WO2019041939A1 - 像素结构及包含所述像素结构的显示面板 - Google Patents

像素结构及包含所述像素结构的显示面板 Download PDF

Info

Publication number
WO2019041939A1
WO2019041939A1 PCT/CN2018/090014 CN2018090014W WO2019041939A1 WO 2019041939 A1 WO2019041939 A1 WO 2019041939A1 CN 2018090014 W CN2018090014 W CN 2018090014W WO 2019041939 A1 WO2019041939 A1 WO 2019041939A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
sub
pixels
units
adjacent
Prior art date
Application number
PCT/CN2018/090014
Other languages
English (en)
French (fr)
Inventor
刘将
程骥
Original Assignee
昆山国显光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山国显光电有限公司 filed Critical 昆山国显光电有限公司
Publication of WO2019041939A1 publication Critical patent/WO2019041939A1/zh
Priority to US16/524,342 priority Critical patent/US10692940B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to a pixel structure and a display panel including the same.
  • An OLED Organic Light-Emitting Diode
  • LCD Liquid Crystal Display
  • the OLED display technology does not require a backlight and has self-luminous characteristics.
  • the OLED uses a thinner organic material film layer and a glass substrate, and when an electric current passes, the organic material film layer emits light. Therefore, the OLED display panel can significantly save power, can be made lighter and thinner, can withstand a wider range of temperature changes than the LCD display panel, and has a larger viewing angle.
  • the OLED display panel is expected to become the next-generation flat panel display technology after LCD, and is one of the most popular technologies in flat panel display technology.
  • OLED colorization technology that is now mature and has been successfully mass-produced is mainly OLED evaporation technology, which uses conventional RGB Stripe (RGB strip) arrangement for evaporation.
  • RGB stripe RGB strip
  • the side-by-side method has three sub-pixels of red, green, and blue (R, G, B) in a pixel (Pixel) range, each sub-pixel is quadrilateral, and each has an independent organic
  • An illuminating component which forms an organic luminescent component by a vapor deposition film forming technique through a high-precision metal mask (FMM) on a corresponding pixel position on an array substrate, the high-definition metal mask
  • FMM high-precision metal mask
  • the stencil is often referred to simply as a metal mask or an evaporation mask.
  • FIG. 1 is a schematic diagram of pixel arrangement of an OLED display panel in the prior art. As shown in FIG. 1 , the OLED display panel adopts a pixel juxtaposition manner, and each pixel unit Pixel includes an R sub-pixel region 101 , a G sub-pixel region 103 , and a B sub-pixel region 105 , wherein the R sub-pixel region 101 includes R.
  • the G sub-pixel region 103 includes a G light-emitting region 104 and a G non-light-emitting region (not labeled)
  • the B-sub-pixel region 105 includes a B light-emitting region 106 and a B non-light-emitting region (not Label).
  • the R, G, and B sub-pixel regions and the light-emitting region areas shown in FIG. 1 are respectively equal, and the R, G, and B sub-pixels are arranged in a line.
  • a cathode, an anode, and an electroluminescent layer are included, wherein the electroluminescent layer is located between the cathode and the anode for generating a predetermined color Light to achieve display.
  • the electroluminescent layer is located between the cathode and the anode for generating a predetermined color Light to achieve display.
  • the OLED display panel shown in FIG. 1 is generally vapor-deposited by using the FMM shown in FIG. 2, and the FMM includes a shielding area 107 and a plurality of vapor deposition openings 108, and an occlusion area between two adjacent vapor deposition openings 108 in the same column. It is called a bridge.
  • a sufficient distance must be maintained between the sub-pixels and the bridge, which causes the lengths of the sub-pixels to decrease, and affects the aperture ratio of each sub-pixel.
  • the traditional RGB juxtaposed pixel arrangement can only reach 200-300 PPI, which is difficult to achieve high-resolution display. With the increasing demand for OLED display panel resolution, this RGB pixel juxtaposition can no longer meet the design requirements of high PPI.
  • FIG. 3 is a schematic diagram of pixel arrangement of another OLED display panel in the prior art. As shown in FIG. 3, only G sub-pixels are used exclusively for each pixel unit, and R and B sub-pixels are all shared with adjacent pixel units. For example, pixel unit 201 and pixel unit 202 share R sub-pixels. In this way, the PPI of the display screen can be improved. However, in this arrangement, the R and B sub-pixels are shared by adjacent pixel units, and the entire display effect may be distorted, which is not a true color display in the true sense.
  • the present disclosure provides a pixel structure and a display panel including the pixel structure to solve the problems existing in the prior art.
  • the present disclosure provides a pixel structure including a plurality of pixel units arranged in an array, the pixel units being respectively arranged along a first direction and a second direction perpendicular to the first direction, each The pixel units each include a first sub-pixel, a second sub-pixel, and a third sub-pixel whose colors are different from each other, and in the second direction, a pitch between the third sub-pixels is not equal to the first sub-pixel The spacing between and is not equal to the spacing between the second sub-pixels.
  • a spacing between the third sub-pixels is greater than a spacing between the first sub-pixels and greater than a spacing between the second sub-pixels.
  • a spacing between the third sub-pixels is smaller than a spacing between the first sub-pixels and smaller than a spacing between the second sub-pixels.
  • a spacing between the first sub-pixels is equal to a spacing between the second sub-pixels.
  • a total size of the first sub-pixel and the second sub-pixel is greater than a size of the third sub-pixel in the second direction.
  • a size of the pixel unit in the first direction is greater than a size of the pixel unit in the second direction.
  • a ratio of a size of the pixel unit in the first direction to a size of the pixel unit in the second direction is 3:2, 2:1, 4:3, or 5:4 .
  • a size of the third sub-pixel in the first direction is increased or decreased, and the plurality of adjacent pixel units are Repeating the repeating unit group along the first direction and the second direction, or
  • a size of the third sub-pixel in the second direction is incremented or decremented, and the plurality of adjacent pixel units are used as a repeating unit group The arrangement is repeated along the first direction and the second direction.
  • the number of the plurality of adjacent pixel units is three or more.
  • the first sub-pixel and the second sub-pixel are arranged collinearly in the second direction, the third sub-pixel and the first sub-pixel and the first The two sub-pixels are arranged side by side in the first direction.
  • the arrangement structure after each pixel unit is flipped by 180 degrees in the first direction is the same as the arrangement structure of the pixel unit adjacent to the pixel unit in the second direction, or
  • An arrangement structure in which each pixel unit is flipped by 180 degrees in the second direction is the same as an arrangement structure of pixel units adjacent to the pixel unit in the first direction.
  • the first sub-pixel, the second sub-pixel, and the third sub-pixel are one of a red sub-pixel, a green sub-pixel, and a blue sub-pixel.
  • the first direction is a row direction
  • the second direction is a column direction
  • the first direction is a column direction
  • the second direction is a row direction
  • a display panel comprising the pixel structure as described above.
  • each pixel unit is adjacently arranged in a row direction or a column direction, and each pixel unit is composed of three sub-pixels of different colors, which can realize a true color in a true sense. display;
  • Each pixel unit includes a first sub-pixel, a second sub-pixel, and a third sub-pixel, the first sub-pixel and the second sub-pixel are arranged in one column, and the third sub-pixel is arranged in another column, the first sub-pixel And the total size of the second sub-pixel in the column direction is larger than the size of the third sub-pixel along the column direction, the arrangement of the pixel units in the same row is the same, and the arrangement of each pixel unit after flipping 180 degrees and the same column
  • the arrangement of adjacent pixel units is the same, the pixel units can be arranged more compactly, the pixel pitch is reduced, and the PPI is improved; meanwhile, when the first sub-pixel and the second sub-pixel are arranged in one column, the same
  • the third sub-pixels of two adjacent pixel units on the column are arranged in a staggered manner, which can reduce the difficulty of the evaporation mask manufacturing process and the evaporation process;
  • the pixel units of different columns are arranged in a wrong position, which can better improve the green and red lines and red and bright lines on the upper and lower sides of the display area of the screen; wherein the size of one sub-pixel in the row direction or the column direction is not equal to the other two sub-pixels.
  • the size of the blue sub-pixel is larger than the size of the red sub-pixel and the green sub-pixel, which can fundamentally change the defect that the existing local/single point brightness is too bright or the lifetime decays too fast.
  • FIG. 1 is a schematic diagram of a pixel arrangement of a display panel in the prior art.
  • FIG. 2 is a schematic diagram of an FMM corresponding to FIG. 1.
  • FIG. 3 is a schematic diagram of pixel arrangement of another display panel in the prior art.
  • FIG. 4 is a schematic diagram of a pixel arrangement of a display panel according to Embodiment 1 of the present disclosure.
  • FIG. 5 is a schematic structural diagram of two pixel units adjacent in a column direction in a display panel according to Embodiment 1 of the present disclosure.
  • FIG. 6 is a schematic diagram of pixel arrangement of a display panel according to Embodiment 2 of the present disclosure.
  • FIG. 7 is a schematic structural diagram of two pixel units adjacent in a column direction in a display panel according to Embodiment 2 of the present disclosure.
  • FIG. 8 is a schematic diagram of a pixel arrangement of a display panel in Embodiment 3 of the present disclosure.
  • FIG. 9 is a schematic structural diagram of three pixel units adjacent in a column direction in a display panel according to Embodiment 3 of the present disclosure.
  • FIG. 10 is a schematic diagram of a pixel arrangement of a display panel in Embodiment 4 of the present disclosure.
  • FIG. 11 is a schematic structural diagram of three pixel units adjacent in a column direction in a display panel according to Embodiment 4 of the present disclosure.
  • FIG. 12 is a schematic diagram of a pixel arrangement of a display panel in Embodiment 5 of the present disclosure.
  • the rows and columns described in the present disclosure, as well as the left and right, are referenced to the present disclosure in the drawings, and do not refer to rows and columns and left and right in actual products.
  • the "row direction” in the present disclosure may be the X direction
  • the "column direction” may be the Y direction (the second direction).
  • the meanings of "row” and “column” of the present disclosure are not limited only to “row” and “column” in the conventional sense, but also “row” and “column” in the conventional sense while being 90 degrees clockwise. Or “rows” and “columns” formed by rotating 90 degrees counterclockwise.
  • the same or similar parts are denoted by the same or similar reference numerals.
  • FIG. 4 is a schematic diagram of a pixel arrangement of a display panel according to Embodiment 1 of the present disclosure.
  • the X direction is referred to as the row direction (lateral direction)
  • the Y direction is referred to as the column direction (longitudinal direction).
  • the number of pixels in the actual product is not limited thereto, and the number of pixel units can be changed according to the actual display needs.
  • the pixel structure of the display panel includes a plurality of pixel units arranged in an array, each of the pixel units including a first sub-pixel 301, a second sub-pixel 303, and a third sub-pixel 305.
  • the first sub-pixel 301 and the second sub-pixel 303 are arranged in one column
  • the third sub-pixel 305 is arranged in another column
  • the first sub-pixel 301 and the second sub-pixel 303 are along
  • the total size L1 of the column direction ie, the sum of the sizes of the first sub-pixel 301 and the second sub-pixel 303 in the column direction
  • the arrangement structure of all the pixel units in the same row is larger, and the arrangement structure of each pixel unit flipped in the row direction (turning itself left and right) is the same as the arrangement of adjacent pixel cells in the same column. In this way, the pixel unit can be arranged more compactly, the pixel pitch is reduced, the PPI is improved, and each pixel unit is composed of three colors of RGB, so that a true full-color display can be realized.
  • the total size of the pixel units in the row direction can be made larger, thereby making the total size of the pixel units in the row direction (ie, the maximum size of the pixel units in the row direction).
  • the maximum size of the pixel unit in the column direction here, the sum of the sizes of the first sub-pixel 301 and the second sub-pixel 303 in the column direction
  • the two pixel units in this embodiment can realize the display effect of the conventional three pixel units.
  • the ratio between the total size L0 of the pixel unit in the row direction and the maximum size L1 of the pixel unit in the column direction may also be 2:1, 4:3, and 5. :4 and so on.
  • the pixel unit of the first row and the first column is denoted as a pixel unit (1, 1)
  • the pixel unit of the first row and the second column is denoted as a pixel unit (1, 2)
  • the pixel unit of the second row and the first column Recorded as pixel unit (2, 1)
  • the pixel unit of the second row and second column is recorded as pixel unit (2, 2), and so on.
  • the pixel unit (1, 3) of the first row and the third column is flipped 180 degrees to the right, and the pixel unit of the adjacent row in the same column is the pixel unit of the second row and the third column.
  • the layout of (2, 3) is the same.
  • the evaporation opening on the vapor deposition mask (FMM) for forming the third sub-pixel is also staggered
  • the cloth can reduce the difficulty of the evaporation mask manufacturing process and the evaporation process.
  • the light-emitting areas of the first sub-pixel 301, the second sub-pixel 303, and the third sub-pixel 305 may be in a "pin” shape, an inverted “good” shape, and a "product” shape or a direction rotated 90 degrees to the left.
  • the "pin” shape arrangement rotated 90 degrees to the right may also be a "good” shape that is roughly a "good” shape, an inverted “good” shape, a "product” shape rotated 90 degrees to the left, or a "good” shape rotated 90 degrees to the right. In the arrangement shown in FIG.
  • the light-emitting area 302 of the first sub-pixel 301, the light-emitting area 304 of the second sub-pixel 303, and the light-emitting area 306 of the third sub-pixel 305 are rotated to the right.
  • the 90-degree "pin” shape (substantially glyph shape) is arranged, that is, the first sub-pixel 301 and the second sub-pixel 303 are arranged on the left side, and the third sub-pixel 305 is arranged on the right side;
  • the light-emitting area 302 of the first sub-pixel 301, the light-emitting area 304 of the second sub-pixel 303, and the light-emitting area 306 of the third sub-pixel 305 are in a "pin" shape rotated to the left by 90 degrees (substantially shaped)
  • the arrangement that is, the third sub-pixel 305 is arranged on the left side, and the first sub-pixel 301 and the second sub-pixel 303 are arranged on the right side.
  • the first sub-pixels 301 of all the pixel units in the same row are arranged on a straight line
  • the second sub-pixels of all the pixel units in the same row are also arranged in a straight line.
  • the pitch of the adjacent first sub-pixels 301 in the column direction is equal to the pitch of the adjacent second sub-pixels 303 in the column direction, and the adjacent first The pitch of the sub-pixels 301 in the column direction and the pitch of the adjacent second sub-pixels 303 in the column direction are all larger than the pitch of the adjacent third sub-pixels 305 in the column direction. Specifically, as shown in FIG.
  • the pitch y1 of the adjacent first sub-pixels 301 in the column direction is equal to the pitch y2 of the adjacent second sub-pixels 303 in the column direction, Further, the pitch y1 of the adjacent first sub-pixels 301 in the column direction and the pitch y2 of the adjacent second sub-pixels 303 in the column direction are both larger than the pitch y3 of the adjacent third sub-pixels 305 in the column direction.
  • the lower surface of the third sub-pixel 305 in the column direction is higher than or equal to the lower surface of the second sub-pixel 303 in the column direction, that is, the third sub-pixel.
  • the plane of the lower surface of the 305 in the column direction (such as A1 in FIG. 5) is higher than or equal to (ie, not lower than) the plane of the lower surface of the second sub-pixel 303 in the column direction (as shown in FIG. A2) of 5 prevents the third sub-pixel 305 from being too far apart from the first sub-pixel 301 and the second sub-pixel 303 to affect the display.
  • the distance between the center line of the third sub-pixel 305 extending in the row direction and the boundary line between the first sub-pixel 301 and the second sub-pixel 303 is less than or equal to 10 ⁇ m.
  • the first sub-pixel 301 is a green (G) sub-pixel
  • the second sub-pixel 303 is a red (R) sub-pixel
  • the third sub-pixel 305 is a blue (B) sub-pixel; therefore, the first sub-pixel
  • the pixel 301 includes a G light emitting region 302 and a G non-light emitting region (not labeled in the drawing), and includes an organic emitting layer for emitting green light
  • the second subpixel 303 includes an R light emitting region 304 and an R non-light emitting region (not shown) Reference numeral), and includes an organic emission layer for emitting red light
  • the third sub-pixel 305 includes a B light-emitting region 306 and a B non-light-emitting region (not labeled in the drawing), and includes an organic emission layer for emitting blue light.
  • the first sub-pixel 301 may also be a red sub-pixel
  • the second sub-pixel 303 may also be a green sub-pixel
  • the first sub-pixel and the second sub-pixel may be interchanged.
  • the shapes and areas of the first sub-pixel 301 and the second sub-pixel 303 are equal, that is, symmetrically distributed in a mirror image. It should be noted that, since the first sub-pixel 301 and the second sub-pixel 303 in the same pixel unit share one edge, the common edge is a boundary line between the first sub-pixel 301 and the second sub-pixel 302. However, it should be understood that the "boundary" or “boundary line” herein is not limited to the “boundary” or “boundary line” of the entity, but may refer to a virtual "boundary” or “boundary line” between two pixel sub-pixels. ".
  • the shapes of the first sub-pixel 301 and the second sub-pixel 303 are all rectangular, the shape of the third sub-pixel 305 is square, and the first sub-pixel 301 and the second sub-pixel 303 are along the short side thereof.
  • the direction is arranged, wherein the side length (height) of the light-emitting area 306 of the third sub-pixel 305 is the short side length of the light-emitting area 302 of the first sub-pixel 301 and the short side length (height of the light-emitting area 304 of the second sub-pixel 303) ) 2 times.
  • the shapes of the first sub-pixel 301, the second sub-pixel 303, and the third sub-pixel 303 are not limited to a rectangle, but may be other quadrilaterals other than a rectangle, or a triangle, a pentagon, or a sixth.
  • One of a polygon such as a polygon, an octagon, or the like.
  • the areas of the first sub-pixel 301 and the second sub-pixel 303 may not be equal, and the light-emitting area of the third sub-pixel 305 is not limited to the light-emitting area of the first sub-pixel 301 or the second sub-pixel 303. 2 times, the shape and/or area of each sub-pixel can be adjusted accordingly according to the color matching requirements.
  • FIG. 6 is a schematic diagram of a pixel arrangement of a display panel according to Embodiment 2 of the present disclosure.
  • the difference between this embodiment and the first embodiment is that, in the pixel unit of the same column, the spacing of the adjacent first sub-pixels 301 in the column direction is equal to the spacing of the adjacent second sub-pixels 303 in the column direction. And the pitch of the adjacent first sub-pixels 301 in the column direction, and the pitch of the adjacent second sub-pixels 303 in the column direction are smaller than the pitch of the adjacent third sub-pixels 305 in the column direction.
  • the pitch y1 of the adjacent first sub-pixels 301 in the column direction is equal to the pitch y2 of the adjacent second sub-pixels 303 in the column direction
  • the pitch y1 of the adjacent first sub-pixels 301 in the column direction and the pitch y2 of the adjacent second sub-pixels 303 in the column direction are smaller than the pitch y3 of the adjacent third sub-pixels 305 in the column direction.
  • the upper surface of the third sub-pixel 305 in the column direction is lower than or equal to the upper surface of the first sub-pixel 301 in the column direction, that is, the third sub-pixel 305.
  • the plane in which the upper surface in the column direction is located (as in A1 in FIG. 7) is lower than or equal to (ie, not higher than) the plane in which the upper surface of the first sub-pixel 301 is in the column direction (FIG. 7).
  • the third sub-pixel 305 is prevented from being too far apart from the first sub-pixel 301 and the second sub-pixel 303 to affect the display.
  • the distance between the center line of the third sub-pixel 305 extending in the row direction and the boundary line between the first sub-pixel 301 and the second sub-pixel 303 is less than or equal to 10 ⁇ m.
  • FIG. 8 is a schematic diagram of a pixel arrangement of a display panel according to Embodiment 3 of the present disclosure. There are two differences between this embodiment and the first embodiment.
  • the center line of the third sub-pixel 305 extending in the row direction coincides with the boundary line between the first sub-pixel 301 and the second sub-pixel 303 in each pixel unit, so that Further reducing the pixel pitch, improving the PPI of the display screen, and making the RGB sub-pixels evenly distributed, and having a better display effect.
  • a center line 306 ′ of the third sub-pixel 305 extending in the row direction (the center line 306 ′ divides the third sub-pixel 305 into two parts and the center line 306′ extends in the row direction) and The boundary line between one sub-pixel 301 and the second sub-pixel 303 coincides.
  • the adjacent pixel units are repeatedly arranged in the column direction as one repeating unit group.
  • the sizes of the three third sub-pixels in the column direction are increased.
  • FIG. 9 three of the third sub-pixels.
  • the dimensions H1, H2, and H3 in the column direction are incremented, and the three adjacent pixel units are repeatedly arranged in the column direction as one repeating unit group, that is, in the column direction, all the third sub-pixels 305 are three.
  • the size of the third sub-pixel in the four or more adjacent pixel units of the same column may be increased in the column direction, but it is required to satisfy: in the same pixel unit, the first sub-pixel
  • the total size of the 301 and second sub-pixels 303 in the column direction is larger than the size of the third sub-pixel 305 in the column direction.
  • the size of the blue sub-pixel is larger than the size of the red sub-pixel and larger than the size of the green sub-pixel, which can fundamentally change the defect that the existing local/single point brightness is too bright or the lifetime decays too fast, so that the angle from the full screen can be better.
  • FIG. 10 is a schematic diagram of a pixel arrangement of a display panel according to Embodiment 4 of the present disclosure.
  • the difference between this embodiment and the third embodiment is that, in a plurality of adjacent pixel units in the same column, the size of the third sub-pixel decreases in the column direction, and the third sub-pixel whose size is decreasing is located.
  • the plurality of adjacent pixel units are repeatedly arranged in the column direction as one repeating unit group.
  • the size of the three third sub-pixels decreases in the column direction.
  • FIG. 11 three of the third sub-pixels.
  • the dimensions H1, H2, and H3 in the column direction are decremented, and the three adjacent pixel units are repeatedly arranged in the column direction as one repeating unit group, that is, in the column direction, all the third sub-pixels 305 are three One group, the size of which varies according to H1, H2, H3, H1, H2, H3, ....
  • the size of the third sub-pixel in the four or more adjacent pixel units of the same column may be reduced in the column direction, but it is required to satisfy: in the same pixel unit, the first sub-pixel
  • the total size of the 301 and second sub-pixels 303 in the column direction is larger than the size of the third sub-pixel 305 in the column direction.
  • the light-emitting region 302 of the first sub-pixel 301, the light-emitting region 304 of the second sub-pixel 303, and the light-emitting region 306 of the third sub-pixel 305 are rotated 90 degrees to the right.
  • the "product" shape arrangement that is, the first sub-pixel 301 and the second sub-pixel 303 are arranged on the left side, the third sub-pixel 305 is arranged on the right side; among the pixel units of the even-numbered rows, the first sub-pixel 301
  • the light-emitting area 302, the light-emitting area 304 of the second sub-pixel 303, and the light-emitting area 306 of the third sub-pixel 305 are arranged in a "pin" shape rotated 90 degrees to the left, that is, the third sub-pixel 305 is arranged on the left side.
  • the first sub-pixel 301 and the second sub-pixel 303 are arranged on the right side.
  • the arrangement of the pixel units may be: in the pixel units of the odd rows, the light-emitting area 302 of the first sub-pixel 301, the light-emitting area 304 of the second sub-pixel 303, and the third sub-
  • the light-emitting area 306 of the pixel 305 is arranged in a "pin" shape rotated 90 degrees to the left, that is, the third sub-pixel 305 is arranged on the left side, and the first sub-pixel 301 and the second sub-pixel 303 are arranged on the right side;
  • the light-emitting area 302 of the first sub-pixel 301, the light-emitting area 304 of the second sub-pixel 303, and the light-emitting area 306 of the third sub-pixel 305 are arranged in a "pin" shape rotated 90 degrees to the right. That is, the first sub-pixel 301 and the second sub-pixel 303 are arranged on the left side, and the third sub-
  • FIG. 12 is a schematic diagram of a pixel arrangement of a display panel in Embodiment 5 of the present disclosure.
  • the difference between this embodiment and the above embodiment is that, in the embodiment, the three sub-pixels included in the pixel unit are arranged in the row direction or the column direction, and the pixel units of different rows or different columns are arranged in a misaligned manner.
  • the pixel unit includes a first sub-pixel 301, a second sub-pixel 303, and a third sub-pixel 305.
  • the first sub-pixel 301, the second sub-pixel 303, and the third sub-pixel 305 are arranged.
  • the arrangement of the pixel units in the same column is the same, and the arrangement structure of each pixel unit flipped 180 degrees in the column direction is the same as the arrangement of the pixel units adjacent to the pixel unit in the row direction.
  • the pixel unit (1, 1) in the first column of the first row includes the first sub-pixel 301, the second sub-pixel 303, and the third sub-pixel 305 arranged in the column direction
  • the arrangement structure after flipping 180 degrees in the column direction is the third sub-pixel 305, the second sub-pixel 303, and the first sub-pixel 301, and is arranged in the same manner as the pixel unit (1, 2) of the first row and the second column. .
  • the arrangement of the pixel units in the same column is the same, and the pixel units of different columns are arranged in a wrong position, that is, the two ends of the adjacent two columns of pixel units are not aligned, which can better improve the green and bright lines on the upper and lower sides of the display area of the screen, Red bright line and other issues.
  • the embodiment provides a display panel, and the pixel structure of any one of embodiments 1 to 5 can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本公开提供了一种像素结构及包含所述像素结构的显示面板,像素结构包括阵列排布的多个像素单元,所述像素单元分别沿第一方向和与所述第一方向垂直的第二方向排布,每个像素单元均包括颜色彼此不同的第一子像素、第二子像素和第三子像素,在所述第二方向上,所述第三子像素之间的间距不等于所述第一子像素之间的间距,并且不等于所述第二子像素之间的间距。根据本公开的像素结构,像素单元可以更紧凑的排列,减少了像素间距,提高了PPI。

Description

像素结构及包含所述像素结构的显示面板 技术领域
本公开涉及显示技术领域,特别涉及一种像素结构及包含该像素结构的显示面板。
背景技术
OLED(Organic Light-Emitting Diode,有机发光二极管)是主动发光器件。与传统的LCD(Liquid Crystal Display,液晶显示)显示方式相比,OLED显示技术无需背光源,具有自发光的特性。OLED采用较薄的有机材料膜层和玻璃基板,当有电流通过时,有机材料膜层就会发光。因此OLED显示面板能够显著节省电能,可以做得更轻更薄,比LCD显示面板耐受更宽范围的温度变化,而且可视角度更大。OLED显示面板有望成为继LCD之后的下一代平板显示技术,是目前平板显示技术中受到关注最多的技术之一。
OLED屏体的彩色化方法有许多种,现在较为成熟并已经成功量产的OLED彩色化技术主要是OLED蒸镀技术,其采用传统的RGB Stripe(RGB条状)排列方式进行蒸镀。其中画面效果最好的是side-by-side(并置)的方式。side-by-side方式是在一个像素(Pixel)范围内有红、绿、蓝(R、G、B)三个子像素(sub-pixel),每个子像素均呈四边形,且各自具有独立的有机发光元器件,它是利用蒸镀成膜技术透过高精细金属掩膜版(Fine Metal Mask,FMM)在array(阵列)基板上相应的像素位置形成有机发光元器件,所述高精细金属掩膜版通常简称为金属掩膜版或蒸镀掩膜版。制作高PPI(Pixel Per Inch,每英寸所拥有的像素数目)的OLED显示面板的技术重点在于精细及机械稳定性好的FMM以及像素(子像素)的排布方式。
图1为现有技术中一种OLED显示面板的像素排布示意图。如图1所示,该OLED显示面板采用像素并置的方式,每个像素单元Pixel包括R子像素区域101、G子像素区域103以及B子像素区域105,其中,R子像素区域101包括R发光区102以及R非发光区(未标号),G子像素区域103包括G发光区104以及G非发光区(未标号),B子像素区域105包括B发光区106 以及B非发光区(未标号)。图1中所示R、G、B子像素区域和发光区面积分别相等,并且R、G、B子像素呈直线排列。具体而言,在每个子像素区域的发光区中,包括阴极、阳极和电致发光层(亦称为有机发射层),其中,电致发光层位于阴极和阳极之间,用于产生预定颜色光线以实现显示。在制备现有技术中显示面板时,通常需要利用三次蒸镀工艺以分别在对应颜色像素区域的发光区中形成对应颜色(红色、绿色或蓝色)的电致发光层。
图1所示的OLED显示面板通常采用图2所示FMM进行蒸镀,该种FMM包括遮挡区107以及若干个蒸镀开口108,同一列相邻的两个蒸镀开口108之间的遮挡区称之为连接桥(bridge)。为了避免蒸镀时对子像素产生遮蔽效应,子像素与bridge间必须保持足够的距离,这就导致子像素上下的长度缩小,而影响了每一个子像素的开口率。传统的RGB并置像素排列方式,最高只能达到200~300PPI,难以实现高分辨率的显示效果。随着用户对OLED显示面板分辨率的需求越来越高,这种RGB像素并置的方式已不能满足产品高PPI的设计要求。
图3为现有技术中另一种OLED显示面板的像素排布示意图。如图3所示,每个像素单元仅有G子像素是独用的,R和B子像素均被与相邻的像素单元共用,比如,像素单元201和像素单元202共用R子像素。这种方式可以提高显示屏的PPI,然而,这种排布方式中R和B子像素被相邻的像素单元共用,整个显示效果可能存在畸变,不是真正意义上的全彩显示。
发明内容
发明人经过研究发现,传统的RGB像素排列方式已不能同时满足产品的开口率和显示效果的要求。基于此,本公开提供一种像素结构及包含所述像素结构的显示面板,以解决现有技术中存在的问题。
为解决上述技术问题,本公开提供一种像素结构,包括阵列排布的多个像素单元,所述像素单元分别沿第一方向和与所述第一方向垂直的第二方向排布,每个像素单元均包括颜色彼此不同的第一子像素、第二子像素和第三子像素,在所述第二方向上,所述第三子像素之间的间距不等于所述第一子 像素之间的间距,并且不等于所述第二子像素之间的间距。
可选的,在所述第二方向上,所述第三子像素之间的间距大于所述第一子像素之间的间距,并且大于所述第二子像素之间的间距。
可选的,在所述第二方向上,所述第三子像素之间的间距小于所述第一子像素之间的间距,并且小于所述第二子像素之间的间距。
可选地,所述第一子像素之间的间距等于所述第二子像素之间的间距。
可选地,在每个像素单元中,在所述第二方向上,所述第一子像素和所述第二子像素的总尺寸大于所述第三子像素的尺寸。
可选地,在每个像素单元中,该像素单元在所述第一方向上的尺寸大于该像素单元在所述第二方向上的尺寸。
在每个像素单元中,该像素单元在所述第一方向上的尺寸与该像素单元在所述第二方向上的尺寸的比为3:2、2:1、4:3或5:4。
可选地,在所述第一方向上多个相邻的像素单元内,所述第三子像素在所述第一方向上的尺寸递增或递减,并且以所述多个相邻的像素单元作为重复单元组沿所述第一方向和所述第二方向重复排列,或者
在所述第二方向上多个相邻的像素单元内,所述第三子像素在所述第二方向上的尺寸递增或递减,并且以所述多个相邻的像素单元作为重复单元组沿所述第一方向和所述第二方向重复排列。
可选地,所述多个相邻的像素单元的数量为三个以上。
在每个像素单元中,所述第一子像素和所述第二子像素在所述第二方向上共线地排布,所述第三子像素与所述第一子像素和所述第二子像素在所述第一方向上并排地排布。
可选地,每个像素单元沿所述第一方向翻转180度后的排布结构与在所述第二方向上和该像素单元相邻的像素单元的排布结构相同,或者
每个像素单元沿所述第二方向翻转180度后的排布结构与在所述第一方向上和该像素单元相邻的像素单元的排布结构相同。
可选地,所述第一子像素、所述第二子像素和所述第三子像素为红色子像素、绿色子像素和蓝色子像素中的一种。
可选地,所述第一方向为行方向,所述第二方向为列方向,或者
所述第一方向为列方向,所述第二方向为行方向。
根据本公开的另一面,还提供一种显示面板,包括如上所述的像素结构。
1、本公开提供一种显示面板的像素结构,每个像素单元分别沿行方向或列方向相邻设置,每个像素单元由三个不同颜色的子像素组成,可以实现真正意义上的全色显示;
2、每个像素单元包括第一子像素、第二子像素和第三子像素,第一子像素和第二子像素排布在一列,第三子像素排布在另一列,第一子像素和第二子像素沿列方向的总尺寸大于第三子像素沿列方向的尺寸,同一行中像素单元的排布结构相同,并且,每个像素单元翻转180度后的排布结构与同一列中相邻的像素单元的排布结构相同,像素单元可以更紧凑的排列,减少了像素间距,提高了PPI;同时,当所述第一子像素和第二子像素排布在一列时,同一列上相邻两个像素单元的第三子像素是相互错开排布的,可降低蒸镀掩膜版制作工艺和蒸镀工艺的难度;
3、不同列的像素单元错位排布,可以较好地改善屏体显示区域上下侧绿亮线、红亮线等问题;其中一个子像素在行方向或列方向的尺寸不等于其余两个子像素在行方向或列方向的尺寸,优选蓝色子像素的的尺寸大于红色子像素与绿色子像素的尺寸,可根本改变因现有局部/单点亮度过亮或寿命衰减过快的缺陷,可更好地从全屏的角度来平衡蓝色子像素的寿命,减缓因局部衰减过快造成的偏色问题。
附图说明
图1为现有技术中一种显示面板的像素排布示意图。
图2为对应图1的一种FMM的示意图。
图3为现有技术中另一种显示面板的像素排布示意图。
图4为本公开实施例一中显示面板的像素排布示意图。
图5为本公开实施例一所示的显示面板中在列方向上相邻的两个像素单元的结构示意图。
图6为本公开实施例二中显示面板的像素排布示意图。
图7为本公开实施例二所示的显示面板中在列方向上相邻的两个像素单元的结构示意图。
图8为本公开实施例三中显示面板的像素排布示意图。
图9为本公开实施例三所示的显示面板中在列方向上相邻的三个像素单元的结构示意图。
图10为本公开实施例四中显示面板的像素排布示意图。
图11为本公开实施例四所示的显示面板中在列方向上相邻的三个像素单元的结构示意图。
图12为本公开实施例五中显示面板的像素排布示意图。
具体实施方式
本公开中所述的行和列均以及左和右是为说明本公开而以图中所示为参考标准的,并非指实际产品中的行和列以及左和右。如;本公开中的“行方向”可以是X方向,“列方向”可以是Y方向(第二方向)。然而,本公开的“行”和“列”的含义并不仅仅限定于常规意义上的“行”和“列”,还可以是常规意义上的“行”和“列”同时顺时针90度或逆时针旋转90度而形成的“行”和“列”。在以下实施例中,用相同或相似的附图标记表示相同或相似的部分。
实施例一
图4为本公开实施例一中显示面板的像素排布示意图。其中,X方向称之为行方向(横向),Y方向称之为列方向(纵向)。为简便,附图中只表示出了OLED显示面板的一部分,实际产品中像素数量不限于此,像素单元的数量可依据实际显示需要作相应的变化。
如图4所示,显示面板的像素结构包括阵列排布的多个像素单元,每个像素单元均包括第一子像素301、第二子像素303和第三子像素305。在同一个像素单元内,所述第一子像素301和第二子像素303排布在一列,所述第三子像素305排布在另一列,第一子像素301和第二子像素303沿列方向的总尺寸L1(即第一子像素301和第二子像素303沿列方向的尺寸之和)大于 第三子像素305沿列方向的尺寸L2,同一行中所有像素单元的排布结构相同,并且,每个像素单元沿行方向翻转(自身左右翻转)后的排布结构与同一列中相邻的像素单元的排布结构相同。如此一来,像素单元可以更紧凑的排列,减少了像素间距,提高了PPI,并且,每个像素单元是由RGB三色组成,可以实现真正意义上的全色显示。
进一步的,由于本公开中像素单元的排布方式更为紧凑,可以使得像素单元沿行方向的总尺寸更大,进而使得像素单元沿行方向的总尺寸(即像素单元在行方向的最大尺寸)大于像素单元沿列方向的最大尺寸(这里是指第一子像素301和第二子像素303沿列方向的尺寸之和),即,使得L0大于L1,比如是L0:L1=3:2,这样,与传统的正方形像素单元(行方向尺寸与列方向尺寸之比为1:1)相比,本实施例中的2个像素单元可以实现传统的3个像素单元的显示效果。当然,本公开并不限制L0与L1的具体比例关系,像素单元沿行方向的总尺寸L0与像素单元沿列方向的最大尺寸L1之间的比值也可以是2:1、4:3、5:4等。
在此,第一行第一列的像素单元记为像素单元(1,1),第一行第二列的像素单元记为像素单元(1,2),第二行第一列的像素单元记为像素单元(2,1),第二行第二列的像素单元记为像素单元(2,2),其它类推。如图4所示,第一行第三列的像素单元(1,3)向右翻转180度后的排布结构与同一列中相邻行的像素单元即第二行第三列的像素单元(2,3)的排布结构相同。可见,同一列上相邻两个像素单元,比如,像素单元(1,3)和像素单元(2,3)的第三子像素相互错开排布,即,在列方向上像素单元(1,3)和像素单元(2,3)的第三子像素并未排布在一条直线上,因而,用以形成第三子像素的蒸镀掩膜版(FMM)上的蒸镀开口也是错开排布的,可降低蒸镀掩膜版制作工艺和蒸镀工艺的难度。
本实施例中,第一子像素301、第二子像素303和第三子像素305的发光区可以呈“品”字形、倒“品”字形、向左旋转90度的“品”字形或向右旋转90度的“品”字形排布,也可以是大致呈“品”字形、倒“品”字形、向左旋转90度的“品”字形或向右旋转90度的“品”字形。图4所示的排布结构中,奇数行的像素单 元中,第一子像素301的发光区302、第二子像素303的发光区304和第三子像素305的发光区306呈向右旋转90度的“品”字形(大致上的品字形)排布,即,第一子像素301和第二子像素303排布在左侧,第三子像素305排布在右侧;偶数行的像素单元中,第一子像素301的发光区302、第二子像素303的发光区304和第三子像素305的发光区306呈向左旋转90度的“品”字形(大致上的品字形)排布,即,第三子像素305排布在左侧,第一子像素301和第二子像素303排布在右侧。进一步的,同一行中所有像素单元的第一子像素301排布在一条直线上,同一行中所有像素单元的第二子像素亦是排布在一条直线上。
在本实施例中,在同一列的像素单元内,相邻的第一子像素301在列方向上的间距等于相邻的第二子像素303在列方向上的间距,且相邻的第一子像素301在列方向上的间距,以及相邻的第二子像素303在列方向上的间距均大于相邻的第三子像素305在列方向上的间距。具体的,请参照图5所示,在同一列的像素单元内,相邻的第一子像素301在列方向上的间距y1等于相邻的第二子像素303在列方向上的间距y2,并且相邻的第一子像素301在列方向上的间距y1与相邻的第二子像素303在列方向上的间距y2均大于相邻的第三子像素305在列方向上的间距y3。
优选的,在同一个像素单元内,所述第三子像素305在列方向上的下表面高于或等于所述第二子像素303在列方向上的下表面,即所述第三子像素305在列方向上的下表面所在的平面(如图5中的A1)要高于或者等于(即不低于)所述第二子像素303在列方向上的下表面所在的平面(如图5中的A2),防止第三子像素305与第一子像素301、第二子像素303相差太远,对显示造成影响。优选的,在同一个像素单元内,第三子像素305沿行方向延伸的中心线与第一子像素301和第二子像素303之间的边界线的距离小于等于10μm。
本实施例中,第一子像素301为绿色(G)子像素,第二子像素303为红色(R)子像素,第三子像素305为蓝色(B)子像素;因此,第一子像素301包括G发光区302以及G非发光区(图中未标号),并且包括用于发射绿光 的有机发射层;第二子像素303包括R发光区304以及R非发光区(图中未标号),并且包括用于发射红光的有机发射层;第三子像素305包括B发光区306以及B非发光区(图中未标号),并且包括用于发射蓝光的有机发射层。由于B子像素的发光效率通常是最低的,相应地所需要的发光面积就要更大,故而,第三子像素305的发光面积大于第一子像素301和第二子像素303的发光面积。在其他实施例中,所述第一子像素301也可以是红色子像素,所述第二子像素303也可以是绿色子像素,所述第一子像素与第二子像素可以互换。
优选方案中,第一子像素301和第二子像素303的形状和面积均相等,即呈镜像对称分布。需要说明的是,由于同一个像素单元内的第一子像素301和第二子像素303共用一条边,该共用的边即为第一子像素301和第二子像素302之间的边界线,但应理解,此处的“边界”或“边界线”并不限定为实体的“边界”或“边界线”,而可以是指两个像素子像素之间虚拟的“边界”或“边界线”。
本实施例中,第一子像素301和第二子像素303的形状均为长方形,第三子像素305的形状为正方形,且所述第一子像素301和第二子像素303沿其短边方向排列,其中,第三子像素305的发光区306的边长(高度)为第一子像素301的发光区302的短边长度和第二子像素303的发光区304的短边长度(高度)的2倍。但应理解的是,第一子像素301、第二子像素303以及第三子像素303的形状并不局限于矩形,还可以是矩形之外的其它四边形,或者是三角形、五边形、六边形、八边形等多边形中的一种或其任意组合。同时,第一子像素301和第二子像素303的面积也可以不相等,并且,第三子像素305的发光面积也并不限制为第一子像素301或第二子像素303的发光面积的2倍,可以根据配色要求来相应调整各个子像素的形状和/或面积。
实施例二
图6为本公开实施例二所示的显示面板的像素排布示意图。本实施例与实施例一的区别之处在于,在同一列的像素单元内,相邻的第一子像素301在列方向上的间距等于相邻的第二子像素303在列方向上的间距,且相邻的 第一子像素301在列方向上的间距,以及相邻的第二子像素303在列方向上的间距小于相邻的第三子像素305在列方向上的间距。
具体的,请参照图7所示,在同一列的像素单元内,相邻的第一子像素301在列方向上的间距y1等于相邻的第二子像素303在列方向上的间距y2,并且相邻的第一子像素301在列方向上的间距y1与相邻的第二子像素303在列方向上的间距y2均小于相邻的第三子像素305在列方向上的间距y3。优选的,同一个像素单元内,所述第三子像素305在列方向上的上表面低于或等于所述第一子像素301在列方向上的上表面,即所述第三子像素305在列方向上的上表面所在的平面(如图7中的A1)要低于或者等于(即不高于)所述第一子像素301在列方向上的上表面所在的平面(如图7中的A2),防止第三子像素305与第一子像素301、第二子像素303相差太远,对显示造成影响。优选的,在同一个像素单元内,第三子像素305沿行方向延伸的中心线与第一子像素301和第二子像素303之间的边界线的距离小于等于10μm。
实施例三
图8为本公开实施例三所示的显示面板的像素排布示意图。本实施例与实施例一的区别之处有两点。
第一点:在本实施例中,每个像素单元中,第三子像素305沿行方向延伸的中心线与第一子像素301和第二子像素303之间的边界线重合,这样,可以进一步减少像素间距(pitch),提高显示屏的PPI,并使得RGB子像素分布均匀,具有较佳的显示效果。具体可参考图8,第三子像素305沿行方向延伸的中心线306’(该中心线306’将第三子像素305均分为两份且该中心线306’沿行方向延伸)与第一子像素301和第二子像素303之间的边界线重合。
第二点:在本实施例中,在同一列的多个相邻的像素单元内,所述第三子像素在列方向上的尺寸递增,且尺寸呈递增的第三子像素所在的该多个相邻的像素单元作为一个重复单元组在列方向上重复排列。优选的,在同一列的三个相邻的像素单元内,三个所述第三子像素在列方向上的尺寸递增,具体的,请参照图9所示,三个所述第三子像素305在列方向上的尺寸H1、H2、H3递增,并且以这三个相邻的像素单元作为一个重复单元组在列方向上重复 排列,即在列方向上,所有的第三子像素305三个一组,其尺寸按照H1、H2、H3、H1、H2、H3……变化。优选的,三个所述第三子像素305在列方向上的尺寸比H1:H2:H3=3:4:5。当然,也可以是同一列的四个或更多个相邻的像素单元内的第三子像素在列方向上的尺寸递增,但是需要满足:在同一个像素单元内,所述第一子像素301和第二子像素303沿列方向的总尺寸大于所述第三子像素305沿列方向的尺寸。
蓝色子像素的尺寸大于红色子像素的尺寸,并大于绿色子像素的尺寸,可根本改变因现有局部/单点亮度过亮或寿命衰减过快的缺陷,可更好地从全屏的角度来平衡蓝色子像素的寿命,减缓因局部衰减过快造成的偏色问题。
实施例四
图10为本公开实施例四所示的显示面板的像素排布示意图。本实施例与实施例三的区别之处在于,在同一列的多个相邻像素单元内,所述第三子像素在列方向上的尺寸递减,且尺寸呈递减的第三子像素所在的该多个相邻的像素单元作为一个重复单元组在列方向上重复排列。优选的,在同一列的三个相邻的像素单元内,三个所述第三子像素在列方向上的尺寸递减,具体的,请参照图11所示,三个所述第三子像素305在列方向上的尺寸H1、H2、H3递减,并且以这三个相邻的像素单元作为一个重复单元组在列方向上重复排列,即在列方向上,所有的第三子像素305三个一组,其尺寸按照H1、H2、H3、H1、H2、H3……变化。优选的,三个所述第三子像素305在列方向上的尺寸比H1:H2:H3=5:4:3。当然,也可以是同一列的四个或更多个相邻的像素单元内的第三子像素在列方向上的尺寸递减,但是需要满足:在同一个像素单元内,所述第一子像素301和第二子像素303沿列方向的总尺寸大于所述第三子像素305沿列方向的尺寸。
在以上的实施例中,在奇数行的像素单元中,第一子像素301的发光区302、第二子像素303的发光区304和第三子像素305的发光区306呈向右旋转90度的“品”字形排布,即,第一子像素301和第二子像素303排布在左侧,第三子像素305排布在右侧;偶数行的像素单元中,第一子像素301的发光区302、第二子像素303的发光区304和第三子像素305的发光区306呈向左 旋转90度的“品”字形排布,即,第三子像素305排布在左侧,第一子像素301和第二子像素303排布在右侧。
在其他的实施例中,所述像素单元的排布方式也可以为:在奇数行的像素单元中,第一子像素301的发光区302、第二子像素303的发光区304和第三子像素305的发光区306呈向左旋转90度的“品”字形排布,即,第三子像素305排布在左侧,第一子像素301和第二子像素303排布在右侧;偶数行的像素单元中,第一子像素301的发光区302、第二子像素303的发光区304和第三子像素305的发光区306呈向右旋转90度的“品”字形排布,即,第一子像素301和第二子像素303排布在左侧,第三子像素305排布在右侧。
实施例五
图12为本公开实施例五中显示面板的像素排布示意图。本实施例与上述实施例的区别之处在于,在本实施例中,像素单元包含的三个子像素沿行方向或列方向排布,且不同行或不同列的像素单元错位排布。
请参见图12所示,所述像素单元包括第一子像素301、第二子像素303与第三子像素305;所述第一子像素301、第二子像素303和第三子像素305排布在一列,同一列中像素单元的排布结构相同,并且,每个像素单元沿列方向翻转180度后的排布结构与在行方向上和该像素单元相邻的像素单元的排布结构相同,例如在第一行第一列的像素单元(1,1)包括沿列方向排布的第一子像素301、第二子像素303与第三子像素305,该像素单元(1,1)沿列方向翻转180度后的排布结构为第三子像素305、第二子像素303与第一子像素301,与第一行第二列的像素单元(1,2)的排布方式相同。
同一列中像素单元的排布结构相同,并且不同列的像素单元错位排布,即相邻两列像素单元的两端并不对齐,可以较好地改善屏体显示区域上下侧绿亮线、红亮线等问题。
实施例六
本实施例提供一种显示面板,可以采用实施例一至五中任一所述的像素结构。
以上实施例对本公开提出的像素结构及包含所述像素结构的显示面板进 行了详细说明,但应理解,上述描述仅是对本公开较佳实施例的描述,并非对本公开范围的任何限定,本公开领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。

Claims (14)

  1. 一种像素结构,其中,包括阵列排布的多个像素单元,所述像素单元分别沿第一方向和与所述第一方向垂直的第二方向排布,每个像素单元均包括颜色彼此不同的第一子像素、第二子像素和第三子像素,
    在所述第二方向上,所述第三子像素之间的间距不等于所述第一子像素之间的间距,并且不等于所述第二子像素之间的间距。
  2. 如权利要求1所述的像素结构,其中,在所述第二方向上,所述第三子像素之间的间距大于所述第一子像素之间的间距,并且大于所述第二子像素之间的间距。
  3. 如权利要求1所述的像素结构,其中,在所述第二方向上,所述第三子像素之间的间距小于所述第一子像素之间的间距,并且小于所述第二子像素之间的间距。
  4. 如权利要求1所述的像素结构,其中,所述第一子像素之间的间距等于所述第二子像素之间的间距。
  5. 如权利要求1所述的像素结构,其中,在每个像素单元中,在所述第二方向上,所述第一子像素和所述第二子像素的总尺寸大于所述第三子像素的尺寸。
  6. 如权利要求1所述的像素结构,其中,在每个像素单元中,该像素单元在所述第一方向上的尺寸大于该像素单元在所述第二方向上的尺寸。
  7. 如权利要求6所述的像素结构,其中,在每个像素单元中,该像素单元在所述第一方向上的尺寸与该像素单元在所述第二方向上的尺寸的比为3:2、2:1、4:3或5:4。
  8. 如权利要求1所述的像素结构,其中,在所述第一方向上多个相邻的像素单元内,所述第三子像素在所述第一方向上的尺寸递增或递减,并且以所述多个相邻的像素单元作为重复单元组沿所述第一方向和所述第二方向重复排列,或者
    在所述第二方向上多个相邻的像素单元内,所述第三子像素在所述第二 方向上的尺寸递增或递减,并且以所述多个相邻的像素单元作为重复单元组沿所述第一方向和所述第二方向重复排列。
  9. 如权利要求8所述的像素结构,其中,所述多个相邻的像素单元的数量为三个以上。
  10. 如权利要求1所述的像素结构,其中,在每个像素单元中,所述第一子像素和所述第二子像素在所述第二方向上共线地排布,所述第三子像素与所述第一子像素和所述第二子像素在所述第一方向上并排地排布。
  11. 如权利要求1所述的像素结构,其中,每个像素单元沿所述第一方向翻转180度后的排布结构与在所述第二方向上和该像素单元相邻的像素单元的排布结构相同,或者
    每个像素单元沿所述第二方向翻转180度后的排布结构与在所述第一方向上和该像素单元相邻的像素单元的排布结构相同。
  12. 如权利要求1至11中任一项所述的像素结构,其中,所述第一子像素、所述第二子像素和所述第三子像素为红色子像素、绿色子像素和蓝色子像素中的一种。
  13. 如权利要求1至11中任一项所述的像素结构,其中,所述第一方向为行方向,所述第二方向为列方向,或者
    所述第一方向为列方向,所述第二方向为行方向。
  14. 一种显示面板,其中,包括如权利要求1至13中任一项所述的像素结构。
PCT/CN2018/090014 2017-08-31 2018-06-05 像素结构及包含所述像素结构的显示面板 WO2019041939A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/524,342 US10692940B2 (en) 2017-08-31 2019-07-29 Pixel structure and display panel having the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710775318.0A CN109427850B (zh) 2017-08-31 2017-08-31 像素结构及包含所述像素结构的显示面板
CN201710775318.0 2017-08-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/524,342 Continuation US10692940B2 (en) 2017-08-31 2019-07-29 Pixel structure and display panel having the same

Publications (1)

Publication Number Publication Date
WO2019041939A1 true WO2019041939A1 (zh) 2019-03-07

Family

ID=65512744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090014 WO2019041939A1 (zh) 2017-08-31 2018-06-05 像素结构及包含所述像素结构的显示面板

Country Status (4)

Country Link
US (1) US10692940B2 (zh)
CN (1) CN109427850B (zh)
TW (1) TWI676165B (zh)
WO (1) WO2019041939A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116959334A (zh) * 2023-09-21 2023-10-27 长春希达电子技术有限公司 亚像素的排布结构、虚拟像素结构以及像素复用方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110634908A (zh) * 2018-06-21 2019-12-31 上海自旭光电科技有限公司 有机发光二极管显示器的画素结构
CN108364983A (zh) * 2018-02-01 2018-08-03 武汉华星光电半导体显示技术有限公司 像素排列结构
KR20200106589A (ko) * 2019-03-04 2020-09-15 삼성디스플레이 주식회사 표시 장치, 표시 장치의 제조장치 및 표시 장치의 제조방법
CN110767720B (zh) 2019-06-05 2020-09-08 昆山国显光电有限公司 显示基板、显示面板及显示装置
CN110364557B (zh) * 2019-07-10 2021-09-14 云谷(固安)科技有限公司 像素排布结构及显示面板
CN110364558B (zh) * 2019-07-15 2021-11-16 云谷(固安)科技有限公司 像素排布结构及显示面板
CN110379836B (zh) 2019-07-19 2022-02-22 云谷(固安)科技有限公司 显示面板及显示装置
CN110531550A (zh) * 2019-09-03 2019-12-03 武汉天马微电子有限公司 一种显示面板及显示装置
KR20210028784A (ko) * 2019-09-04 2021-03-15 삼성전자주식회사 발광 패키지 및 이를 포함하는 디스플레이 소자
US11557635B2 (en) 2019-12-10 2023-01-17 Samsung Display Co., Ltd. Display device, mask assembly, and apparatus for manufacturing the display device
US20230064639A1 (en) * 2020-01-13 2023-03-02 Konka Group Co., Ltd. Micro-led pixel arrangement structure, arrangement method, and display panel
CN114256299A (zh) * 2020-09-25 2022-03-29 京东方科技集团股份有限公司 显示面板及显示装置
KR20220082169A (ko) 2020-12-09 2022-06-17 삼성디스플레이 주식회사 표시 장치
US20220238611A1 (en) * 2021-01-28 2022-07-28 Innolux Corporation Light emitting device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103985316A (zh) * 2014-02-07 2014-08-13 友达光电股份有限公司 显示装置
CN104009066A (zh) * 2013-12-31 2014-08-27 昆山工研院新型平板显示技术中心有限公司 一种像素结构及采用该像素结构的有机发光显示器
US20150009104A1 (en) * 2013-07-05 2015-01-08 Samsung Display Co., Ltd. Organic light-emitting diode (oled) display
CN206322697U (zh) * 2016-11-21 2017-07-11 昆山国显光电有限公司 像素结构及包含所述像素结构的oled显示面板
CN108091667A (zh) * 2016-11-21 2018-05-29 昆山国显光电有限公司 像素结构及包含所述像素结构的oled显示面板

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI227340B (en) * 2002-02-25 2005-02-01 Himax Tech Inc Color filter and liquid crystal display
US20080001525A1 (en) * 2006-06-30 2008-01-03 Au Optronics Corporation Arrangements of color pixels for full color OLED
CA2686174A1 (en) 2009-12-01 2011-06-01 Ignis Innovation Inc High reslution pixel architecture
KR101257734B1 (ko) * 2010-09-08 2013-04-24 엘지디스플레이 주식회사 유기전계발광 표시장치
KR101615332B1 (ko) 2012-03-06 2016-04-26 삼성디스플레이 주식회사 유기 발광 표시 장치의 화소 배열 구조
TWI559524B (zh) * 2013-01-15 2016-11-21 友達光電股份有限公司 電激發光顯示面板之畫素結構
CN103123927B (zh) 2013-01-24 2015-05-06 昆山维信诺显示技术有限公司 用于oled显示屏的像素结构及其金属掩膜板
CN104885141B (zh) * 2013-11-04 2018-03-16 深圳云英谷科技有限公司 显示器子像素排布及其渲染方法
US20150287767A1 (en) * 2014-04-08 2015-10-08 Apple Inc. Organic Light-Emitting Diode Display With Varying Anode Pitch
CN105448951B (zh) 2014-08-29 2019-01-29 上海和辉光电有限公司 Oled显示装置
CN105552099A (zh) 2014-10-29 2016-05-04 上海和辉光电有限公司 一种oled像素排列结构
CA2872563A1 (en) * 2014-11-28 2016-05-28 Ignis Innovation Inc. High pixel density array architecture
JP6654280B2 (ja) * 2015-01-14 2020-02-26 天馬微電子有限公司 画素アレイ及び電気光学装置並びに電気機器並びに画素アレイの駆動方法
US10854684B2 (en) * 2016-02-18 2020-12-01 Boe Technology Group Co., Ltd. Pixel arrangement structure and driving method thereof, display substrate and display device
CN105911785B (zh) * 2016-06-30 2019-08-23 上海中航光电子有限公司 一种显示面板和显示装置
JP6756538B2 (ja) * 2016-08-03 2020-09-16 株式会社ジャパンディスプレイ 表示装置
CN106449710B (zh) * 2016-10-31 2019-05-03 昆山工研院新型平板显示技术中心有限公司 像素结构以及包含该像素结构的oled显示面板
CN108010934B (zh) 2016-10-31 2024-01-23 昆山国显光电有限公司 像素结构及其形成方法、oled显示面板以及蒸镀掩膜版
CN106298865B (zh) * 2016-11-16 2019-10-18 京东方科技集团股份有限公司 像素排列结构、有机电致发光器件、显示装置、掩模板
CN107293571B (zh) * 2017-06-09 2019-09-20 深圳市华星光电技术有限公司 Oled显示面板的像素排列结构及oled显示面板
US10607534B2 (en) * 2017-12-29 2020-03-31 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. OLED pixel arrangement structure having sub-pixels of different colors alternately arranged in adjacent rows and display panel including same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150009104A1 (en) * 2013-07-05 2015-01-08 Samsung Display Co., Ltd. Organic light-emitting diode (oled) display
CN104009066A (zh) * 2013-12-31 2014-08-27 昆山工研院新型平板显示技术中心有限公司 一种像素结构及采用该像素结构的有机发光显示器
CN103985316A (zh) * 2014-02-07 2014-08-13 友达光电股份有限公司 显示装置
CN206322697U (zh) * 2016-11-21 2017-07-11 昆山国显光电有限公司 像素结构及包含所述像素结构的oled显示面板
CN108091667A (zh) * 2016-11-21 2018-05-29 昆山国显光电有限公司 像素结构及包含所述像素结构的oled显示面板

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116959334A (zh) * 2023-09-21 2023-10-27 长春希达电子技术有限公司 亚像素的排布结构、虚拟像素结构以及像素复用方法
CN116959334B (zh) * 2023-09-21 2023-12-12 长春希达电子技术有限公司 亚像素的排布结构、虚拟像素结构以及像素复用方法

Also Published As

Publication number Publication date
US10692940B2 (en) 2020-06-23
US20190355795A1 (en) 2019-11-21
TW201901652A (zh) 2019-01-01
CN109427850A (zh) 2019-03-05
TWI676165B (zh) 2019-11-01
CN109427850B (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
WO2019041939A1 (zh) 像素结构及包含所述像素结构的显示面板
CN109427851B (zh) 像素结构、oled显示屏以及蒸镀掩膜版
US10700136B2 (en) Pixel structure and organic light emitting display using the pixel structure
US10901314B2 (en) Pixel arrangement structure, organic light emitting device, display device and mask
CN108010934B (zh) 像素结构及其形成方法、oled显示面板以及蒸镀掩膜版
CN106653799B (zh) 像素结构以及包含所述像素结构的oled显示面板
WO2018196496A1 (zh) 像素结构驱动方法
CN108091667B (zh) 像素结构及包含所述像素结构的oled显示面板
JP6527824B2 (ja) Oled表示装置に用いる画素構造
CN206322697U (zh) 像素结构及包含所述像素结构的oled显示面板
WO2016184030A1 (zh) 像素排列结构、有机电致发光器件、显示装置、掩模板
TWI585726B (zh) 畫素結構
JP7005657B2 (ja) 画素構造及びoled表示パネル
CN108807491A (zh) 像素排列结构
WO2022160827A1 (zh) 像素阵列、显示装置及高精度金属掩膜板
WO2019042072A1 (zh) 像素结构、oled显示装置及驱动方法
CN104576696A (zh) 一种像素结构及采用该像素结构的有机发光显示器
CN207068854U (zh) 像素结构、包含所述像素结构的oled显示屏、蒸镀掩膜版
WO2022213581A1 (zh) 显示面板、显示装置和掩模板
JP2024518858A (ja) 画素配列構造、メタルマスク板及び有機発光表示装置
TWM572073U (zh) Pixel structure and OLED display panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18851851

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18851851

Country of ref document: EP

Kind code of ref document: A1