WO2019042211A1 - 太阳能充电系统及其控制方法 - Google Patents

太阳能充电系统及其控制方法 Download PDF

Info

Publication number
WO2019042211A1
WO2019042211A1 PCT/CN2018/101890 CN2018101890W WO2019042211A1 WO 2019042211 A1 WO2019042211 A1 WO 2019042211A1 CN 2018101890 W CN2018101890 W CN 2018101890W WO 2019042211 A1 WO2019042211 A1 WO 2019042211A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
voltage
power generation
charging system
photovoltaic power
Prior art date
Application number
PCT/CN2018/101890
Other languages
English (en)
French (fr)
Inventor
张志福
Original Assignee
北京汉能光伏投资有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京汉能光伏投资有限公司 filed Critical 北京汉能光伏投资有限公司
Publication of WO2019042211A1 publication Critical patent/WO2019042211A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • H01M10/465Accumulators structurally combined with charging apparatus with solar battery as charging system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/102Parallel operation of dc sources being switching converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0024Parallel/serial switching of connection of batteries to charge or load circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/342The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/125Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M3/135Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M3/137Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/139Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/38Energy storage means, e.g. batteries, structurally associated with PV modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present application relates to the field of photovoltaic technology, and in particular, to a solar charging system and a control method thereof.
  • Solar energy can be used as the main power or auxiliary energy source for equipment.
  • the solar radiation power on the ground is at most 1 kW/m 2 .
  • the equipment for example, a car
  • solar energy As the main power, it takes an area of several square meters to several tens of square meters or even several hundred square meters. Receiving the energy of sunlight; the effective area of the equipment is usually limited and is clearly difficult to achieve on a limited area. Therefore, the current use of solar energy as a secondary energy source is one of the commonly used application modes.
  • the voltage of the power battery is generally high, reaching several hundred volts, and when the solar module is used in a limited space, the power is limited, and the voltage is generally several tens of volts; if the electric power generated by the solar module is directly boosted, the battery is supplied to the battery. During charging and boosting, the power loss is large, resulting in low solar energy utilization. Therefore, solar power generation is currently used to power, for example, low voltage auxiliary batteries and/or low voltage appliances when applied over a limited area.
  • the present disclosure provides a solar energy charging system including: a first battery pack; a photovoltaic power generation component; a second battery pack; a DC/DC converter; a control component; wherein the first battery pack passes the DC/DC converter Electrically connecting with the second battery pack; the second battery pack is electrically connected to the photovoltaic power generation assembly; the control component is configured to detect a voltage of the second battery pack, and control the DC according to the voltage The communication/disconnection between the /DC converter and the second battery pack.
  • control component includes: a switch, a detection module, and a control module; wherein the switch is configured to control communication/disconnection between the DC/DC converter and the second battery pack;
  • the detecting module is electrically connected to the second battery pack, the detecting module is configured to detect a voltage of the second battery pack; and the control module is configured to control an on/off DC/DC conversion of the switch according to the voltage Device.
  • the switch is connected in series with the DC/DC converter and the second battery pack.
  • the detecting module is communicatively connected to the control module.
  • the switch is a relay, and an output end of the DC/DC converter is electrically connected to the second battery pack through the relay.
  • an output end of the DC/DC converter is electrically connected to a COM port of the relay, and an electrode corresponding to the second battery pack is electrically connected to a normally open contact of the relay.
  • the relay is an overvoltage and undervoltage relay; and the overvoltage setting of the overvoltage and undervoltage relay is lower than a voltage of the second battery pack in a full state.
  • the charging system further includes: a low voltage load; an electrode of the at least one of the first battery group, the second battery group, and the photovoltaic power generation component is electrically connected to an electrode corresponding to the low voltage load.
  • the charging system further includes: a timing device; the control module controls the timing device; when the voltage of the second battery pack is lower than a lower limit of a voltage threshold range, the control module controls the timing The device starts timing, and after a predetermined time elapses, the timing device transmits a timing end signal to the control module.
  • an output end of the timing device is communicatively coupled to the control module.
  • the charging system further includes: a display device; the control module is further configured to control the display device to display a voltage of the second battery pack.
  • an input end of the display device is communicatively coupled to a display port of the control module.
  • one of the batteries of the second battery pack or a series of battery cells of the plurality of batteries provides power to the detecting module and the control device; and/or one of the second battery packs A battery or a series of battery cells of several of them provide power to the control module.
  • the solar charging system further includes: a photovoltaic charging controller; the photovoltaic power generating component is electrically connected to the second battery pack through the photovoltaic charging controller.
  • At least one of the electrodes of the photovoltaic power generation component is electrically connected to the second battery pack through a diode; when an output voltage of the photovoltaic power generation component is higher than a voltage of the second battery pack, The diode is turned on.
  • the present disclosure also provides a control method of the above solar charging system, comprising the following steps:
  • an upper limit of the voltage threshold range is lower than a voltage when the second battery pack is fully charged, and a lower limit of the voltage threshold range is higher than a voltage when the second battery pack is exhausted;
  • Controlling, between the voltage of the second battery pack and the voltage threshold range, controlling the photovoltaic power generation component to charge the second battery pack, or controlling the first battery pack and the photovoltaic power generation component Charging the second battery pack includes: detecting a voltage of the second battery pack during a voltage rise, and comparing the detected voltage with the voltage threshold range; when the detected voltage is high Controlling, by the upper limit of the voltage threshold range, the photovoltaic power generation component to charge the second battery pack; when the voltage is not higher than a lower limit of the voltage threshold range, controlling the photovoltaic power generation component and the The first battery pack charges the second battery pack.
  • an upper limit of the voltage threshold range is lower than a voltage when the second battery pack is fully charged, and a lower limit of the voltage threshold range is higher than a voltage when the second battery pack is exhausted;
  • Controlling, between the voltage of the second battery pack and the voltage threshold range, controlling the photovoltaic power generation component to charge the second battery pack, or controlling the first battery pack and the photovoltaic power generation component Charging the second battery pack includes: detecting a voltage of the second battery pack during a voltage drop, and comparing the voltage to the voltage threshold range; when the voltage is higher than the voltage Controlling the photovoltaic power generation component to charge the second battery pack when the lower limit of the threshold range; controlling the photovoltaic power generation component and the first battery pack when the voltage is not higher than a lower limit of the voltage threshold range Charging the second battery pack.
  • FIG. 1 is a configuration diagram of a charging system according to some embodiments of the present disclosure
  • FIG. 2 is a schematic diagram of a circuit arrangement of a charging system according to some embodiments of the present disclosure
  • FIG. 3 is a schematic diagram of a circuit arrangement of still another charging system according to some embodiments of the present disclosure.
  • FIG. 4 is a schematic diagram of a circuit arrangement of another charging system according to some embodiments of the present disclosure.
  • FIG. 5 is a schematic diagram of a circuit arrangement of still another charging system according to some embodiments of the present disclosure.
  • FIG. 6 is a partial circuit layout diagram of a charging system according to some embodiments of the present disclosure.
  • FIG. 7 is a schematic flow chart of a control method of a charging system according to some embodiments of the present disclosure.
  • the low-voltage auxiliary battery Due to the high charging capacity of the high-voltage power battery, the low-voltage auxiliary battery can reach the state of saturation in a short time, and after the solar module supplies a small amount of energy to the low-voltage auxiliary battery, the low-voltage auxiliary battery will be transferred to the floating state (Float) Charge), the utilization of solar energy is very low, which wastes a lot of solar power. For example, the above problems exist when solar modules are applied to electric vehicles.
  • a charging system also referred to as a solar-assisted charging system 01, including: a first battery pack (also referred to as a main power battery pack) 10; a photovoltaic power generation assembly (may also be referred to as a solar module, or a solar power module or a solar photovoltaic module) 11; a second battery pack (also referred to as an auxiliary battery pack) 12; a DC/DC converter 13; a control assembly 14;
  • the first battery pack 10 is electrically connected to the second battery pack 12 through the DC/DC converter 13; the second battery pack 12 is electrically connected to the photovoltaic power generation assembly 11; and the control assembly 14 is configured to detect The voltage of the second battery pack 12 controls the communication/disconnection between the DC/DC converter 13 and the second battery pack 12 according to the voltage.
  • the photovoltaic power generation assembly 11 always charges the second battery pack 12, that is, the photovoltaic power generation assembly 11 is always maintained as the second battery pack 12. a state of being charged, so that the electrical energy converted by the photovoltaic power generation component 11 can be fully utilized to improve the utilization rate of the solar energy; and at the same time, the first battery pack 10 can be controlled to the second according to the voltage of the second battery pack 12. The battery pack 12 is charged or not charged to the second battery pack 12 to ensure that the second battery pack 12 is not depleted.
  • control component 14 includes: a switch 141, a detection module 142, and a control module 143;
  • the switch 141 is configured to control communication/disconnection between the DC/DC converter 13 and the second battery pack 12;
  • the detecting module 142 is electrically connected to the second battery pack 12, and the detecting module 142 is configured to detect a voltage of the second battery pack 142;
  • the control module 143 is configured to control on/off of the switch 141 according to the voltage.
  • the switch 141 is connected in series with the DC/DC converter 13 and the second battery pack 12.
  • the detecting module 142 is communicatively coupled to the control module 143 to receive the voltage of the second battery pack 142 detected by the detecting module 142.
  • the switch 141 is a relay; an output of the DC/DC converter 13 is electrically connected to the second battery pack 12 through the relay.
  • the relay is an over-undervoltage relay; the over-voltage setting value of the over-voltage-undervoltage relay is lower than the voltage in the full state of the second battery pack 12.
  • the charging system 01 further includes: a low voltage load 15; electrodes of at least one of the first battery pack 10, the second battery pack 12, and the photovoltaic power generation assembly 11 The electrodes corresponding to the low voltage load 15 are electrically connected.
  • the charging system 01 further includes: a timing device 16; the control module 143 controls the timing device 16; when the voltage of the second battery pack 12 is lower than a voltage threshold range In a limited time, the control module 143 controls the timing device 16 to start timing. After a predetermined time elapses, the timing device 16 sends a timing end signal to the control module 143.
  • the output of the timing device 16 is communicatively coupled to the control module 143.
  • the charging system 01 further includes: a display device 17; the control module 143 is further configured to control the display device 17 to display the voltage of the second battery pack 12 .
  • the input end of the display device 17 is communicatively connected to the display port of the control module 143.
  • a charging system also referred to as a solar-assisted charging system 01, including:
  • a photovoltaic power generation component also referred to as a solar component 4
  • the photovoltaic power generation component being one of the power sources of the second battery pack (also referred to as an auxiliary battery pack or a low voltage auxiliary battery) 6;
  • a photovoltaic charging controller (also referred to as a solar charging controller) 5 for controlling voltage and current of the electric energy generated by the photovoltaic generating assembly 4 so that the output matches the charging voltage of the second battery pack 6, and
  • the photovoltaic charging controller 5 can also provide a suitable current to the second battery pack 6 and the low voltage load according to the demand capacity of the second battery pack 6 and the low voltage load; the photovoltaic charging controller 5 also has overvoltage, overcurrent, short circuit protection functions. ;
  • a detection module (also referred to as a voltage detection module) for measuring a voltage of the second battery pack 6;
  • the control module can realize the function of over-voltage over-limit protection and circuit switching.
  • the photovoltaic power generation component 4 is connected to the second battery pack 6 through the photovoltaic charging controller 5 for charging, and the photovoltaic power generation component 4 can also supply power to the low voltage load through the photovoltaic charging controller 5 (the low voltage load is not illustrated in FIG. 2, please Refer to Figure 1) above;
  • the control component (also referred to as a voltage detection controller module) includes a digital DC voltmeter 3, a positive pole 8 of the digital DC voltmeter 3, and a positive pole of the measuring terminal positive electrode 9 and the second battery pack 6 (symbolized in FIG. 2) The "+” indicates) connection, and the power supply common negative electrode 7 is connected to the negative electrode of the second battery pack 6 (illustrated by the symbol "-" in Fig. 2).
  • a detection module, a control module, and a switch are integrated in the digital DC voltage meter 3; wherein, a pair of overvoltage and undervoltage relays
  • the normally open contact is connected in series to the positive terminal of the low voltage terminal of the DC/DC converter (for example, the on-board DC/DC converter) 2 (indicated by the symbol "+" in FIG.
  • the open contact includes a normally open point (indicated by the symbol “OFF” in Figure 2) and a common point COM port (indicated by the symbol “COM” in Figure 2), by setting the upper and lower limits of the voltage threshold range detected by the control component. Real-time monitoring and control of the voltage of the second battery pack 6 is realized.
  • the switching of the circuit can be performed by the digital DC voltmeter 3.
  • This method of circuit switching using a digital DC voltmeter 3 integrated with a detection module, a control module, and an overvoltage and undervoltage relay is not unique, and each module can be separately installed.
  • a single chip microcomputer or a CPU (Central Processing Unit) is used as a control module control relay (or an overvoltage and undervoltage relay) for line switching.
  • the common negative electrode 7 of the digital DC voltmeter 3 is connected to the negative electrode of the second battery pack 6, and the positive electrode 8 of the DC voltmeter 3 and the positive terminal of the measuring terminal (also referred to as a positive electrode) ) 9 is connected to the positive electrode of the second battery pack 6.
  • the first battery pack (also referred to as a power battery) 1 is DC 330V (DC 330V);
  • the second battery pack 6 (also referred to as a low voltage auxiliary battery) has a nominal voltage of 12V, after full charge The voltage of the voltage is higher than 13V, and the upper limit of the voltage threshold range detected by the digital DC voltage meter 3 is set to 13V, and the lower limit is 12V.
  • the detection module detects the voltage of the second battery pack 6 in real time and sends it to the control module.
  • the control module controls the relay coil to be energized when the control module receives the signal that the voltage of the second battery pack 6 is lowered to the lower limit of 12V. Turning on, increasing the first battery pack 1 through the DC/DC converter 2 to supply power to the second battery pack 6 and for the low voltage load; when the control module receives the signal that the second battery pack 6 is charged to be higher than the set upper limit value 13V.
  • the control module controls the relay coil to lose power the normally open point is opened, and the circuit for charging the first battery pack 1 to the second battery pack 6 through the DC/DC converter 2 is disconnected.
  • the potential difference between the photovoltaic power generation assembly 4 and the low-voltage load may be greater than the potential difference between the photovoltaic power generation assembly 4 and the second battery pack 6.
  • the voltaic power generation component 4 preferentially supplies power to the low voltage load, and then charges the second battery pack 6.
  • the second battery pack 6 enters a floating charge state, and the photovoltaic power generation assembly 4 only provides turbulence to charge the second battery pack 6, that is, a trickle charge, thereby avoiding the first
  • the battery pack 6 has a long life loss due to long-term self-consumption.
  • the photovoltaic power generation component 4 maintains a power generation state, and supplies power to the second battery pack 6 and the low voltage load, and the priority of charging is higher than that of the first battery pack 1 through the DC/DC converter 2.
  • the control module controls the relay to be closed, the first battery pack 1 charges the second battery pack 6, and when the voltage of the second battery pack 6 exceeds 13V, the control module controls the relay to open. The charging of the second battery pack 6 is stopped.
  • the photovoltaic power generation assembly 4 is always electrically connected to the second battery pack 6, that is, the photovoltaic power generation assembly 4 always maintains charging of the second battery pack 6.
  • the predetermined voltage for charging the first battery pack is lower than the voltage when the second battery pack 6 is fully charged (for example, the nominal voltage of the second battery pack 6 in some embodiments of the present disclosure is 12V, The voltage in the fully charged state is 13.6 V), so that even if the first battery pack 1 is charged to the second battery pack 6, the above arrangement can enable the photovoltaic power generation assembly 4 to provide trickle charging for the second battery pack 6.
  • the second battery pack 6 is kept in a floating state, which is advantageous for extending the service life of the second battery pack 6.
  • the second battery pack 6 can still utilize the electrical energy converted by the photovoltaic power generation assembly 4, thereby improving the utilization of the photovoltaic power generation assembly 4. rate.
  • some embodiments of the present disclosure provide a charging system (also referred to as an auxiliary charging system) 01.
  • the first battery pack (also referred to as a power battery) 1 is DC 518V (DC 518V)
  • the second battery Group 6 is a battery consisting of two batteries with a nominal voltage of 12V, and each battery is fully charged with a voltage higher than 13V.
  • the upper limit of the voltage threshold range detected by the control unit is 26V, and the lower limit is 24V.
  • the detecting module detects the voltage of the second battery pack 6 in real time and sends it to the control module. When the long-time illumination is too weak or the low-voltage load is too large, the control module receives the voltage of the second battery pack and decreases to the set lower limit.
  • the control module controls the relay coil to be energized, and the normally open point (indicated by the mark "OFF" in FIG. 3) is turned on, and the first battery pack 1 is added to the second battery pack 6 through the DC/DC converter 2. Charging and power supply for low-voltage load (not shown in Figure 3, please refer to Figure 1 above).
  • the control module receives the signal that the second battery pack 6 is charged above the set upper limit value of 26V, the control module controls the relay. The coil is de-energized, the normally open point is opened, and the circuit for charging the first battery pack 1 to the second battery pack 6 through the DC/DC converter 2 is disconnected;
  • the potential difference between the photovoltaic power generation assembly 4 and the low-voltage load may be greater than between the photovoltaic power generation assembly 4 and the second battery pack 6.
  • the potential difference of the photovoltaic power generation component 4 will preferentially supply power to the low voltage load, and then charge the second battery pack 6. After the second battery pack 6 is fully charged, the second battery pack 6 enters a floating charge state, and the photovoltaic power generation component 4 only provides turbulence to charge the low voltage battery, thereby avoiding the life of the second battery pack 6 due to long-term self-consumption. Loss.
  • the photovoltaic power generation component 4 since the normally closed point (indicated by the mark "ON” in FIG. 2) is not connected to the power supply circuit between the photovoltaic power generation unit 4 and the second battery unit 6, in the entire operation of the above charging system, as long as Under the corresponding lighting conditions, the photovoltaic power generation component 4 maintains a power generation state, charges the second battery pack 6 and supplies power to the low voltage load, and the priority of charging is higher than the output of the first battery pack through the DC/DC converter 2.
  • the detecting module, the control module and the over-voltage-undervoltage relay are integrally disposed on a digital DC voltmeter 3, wherein the common negative electrode 7 of the digital DC voltmeter and the negative electrode of the second battery pack (FIG. 3 is electrically connected by a symbol "-", and the positive pole of the power supply positive electrode 8 of the digital DC voltmeter 3 and the second battery pack 6 connected to the common negative electrode 7 (indicated by the symbol "+” in FIG. 3) Electrically connected, the positive electrode 9 of the digital DC voltmeter 3 is electrically connected to the positive electrode of each of the second battery packs 6.
  • MPPT in FIG. 3 is a type of photovoltaic charging controller 5, which refers to Maximum Power Point Tracking, which is a “maximum power point tracking” solar controller.
  • the present embodiment provides a charging system (also referred to as a solar-assisted charging system) 01, including a photovoltaic power generation assembly 4, which generates electrical energy under illumination, and generates electrical energy from the photovoltaic power generation assembly 4.
  • the second battery pack 6 is charged and powered for the low voltage load 61 by the control and switching of the photovoltaic charge controller 5.
  • the power interface 61a of the low voltage load 61 is electrically connected to the second battery pack 6, such that when the second battery pack 6 supplies power to the low voltage load 61, the second battery pack 6 is connected in series with the low voltage load 61, when the photovoltaic power generation assembly 4 or the first When the battery pack 1 is charging the second battery pack 6, the low voltage load 61 and the second battery pack 6 are in a parallel state, so that the photovoltaic power generation unit 4 or the first battery pack 1 can directly supply power to the low voltage load 61, thereby reducing energy conversion. Can reduce energy loss;
  • the first battery pack 1 is electrically connected to the input terminals of the DC/DC converter 2 (illustrated by the symbols "+” and “-” in Fig. 4, respectively), and the two ends of the output terminal of the DC/DC converter 2 ( 4 is electrically connected to the second battery pack 6 by the symbols "+” and "-", respectively, for connecting the output end of the DC/DC converter 2 and one of the wires of the second battery pack 6 (figure Manual switch 62 and relay 63 are connected in series with reference to L) in 4.
  • the second battery pack 6 is electrically connected to the DC digital display voltage meter 3.
  • the DC digital display voltage meter 3 includes a detection module, a control module and a display device (also referred to as a display screen or a display module), and the detection module is configured to detect the second battery.
  • the voltage of the group 6 receives the voltage information of the second battery pack 6 detected by the detecting module, and the control module controls the on/off of the relay 63 according to the voltage information of the second battery pack 6, when the relay is turned on and the manual switch 62 is closed.
  • the first battery pack 1 is charged to the second battery pack 6 through the DC/DC converter 2, and when the relay 63 is turned off, and/or the manual switch 62 is turned off, the photovoltaic power generation unit 4 passes through the photovoltaic charging controller 5 The second battery pack 6 is powered.
  • the display module is configured to display the voltage value to manually operate the manual switch 62 by observing the value displayed by the DC digital voltmeter 3, and control the first battery pack 1 to be the second battery pack 6 by turning on and off the manual switch 62.
  • the photovoltaic power generation assembly 4 is charged and/or controlled to charge the second battery pack 6.
  • some embodiments of the present disclosure provide a charging system, further including a timing device 10, and a control module (the detection module, the control module and the switch are integrated in the digital DC voltage meter 3) to control the timing device 10
  • the timing device 10 communicates with the control module.
  • a predetermined voltage value eg, 12V
  • the timing device 10 is triggered by the control module to start timing.
  • the DC digital voltmeter 3 measures the voltage of the second battery pack 6 again. If the voltage of the second battery pack 6 is still lower than the predetermined voltage value, the control module controls the relay to close.
  • a battery pack 1 charges the second battery pack 6.
  • the voltage of the second battery pack 6 is lower than the predetermined voltage, if the sunlight is sufficient, the electric energy converted by the photovoltaic power generation unit 4 can be fully utilized, and if the light is insufficient or the energy converted by the photovoltaic power generation unit 4 is insufficient, after a certain period of time If the voltage of the second battery pack 6 has not been charged to a predetermined voltage, it is necessary to charge the second battery pack 6 with the first battery pack 1.
  • the nominal voltage of the first battery pack 1 is exemplified as 330V, but the voltage of the first battery pack described above is not limited thereto, and the first battery is only used as an example.
  • the nominal voltage of Group 1 can also be various voltage values such as 144V, 220V, 480V, 550V.
  • the nominal voltage of the second battery pack 6 is exemplified as 12V, but the voltage of the auxiliary battery pack described above is not limited thereto, and is only used as an example, the second The nominal voltage of the battery pack 6 can also be a different voltage value such as 24V, 36V or the like.
  • the common negative electrode 9 of the digital DC voltage meter 3 is connected to the negative pole of the second battery pack 6, and the digital DC voltage is displayed.
  • the power source positive electrode 8 and the detection positive electrode 9 of Table 3 are both connected to the positive electrode of the second battery pack 6.
  • This connection method does not limit the power supply mode of the digital DC voltmeter 3.
  • the digital DC voltage can be used.
  • the common negative electrode 9 and the power supply positive electrode 8 of Table 3 are respectively connected to the positive electrode and the negative electrode of the second battery pack 6, and the positive electrode 9 is connected to the positive electrode of one of the batteries of the battery pack.
  • the second battery pack when a plurality of cells connected in series are used as the second battery pack, one or several of them may be used as a power source of the digital DC voltmeter, and the positive electrode is electrically connected to the positive electrode of one of the batteries in the battery pack.
  • the PV module may become the load of the auxiliary battery pack or the main power battery pack, in order to avoid the photovoltaic power generation component being damaged as a load, as shown in Figure 6.
  • At least one of the electrodes 4a of the photovoltaic power generation assembly 4 is electrically connected to the second battery pack 6 through a diode (labeled "Diode" in FIG. 6) when the output voltage of the photovoltaic power generation assembly 4 is higher than the second battery When the voltage of group 6 is reached, the diode is turned on.
  • the diode is designed in the circuit. Since the diode is a unidirectional conductive component, the diode is turned on to output power of the photovoltaic power generation component, thereby forming protection for the photovoltaic component, and also avoiding waste of energy of the main power battery pack.
  • some embodiments of the present disclosure provide a charging control method for a solar charging system (also referred to as a solar-assisted battery pack or a solar-assisted charging system), including the following steps:
  • the photovoltaic power generation component always charges the second battery pack, that is, the state in which the photovoltaic power generation component is always charged for the second battery pack, thereby
  • the electrical energy converted by the photovoltaic power generation component can be fully utilized to improve the utilization rate of the solar energy; at the same time, the first battery pack can be controlled according to the comparison result between the voltage of the second battery pack and the voltage threshold range.
  • the second battery pack is charged or not charged to the second battery pack to ensure that the second battery pack is not exhausted.
  • the upper limit of the voltage threshold range is lower than the voltage when the second battery pack is fully charged, and the lower limit of the voltage threshold range is higher than the voltage when the second battery pack is exhausted.
  • the photovoltaic power generation component and the first battery pack simultaneously charge the second battery pack; when the second battery pack is charged to the second battery pack
  • the first battery pack is controlled to stop charging the second battery pack, and only the photovoltaic power generation assembly continues to charge the second battery pack.
  • the photovoltaic power generation component has been charging the second battery pack to ensure a high utilization rate of solar power generation.
  • the first battery pack Only the first battery pack is actually controlled, and only when the voltage of the second battery pack is detected to be lower than the lower limit of the voltage threshold range, the first battery pack is turned on and the second battery pack is charged (the second battery pack) The voltage does not activate the first battery pack for charging within the voltage threshold range, and the first battery pack stops charging the second battery pack until the voltage of the second battery pack reaches the upper limit of the voltage threshold range.
  • S2 includes:
  • S2 includes:
  • the photovoltaic power generation component and the first battery pack are controlled to charge the second battery pack when the voltage is not higher than a lower limit of a voltage threshold range.
  • a threshold is determined, which is used as a preset voltage threshold.
  • a situation is employed in which the upper and lower limits of the voltage threshold range are coincident.
  • the voltage after it is fully charged is about 13.6V.
  • 12V can be selected as the voltage threshold (the voltage threshold)
  • the upper and lower limits of the range are both 12V).
  • the charging power supply of the auxiliary battery is switched to the mode of simultaneous charging of the main power battery pack and the photovoltaic power generation component, and the main power battery pack can quickly charge the auxiliary battery.
  • the voltage of the auxiliary battery is charged above 12V, the electrical connection between the main power battery pack and the auxiliary battery pack is disconnected, and only the photovoltaic power generation component is used to continue charging the auxiliary battery pack.
  • Such a charging method ensures that the photovoltaic power generation component can always charge the auxiliary battery pack. Moreover, when the auxiliary battery pack is about to be fully charged, charging the auxiliary battery pack with the photovoltaic power generation component can also keep the auxiliary battery pack in a floating state.
  • the voltage threshold ranges from 11V to 13V, that is, the upper limit is 13V and the lower limit is 11V, and the upper limit value is different from the lower limit value.
  • the main power battery pack and the photovoltaic power generation component are simultaneously controlled to charge the auxiliary battery pack. Since the voltage of the main power battery pack is high and the power capacity is large, it can be in a short time.
  • the auxiliary battery pack is charged. When the voltage of the auxiliary battery pack is charged to 13V, the main power battery pack is disconnected from the circuit for charging the auxiliary battery pack, and only the photovoltaic power generation component is used to charge the auxiliary battery pack.
  • the photovoltaic power generation component charges the auxiliary battery pack, and when the power consumption of the auxiliary battery pack is large, the voltage of the auxiliary battery pack gradually decreases;
  • the voltage is below 13V and above 11V, the current charging mode is kept unchanged, and only the photovoltaic power generation component is used for charging; when falling below 11V, the main power battery pack is enabled to charge the auxiliary battery pack.
  • the main power battery pack and the photovoltaic power generation component jointly charge the auxiliary battery pack; when charging to 11V or more and 13V or less, the current charging mode remains unchanged,
  • the main power battery pack and the photovoltaic power generation component are commonly used for charging; when the voltage of the auxiliary battery pack is above 13V, the main power battery pack is disconnected to charge the auxiliary battery pack circuit, and only the photovoltaic power generation component is used to provide the auxiliary battery pack.
  • Stream charging when the auxiliary battery pack voltage is lower than 11V, the main power battery pack and the photovoltaic power generation component jointly charge the auxiliary battery pack; when charging to 11V or more and 13V or less, the current charging mode remains unchanged,
  • the main power battery pack and the photovoltaic power generation component are commonly used for charging; when the voltage of the auxiliary battery pack is above 13V, the main power battery pack is disconnected to charge the auxiliary battery pack circuit, and only the photovoltaic power generation component is used to provide the auxiliary battery pack.

Abstract

本申请提供一种太阳能充电系统及其控制方法,该太阳能充电系统包括:第一电池组;光伏发电组件;第二电池组;DC/DC转换器;控制组件;其中,所述第一电池组通过所述DC/DC转换器与所述第二电池组电连接;所述第二电池组与所述光伏发电组件电连接;所述控制组件用于检测所述第二电池组的电压,并根据所述电压控制所述DC/DC转换器与所述第二电池组之间的连通/断开。该太阳能充电系统及其控制方法可充分利用光伏发电组件转化的电能,提高太阳能的利用率。

Description

太阳能充电系统及其控制方法
本申请要求于2017年09月01日提交中国专利局、申请号为201710780286.3、申请名称为“太阳能辅助充电系统和控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光伏技术领域,尤其涉及一种太阳能充电系统及其控制方法。
背景技术
太阳能可作为设备的主动力或辅助能源。地面上太阳辐射功率至多1kW/m 2,以目前光电转化效率计算,若该设备(例如为汽车)全部用太阳能作为主动力,需要几平方米至几十平方米甚至几百平方米的面积来接收太阳光的能量;而设备的有效面积通常有限,在有限的面积上显然难以实现。所以,目前太阳能配合蓄电池用作辅助能源是常用的应用模式之一。
动力蓄电池的电压一般都较高,达到几百伏,而太阳能组件在有限的空间内应用时,其功率有限,电压一般为几十伏;如果直接将太阳能组件产生的电升压后提供给蓄电池充电,升压过程中的电量损失较大,从而导致太阳能利用率很低。所以,目前太阳能发电在有限的面积上应用时常用来为例如低压辅助蓄电池和/或低压电器供电。
发明内容
本公开提供一种太阳能充电系统,包括:第一电池组;光伏发电组件;第二电池组;DC/DC转换器;控制组件;其中,所述第一电池组通过所述DC/DC转换器与所述第二电池组电连接;所述第二电池组与所述光伏发电组件电连接;所述控制组件用于检测所述第二电池组的电压,并根据所述电压控制所述DC/DC转换器与所述第二电池组之间的连通/断开。
可选的,所述控制组件包括:开关、检测模块及控制模块;其中,所述开关用于控制所述DC/DC转换器与所述第二电池组之间的连通/断开;所述检测模块与所述第二电池组电连接,所述检测模块用于检测所述第二电池组的电压;所述控制模块用于依据所述电压控制所述开关的通/断DC/DC转换器。
可选的,所述开关与所述DC/DC转换器和所述第二电池组串联。
可选的,所述检测模块与所述控制模块通讯连接。
可选的,所述开关为继电器,所述DC/DC转换器的输出端通过所述继电器与所述第二电池组电连接。
可选的,所述DC/DC转换器的输出端与所述继电器的COM端口电连接,所述第二电池组对应的电极与所述继电器的常开触点电连接。
可选的,所述继电器为过欠压继电器;所述过欠压继电器的过压设定值低于所述第二电池组充满状态下的电压。
可选的,所述充电系统还包括:低压负载;所述第一电池组、所述第二电池组以及所述光伏发电组件中的至少一个的电极与所述低压负载对应的电极电连接。
可选的,所述充电系统还包括:计时装置;所述控制模块控制所述计时装置;当所述第二电池组的电压低于电压阈值范围的下限时,所述控制模块控制所述计时装置开始计时,经过预定时间后,所述计时装置向所述控制模块发送计时结束信号。
可选的,所述计时装置的输出端与所述控制模块通讯连接。
可选的,所述充电系统还包括:显示装置;所述控制模块还用于,控制所述显示装置显示所述第二电池组的电压。
可选的,所述显示装置的输入端与所述控制模块的显示端口通讯连接。
可选的,所述第二电池组的其中一块电池或者其中几块电池组成的串联电池串为所述检测模块和所述控制装置提供电源;和/或,所述第二电池组的其中一块电池或者其中几块电池组成的串联电池串为所述控制模块提供电源。
可选的,所述太阳能充电系统还包括:光伏充电控制器;所述光伏发电组件通过所述光伏充电控制器与所述第二电池组电连接。
可选的,所述光伏发电组件的其中至少一个电极通过一个二极管与所述第二电池组电连接;当所述光伏发电组件的输出电压高于所述第二电池组的电压时,所述二极管导通。
本公开还提供了一种上述太阳能充电系统的控制方法,包括以下步骤:
设定一预定的电压阈值范围;根据所述第二电池组的电压与所述电压阈值范围之间的比较结果,控制所述光伏发电组件为所述第二电池组充电,或者,控制所述第一电池组和所述光伏发电组件为所述第二电池组充电。
可选的,所述电压阈值范围的上限低于所述第二电池组充满电时的电压,所述电压阈值范围的下限高于所述第二电池组电量用尽时的电压;所述根据所述第二电池组的电压与所述电压阈值范围之间的比较结果,控制所述光伏发电组件为所述第二电池组充电,或者,控制所述第一电池组和所述光伏发电组件为所述第二电池组充电,包括:在电压上升过程中,检测所述第二电池组的电压,并将检测的所述电压与所述电压阈值范围进行比较;当检测的所述电压高于所述电压阈值范围的上限时,控制所述光伏发电组件为所述第二电池组充电;当所述电压不高于所述电压阈值范围的下限时,控制所述光伏发电组件和所述第一电池组为所述第二电池组充电。
可选的,所述电压阈值范围的上限低于所述第二电池组充满电时的电压,所述电压阈值范围的下限高于所述第二电池组电量用尽时的电压;所述根据所述第二电池组的电压与所述电压阈值范围之间的比较结果,控制所述光伏发电组件为所述第二电池组充电,或者,控制所述第一电池组和所述光伏发电组件为所述第二电池组充电,包括:在电压下降过程中,检测所述第二电池组的电压,并将所述电压与所述电压阈值范围进行比较;当所述电压高于所述电压阈值范围的下限时,控制所述光伏发电组件为所述第二电池组充电;当所述电压不高于所述电压阈值范围的下限时,控制所述光伏发电组件和所述第一电池组为所述第二电池组充电。
附图说明
图1是本公开一些实施例提供的一种充电系统的配置图;
图2是本公开一些实施例提供的一种充电系统的电路布置示意图;
图3是本公开一些实施例提供的再一种充电系统的电路布置示意图;
图4是本公开一些实施例提供的另一种充电系统的电路布置示意图;
图5是本公开一些实施例提供的又一种充电系统的电路布置示意图;
图6是本公开一些实施例提供的一种充电系统的局部电路布置示意图;
图7是本公开一些实施例提供的一种充电系统的控制方法流程示意图。
具体实施方式
下面结合说明书附图对本公开做进一步的描述。
在相关技术中,由于常规的低压辅助蓄电池与高压动力电池直接通过DC/DC转换器(Direct Current/Direct Current,表示将一个直流电压转换成其他的直流电压)连接,中间并无电气控制元件,只要DC/DC转换器启动 后,就一直处于工作状态。所以,在有光照且DC/DC转换器启动后,高压动力电池和太阳能组件会同时给低压辅助蓄电池进行充电,高压动力电池提供的电能和太阳能组件提供的电能存在竞争关系。由于高压动力电池充电能力较强,能够使得低压辅助蓄电池在较短时间内达到电量饱和状态,而太阳能组件向低压辅助蓄电池提供少部分的能量之后,低压辅助蓄电池便会转入浮充状态(Float Charge),太阳能的利用率很低,从而浪费了大量的太阳能发电电能。例如:在电动汽车上应用太阳能电池组件时就存在上述的问题。
如图1所示,本公开一些实施例提供了一种充电系统(也可称为太阳能辅助充电系统)01,包括:第一电池组(也可称为主动力电池组)10;光伏发电组件(也可称为太阳能组件、或太阳能发电组件或太阳能光伏发电组件)11;第二电池组(也可称为辅助电池组)12;DC/DC转换器13;控制组件14;其中,所述第一电池组10通过所述DC/DC转换器13与所述第二电池组12电连接;所述第二电池组12与所述光伏发电组件11电连接;所述控制组件14用于检测所述第二电池组12的电压,并根据所述电压控制所述DC/DC转换器13与所述第二电池组12之间的连通/断开。
这样,在本公开一些实施例提供的一种充电系统01中,所述光伏发电组件11始终为所述第二电池组12充电,即,始终保持光伏发电组件11为所述第二电池组12充电的状态,从而可充分利用光伏发电组件11转化的电能,提高太阳能的利用率;同时,还可根据所述第二电池组12的电压,控制所述第一电池组10向所述第二电池组12充电,或者不向所述第二电池组12充电,以保证所述第二电池组12不会被耗尽。
示例的,如图1所示,所述控制组件14包括:开关141、检测模块142及控制模块143;
其中,所述开关141用于控制所述DC/DC转换器13与所述第二电池组12之间的连通/断开;
所述检测模块142与所述第二电池组12电连接,所述检测模块142用于检测所述第二电池组142的电压;
所述控制模块143用于依据所述电压控制所述开关141的通/断。
示例的,所述开关141与所述DC/DC转换器13和所述第二电池组12串联。
示例的,所述检测模块142与所述控制模块143通讯连接,以便接收 所述检测模块142检测到的所述第二电池组142的电压。
示例的,所述开关141为继电器;所述DC/DC转换器13的输出端通过所述继电器与所述第二电池组12电连接。
其中,所述继电器为过欠压继电器;所述过欠压继电器的过压设定值低于所述第二电池组12充满状态下的电压。
示例的,如图1所示,所述充电系统01还包括:低压负载15;所述第一电池组10、所述第二电池组12以及所述光伏发电组件11中的至少一个的电极与所述低压负载15对应的电极电连接。
示例的,如图1所示,所述充电系统01还包括:计时装置16;所述控制模块143控制所述计时装置16;当所述第二电池组12的电压低于电压阈值范围的下限时,所述控制模块143控制所述计时装置16开始计时,经过预定时间后,所述计时装置16向所述控制模块143发送计时结束信号。
其中:所述计时装置16的输出端与所述控制模块143通讯连接。
示例的,如图1所示,所述充电系统01还包括:显示装置17;所述控制模块143还用于,控制所述显示装置17显示所述第二电池组12的电压。
其中:所述显示装置17的输入端与所述控制模块143的显示端口通讯连接。
如图2所示,本公开一些实施例提供一种充电系统(也可称为太阳能辅助充电系统)01,包括:
光伏发电组件(也可称为太阳能组件)4,光伏发电组件作为第二电池组(也可称为辅助电池组或低压辅助蓄电池)6的电源之一;
光伏充电控制器(也可称为太阳能充电控制器)5,用于对光伏发电组件4产生的电能进行电压和电流的控制,使之输出与第二电池组6的充电电压相匹配,并且,光伏充电控制器5还可根据第二电池组6和低压负载的需求能力,向第二电池组6和低压负载提供合适的电流;光伏充电控制器5还具有过压、过流、短路保护功能;
检测模块(也可称为电压检测模块),用于对第二电池组6的电压进行测量;
控制模块,可以实现过欠压超限保护与电路切换的功能。
光伏发电组件4通过光伏充电控制器5连接至第二电池组6上对其进行充电,光伏发电组件4通过光伏充电控制器5还能够给低压负载供电(图 2中未示意出低压负载,请参考前述图1);
控制组件(也可称为电压检测控制器模块)包括数显直流电压表3,数显直流电压表3的电源正极8和测量端正极9与第二电池组6的正极(图2中以符号“+”示意)连接,电源公共负极7与第二电池组6的负极(图2中以符号“-”示意)连接。
如图2所示,在本公开一些实施例中,以数显直流电压表3中集成有检测模块、控制模块和开关(例如为过欠压继电器)为例;其中,过欠压继电器一对常开触点串联接入DC/DC转换器(例如为车载DC/DC转换器)2的低压端正极(图2中以符号“+”示意)和第二电池组6的正极,一对常开触点包含常开点(图2中以标记“OFF”示意)和公共点COM端口(图2中以标记“COM”示意),通过设定控制组件检测的电压阈值范围的上限、下限,来实现对第二电池组6的电压实时监测与控制。
从而可以通过数显直流电压表3进行电路的切换。这种采用集成有检测模块、控制模块和过欠压继电器的数显直流电压表3进行线路切换的方式并不是唯一的,各模块还可以单独安装。例如,采用单片机或者CPU(Central Processing Unit,中央处理器)作为控制模块控制继电器(或过欠压继电器)进行线路切换。在本公开一些实施例中,数显直流电压表3的公共负极7连接在第二电池组6的负极上,数显直流电压表3的电源正极8以及测量端正极(也可称为检测正极)9都连接在第二电池组6的正极上。
如图2所示,第一电池组(也可称为动力电池)1为DC330V(直流330V);第二电池组6(也可称为低压辅助蓄电池)的标称电压为12V,充满电后的电压高于13V,设定数显直流电压表3检测的电压阈值范围的上限为13V,下限为12V,检测模块实时检测第二电池组6的电压并发送给控制模块。
当长时间光照太弱或者低压负载用电量太大时,控制模块接收到第二电池组6的电压降低至设定下限值12V的信号时,控制模块控制继电器线圈得电,常开点接通,增加第一电池组1通过DC/DC转换器2来为第二电池组6和为低压负载供电;当控制模块接收到第二电池组6充电至高于设定上限值13V的信号时,控制模块控制继电器线圈失电,常开点打开,第一电池组1通过DC/DC转换器2向第二电池组6充电的电路断开。
当光照充足或低压负载用电量太小时,由于第二电池组6具有一定的 电动势,光伏发电组件4与低压负载之间的电势差会大于光伏发电组件4与第二电池组6之间的电势差,伏发电组件4会优先给低压负载供电,再给第二电池组6充电。这样,第二电池组6充满后,第二电池组6进入浮充充电状态,光伏发电组件4只提供涓流为第二电池组6充电,即涓流充电(trickle charge),从而可避免第二电池组6由于长期自耗电而引起的寿命折损。
这里,由于常闭点(图2中以标记“ON”示意)不接入光伏发电组件4与第二电池组6之间的供电回路中,所以在上述充电系统的整个工作过程中,只要达到相应的光照条件,光伏发电组件4就会保持发电状态,为第二电池组6充电和低压负载供电,充电的优先等级高于第一电池组1通过DC/DC转换器2的输出。
当第二电池组6的电压低于12V时,控制模块控制继电器闭合,第一电池组1为第二电池组6充电,当第二电池组6的电压超过13V时,控制模块控制继电器打开,停止对第二电池组6的充电。而光伏发电组件4始终与第二电池组6电连接,即,光伏发电组件4始终保持对第二电池组6的充电。
一种可选的方式是,使第一电池组充电的预定电压低于第二电池组6充满电时的电压(例如本公开一些实施例中的第二电池组6的标称电压为12V,在充满电状态下的电压为13.6V),这样,即使第一电池组1对第二电池组6充电完毕,上述的设置方式也能够使光伏发电组件4为第二电池组6提供涓流充电,使第二电池组6保持浮充状态,有利于延长第二电池组6的使用寿命。
另外,采用上述的设置方式,还能够在第一电池组1为第二电池组6充电完毕后,第二电池组6仍然能够利用光伏发电组件4转化的电能,从而提高光伏发电组件4的利用率。
如图3所示,本公开一些实施例提供一种充电系统(也可称为辅助充电系统)01,第一电池组(也可称为动力电池)1为DC518V(直流518V),第二电池组6为由两块标称电压为12V的电池,且每块电池充满电后的电压高于13V构成的蓄电池,设定控制组件检测的电压阈值范围的上限为26V,下限为24V。检测模块实时检测第二电池组6的电压并发送给控制模块,当长时间光照太弱或者低压负载用电量太大时,控制模块接收到第二电池组的电压降低至设定下限值24V的信号时,控制模块控制继电器线 圈得电,常开点(图3中以标记“OFF”示意)接通,增加第一电池组1通过DC/DC转换器2来为第二电池组6充电和为低压负载(图3中未示意出低压负载,请参考前述图1)供电,当控制模块接收到第二电池组6充电至高于设定上限值26V的信号时,控制模块控制继电器线圈失电,常开点打开,第一电池组1通过DC/DC转换器2向第二电池组6充电的电路断开;
当光照充足或低压负载用电量太小时,由于第二电池组6具有一定的电动势,光伏发电组件4与低压负载之间的电势差会大于光伏发电组件4与所述第二电池组6之间的电势差,光伏发电组件4会优先给低压负载供电,再给第二电池组6充电。待第二电池组6充满后,第二电池组6进入浮充充电状态,光伏发电组件4只提供涓流为低压蓄电池充电,从而可避免第二电池组6由于长期自耗电而引起的寿命折损。
这里,由于常闭点(图2中以标记“ON”示意)不接入光伏发电组件4与第二电池组6之间的供电回路中,所以在上述充电系统的整个工作过程中,只要达到相应的光照条件,光伏发电组件4就会保持发电状态,为第二电池组6充电和为低压负载供电,充电的优先等级高于第一电池组通过DC/DC转换器2的输出。
在本公开一些实施例中,检测模块、控制模块和过欠压继电器集成设置在一数显直流电压表3上,其中,数显直流电压表的公共负极7与第二电池组的负极(图3中以符号“-”示意)电连接,数显直流电压表3的电源正极8与连接公共负极7的第二电池组6中的一块电池的正极(图3中以符号“+”示意)电连接,数显直流电压表3的检测正极9与第二电池组6中的每块电池的正极均电连接。
其中,图3中的“MPPT”是光伏充电控制器5的一种类型,是指Maximum Power Point Tracking,即“最大功率点跟踪”太阳能控制器。如图4所示,本实施例提供一种充电系统(也可称为太阳能辅助充电系统)01,包括光伏发电组件4,光伏发电组件4在光照情况下产生电能,光伏发电组件4产生的电能通过光伏充电控制器5的控制和转换后为第二电池组6充电和为低压负载61供电。
低压负载61的电源接口61a与第二电池组6电连接,这样,当第二电池组6为低压负载61供电时,第二电池组6与低压负载61串联,当光伏发电组件4或第一电池组1为第二电池组6充电时,低压负载61与第二电 池组6处于并联状态,能够使光伏发电组件4或第一电池组1直接为低压负载61供电,减少能量转换的环节,能够减少能量损失;
第一电池组1与DC/DC转换器2的输入端两电极(图4中分别以符号“+”和“-”示意出)电连接,DC/DC转换器2的输出端端两电极(图4中分别以符号“+”和“-”示意出)与第二电池组6电连接,用于连接DC/DC转换器2的输出端与第二电池组6的其中一根导线(图4中标记为L)上串联有手动开关62和继电器63。
第二电池组6与直流数显电压表3电连接,直流数显电压表3包括检测模块、控制模块和显示装置(也可称为显示屏或显示模块),检测模块用于检测第二电池组6的电压,控制模块接收检测模块检测到的第二电池组6的电压信息,控制模块依据第二电池组6的电压信息控制继电器63的通/断,继电器接通并且手动开关62闭合时,第一电池组1通过DC/DC转换器2向第二电池组6充电,当继电器63断开,和/或,手动开关62断开时,光伏发电组件4通过光伏充电控制器5向第二电池组6供电。
显示模块用于显示该电压数值,以便通过观察直流数显电压表3显示的数值人工操作该手动开关62,通过手动开关62的导通和断开控制第一电池组1为第二电池组6充电和/或控制光伏发电组件4为第二电池组6充电。
如图5所示,本公开一些实施例提供一种充电系统,还包括一个计时装置10,控制模块(检测模块、控制模块和开关均集成在数显直流电压表3中)控制该计时装置10,该计时装置10与控制模块通讯,当第二电池组6的电压低于预定电压值(如12V)时,该计时装置10通过控制模块被触发,开始计时。当计时装置10计时结束后,直流数显电压表3对第二电池组6的电压再次进行测量,如果第二电池组6的电压仍低于预定电压值,控制模块控制继电器闭合,以使第一电池组1为第二电池组6充电。
这样,在第二电池组6的电压低于预定电压时,如果阳光充足,能够使光伏发电组件4转化的电能被充分使用,如果光照不足或者光伏发电组件4转化的能量不足,在一定时间后,仍未将第二电池组6的电压充至预定电压,就需要采用第一电池组1为第二电池组6充电。
在上述各实施例中,采用的第一电池组1的标称电压示例的为330V,但是,上述的第一1电池组的电压并不对其形成限定,仅仅作为举例的作用,该第一电池组1的标称电压还可以是144V、220V、480V、550V等各 种电压值。
同样的,在上述各实施例中,采用的第二电池组6的标称电压示例的为12V,但是,上述的辅助电池组的电压并不对其形成限定,仅仅作为举例的作用,该第二电池组6的标称电压还可以是24V、36V等不同电压值。
在图2示意出的充电系统01中,由于第二电池组6只有一块12V电压的电池,所以数显直流电压表3的公共负极9接在第二电池组6的负极上,数显直流电压表3的电源正极8以及检测正极9都接在第二电池组6的正极上。
这种连接方式并不对数显直流电压表3的供电方式形成限定,例如,如图3所示,当采用两块串联的12V电压的电池作为第二电池组6时,可将数显直流电压表3的公共负极9和电源正极8分别连接在第二电池组6的正极、负极上,检测正极9连接在电池组的中一块电池的正极上。
或者,采用多块串联的电池作为第二电池组时,可以采用其中的一块或几块作为数显直流电压表的电源,而检测正极则与电池组中一块电池的正极电连接。
在没有阳光光照的情况下,由于光伏组件具有一定的导电性能,因此,光伏组件可能会成为辅助电池组或者主动力电池组的负载,为了避免光伏发电组件作为负载被损毁,如图6所示,光伏发电组件4的至少其中一个电极4a通过一个二极管(图6中标记为“Diode”)与第二电池组6电连接,当所述光伏发电组件4的输出电压高于所述第二电池组6的电压时,二极管导通。
在电路中设计二极管,由于二极管是一种单向导电的元件,二极管向光伏发电组件输出电能的方向导通,从而对光伏组件形成保护,同时也能够避免主动力电池组能源的浪费。
如图7所示,本公开一些实施例提供一种太阳能充电系统(也可称为太阳能辅助电池组或太阳能辅助充电系统)的充电控制方法,包括以下步骤:
S1、设定一预定的电压阈值范围;
S2、根据所述第二电池组的电压与所述电压阈值范围之间的比较结果,控制所述光伏发电组件为所述第二电池组充电,或者,控制所述第一电池组和所述光伏发电组件为所述第二电池组充电。
这样,在本公开一些实施例提供的一种充电系统中,所述光伏发电组 件始终为所述第二电池组充电,即,始终保持光伏发电组件为所述第二电池组充电的状态,从而可充分利用光伏发电组件转化的电能,提高太阳能的利用率;同时,还可根据所述第二电池组的电压与所述电压阈值范围之间的比较结果,控制所述第一电池组向所述第二电池组充电,或者不向所述第二电池组充电,以保证所述第二电池组不会被耗尽。
这里,所述电压阈值范围的上限低于所述第二电池组充满电时的电压,所述电压阈值范围的下限高于所述第二电池组电量用尽时的电压。
即,当检测到第二电池组的电压低于设定的电压阈值范围的下限时,光伏发电组件和第一电池组同时为第二电池组充电;当第二电池组充电至第二电池组的电压高于电压阈值范围的上限时,控制第一电池组停止为第二电池组充电,只有光伏发电组件继续为第二电池组充电。在整个充电过程中,光伏发电组件一直为第二电池组充电,以保证太阳能发电有较高的利用率。而实际受控制的只有第一电池组,只有在检测到第二电池组的电压低于电压阈值范围的下限时,第一电池组才接通,并为第二电池组充电(第二电池组的电压在电压阈值范围内不会启动第一电池组进行充电),一直充电至第二电池组的电压达到电压阈值范围的上限时,第一电池组停止为第二电池组充电。
示例的,S2包括:
在电压上升过程中,检测第二电池组的电压,并将所述电压与电压阈值范围进行比较;
当所述电压高于电压阈值范围的上限时,控制所述光伏发电组件为所述第二电池组充电,
当所述电压不高于电压阈值范围的下限时,控制所述光伏发电组件和所述第一电池组为所述第二电池组充电;
和/或可选的,
S2包括:
在电压下降过程中,检测第二电池组的电压,并将所述电压与电压阈值范围进行比较;
当所述电压高于电压阈值范围的下限时,控制所述光伏发电组件为所述第二电池组充电,
当所述电压不高于电压阈值范围的下限时,控制所述光伏发电组件和所述第一电池组为所述第二电池组充电。
上述方法的具体步骤如下:
首先确定一个阈值,将该阈值作为预设的电压阈值。
在本公开一些实施例中采用一种情况,使该电压阈值范围的上限和下限重合。
例如,对于标称电压为12V的第二电池组(也可称为辅助蓄电池或辅助电池组),其充满电之后的电压约为13.6V,示例的,可以选用12V作为电压阈值(该电压阈值范围的上限和下限均为12V)。
辅助蓄电池在使用过程中,当其电压低于12V时,将辅助蓄电池的充电电源切换为主动力电池组和光伏发电组件同时充电的模式,采用主动力电池组能够快速为辅助蓄电池充电,待将辅助蓄电池的电压充至12V以上时,将主动力电池组与辅助电池组之间的电连接断开,仅采用光伏发电组件继续为辅助电池组充电。
这样的充电方式能够保证光伏发电组件始终能够为辅助电池组充电。而且,当辅助电池组即将充满时,采用光伏发电组件向辅助电池组充电还可以使辅助电池组保持浮充状态。
通过以上的切换方法,不仅能够充分利用光伏发电组件所转换的电能,还能够保持辅助电池组的长期浮充状态,延长辅助电池组的使用寿命。
或者可选的,在本公开一些实施例中采用的另一种情况,电压阈值范围为11V~13V,即,上限为13V、下限为11V,上限数值与下限数值不相同。
当检测到辅助电池组的电压低于11V时,控制主动力电池组和光伏发电组件同时为辅助电池组充电,由于主动力电池组的电压高,电量容量大,因此,能够在短时间内对辅助电池组进行充电,待辅助电池组的电压充至13V时,断开主动力电池组为辅助电池组充电的电路,仅使用光伏发电组件为辅助电池组充电。
在本公开一些实施例中,在辅助电池组的电压高于13V时,光伏发电组件为辅助电池组充电,当辅助电池组的用电量较大时,辅助电池组的电压逐渐下降;当下降至13V以下、且11V以上时,保持当前的充电方式不变,仍然仅使用光伏发电组件充电;当下降至11V以下时,启用主动力电池组为辅助电池组进行充电。
而在充电过程中,当辅助电池组电压低于11V时,主动力电池组和光伏发电组件共同为辅助电池组充电;当充电至11V以上、且13V以下时, 保持当前充电方式不变,依然采用主动力电池组和光伏发电组件共同为其充电;当辅助电池组的电压在13V以上时,断开主动力电池组为辅助电池组充电的电路,仅采用光伏发电组件为辅助电池组提供涓流充电。
以上,仅为本公开的较佳实施例,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应该以权利要求所界定的保护范围为准。

Claims (18)

  1. 一种太阳能充电系统,包括:
    第一电池组;
    光伏发电组件;
    第二电池组;
    DC/DC转换器;
    控制组件;
    其中,所述第一电池组通过所述DC/DC转换器与所述第二电池组电连接;
    所述第二电池组与所述光伏发电组件电连接;
    所述控制组件用于检测所述第二电池组的电压,并根据所述电压控制所述DC/DC转换器与所述第二电池组之间的连通/断开。
  2. 如权利要求1所述的太阳能充电系统,其中:所述控制组件包括:开关、检测模块及控制模块;
    其中,所述开关用于控制所述DC/DC转换器与所述第二电池组之间的连通/断开;
    所述检测模块与所述第二电池组电连接,所述检测模块用于检测所述第二电池组的电压;
    所述控制模块用于依据所述电压控制所述开关的通/断。
  3. 如权利要求2所述的太阳能充电系统,其中:
    所述开关与所述DC/DC转换器和所述第二电池组串联。
  4. 如权利要求2所述的太阳能充电系统,其中:
    所述检测模块与所述控制模块通讯连接。
  5. 如权利要求2所述的太阳能充电系统,其中:所述开关为继电器;
    所述DC/DC转换器的输出端通过所述继电器与所述第二电池组电连接。
  6. 如权利要求5所述的太阳能充电系统,其中:所述DC/DC转换器的输出端与所述继电器的COM端口电连接,所述第二电池组对应的电极与所述继电器的常开触点电连接。
  7. 如权利要求5所述太阳能的充电系统,其中:所述继电器为过欠压继电器;所述过欠压继电器的过压设定值低于所述第二电池组充满状态下的电压。
  8. 如权利要求1所述的太阳能充电系统,其中:所述充电系统还包括:低压负载;
    所述第一电池组、所述第二电池组以及所述光伏发电组件中的至少一个的电极与所述低压负载对应的电极电连接。
  9. 如权利要求2所述的太阳能充电系统,其中:所述充电系统还包括:计时装置;所述控制模块控制所述计时装置;
    当所述第二电池组的电压低于电压阈值范围的下限时,所述控制模块控制所述计时装置开始计时,经过预定时间后,所述计时装置向所述控制模块发送计时结束信号。
  10. 如权利要求2所述的太阳能充电系统,其中:所述计时装置的输出端与所述控制模块通讯连接。
  11. 如权利要求2所述的太阳能充电系统,其中:所述充电系统还包括:显示装置;
    所述控制模块还用于,控制所述显示装置显示所述第二电池组的电压。
  12. 如权利要求11所述的太阳能充电系统,其中:所述显示装置的输入端与所述控制模块的显示端口通讯连接。
  13. 如权利要求2所述的太阳能充电系统,其中:
    所述第二电池组的其中一块电池或者其中几块电池组成的串联电池串为所述检测模块和所述控制装置提供电源;
    和/或,
    所述第二电池组的其中一块电池或者其中几块电池组成的串联电池串为所述控制模块提供电源。
  14. 如权利要求1所述的太阳能充电系统,其中:所述太阳能充电系统还包括:光伏充电控制器;
    所述光伏发电组件通过所述光伏充电控制器与所述第二电池组电连接。
  15. 如权利要求1所述的太阳能充电系统,其中:所述光伏发电组件的其中至少一个电极通过一个二极管与所述第二电池组电连接;当所述光伏发电组件的输出电压高于所述第二电池组的电压时,所述二极管导通。
  16. 一种如权利要求1-15任意一项所述的太阳能充电系统的控制方法,其中:包括以下步骤:设定一预定的电压阈值范围;
    根据所述第二电池组的电压与所述电压阈值范围之间的比较结果,控制所述光伏发电组件为所述第二电池组充电,或者,控制所述第一电池组 和所述光伏发电组件为所述第二电池组充电。
  17. 如权利要求16所述的太阳能充电系统的控制方法,其中:
    所述电压阈值范围的上限低于所述第二电池组充满电时的电压,所述电压阈值范围的下限高于所述第二电池组电量用尽时的电压;所述根据所述第二电池组的电压与所述电压阈值范围之间的比较结果,控制所述光伏发电组件为所述第二电池组充电,或者,控制所述第一电池组和所述光伏发电组件为所述第二电池组充电,包括:
    在电压上升过程中,检测所述第二电池组的电压,并将所述电压与所述电压阈值范围进行比较;
    当检测的所述电压高于所述电压阈值范围的上限时,控制所述光伏发电组件为所述第二电池组充电;
    当检测的所述电压不高于所述电压阈值范围的下限时,控制所述光伏发电组件和所述第一电池组为所述第二电池组充电。
  18. 如权利要求16所述的太阳能充电系统的控制方法,其中:
    所述电压阈值范围的上限低于所述第二电池组充满电时的电压,所述电压阈值范围的下限高于所述第二电池组电量用尽时的电压;
    所述根据所述第二电池组的电压与所述电压阈值范围之间的比较结果,控制所述光伏发电组件为所述第二电池组充电,或者,控制所述第一电池组和所述光伏发电组件为所述第二电池组充电,包括:在电压下降过程中,检测所述第二电池组的电压,并将所述电压与所述电压阈值范围进行比较;
    当检测的所述电压高于所述电压阈值范围的下限时,控制所述光伏发电组件为所述第二电池组充电;
    当检测的所述电压不高于所述电压阈值范围的下限时,控制所述光伏发电组件和所述第一电池组为所述第二电池组充电。
PCT/CN2018/101890 2017-09-01 2018-08-23 太阳能充电系统及其控制方法 WO2019042211A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710780286.3A CN107979125A (zh) 2017-09-01 2017-09-01 太阳能辅助充电系统和控制方法
CN201710780286.3 2017-09-01

Publications (1)

Publication Number Publication Date
WO2019042211A1 true WO2019042211A1 (zh) 2019-03-07

Family

ID=62012378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/101890 WO2019042211A1 (zh) 2017-09-01 2018-08-23 太阳能充电系统及其控制方法

Country Status (7)

Country Link
US (1) US20190074555A1 (zh)
EP (1) EP3451478A1 (zh)
JP (1) JP2019047721A (zh)
KR (1) KR20190025523A (zh)
CN (1) CN107979125A (zh)
BR (1) BR102018067651A2 (zh)
WO (1) WO2019042211A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107979125A (zh) * 2017-09-01 2018-05-01 北京汉能光伏投资有限公司 太阳能辅助充电系统和控制方法
US10971940B2 (en) * 2018-11-20 2021-04-06 International Power Supply AD Battery longevity extension
CN111668911A (zh) * 2019-03-05 2020-09-15 富泰华工业(深圳)有限公司 供电电路及电子装置
JP7074725B2 (ja) * 2019-07-18 2022-05-24 矢崎総業株式会社 電源システム、dcdcコンバータ装置、及び充電方法
CN111478401A (zh) * 2020-05-09 2020-07-31 郑州正方科技有限公司 电池组放电功率控制系统及方法
CN111717037A (zh) * 2020-05-25 2020-09-29 东风柳州汽车有限公司 一种光能充电车及其充电方法
CN111786430B (zh) * 2020-06-29 2022-12-02 中国石油天然气集团有限公司 石油勘探用电瓶充电控制方法及装置
CN112737048A (zh) * 2021-01-04 2021-04-30 广东东庸光电科技有限公司 多太阳能板智能充电系统
NL2031534B1 (en) * 2021-06-29 2023-06-13 Atlas Technologies Holding Bv Seamless electrical integration of solar panels to the low-voltage architecture of any EV
CN116073502B (zh) * 2022-11-30 2023-11-14 东莞市仲康电子科技有限公司 带太阳能mppt的车载电源充电器
CN115833210B (zh) * 2023-02-14 2023-05-26 深圳市德兰明海新能源股份有限公司 一种多机并联储能系统及其充放电控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201313514Y (zh) * 2008-11-26 2009-09-23 扬州飞驰动力科技有限公司 一种纯电动公交车的车身电源系统
JP2014138430A (ja) * 2013-01-15 2014-07-28 Toyota Motor Corp 車両用電力供給装置
CN104385925A (zh) * 2014-11-24 2015-03-04 中投仙能科技(苏州)有限公司 一种电动汽车辅助供电保障系统
CN104685774A (zh) * 2012-10-05 2015-06-03 夏普株式会社 Dc-dc转换器、使用该dc-dc转换器的太阳能控制器及移动体
CN107979125A (zh) * 2017-09-01 2018-05-01 北京汉能光伏投资有限公司 太阳能辅助充电系统和控制方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07123510A (ja) * 1993-10-26 1995-05-12 Hitachi Ltd 電気車の充電システム
WO2007025096A1 (en) * 2005-08-24 2007-03-01 Ward Thomas A Hybrid vehicle with modular solar panel and battery charging system to supplement regenerative braking
EP1986306B1 (en) * 2006-01-27 2014-05-14 Sharp Kabushiki Kaisha Power supply system
JP2007228753A (ja) * 2006-02-24 2007-09-06 Toyota Motor Corp 電動車両
JP5630409B2 (ja) * 2011-09-21 2014-11-26 シャープ株式会社 プッシュプル回路、dc/dcコンバータ、ソーラー充電システム、及び移動体
US20130335002A1 (en) * 2012-06-18 2013-12-19 Sean Moore Electric vehicle solar roof kit
WO2014184954A1 (ja) * 2013-05-17 2014-11-20 トヨタ自動車株式会社 車載太陽電池を利用する充電制御装置
EP3114749A4 (en) * 2014-03-03 2017-11-29 Robert Bosch GmbH Topology and control strategy for hybrid storage systems
CN105818702B (zh) * 2016-03-18 2018-10-16 北京新能源汽车股份有限公司 新能源汽车的供电系统和方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201313514Y (zh) * 2008-11-26 2009-09-23 扬州飞驰动力科技有限公司 一种纯电动公交车的车身电源系统
CN104685774A (zh) * 2012-10-05 2015-06-03 夏普株式会社 Dc-dc转换器、使用该dc-dc转换器的太阳能控制器及移动体
JP2014138430A (ja) * 2013-01-15 2014-07-28 Toyota Motor Corp 車両用電力供給装置
CN104385925A (zh) * 2014-11-24 2015-03-04 中投仙能科技(苏州)有限公司 一种电动汽车辅助供电保障系统
CN107979125A (zh) * 2017-09-01 2018-05-01 北京汉能光伏投资有限公司 太阳能辅助充电系统和控制方法

Also Published As

Publication number Publication date
KR20190025523A (ko) 2019-03-11
US20190074555A1 (en) 2019-03-07
CN107979125A (zh) 2018-05-01
JP2019047721A (ja) 2019-03-22
BR102018067651A2 (pt) 2019-03-19
EP3451478A1 (en) 2019-03-06

Similar Documents

Publication Publication Date Title
WO2019042211A1 (zh) 太阳能充电系统及其控制方法
CN202065869U (zh) 一种led双用应急灯
CN103236733A (zh) 具有延时断电功能的电动自行车充电装置
CN108736567A (zh) 用于电力监测的供电系统
CN201142468Y (zh) 电动车充电保护插座
CN205791745U (zh) 一种发电机组蓄电池充电系统
CN209056972U (zh) 镍氢电池ups控制系统
CN205051933U (zh) Led的驱动电源
CN105098957B (zh) 一种太阳能控制器电路
EP1803203B1 (en) Apparatus and method for charging an accumulator
CN203466613U (zh) 一种兼容多种储能系统的户用离网光储互补发电系统
US20090284217A1 (en) Solar power charging device with self-protection function
KR101661260B1 (ko) 하이브리드 전원공급장치
CN203813473U (zh) 一种光电池智能充放电装置
TWI686564B (zh) 複合型綠能路燈裝置
CN202616806U (zh) 一种实现空调光伏系统供电待机的低压供电系统
TWI491143B (zh) 再生能源供電系統及其具蓄電池保護功能之電源供應裝置與控制方法
CN102780250A (zh) 一种太阳能充电控制器
CN113659673A (zh) 一种基于储能电源的快速充电和并网连接装置及其工作方法
CN209389766U (zh) 太阳能mppt控制器锂电池激活电路
CN100547877C (zh) 正负组合脉冲充电机的自动停充控制电路
CN113629839A (zh) 具电池唤醒充电功能的太阳能发电系统
CN106356977B (zh) 一种太阳能保护蓄电池欠压电路的保护方法
CN109936213B (zh) 一种来电自启动系统和来电自启动的控制方法
CN214543765U (zh) 一种无人自动气象站辅助供电适时控制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18852008

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18852008

Country of ref document: EP

Kind code of ref document: A1