WO2019041905A1 - 一种拍照方法、拍照装置及移动终端 - Google Patents

一种拍照方法、拍照装置及移动终端 Download PDF

Info

Publication number
WO2019041905A1
WO2019041905A1 PCT/CN2018/088185 CN2018088185W WO2019041905A1 WO 2019041905 A1 WO2019041905 A1 WO 2019041905A1 CN 2018088185 W CN2018088185 W CN 2018088185W WO 2019041905 A1 WO2019041905 A1 WO 2019041905A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
distance
photosensitive chip
determining
tracking area
Prior art date
Application number
PCT/CN2018/088185
Other languages
English (en)
French (fr)
Inventor
陶然
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US16/643,460 priority Critical patent/US11368622B2/en
Priority to EP18850358.5A priority patent/EP3678363A1/en
Publication of WO2019041905A1 publication Critical patent/WO2019041905A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/36Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6811Motion detection based on the image signal

Definitions

  • the present disclosure relates to the field of terminal photography, and in particular, to a photographing method, a photographing device, and a mobile terminal.
  • the camera anti-shake technology can effectively prevent blurring of the picture caused by the photographer's movement or hand shake.
  • this technology is widely used in the field of mobile phone shooting, and with the rise of dual-camera applications, the need for camera anti-shake is becoming more and more urgent.
  • mobile camera camera anti-shake technology mainly includes: Optical Image Stabilization (OIS) and Electronic Image Stabilization (EIS).
  • OIS Optical Image Stabilization
  • EIS Electronic Image Stabilization
  • the OIS module is mainly optically stabilized by a special voice coil motor (VCM, Voice Coil Actuator/Voice Coil Motor) and a gyroscope.
  • VCM Voice Coil Actuator/Voice Coil Motor
  • the gyroscope detects the jitter direction and displacement of the mobile phone, and feeds the result back to the controller.
  • the controller controls the current to drive the VCM to drive the lens to move the lens in the opposite direction to realize the optical image stabilization function.
  • the EIS moves the entire imaging surface on the image sensor by detecting the amount of movement of the image.
  • OIS and EIS can achieve anti-shake function, they have many disadvantages.
  • the VIS structure of the OIS module is complex, large in size, and requires the addition of a gyroscope to the module.
  • the cost of OIS modules is very high, which is the most important factor limiting the large-scale commercial use of OIS modules.
  • the core of OIS is the feedback system. Once the feedback system crashes, even normal photos will be affected.
  • the EIS needs to crop a part of the edge pixels of the picture, which has a great influence on the image quality.
  • a technical problem to be solved by the embodiments of the present disclosure is to provide a photographing method, a photographing apparatus, and a mobile terminal.
  • a photographing method includes: acquiring a first distance between a subject and the lens when the lens is in the first position, and projecting the subject in the photosensitive a second distance moved after the chip, wherein the first position is a position where the lens is located when the imaged resolution of the object is the highest; and the first distance and the second distance are determined according to the first distance and the second distance a second position after the lens is offset from the first position; and controlling the lens to move from the second position to the first position to take a picture of the subject.
  • an embodiment of the present disclosure further provides a photographing apparatus, including: an acquisition module configured to acquire a first distance between a subject and the lens when the lens is in the first position, and a second distance moved by the object after being projected on the photosensitive chip, wherein the first position is a position where the lens is located when the imaged resolution of the object is the highest; and the determining module is configured to be a first distance and the second distance, determining a second position at which the lens is offset from the first position; and a control module configured to control movement of the lens from the second position To the first position, the subject is photographed.
  • an embodiment of the present disclosure further provides a mobile terminal, including a memory, a processor, and a computer executable program stored on the memory, wherein the processor implements the program The above photographing method.
  • FIG. 1 is a flowchart of a photographing method according to an embodiment of the present disclosure
  • step 1 of a photographing method is a flowchart of step 1 of a photographing method according to an embodiment of the present disclosure
  • FIG. 3 is a flowchart of step 11 of the photographing method according to the embodiment of the present disclosure.
  • FIG. 4 is another flowchart of step 1 of the photographing method according to the embodiment of the present disclosure.
  • FIG. 5 is a flowchart of step 2 of the photographing method according to the embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of imaging of a lens from a first position to a second position according to an embodiment of the present disclosure
  • FIG. 7 is a flowchart of step 3 of the photographing method according to the embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a photographing apparatus according to an embodiment of the present disclosure.
  • a photographing method provided by an embodiment of the present disclosure includes:
  • Step 1 acquiring a first distance between the object to be shot and the lens when the lens is in the first position and a second distance after the object is projected on the photosensitive chip, wherein the first position is The position at which the lens is located when the subject image has the highest resolution.
  • the photographing method may further include: receiving a photographing instruction, controlling the lens to focus on the object to be photographed according to the photographing instruction, and determining that the photographed object has the highest image sharpness when the image is sharpest. position.
  • the lens gradually moves from the initial position until it moves to the position where the imaged resolution of the subject is the highest, and the lens stops moving.
  • the lens by moving the lens to the first position, it is first ensured that the imaged subject of the lens has the highest image sharpness when no shaking or shaking occurs; when the shaking or shaking occurs, the real time tracking is taken.
  • the amount of movement of the object on the photosensitive chip thereby determining the second position where the lens is offset from the first position; by moving the lens backward, the lens is moved again to the highest resolution of the object to be photographed. a location. In this way, even if jitter occurs during photographing, the sharpness of the photograph can be guaranteed.
  • the VSM structure of the OIS module does not need to be set, and at the same time, the additional gyroscope is not required on the module, which reduces the production cost.
  • the photographing method provided by the embodiment of the present disclosure does not need to process the photographed image, and ensures that the photographed image is more clear and has no influence on the image quality.
  • the step of acquiring a first distance between the object being shot and the lens when the lens is in the first position comprises:
  • Step 11 acquiring a third distance between the lens and the photosensitive chip when the lens is in the first position;
  • Step 12 Calculate a first distance between the object to be shot and the lens according to the third distance.
  • step 11 includes:
  • Step 111 Acquire a current value of a motor that drives the lens to move when the lens is in the first position
  • Step 112 Calculate an intermediate distance that the lens moves from an initial position to the first position according to the current value
  • Step 113 Calculate a third distance between the lens and the photosensitive chip according to the intermediate distance.
  • step 112 includes:
  • M2 refers to the motor focus current value corresponding to the closest focusing distance allowed by the lens
  • k is the lens moving distance corresponding to the lens at the closest focusing distance position.
  • the lens movement distance k can be obtained from the depth of field of the lens.
  • step 113 includes:
  • step 12 includes:
  • the first distance is obtained by converting according to the principle of lens imaging.
  • the step of acquiring a second distance moved after the object is projected on the photosensitive chip when the lens is in the first position includes:
  • Step 13 determining that the captured object is projected on a tracking area with the largest contrast on the photosensitive chip
  • Step 14 determining the number of pixels of the tracking area moving on the photosensitive chip
  • Step 15 Obtain a second distance that the tracking area moves on the photosensitive chip according to the number of pixels.
  • the tracking area having the largest contrast may be the area where the center point position of the object to be photographed is located, or may be an area designated by experience.
  • step 15 includes:
  • the first distance can be calculated by using the ranging function of the dual camera itself.
  • the photographing method provided by an embodiment of the present disclosure further includes: Step 2, determining, according to the first distance and the second distance, a second position after the lens is offset from the first position .
  • step 2 includes:
  • Step 21 obtain, according to the first distance and the second distance, a fourth distance that is moved after the lens is offset from the first position;
  • Step 22 Determine a second position where the lens is offset from the first position according to the fourth distance and a first direction in which the tracking area moves on the photosensitive chip.
  • step 21 since the position of the object to be photographed is fixed, the reason why the position of the tracking area projected on the photosensitive chip is moved is jitter. After the jitter occurs, the lens moves in the x and / or y directions. At this time, the lens is shifted from the first position where the imaged resolution of the object is the highest. In order to ensure that after the sloshing, the lens needs to be moved back to the first position.
  • the direction in which the lens is shifted at the first position is the same as the direction in which the tracking region moves on the photosensitive chip. Therefore, when the direction in which the tracking area moves on the photosensitive chip is determined, the direction in which the lens is shifted from the first position is also known.
  • the fourth distance moved when the lens is offset from the first position should include the distance the lens moves in the x direction and The distance the lens moves in the y direction.
  • step 21 includes:
  • A is the initial position of the tracking area projected on the photosensitive chip
  • B is the position after the tracking area caused by the shaking on the photosensitive chip
  • the distance between A and B is the above-mentioned second distance.
  • the lens After the projection area is moved on the photosensitive chip, according to the imaging principle, the lens also shifts in the direction in which the tracking area moves.
  • the fourth distance the lens moves in the direction is x.
  • the fourth distance described above can be obtained by performing a mirror image imaging principle.
  • the photographing method provided by an embodiment of the present disclosure further includes: Step 3: controlling the lens to move from the second position to the first position, and taking a picture of the photographed object.
  • step 3 includes:
  • Step 31 Determine, according to the fourth distance, a current to be output of the motor
  • Step 32 Control an output current of the motor according to the current to be output to drive the lens to move from the second position to the first position.
  • the fourth distance obtained in the above step 21 includes the distance the lens moves in the x direction and the distance moved in the y direction.
  • the current to be output of the motor determined in step 31 includes the current to be output in the x direction and the current to be output in the y direction.
  • step 32 it is necessary to first control the output current of the motor in the x direction, and then control the output current in the y direction; or first control the output current in the y direction, and then control the output current in the x direction. In turn, the lens can be smoothly moved back from the second position to the first position.
  • step 31 includes:
  • the closest focusing distance that the lens can support is 8cm.
  • the lens moving distance corresponding to the closest focusing distance is 190 ⁇ 9
  • the corresponding motor focusing current value M2 320
  • the current corresponding to the start position of the lens in the x, y direction is 0, and the corresponding current is 50 mA when moving 100 ⁇ m in four directions (the four directions of +x, +y, -x, and -y).
  • the amount of movement of the tracking area is detected to be 3 pixels, and the direction is the -x direction.
  • the lens moves by a distance of 3.32 ⁇ m in the -x direction.
  • the lens should be controlled to move backward by 3.32 ⁇ m in the +x direction to move back from the second position to the highest resolution of the subject. Location (ie the first location).
  • the effect of photographing anti-shake can be achieved by ensuring the sharpness of the photograph.
  • an embodiment of the present disclosure further provides a photographing apparatus, including:
  • the acquisition module 1 is configured to acquire a first distance between the object to be shot and the lens when the lens is in the first position and a second distance after the object is projected on the photosensitive chip, wherein the The first position is a position at which the lens is located when the imaged resolution of the object to be photographed is the highest;
  • a determining module 2 configured to determine, according to the first distance and the second distance, a second position after the lens is offset from the first position
  • the control module 3 is configured to control the lens to move from the second position to the first position to take a picture of the subject.
  • the determining module comprises:
  • a first acquiring unit configured to acquire a third distance between the lens and the photosensitive chip when the lens is in the first position
  • the second acquiring unit is configured to obtain a first distance between the captured object and the lens according to the third distance.
  • the first obtaining unit comprises:
  • a first acquisition subunit configured to acquire a current value of a motor that drives the lens movement when the lens is in the first position
  • a second acquisition subunit configured to calculate an intermediate distance moved by the lens from an initial position to the first position according to the current value
  • a third obtaining subunit configured to calculate a third distance between the lens and the photosensitive chip according to the intermediate distance.
  • the obtaining module further includes:
  • a first determining unit configured to determine a tracking area in which the subject is projected to have the greatest contrast on the photosensitive chip
  • a second determining unit configured to determine a number of pixels of the tracking area moving on the photosensitive chip
  • the third obtaining unit is configured to obtain a second distance that the tracking area moves on the photosensitive chip according to the number of pixels.
  • the determining module comprises:
  • a fourth acquiring unit configured to obtain, according to the first distance and the second distance, a fourth distance that is moved after the lens is offset from the first position
  • a third determining unit configured to determine, according to the fourth distance and a first direction in which the tracking area moves on the photosensitive chip, a second position after the lens is offset from the first position position.
  • control module comprises:
  • a fourth determining unit configured to determine a current to be output of the motor according to the fourth distance
  • control unit configured to control an output current of the motor to drive the lens to move from the second position to the first position according to the current to be outputted.
  • the photographing apparatus corresponds to the photographing method described above. All the implementations of the above photographing methods are equally applicable to the photographing device, thereby achieving the same technical effect. Therefore, the photographing apparatus according to the embodiment of the present disclosure can achieve the effect of taking an image stabilization and ensuring the sharpness of the photograph.
  • An embodiment of the present disclosure also provides a mobile terminal, including a memory, a processor, and a computer executable program stored on the memory, wherein the processor performs the above-described photographing method when the program is executed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Studio Devices (AREA)

Abstract

本公开提供了一种拍照方法、拍照装置及移动终端。拍照方法包括:获取在镜头处于第一位置时被拍对象与所述镜头之间的第一距离以及所述被拍对象投射在感光芯片上后所移动的第二距离,其中所述第一位置为所述被拍对象成像清晰度最高时所述镜头所在的位置;根据所述第一距离和所述第二距离,确定所述镜头自所述第一位置发生偏移后所处的第二位置;以及控制所述镜头从所述第二位置移动至所述第一位置,对所述被拍对象进行拍照。摘图1

Description

一种拍照方法、拍照装置及移动终端 技术领域
本公开涉及终端拍照领域,具体涉及一种拍照方法、拍照装置及移动终端。
背景技术
拍照防抖技术能够有效防止由于拍摄者移动或者手抖动而引起的画面模糊的情况。目前,该技术被普遍应用于手机拍摄领域,并且随着双摄应用的兴起,对拍照防抖的需求也越来越迫切。
目前手机摄像头拍照防抖技术主要包括:光学防抖(OIS,Optical Image Stabilization)和电子防抖(EIS,Electronic Image Stabilization)。OIS模组主要通过特殊的音圈马达(VCM,Voice Coil Actuator/Voice Coil Motor)和陀螺仪来实现光学防抖。该VCM在电流驱动下,可以带动镜头在成像平面内移动。陀螺仪检测手机的抖动方向和位移大小,将结果反馈给控制器,控制器通过控制电流来驱动VCM带动镜头向相反的方向移动镜头,实现光学防抖功能。EIS通过检成像画面的移动量,在图像传感器上移动整个成像面。
OIS和EIS虽然可以实现防抖功能,但有具有很多缺点。例如,OIS模组的VCM结构复杂,尺寸大,并且需要附加一颗陀螺仪在模组上。结果,OIS模组的成本非常高,这也是限制OIS模组大规模商用的最主要因素。又例如,OIS的核心是反馈系统,一旦反馈系统崩溃,那么连正常的拍照都会受到影响。再例如,EIS需要将画面的边缘像素裁剪一部分,对成像画质的影响很大。
公开内容
本公开实施例要解决的技术问题是提供一种拍照方法、拍照装置及移动终端。
在第一方面中,根据本公开的一个实施例提供的拍照方法,包括:获取在镜头处于第一位置时被拍对象与所述镜头之间的第一距离以及 所述被拍对象投射在感光芯片上后所移动的第二距离,其中所述第一位置为所述被拍对象成像清晰度最高时所述镜头所在的位置;根据所述第一距离和所述第二距离,确定所述镜头自所述第一位置发生偏移后的第二位置;以及控制所述镜头从所述第二位置移动至所述第一位置,对所述被拍对象进行拍照。
在第二方面中,本公开的一个实施例还提供了一种拍照装置,包括;获取模块,被配置为获取在镜头处于第一位置时被拍对象与所述镜头之间的第一距离以及所述被拍对象投射在感光芯片上后所移动的第二距离,其中所述第一位置为所述被拍对象成像清晰度最高时所述镜头所在的位置;确定模块,被配置为根据所述第一距离和所述第二距离,确定所述镜头自所述第一位置发生偏移后所处的第二位置;以及控制模块,被配置为控制所述镜头从所述第二位置移动至所述第一位置,对所述被拍对象进行拍照。
在第三方面中,本公开的一个实施例还提供了一种移动终端,包括存储器、处理器及存储在所述存储器上的计算机可执行程序,其中,所述处理器执行所述程序时实现上述的拍照方法。
附图说明
图1为本公开实施例所述的拍照方法的流程;
图2为本公开实施例所述的拍照方法的步骤1的流程图;
图3为本公开实施例所述的拍照方法的步骤11的流程图;
图4为本公开实施例所述的拍照方法的步骤1的另一流程图;
图5为本公开实施例所述的拍照方法的步骤2的流程图;
图6为本公开实施例的镜头从第一位置偏移至第二位置成像的示意图;
图7为本公开实施例所述的拍照方法的步骤3的流程图;
图8为本公开实施例所述的拍照装置的结构示意图。
具体实施方式
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面 将结合附图及具体实施例进行详细描述。在下面的描述中,提供诸如具体的配置和组件的特定细节仅仅是为了帮助全面理解本公开的实施例。因此,本领域技术人员应该清楚,可以对这里描述的实施例进行各种改变和修改而不脱离本公开的范围和精神。另外,为了清楚和简洁,省略了对已知功能和构造的描述。
参照图1,本公开的一个实施例提供的拍照方法,包括:
步骤1,获取在镜头处于第一位置时被拍对象与所述镜头之间的第一距离以及所述被拍对象投射在感光芯片上后所移动的第二距离,其中所述第一位置为所述被拍对象成像清晰度最高时所述镜头所在的位置。
具体地说,在步骤1之前,所述拍照方法还可以包括:接收拍照指令,根据所述拍照指令,控制镜头对被拍对象进行对焦,确定被拍对象成像清晰度最高时镜头所在的第一位置。
在对焦过程中,镜头从初始位置逐渐移动,直至移动至被拍对象成像清晰度最高的位置,镜头停止移动。
在本实施例中,通过将镜头移动至第一位置,首先可保证在未出现晃动或抖动时,镜头拍摄的被拍对象的成像清晰度最高;在出现晃动或抖动时,通过实时追踪被拍对象在感光芯片上的移动量,进而确定镜头从第一位置发生偏移后所处的第二位置;通过将镜头反向移动,使得镜头再次移动至对被拍对象的成像清晰度最高的第一位置。这样,即使在拍照过程中出现抖动,也可以保证照片的清晰度。
在本实施例中,不需要设置OIS模组的VSM结构,同时,无需附加陀螺仪在模组上,降低了生产成本。同时,本公开实施例提供的拍照方法,无需对拍照的画面进行处理,保证拍摄成像的画面更加清晰,对成像画质不会产生影响。
在一个示例性实施例中,参照图2,在所述镜头为单摄像头时,获取在镜头处于第一位置时被拍对象与所述镜头之间的第一距离的步骤包括:
步骤11,获取在镜头处于第一位置时所述镜头与所述感光芯片之间的第三距离;以及
步骤12,根据所述第三距离,计算所述被拍对象与所述镜头之间的第一距离。
参照图3,在一个示例性实施例中,步骤11包括:
步骤111,获取在所述镜头处于所述第一位置时驱动所述镜头移动的马达的电流值;
步骤112,根据所述电流值,计算所述镜头从初始位置移动到所述第一位置所移动的中间距离;以及
步骤113,根据所述中间距离,计算所述镜头与所述感光芯片之间的第三距离。
具体地说,步骤112包括:
通过公式:D=(M-M1)/(M2-M1)*k计算所述中间距离,其中,D为所述中间距离,M为驱动所述镜头移动的马达的电流值,M1为所述镜头焦距处于无穷远时的马达对焦电流值,M2为所述镜头焦距处于微距位置时的马达对焦电流值,k为所述镜头处于微距位置对应的镜头移动距离。
此处,M2是指镜头所允许的最近对焦距离对应的马达对焦电流值,k是镜头处于该最近对焦距离位置对应的镜头移动距离。镜头移动距离k可以根据镜头景深表获得。
具体地说,步骤113包括:
通过公式:r=D+f计算所述第一距离,其中,r为所述第一距离,D为所述中间距离,f为所述镜头的焦距。
具体地说,步骤12包括:
通过公式:R=rf/(r-f)计算所述第一距离,其中,R为所述第一距离,r为所述第三距离,f为镜头的焦距。
此处,第一距离是根据透镜成像原理进行转换获得的。
参照图4,具体地说,获取在镜头处于第一位置时被拍对象投射在感光芯片上后所移动的第二距离的步骤,包括:
步骤13,确定所述被拍对象投射在所述感光芯片上对比度最大的追踪区域;
步骤14,确定所述追踪区域在所述感光芯片上移动的像素个数; 以及
步骤15,根据所述像素个数,获得所述追踪区域在所述感光芯片上移动的第二距离。
在步骤13中,对比度最大的追踪区域可以是被拍对象的中心点位置所在的区域,也可以是是根据经验指定的区域。
具体地说,步骤15包括:
通过公式:d=n*m计算所述第三距离,其中,d为所述第三距离,n为所述追踪区域在所述感光芯片上移动的像素个数,m为每一像素的宽度。
在本公开实施例中,当摄像头为双摄像头时,可以利用双摄像头本身所具有的测距功能计算第一距离。
本公开的一个实施例提供的拍照方法,还包括:步骤2,根据所述第一距离和所述第二距离,确定所述镜头自所述第一位置发生偏移后所处的第二位置。参照图5,在一个示例性实施例中,步骤2包括:
步骤21,根据所述第一距离和所述第二距离,获得所述镜头自所述第一位置发生偏移后所移动的第四距离;以及
步骤22,根据所述第四距离和所述追踪区域在所述感光芯片上移动的第一方向,确定所述镜头自所述第一位置发生偏移后所处的第二位置。
在步骤21中,由于被拍对象的位置是固定不动的,因此,导致追踪区域投影在感光芯片上的位置发生移动的原因是抖动。在发生抖动后,镜头会在x方向和/或y方向上发生移动。此时,镜头从被拍对象成像清晰度最高的第一位置发生了偏移。为了保证在发生晃动后,需要使得镜头重新回移至该第一位置。
为了使得镜头能够回移至第一位置,除了需要知道镜头从第一位置发生偏移后所移动的第四距离,还需要知道镜头发生偏移的方向。在本实施例中,镜头在第一位置发生偏移的方向与追踪区域在感光芯片上移动的方向是相同的。因此,当确定了追踪区域在感光芯片上发生移动的方向,也就知道了镜头从第一位置发生偏移的方向。
在本公开实施例中,若追踪区域同时在x和y两个方向上发生移 动,则对于镜头从第一位置发生偏移时所移动的第四距离应当包括镜头沿x方向上移动的距离和镜头沿y方向上移动的距离。
具体地说,步骤21包括:
通过公式:x=R/(R+r)*d计算所述第四距离,其中,x为所述第四距离,R为所述第一距离,d为所述第二距离,r为所述第三距离。
在图6中,A为追踪区域在感光芯片上投影的初始位置,B为抖动导致的追踪区域在感光芯片上发生移动后的位置,A与B之间的距离,即为上述的第二距离。在追踪区域在感光芯片上投影发生移动后,根据成像原理,镜头也会在追踪区域移动的方向上发生偏移。在图4中,在追踪区域发生偏移的第二距离为d时,镜头在该方向上移动的第四距离为x。在本公开中,可以通过镜像成像原理进行转换获得上述第四距离。
本公开的一个实施例提供的拍照方法,还包括:步骤3,控制所述镜头从所述第二位置移动至所述第一位置,对所述被拍对象进行拍照。
参照图7,在一个示例性实施例中,步骤3包括:
步骤31,根据所述第四距离,确定马达的待输出电流;
步骤32,根据所述待输出电流,控制马达的输出电流,以驱动所述镜头从所述第二位置移动至所述第一位置。
若前述追踪区域在感光芯片上移动的方向包括x方向和y方向两个方向,则在上述步骤21中获得的第四距离包括镜头在x方向上移动的距离和y方向上移动的距离。此外,在步骤31中确定的马达的待输出电流包括x方向上的待输出电流和y方向上的待输出电流。在步骤32中,需要先控制马达在x方向上的输出电流,再控制在y方向上的输出电流;或者先控制在y方向上的输出电流,再控制在x方向上的输出电流。进而使得镜头能够顺利的从第二位置回移至第一位置。
具体地说,步骤31包括:
通过公式:i=x*i_0计算所述马达的待输出电流i,其中,i为所述马达的待输出电流,x为所述第四距离,i_0为镜头移动一单位距离时,马达所需要输出的电流值。
下面,通过一个具体实例对本公开实施例的拍照方法进行解释说明。
假设,摄像头的每一像素宽度m=1.12μm,镜头焦距f=3.8mm,镜头可支持的最近对焦距离为8cm,该最近对焦距离对应的镜头移动距离为190μ9,对应的马达对焦电流值M2=320,镜头处于无穷远位置对应的马达对焦电流值M1=120。此外,镜头在x,y方向起始位置对应的电流为0,在四个方向(+x、+y、-x和-y四个方向)上移动100μm时对应的电流均为50mA。打开摄像头开始拍摄后,被拍对象成像清晰度最高时,获得的马达对应的电流值M=200。此外,假设在拍照过程中,检测到追踪区域移动量为3个像素,方向为-x方向。
通过上述数据,可以获得:镜头在z轴方向上从初始位置移动到所述第一位置所移动的中间距离D,即:D=(200-120)/(320-120)*190μm=36μm=0.036mm;镜头与感光芯片之间的第三距离r,即:r=3.8mm+0.036mm=3.836mm;被拍对象到镜头之间的第一距离R,即:R=(3.836mm*3.8mm)/0.036mm=400mm;在发生抖动时,追踪区域在感光芯片上的移动的第二距离d,即:d=3*0.00112mm=0.00336mm,进而可以获得镜头从第一位置偏移至第二位置所移动的第四距离x,即:x=400mm/(400mm+3.836mm)*0.00336mm=3.32μm。也就是说,在发生抖动时,镜头在-x方向上移动了3.32μm的距离。为了使得在发生抖动后,镜头所拍摄的照片清晰度最高,此时,应当控制镜头朝+x方向上反向移动3.32μm,以便从第二位置回移至对被拍对象成像清晰度最高的位置(即第一位置)。
由于镜头在x,y方向起始位置对应的电流为0,在四个方向上移动100μm时对应的电流均为50mA。可以获得镜头移动单位距离马达所需要输出的电流i_0,即:i_0=50mA/100μm=0.5mA/μm;进而可以获得驱动镜头移动3.32μm所需的电流i,即:i=3.32μm*0.5mA/μm=1.66mA。也就是说,马达需要输出1.66mA的电流以驱动镜头从第二位置移动至第一位置。
通过本公开实施例提供的拍照方法,能够实现拍照防抖的效果,通过保证照片的清晰度。
参照图8,本公开的一个实施例还提供了一种拍照装置,包括:
获取模块1,被配置为获取在镜头处于第一位置时被拍对象与所述镜头之间的第一距离以及所述被拍对象投射在感光芯片上后所移动的第二距离,其中所述第一位置为所述被拍对象成像清晰度最高时所述镜头所在的位置;
确定模块2,被配置为根据所述第一距离和所述第二距离,确定所述镜头自所述第一位置发生偏移后所处的第二位置;以及
控制模块3,被配置为控制所述镜头从所述第二位置移动至所述第一位置,对所述被拍对象进行拍照。
优选地,在所述镜头为单摄像头时,所述确定模块包括:
第一获取单元,被配置为获取在镜头处于第一位置时所述镜头与所述感光芯片之间的第三距离;以及
第二获取单元,被配置为根据所述第三距离,获得所述被拍对象与所述镜头之间的第一距离。
优选地,所述第一获取单元包括:
第一获取子单元,被配置为获取在所述镜头处于所述第一位置时驱动所述镜头移动的马达的电流值;
第二获取子单元,被配置为根据所述电流值,计算所述镜头从初始位置移动到所述第一位置所移动的中间距离;以及
第三获取子单元,被配置为根据所述中间距离,计算所述镜头与所述感光芯片之间的第三距离。
优选地,所述获取模块还包括:
第一确定单元,被配置为确定所述被拍对象投射在所述感光芯片上对比度最大的追踪区域;
第二确定单元,被配置为确定所述追踪区域在所述感光芯片上移动的像素个数;以及
第三获取单元,被配置为根据所述像素个数,获得所述追踪区域在所述感光芯片上移动的第二距离。
优选地,确定模块包括:
第四获取单元,被配置为根据所述第一距离和所述第二距离,获 得所述镜头自所述第一位置发生偏移后所移动的第四距离;以及
第三确定单元,被配置为根据所述第四距离和所述追踪区域在所述感光芯片上移动的第一方向,确定所述镜头自所述第一位置发生偏移后所处的第二位置。
优选地,所述控制模块包括:
第四确定单元,被配置为根据所述第四距离,确定马达的待输出电流;
控制单元,被配置为根据所述待输出电流,控制马达的输出电流,以驱动所述镜头从所述第二位置移动至所述第一位置。
根据本公开实施例所述的拍照装置与上述拍照方法相对应。上述拍照方法中的所有实现方式同样适用于该拍照装置,从而达到相同的技术效果。因此,根据本公开实施例所述的拍照装置能够实现拍照防抖的效果,保证照片的清晰度。
本公开的一个实施例还提供了一种移动终端,包括存储器、处理器及存储在所述存储器上的计算机可执行程序,其中,所述处理器执行所述程序时实现上述的拍照方法。
以上所述是本公开的优选实施例。应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以做出若干改进和变化,这些改进和变化也应视为本公开的保护范围。

Claims (13)

  1. 一种拍照方法,包括:
    获取在镜头处于第一位置时被拍对象与所述镜头之间的第一距离以及所述被拍对象投射在感光芯片上后所移动的第二距离,其中所述第一位置为所述被拍对象成像清晰度最高时所述镜头所在的位置;
    根据所述第一距离和所述第二距离,确定所述镜头自所述第一位置发生偏移后所处的第二位置;以及
    控制所述镜头从所述第二位置移动至所述第一位置,对所述被拍对象进行拍照。
  2. 根据权利要求1所述的拍照方法,其中,在所述镜头为单摄像头时,获取在镜头处于第一位置时被拍对象与所述镜头之间的第一距离的步骤包括:
    获取在镜头处于第一位置时所述镜头与所述感光芯片之间的第三距离;以及
    根据所述第三距离,计算所述被拍对象与所述镜头之间的第一距离。
  3. 根据权利要求2所述的拍照方法,其中,获取在镜头处于第一位置时镜头与所述感光芯片之间的第三距离的步骤,包括:
    获取在所述镜头处于所述第一位置时驱动所述镜头移动的马达的电流值;
    根据所述电流值,计算所述镜头从初始位置移动到所述第一位置所移动的中间距离;以及
    根据所述中间距离,计算所述镜头与所述感光芯片之间的第三距离。
  4. 根据权利要求1或3所述的拍照方法,其中,获取所述被拍对象投射在所述感光芯片上后所移动的第二距离的步骤,包括:
    确定所述被拍对象投射在所述感光芯片上对比度最大的追踪区域;
    确定所述追踪区域在所述感光芯片上移动的像素个数;以及
    根据所述像素个数,获得所述追踪区域在所述感光芯片上移动的第二距离。
  5. 根据权利要求4所述的拍照方法,其中,根据所述第一距离和所述第二距离,确定所述镜头自所述第一位置发生偏移后所处的第二位置的步骤,包括:
    根据所述第一距离和所述第二距离,获得所述镜头自所述第一位置发生偏移后所移动的第四距离;以及
    根据所述第四距离和所述追踪区域在所述感光芯片上移动的第一方向,确定所述镜头自所述第一位置发生偏移后所处的第二位置。
  6. 根据权利要求5所述的拍照方法,其中,控制所述镜头从所述第二位置移动到所述第一位置的步骤,包括:
    根据所述第四距离,确定马达的待输出电流;以及
    根据所述待输出电流,控制马达的输出电流,以驱动所述镜头自所述第二位置移动至所述第一位置。
  7. 一种拍照装置,其中,包括:
    获取模块,被配置为获取在镜头处于第一位置时被拍对象与所述镜头之间的第一距离以及所述被拍对象投射在感光芯片上后所移动的第二距离,其中所述第一位置为所述被拍对象成像清晰度最高时所述镜头所在的位置;
    确定模块,被配置为根据所述第一距离和所述第二距离,确定所述镜头自所述第一位置发生偏移后所处的第二位置;以及
    控制模块,被配置为控制所述镜头从所述第二位置移动至所述第一位置,对所述被拍对象进行拍照。
  8. 根据权利要求7所述的拍照装置,其中,在所述镜头为单摄像 头时,所述确定模块包括:
    第一获取单元,被配置为在获取镜头处于第一位置时所述镜头与所述感光芯片之间的第三距离;以及
    第二获取单元,被配置为根据所述第三距离,获得所述被拍对象与所述镜头之间的第一距离。
  9. 根据权利要求8所述的拍照装置,其中,所述第一获取单元包括:
    第一获取子单元,被配置为获取在所述镜头处于所述第一位置时驱动所述镜头移动的马达的电流值;
    第二获取子单元,被配置为根据所述电流值,计算所述镜头从初始位置移动到所述第一位置所移动的中间距离;
    第三获取子单元,被配置为根据所述中间距离,计算所述镜头与所述感光芯片之间的第三距离。
  10. 根据权利要求7或9所述的拍照装置,其中,所述获取模块还包括:
    第一确定单元,被配置为确定所述被拍对象投射在所述感光芯片上对比度最大的追踪区域;
    第二确定单元,被配置为确定所述追踪区域在所述感光芯片上移动的像素个数;以及
    第三获取单元,被配置为根据所述像素个数,获得所述追踪区域在所述感光芯片上移动的第二距离。
  11. 根据权利要求10所述的拍照装置,其中,所述确定模块包括:
    第四获取单元,被配置为根据所述第一距离和所述第二距离,获得所述镜头自所述第一位置发生偏移后所移动的第四距离;以及
    第三确定单元,被配置为根据所述第四距离和所述追踪区域在所述感光芯片上移动的第一方向,确定所述镜头自所述第一位置发生偏移后所处的第二位置。
  12. 根据权利要求11所述的拍照装置,其中,所述控制模块包括:
    第四确定单元,被配置为根据所述第四距离,确定马达的待输出电流;
    控制单元,被配置为根据所述待输出电流,控制马达的输出电流,以驱动所述镜头从所述第二位置移动至所述第一位置。
  13. 一种移动终端,包括存储器、处理器及存储在所述存储器上的计算机可执行程序,其中,所述处理器执行所述程序时实现根据权利要求1-6中任一项所述的拍照方法。
PCT/CN2018/088185 2017-08-29 2018-05-24 一种拍照方法、拍照装置及移动终端 WO2019041905A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/643,460 US11368622B2 (en) 2017-08-29 2018-05-24 Photographing method, photographing device and mobile terminal for shifting a lens
EP18850358.5A EP3678363A1 (en) 2017-08-29 2018-05-24 Photography method, photography apparatus and mobile terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710755147.5A CN109429004B (zh) 2017-08-29 2017-08-29 一种拍照方法、装置及移动终端
CN201710755147.5 2017-08-29

Publications (1)

Publication Number Publication Date
WO2019041905A1 true WO2019041905A1 (zh) 2019-03-07

Family

ID=65503368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088185 WO2019041905A1 (zh) 2017-08-29 2018-05-24 一种拍照方法、拍照装置及移动终端

Country Status (4)

Country Link
US (1) US11368622B2 (zh)
EP (1) EP3678363A1 (zh)
CN (1) CN109429004B (zh)
WO (1) WO2019041905A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2273223A (en) * 1989-10-17 1994-06-08 Mitsubishi Electric Corp Correcting image blur due to camera movement
CN101106657A (zh) * 2006-07-13 2008-01-16 宾得株式会社 防抖装置
CN101236307A (zh) * 2006-12-20 2008-08-06 三星电子株式会社 用在移动装置中的摄像机模块的手抖校正方法和设备
JP2012032813A (ja) * 2010-07-28 2012-02-16 Leica Microsystems (Schweiz) Ag 手術顕微鏡の撮像システムのための画像防振撮像装置
CN106856550A (zh) * 2015-12-09 2017-06-16 三星电机株式会社 光学式图像稳定化模块以及相机模块
CN107040708A (zh) * 2016-02-04 2017-08-11 三星电机株式会社 图像稳定模块及相机模块

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7639934B2 (en) * 2006-06-28 2009-12-29 Hewlett-Packard Development Company, L.P. Image stabilizing in cameras
JP5868042B2 (ja) * 2011-07-01 2016-02-24 キヤノン株式会社 防振制御装置、撮像装置、及び防振制御装置の制御方法
CN102883099B (zh) * 2011-07-14 2015-03-11 中国移动通信有限公司 一种拍摄防抖方法及装置
CN103763483A (zh) * 2014-01-23 2014-04-30 贝壳网际(北京)安全技术有限公司 一种移动终端拍照防抖方法、装置以及移动终端
WO2017120771A1 (zh) * 2016-01-12 2017-07-20 华为技术有限公司 一种深度信息获取方法、装置及图像采集设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2273223A (en) * 1989-10-17 1994-06-08 Mitsubishi Electric Corp Correcting image blur due to camera movement
CN101106657A (zh) * 2006-07-13 2008-01-16 宾得株式会社 防抖装置
CN101236307A (zh) * 2006-12-20 2008-08-06 三星电子株式会社 用在移动装置中的摄像机模块的手抖校正方法和设备
JP2012032813A (ja) * 2010-07-28 2012-02-16 Leica Microsystems (Schweiz) Ag 手術顕微鏡の撮像システムのための画像防振撮像装置
CN106856550A (zh) * 2015-12-09 2017-06-16 三星电机株式会社 光学式图像稳定化模块以及相机模块
CN107040708A (zh) * 2016-02-04 2017-08-11 三星电机株式会社 图像稳定模块及相机模块

Also Published As

Publication number Publication date
US11368622B2 (en) 2022-06-21
US20200366845A1 (en) 2020-11-19
CN109429004A (zh) 2019-03-05
EP3678363A1 (en) 2020-07-08
CN109429004B (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
KR102143456B1 (ko) 심도 정보 취득 방법 및 장치, 그리고 이미지 수집 디바이스
WO2015180510A1 (zh) 一种图像获取终端和图像获取方法
JP5967432B2 (ja) 処理装置、処理方法、及び、プログラム
JP6486656B2 (ja) 撮像装置
WO2015180509A1 (zh) 一种图像获取终端和图像获取方法
US9531938B2 (en) Image-capturing apparatus
JP5900257B2 (ja) 処理装置、処理方法、及び、プログラム
JP2019029998A (ja) 撮像装置、撮像装置の制御方法、および制御プログラム
JP2018037772A (ja) 撮像装置およびその制御方法
JP2016167801A (ja) 撮像装置、撮像方法及び撮像プログラム
JP6432038B2 (ja) 撮像装置
JP2017079408A (ja) ズーム制御装置、ズーム制御装置の制御方法、ズーム制御装置の制御プログラム及び記憶媒体
US10917556B2 (en) Imaging apparatus
WO2013069279A1 (ja) 撮像装置
WO2019041905A1 (zh) 一种拍照方法、拍照装置及移动终端
JP2017200131A (ja) 画角制御装置および画角制御方法
JP2019219529A (ja) 制御装置、撮像装置、制御方法、プログラム、および、記憶媒体
JP2021118466A (ja) 撮像装置およびその制御方法
JP2021019255A (ja) 撮像装置およびその制御方法
JP2017058486A (ja) 制御装置および制御方法、レンズ装置、撮像装置、プログラム、記憶媒体
JP2023140195A (ja) 制御装置、レンズ装置、撮像装置、カメラシステム、制御方法、及びプログラム
JP2006145768A (ja) 像振れ補正装置及びその補正方法
TWI389556B (zh) 影像拍攝系統及其拍攝方法
JP2021100239A (ja) 追尾装置及びその制御方法、及び撮像装置
TW202017355A (zh) 攝影裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18850358

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018850358

Country of ref document: EP

Effective date: 20200330