WO2019041963A1 - 多通道分流结构采样器 - Google Patents

多通道分流结构采样器 Download PDF

Info

Publication number
WO2019041963A1
WO2019041963A1 PCT/CN2018/091014 CN2018091014W WO2019041963A1 WO 2019041963 A1 WO2019041963 A1 WO 2019041963A1 CN 2018091014 W CN2018091014 W CN 2018091014W WO 2019041963 A1 WO2019041963 A1 WO 2019041963A1
Authority
WO
WIPO (PCT)
Prior art keywords
shunt
impact
cutting
housing
tube
Prior art date
Application number
PCT/CN2018/091014
Other languages
English (en)
French (fr)
Inventor
刘强
陈建新
梁志龙
陈红松
Original Assignee
太原海纳辰科仪器仪表有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太原海纳辰科仪器仪表有限公司 filed Critical 太原海纳辰科仪器仪表有限公司
Priority to RU2018142914A priority Critical patent/RU2735362C1/ru
Priority to US16/309,442 priority patent/US20210223145A1/en
Priority to GB1820187.1A priority patent/GB2573590A/en
Publication of WO2019041963A1 publication Critical patent/WO2019041963A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • G01N1/2208Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling with impactors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2273Atmospheric sampling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0255Investigating particle size or size distribution with mechanical, e.g. inertial, classification, and investigation of sorted collections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0606Investigating concentration of particle suspensions by collecting particles on a support
    • G01N15/0618Investigating concentration of particle suspensions by collecting particles on a support of the filter type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/02Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by absorbing or adsorbing components of a material and determining change of weight of the adsorbent, e.g. determining moisture content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0046Investigating dispersion of solids in gas, e.g. smoke
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0255Investigating particle size or size distribution with mechanical, e.g. inertial, classification, and investigation of sorted collections
    • G01N2015/0261Investigating particle size or size distribution with mechanical, e.g. inertial, classification, and investigation of sorted collections using impactors

Definitions

  • the invention relates to a multi-channel shunt structure sampler, belonging to the technical field of particle collection technology.
  • the most accurate method for monitoring the concentration of particulate matter in ambient air is to sample the atmosphere with a particle sampler and collect atmospheric samples at a constant flow rate. After passing through the filter membrane, the particulate matter is collected onto the filter. The weight gain of the filter before and after the collection is divided by the volume of the collected gas to obtain the concentration of the particles.
  • the particle size of the particle concentration is determined by a cutter such as TSP, PMI0, PM2.5 or the like selected at the sampling inlet.
  • particulate samplers are single-channel structures. After being cut by a cutter, they are directly connected to the membrane by vertical lines. Theoretically, there is no dust accumulation. With the in-depth study of particulate matter analysis, it is required to analyze the collected samples after homologous sampling, thus requiring multi-channel particle sampler to collect samples; generally by sampling inlet, cutter, shunt, connecting pipeline, Sampling membrane, pump, controller, in the actual working process, the shunt and connecting pipeline are easy to accumulate dust, resulting in low data values.
  • the present invention provides a multi-channel shunt structure sampler which is simple in structure and utilizes aerodynamic principle to cut particles by impact to avoid dust accumulation.
  • the technical solution adopted by the present invention is a multi-channel shunt structure sampler, comprising a cutting shunt connected to a sampling inlet, and a multi-channel collecting pipeline is connected to the bottom of the cutting shunt, the collecting tube
  • a cutter, a filter assembly, a flow controller and a sampling pump are disposed on the road
  • the cutting splitter is mainly composed of a casing, an impact pipe, an impact plate and a shunt pipe, and the casing is mounted with an impact plate, the casing
  • the top of the housing is fitted with a percussive tube, and the bottom of the housing is mounted with a plurality of shunt tubes, both of which extend to the inside of the housing.
  • the impact tube and the shunt tube are both disposed perpendicular to the impact plate.
  • the impact plate is provided with a water collecting tank, the bottom of the water collecting tank is provided with a water outlet, the water outlet is installed with an water outlet pipe, and the water outlet pipe is connected with the water collecting bottle.
  • the invention Compared with the prior art, the invention has the following technical effects: the invention eliminates the independent shunt structure, and the cut particles are directly shunted through the evenly distributed shunt tube through the cutter, so that the vertical connecting pipe can be passed through The road is connected to the filter membrane, which completely solves the dust caused by the splitter and the curved pipeline of the multi-channel sampler; at the same time, the homologous sampling requirement of the sampled sample is ensured, and the collection precision is improved.
  • Figure 1 is a schematic view of the structure of the present invention.
  • FIG. 2 is a schematic view showing the structure of a cutting splitter in the present invention.
  • Figure 3 is a schematic view showing the principle of the cutting splitter of the present invention.
  • the multi-channel shunt structure sampler includes a cutting splitter 2 connected to the sampling inlet 1, and a multi-channel collecting pipeline 3 is connected to the bottom of the cutting shunt 2, and the collecting pipeline 3 is arranged.
  • the flow divider 2 is mainly composed of a casing 15, an impact pipe 14, an impact plate 16, and a shunt pipe 17, in which a strike plate 16 is mounted, and a top portion of the casing 15 is provided with an impact pipe 14, and a bottom portion of the casing 15 is mounted.
  • a plurality of shunt tubes 17, each of the impingement tube 14 and the shunt tube 17, extend into the interior of the housing 15.
  • the cutter may be other cutters such as TSP, PM10, PM5, PM2.5, PM1.0 or a combination of PM10, PM5, PM2.5, PM1.0 and the like.
  • the cutting splitter cuts and splits the collected particulate matter, which is mainly used to cut the particulate matter by impact using aerodynamic principles. Particles of different sizes and sizes have different inertia when flowing. The gas flowing in the impact tube and the particles of different sizes are larger because of the large inertia of the large particles. When the impact plate is encountered, the large particles are cut. , precipitated on the impact plate, while small particles continue to follow the gas flow to the next stage.
  • the filter can be connected to the filter through the vertical connecting pipe, which completely solves the dust generated by the splitter and the curved pipe of the multi-channel sampler; at the same time, the homologous sampling requirement of the sampled sample is ensured, and the detection precision is improved.
  • the particle size d of the particle cutting wherein the theoretical formula of the particle cutting particle diameter d is: Where k is a dimensionless coefficient, ⁇ is the aerodynamic viscosity coefficient, D is the diameter of the impact tube, ⁇ is the mass concentration of the particulate matter, C is the Cunningham slip index, and U is the velocity of the impact tube. According to the above formula, it is possible to determine a reasonable particle cutting particle size and improve the detection accuracy.
  • the impact tube 14 and the shunt tube 17 are both disposed perpendicular to the impact plate 16, which can greatly improve the cutting and splitting effect.
  • the sump 16 is provided with a sump 19, and a water outlet is provided at the bottom of the sump 19, and an outlet pipe 20 is attached to the water outlet, and a water storage bottle 18 is connected to the outlet pipe 20.
  • the sump is used to collect the water in the granules, and then enters the water bottle through the outlet pipe, which is more convenient to use.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

一种多通道分流结构采样器,包括与采样入口(1)相连接的切割分流器(2),切割分流器(2)的底部连接有多路采集管路(3),采集管路(3)上设置有切割器(4)、滤膜组件(5)、流量控制器(7)和采样泵(8),切割分流器(2)包括壳体(15)、撞击管(14)、撞击板(16)和分流管(17),壳体(15)内安装有撞击板(16),壳体(15)的顶部安装有撞击管(14),壳体(15)的底部安装有多个分流管(17),撞击管(14)和分流管(17)均延伸至壳体(15)内部。多通道分流结构采样器结构简单,利用空气动力学原理,以撞击来切割颗粒物,能够避免出现积尘,可以广泛用于颗粒物的采样。

Description

多通道分流结构采样器 技术领域
本发明涉及一种多通道分流结构采样器,属于颗粒物采集技术领域。
背景技术
监测环境空气中颗粒物浓度全世界公认最准确的方法,就是用颗粒物采样器对大气进行采样,在恒定的流量下采集大气样品,采样气体在通过滤膜后,颗粒物被收集到滤膜上,对采集前后滤膜的增重,除以采集的气体体积就可得到颗粒物的浓度。颗粒物浓度的粒径由采样入口选配的TSP,PMI0,PM2.5等切割器决定。
全世界上绝大部分的颗粒物采样器都是单通道结构的,通过切割器切割后,直接由垂直管路连接到滤膜,理论上是没有积尘现象。随着对颗粒物分析的深入研究,要求同源采样后,对采集的样品进行分析,这样就需要多通道颗粒物采样器进行样品的采集;一般由采样入口、切割器、分流器、连接管路、采样滤膜、泵、控制器组成,在实际工作过程中,分流器和连接管路容易积尘,从而造成数据值偏低。
发明内容
为解决现有技术存在的技术问题,本发明提供了一种结构简单,利用空气动力学原理,以撞击来切割颗粒物,避免出现积尘的多通道分流结构采样器。
为实现上述目的,本发明所采用的技术方案为多通道分流结构采样器,包括与采样入口相连接的切割分流器,所述切割分流器的底部连接有多路采集管路,所述采集管路上设置有切割器、滤膜组件、流量控制器和采样泵,所述切割分流器主要由壳体、撞击管、撞击板和分流管构成,所述壳体内安装有撞击板,所述壳体的顶部安装有撞击管,所述壳体的底部安装有多个分流管,所述撞击管和分流管均延伸至壳体内部。
优选的,所述撞击管和分流管均垂直于撞击板设置。
优选的,所述撞击板上设置有集水槽,所述集水槽的底部设置有出水口,所述出水口上安装有出水管,所述出水管上连接有积水瓶。
与现有技术相比,本发明具有以下技术效果:本发明取消了独立的分流器结构,通过切割器将切割了的颗粒物,直接通过均匀分配的分流管分流,这样就可以通过垂直的连接管路连接到滤膜,彻底解决了多通道采样器的分流器和弯曲管路造成的积尘;同时保证了采样样品的同源采样要求,提高了采集精度。
附图说明
图1为本发明的结构示意图。
图2为本发明中切割分流器的结构示意图。
图3为本发明中切割分流器的原理示意图。
具体实施方式
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图1、图2所示,多通道分流结构采样器,包括与采样入口1相连接的切割分流器2,切割分流器2的底部连接有多路采集管路3,采集管路3上设置有切割器4、滤膜组件5、流量控制器7和采样泵8,其中滤膜组件内置滤膜6,流量控制器7和采样泵8均与主控系统11相连接,主控系统11上还连接有用于检测实时天气信息的气象模块9,用于实时检测空气温湿度的温湿度检测模块10,用于定位实时位置信息的GPS定位模块12以及用于滤膜检测的RFID模块13,切割分流器2主要由壳体15、撞击管14、撞击板16和分流管17构成,壳体15内安装有撞击板16,壳体15的顶部安装有撞击管14,壳体15的底部安装有多个分流管17,撞击管14和分流管17均延伸至壳体15内部。
本发明中切割器可以是TSP,PMl0,PM5,PM2.5,PM1.0等其它切割器或者是PM10,PM5,PM2.5,PM1.0等重叠组合的切割器。在使用时,切割分流器对采集到的颗粒物进行切割、分流,其主要是利用空气动力学原理,以撞击的方式来切割颗粒物。不同大小粒径的颗粒物在流动的时候惯性是不一样的,在撞击管内流动的气体和不同大小颗粒物,由于大颗粒的惯性比较大,当遇到撞击板的时候,大的颗粒物就被切割下来,沉淀在撞击板上,而小的颗粒物继续跟随气体流动到下一级。改变气体流速和撞击板与撞击管高度,就能切割掉不同大小的,空气动力学当量直径的颗粒物。切割后通往下一级的气体与颗粒物,再由均匀布置的分流管进行均匀分流,从而得到同源多通道采样的颗粒物。这样就可以通过垂直的连接管路连接到滤膜,彻底解决了多通道采样器的分流器和弯曲管路造成的积尘;同时保证了采样样品的同源采样要求,提高了检测精度。
在进行颗粒物切割分流时,需要对颗粒物切割粒径d进行计算,其中颗粒物切割粒径d的理论公式为:
Figure PCTCN2018091014-appb-000001
式中,k为无量纲系数,η为空气动力粘度系数,D为撞击管直径,ρ为颗粒物质量浓度,C为坎宁安滑流指数,U为撞击管流速。根据上述公式,能够确定合理的颗粒物切割粒径,提高检测精度。
此外,撞击管14和分流管17均垂直于撞击板16设置,能够大大提高切割分流效果。撞击板16上设置有集水槽19,集水槽19的底部设置有出水口,出水口上安装有出水管20,出水管20上连接有积水瓶18。集水槽用于收集颗粒物中水,然后通过出水管进入积水瓶,使用更加方便。
以上所述仅为本发明的较佳实施例而己,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包在本发明范围内。

Claims (3)

  1. 多通道分流结构采样器,包括与采样入口相连接的切割分流器,所述切割分流器的底部连接有多路采集管路,所述采集管路上设置有切割器、滤膜组件、流量控制器和采样泵,其特征在于:所述切割分流器主要由壳体、撞击管、撞击板和分流管构成,所述壳体内安装有撞击板,所述壳体的顶部安装有撞击管,所述壳体的底部安装有多个分流管,所述撞击管和分流管均延伸至壳体内部。
  2. 根据权利要求1所述的多通道分流结构采样器,其特征在于:所述撞击管和分流管均垂直于撞击板设置。
  3. 根据权利要求1所述的多通道分流结构采样器,其特征在于:所述撞击板上设置有集水槽,所述集水槽的底部设置有出水口,所述出水口上安装有出水管,所述出水管上连接有积水瓶。
PCT/CN2018/091014 2017-08-28 2018-06-13 多通道分流结构采样器 WO2019041963A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2018142914A RU2735362C1 (ru) 2017-08-28 2018-06-13 Механический пробоотборник с конструкцией многоканального распределения потока
US16/309,442 US20210223145A1 (en) 2017-08-28 2018-06-13 A sampling machine with multi-channel flow distributing structure
GB1820187.1A GB2573590A (en) 2017-08-28 2018-06-13 Multichannel sampler having distributing structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710748801.XA CN107436278A (zh) 2017-08-28 2017-08-28 多通道分流结构采样器
CN201710748801.X 2017-08-28

Publications (1)

Publication Number Publication Date
WO2019041963A1 true WO2019041963A1 (zh) 2019-03-07

Family

ID=60460640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091014 WO2019041963A1 (zh) 2017-08-28 2018-06-13 多通道分流结构采样器

Country Status (5)

Country Link
US (1) US20210223145A1 (zh)
CN (1) CN107436278A (zh)
GB (1) GB2573590A (zh)
RU (1) RU2735362C1 (zh)
WO (1) WO2019041963A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107436278A (zh) * 2017-08-28 2017-12-05 太原海纳辰科仪器仪表有限公司 多通道分流结构采样器
CN108760408B (zh) * 2018-08-27 2024-02-06 山东大学 一种基于撞击与旋风切割的两级云雾水收集器及采集方法
CN109916678A (zh) * 2019-03-11 2019-06-21 成都智胜欣业环保科技有限公司 一种采样切割器
CN109827810B (zh) * 2019-03-26 2024-01-26 中国林业科学研究院 无人机多通道水样采集装置及方法
CN116183289B (zh) * 2023-04-25 2023-07-14 太原海纳辰科仪器仪表有限公司 一种土壤环境监测设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2507004Y (zh) * 2000-11-03 2002-08-21 青岛崂山电子仪器总厂 颗粒物采样器切割器
US20050058575A1 (en) * 2003-09-17 2005-03-17 Hitachi, Ltd. Analyzing apparatus and fine particle collecting apparatus
CN201637649U (zh) * 2010-04-15 2010-11-17 武汉市天虹仪表有限责任公司 大气颗粒物测量仪
CN102928264A (zh) * 2012-09-29 2013-02-13 中国科学院安徽光学精密机械研究所 颗粒物pm10粒径切割装置
CN103776666A (zh) * 2014-02-17 2014-05-07 青岛众瑞智能仪器有限公司 一种六通道空气颗粒物采样器
CN106226132A (zh) * 2016-08-04 2016-12-14 环境保护部华南环境科学研究所 宽范围多粒径颗粒物并联采集装置
CN107436278A (zh) * 2017-08-28 2017-12-05 太原海纳辰科仪器仪表有限公司 多通道分流结构采样器
CN207096047U (zh) * 2017-08-28 2018-03-13 太原海纳辰科仪器仪表有限公司 一种多通道分流结构采样器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205538376U (zh) * 2016-04-19 2016-08-31 陕西正大环保科技有限公司 一种颗粒物分粒径多级双通道采样与监测装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2507004Y (zh) * 2000-11-03 2002-08-21 青岛崂山电子仪器总厂 颗粒物采样器切割器
US20050058575A1 (en) * 2003-09-17 2005-03-17 Hitachi, Ltd. Analyzing apparatus and fine particle collecting apparatus
CN201637649U (zh) * 2010-04-15 2010-11-17 武汉市天虹仪表有限责任公司 大气颗粒物测量仪
CN102928264A (zh) * 2012-09-29 2013-02-13 中国科学院安徽光学精密机械研究所 颗粒物pm10粒径切割装置
CN103776666A (zh) * 2014-02-17 2014-05-07 青岛众瑞智能仪器有限公司 一种六通道空气颗粒物采样器
CN106226132A (zh) * 2016-08-04 2016-12-14 环境保护部华南环境科学研究所 宽范围多粒径颗粒物并联采集装置
CN107436278A (zh) * 2017-08-28 2017-12-05 太原海纳辰科仪器仪表有限公司 多通道分流结构采样器
CN207096047U (zh) * 2017-08-28 2018-03-13 太原海纳辰科仪器仪表有限公司 一种多通道分流结构采样器

Also Published As

Publication number Publication date
GB2573590A (en) 2019-11-13
RU2735362C1 (ru) 2020-10-30
US20210223145A1 (en) 2021-07-22
CN107436278A (zh) 2017-12-05
GB201820187D0 (en) 2019-01-23

Similar Documents

Publication Publication Date Title
WO2019041963A1 (zh) 多通道分流结构采样器
US8626467B2 (en) Air pollution sampling system and method thereof
CN102818905B (zh) 一种双通道大气颗粒物自动监测装置
CN103149060B (zh) 一种实现自动等速恒流采集流动气体内的不同粒径颗粒物的采样器
JP4879921B2 (ja) 大気中降下物の連続捕集装置
CN104330342B (zh) 一种组合便携式pm2.5采样分析装置
CN106525520A (zh) 固定燃烧源烟气混合通道稀释多级采样装置
CN103913355A (zh) 一种多通道气体和颗粒物的采样器及其使用方法
KR101692943B1 (ko) 풍향풍속제어 오염원 추적 시료채취 시스템
Crazzolara et al. A new multicopter-based unmanned aerial system for pollen and spores collection in the atmospheric boundary layer
CN104390818A (zh) 烟气等速恒流采样装置及方法
CN202548040U (zh) 一种颗粒物自动监测仪器
CN204241286U (zh) 烟气等速恒流采样装置
Peel et al. Relative efficiencies of the Burkard 7-Day, Rotorod and Burkard Personal samplers for Poaceae and Urticaceae pollen under field conditions
CN104677696B (zh) 一种等速采样枪
CN207096047U (zh) 一种多通道分流结构采样器
CN108760408B (zh) 一种基于撞击与旋风切割的两级云雾水收集器及采集方法
CN112577865A (zh) 一种道路积尘负荷走航测定系统
CN207456855U (zh) 便于固定的矿用粉尘采样器
CN204286886U (zh) 简易空气采样装置
CN105738168B (zh) 一种隧道中颗粒物和气态污染物样品的采样方法和采样装置
CN203772601U (zh) 一种用于管道中煤气含尘量、流速测定的无动力取样枪
CN205246889U (zh) 大气放射性气溶胶监测设备
CN113720739A (zh) 一种免分离装置的呼吸性粉尘浓度在线测量方法
US10782212B2 (en) Particulate matter sampler

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 201820187

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20180613

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18850367

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18850367

Country of ref document: EP

Kind code of ref document: A1