WO2019042088A1 - 一种在晶体硅表面制备绒面的方法 - Google Patents

一种在晶体硅表面制备绒面的方法 Download PDF

Info

Publication number
WO2019042088A1
WO2019042088A1 PCT/CN2018/098680 CN2018098680W WO2019042088A1 WO 2019042088 A1 WO2019042088 A1 WO 2019042088A1 CN 2018098680 W CN2018098680 W CN 2018098680W WO 2019042088 A1 WO2019042088 A1 WO 2019042088A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon wafer
crystalline silicon
chemical
etching
suede
Prior art date
Application number
PCT/CN2018/098680
Other languages
English (en)
French (fr)
Inventor
覃榆森
季静佳
Original Assignee
苏州易益新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州易益新能源科技有限公司 filed Critical 苏州易益新能源科技有限公司
Publication of WO2019042088A1 publication Critical patent/WO2019042088A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/08Etching
    • C30B33/10Etching in solutions or melts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method of treating a surface of a crystalline silicon wafer, and more particularly to a method of preparing a pile surface on a surface of a crystalline silicon wafer.
  • the method for preparing suede on the surface of a crystalline silicon wafer of the invention has the advantages of simple production method, high product excellent rate and low production cost.
  • Crystalline silicon wafers are one of the main raw materials for the production of crystalline silicon solar cells.
  • the most commonly used crystalline silicon wafers are monocrystalline silicon wafers, polycrystalline silicon wafers, and quasi-monocrystalline silicon wafers.
  • the production cost of the polycrystalline silicon wafer is the lowest, so the cost of the solar battery produced by using the polycrystalline silicon wafer as the raw material is also the lowest.
  • Solar cells produced from polycrystalline silicon wafers account for the majority of all crystalline silicon solar cells, relying on low cost advantages.
  • the polycrystalline silicon wafer is formed by cutting a polycrystalline silicon ingot.
  • the traditional slicing process uses the mortar slicing technique, that is, the moving steel wire is used to drive the mortar, so that the mortar and the polycrystalline silicon ingot are rubbed to achieve the purpose of slicing.
  • the mortar slicing technology has the disadvantages of high silicon consumption, low efficiency, and large pollution of waste mortar discharge.
  • the newly developed diamond wire slicing technology in recent years has the advantages of low silicon consumption, high slicing efficiency, and no waste mortar discharge pollution.
  • the diamond wire slicing technology has many advantages over the mortar slicing technology, the diamond wire slicing technology has not been widely used in the production of polycrystalline silicon cells.
  • the main reason is that the surface of the polycrystalline silicon wafer produced by the diamond wire slicing technology is relatively smooth.
  • the traditional polysilicon acid velvet technology cannot produce the ideal suede on the silicon wafer sliced polycrystalline silicon wafer, resulting in a polycrystalline silicon wafer sliced with a diamond wire.
  • the crystal silicon solar cell produced has high reflectivity and high chromatic aberration, which ultimately reduces the quality of the polycrystalline silicon solar cell module.
  • the patent CN101805929 discloses a method of performing local acid corrosion on a polycrystalline silicon surface by using a mask.
  • the method adopts an ultrasonic atomization process or an electrostatic spraying process to cover a surface of the polycrystalline silicon sheet with a discontinuous plastic particle film, and then the silicon wafer coated with the discontinuous plastic particle film is placed in an acid solution or an alkali solution for corrosion.
  • the area of the silicon wafer covered by the mask is not corroded in the alkali or acid solution, and the area of the polycrystalline silicon sheet not covered by the mask is corroded, thereby achieving the effect of forming a pile on the surface of the polycrystalline silicon sheet.
  • the method produces an average pile size of 10 microns or more, which is not suitable for solar cell production.
  • Patent CN105576080 discloses a technique for performing a metal induced corrosion on a surface of a polycrystalline silicon sheet to prepare a pile.
  • Metal induced corrosion can create pores of less than 1 micron on the surface of the polycrystalline silicon wafer, creating a so-called "black silicon" surface that greatly reduces the reflectivity of the surface of the polycrystalline silicon wafer.
  • the metal adsorbed on the surface of the silicon wafer is difficult to be cleaned, which ultimately affects the conversion efficiency of the solar cell.
  • Another problem is that the metal induced corrosion method produces a large amount of content. Heavy metal waste water, causing environmental pollution.
  • the technical solution of the present invention provides a novel method of texturing a crystalline silicon wafer.
  • One object of the present invention is to find a method of texturing a surface of a polycrystalline silicon wafer sliced on a diamond wire which can reduce the reflectance of the surface of the diamond chip and the chromatic aberration between the crystal grains.
  • Another object of the present invention is to find a method for forming a surface of a polycrystalline silicon wafer sliced on a diamond wire.
  • the method also has the advantages of simple texturing process and low pollution generated to meet the requirements of mass production.
  • a further object of the present invention is to develop a method for preparing a pile surface on a surface of a crystalline silicon wafer by the development of the above two techniques, which can be applied to various types of crystalline silicon wafers, for example,
  • the surface of the crystalline silicon wafer cut by various slicing techniques is used to prepare the suede surface, and is also suitable for preparing the suede surface on the surface of the crystalline silicon wafer produced by the direct silicon wafer technology, which provides convenience and cost reduction for mass production of the solar cell.
  • the present invention discloses a method for preparing a suede surface on a surface of a crystalline silicon wafer, which is characterized in that a chemical conversion coating is formed on the surface of the crystalline silicon wafer, and the chemical conversion coating is utilized.
  • the non-uniformity and discontinuity in the growth process, the chemical etching of the local surface of the crystalline silicon wafer is achieved, and the purpose of preparing the suede on the surface of the crystalline silicon wafer is achieved.
  • a chemical conversion film generally refers to a film formed on a surface of a metal after a metal surface is brought into contact with a specific chemical solution under certain conditions.
  • the invention finds that the surface of the crystalline silicon wafer is in contact with a specific chemical solution, and after a chemical reaction under certain conditions, a similar chemical conversion film can be formed on the surface of the crystalline silicon wafer.
  • the specific chemical etching solution disclosed in the present invention After the specific chemical etching solution disclosed in the present invention is in contact with the surface of the crystalline silicon wafer, it reacts with the surface of the crystalline silicon wafer under specific conditions to form a chemical conversion film on the surface of the crystalline silicon wafer. Due to the microscopic unevenness of the surface of the crystalline silicon wafer, for example, the roughness of the local surface is different, or the activity of the local surface is different, the specific chemical etching solution will react faster on some microscopic areas than the other microscopic areas. That is, a chemical conversion film is first formed on some microscopic areas.
  • the specific chemical etching solution is no longer reacted with the surface of the crystalline silicon wafer covered by the chemical conversion film due to the protection of the chemical conversion film.
  • the surface of the crystalline silicon wafer which has not been covered by the chemical conversion film continues to react with the specific chemical etching solution to achieve the purpose of preparing the suede surface on the surface of the crystalline silicon wafer.
  • the size of the pile produced on the surface of the crystalline silicon wafer can be optimized for the purpose of optimizing the suede by optimizing the reaction conditions. For example, it is possible to prepare a suede having a pile size of 1 ⁇ m or less by optimizing the composition and reaction conditions of the specific chemical etching solution, that is, preparing a nano-sue.
  • the nano-sue surface has better effect of reducing reflectivity and lowering the specific surface area of the crystalline silicon wafer, and is an ideal suede structure of the solar cell, which can effectively improve the conversion efficiency of the solar cell.
  • Another advantage of the present invention is that the method of preparing suede on the surface of a crystalline silicon wafer of the present invention does not produce selective etching effects on various crystalline silicon crystal phases in the polycrystalline silicon wafer. Since the polycrystalline silicon wafer has a plurality of crystalline silicon crystal phases, whether it is a general acidic etching solution or an alkaline etching solution, the etching rates of various crystalline silicon crystal phases are different, eventually leading to various crystalline silicon crystal phases. The reflectivity is different, causing defects in the appearance of the solar cell. Serious appearance defects can also affect the efficiency of solar cells.
  • the suede surface of the surface of the crystalline silicon wafer is a partial mask by using a chemical conversion film formed on the surface of the crystalline silicon wafer, chemical etching is performed on other areas not covered by the chemical conversion film, so that the surface is greatly reduced.
  • the possibility of chromatic aberration Because the rate of chemical conversion film is faster for the crystalline silicon phase with faster chemical etching rate, the thicker the chemical conversion film, the lower the reaction rate of the chemical etching solution on the surface of the crystalline silicon.
  • the relatively fast corrosion rate is maintained, that is, the chemical etching solution can be automatically adjusted to the surface of the crystalline silicon wafer by the difference in the rate of formation of the chemical conversion film. Corrosion rate, thereby achieving the purpose of reducing the chromatic aberration between various crystalline silicon crystal phases on the surface of the polycrystalline silicon wafer.
  • a further advantage of the present invention is that the texturing method of the present invention can be applied to all types of crystalline silicon wafers.
  • the texturing method of the present invention is applicable to both Czochralski silicon wafers and cast monocrystalline silicon wafers and cast polycrystalline silicon wafers.
  • the present invention is also applicable to various doped crystalline silicon wafers, such as N-type crystalline silicon wafers and P-type crystalline silicon wafers.
  • Figure 1 Schematic diagram of the formation of a chemical conversion film on a partial area of a crystalline silicon wafer.
  • Figure 2 Schematic diagram of the formation of suede on the surface of a crystalline silicon wafer.
  • the method for preparing the suede by chemical solution etching on the surface of the crystalline silicon wafer disclosed in the present invention is to use a chemical conversion solution containing a special additive to chemically react with the surface of the crystalline silicon wafer to form a chemical conversion film which is gradually formed as a surface of the crystalline silicon wafer.
  • the mask on the partial area causes the reaction of the chemical etching solution containing the special additive and the crystalline silicon wafer to occur only on the surface of the crystalline silicon wafer which has not been covered by the chemical conversion film, thereby forming an uneven surface on the surface of the crystalline silicon wafer. That is, the purpose of forming a suede on the surface of the crystalline silicon wafer is achieved.
  • a chemical conversion film 10 is first formed on a partial area of the surface of the crystalline silicon wafer 20.
  • the reaction rate of the chemical etching solution and the surface of the crystalline silicon wafer is lowered due to the presence of the chemical conversion film until the chemical reaction is stopped.
  • the chemical reaction proceeds at a normal chemical reaction rate, that is, different reaction rates exist on the microscopic surfaces of different crystalline silicon wafers.
  • the area of the chemical conversion film 10 formed on the surface of the crystalline silicon wafer is continuously enlarged. Referring to Fig. 2, a pile surface is finally formed on the surface of the crystalline silicon wafer 20.
  • the specific additive of the present invention is various compounds containing a lanthanoid element, such as a lanthanide element itself, an oxide of a lanthanoid element, a lanthanide salt, and the like. Since the lanthanides are filled with electrons only in the inner orbital track with the increase of the atomic number, the electronic arrangement of the outer orbitals is basically the same, so the chemical properties of the elements in the series of lanthanides are similar. Therefore, the lanthanoid element contained in the special additive of the present invention may be one of the lanthanoid elements or a mixture of a plurality of elements of the lanthanoid elements. For example, the special additive of the present invention may contain a lanthanum element in the lanthanoid element alone or a mixture of the lanthanum element in the lanthanoid element and other elements in the lanthanoid element.
  • a lanthanoid element such as a lanthanide element itself, an oxide of a lanthanoid element
  • the lanthanide, or a compound of the lanthanide is dissolved in water, acid, or other solution to form a particular additive of the present invention.
  • the lanthanide dissolved in water, acid, or other solution may be a certain lanthanide or a compound thereof, or two, or a mixture of two or more lanthanides or a mixture thereof.
  • the special additive containing various compounds of the lanthanide of the present invention can be directly added to the chemical etching solution to form a chemical etching solution containing the special additive of the present invention.
  • the concentration of the lanthanide element in the chemical etching solution ranges from 0.1 PPM to 1%.
  • an additive containing a lanthanide-containing compound may be first coated on the surface of the crystalline silicon wafer, and then the crystalline silicon wafer and the chemical etching solution which have been coated with the lanthanide-containing compound additive may be applied. contact. After the additive of the lanthanide-containing compound coated on the surface of the crystalline silicon is mixed with the chemical etching solution, a chemical etching solution containing the special additive of the present invention is formed in the vicinity of the surface of the crystalline silicon wafer.
  • the method for chemically etching the surface of the crystalline silicon wafer of the present invention to prepare the suede can be applied to various methods.
  • Crystal silicon wafer For example, the method for chemically etching the surface of a crystalline silicon wafer according to the present invention is applicable to both a polycrystalline silicon wafer and a single crystal silicon wafer, or a quasi-monocrystalline silicon wafer. Further, the method for chemically etching the surface of the crystalline silicon wafer of the present invention to prepare the pile surface is applicable to both the n-type silicon wafer and the p-type silicon wafer. Moreover, the method for chemically etching the surface of the crystalline silicon wafer of the present invention to prepare the pile surface is applicable to both the crystalline silicon wafer of the diamond wire slice and the crystalline silicon wafer of the mortar slice.
  • the method of the present invention for performing chemical etching on the surface of a crystalline silicon wafer to prepare a pile is also applicable to a crystalline silicon wafer produced by direct wafer technology.
  • the so-called direct silicon technology refers to a crystalline silicon wafer grown directly from molten silicon, ie, the direct silicon technology omits the slicing step.
  • a technique developed by the 1366 company to directly grow polycrystalline silicon wafers from a silicon melt is suitable for a crystalline silicon wafer produced by any of the methods.
  • a pretreatment step may be performed on the surface of the crystal silicon wafer according to different conditions.
  • the surface pretreatment of the crystalline silicon wafer may be a step of cleaning the damaged layer on the surface of the crystalline silicon wafer
  • the surface pretreatment of the crystalline silicon wafer may also be a step of cleaning the organic contamination on the surface of the crystalline silicon wafer
  • the surface pretreatment of the crystalline silicon wafer may be a crystal.
  • the wafer surface is polished or roughened.
  • the crystalline silicon wafer surface pretreatment step may be carried out using an acidic solution, or the crystalline silicon wafer surface pretreatment step may be carried out using an alkaline solution, or the crystalline silicon wafer surface pretreatment step may be carried out using various cleaning agents and an oxidizing agent.
  • the surface pretreatment step of the crystalline silicon wafer may be completed while performing the method of the present invention for performing chemical etching on the surface of the crystalline silicon wafer to prepare the pile.
  • the step of cleaning the surface damage layer of the crystalline silicon wafer can be completed while the chemical etching solution etches the surface of the crystalline silicon wafer to prepare the suede step.
  • the chemical etching solution of the present invention may be an acidic etching solution or an alkaline etching solution.
  • the optimized chemical etching solution of the present invention is an acidic etching solution.
  • the main components of the acidic chemical etching solution of the present invention are hydrofluoric acid and other compounds having oxidizing properties.
  • the optimized compound having oxidizing properties may be nitric acid, hydrogen peroxide, sodium nitrite, sulfuric acid or other compounds having oxidizing properties.
  • the concentration of hydrofluoric acid is in the range of 1 to 50%
  • the concentration of the compound having the oxidizing property is in the range of 0.1 to 50%.
  • the method for chemically etching the surface of a crystalline silicon wafer according to the present invention can be used to vertically place a crystalline silicon wafer in a chemical etching solution.
  • the advantage of placing the chemical etching solution vertically is that it can increase the production capacity per unit area.
  • the method of the present invention for performing chemical etching on the surface of a crystalline silicon wafer to prepare a pile surface can also cause the crystalline silicon wafer to enter the chemical etching solution in a horizontal direction.
  • An advantage of the horizontal texturing method of the present invention is that the method of the present invention for chemically etching the surface of a crystalline silicon wafer to prepare a pile can be accurately controlled.
  • the optimized method of the invention of the invention is that the crystalline silicon wafer enters the chemical corrosion zone in a horizontal manner. In the chemically corroded region, the chemical etching solution is delivered to the upper surface of the crystalline silicon wafer.
  • the advantage of this method is that the texturing process is a single-sided texturing process. The advantage of the single-faced texturing process is not only to save half of the acid chemical etching solution, but also to maintain a relatively flat surface on the other side of the crystalline silicon wafer, which is advantageous for improving the photoelectric conversion efficiency of the solar cell.
  • the chemical etching solution of the method for chemically etching the surface of the crystalline silicon wafer of the present invention has a reaction temperature of 0 to 60 degrees.
  • the optimized reaction temperature of the present invention is between 10 and 50 degrees.
  • the reaction time of the method for preparing the suede by chemical etching on the surface of the crystalline silicon wafer of the present invention is between 0.2 and 30 minutes, and the optimized reaction time of the present invention is between 0.5 and 20 minutes.
  • the method for preparing the suede by chemical etching on the surface of the crystalline silicon wafer of the present invention can be optimized on the surface of the crystalline silicon wafer by adjusting the composition and concentration of the chemical etching liquid containing the special additive, the kind of the additive, the reaction temperature and the time.
  • the properties of the chemical conversion film formed such as optimizing the rate of formation of the chemical conversion film, optimize the thickness and compactness of the chemical conversion film.
  • the present invention can be flexibly applied depending on the different characteristics of the chemical conversion film. For example, in order to accelerate the rate of formation of the chemical conversion film, various types of catalysts may be added to the special additive of the present invention to control the rate of formation of the chemical conversion film.
  • the step of forming a chemical conversion film and a texturing step on the surface of the crystalline silicon of the present invention can also be carried out in two steps.
  • a chemical conversion film may be first formed on the surface of the crystalline silicon wafer, and then the crystalline silicon wafer is placed in a chemical etching solution to etch the crystalline silicon wafer to be textured.
  • the chemical etching solution can pass through the micropores of the chemical conversion film to etch the surface of the crystalline silicon wafer which is not completely covered by the chemical conversion film, thereby achieving the purpose of preparing the suede surface on the surface of the crystalline silicon wafer.
  • the chemical conversion film formed on the surface of the crystalline silicon wafer is cleaned, and the method for preparing the suede of the present invention is completed.
  • the chemical conversion coating can be cleaned with an acidic cleaning solution, an alkaline cleaning solution, or other cleaning methods such as organic solvents plus ultrasonics.
  • the step of chemically etching the damage layer to the single crystal silicon wafer (n-type or p-type single crystal silicon wafer, diamond wire slicing or mortar slicing single crystal silicon wafer) (sodium hydroxide concentration is 3%, at 75 degrees) Corrosion for 10 minutes); the single crystal silicon wafer with the damaged layer was placed in a chemical etching solution containing 1% hydrofluoric acid, 50% sulfuric acid and 1% lanthanide, and etched at 60 degrees for 0.5 minute.
  • 1% of the lanthanides are one or more lanthanides, for example, containing 1% lanthanum or a mixture of 1% lanthanum and other lanthanides, and containing traces
  • the chemical conversion film forming catalyst; finally, the chemical conversion film formed on the single crystal silicon wafer is washed with a 1% sodium hydroxide solution at room temperature.
  • the quasi-single crystal silicon wafer of the mortar slice after soaking is placed in a chemical etching solution containing 10% hydrofluoric acid and 10% ni
  • a polycrystalline silicon wafer (n-type or p-type direct-crystalline silicon wafer) produced by 1366 direct silicon technology is placed in a chemical etching solution containing 20% hydrofluoric acid, 20% sodium nitrite and 10 PPM lanthanide. Corrosion at 20 degrees for 20 minutes, wherein the 10 PPM lanthanide contains at least one oxide of a lanthanoid element, or a salt of a lanthanoid element, or other compound of a lanthanoid element, such as a lanthanum element containing 10 PPM, Or a mixture of 10 ppm of lanthanum and other lanthanides; and finally immersed in a 2% potassium hydroxide solution for 5 minutes at room temperature to clean the chemical conversion film formed in the above chemical corrosion.
  • a salt of a lanthanoid element, or a lanthanide element such as a lanthanum element containing 1000 PPM, or a mixture of lanthanum element containing 1000 ppm and other lanthanides; and then slicing the soaked mortar
  • the polycrystalline silicon wafer is placed in a chemical etching solution containing 30% hydrofluoric acid and 1% hydrogen peroxide, and etched at 10 degrees for 2 minutes; finally, it is immersed in 50% nitric acid for 30 minutes, and the cleaning is generated in the above chemical corrosion. Chemical conversion film.
  • the silicon wafer sliced polycrystalline silicon wafer (n-type or p-type diamond wire sliced polycrystalline silicon wafer) is placed in a chemical etching solution containing 50% hydrofluoric acid, 10% sodium nitrite and 0.1 PPM lanthanide at 0 degree. Corrosion for 60 minutes while completing the steps of the texturing and de-damaging layer, wherein the 1PPM lanthanide contains at least one lanthanide oxide, or a lanthanide salt, or other compound of the lanthanide.
  • ruthenium element containing 0.1 PPM or a mixture containing 1 ppm of lanthanum and other lanthanides; finally immersed in a solution containing 10% tetramethylammonium hydroxide for 5 minutes at room temperature, and washed in the above chemistry A chemical conversion film formed during corrosion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Weting (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种在晶体硅片表面制备绒面的方法,其特征是在晶体硅片表面生成一层化学转化膜,利用化学转化膜在生长过程中的不均匀性和不连续性,对晶体硅片的局部表面实施化学腐蚀,达到在晶体硅片表面制备绒面的目的。

Description

一种在晶体硅表面制备绒面的方法 技术领域
本发明是有关晶体硅片表面的处理方法,特别是有关在晶体硅片表面制备绒面的方法。本发明的在晶体硅片表面制备绒面的方法具有生产方法简单,产品优良率高和生产成本低等优点。
背景技术
晶体硅片是生产晶体硅太阳能电池的主要原料之一。最常用的晶体硅片有单晶硅片,多晶硅片和准单晶硅片。在这3种硅片中,多晶硅片的生产成本最低,因此以多晶硅片为原料所生产的太阳能电池的成本也最低。依靠成本低的优势,由多晶硅片生产的太阳能电池占所有晶体硅太阳能电池中的大多数。
多晶硅片是切割多晶硅锭而成的。传统的切片工艺是采用砂浆切片技术,即利用移动的钢丝带动砂浆,使砂浆与多晶硅锭摩擦后达到切片目的。而砂浆切片技术存在硅耗高,效率低,和废砂浆排放污染大等缺点。相比之下,近年来新开发的金刚线切片技术具有硅耗低,切片效率高,以及无废砂浆排行污染等优点。尽管金刚线切片技术相对比于砂浆切片技术有很多优点,目前金刚线切片技术还没有在生产多晶硅片电池上得到广泛的应用。其主要原因是金刚线切片技术所生产的多晶硅片的表面比较光滑,采用传统的多晶硅酸腐制绒技术不能在金刚线切片的多晶硅片上产生理想的绒面,导致用金刚线切片的多晶硅片所生产的晶体硅太阳能电池的反射率偏高和色差偏高等问题,最终降低了多晶硅太阳能电池组件质量。
为了解决在金刚线切片的多晶硅片表面制备绒面的问题,专利CN101805929公开了一种利用掩膜对多晶硅表面实施局部酸腐的方法。该方法采用超声波雾化工艺或静电喷涂工艺在多晶硅片表面覆盖一层不连续的塑料颗粒膜,然后把该涂有不连续的塑料颗粒膜的硅片置于酸溶液或碱溶液中进行腐蚀。这样,被掩膜覆盖的硅片面积在碱或酸溶液中不被腐蚀,而没有被掩膜覆盖的多晶硅片面积被腐蚀,从而达到在多晶硅片表面形成绒面的效果。受制于喷涂工艺限制,该方法所产生的平均绒面尺寸在10微米以上,不适合用于太阳能电池的生产。
专利CN105576080公开了一种在多晶硅片表面实施金属诱导腐蚀制备绒面的技术。金属诱导腐蚀可以在多晶硅片表面产生小于1微米的孔,生成所谓的“黑硅”表面,大大降低多晶硅片表面的反射率。但是,金属诱导的制绒方法至少存在二个问题,一是吸附在硅片表面的金属很难被清洗干净,最终影响太阳能电池的转换效率;另外一个问题是金属诱导腐蚀方法会产生大量的含有重金属物废水,造成环境污染。这二大问题阻碍了金属诱导腐蚀反应的制绒方法在金刚线切片多晶硅片表面制绒的大规模生产应用。
发明内容
针对以上现有技术的不足,本发明的技术方案提供一种新颖的晶体硅片的制绒方法。
本发明的目的之一是,寻求一种在金刚线切片的多晶硅片表面的制绒方法,该制绒方法能降低金刚线切片多晶硅片表面的反射率和晶粒之间的色差。
本发明的另一个目的是,寻求一种在金刚线切片的多晶硅片表面的制绒方法,该方法还具有制绒工艺简单和所产生的污染小的优点,以适应大规模生产的要求。
本发明的进一步目的是,借助于以上二项技术的开发,发明一种在晶体硅片表面制备绒面的方法,该制绒方法可以适用于各种类型的晶体硅片,例如,即适用在采用各种切片技术切割而成的晶体硅片表面制备绒面,还适用于采用直接硅片技术而生产的晶体硅片表面制备绒面,为大规模生产太阳能电池提供方便和降低成本。
为实现上述目的,本发明公开了一种在晶体硅片表面制备绒面的方法,该方法的特征是在晶体硅片表面生成一层化学转化膜(Chemical Conversion Coating),利用该化学转化膜在生长过程中的不均匀性和不连续性,对晶体硅片的局部表面实施化学腐蚀,达到在晶体硅片表面制备绒面的目的。
化学转化膜一般是指金属表面与特定的化学溶液相接触,在一定条件下发生化学或电化学反应后在该金属表面所生成的膜。本发明发现,晶体硅片表面与特定的化学溶液相接触,在一定条件下发生化学反应后,可以在晶体硅片表面生成类似的化学转化膜。
本发明所公开的特定的化学腐蚀溶液与晶体硅片表面接触后,在特定的条件下,与晶体硅片表面发生反应,在晶体硅片表面生成化学转化膜。由于晶体硅片表面存在微观不均匀,例如局部表面的粗糙度不同,或者局部表面的活性不同,该特定的化学腐蚀溶液在某些微观面积上的反应会比其它微观面积上的反应速率要快,即在某些微观面积上首先生成化学转化膜。在这些已经生成化学转化膜的晶体硅表片面积上,由于化学转化膜的保护,该特定化学腐蚀溶液不再与被化学转化膜所覆盖的晶体硅片表面反应。而在还没有被化学转化膜覆盖的晶体硅片表面继续与该特定的化学腐蚀溶液反应,达到在晶体硅片表面制备绒面的目的。
本发明的优点之一是在晶体硅片表面上所制备的绒面大小可以通过优化反应条件达到优化绒面的目的。例如,可以通过优化该特定的化学腐蚀溶液的组分和反应条件达到制备绒面大小在1微米以下的绒面,即制备纳米绒面。纳米绒面具有较好的降低反射率的效果和降低晶体硅片比表面积效果,是太阳能电池理想的绒面结构,可以有效地提高太阳能电池的转化效率。
本发明的另一个优点是,本发明的在晶体硅片表面制备绒面的方法不会对多晶硅片中的各种晶体硅晶相产生选择性腐蚀的效果。由于多晶硅片存在多种晶体硅晶相,而无论是一般的酸性腐蚀溶液还是碱性腐蚀溶液,对各种晶体硅晶相的腐蚀速率是不同的,最终导致各种晶体硅晶相之间的反射率不同,造成太阳能电池的外观缺陷。严重的外观缺陷,还会影响太阳能电池的效率。在本发明中,由于晶体硅片表面的绒面是利用在晶体硅片表面所生成的化学转化膜作为局部掩膜,对没有被化学转化膜所覆盖的其它面积进行化学溶液腐蚀,所以大大降低了产生色差的可能性。因为对于化学溶液腐蚀速率较快的晶体硅晶 相,生成化学转化膜的速率就比较快,当化学转化膜越厚时,化学腐蚀溶液对晶体硅表面的反应速率就会降低。同时,在化学溶液腐蚀速率较慢的晶体硅晶相表面,这时仍保持相对较快的腐蚀速率,即通过化学转化膜的生成速率的不同,可以自动调节化学腐蚀溶液对晶体硅片表面的腐蚀速率,从而达到降低多晶硅片表面的各种晶体硅晶相之间色差目的。
基于以上本发明的在晶体硅片各种晶相之间色差小的优点,本发明的进一步优点就是本发明的制绒方法可以适用于所有类型的晶体硅片。例如,本发明的制绒方法既适用于直拉单晶硅片,也适用于铸造单晶硅片和铸造多晶硅片。当然,本发明还适用于各种掺杂的晶体硅片,例如N型晶体硅片和P型晶体硅片。
[根据细则26改正29.08.2018] 附图说明
[根据细则26改正29.08.2018] 
图1.在晶体硅片局部面积上生成化学转化膜的示意图。
[根据细则26改正29.08.2018] 
图2.在晶体硅片表面生成绒面的示意图。
具体实施方式
在以下的描述中,为了解释目的,阐述了本发明的详细实施方式,帮助对本发明的全面理解。显然,这些说明并不是用于限制本发明。在不背离本发明精神及其实质情况下,本领域的技术人员可根据本发明做出各种其它相应的组合,变更或修改。这些相应的组合,变更和修改都属于本发明所附权利要求的保护范围内。
本发明所公开的在晶体硅片表面实施化学溶液腐蚀制备绒面的方法,是利用含有特殊添加剂的化学腐蚀溶液与晶体硅片表面发生化学反应后所逐步生成的化学转化膜作为晶体硅片表面局部面积上的掩膜,使含有特殊添加剂的化学腐蚀溶液与晶体硅片的反应仅发生在还没有被化学转化膜所覆盖的晶体硅片表面上,从而在晶体硅片表面形成不平整表面,即达到在晶体硅片表面生成绒面的目的。
参照附图,可以对本发明做进一步详细说明。当晶体硅片的表面被含有特殊添加剂的化学腐蚀溶液所润湿后,晶体硅片表面与含有特殊添加剂的化学腐蚀溶液发生化学反应。在特殊添加剂的参与和作用下,参照附图1,首先在晶体硅片20表面的局部面积上生成化学转化膜10。在已生成化学转换膜10的晶体硅片的局部面积上,由于化学转化膜的存在,化学腐蚀溶液与晶体硅片表面的反应速率降低,直至停止化学反应。而在还没有生成化学转化膜的晶体硅片20表面面积区域,化学反应仍按正常的化学反应速率进行,即在不同的晶体硅片微观表面上存在不同的反应速率。随着反应的持续进行,在晶体硅片表面上所生成的化学转化膜10的面积不断地扩大,参见附图2,最终在晶体硅片20表面形成绒面。
本发明的特殊添加剂是含有镧系元素的各种化合物,例如镧系元素本身,镧系元素的氧化物和镧系元素盐等。由于镧系元素随着原子序数的增加都只在内层轨道充填电子,其外层轨道的电子排布基本相同,所以镧系元素系列内各元素之间的化学性质是相近的。因此,本发明的特殊添加剂所含有的镧系元素可以镧系元素中的某一种元素,也可以是镧系元素中多种元素的混合物。例如,本发明的特殊添加剂中可以单独含有镧系元素中的镧元素,也可以是镧系元素中的镧元素与镧系元素中的其它元素的混合物。
把镧系元素,或者镧系元素的化合物溶解在水,酸,或其它溶液中,就形成本发明的特殊添加剂了。溶解在水,酸,或其它溶液中的镧系元素可以是某一种镧系元素或者它的化合物,也可以是二种,或二种以上的镧系元素或者它们的化合物的混合物。
本发明的含有镧系元素各种化合物的特殊添加剂可以直接添加到化学腐蚀溶液中,形成含有本发明特殊添加剂的化学腐蚀溶液。镧系元素在化学腐蚀溶液中的浓度范围在0.1PPM~1%之间。
在本发明的其它应用中,也可以先把含有镧系元素的化合物的添加剂涂布在晶体硅片的表面,然后再把已经涂布了含有镧系元素化合物添加剂的晶体硅片与化学腐蚀溶液接触。涂布在晶体硅表面的含有镧系元素的化合物的添加剂与化学腐蚀溶液混合后,在晶体硅片表面附近形成含有本发明的特殊添加剂的化学腐蚀溶液。
由于本发明的晶体硅片表面实施化学腐蚀制备绒面的方法对于晶体硅的各种晶相不存在选择性,因此本发明的晶体硅片表面实施化学腐蚀制备绒面的方法可以适用于各种晶体硅片。例如本发明的在晶体硅片表面实施化学腐蚀制备绒面的方法既适用于多晶硅片,也适用于单晶硅片,或者准单晶硅片。进一步,本发明的晶体硅片表面实施化学腐蚀制备绒面的方法既适用于n型硅片,也适用于p型硅片。不仅如此,本发明的晶体硅片表面实施化学腐蚀制备绒面的方法既适用于金刚线切片的晶体硅片,也适用于砂浆切片的晶体硅片。
更进一步,本发明的在晶体硅片表面实施化学腐蚀制备绒面的方法还适用于由直接硅片技术所生产的晶体硅片。所谓的直接硅片技术是指直接从熔融硅中生长的晶体硅片,即,直接硅片技术省略了切片步骤。例如1366公司所开发的从硅熔融液中直接生长多晶硅片的技术。事实上,本发明的在晶体硅片表面实施化学腐蚀制备绒面的方法适用于由任何一种方法生产的晶体硅片。
在实施本发明的在晶体硅片表面实施化学腐蚀制备绒面的方法之前,可以根据不同情况,先对晶体硅片表面实施预处理步骤。例如,晶体硅片表面预处理可以是清洗晶体硅片表面的损伤层的步骤,晶体硅片表面预处理也可以是清洗晶体硅片表面有机污染的步骤,或者晶体硅片表面预处理可以是晶体硅片表面抛光或者是粗糙化步骤。可以使用酸性溶液实施晶体硅片表面预处理步骤,也可以使用碱性溶液实施晶体硅片表面预处理步骤,或者可以使用各种清洁剂和氧化剂等方法来实施晶体硅片表面预处理步骤。
在其它一些情况下,也可以在实施本发明的在晶体硅片表面实施化学腐蚀制备绒面的方法的同时完成晶体硅片表面预处理步骤。例如,可以在化学腐蚀溶液腐蚀晶体硅片表面制备绒面步骤的同时完成清洗晶体硅片表面损伤层的步骤。
本发明的化学腐蚀溶液可以是酸性腐蚀溶液,也可以是碱性腐蚀溶液。优化的本发明的化学腐蚀溶液是酸性腐蚀溶液。本发明酸性化学腐蚀溶液的主要成分是氢氟酸和具有氧化特性的其它化合物。优化的具有氧化特性的化合物可以是硝酸,双氧水,亚硝酸钠, 硫酸或其它具有氧化特性的化合物。在酸性化学腐蚀溶液中,氢氟酸的浓度范围在1~50%之间,具有氧化特性的化合物的浓度范围在0.1~50%之间。
本发明的在晶体硅片表面实施化学腐蚀制备绒面的方法可以把晶体硅片垂直放入化学腐蚀溶液中。垂直放入化学腐蚀溶液的优点是可以增加单位占地面积的生产产能。本发明的在晶体硅片表面实施化学腐蚀制备绒面的方法也可以使晶体硅片以水平方向进入化学腐蚀溶液中。本发明的水平制绒方法的优点是可以使本发明的在晶体硅片表面实施化学腐蚀制备绒面的方法可以得到精确地控制。本发明优化制绒方式是把晶体硅片以水平方式进入化学腐蚀区。在化学腐蚀区,化学腐蚀溶液被输送到晶体硅片的上表面。该方法的优点是,该制绒过程是一个单面制绒过程。单面制绒过程的优点不仅是节约了一半的酸性化学腐蚀液,而且还可以保持晶体硅片另一面相对平整的表面,有利于提高太阳能电池的光电转化效率。
本发明的在晶体硅片表面实施化学腐蚀制备绒面的方法的化学腐蚀溶液的反应温度在0~60度。本发明的优化的反应温度在10~50度之间。
本发明的在晶体硅片表面实施化学腐蚀制备绒面的方法的反应时间在0.2~30分钟之间,本发明优化的反应时间在0.5~20分钟之间。
本发明的在晶体硅片表面实施化学腐蚀制备绒面的方法可以通过调节含有特殊添加剂的化学腐蚀液的组分和浓度,添加剂的种类,反应温度和时间等手段,优化在晶体硅片表面所形成的化学转化膜的性质,例如优化化学转化膜的生成速率,优化化学转化膜的厚度和致密性。根据化学转化膜的不同特性,可以灵活应用本发明。例如,为了加快生成化学转化膜速率,还可以往本发明的特殊添加剂中添加各种类型的催化剂来控制化学转化膜的生成速率。
进一步,也可以把本发明的在晶体硅表面生成化学转化膜和制绒步骤分二步进行。例如,在一定条件下,可以在晶体硅片表面首先生成化学转化膜,然后把晶体硅片放入化学腐蚀溶液中腐蚀晶体硅片制绒。在化学腐蚀溶液中,化学腐蚀溶液可以通过化学转化膜的微孔,腐蚀没有被化学转化膜完全覆盖的晶体硅片表面,从而达到在晶体硅片表面制备绒面的目的。
在晶体硅片表面完成在晶体硅片表面实施化学溶液腐蚀制备绒面步骤后,把在晶体硅片表面所生成的化学转化膜清洗干净,就完成了本发明的制备绒面的方法。根据不同的化学转化膜的性质,清洗化学转化膜可以用酸性清洗溶液,碱性清洗溶液,或者其它清洗方法,例如有机溶剂加超声波的方法。
具体实施例:
实施例1
首先对单晶硅片(n型或p型单晶硅片,金刚线切片或砂浆切片单晶硅片)实施化学腐蚀去损伤层的步骤(氢氧化钠浓度为3%,在75度条件下腐蚀10分钟);把去完损 伤层的该单晶硅片放入含有1%氢氟酸,50%硫酸和含有1%的镧系元素的化学腐蚀溶液中,在60度条件下腐蚀0.5分钟,其中所述的1%的镧系元素为一种或多种镧系元素,例如是含有1%的钕元素,或者是含有1%的钕元素与其它镧系元素的混合物,并且含有痕量的化学转化膜成膜催化剂;最后再用1%的氢氧化钠溶液在室温下清洗在该单晶硅片所生成的化学转化膜。
实施例2
首先对准单晶硅片(n型或p型准单晶硅片,金刚线切片或砂浆切片的准单晶硅片)实施化学腐蚀去损伤层的步骤(氢氟酸:硝酸:醋酸:去离子水=5:3:3:1,室温腐蚀1分钟);把去完损伤层的该砂浆切片的准单晶硅片放入含有100PPM镧系元素的溶液中浸泡2分钟,所述的含有100PPM镧系元素的溶液中含有至少一种镧系元素的氧化物,或者镧系元素的盐,或者镧系元素的其它化合物,例如含有100PPM的铈和钆元素的混合镧系元素;然后再把浸泡后的所述的砂浆切片的准单晶硅片放入含有10%氢氟酸,10%硝酸的化学腐蚀溶液中,在20度下腐蚀10分钟;最后再在50%的硝酸中浸泡30分钟,清洗在以上化学腐蚀中所生成的化学转化膜。
实施例3
把1366公司的直接硅片技术生产的多晶硅片(n型或p型的直接晶体硅片)放入含有20%氢氟酸,20%亚硝酸钠和10PPM的镧系元素的化学腐蚀溶液中,在20度下腐蚀20分钟,其中所述的含有10PPM镧系元素至少为一种镧系元素的氧化物,或者镧系元素的盐,或者镧系元素的其他化合物,例如含有10PPM的镨元素,或者10ppm的镨元素和其它镧系元素的混合物;最后再在室温下在含有2%的氢氧化钾溶液中浸泡5分钟,清洗在以上化学腐蚀中所生成的化学转化膜。
实施例4
首先对砂浆切片的多晶硅片(n型或p型砂浆切片的多晶硅片)实施化学腐蚀去损伤层的步骤(氢氟酸:硝酸:醋酸:去离子水=5:3:3:1,室温腐蚀1分钟);把去完损伤层的该砂浆切片的多晶硅片放入含有1000PPM镧系元素的溶液中浸泡2分钟,所述的含有1000PPM镧系元素的溶液中含有至少一种镧系元素的氧化物,或者镧系元素的盐,或者镧系元素的其它化合物,例如含有1000PPM的钐元素,或者是含有1000ppm的钐元素与其它镧系元素的混合物;然后再把浸泡后的所述的砂浆切片的多晶硅片放入含有30%氢氟酸,1%双氧水的化学腐蚀溶液中,在10度条件下腐蚀2分钟;最后再在50%的硝酸中浸泡30分钟,清洗在以上化学腐蚀中所生成的化学转化膜。
实施例5
把金刚线切片的多晶硅片(n型或p型金刚线切片的多晶硅片)放入含有50%氢氟酸,10%亚硝酸钠和0.1PPM的镧系元素的化学腐蚀溶液中,在0度下腐蚀60分钟,同时完成制绒和去损伤层步骤,其中所述的含有1PPM镧系元素的至少为一种镧系元素的氧化物,或者 镧系元素的盐,或者镧系元素的其他化合物,例如含有0.1PPM的镧元素,或者是含有1ppm的镧元素与其它镧系元素的混合物;最后再在室温下在含有10%的四甲基氢氧化铵溶液中浸泡5分钟,清洗在以上化学腐蚀中所生成的化学转化膜。

Claims (14)

  1. 一种在晶体硅片表面实施化学溶液腐蚀制备绒面的方法,其特征在于,在化学溶液腐蚀晶体硅表面的化学腐蚀溶液中含有镧系元素,或者在晶体硅片表面含有镧系元素。
  2. 根据权利要求1所述的在晶体硅片表面实施化学溶液腐蚀制备绒面的方法,其特征在于,在所述的化学腐蚀溶液中,或者在晶体硅表面,至少含有镧系元素中的一种元素。
  3. 根据权利要求2所述的在晶体硅片表面实施化学溶液腐蚀制备绒面的方法,其特征在于,所述的镧系元素是镧系元素,镧系元素的氧化物,镧系元素盐,或者是镧系元素的其他化合物。
  4. 根据权利要求1,2和3所述的在晶体硅片表面实施化学溶液腐蚀制备绒面的方法,其特征在于,所述的镧系元素是直接添加在所述的化学腐蚀溶液中,对所述的晶体硅片表面实施化学溶液腐蚀制备绒面。
  5. 根据权利要求1,2和3所述的在晶体硅片表面实施化学溶液腐蚀制备绒面的方法,其特征在于,所述的镧系元素是首先涂布在晶体硅片表面,然后再与所述的化学腐蚀液反应在晶体硅片表面制备绒面。
  6. 根据权利要求4所述的在晶体硅片表面实施化学溶液腐蚀制备绒面的方法,其特征在于,所述的镧系元素在所述的化学腐蚀溶液中的浓度为1PPM~1%。
  7. 根据权利要求1所述的在晶体硅片表面实施化学溶液腐蚀制备绒面的方法,其特征在于,所述的化学腐蚀溶液含有氢氟酸和具有氧化性质的化合物。
  8. 根据权利要求7所述的在晶体硅片表面实施化学溶液腐蚀制备绒面的方法,其特征在于,所述的具有氧化性质的化合物是硝酸,双氧水,亚硝酸钠,或者硫酸。
  9. 根据权利要求7和8所述的在晶体硅片表面实施化学溶液腐蚀制备绒面的方法,其特征在于,在所述的化学腐蚀溶液中氢氟酸浓度为1%~50%,氧化性质的化合物浓度为1%~50%。
  10. 根据权利要求7和8所述的在晶体硅片表面实施化学溶液腐蚀制备绒面的方法,其特征在于,所述的在晶体硅片表面实施化学溶液腐蚀制备绒面的化学腐蚀时间为0.5~30分钟。
  11. 根据权利要求7和8所述的在晶体硅片表面实施化学溶液腐蚀制备绒面的方法,其特征在于,所述的在晶体硅片表面实施化学溶液腐蚀制备绒面的化学腐蚀温度为0~60度。
  12. 根据权利要求1所述的在晶体硅片表面实施化学溶液腐蚀制备绒面的方法,其特征在于,所述的晶体硅片可以是单晶体硅片,多晶体硅片,或者是准单晶晶体硅片。
  13. 根据权利要求11所述的在晶体硅片表面实施化学溶液腐蚀制备绒面的方法,其特征在于,所述晶体硅片可以是P型晶体硅片或者是N型晶体硅片。
  14. 根据权利要求1所述的在晶体硅片表面实施化学溶液腐蚀制备绒面的方法,其特征在于,所述晶体硅片是采用切片技术切割而成的晶体硅片;或者是采用直接硅片法技术生产的晶体硅片,或者是其它方法生产的晶体硅片。
PCT/CN2018/098680 2017-09-04 2018-08-03 一种在晶体硅表面制备绒面的方法 WO2019042088A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710787640.5A CN109427922B (zh) 2017-09-04 2017-09-04 一种在晶体硅表面制备绒面的方法
CN201710787640.5 2017-09-04

Publications (1)

Publication Number Publication Date
WO2019042088A1 true WO2019042088A1 (zh) 2019-03-07

Family

ID=65513825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/098680 WO2019042088A1 (zh) 2017-09-04 2018-08-03 一种在晶体硅表面制备绒面的方法

Country Status (2)

Country Link
CN (1) CN109427922B (zh)
WO (1) WO2019042088A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5498278A (en) * 1990-08-10 1996-03-12 Bend Research, Inc. Composite hydrogen separation element and module
CN105977345A (zh) * 2016-07-08 2016-09-28 合肥中南光电有限公司 一种稀土-衣康酸单晶硅太阳能电池片表面织构液及其制备方法
CN105977343A (zh) * 2016-07-08 2016-09-28 合肥中南光电有限公司 一种高稳定性含栲胶的单晶硅太阳能电池片表面织构液及其制备方法
CN106920864A (zh) * 2017-03-30 2017-07-04 朱胜利 一种多晶硅片的遮蔽式表面制绒处理方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2105972A3 (en) * 2008-03-28 2015-06-10 Semiconductor Energy Laboratory Co, Ltd. Photoelectric conversion device and method for manufacturing the same
CN102242362B (zh) * 2010-05-11 2013-10-02 E.I.内穆尔杜邦公司 水性分散体系和多晶硅片的刻蚀方法
JP2013224015A (ja) * 2012-03-22 2013-10-31 Mitsubishi Rayon Co Ltd 光透過性フィルムおよびその製造方法
JP6062383B2 (ja) * 2014-02-25 2017-01-18 株式会社ノリタケカンパニーリミテド 太陽電池の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5498278A (en) * 1990-08-10 1996-03-12 Bend Research, Inc. Composite hydrogen separation element and module
CN105977345A (zh) * 2016-07-08 2016-09-28 合肥中南光电有限公司 一种稀土-衣康酸单晶硅太阳能电池片表面织构液及其制备方法
CN105977343A (zh) * 2016-07-08 2016-09-28 合肥中南光电有限公司 一种高稳定性含栲胶的单晶硅太阳能电池片表面织构液及其制备方法
CN106920864A (zh) * 2017-03-30 2017-07-04 朱胜利 一种多晶硅片的遮蔽式表面制绒处理方法

Also Published As

Publication number Publication date
CN109427922B (zh) 2022-02-08
CN109427922A (zh) 2019-03-05

Similar Documents

Publication Publication Date Title
AU780184B2 (en) Method for raw etching silicon solar cells
CN102938431B (zh) 一种太阳电池的硅片清洗制绒方法
CN104505437B (zh) 一种金刚线切割多晶硅片的制绒预处理液、制绒预处理方法和制绒预处理硅片及其应用
CN103614778A (zh) 用于单晶硅片的无醇碱性制绒液、制绒方法、太阳能电池片及其制作方法
CN102593268B (zh) 采用绒面光滑圆整技术的异质结太阳电池清洗制绒方法
CN106229386B (zh) 一种银铜双金属mace法制备黑硅结构的方法
CN102965614B (zh) 一种激光薄膜的制备方法
SG173203A1 (en) Methods for damage etch and texturing of silicon single crystal substrates
WO2015017956A1 (zh) 太阳电池用单晶硅片单面抛光方法
CN111584343A (zh) 一种可同时实现抛光和制绒的单晶硅片的制备方法
CN104037257A (zh) 太阳能电池及其制造方法、单面抛光设备
CN103668466A (zh) 一种多晶硅片制绒液及制绒方法
CN104934339A (zh) 一种晶体硅片位错检测方法
WO2023019934A1 (zh) 一种用于快速制绒的制绒添加剂及应用
CN104966762A (zh) 晶体硅太阳能电池绒面结构的制备方法
CN102856189B (zh) 一种晶体硅片表面处理的方法
CN112608799B (zh) 一种单晶硅片清洗剂及其应用
CN102867880A (zh) 一种多晶硅表面两次酸刻蚀织构的制备方法
WO2019042084A1 (zh) 一种在晶体硅片表面选择性制备绒面的方法
CN114192489A (zh) Lpcvd石英舟的清洗方法
WO2012012979A1 (zh) 一种激光与酸刻蚀结合的制绒方法
CN113035978A (zh) 异面结构硅片及其制备方法、太阳电池及其制备方法
WO2019042088A1 (zh) 一种在晶体硅表面制备绒面的方法
CN111883617A (zh) 一种准单晶电池片生产工艺
CN108004597A (zh) 一种多晶硅制绒添加剂及其制绒方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18852299

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18852299

Country of ref document: EP

Kind code of ref document: A1