short-distance communication chip, and then the SE is powered on, which helps to save power consumption.
  • the AP chip can also be powered on simultaneously with the SE.
  • Step 405 the SE communicates with the short-range communication chip after power-on.
  • the SE After the SE is powered on, the SE communicates with the short-range communication chip to complete the card-swapping operation.
  • the short-distance communication chip communicates with the short-distance communication chip, and the short-distance communication chip communicates with the POS device to complete the card-sending operation; when the card-reading device reads the card for the bus card
  • the SE When the SE is powered on, it communicates with the short-distance communication chip, and the short-distance communication chip communicates with the bus card reader to complete the bus card operation;
  • the card reading device is the access card reader, after the SE is powered on,
  • the short-distance communication chip communicates with the short-distance communication chip, and the short-distance communication chip communicates with the access card reader to complete the access control card-swapping operation.
  • the SE can communicate with the short-range communication chip through the SWP after power-on.
  • the solution for the built-in SE sends a power-on signal to the PMU when the short-range communication chip detects the radio frequency signal that meets the preset condition, and the PMU supplies power to the AP chip after detecting the power-on signal. So that the SE integrated on the AP chip is powered on, and then communicates with the short-distance communication chip to complete the card-swapping operation, thereby implementing the shutdown card-swapping function, so as to better satisfy the user's card-swapping state when the mobile terminal is in a low-power shutdown state.
  • the technical solutions provided by the embodiments of the present application have strong practical value, such as the actual application requirements of the operations such as the payment, the bus card, and the access control card.
  • FIG. 5 is a flowchart of a power-on control method provided by another embodiment of the present application.
  • the method can be applied to the mobile terminal shown in FIG. 2.
  • the method can include the following steps:
  • Step 501 The short-range communication chip sends a power-on signal to the PMU when detecting the radio frequency signal.
  • step 501 is the same as the step 401 in the embodiment of FIG. 4, and the description in the embodiment of FIG. 4 is omitted.
  • Step 502 After detecting the power-on signal, the PMU supplies power to the AP chip.
  • the PMU supplies power to the AP chip after detecting the power-on signal, so that the AP chip is powered on.
  • Step 503 the AP chip runs the first ROM program, and loads the boot program through the first ROM program.
  • the first ROM program is run, and the boot program is loaded from the memory external to the AP chip to the memory inside the AP chip through the first ROM program, and the boot program is run.
  • the first ROM program is used to load the boot program, and the boot program is used to control the SE power-on.
  • the AP chip loads the boot program into the RAM of the AP chip, and the boot program is run by the main processor or the microprocessor in the AP chip.
  • the boot program is stored in a memory external to the AP chip, which saves the storage space of the AP chip, so that the AP chip can be designed to be more light and thin.
  • the boot program may also be stored in a memory inside the AP chip, and the boot chip may be directly run after the AP chip is powered on.
  • the boot program is also used to perform a normal boot operation.
  • the AP chip verifies the legitimacy of the program to be run before running the first ROM program or the boot program to ensure data security.
  • the boot program for example, if the check result is legal, the AP chip runs the boot program; if the check result is illegal, the AP chip does not run the boot program.
  • Step 504 The AP chip determines whether the booting is triggered by the short-range communication chip by using a booting procedure.
  • Step 505 if the booting is triggered by the short-range communication chip, the AP chip loads the execution program of the SE from the memory external to the AP chip to the memory inside the AP chip through the booting program.
  • the execution program of the SE is used to implement the card swipe function to complete the card swipe operation, for example, the execution program may be a card operation system (COS).
  • COS card operation system
  • the execution program of the SE is also stored in the memory outside the AP chip. By acquiring the execution program of the SE from the memory outside the AP chip, the storage space of the SE can be saved, so that the SE can be designed to be more light and thin.
  • the execution program of the SE may also be stored in a memory internal to the SE or in a memory internal to the AP chip.
  • the AP chip performs a normal booting operation through the booting program.
  • Step 506 the AP chip controls the SE to be powered by the booting program.
  • step 507 the SE runs the second ROM program, and loads the execution program of the SE through the second ROM program.
  • the second ROM program is run, and the second ROM program is used to load the execution program of the SE.
  • the execution program of the SE loaded by the SE through the second ROM program may be an image file, and the image file is formed into a single file according to a certain format to facilitate loading and running.
  • the SE loads its execution program from the memory inside the AP chip to the memory inside the SE.
  • the SE cannot directly load the execution program of the SE from the memory outside the AP chip. Therefore, the AP chip loads the execution program of the SE from the memory external to the AP chip into the memory inside the AP chip, and the SE passes the second ROM program from the AP chip.
  • the internal memory loads its execution program into the internal memory of the SE and runs the execution program.
  • the second ROM program is run by the processor in the SE, which loads its execution program into the RAM of the SE and is run by the processor of the SE.
  • the SE verifies the legitimacy of the program to be run before running the second ROM program or its execution program to ensure data security.
  • the SE verifies the legitimacy of the program to be run before running the second ROM program or its execution program to ensure data security.
  • the SE runs the execution program; if the verification result is that the execution program of the SE is illegal, the SE does not run the execution program.
  • Step 508 the AP chip provides an external storage drive to the SE through a booting program.
  • the AP chip provides an external storage driver to the SE through a boot program, so that the SE can read and write the memory external to the AP chip.
  • step 509 the SE communicates with the short-range communication chip through its execution program to complete the card-swapping operation.
  • the SE After the SE runs its execution program, it communicates with the short-range communication chip. During the communication process, the SE can read the data that needs to be sent to the short-range communication chip from the memory outside the AP chip, and the SE can communicate from the short-distance communication. The data received by the chip is written into a memory external to the AP chip.
  • the mobile terminal After the card swipe operation is completed, the mobile terminal can be restored to the shutdown state, so the AP chip can perform the shutdown operation after completing the card swipe operation.
  • the AP chip after the SE is powered on, the AP chip performs a shutdown operation after a preset period of time.
  • the AP chip can perform a shutdown operation after a preset period of time by the boot program. Exemplarily, assuming that the preset duration is 10 seconds, the AP chip performs a shutdown operation by the boot program after the SE is powered on for 10 seconds.
  • the AP chip After the SE is powered on, the AP chip starts a timer. When receiving the reset command sent by the SE, the AP chip resets the timer. When the timer expires, the AP chip executes. Shutdown operation. When the SE communicates with the short-range communication chip, each time a signal from the short-range communication chip is received, a reset command is sent to the AP chip, and when the AP chip receives the reset command, the timer is reset by the boot program.
  • the PMU supplies power to the microprocessor of the AP chip after detecting the power-on signal, but does not process the main processing of the AP chip.
  • Power supply Accordingly, the microprocessor of the AP chip is powered on, and the main processor is not powered.
  • the microprocessor determines whether the power is turned on by the short-range communication chip, and controls the SE to be powered on when the short-distance communication chip triggers the power-on. For example, after the power-on is started, the microprocessor runs the first ROM program, and the first ROM program performs the above operation.
  • the power consumption of the microprocessor is smaller than that of the main processor. By powering on the microprocessor without powering up the main processor, it helps to reduce the power consumption of the AP chip. In addition, when the microprocessor determines that the power is not triggered by the short-range communication chip, the main processor is powered on, and the main processor performs a normal power-on operation.
  • the solution for the built-in SE sends a power-on signal to the PMU when the short-range communication chip detects the radio frequency signal that meets the preset condition, and the PMU detects the power-on signal and supplies power to the AP chip.
  • the SE integrated on the AP chip is powered on, and then communicates with the short-distance communication chip to complete the card-swapping operation, thereby implementing the shutdown card-swapping function, so as to better satisfy the user's card payment under the low-power shutdown state of the mobile terminal.
  • the technical solutions provided by the embodiments of the present application have strong practical value.
  • FIG. 6 is a flowchart of a power-on control method provided by another embodiment of the present application.
  • the method can be applied to the mobile terminal shown in FIG. 2.
  • the method can include the following steps:
  • Step 601 The short-range communication chip sends a power-on signal to the PMU when detecting the radio frequency signal that meets the preset condition.
  • Step 602 After detecting the power-on signal, the PMU supplies power to the AP chip.
  • Step 603 the AP chip runs the first ROM program, and determines whether the booting is triggered by the short-range communication chip through the first ROM program; if yes, the following step 604 is performed; if not, the following step 610 is performed.
  • Step 604 the AP chip loads the first boot program.
  • the AP chip loads the first booting program from the memory outside the AP chip to the memory inside the AP chip through the first ROM program, and runs the first booting program, the first booting program Used to control SE power-on.
  • Step 605 The AP chip loads the execution program of the SE from the memory outside the AP chip to the memory inside the AP chip through the first booting program.
  • Step 606 the AP chip controls the SE to be powered by the first booting procedure.
  • Step 607 the SE runs the second ROM program, and loads the execution program from the memory inside the AP chip to the memory inside the SE through the second ROM program.
  • Step 608 the AP chip provides an external storage drive to the SE through the first booting procedure.
  • step 609 the SE communicates with the short-range communication chip through its execution program to complete the card-swapping operation.
  • step 610 the AP chip loads the second booting program.
  • the AP chip loads the second booting program from the memory outside the AP chip to the memory inside the AP chip through the first ROM program, and runs a second booting program, the second booting The program is used to perform normal boot operations.
  • step 611 the AP chip performs a normal booting operation through the second booting program.
  • the AP chip determines that the boot is not triggered by the short-range communication chip, and performs a normal boot operation through the second boot program, and does not control the SE to be powered on.
  • the amount of data of the first boot program is smaller than the amount of data of the second boot program.
  • the SE can be powered on faster by loading and running the first boot program with a relatively small amount of data, and helps to save the processing overhead of the AP chip. .
  • the solution for the built-in SE sends a power-on signal to the PMU when the short-range communication chip detects the radio frequency signal that meets the preset condition, and the PMU detects the power-on signal and then the AP chip supplies the power.
  • the SE integrated on the AP chip is powered on, and then communicates with the short-distance communication chip to complete the card-swapping operation, thereby implementing the shutdown card-swapping function, so as to better satisfy the user's card payment under the low-power shutdown state of the mobile terminal.
  • the technical solutions provided by the embodiments of the present application have strong practical value.
  • the SE can be powered on faster by loading and running the first boot program with a relatively small amount of data, and helps to save the AP chip. Processing overhead.
  • An exemplary embodiment of the present application further provides an AP chip.
  • the SE chip 72 is integrated on the AP chip 71.
  • the SE 72 is coupled to the short-range communication chip 73
  • the AP chip 71 is coupled to the PMU 74
  • the short-range communication chip 73 is also coupled to the PMU 74.
  • the AP chip 71 is configured to determine whether the power is turned on by the short-range communication chip 73 after power-on; if the power-on is triggered by the short-range communication chip 73, the control SE 72 is powered on. Wherein, in the case that the AP chip 71 is in the power-off state, the PMU 74 supplies power to the AP chip 71 after detecting the power-on signal, and the short-range communication chip 73 sends the RF signal to the PMU 74 when detecting the radio frequency signal meeting the preset condition. Power up signal.
  • the SE 72 is used to communicate with the short-range communication chip 73 after power-on.
  • An exemplary embodiment of the present application also provides a power-on control method applied to an AP chip integrated with an SE.
  • the SE is coupled to the short-range communication chip
  • the AP chip is coupled to the PMU
  • the short-range communication chip is also coupled to the PMU.
  • the method includes the following steps:
  • Step 801 After powering on the AP chip, determine whether the booting is triggered by the short-range communication chip.
  • the PMU supplies power to the AP chip after detecting the power-on signal, and the short-range communication chip sends a power-on signal to the PMU when detecting the radio frequency signal that meets the preset condition;
  • Step 802 If the short-distance communication chip triggers the power-on, the AP chip controls the SE to be powered on;
  • step 803 the SE communicates with the short-range communication chip after power-on.

Abstract

一种上电控制方法、AP芯片及移动终端。所述AP芯片上集成有SE,SE与短距离通信芯片耦合,AP芯片与PMU耦合,短距离通信芯片也与PMU耦合。AP芯片用于在上电之后,确定是否由短距离通信芯片触发开机;若是由短距离通信芯片触发开机,则控制SE上电;其中,在AP芯片处于下电状态的情况下,由PMU在检测到上电信号之后向AP芯片供电,短距离通信芯片在检测到符合预设条件的射频信号时向PMU发送上电信号。SE用于在上电之后,与短距离通信芯片通信。本申请实施例提供的方案,针对内置SE的方案,实现了关机刷卡功能。

Description

上电控制方法、AP芯片及移动终端
本申请要求于2017年8月30日提交中华人民共和国国家知识产权局、申请号为201710765453.7、发明名称为“上电控制方法、AP芯片及移动终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及芯片技术领域,特别涉及一种上电控制方法、应用处理器(Application Processor,AP)芯片及移动终端。
背景技术
目前,移动终端已经具备代替银行卡、公交卡、门禁卡等卡片实现刷卡功能。
移动终端在实现刷卡功能(特别是刷卡支付功能)时,需要考虑数据安全的问题。在现有技术中,在硬件上通过安全元件(Secure Element,SE)来确保刷卡时的数据安全。SE具有加密和解密逻辑电路,用于对刷卡过程中移动终端与读卡设备之间交互的数据进行加解密,以提高数据的安全性。
在现有技术中,存在外置SE和内置SE两种方案。外置SE方案是指将SE设置在移动终端的AP芯片(也称为“主芯片”)外部,也即SE和AP芯片是两个互相独立的芯片;内置SE方案是指将SE集成于移动终端的AP芯片上,也即SE是AP芯片的一部分。对于内置SE方案,SE是否启动依赖于移动终端的电源管理单元(Power Management Unit,PMU)是否向AP芯片供电。当移动终端处于开机状态时,PMU向AP芯片供电,AP处于通电状态,SE也处于通电状态;当移动终端处于关机状态时,PMU停止向AP芯片供电,AP处于断电状态,SE也处于断电状态。
针对内置SE的方案,当移动终端处于关机状态时,由于集成在AP芯片上的SE处于断电状态,因此无法实现在关机状态下完成刷卡操作的功能(下文简称“关机刷卡功能”)。
发明内容
本申请实施例提供了一种上电控制方法、AP芯片及移动终端,用以解决现有技术中针对内置SE的方案,当移动终端处于关机状态时,由于集成在AP芯片上的SE处于断电状态,因此无法实现关机刷卡功能的问题。
第一方面,本申请实施例提供一种AP芯片,该AP芯片上集成有SE,SE与短距离通信芯片耦合,AP芯片与PMU耦合,短距离通信芯片也与PMU耦合;
AP芯片,用于在上电之后,确定是否由短距离通信芯片触发开机;若是由短距离通信芯片触发开机,则控制SE上电;其中,在AP芯片处于下电状态的情况下,由PMU在检测到上电信号之后向AP芯片供电,短距离通信芯片在检测到符合预设条件的射频信号时向PMU发送上电信号。SE,用于在上电之后,与短距离通信芯片通信。
本申请实施例提供的方案中,针对内置SE的方案,通过短距离通信芯片在检测到符合预设条件的射频信号时向PMU发送上电信号,PMU检测到上电信号后向AP芯片供电,以 使得集成于AP芯片上的SE上电启动,进而与短距离通信芯片通信,以完成刷卡操作,从而实现了关机刷卡功能,以更好地满足用户对移动终端处于低电关机状态下实现刷卡支付、公交刷卡、门禁刷卡等操作的实际应用需求,本申请实施例提供的技术方案具有较强的实用价值。
可选地,AP芯片确定是否由短距离通信芯片触发开机包括如下两种可能的实施方式。
在一种可能的实施方式中,AP芯片,用于在上电之后,接收PMU发送的指示信号,该指示信号用于指示是否由短距离通信芯片触发开机;根据指示信号确定是否由短距离通信芯片触发开机。在另一种可能的实施方式中,AP芯片,用于在上电之后,若检测到预置引脚接收到短距离通信芯片发送的预设信号,则确定是由短距离通信芯片触发开机。
本申请实施例提供的方案中,AP芯片先于SE上电启动,通过AP芯片在确定是由短距离通信芯片触发开机的情况下,再控制SE上电,有助于节省电量消耗。
在又一个可能的设计中,预设条件为射频信号中包括预设标识,或者,预设条件为射频信号的频段在预设频段内。
通过上述方式,使得短距离通信芯片能够准确地辨识出与自身提供的刷卡功能相关的射频信号。
在另一个可能的设计中,AP芯片,还用于:若不是由短距离通信芯片触发开机,则执行正常开机操作,其中,正常开机操作包括启动操作系统和显示用户界面(User Interface,UI),且正常开机操作不包括控制SE上电。
在又一个可能的设计中,AP芯片,用于:若是由短距离通信芯片触发开机,则加载第一引导程序,该第一引导程序用于控制SE上电;若不是由短距离通信芯片触发开机,则加载第二引导程序,该第二引导程序用于执行正常开机操作。其中,第一引导程序的数据量小于第二引导程序的数据量。
通过上述方式,AP芯片在确定是由短距离通信芯片触发开机的情况下,通过加载并运行数据量相对较小的第一引导程序,使得SE能够更快地上电启动,并有助于节省AP芯片的处理开销。
在又一个可能的设计中,AP芯片,还用于将SE的执行程序从AP芯片外部的存储器加载至AP芯片内部的存储器中,该执行程序用于实现刷卡功能。SE,还用于在上电之后,将其执行程序从AP芯片内部的存储器加载至SE内部的存储器中。
通过上述方式,将SE的执行程序存储在AP芯片外部的存储器中,可以节省SE的存储空间,使得SE能够设计地更加轻薄化。
在又一个可能的设计中,AP芯片,还用于:在SE上电之后经过预设时长执行关机操作;或者,在SE上电之后启动定时器;在接收到SE发送的重置命令时,重置定时器,其中,SE每接收到来自短距离通信芯片的信号时,向AP芯片发送重置命令;当定时器超时时,执行关机操作。
通过上述两种方式,实现了在完成刷卡操作之后执行自动关机,避免浪费移动终端的电量。
另一方面,本申请实施例提供一种上电控制方法,应用于集成有SE的AP芯片中,SE与短距离通信芯片耦合,AP芯片与PMU耦合,短距离通信芯片也与PMU耦合。上述方法 包括:AP芯片在上电之后,确定是否由短距离通信芯片触发开机;若是由短距离通信芯片触发开机,则控制SE上电;其中,在AP芯片处于下电状态的情况下,由PMU在检测到上电信号之后向AP芯片供电,短距离通信芯片在检测到符合预设条件的射频信号时向PMU发送上电信号;SE在上电之后,与短距离通信芯片通信。
又一方面,本申请实施例提供一种移动终端,该移动终端包括AP芯片、短距离通信芯片、PMU和集成于AP芯片上的SE,其中,SE与短距离通信芯片耦合,AP芯片与PMU耦合,短距离通信芯片也与PMU耦合。短距离通信芯片,用于在检测到符合预设条件的射频信号时,向PMU发送上电信号;PMU,用于在检测到上电信号之后,向AP芯片供电;AP芯片,用于在上电之后,确定是否由短距离通信芯片触发开机;若是由短距离通信芯片触发开机,则控制SE上电;SE,用于在上电之后,与短距离通信芯片通信。
相较于现有技术,本申请实施例提供的方案中,针对内置SE的方案,通过短距离通信芯片在检测到符合预设条件的射频信号时向PMU发送上电信号,PMU检测到上电信号后向AP芯片供电,以使得集成于AP芯片上的SE上电启动,进而与短距离通信芯片通信,以完成刷卡操作,从而实现了关机刷卡功能,以更好地满足用户对移动终端处于低电关机状态下实现刷卡支付、公交刷卡、门禁刷卡等操作的实际应用需求,本申请实施例提供的技术方案具有较强的实用价值。
附图说明
图1是本申请一个实施例提供的实施环境的示意图;
图2是本申请一个实施例提供的移动终端的结构示意图;
图3是本申请一个实施例提供的AP芯片的结构示意图;
图4是本申请一个实施例提供的上电控制方法的流程图;
图5是本申请另一个实施例提供的上电控制方法的流程图;
图6是本申请另一个实施例提供的上电控制方法的流程图;
图7是本申请另一个实施例提供的AP芯片的结构示意图;
图8是本申请另一个实施例提供的上电控制方法的流程图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
本申请实施例描述的系统架构以及业务场景是为了更加清楚地说明本申请实施例的技术方案,并不构成对本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
请参考图1,其示出了本申请一个实施例提供的实施环境的示意图。该实施环境包括:移动终端10和读卡设备20。
移动终端10可以是诸如手机、平板电脑、可穿戴设备等便携式电子设备。
读卡设备20可以是任意具有读卡功能的电子设备,如POS(Point OfSales,销售点)机、公交卡读卡器、门禁卡读卡器等。
示例性地,当读卡设备20为POS机时,移动终端10可以代替银行卡与读卡设备20进行通信,以完成刷卡支付操作;当读卡设备20为公交卡读卡器时,移动终端10可以代替公交卡与读卡设备20进行通信,以完成公交刷卡操作;当读卡设备20为门禁卡读卡器时,移动终端10可以代替门禁卡与读卡设备20进行通信,以完成门禁刷卡操作。
移动终端10和读卡设备20中配备有相适配的短距离通信芯片,通过上述短距离通信芯片进行通信,完成刷卡操作。示例性地,上述短距离通信芯片为近场通信(Near Field Communication,NFC)芯片。
在本申请实施例中,如图2所示,移动终端10采用内置SE的方案。该移动终端10可以包括:AP芯片11、短距离通信芯片13、PMU 14和集成于AP芯片11上的SE 12。其中,SE12与短距离通信芯片13耦合,AP芯片11与PMU14耦合,短距离通信芯片13也与PMU14耦合。
AP芯片11用于运行移动终端10的通用操作系统,如安卓(Android)操作系统、iOS操作系统、Windows操作系统等。AP芯片11负责处理移动终端10的各项操作,包括开机和关机操作。AP芯片11除包括SE 12之外,还包括至少一个处理器和至少一个存储器,处理器用于运行AP芯片所需运行的程序,存储器用于存储AP芯片加载的程序以及处理器运行程序的数据。
SE 12用于与短距离通信芯片13通信,还用于对刷卡过程中移动终端10与读卡设备20之间交互的数据进行加解密,以提高数据的安全性。
短距离通信芯片13用于与读卡设备20通过短距离无线通信协议进行通信,以实现刷卡操作。例如,当短距离通信芯片13为NFC芯片时,移动终端10的NFC芯片与读卡设备20的NFC芯片之间可以基于无线射频识别(Radio Frequency Identification,RFID)协议进行通信。
PMU 14是一种高度集成的针对便携式应用的电源管理单元,用于向芯片(如包括上述AP芯片11、SE 12和短距离通信芯片13)提供稳定电源。
可选地,如图2所示,移动终端10还包括:电池15。电池15分别与PMU 14和短距离通信芯片13耦合。电池15用于为移动终端10提供电能。
可选地,移动终端10还包括外部存储器,该外部存储器是指AP芯片11外部的存储器。AP芯片11外部的存储器可以是嵌入式的多媒体存储卡(Embedded Multi Media Card,eMMc)或通用闪存存储(Universal Flash Storage,UFS)。AP芯片11外部的存储器包括回放保护存储分区(Replay Protected Memory Block,RPMB),RPMB用于存储SE 12的执行程序。
示例性地,如图3所示,其示出了一种AP芯片11的结构示意图。AP芯片11包括:主处理器111、微处理器112、只读存储器(Read-Only Memory,ROM)113、随机存取存储器(Random Access Memory,RAM)114和SE 12。
AP芯片11的主处理器111用于处理AP芯片11的各项操作,例如正常开机操作。AP芯片11的微处理器112主要用于处理AP芯片11实现关机刷卡功能时的各项操作。AP芯 片11的主处理器111可以是ARM处理器,AP芯片11的微处理器112可以是微控制单元(Micro Control Unit,MCU)。
AP芯片11的ROM 113是AP芯片11中的一种只能读出事先所存数据的存储器。
AP芯片11的RAM 114是AP芯片11中的一种能够与处理器(包括主处理器111和微处理器112)直接交互数据的存储器,通常作为处理器正在运行中的程序的临时数据的存储媒介。
可选地,AP芯片11还包括双倍速率内存控制器(Double Data Rate Controller,DDRC),DDRC用于控制AP芯片11与双倍速率内存的数据交互。
如图3所示,SE 12包括:处理器121、ROM 122和RAM 123。
SE 12的ROM 122是SE 12中的一种只能读出事先所存数据的存储器。
SE 12的RAM 123是SE 12中的一种能够与处理器121直接交互数据的存储器,通常作为处理器121正在运行中的程序的临时数据的存储媒介。
SE 12的处理器121用于执行SE 12的执行程序,以实现SE 12的各项功能。
可选地,SE 12与AP芯片11之间通过进程间通信(Inter Process Communication,IPC)机制交互数据。
在本申请实施例中,针对内置SE的方案,提供了一种能够实现关机刷卡功能的技术方案,以更好地满足用户对移动终端处于低电关机状态下实现刷卡支付、公交刷卡、门禁刷卡等操作的实际应用需求,本申请实施例提供的技术方案具有较强的实用价值。
下面将基于上面所述的本申请实施例涉及的共性方面,对本申请实施例进一步详细说明。
结合参考图2所示的移动终端10,在实现关机刷卡功能时,其各部分组成部件的功能如下:
短距离通信芯片13,用于在检测到符合预设条件的射频信号时,向PMU 14发送上电信号。
在移动终端10处于关机状态的情况下,移动终端10中的短距离通信芯片13检测是否存在符合预设条件的射频信号。能够与移动终端10配合实现刷卡功能的读卡设备20会向外发射符合预设条件的射频信号,该射频信号用于使得读卡设备20周围的移动终端10能够感知到该读卡设备20的存在。例如,读卡设备20持续向外发射射频信号,或者每隔预设时间间隔向外发射一次射频信号。移动终端10中的短距离通信芯片13在检测到射频信号之后,检测该射频信号是否符合预设条件,若该射频信号符合预设条件,则向PMU 14发送上电信号。
示例性地,假设短距离通信芯片13是NFC芯片,则当NFC芯片检测到符合预设条件的射频信号时,向PMU 14发送上电信号。
可选地,预设条件为射频信号中包括预设标识。预设标识用于供移动终端10中的短距离通信芯片13辨识其接收到的射频信号是否为与自身提供的刷卡功能相关的射频信号。或者,预设条件为射频信号的频率在预设频段内。上述预设频段可以根据实际需求预先设定, 例如该预设频段可以是NFC所使用的频段,也可以是NFC所使用的频段中的一个子频段。当然,在其它可能的实施方式中,预设条件还可以是射频信号的间隔为预设时长,该预设时长可以是一个数值,也可以是一个取值范围。在实际应用中,预设条件可根据实际需求预先设定,以确保短距离通信芯片13能够准确地辨识出与自身提供的刷卡功能相关的射频信号和其它无关的射频信号即可。
PMU 14,用于在检测到上电信号之后,向AP芯片11供电。
在AP芯片处于下电状态的情况下,PMU 14在检测到上电信号之后,向AP芯片11供电,以使得AP芯片11上电启动。下电状态是指芯片未接通电源的状态,下电状态也称为断电状态。在本申请实施例中,由于采用内置SE 12的方案,SE 12是集成在AP芯片11上的,所以PMU 14在向AP芯片11供电之后,SE 12也能够上电启动。
在一个示例中,AP芯片11和SE 12同时上电启动。例如,AP芯片11和SE 12连接同一根电源线,当该电源线接通时,AP芯片11和SE 12同时上电启动。
在另一个示例中,AP芯片11先于SE 12上电启动。AP芯片11在上电之后,确定是否由短距离通信芯片13触发开机,若是由短距离通信芯片13触发开机,则AP芯片11控制SE 12上电。
上电信号是用于指示PMU 14给AP芯片11供电的信号。例如,PMU 14上设置有用于指示上电信号的管脚,通过该管脚的高低电平来表示上电信号。PMU 14检测到的上电信号可能来自于短距离通信芯片13,也可能是因为移动终端10正常开机时使得PMU 14检测到上电信号。例如,移动终端10在按键开机、定时开机或者充电开机等情况下,相关元件也会向PMU 14发送上电信号,相应地,PMU 14会检测到上电信号。PMU 14不论是何种原因检测到上电信号,其都会向AP芯片11供电。
AP芯片11在上电之后需要确定是否由短距离通信芯片13触发开机,以此确定是否控制SE 12上电。若是由短距离通信芯片13触发开机,则AP芯片11控制SE 12上电。由短距离通信芯片13触发开机,则表示移动终端11需要与读卡设备10进行刷卡操作,而进行刷卡操作需要SE 12与短距离通信芯片13通信,因此AP芯片11在确定是由短距离通信芯片13触发开机的情况下,控制SE 12上电启动。
另外,若不是由短距离通信芯片13触发开机,则AP芯片11执行正常开机操作。其中,正常开机操作包括启动操作系统和显示UI,且正常开机操作不包括控制SE 12上电。
SE 12,用于在上电之后,与短距离通信芯片13通信。
SE 12在上电启动之后,与短距离通信芯片13通信,完成刷卡操作。示例性地,当读卡设备20为POS机时,SE 12上电后,与短距离通信芯片13进行通信,而短距离通信芯片13与POS机通信,完成刷卡支付操作;当读卡设备20为公交卡读卡器时,SE 12上电后,与短距离通信芯片13进行通信,而短距离通信芯片13与公交卡读卡器通信,完成公交刷卡操作;当读卡设备20为门禁卡读卡器时,SE 12上电后,与短距离通信芯片13进行通信,而短距离通信芯片13与门禁卡读卡器通信,完成门禁刷卡操作。
可选地,SE 12在上电之后,能够通过单线协议(Single Wire Protocol,SWP)与短距离通信芯片13进行通信。
本申请实施例提供的方案中,针对内置SE的方案,通过短距离通信芯片在检测到符合 预设条件的射频信号时向PMU发送上电信号,PMU检测到上电信号后向AP芯片供电,以使得集成于AP芯片上的SE上电启动,进而与短距离通信芯片通信,以完成刷卡操作,从而实现了关机刷卡功能,以更好地满足用户对移动终端处于低电关机状态下实现刷卡支付、公交刷卡、门禁刷卡等操作的实际应用需求,本申请实施例提供的技术方案具有较强的实用价值。
可选地,AP芯片11确定是否由短距离通信芯片13触发开机,包括如下两种可能的实施方式:
在一种可能的实施方式中,AP芯片11,用于:在上电之后,接收PMU 14发送的指示信号,指示信号用于指示是否由短距离通信芯片13触发开机;根据指示信号确定是否由短距离通信芯片13触发开机。PMU 14能够确定上电信号的来源,若上电信号的来源为短距离通信芯片13,则PMU 14向AP芯片11发送用于指示是由短距离通信芯片13触发开机的指示信号,例如该指示信号为“1”;反之,若上电信号的来源不是短距离通信芯片13,则PMU14向AP芯片11发送用于指示不是由短距离通信芯片13触发开机的指示信号,例如该指示信号为“0”。
在另一种可能的实施方式中,AP芯片11,用于:在上电之后,若检测到预置引脚接收到短距离通信芯片13发送的预设信号,则确定是由短距离通信芯片13触发开机。短距离通信芯片13与AP芯片11的预置引脚之间电性连接,短距离通信芯片13在检测到符合预设条件的射频信号之后,向AP芯片11发送预设信号,若AP芯片11检测到预置引脚接收到短距离通信芯片13发送的预设信号,则确定是由短距离通信芯片13触发开机,控制SE 12上电;反之,若AP芯片11没有检测到预置引脚接收到短距离通信芯片13发送的预设信号,则执行正常开机操作,且不控制SE 12上电。上述预设信号可以是上电信号也可以是一特定信号。上述预置引脚可以是通用输入输出(General Purpose Input Output,GPIO)引脚或其它AP芯片11能够识别的输入输出引脚。
可选地,AP芯片11在确定是否由短距离通信芯片13触发开机之后,还用于:若是由短距离通信芯片13触发开机,则加载第一引导程序,该第一引导程序用于控制SE 12上电;若不是由短距离通信芯片13触发开机,则加载第二引导程序,该第二引导程序用于执行正常开机操作;其中,第一引导程序的数据量小于第二引导程序的数据量。AP芯片11在确定是由短距离通信芯片13触发开机的情况下,通过加载并运行数据量相对较小的第一引导程序,使得SE 12能够更快地上电启动,并有助于节省AP芯片11的处理开销。
可选地,AP芯片11,还用于:将SE 12的执行程序从AP芯片11外部的存储器加载至AP芯片11内部的存储器中。SE 12的执行程序用于实现刷卡功能,以完成刷卡操作。SE 12的执行程序可以存储在AP芯片11外部的存储器中,通过从AP芯片11外部的存储器获取SE的执行程序,可以节省SE的存储空间,使得SE能够设计地更加轻薄化。在其它可能的实施例中,SE 12的执行程序也可以存储在SE 12内部的存储器中,或者存储在AP芯片11内部的存储器中。
相应地,SE 12还用于在上电之后,将其执行程序从AP芯片11内部的存储器加载至SE 12内部的存储器中。SE 12将其执行程序从AP芯片11内部的存储器加载至SE 12内部的存储器中。SE无法直接从AP芯片11外部的存储器中加载SE 12的执行程序,因此由 AP芯片11从AP芯片11外部的存储器中加载SE 12的执行程序至AP芯片11内部的存储器中,SE 12再通从AP芯片11内部的存储器中加载其执行程序至SE 12内部的存储器中,并运行该执行程序。
可选地,在完成刷卡操作之后,移动终端10可以恢复至关机状态,所以AP芯片11可以在完成刷卡操作之后执行关机操作。
在一种可能的实施方式中,AP芯片11用于:在SE 12上电启动后,AP芯片11经过预设时长后执行关机操作。示例性地,假设预设时长为10秒,则AP芯片11在SE 12上电启动10秒后执行关机操作。
在另一种可能的实施方式中,AP芯片11用于:在SE 12上电启动后,启动定时器;在接收到SE 12发送的重置命令时,重置定时器;当定时器超时时,执行关机操作。SE 12与短距离通信芯片13通信时,每接收到来自短距离通信芯片13的信号,则向AP芯片11发送重置命令,AP芯片11接收到重置命令,则重置定时器。
通过上述两种方式,实现了在完成刷卡操作之后执行自动关机,避免浪费移动终端的电量。此外,在上述自动关机的过程中,若AP芯片11接收到正常开机的触发信号,则不再执行关机操作,直接执行正常开机操作。
下述为本申请方法实施例,方法实施例与上文产品实施例相对应。
请参考图4,其示出了本申请一个实施例提供的上电控制方法的流程图。该方法可应用于图2所示的移动终端中。该方法可以包括如下几个步骤:
步骤401,短距离通信芯片在检测到符合预设条件的射频信号时,向PMU发送上电信号。
在移动终端处于关机状态的情况下,移动终端中的短距离通信芯片处于空闲状态,短距离通信芯片检测是否存在符合预设条件的射频信号。能够与移动终端配合实现刷卡功能的读卡设备会向外发射符合预设条件的射频信号,该射频信号用于使得读卡设备周围的移动终端能够感知到该读卡设备的存在。移动终端中的短距离通信芯片在检测到射频信号之后,检测该射频信号是否符合预设条件,若该射频信号符合预设条件,则向PMU发送上电信号。
示例性地,假设短距离通信芯片是NFC芯片,则当NFC芯片检测到符合预设条件的射频信号时,向PMU发送上电信号。
可选地,预设条件为射频信号中包括预设标识。预设标识用于供移动终端中的短距离通信芯片辨识其接收到的射频信号是否为与自身提供的刷卡功能相关的射频信号。或者,预设条件为射频信号的频率在预设频段内。上述预设频段可以根据实际需求预先设定,例如该预设频段可以是NFC所使用的频段,也可以是NFC所使用的频段中的一个子频段。当然,在其它可能的实施方式中,预设条件还可以是射频信号的间隔为预设时长,该预设时长可以是一个数值,也可以是一个取值范围。在实际应用中,预设条件可根据实际需求预先设定,以确保短距离通信芯片能够准确地辨识出与自身提供的刷卡功能相关的射频信号和其它无关的射频信号即可。
步骤402,PMU在检测到上电信号之后,向AP芯片供电。
在AP芯片处于下电状态的情况下,PMU在检测到上电信号之后,向AP芯片供电,以使得AP芯片上电启动。在本申请实施例中,由于采用内置SE的方案,SE是集成在AP芯片上的,所以PMU在向AP芯片供电之后,SE也能够上电启动。
上电信号是用于指示PMU给AP芯片供电的信号。例如,PMU上设置有用于指示上电信号的管脚,通过该管脚的高低电平来表示上电信号。PMU检测到的上电信号可能来自于短距离通信芯片,也可能是因为移动终端正常开机时使得PMU检测到上电信号。例如,移动终端在按键开机、定时开机或者充电开机等情况下,相关元件也会向PMU发送上电信号,相应地,PMU会检测到上电信号。PMU不论是何种原因检测到上电信号,其都会向AP芯片供电。
步骤403,AP芯片在上电之后,确定是否由短距离通信芯片触发开机。
AP芯片在上电之后需要确定是否由短距离通信芯片触发开机,以此确定是否控制SE上电。可选地,AP芯片确定是否由短距离通信芯片触发开机,包括如下两种可能的实施方式:
在一种可能的实施方式中,AP芯片在上电之后,接收PMU发送的指示信号,指示信号用于指示是否由短距离通信芯片触发开机,AP芯片根据指示信号确定是否由短距离通信芯片触发开机。PMU能够确定上电信号的来源,若上电信号的来源为短距离通信芯片,则PMU向AP芯片发送用于指示是由短距离通信芯片触发开机的指示信号,例如该指示信号为“1”;反之,若上电信号的来源不是短距离通信芯片,则PMU向AP芯片发送用于指示不是由短距离通信芯片触发开机的指示信号,例如该指示信号为“0”。
在另一种可能的实施方式中,AP芯片在上电之后,若检测到预置引脚接收到短距离通信芯片发送的预设信号,则确定是由短距离通信芯片触发开机。短距离通信芯片与AP芯片的预置引脚之间电性连接,短距离通信芯片在检测到符合预设条件的射频信号之后,向AP芯片发送预设信号,若AP芯片检测到预置引脚接收到短距离通信芯片发送的预设信号,则确定是由短距离通信芯片触发开机;反之,若AP芯片没有检测到预置引脚接收到短距离通信芯片发送的预设信号,则确定不是由短距离通信芯片触发开机。上述预设信号可以是上电信号也可以是一特定信号。上述预置引脚可以是GPIO引脚或其它AP芯片能够识别的输入输出引脚。
步骤404,若是由短距离通信芯片触发开机,则AP芯片控制SE上电。
由短距离通信芯片触发开机,则表示移动终端需要与读卡设备进行刷卡操作,而进行刷卡操作需要SE与短距离通信芯片通信,因此AP芯片在确定是由短距离通信芯片触发开机的情况下,控制SE上电启动。
另外,若不是由短距离通信芯片触发开机,则AP芯片执行正常开机操作,其中,正常开机操作包括启动操作系统和显示UI,且正常开机操作不包括控制SE上电。
通过上述方式,AP芯片先于SE上电启动,通过AP芯片在确定是由短距离通信芯片触发开机的情况下,再控制SE上电,有助于节省电量消耗。
在其它可能的实施例中,AP芯片也可以和SE同时上电启动。
步骤405,SE在上电之后,与短距离通信芯片通信。
SE在上电启动之后,与短距离通信芯片通信,完成刷卡操作。示例性地,当读卡设备 为POS机时,SE上电后,与短距离通信芯片进行通信,而短距离通信芯片与POS机通信,完成刷卡支付操作;当读卡设备为公交卡读卡器时,SE上电后,与短距离通信芯片进行通信,而短距离通信芯片与公交卡读卡器通信,完成公交刷卡操作;当读卡设备为门禁卡读卡器时,SE上电后,与短距离通信芯片进行通信,而短距离通信芯片与门禁卡读卡器通信,完成门禁刷卡操作。可选地,SE在上电之后,能够通过SWP与短距离通信芯片进行通信。
本申请实施例提供的方案中,针对内置SE的方案,通过短距离通信芯片在检测到符合预设条件的射频信号时向PMU发送上电信号,PMU检测到上电信号后向AP芯片供电,以使得集成于AP芯片上的SE上电启动,进而与短距离通信芯片通信,以完成刷卡操作,从而实现了关机刷卡功能,以更好地满足用户对移动终端处于低电关机状态下实现刷卡支付、公交刷卡、门禁刷卡等操作的实际应用需求,本申请实施例提供的技术方案具有较强的实用价值。
请参考图5,其示出了本申请另一个实施例提供的上电控制方法的流程图。该方法可应用于图2所示的移动终端中。该方法可以包括如下几个步骤:
步骤501,短距离通信芯片在检测到射频信号时,向PMU发送上电信号。
上述步骤501与图4实施例中的步骤401相同,参见图4实施例中的介绍说明,本实施例对此不再赘述。
步骤502,PMU在检测到上电信号之后,向AP芯片供电。
PMU在检测到上电信号之后向AP芯片供电,以使得AP芯片上电启动。
步骤503,AP芯片运行第一ROM程序,通过第一ROM程序加载引导程序。
AP芯片在上电启动之后,运行第一ROM程序,通过第一ROM程序将引导程序从AP芯片外部的存储器加载至AP芯片内部的存储器中,并运行上述引导程序。第一ROM程序用于加载引导程序,引导程序用于控制SE上电。
可选地,AP芯片将引导程序加载到AP芯片的RAM中,由AP芯片中的主处理器或微处理器运行引导程序。
在本实施例中,引导程序存储在AP芯片外部的存储器中,节省了AP芯片的存储空间,使得AP芯片能够设计地更加轻薄化。在其它可能的实施例中,引导程序也可以存储在AP芯片内部的存储器中,则AP芯片在上电启动之后,可直接运行引导程序。
可选地,引导程序还用于执行正常开机操作。
可选地,AP芯片在运行第一ROM程序或引导程序之前,校验所要运行的程序的合法性,以确保数据安全。示例性地,以引导程序为例,若校验结果为引导程序合法,则AP芯片运行该引导程序;若校验结果为引导程序不合法,则AP芯片不运行该引导程序。
步骤504,AP芯片通过引导程序,确定是否由短距离通信芯片触发开机。
有关确定是否由短距离通信芯片触发开机的方式在图4实施例中已经介绍说明,本实施例对此不再赘述。
步骤505,若是由短距离通信芯片触发开机,则AP芯片通过引导程序将SE的执行程序从AP芯片外部的存储器加载至AP芯片内部的存储器中。
SE的执行程序用于实现刷卡功能,以完成刷卡操作,例如执行程序可以是卡片操作系 统(COS)。在本实施例中,SE的执行程序也存储在AP芯片外部的存储器中,通过从AP芯片外部的存储器获取SE的执行程序,可以节省SE的存储空间,使得SE能够设计地更加轻薄化。在其它可能的实施例中,SE的执行程序也可以存储在SE内部的存储器中,或者存储在AP芯片内部的存储器中。
另外,若不是由短距离通信芯片触发开机,则AP芯片通过引导程序执行正常开机操作。
步骤506,AP芯片通过引导程序控制SE上电。
步骤507,SE运行第二ROM程序,通过第二ROM程序加载SE的执行程序。
SE在上电启动之后,运行第二ROM程序,第二ROM程序用于加载SE的执行程序。
可选地,SE通过第二ROM程序加载的SE的执行程序可以是镜像文件,镜像文件将特定的一系列文件按照一定的格式制作成单一的文件,以方便加载和运行。
SE将其执行程序从AP芯片内部的存储器加载至SE内部的存储器中。SE无法直接从AP芯片外部的存储器中加载SE的执行程序,因此由AP芯片从AP芯片外部的存储器中加载SE的执行程序至AP芯片内部的存储器中,SE再通过第二ROM程序从AP芯片内部的存储器中加载其执行程序至SE内部的存储器中,并运行该执行程序。
可选地,由SE中的处理器运行第二ROM程序,SE将其执行程序加载到SE的RAM中,并由SE的处理器运行。
可选地,SE运行第二ROM程序或其执行程序前,校验所要运行的程序的合法性,以确保数据安全。示例性地,以SE的执行程序为例,若校验结果为SE的执行程序合法,则SE运行该执行程序;若校验结果为SE的执行程序不合法,则SE不运行该执行程序。
步骤508,AP芯片通过引导程序向SE提供外置存储驱动。
AP芯片通过引导程序向SE提供外置存储驱动,以使得SE能够对AP芯片外部的存储器进行读写操作。
步骤509,SE通过其执行程序与短距离通信芯片通信,以完成刷卡操作。
SE运行其执行程序后,与短距离通信芯片进行通信,在通信的过程中,SE能够从AP芯片外部的存储器中读取需要发送给短距离通信芯片的数据,同时SE能够将从短距离通信芯片接收的数据写入AP芯片外部的存储器中。
在完成刷卡操作之后,移动终端可以恢复至关机状态,所以AP芯片可以在完成刷卡操作之后执行关机操作。
在一种可能的实施方式中,在SE上电启动后,AP芯片经过预设时长后执行关机操作。AP芯片能够通过引导程序在预设时长之后执行关机操作。示例性地,假设预设时长为10秒,则AP芯片在SE上电启动10秒后通过引导程序执行关机操作。
在另一种可能的实施方式中,在SE上电启动后,AP芯片启动定时器,在接收到SE发送的重置命令时,AP芯片重置定时器,当定时器超时时,AP芯片执行关机操作。SE与短距离通信芯片通信时,每接收到来自短距离通信芯片的信号,则向AP芯片发送重置命令,AP芯片接收到重置命令,则通过引导程序重置定时器。
通过上述两种方式,实现了在完成刷卡操作之后执行自动关机,避免浪费移动终端的电量。此外,在上述自动关机的过程中,若AP芯片接收到正常开机的触发信号,则不再执行关机操作,直接执行正常开机操作。
可选地,结合参考图3,在AP芯片包括主处理器和微处理器的情况下,PMU在检测到上电信号之后,向AP芯片的微处理器供电,但不向AP芯片的主处理器供电。相应地,AP芯片的微处理器上电启动,而主处理器不上电。微处理器在上电之后,确定是否由短距离通信芯片触发开机,并在是由短距离通信芯片触发开机的情况下,控制SE上电。例如,微处理器在上电启动之后,运行第一ROM程序,由第一ROM程序执行上述操作。微处理器的耗电比主处理器的耗电小,通过上电微处理器而不上电主处理器,有助于降低AP芯片的功耗。另外,微处理器在确定出不是由短距离通信芯片触发开机时,触发主处理器上电,由主处理器执行正常开机操作。
本申请实施例提供的方案中,针对内置SE的方案,通过短距离通信芯片在检测到符合预设条件的射频信号时向PMU发送上电信号,PMU检测上电信号后向AP芯片供电,以使得集成于AP芯片上的SE上电启动,进而与短距离通信芯片通信,以完成刷卡操作,从而实现了关机刷卡功能,以更好地满足用户对移动终端处于低电关机状态下实现刷卡支付、公交刷卡、门禁刷卡等操作的实际应用需求,本申请实施例提供的技术方案具有较强的实用价值。
请参考图6,其示出了本申请另一个实施例提供的上电控制方法的流程图。该方法可应用于图2所示的移动终端中。该方法可以包括如下几个步骤:
步骤601,短距离通信芯片在检测到符合预设条件的射频信号时,向PMU发送上电信号。
步骤602,PMU在检测到上电信号之后,向AP芯片供电。
步骤603,AP芯片运行第一ROM程序,通过第一ROM程序,确定是否由短距离通信芯片触发开机;若是,则执行下述步骤604;若否,则执行下述步骤610。
步骤604,AP芯片加载第一引导程序。
若是由短距离通信芯片触发开机,则AP芯片通过第一ROM程序将第一引导程序从AP芯片外部的存储器中加载至AP芯片内部的存储器中,并运行第一引导程序,该第一引导程序用于控制SE上电。
步骤605,AP芯片通过第一引导程序将SE的执行程序从AP芯片外部的存储器加载至AP芯片内部的存储器中。
步骤606,AP芯片通过第一引导程序控制SE上电。
步骤607,SE运行第二ROM程序,通过第二ROM程序将执行程序从AP芯片内部的存储器加载至SE内部的存储器中。
步骤608,AP芯片通过第一引导程序向SE提供外置存储驱动。
步骤609,SE通过其执行程序与短距离通信芯片通信,以完成刷卡操作。
步骤610,AP芯片加载第二引导程序。
若不是由短距离通信芯片触发开机,则AP芯片通过第一ROM程序将第二引导程序从AP芯片外部的存储器中加载至AP芯片内部的存储器中,并运行第二引导程序,该第二引导程序用于执行正常开机操作。
步骤611,AP芯片通过第二引导程序执行正常开机操作。
AP芯片确定不是由短距离通信芯片触发的开机,则通过第二引导程序执行正常开机操作,且不控制SE上电。
在本实施例中,第一引导程序的数据量小于第二引导程序的数据量。AP芯片在确定是由短距离通信芯片触发开机的情况下,通过加载并运行数据量相对较小的第一引导程序,使得SE能够更快地上电启动,并有助于节省AP芯片的处理开销。
本申请实施例提供的方案中,针对内置SE的方案,通过短距离通信芯片在检测到符合预设条件的射频信号时向PMU发送上电信号,PMU检测到上电信号后AP芯片供电,以使得集成于AP芯片上的SE上电启动,进而与短距离通信芯片通信,以完成刷卡操作,从而实现了关机刷卡功能,以更好地满足用户对移动终端处于低电关机状态下实现刷卡支付、公交刷卡、门禁刷卡等操作的实际应用需求,本申请实施例提供的技术方案具有较强的实用价值。
另外,AP芯片在确定是由短距离通信芯片触发开机的情况下,通过加载并运行数据量相对较小的第一引导程序,使得SE能够更快地上电启动,并有助于节省AP芯片的处理开销。
本申请一示例性实施例还提供了一种AP芯片,如图7所示,该AP芯片71上集成有SE 72。其中,SE 72与短距离通信芯片73耦合,AP芯片71与PMU 74耦合,短距离通信芯片73也与PMU 74耦合。
AP芯片71,用于在上电之后,确定是否由短距离通信芯片73触发开机;若是由短距离通信芯片73触发开机,则控制SE 72上电。其中,在AP芯片71处于下电状态的情况下,由PMU 74在检测到上电信号之后向AP芯片71供电,短距离通信芯片73在检测到符合预设条件的射频信号时向PMU 74发送上电信号。
SE 72用于在上电之后,与短距离通信芯片73通信。
本申请一示例性实施例还提供了一种上电控制方法,该方法应用于集成有SE的AP芯片中。其中,SE与短距离通信芯片耦合,AP芯片与PMU耦合,短距离通信芯片也与PMU耦合。如图8所示,该方法包括如下几个步骤:
步骤801,AP芯片在上电之后,确定是否由短距离通信芯片触发开机;
其中,在AP芯片处于下电状态的情况下,由PMU在检测到上电信号之后向AP芯片供电,短距离通信芯片在检测到符合预设条件的射频信号时向PMU发送上电信号;
步骤802,若是由短距离通信芯片触发开机,则AP芯片控制SE上电;
步骤803,SE在上电之后,与短距离通信芯片通信。
有关上述图7和图8两个实施例的介绍说明,参见上文相应内容的介绍说明,此处不再赘述。
以上所述的具体实施方式,对本申请实施例的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请实施例的具体实施方式而已,并不用于限定本申请实施例的保护范围,凡在本申请实施例的技术方案的基础之上,所做的任何修 改、等同替换、改进等,均应包括在本申请实施例的保护范围之内。

Claims (12)

  1. 一种应用处理器AP芯片,其特征在于,所述AP芯片上集成有安全元件SE,所述SE与短距离通信芯片耦合,所述AP芯片与电源管理单元PMU耦合,所述短距离通信芯片也与所述PMU耦合;
    所述AP芯片,用于在上电之后,确定是否由所述短距离通信芯片触发开机;若是由所述短距离通信芯片触发开机,则控制所述SE上电;其中,在所述AP芯片处于下电状态的情况下,由所述PMU在检测到上电信号之后向所述AP芯片供电,所述短距离通信芯片在检测到符合预设条件的射频信号时向所述PMU发送所述上电信号;
    所述SE,用于在上电之后,与所述短距离通信芯片通信。
  2. 根据权利要求1所述的AP芯片,其特征在于,所述AP芯片,用于:
    在上电之后,接收所述PMU发送的指示信号,所述指示信号用于指示是否由所述短距离通信芯片触发开机;
    根据所述指示信号确定是否由所述短距离通信芯片触发开机。
  3. 根据权利要求1所述的AP芯片,其特征在于,所述AP芯片,用于:
    在上电之后,若检测到预置引脚接收到所述短距离通信芯片发送的预设信号,则确定是由所述短距离通信芯片触发开机。
  4. 根据权利要求1所述的AP芯片,其特征在于,所述预设条件为所述射频信号中包括预设标识,或者,所述预设条件为所述射频信号的频率在预设频段内。
  5. 根据权利要求1所述的AP芯片,其特征在于,所述AP芯片,还用于:
    若不是由所述短距离通信芯片触发开机,则执行正常开机操作,其中,所述正常开机操作包括启动操作系统和显示用户界面UI,且所述正常开机操作不包括控制所述SE上电。
  6. 根据权利要求5所述的AP芯片,其特征在于,所述AP芯片,用于:
    若是由所述短距离通信芯片触发开机,则加载第一引导程序,所述第一引导程序用于控制所述SE上电;
    若不是由所述短距离通信芯片触发开机,则加载第二引导程序,所述第二引导程序用于执行所述正常开机操作;
    其中,所述第一引导程序的数据量小于所述第二引导程序的数据量。
  7. 根据权利要求1至6任一项所述的AP芯片,其特征在于,
    所述AP芯片,还用于将所述SE的执行程序从所述AP芯片外部的存储器加载至所述AP芯片内部的存储器中,所述执行程序用于实现刷卡功能;
    所述SE,还用于在上电之后,将所述执行程序从所述AP芯片内部的存储器加载至所述SE内部的存储器中。
  8. 根据权利要求1至6任一项所述的AP芯片,其特征在于,所述AP芯片,还用于:
    在所述SE上电之后经过预设时长执行关机操作;
    或者,
    在所述SE上电之后启动定时器;在接收到所述SE发送的重置命令时,重置所述定时器,其中,所述SE每接收到来自所述短距离通信芯片的信号时,向所述AP芯片发送所述重置命令;当所述定时器超时时,执行关机操作。
  9. 一种上电控制方法,其特征在于,应用于集成有安全元件SE的应用处理器AP芯片中,所述SE与短距离通信芯片耦合,所述AP芯片与电源管理单元PMU耦合,所述短距离通信芯片也与所述PMU耦合;
    所述方法包括:
    所述AP芯片在上电之后,确定是否由所述短距离通信芯片触发开机;其中,在所述AP芯片处于下电状态的情况下,由所述PMU在检测到上电信号之后向所述AP芯片供电,所述短距离通信芯片在检测到符合预设条件的射频信号时向所述PMU发送所述上电信号;
    若是由所述短距离通信芯片触发开机,则所述AP芯片控制所述SE上电;
    所述SE在上电之后,与所述短距离通信芯片通信。
  10. 根据权利要求9所述的方法,其特征在于,所述AP芯片控制所述SE上电之后,还包括:
    所述AP芯片将所述SE的执行程序从所述AP芯片外部的存储器加载至所述AP芯片内部的存储器中,所述执行程序用于实现刷卡功能;
    所述SE在上电之后,将所述执行程序从所述AP芯片内部的存储器加载至所述SE内部的存储器中。
  11. 根据权利要求9或10所述的方法,其特征在于,所述AP芯片控制所述SE上电之后,还包括:
    所述AP芯片在所述SE上电之后经过预设时长执行关机操作;
    或者,
    所述AP芯片在所述SE上电之后启动定时器;所述AP芯片在接收到所述SE发送的重置命令时,重置所述定时器,其中,所述SE每接收到来自所述短距离通信芯片的信号时,向所述AP芯片发送所述重置命令;当所述定时器超时时,所述AP芯片执行关机操作。
  12. 一种移动终端,其特征在于,所述移动终端包括:应用处理器AP芯片、短距离通信芯片、电源管理单元PMU和集成于所述AP芯片上的安全元件SE,其中,所述SE与所述短距离通信芯片耦合,所述AP芯片与所述PMU耦合,所述短距离通信芯片也与所述PMU耦合;
    所述短距离通信芯片,用于在检测到符合预设条件的射频信号时,向所述PMU发送上电信号;
    所述PMU,用于在检测到所述上电信号之后,向所述AP芯片供电;
    所述AP芯片,用于在上电之后,确定是否由所述短距离通信芯片触发开机;若是由所述短距离通信芯片触发开机,则控制所述SE上电;
    所述SE,用于在上电之后,与所述短距离通信芯片通信。
PCT/CN2018/102567 2017-08-30 2018-08-27 上电控制方法、ap芯片及移动终端 WO2019042260A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710765453.7 2017-08-30
CN201710765453.7A CN109426324B (zh) 2017-08-30 2017-08-30 上电控制方法、ap芯片及移动终端

Publications (1)

Publication Number Publication Date
WO2019042260A1 true WO2019042260A1 (zh) 2019-03-07

Family

ID=65504132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/102567 WO2019042260A1 (zh) 2017-08-30 2018-08-27 上电控制方法、ap芯片及移动终端

Country Status (2)

Country Link
CN (1) CN109426324B (zh)
WO (1) WO2019042260A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112153119A (zh) * 2020-09-09 2020-12-29 锐捷网络股份有限公司 一种控制设备、方法、系统
CN115454517A (zh) * 2022-11-11 2022-12-09 山东云海国创云计算装备产业创新中心有限公司 多介质安全启动的方法、系统、存储介质、设备及芯片

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101281611A (zh) * 2008-05-27 2008-10-08 北京握奇数据系统有限公司 一种双界面智能卡及其启动非接触应用的方法
CN101894290A (zh) * 2010-04-06 2010-11-24 上海复旦微电子股份有限公司 非接触通信装置
CN102325203A (zh) * 2011-05-10 2012-01-18 惠州Tcl移动通信有限公司 一种移动终端及其通信装置
CN102411742A (zh) * 2011-12-27 2012-04-11 大唐微电子技术有限公司 移动终端
WO2015023254A1 (en) * 2013-08-12 2015-02-19 Intel Corporation Communications techniques for a secure near field communication architecture
CN204810251U (zh) * 2015-05-28 2015-11-25 比亚迪股份有限公司 用电设备和用电设备的开关机电路

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8352323B2 (en) * 2007-11-30 2013-01-08 Blaze Mobile, Inc. Conducting an online payment transaction using an NFC enabled mobile communication device
CN201838037U (zh) * 2009-12-29 2011-05-18 北京万集科技有限责任公司 一种用于etc车载单元的多唤醒源唤醒电路
CN101916950B (zh) * 2010-04-06 2013-06-12 上海复旦微电子集团股份有限公司 安全芯片集线器
CN201878132U (zh) * 2010-11-03 2011-06-22 东莞宇龙通信科技有限公司 一种移动终端
CN202095097U (zh) * 2011-05-10 2011-12-28 武汉天喻信息产业股份有限公司 可扩展多路swp协议接口的se模块
US8171525B1 (en) * 2011-09-15 2012-05-01 Google Inc. Enabling users to select between secure service providers using a central trusted service manager
CN102316226B (zh) * 2011-09-23 2013-12-11 惠州Tcl移动通信有限公司 一种nfc移动终端
CN103064816B (zh) * 2013-01-07 2016-04-06 华为终端有限公司 Sim卡热插拔保护及sim卡在位关机刷卡方法、终端
CN203643943U (zh) * 2013-12-31 2014-06-11 青岛歌尔声学科技有限公司 一种多功能开机电路及蓝牙产品
CN104485982A (zh) * 2014-11-20 2015-04-01 广东欧珀移动通信有限公司 一种基于智能配件的nfc方法及系统
CN106101406B (zh) * 2016-06-07 2020-04-07 Tcl移动通信科技(宁波)有限公司 一种基于移动终端的关机闹铃触发处理方法及移动终端
CN107071714A (zh) * 2017-06-05 2017-08-18 Tcl移动通信科技(宁波)有限公司 一种移动终端及其蓝牙加载控制方法、及存储装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101281611A (zh) * 2008-05-27 2008-10-08 北京握奇数据系统有限公司 一种双界面智能卡及其启动非接触应用的方法
CN101894290A (zh) * 2010-04-06 2010-11-24 上海复旦微电子股份有限公司 非接触通信装置
CN102325203A (zh) * 2011-05-10 2012-01-18 惠州Tcl移动通信有限公司 一种移动终端及其通信装置
CN102411742A (zh) * 2011-12-27 2012-04-11 大唐微电子技术有限公司 移动终端
WO2015023254A1 (en) * 2013-08-12 2015-02-19 Intel Corporation Communications techniques for a secure near field communication architecture
CN204810251U (zh) * 2015-05-28 2015-11-25 比亚迪股份有限公司 用电设备和用电设备的开关机电路

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112153119A (zh) * 2020-09-09 2020-12-29 锐捷网络股份有限公司 一种控制设备、方法、系统
CN112153119B (zh) * 2020-09-09 2023-03-21 锐捷网络股份有限公司 一种控制设备、方法、系统
CN115454517A (zh) * 2022-11-11 2022-12-09 山东云海国创云计算装备产业创新中心有限公司 多介质安全启动的方法、系统、存储介质、设备及芯片

Also Published As

Publication number Publication date
CN109426324B (zh) 2021-01-29
CN109426324A (zh) 2019-03-05

Similar Documents

Publication Publication Date Title
US9288107B2 (en) Method and system for controlling operations in a mobile communication device that is enabled for near field communication (NFC)
US9713089B2 (en) Communication apparatus, control method for communication apparatus, communication system, and program
US9589160B2 (en) Working method for smart card reader
JP5341964B2 (ja) デュアル・インタフェース・オブジェクトの状態の変化に関する完全同時情報
US20030109218A1 (en) Portable wireless storage unit
KR102408583B1 (ko) 근거리 통신 회로의 멀티 모달 운영방법 및 장치
US9214986B2 (en) Non-volatile memory for NFC router
US20200150976A1 (en) Electronic device and method for transceiving control signal
EP2518587B1 (en) Management of secure element deadlock
US20150339560A1 (en) Information processing apparatus, method of controlling the same, and storage medium
EP3751407B1 (en) Electronic device and method of utilizing storage space thereof
WO2019042260A1 (zh) 上电控制方法、ap芯片及移动终端
US9235249B2 (en) Power control for serial bus peripheral device
US10735053B2 (en) Boosted near field communication device
WO2019100693A1 (zh) 控制se的系统、方法及芯片
US9779040B2 (en) Portable device, system, and information processing apparatus
US10373037B2 (en) RFID transponder, RFID transponder arrangement and method for communication between an RFID transponder and a reading device
KR20160041282A (ko) 전자 장치 및 이의 제어 방법
KR101853855B1 (ko) 이동 단말기 및 이를 구비하는 통신 시스템
JP2012027667A (ja) 携帯可能電子装置、icカード、および携帯可能電子装置の制御方法
JP2015154113A (ja) 通信装置、制御方法、及びプログラム
US20170075607A1 (en) Method and apparatus for server management
JP6863032B2 (ja) 電子情報記憶媒体、icカード、活性化制御方法、及びプログラム
KR101882710B1 (ko) 이동 단말기 및 이를 포함하는 통신 시스템
US9807545B2 (en) Communication apparatus controlling close proximity wireless communication unit, control method thereof and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18852214

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18852214

Country of ref document: EP

Kind code of ref document: A1