WO2019041273A1 - 打击检测方法、打击检测装置及装甲小车 - Google Patents

打击检测方法、打击检测装置及装甲小车 Download PDF

Info

Publication number
WO2019041273A1
WO2019041273A1 PCT/CN2017/100068 CN2017100068W WO2019041273A1 WO 2019041273 A1 WO2019041273 A1 WO 2019041273A1 CN 2017100068 W CN2017100068 W CN 2017100068W WO 2019041273 A1 WO2019041273 A1 WO 2019041273A1
Authority
WO
WIPO (PCT)
Prior art keywords
audio data
striking
armored
detecting
trolley
Prior art date
Application number
PCT/CN2017/100068
Other languages
English (en)
French (fr)
Inventor
匡正
魏子涵
陈逸奇
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2017/100068 priority Critical patent/WO2019041273A1/zh
Priority to CN201780087083.4A priority patent/CN110352334B/zh
Publication of WO2019041273A1 publication Critical patent/WO2019041273A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/48Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use
    • G10L25/51Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use for comparison or discrimination

Definitions

  • the invention relates to a striking detecting device, a striking detecting method and an armored trolley.
  • Common abnormal noise detection methods are mainly accelerometers, strain gauges or resistive screen solutions.
  • an accelerometer it must be fixedly connected to the object. Under the same force, the mass of the object directly affects the degree of change of the acceleration, and it is not applicable even in the case of continuous motion of the object.
  • the strain gauges are also not suitable for moving objects, and can only be used in a small range.
  • the resistance screen can achieve high detection accuracy, but the cost is high and damage is easy.
  • an armored trolley that is low in cost, can be applied to moving objects, and can be applied to a wide range of striking detection methods and striking detecting devices, and at the same time, to provide such a striking detecting device.
  • a striking detection method characterized in that the striking detection method comprises the steps of: detecting a sound, and generating audio data according to the detected sound; generating verification data by the verification sensor; processing the audio data and the verification data And determine if the object is hit hard.
  • a striking detection device includes: a microphone for acquiring audio data; a verification sensor for acquiring verification data; and a processor communicatively coupled with the microphone and the verification sensor for processing The audio data and the verification data determine whether an object is hit.
  • An armored trolley comprising: the foregoing striking detection device, the armored trolley further comprising: a main controller for controlling the armored trolley; and a striking information processing device for processing the hit information of the armored trolley, the striking information
  • the processing device is coupled to the main controller; the armor housing is disposed outside the armored trolley.
  • Embodiments of the present invention provide a striking detection method that generates audio data by detecting a sound, generates check data by a check sensor, processes the sound data and the check data to determine whether the object is hit, and can overcome the existing Detection methods for accelerometers or strain gauges, as well as the high requirements of the object being tested, to adapt to more complex detection environments.
  • FIG. 1 is a schematic diagram showing the steps of an embodiment of the method for detecting a strike according to the present invention
  • FIG. 2 is a schematic diagram showing the steps of another embodiment of the method for detecting a strike according to the present invention.
  • FIG. 3 is a schematic diagram showing the steps of another embodiment of the method for detecting a strike according to the present invention.
  • FIG. 4 is a schematic structural view of an embodiment of a striking detecting device of the present invention.
  • Figure 5 is a schematic structural view of an embodiment of an armored trolley of the present invention.
  • Figure 6 is a partial structural view showing another embodiment of the armored trolley of the present invention.
  • the method described in the embodiments of the present invention is not limited to the steps and the sequence in the flowcharts described or illustrated in the specification. Depending on the embodiment, the steps in the method may add, remove, or change the order.
  • a component when referred to as being "fixed” to another component, it can be directly on the other component or the component can be in the middle.
  • a component when a component is considered to "connect” another component, it can be directly connected to another component or possibly a central component.
  • a component is considered to be “set to” another component, it can be placed directly on another component or possibly with a centered component.
  • the embodiment of the invention provides a striking detection method, a striking detecting device and an armored trolley, which can achieve the effect of high detection precision with high application range under the condition of reducing cost.
  • the striking detection method specifically includes detecting a sound through a microphone and generating audio data, generating verification data by the verification sensor, and processing the audio data and the verification data by the processor to determine whether the object is hit once.
  • the strike detection device comprises a microphone for acquiring audio data; a verification sensor for acquiring verification data; and a processor communicatively coupled with the microphone and the verification sensor for processing the audio data and the verification data to determine Whether the object is hit.
  • an embodiment of the method for detecting a strike in the embodiment of the present invention includes:
  • an object When an object is struck by a small object from the outside, such as a rubber bullet or a small stone, it will produce a sound at the surface of the object, and the sound has a specific characteristic. For example, on a waveform diagram, there is usually a peak with a short duration and a large amplitude, and then there is a portion of the waveform that decays rapidly. Therefore, by detecting the sound produced by an object and comparing it with a specific feature, it is a detection method for determining that the object is hit.
  • a microphone can be placed near the surface of the object for detecting sound. At the same time, the microphone detects the sound and generates audio data for subsequent processing.
  • a dual microphone or microphone array may be placed on the surface of the object to acquire multiple audio data at different locations and perform multi-tone data processing to reduce the impact of ambient noise on the detected audio data.
  • the multi-audio data processing herein may be a differential filtering process performed by the processor on a plurality of audio data at different locations.
  • the microphone continuously detects sound and generates audio data, there is a large amount of other noise in the environment and the internal sound may exist in the object itself. Therefore, only the microphone detects the audio data generated by the sound to determine whether it has been hit. There may be cases of misjudgment. For example, a hit situation occurs in a relatively close position of an object in the environment, and the sound generated by the blow is detected by the microphone, and a misjudgment occurs. Therefore, it is necessary to further verify the result of the sound detection.
  • the verification data is generated by the verification sensor, and as the further detection data of the audio data, the detection accuracy of the attack detection method can be effectively improved.
  • the verification data may be data generated by a sensor of the detection device used by the existing attack detection method, or may be detection data not used in the existing attack detection method, as long as it is affected by the object being hit. A clear correlation can be.
  • S103 Process the audio data and the verification data, and determine whether a blow is received.
  • the two are processed. Specifically, the audio data is processed, the features in the audio data are analyzed and extracted, and compared with the characteristics of the audio data that should be present when the object is struck; and the verification data is determined according to a preset condition, and the implementation is performed. In an example, it is determined whether the check data is greater than a preset threshold. If they match, the object can be considered to have been hit once. It should be noted that although the verification data is further detection data of the audio data, this does not mean that the audio data should be detected first in the actual attack detection method and the audio data and the object should be hit. The characteristics are compared, and then the verification data is processed, and finally the determined result is obtained. In actual operation, the processing of the audio data and the verification data can be performed simultaneously; the audio data can be performed first, and the data can be verified; or the data can be checked first and then the audio data. These are all viable implementations.
  • FIG. 2 another embodiment of the method for detecting the striking of the present invention includes:
  • the microphone After the microphone detects the sound, the sound signal is converted into an electrical signal.
  • the sound signals are converted into digital signals and analog signals for subsequent processing.
  • the microphone converts the sound signal into an analog signal
  • the generated audio data is analog signal data, that is, a waveform of the sound detected by the microphone. Therefore, the subsequent processing of the audio data is processing for the waveform of the sound.
  • the processor is pre-configured with a striking sound feature.
  • the striking sound feature refers to the specific characteristics of the sound produced when the object is hit once. This feature is quite different from other sounds in the environment. Therefore, when the audio data is compared with the preset struck sound features, And when the audio data conforms to the preset striking sound feature, it is determined that the detected sound is a sound that the object is struck.
  • the detected sound is the sound of an object being hit when the audio data conforms to the preset striking sound characteristics
  • the noise in the environment is very complicated and not It can be determined that the striking sound is a sound similar to the striking sound generated by the sound of the target object or a mixture of some noise. Therefore, in this embodiment, after confirming that the audio data satisfies the preset striking sound feature, the check data is subjected to a comparison process, which can effectively improve the detection accuracy.
  • a strike check feature is pre-configured in the processor.
  • the strike check feature refers to the specific characteristics of the check data generated when the object is hit once. The feature is significantly different from the check data when the object is not hit. Therefore, after the check data is compared with the preset strike check feature, and the check data conforms to the preset strike check feature. When it is determined, the aforementioned sound detection result is determined to be accurate.
  • the verification data may be acceleration information
  • the preset strike verification feature is an acceleration change preset value
  • the verification data conforms to the strike verification feature
  • the acceleration information conforms to the acceleration change preset value
  • the test data can also be a pressure sensing value.
  • the preset strike check feature is a preset value of the pressure change
  • the check data conforms to the strike check feature, which represents the pressure sensed value conforming to the preset value of the pressure change.
  • the verification step is mainly for determining whether the hit occurs on the target object, and of course can also be used to further confirm whether it is some environmental noise.
  • whether the confirmation sound is a striking sound and the verification processing can be in any order, such as confirming whether the sound is a striking sound and then performing verification, or performing verification first to confirm whether the sound is a striking sound, or simultaneously executing the sound. Two actions.
  • the striking detection method of this embodiment when the audio data conforms to the preset striking sound feature, and further the verification data also conforms to the preset striking check feature, it is determined that the object is hit once.
  • another embodiment of the method for detecting the attack of the present invention includes:
  • the microphone is an analog microphone, and after detecting the sound, the sound signal is converted into an electrical signal, and the electrical signal is a voltage analog signal waveform.
  • the voltage analog signal waveform is further advanced Processing, the specific processing operation is to divide the waveform into several windows by time by performing a windowing function on the voltage analog signal waveform.
  • the window function in the windowing process herein may be a rectangular window, a triangular window, a Gaussian window, or the like.
  • the window function in the windowing process herein may have a width of 20 ms, and the window function may have a displacement of 15 ms.
  • the subsequent processing After windowing the voltage analog signal to obtain a voltage analog signal waveform divided into several windows by time, for the waveform of one frame and one frame, the subsequent processing will re-splicing the waveform to obtain a complete peak.
  • the peak of a complete blow sound has unique characteristics, such as large peak amplitude, short time to amplitude, and long trailing tail.
  • the waveform of one frame and one frame is also processed by referring to these features; for example, the complete peak after re-splicing also includes a wave peak, the start time of the waveform to the time of reaching the peak value. The characteristics of the shorter interval and the longer end of the attenuation tail waveform after the peak amplitude.
  • the complete peak is used to compare with the preset striking sound characteristics in the processor.
  • the preset striking sound feature in the processor includes at least one of a peak, an energy, a tail, and a degree of attenuation of the peak.
  • the complete peak after re-splicing will also include at least one of peak, energy, tail, and attenuation.
  • the processor may preset the peak value and the energy amount to a specific range for a specific application scenario, and set the decibel value of the tail sound, the proportion of the tail sound attenuation degree, and the decay time. A specific range.
  • FIG. 4 is a schematic structural diagram of an embodiment of a striking detection apparatus according to an embodiment of the present invention.
  • the striking detection device 10 includes a microphone 101, a verification sensor 102, and a processor 103.
  • the microphone 101, the verification sensor 102, and the processor 103 are all disposed on the substrate 104, and the microphone 101 and the verification sensor 102 pass through the substrate 104. It is communicatively coupled to the processor 103. It is to be understood that the positional relationship of the microphone 101, the verification sensor 102, and the processor 103 is not limited to the positional relationship illustrated in the drawings, and the substrate 104 is not limited to the rectangular shape illustrated in the drawings.
  • the striking detecting device 10 is disposed on an inner surface of a portion of the object to be detected that is often subjected to the striking, and is in close contact with the inner surface.
  • the arrangement of the striking detection device 10 is advantageous in that the microphone 101 can directly acquire the sound generated when the object is struck by the bone conduction, compared to the sound detected by the air propagation.
  • the sound detected by the bone conduction method is more favorable for subsequent processing, and the mixed noise component can be reduced.
  • the microphone 101 is used to acquire audio data. After the microphone 101 detects the sound, the sound signal is converted into an electrical signal. For common digital and analog microphones, they are converted to digital and analog signals, respectively. Since the analog microphone is low in cost, convenient to use, and applicable in a wide range, for example, the analog microphone is taken as an example for description.
  • the microphone 101 converts the sound signal into an analog signal, and the generated audio data is analog signal data, that is, a waveform of the sound detected by the microphone 101. The analog signal waveform will be transmitted by the microphone 101 to the processor for further subsequent processing.
  • the verification sensor 102 is used to acquire verification data. Since the microphone 101 continuously detects sound and generates audio data, there is a large amount of other noise in the environment, and the object itself may have internal sounds or other objects in the vicinity may also be hit. Therefore, the sound is detected only by the microphone.
  • the generated audio data is used to determine whether the target object has been hit, and there may be a misjudgment. For example, a hit situation occurs in a relatively close position of an object in the environment, and the sound generated by the blow is detected by the microphone, and a misjudgment occurs. Therefore, it is necessary to further verify the result of the sound detection.
  • the verification sensor 102 may be an accelerometer for acquiring acceleration information of the strike detection device 10.
  • an acceleration signal having a striking feature is generated.
  • the acceleration information is collated, and the detection accuracy can be effectively improved.
  • the object itself does not have a change in acceleration at this time, and thus does not satisfy the check feature, and thus can be effective. Eliminate this misjudgment.
  • the verification sensor 102 may also be a pressure sensor for acquiring pressure information received by the striking detection device 10.
  • a pressure signal having a striking characteristic is generated, and at this time, the pressure information is proofread, and the detection accuracy can be effectively improved.
  • the object using the striking detecting device 10 is subjected to one striking, a pressure signal having a striking characteristic is generated, and at this time, the pressure information is proofread, and the detection accuracy can be effectively improved.
  • a blow situation occurs at a position closer to the object and is determined to be a blow by the sound detection, the object itself does not have a change in pressure at this time, and thus does not satisfy the check feature, and thus can be effectively excluded. This kind of misjudgment.
  • the verification sensor 102 is not limited to an accelerometer or a pressure sensor, and may be a sensor capable of detecting an object being struck, and may include a gyroscope, a contact sensor, or the like. Those skilled in the relevant art will appreciate that sensors capable of achieving similar functions are within the scope of protection of the verification sensor 102.
  • the processor 103 is configured to process the audio data and the verification data to determine whether an object is hit.
  • the basic steps of processor 103 processing audio data are as follows.
  • the microphone 101 converts it into an electrical signal after detecting the sound, exemplarily, an analog signal waveform.
  • the processor 103 After receiving the analog signal waveform, the processor 103 performs windowing processing, divides the waveform into several windows according to time, and selectively reassembles the plurality of windows into a complete peak.
  • a complete peak refers to a segment of the waveform with a front-end stabilization process, a peak-to-peak process, and a tail attenuation process.
  • the processor 103 is pre-configured with a striking sound feature including at least one of a peak, an energy, a tail, and a degree of attenuation of the peak.
  • the processor 103 After reassembling the plurality of windows into a complete peak, the processor 103 compares the plurality of windows with a preset striking sound feature. If the complete peak meets the preset striking sound characteristics, the processor 103 initially determines the object. I was hit hard
  • processing of the audio data and the verification data by the processor 103 does not exist in sequence, and may be performed simultaneously, or the audio data may be processed after processing the verification data, or the verification data may be processed first. Process audio data.
  • the audio data is processed first and the check data is processed as an example.
  • the basic steps by processor 103 to process the verification data are as follows. After the processor 103 confirms that the audio data conforms to the preset striking sound feature, the audio data is targeted At the same time, the verification data of the segment is processed.
  • the verification sensor 102 is an accelerometer
  • the processor 103 is pre-configured with a strike check feature, and the acceleration information collected by the accelerometer during the period meets a preset strike check feature, such as the time period. If the acceleration is obviously abrupt and the direction is consistent with the preset, then the judgment result of the previous audio data can be considered accurate, and the processor 103 determines that the object is hit once.
  • the striking detection device 10 is further configured to filter the noise audio data acquired by the microphone 101.
  • the noise audio data acquired by the microphone 101 includes background noise audio data and near-source noise audio data, and may also include wind noise audio data.
  • the processor 103 can filter such noise by a corresponding filtering algorithm.
  • the microphone 101 can also be a dual microphone or microphone array that can be filtered by taking sound from multiple locations and performing a differential filtering process in the processor 103.
  • the apparatus or method for filtering the microphone 101 by the attack detecting apparatus 10 is not limited to the method enumerated in the embodiment, and a method for filtering noise is not limited to the same.
  • the devices or structures that can achieve the same filtering noise effect are all within the scope of the technical solutions of the present embodiment.
  • FIG. 5 is a schematic structural view of an embodiment of an armored trolley according to an embodiment of the present invention.
  • the armored cart 20 includes the striking detection device 10, and further includes a main controller 201, a striking information processing device 202, and an armor housing 203.
  • the striking detection device 10 includes a microphone 101, a verification sensor 102, a processor 103, and a substrate 104.
  • the armored trolley 20 can be a toy car that can be used for a battle, a robotic car for education, or other cars with similar structures.
  • the armor housing 203 indicates that the armored cart 20 includes an outer casing that can be struck, and does not mean that the armored cart 20 must perform an armor function.
  • the striking detecting device 10 is fixedly disposed inside the armor case 203 for detecting a struck received by the armor case 203.
  • the way in which the microphone 101 detects sound is mainly the bone conduction mode, that is, the sound generated by the striking of the armor casing 203 is directly detected and collected by the microphone through solid conduction.
  • the microphone 101 can be a digital microphone or an analog microphone. Exemplarily, taking an analog microphone as an example, after detecting the sound generated by the armor housing 203, the microphone 101 converts it into a voltage analog signal and transmits it to the processor 103 for processing.
  • the processor 103 performs windowing processing on the voltage analog signal waveform, divides the time slice into a plurality of windows, and selectively combines the plurality of windows into one complete peak.
  • the complete peak refers to a segment of the waveform having a front stabilization process, a peak peak process, and a tail attenuation process on the waveform.
  • the processor 103 is pre-configured with a striking sound feature.
  • the striking sound feature includes at least one of a peak of a peak, an energy, a tail, a degree of attenuation, and the like.
  • the processor 103 compares the one complete peak to a preset striking sound signature.
  • the processor 103 determines that the one complete peak meets the preset struck sound characteristics, then further, the processor 103 acquires the verification data of the current time period check sensor 102.
  • the verification sensor 102 can be an accelerometer or a pressure sensor, as well as a gyroscope or the like that can perform verification purposes.
  • the processor 103 is pre-configured with a strike check feature, that is, an acceleration information check feature. When the processor 103 acquires the data of the current period accelerometer, if it satisfies the acceleration information check feature, it is determined that the armor case 203 has been hit once.
  • the armored cart 20 can be used in a battle-type game.
  • the hit information can be transmitted to the main controller 201 of the armored cart 20.
  • the main controller 201 transmits the hit information to the striking information processing device 202 for further processing.
  • the strike information processing device 202 can output an alert command, and the main controller 201 controls the armored trolley 20 to perform a short beep or light operation, or displays on the armored trolley 20
  • the hit information, or the transmitted information is sent to an external terminal device through a communication module, such as a remote controller in the player's hand to let the player know the hit information at the first time.
  • the processor 103 may be an element independent of the main controller 201 of the armored trolley 20, or may be integrated with the main controller 201 of the armored trolley 20. As one.
  • the microphone 101 may be a directional microphone, and the directional microphone is fixedly disposed toward an inner surface of the armor housing 203. This has the advantage that by using the directional microphone, it is possible to directionally select the sound transmitted from the bone of the armor housing 203, and to reduce the influence of noise generated in other directions in the vehicle on the sound pickup effect.
  • the armored cart 20 further includes a chassis 211 that also produces internal noise during rapid movement of the armored cart 20.
  • a shock absorbing structure 212 may be disposed between the chassis 211 and the armor housing 203.
  • the shock absorbing structure 212 can effectively filter out the conducted noise of the chassis 211, and reduce the influence of the noise generated by the chassis 211 on the strike detecting device 10.
  • the armor housing 203 can also be disposed away from the chassis.
  • the armor housing 203 is disposed at a higher position of the armored trolley 20, so that the conductive noise of the chassis 211 reaches the microphone 101 through long-distance transmission. The reason for the distance is attenuated to a small degree of influence.
  • the armored trolley 20 further includes a display device 301.
  • the striking information processing device 202 and the main controller 201 process the striking information and output a corresponding control operation to the display device 301.
  • the armored trolley 20 is pre-set with a blood volume value, and the display device 301 includes a hit count blood amount information 302. As shown in FIG. 6, the fashion armor 20 receives a total of 7 blows. Lost 5 blood volume slots, the remaining 75% of the blood.
  • the displayable information of the display device 301 is not limited to the blood volume information of the striking number, and the display manner is not limited to the digital display or the bar-shaped display, and any other display information and display manner related to the striking information are It should be considered as the scope protected by this embodiment.

Abstract

一种打击检测方法,打击检测方法包括:检测声音,并根据检测到的声音生成音频数据(S101);通过校验传感器生成校验数据(S102);对音频数据和校验数据进行处理,并确定物体是否受到一次打击(S103)。一种打击检测装置,以及应用打击检测装置的装甲小车。打击检测方法以及打击检测装置能够降低检测成本,并且适用于运动物体,应用范围广。

Description

打击检测方法、打击检测装置及装甲小车 技术领域
本发明涉及一种打击检测装置、打击检测方法及一种装甲小车。
背景技术
常见的异常响动检测方法主要是加速度计、应变片或电阻屏方案。就加速度计而言,必须要和物体固定连接,在相同受力下,物体的质量直接影响了加速度的变化程度,此外在物体持续运动的情况下也不适用。而应变片同样不适用于运动物体,且只能作用一个很小的范围,电阻屏可以达到很高的检测精度,但成本较高、易损坏。
发明内容
有鉴于此,有必要提供一种成本低、可以作用于运动物体,并且可以适用于一个较大范围的打击检测方法及打击检测装置,以及同时提供一种应用这种打击检测装置的装甲小车。
一种打击检测方法,其特征在于,所述打击检测方法包括以下步骤:检测声音,并根据检测到的声音生成音频数据;通过校验传感器生成校验数据;对音频数据和校验数据进行处理,并确定物体是否受到一次打击。
一种打击检测装置,包括:麦克风,用于获取音频数据;校验传感器,用于获取校验数据;处理器,所述处理器与所述麦克风和所述校验传感器通信连接,用于处理所述音频数据和所述校验数据,以确定物体是否受到打击。
一种装甲小车,包括:前述打击检测装置,所述装甲小车还包括:主控制器,用于控制所述装甲小车;打击信息处理装置,用于处理装甲小车的受打击信息,所述打击信息处理装置与所述主控制器相连接;装甲外壳,设置于所述装甲小车外部。
本发明的实施方式提供一种打击检测方法,通过检测声音生成音频数据,并通过校验传感器生成校验数据,对声音数据和校验数据进行处理从而确定物体是否受到打击,能够克服现有的检测方式对加速度计或应变片,以及被检测物体的高要求的问题,从而适应更复杂的检测环境。
附图说明
图1是本发明打击检测方法一实施例的步骤示意图;
图2是本发明打击检测方法另一实施例的步骤示意图;
图3是本发明打击检测方法另一实施例的步骤示意图;
图4是本发明打击检测装置一实施例的结构示意图;
图5是本发明装甲小车一实施例的结构示意图;
图6是本发明装甲小车另一实施例的部分结构示意图。
主要元件符号说明
打击检测装置     10
麦克风           101
校验传感器       102
处理器           103
基板             104
装甲小车         20
主控制器         201
打击信息处理装置 202
装甲外壳         203
底盘             211
减震结构         212
显示装置         301
打击次数血量信息 302
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,本发明实施例的所述的方法并不限于说明书所述及的或者图示所示的流程图中的步骤及顺序。根据不同的实施例,方法中的步骤可以增加、移除、或者改变顺序。另外,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。当一个组件被认为是“设置于”另一个组件,它可以是直接设置在另一个组件上或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本发明实施例提供了一种打击检测方法、打击检测装置及装甲小车,可以在降低成本的情况下,达到适用范围大检测精度高的效果。打击检测方法具体包括通过麦克风检测声音并生成音频数据,通过校验传感器生成校验数据,通过处理器对音频数据和校验数据进行处理来确定物体是否受到了一次打击。相应地,打击检测装置包括麦克风,用于获取音频数据;校验传感器,用于获取校验数据;处理器,与麦克风和校验传感器通信连接,用于处理音频数据和校验数据,以确定物体是否受到打击。
为便于理解,下面对本发明实施例中的具体流程进行描述,请参阅图1,本发明实施例中打击检测方法一个实施例包括:
S101、检测声音,并根据检测到的声音生成音频数据;
物体在受到外界较小物体打击时,如受到橡胶子弹、小石块等物体的打击时,会在物体表面受打击处产生声音,并且这种声音具有特定的特征。比如,在波形图上通常为存在一个持续时间短暂而幅值较大的波峰,并且随后存在着迅速衰减的波形部分。因此,通过检测物体产生的声音并将其与特定的特征进行比对,是一种确定物体受到打击的检测方法。示例性地,可在物体表面附近设置一个麦克风,用于检测声音。同时,麦克风检测声音后生成音频数据,以便后续进行处理。
另外,由于环境中不可避免地存在着噪音,会导致麦克风检测到的声音并生成的音频数据中包含有噪音数据。因此,降低环境中的噪音对麦克风检测声音的影响是提高检测准确率的必要做法。可选地,可以在物体表面设置双麦克风或麦克风阵列,来获取不同位置处的多个音频数据,并对其进行多音频数据处理以降低环境噪音对检测音频数据的影响。具体地,此处的多音频数据处理可以为处理器对不同位置处的多个音频数据进行差分滤噪处理。
S102、通过检验传感器生成校验数据;
由于麦克风会持续不断地检测声音并生成音频数据,又环境中存在着大量的其他噪音以及物体本身也会可能存在着内部声音,因此,仅用麦克风检测声音生成的音频数据来确定是否受到了打击,可能存在着误判的情况。比如,环境中物体较近位置处亦发生了一次打击情况,该打击生成的声音被麦克风检测到,就会出现一次误判的情况。所以,需要进一步地对声音检测的结果进行校验。通过校验传感器生成校验数据,作为音频数据的进一步检测数据,能够有效地提高打击检测方法的检测准确率。可选的,校验数据可以是现有的打击检测方法所使用的检测设备的传感器生成的数据,也可以是未在现有打击检测方法中使用的检测数据,只要其与物体受打击情况有着明确的相关关系即可。
S103、对音频数据和校验数据进行处理,并确定是否受到一次打击。
在音频数据和校验数据被采集后,对二者进行处理。具体地,对音频数据进行处理,分析并提取所述音频数据中的特征,与物体受到打击时应有的音频数据的特征进行对比;且根据预设条件判断校验数据是否符合要求,本实施例中,判断所述校验数据是否大于预设阈值。如果均符合则可以认为物体受到了一次打击。需要说明的是,尽管校验数据是音频数据的进一步检测数据,但这并不代表在实际的打击检测方法中必须要首先对声音进行检测并对音频数据与物体受到打击时应有的音频数据的特征进行比对,然后再对校验数据进行处理,最后得到确定结果。在实际操作中,音频数据和校验数据的处理可以同时进行;也可以音频数据先进行,校验数据后进行;也可以校验数据先进行,音频数据后进行。这些都是可行的实施方式。
为了便于理解,下面对本发明打击检测方法实施例中的具体流程进行描述,请参阅图2,本发明打击检测方法另一实施例包括:
S201、对音频数据进行处理,并与预设的打击声音特征进行比对,若所述音频数据符合所述打击声音特征,则;
在麦克风检测到声音后,会将声音信号转换成电信号,对常见的数字麦克风和模拟麦克风而言,声音信号将会被分别转换成数字信号和模拟信号进行后续的处理。示例性地,麦克风将声音信号转换成模拟信号,则生成的音频数据是模拟信号数据,也就是麦克风所检测到的声音的波形。因此,音频数据的后续处理是针对声音的波形进行的处理。在处理过程中,处理器预设有打击声音特征。打击声音特征指的是物体受到一次打击时所产生的声音的具体特征,该特征与环境中的其他声音有着较大区别,因此,当对音频数据与预设的打击声音特征进行比对处理后,并且音频数据符合预设的打击声音特征时,确定检测到的声音是物体受到打击的声音。
S202、获取当前校验数据,并与预设的打击校验特征进行比对,若所述校验数据符合所述打击校验特征,则;
虽然在音频数据符合预设的打击声音特征时就可以认为检测到的声音是某个物体受到打击的声音,但是环境中噪音十分复杂,并不 能确定该打击声音是目标物体受到打击的声音或某些噪音混杂生成的与打击声音类似的声音。因此,本实施例中,在确认音频数据满足预设的打击声音特征后,再对校验数据进行一次比对处理,能够有效地提高检测准确率。具体地,在处理过程中,处理器中预设有打击校验特征。打击校验特征指的是物体受到一次打击时所产生的校验数据的具体特征。该特征与物体未受打击时的校验数据有着较大区别,因此,当对校验数据与预设的打击校验特征进行比对处理后,并且校验数据符合预设的打击校验特征时,确定前述声音检测结果准确。
可选的,校验数据可以为加速度信息,预设的打击校验特征为加速度变化预设值,校验数据符合打击校验特征代表着加速度信息符合加速度变化预设值;可选的,校验数据还可以为压力感测值,预设的打击校验特征为压力变化预设值,校验数据符合打击校验特征代表着压力感测值符合压力变化预设值。所述校验步骤主要是为了确定所述打击是否发生于目标物体,当然也可用于进一步确认是否为某些环境噪音。
可以理解,所述确认声音是否为打击声音和校验处理可为任意顺序,如先确认声音是否为打击声音再进行校验,或先进行校验再确认声音是否为打击声音,或同时执行该两个动作。
S203、确定物体受到一次打击。
在此实施例的打击检测方法中,当音频数据符合预设的打击声音特征,并且进一步地校验数据也符合预设的打击校验特征,则确定物体受到了一次打击。
为了便于理解,下面对本发明打击检测方法实施例中的具体流程进行描述,请参阅图3,本发明打击检测方法另一实施例包括:
S301、将电压模拟信号波形按时间分成若干个窗口;
在对音频数据进行处理并与预设的打击声音特征进行比对的过程中,需要首先对声音的特征进行提取。具体地,在本实施例中麦克风为模拟麦克风,检测到声音后将声音信号转换成电信号,并且电信号为电压模拟信号波形。进一步地,对电压模拟信号波形进行进一步 处理,具体的处理操作为通过对电压模拟信号波形进行加窗函数处理,将波形按时间分成若干个窗口。可选的,此处的加窗处理中的窗函数可以为矩形窗、三角形窗、高斯窗等。可选的,此处的加窗处理中的窗函数的宽度可以为20ms,窗函数的位移可以为15ms。
S302、将多个窗口合并成一个完整的波峰;
在对电压模拟信号进行加窗处理,得到按时间分成若干个窗口的电压模拟信号波形后,针对一帧一帧的波形,后续处理将会对其进行重拼接处理,以获得一个个完整的波峰。一个完整的打击声音的波峰具有独特的特征,例如波峰幅值大、达到幅值的时间短、后续尾音较长等特征。具体的,一帧一帧的波形在进行重拼接的过程中,也是同样参照这些特征来进行处理;例如,重拼接后的完整的波峰同样包括一个波峰值、波形起点至达到波峰值的时刻时间间隔较短、波峰幅值后的衰减尾音波形段较长等特征。
S303、将所述完整的波峰与预设的打击声音特征进行比对;
将电压模拟信号波形通过加窗函数分成若干个窗口,并将其中多个窗口合并成一个完整的波峰后,该完整的波峰即被用来与处理器中预设的打击声音特征进行比对。具体地,处理器中预设的打击声音特征包括波峰的峰值、能量、尾音、衰减程度中的至少一种。同样的,重拼接后的完整的波峰亦会包括峰值、能量、尾音、衰减程度中的至少一种。示例性的,处理器针对具体的某个应用场景,可以将峰值、能量的大小预设定在一个具体地范围,将尾音的分贝值、尾音衰减程度的比例和衰减时间等同样与设定在一个具体的范围。当该完整的波峰符合所有预设的打击声音的特征时,可以初步地认为物体受到了一次打击。
在本发明的另一实施例中,提供了一种打击检测装置。请参阅图4,图4为本发明实施例中打击检测装置一个实施例的结构示意图。
所述打击检测装置10包括麦克风101、校验传感器102以及处理器103。所述麦克风101、校验传感器102以及处理器103均设置在所述基板104上,并且麦克风101、校验传感器102均通过基板104 与处理器103通信连接。可以知道的是,麦克风101、校验传感器102以及处理器103的位置关系并不限于图中所示意的位置关系,同时,基板104也并不限于图中所示意的长方形形状。所述打击检测装置10设置于被检测物体常受打击部分的内表面,并紧贴内表面。所述打击检测装置10的这种设置方式的好处在于,能够使得麦克风101可以通过骨传导的方式直接获取到物体受打击时所产生的声音,相较于通过空气进行传播而被检测到的声音,通过骨传导方式进行传播而被检测到的声音更有利于进行后续处理,并且能够减少所混杂的噪音成分。
麦克风101用于获取音频数据。在麦克风101检测到声音后,会将声音信号转换为电信号。对于常见的数字麦克风和模拟麦克风,会分别转换成数字信号和模拟信号。由于模拟麦克风成本较低,使用方便,适用范围广,示例性地,本实施例以模拟麦克风为例进行说明。麦克风101将声音信号转换成模拟信号,生成的音频数据是模拟信号数据,也就是麦克风101所检测到的声音的波形。该模拟信号波形将会被麦克风101传输至处理器进行进一步地后续处理。
校验传感器102用于获取校验数据。由于麦克风101会持续不断地检测声音并生成音频数据,又环境中存在着大量的其他噪音以及物体本身也会可能存在着内部声音或附近有其他物体也可能受到打击,因此,仅用麦克风检测声音生成的音频数据来确定是否是目标物体受到了打击,可能存在着误判的情况。比如,环境中物体较近位置处亦发生了一次打击情况,该打击生成的声音被麦克风检测到,就会出现一次误判的情况。所以,需要进一步地对声音检测的结果进行校验。
校验传感器102可以是加速度计,用于获取打击检测装置10的加速度信息。当使用打击检测装置10的物体受到一次打击时,会产生一个具有打击特征的加速度信号,此时对加速度信息进行校对,能够有效提高检测准确率。如上段中所述的情况,当在物体较近位置处发生了一次打击情况被声音检测确定为打击时,此时物体本身并不会有加速度的变化,从而不满足校验特征,因此能够有效排除这种误判的情况。
校验传感器102还可以是压力传感器,用于获取打击检测装置10受到的压力信息。当使用打击检测装置10的物体受到一次打击时,会产生一个具有打击特征的压力信号,此时对压力信息进行校对,同样能够有效提高检测准确率。如前述中的情况,当在物体较近位置处发生了一次打击情况被声音检测确定为打击时,此时物体本身并不会有压力的变化,从而不满足校验特征,因此也能够有效排除这种误判的情况。
可以知道的是,所述校验传感器102并不限于加速度计或压力传感器,只要是能检测物体受打击情况的传感器均可,还可以包括陀螺仪、接触式传感器等。相关领域技术人员应当知道,能够实现相似功能的传感器,均属于校验传感器102的保护范围。
处理器103用于处理所述音频数据和所述校验数据,以确定物体是否受到打击。
处理器103处理音频数据的基本步骤如以下所述。麦克风101检测到声音后将其转换成电信号,示例性的,为模拟信号波形。处理器103接收到模拟信号波形后对其进行加窗处理,将波形按时间分成若干个窗口,并有选择地将多个窗口重拼接成一个完整的波峰。此处一个完整的波峰指的是在波形上具有前段稳定过程、波峰峰值过程以及尾音衰减过程的一段波形。同时,处理器103预设有打击声音特征,所述打击声音特征包括波峰的峰值、能量、尾音、衰减程度中的至少一种。处理器103在将多个窗口重拼接成一个完整的波峰后,将其与预设的打击声音特征进行比对,如果该完整的波峰符合预设的打击声音特征,则处理器103初步确定物体受到了一次打击。
需要说明的是,处理器103处理音频数据与校验数据并不存在先后顺序,可以是二者同时进行,也可以是先处理音频数据后处理校验数据,也可以是先处理校验数据后处理音频数据。
示例性地,在本实施例中以先处理音频数据后处理校验数据为例进行说明。处理器103处理校验数据的基本步骤如以下所述。在处理器103确认音频数据符合预设的打击声音特征后,会针对该音频数据 同时段的校验数据进行处理。示例性地,以校验传感器102是加速度计为例,处理器103预设有打击校验特征,当该时段的加速度计采集到的加速度信息符合预设的打击校验特征,例如该时段的加速度出现明显的突变且方向与预设的一致,则可以认为之前音频数据的判断结果准确,处理器103确定物体受到了一次打击。
在本发明的另一实施例中,所述打击检测装置10还用于过滤所述麦克风101获取的噪音音频数据。示例性的,麦克风101获取的噪音音频数据包括背景噪音音频数据和近源噪音音频数据,还可以包括风噪音音频数据。对于背景噪音和近源噪音,所述处理器103可以通过相应的滤噪算法来对此类噪音进行过滤。对于近源噪音,所述麦克风101还可以为双麦克风或麦克风阵列,通过获取多个位置的声音并在处理器103中进行差分滤噪过程,可以对此类噪音进行过滤。对于风噪音音频数据,还可以在麦克风101外侧设置一个密闭装置,使得空气不在麦克风表面流动,可以抑制风噪音的产生。可以理解的是,本实施例中,所述打击检测装置10用于过滤所述麦克风101的装置或方法并不限于本实施例中所列举的方法,一种过滤噪音的方法也不限于其所列举的噪音种类,能够实现同样的过滤噪音效果的装置或结构均属于本实施例的技术方案范围。
在本发明的另一实施例中,提供了一种使用所述打击检测装置的装甲小车。图5为本发明实施例中装甲小车一个实施例的结构示意图。
请参阅图5,装甲小车20包括所述打击检测装置10,还包括主控制器201、打击信息处理装置202以及装甲外壳203。所述打击检测装置10包括麦克风101、校验传感器102、处理器103以及基板104。可以理解的是,装甲小车20可以是可用于对战的玩具小车,也可以是用于教育的机器人车,抑或是其他具有类似结构的小车。装甲外壳203表明所述装甲小车20包括可以受到打击的外壳,并不代表装甲小车20必须实现装甲功能。
打击检测装置10固定设置于装甲外壳203的内侧,以用于检测所述装甲外壳203受到的打击。在本实施例中,当装甲外壳203受到 打击时,由于打击检测装置10与装甲外壳直接连接,麦克风101检测声音的途径主要为骨传导方式,即装甲外壳203受到的打击所产生的声音直接通过固体传导的方式被麦克风所检测并采集。
麦克风101可以为数字麦克风,也可以为模拟麦克风。示例性的,以模拟麦克风为例,麦克风101在检测到装甲外壳203所产生的声音后,会将其转换成电压模拟信号,并传递至处理器103进行处理。处理器103将所述电压模拟信号波形进行加窗处理,按时间片分成若干个窗口,并有选择地将多个窗口合并成一个完整的波峰。所述一个完整的波峰指的是在波形上具有前段稳定过程、波峰峰值过程以及尾音衰减过程的一段波形。处理器103预设有打击声音特征。所述打击声音特征包括波峰的峰值、能量、尾音、衰减程度等特征中的至少之一。处理器103将所述一个完整的波峰与预设的打击声音特征进行比对。
如果处理器103确定所述一个完整的波峰符合预设的打击声音特征,则进一步地,处理器103获取当前时段校验传感器102的校验数据。可以理解的是,校验传感器102可以为加速度计或压力传感器,以及陀螺仪等任何能够实现校验目的的传感器。以加速度计为例,处理器103预设有打击校验特征,即加速度信息校验特征。当处理器103获取到当前时段加速度计的数据,如果其满足加速度信息校验特征,则确定装甲外壳203受到了一次打击。
在某些实施例中,所述装甲小车20可以用于对战型游戏中。当处理器103确定装甲外壳203受到了一次打击后,可以将受打击信息传递至装甲小车20的主控制器201。主控制器201将受打击信息传递至打击信息处理装置202进行进一步处理。例如,在装甲小车20受到一次打击后,打击信息处理装置202可以输出警示命令,并由主控制器201控制装甲小车20进行短暂鸣音或亮灯等操作,或者是在装甲小车20上显示受打击的信息,或者是通过通信模块将受打击信息发送至外部终端设备,例如玩家手中的遥控器以让玩家第一时间了解到受打击信息。所述处理器103可以是独立于所述装甲小车20的主控制器201的元件,也可与所述装甲小车20的主控制器201集成 为一体。
在某些实施例中,由于装甲小车20结构复杂,因此除去环境噪音外,来自小车内部的噪音也是不可忽略的影响打击检测准确率的因素。因此,在设计上应当考虑尽可能地减少装甲小车20内部噪音的影响。可选的,所述麦克风101可以为定向麦克风,所述定向麦克风固定朝向所述装甲外壳203的内表面设置。这样的好处在于通过定向麦克风的使用,能够定向地选择来自装甲外壳203骨传导的声音,而减少车内其他方向产生噪音对拾音效果的影响。在另外一些实施例中,所述装甲小车20还包括底盘211,底盘211在装甲小车20的快速运动过程中同样会产生内部噪音。可选的,可以在底盘211和装甲外壳203之间设置减震结构212。减震结构212可以有效地过滤掉底盘211的传导噪音,降低底盘211产生噪音对打击检测装置10的影响。可选的,还可以将装甲外壳203远离底盘设置,例如将装甲外壳203设置在装甲小车20的较高处的位置,这样底盘211的传导噪音经过长距离的传输到达麦克风101时,也会因距离的原因衰减到一个很小的影响程度。
请一并参阅图6,在某些实施例中,所述装甲小车20还包括显示装置301。在处理器103确定装甲外壳203受到了一次打击后,打击信息处理装置202以及主控制器201会对此次打击信息进行处理,并输出相应控制操作至显示装置301。以图6为例,所述装甲小车20预设有血量值,所述显示装置301包括打击次数血量信息302,如图6中所示,此时装甲小车20累计受到了7次打击,失去了5格血量槽,剩余75%的血量。可以理解的是,所述显示装置301的可显示信息并不限于打击次数血量信息,显示方式也并不限于数字显示或条槽形显示,其他任何与打击信息相关的显示信息及显示方式都应当认为是本实施例所保护的范围。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型, 本发明的范围由权利要求及其等同特征限定。

Claims (32)

  1. 一种打击检测方法,其特征在于,所述打击检测方法包括以下步骤:
    检测声音,并根据检测到的声音生成音频数据;
    通过校验传感器生成校验数据;
    对音频数据和校验数据进行处理,并确定物体是否受到一次打击。
  2. 根据权利要求1所述的打击检测方法,其特征在于,所述打击检测方法还包括:
    对音频数据进行处理,并与预设的打击声音特征进行比对,若所述音频数据符合所述打击声音特征,则
    获取当前校验数据,并与预设的打击校验特征进行比对,若所述校验数据符合所述打击校验特征,则
    确定物体受到一次打击。
  3. 根据权利要求2所述的打击检测方法,其特征在于,所述音频数据为电压模拟信号波形,所述打击检测方法还包括:
    将电压模拟信号波形按时间分成若干个窗口;
    将多个窗口合并成一个完整的波峰;
    将所述完整的波峰与预设的打击声音特征进行比对。
  4. 根据权利要求2所述的打击检测方法,其特征在于,所述预设的打击声音特征包括波峰的峰值、能量、尾音、衰减程度中的至少一种。
  5. 根据权利要求2所述的打击检测方法,其特征在于,所述校验传感器包括加速度计,所述校验数据为加速度信息,所述打击校验特征为所述加速度变化预设值,所述对校验数据进行处理具体包括:
    确定所述加速度信息是否符合所述加速度变化预设值。
  6. 根据权利要求2所述的打击检测方法,其特征在于,所述校验传感器包括压力传感器,所述校验数据为压力感测值,所述打击校验特征为所述压力变化预设值,所述对校验数据进行处理具体包括:
    确定所述压力感测值是否符合所述压力变化预设值。
  7. 根据权利要求2所述的打击检测方法,其特征在于,所述打击检测方法还包括:
    通过双麦克风或麦克风阵列获取多个音频数据,并对多个音频数据进行处理来过滤外部噪音音频数据。
  8. 根据权利要求7所述的打击检测方法,其特征在于,所述外部噪音音频数据包括背景噪音音频数据和近源噪音音频数据中的至少一种,所述处理器对所述多个音频数据进行差分滤噪处理。
  9. 根据权利要求1所述的打击检测方法,所述检测声音,并根据检测到的声音生成音频数据,具体包括:
    检测靠近所述被检测物体处的声音。
  10. 根据权利要求1所述的打击检测方法,所述检测声音,并根据检测到的声音生成音频数据,其特征在于,所述声音通过骨传导的方式被检测。
  11. 一种打击检测装置,其特征在于,包括:
    麦克风,用于获取音频数据;
    校验传感器,用于获取校验数据;
    处理器,所述处理器与所述麦克风和所述校验传感器通信连接,用于处理所述音频数据和所述校验数据,以确定物体是否受到打击。
  12. 根据权利要求11所述的打击检测装置,其特征在于,所述校验传感器包括加速度计,所述加速度计用于获取所述打击检测装置的加速度信息。
  13. 根据权利要求11所述的打击检测装置,其特征在于,所述校验传感器包括压力传感器,所述压力传感器用于获取所述打击检测装置受到的压力信息。
  14. 根据权利要求11所述的打击检测装置,其特征在于,所述打击检测装置还用于过滤所述麦克风获取的噪音音频数据。
  15. 根据权利要求14所述的打击检测装置,其特征在于,所述噪音音频数据包括风噪音频数据,所述风噪音频数据为空气在麦克风表 面流动时产生的噪音音频数据,所述打击检测装置还包括密闭装置,所述密闭装置用于密闭麦克风。
  16. 根据权利要求14所述的打击检测装置,其特征在于,所述噪音音频数据包括背景噪音音频数据,所述背景噪音音频数据为背景环境远处声源产生的噪音音频数据,所述处理器还用于过滤背景噪音音频数据。
  17. 根据权利要求14所述的打击检测装置,其特征在于,所述噪音音频数据包括近源噪音音频数据,所述近源噪音音频数据为近处声源产生的噪音音频数据,所述麦克风为双麦克风或麦克风阵列。
  18. 根据权利要求14所述的打击检测装置,其特征在于,所述噪音音频数据包括近源噪音音频数据,所述近源噪音音频数据为近处声源产生的噪音音频数据,所述处理器还用于过滤近源噪音音频数据。
  19. 根据权利要求11所述的打击检测装置,其特征在于,所述打击检测装置包括基板,所述基板上设置有所述麦克风,所述校验传感器以及所述处理器。
  20. 一种装甲小车,其特征在于,包括权利要求11-19任一项所述的打击检测装置,所述装甲小车还包括:
    主控制器,用于控制所述装甲小车;
    打击信息处理装置,用于处理装甲小车的受打击信息,所述打击信息处理装置与所述主控制器相连接;
    装甲外壳,设置于所述装甲小车外部。
  21. 根据权利要求20所述的装甲小车,其特征在于,所述打击检测装置固定设置于所述装甲外壳的内侧。
  22. 根据权利要求20所述的装甲小车,其特征在于,所述装甲小车还包括通信模块,用于与外部终端设备进行通信连接,所述通信模块与所述主控制器相连接。
  23. 根据权利要求20所述的装甲小车,其特征在于,所述装甲小车还包括显示装置,用于显示所述装甲小车的受打击信息,所述显示装置与所述主控制器和所述打击信息处理装置分别相连接。
  24. 根据权利要求23所述的装甲小车,其特征在于,所述装甲小车预设有生命值,所述受打击信息包括受打击次数、剩余生命值的至少一种。
  25. 根据权利要求21所述的装甲小车,其特征在于,所述打击检测装置还用于过滤所述打击检测装置的麦克风获取的噪音音频数据。
  26. 根据权利要求25所述的装甲小车,其特征在于,所述噪音音频数据包括内部噪音音频数据,所述内部噪音音频数据为所述装甲小车内部产生的噪音音频数据。
  27. 根据权利要求26所述的装甲小车,其特征在于,所述打击检测装置的麦克风为定向麦克风,所述定向麦克风固定朝向所述装甲外壳内表面设置。
  28. 根据权利要求25所述的装甲小车,其特征在于,所述噪音音频数据包括传导噪音音频数据,所述传导噪音音频数据为所述装甲小车上所述装甲外壳外的部分产生并通过刚性连接介质传导至所述麦克风的噪音音频数据。
  29. 根据权利要求28所述的装甲小车,其特征在于,所述装甲小车还包括减震结构,所述减震结构设置于所述装甲外壳和所述装甲小车上所述装甲外壳外的部分的连接部位。
  30. 根据权利要求29所述的装甲小车,其特征在于,所述装甲小车还包括底盘,所述装甲外壳远离所述底盘设置。
  31. 根据权利要求20所述的装甲小车,其特征在于,所述打击检测装置的麦克风和校验传感器设置于所述装甲外壳的内侧。
  32. 根据权利要求20所述的装甲小车,其特征在于,所述打击检测装置的处理器集成于所述主控制器或所述打击信息处理装置中。
PCT/CN2017/100068 2017-08-31 2017-08-31 打击检测方法、打击检测装置及装甲小车 WO2019041273A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/100068 WO2019041273A1 (zh) 2017-08-31 2017-08-31 打击检测方法、打击检测装置及装甲小车
CN201780087083.4A CN110352334B (zh) 2017-08-31 2017-08-31 打击检测方法、打击检测装置及装甲小车

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/100068 WO2019041273A1 (zh) 2017-08-31 2017-08-31 打击检测方法、打击检测装置及装甲小车

Publications (1)

Publication Number Publication Date
WO2019041273A1 true WO2019041273A1 (zh) 2019-03-07

Family

ID=65524801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/100068 WO2019041273A1 (zh) 2017-08-31 2017-08-31 打击检测方法、打击检测装置及装甲小车

Country Status (2)

Country Link
CN (1) CN110352334B (zh)
WO (1) WO2019041273A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112792849A (zh) * 2021-01-06 2021-05-14 厦门攸信信息技术有限公司 碰撞检测方法、机器人、移动终端及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102568153A (zh) * 2010-12-20 2012-07-11 淄博高新区联创科技服务中心 车辆碰撞检测装置
US20130180335A1 (en) * 2012-01-12 2013-07-18 Roland Corporation Striking detection device and method
US20150310197A1 (en) * 2014-04-25 2015-10-29 Samsung Electronics Co., Ltd. Method of processing input and electronic device thereof
CN105258791A (zh) * 2015-10-30 2016-01-20 广州市浩云安防科技股份有限公司 应用于atm机的被砸检测方法及系统
CN205759674U (zh) * 2016-05-31 2016-12-07 深圳市大疆创新科技有限公司 检测外部撞击物的检测系统以及遥控竞赛战车
CN107223205A (zh) * 2016-05-31 2017-09-29 深圳市大疆创新科技有限公司 检测外部撞击物的检测系统、方法以及可移动物体

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7895036B2 (en) * 2003-02-21 2011-02-22 Qnx Software Systems Co. System for suppressing wind noise
CN101123629A (zh) * 2006-08-08 2008-02-13 英华达(上海)电子有限公司 一种用于移动电话的环境噪声过滤方法和装置
CN103886868B (zh) * 2014-04-16 2019-05-24 上海其高电子科技有限公司 冲击声检测方法及检测系统
CN105225408A (zh) * 2014-06-19 2016-01-06 宇龙计算机通信科技(深圳)有限公司 自动报警的方法及装置
CN105374136A (zh) * 2014-08-28 2016-03-02 上海本星电子科技有限公司 敲门声音识别门铃唤醒系统
CN106601227A (zh) * 2016-11-18 2017-04-26 北京金锐德路科技有限公司 音频采集方法和装置
CN106843490B (zh) * 2017-02-04 2020-02-21 广东小天才科技有限公司 一种基于可穿戴设备的击球检测方法及可穿戴设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102568153A (zh) * 2010-12-20 2012-07-11 淄博高新区联创科技服务中心 车辆碰撞检测装置
US20130180335A1 (en) * 2012-01-12 2013-07-18 Roland Corporation Striking detection device and method
US20150310197A1 (en) * 2014-04-25 2015-10-29 Samsung Electronics Co., Ltd. Method of processing input and electronic device thereof
CN105258791A (zh) * 2015-10-30 2016-01-20 广州市浩云安防科技股份有限公司 应用于atm机的被砸检测方法及系统
CN205759674U (zh) * 2016-05-31 2016-12-07 深圳市大疆创新科技有限公司 检测外部撞击物的检测系统以及遥控竞赛战车
CN107223205A (zh) * 2016-05-31 2017-09-29 深圳市大疆创新科技有限公司 检测外部撞击物的检测系统、方法以及可移动物体

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112792849A (zh) * 2021-01-06 2021-05-14 厦门攸信信息技术有限公司 碰撞检测方法、机器人、移动终端及存储介质
CN112792849B (zh) * 2021-01-06 2022-07-26 厦门攸信信息技术有限公司 碰撞检测方法、机器人、移动终端及存储介质

Also Published As

Publication number Publication date
CN110352334B (zh) 2022-07-19
CN110352334A (zh) 2019-10-18

Similar Documents

Publication Publication Date Title
US11276409B2 (en) Detection of replay attack
WO2014178970A3 (en) Electronic device with acoustic transmit power control system
EP3042795A3 (en) System and method to detect an unattended occupant in a vehicle and take safety countermeasures
Gong et al. An overview of vulnerabilities of voice controlled systems
EP3504691B1 (en) System and method for acoustically identifying gunshots fired indoors
RU2018111253A (ru) Транспортное средство с возможностью диагностики системы акустического оповещения транспортного средства (avas) на основе существующих датчиков
US20140341386A1 (en) Noise reduction
CN107431870A (zh) 用于测试mems麦克风的信噪比的低成本方法
WO2015093511A1 (ja) 標的システム
CN105298933A (zh) 一种轴流风扇主动噪声控制装置
WO2019041273A1 (zh) 打击检测方法、打击检测装置及装甲小车
CN107258038A (zh) 配合保证系统和方法
US11641544B2 (en) Lightweight full 360 audio source location detection with two microphones
Jang et al. Paralyzing Drones via EMI Signal Injection on Sensory Communication Channels.
CN105675122B (zh) 一种噪声源位置快速识别方法
CN107632288A (zh) 一种声源定位系统
JPWO2013145352A1 (ja) 広帯域センサ
JP2017227641A5 (zh)
CN113115148B (zh) 一种耳机及入耳检测方法、装置
US20200172392A1 (en) Method for checking a sensor value of a mems sensor
WO2020087372A1 (zh) 撞击物识别方法、系统及存储介质
EP3594938A1 (en) Aircraft ground safety for ultrasonic sensors
JP4332410B2 (ja) 射撃訓練装置における着弾検出装置
US20210255319A1 (en) Object movement detection based on ultrasonic sensor data analysis
JP5046569B2 (ja) 標的装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17922984

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17922984

Country of ref document: EP

Kind code of ref document: A1