WO2019041209A1 - 无线通信方法、网络侧设备及装置 - Google Patents

无线通信方法、网络侧设备及装置 Download PDF

Info

Publication number
WO2019041209A1
WO2019041209A1 PCT/CN2017/099804 CN2017099804W WO2019041209A1 WO 2019041209 A1 WO2019041209 A1 WO 2019041209A1 CN 2017099804 W CN2017099804 W CN 2017099804W WO 2019041209 A1 WO2019041209 A1 WO 2019041209A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
drs
fixed
network side
side device
Prior art date
Application number
PCT/CN2017/099804
Other languages
English (en)
French (fr)
Inventor
李振宇
南杨
张武荣
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2017/099804 priority Critical patent/WO2019041209A1/zh
Priority to CN201780092361.5A priority patent/CN110771234B/zh
Priority to EP17923967.8A priority patent/EP3664542B1/en
Publication of WO2019041209A1 publication Critical patent/WO2019041209A1/zh
Priority to US16/805,039 priority patent/US11323220B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a wireless communication method, a network side device, and a device.
  • the network side device When the network side device and the user terminal use the unlicensed spectrum to communicate, the network side device needs to send a Discovery Reference Signal (DRS) to assist the user terminal in channel estimation or channel sounding.
  • DRS Discovery Reference Signal
  • the network side device when the network side device sends the DRS on a fixed channel, it first detects whether the fixed channel is idle. If the detection result is that the fixed channel is idle, no other network side device sends the fixed channel. The DRS, the node device can send the DRS at this time; if the detection result is that the fixed channel is not idle, the network-side device waits for a period of time to detect whether the fixed channel is idle again.
  • the embodiment of the present application provides a wireless communication method, a network side device, and a device.
  • a wireless communication method comprising:
  • the network side device determines N fixed channels according to a preset frequency point, where N is an integer greater than or equal to 2; determining a first fixed channel from the N fixed channels, where the first fixed channel is the N fixed M channels in the channel, M ⁇ N, and M is a positive integer; transmitting a discovery reference signal DRS on the first fixed channel, the DRS including at least one of a synchronization signal, broadcast information, and a system message; Data transmission is performed on the data channel and the user terminal by frequency hopping, and the data channel is all or part of the channels other than the N fixed channels.
  • the network side device determines N fixed channels according to a pre-configured frequency point (N ⁇ 2, and N is an integer), and determines M first fixed channels therefrom, and determines the first one.
  • the DRS is transmitted in the fixed channel, and the data is transmitted to the user terminal by using a frequency hopping manner on the other data channels except the N fixed channels.
  • the fixed channel that the network side device can use to send the DRS is Multiple, and the network side device can select one or more fixed channels to send the DRS, and the DRS is sent on only one fixed channel, and in the multi-cell scenario, the embodiment of the present application
  • the illustrated solution enables the network side device to have more opportunities to send DRS, thereby improving access efficiency and data transmission efficiency between the user terminal and the part of the network side device, thereby improving The effect of system capacity.
  • the network side device and the user terminal transmit user specific (UE specific) data on the data channel.
  • UE specific user specific
  • the network side device performs data transmission between the data channel and the user terminal by using a frequency hopping manner, where the network side device sends the DRS between two adjacent transmissions.
  • Performing at least one predetermined time length of data transmission with the user terminal on the data channel of the p, p ⁇ 1, and p is an integer; wherein, when p is not less than 2, performing on the data channel of p The time interval for data transmission is different.
  • the network side device performs data transmission with the user terminal for at least one predetermined time length on the data channel of the p between two adjacent transmissions of the DRS, including The network side device performs a channel idle evaluation CCA on the first data channel each time the data transmission of the predetermined time length is performed on the first data channel, where the first data channel is described in p Any data channel in the data channel; if the evaluation result of the CCA indicates that the first data channel is idle, the network side device performs data transmission of the predetermined time length on the first data channel.
  • the method provided by the embodiment of the present application performs channel idle evaluation CCA on the data channel before the network side device and the user terminal perform data transmission, and performs data transmission when the CCA evaluation result indicates that the data channel is idle, thereby avoiding the same in the same Interference occurs on the channel due to simultaneous data transmission, which improves the efficiency and quality of data transmission.
  • the network side device sends the discovery reference signal DRS on the first fixed channel, where: the network side device is in the first fixed channel in a transmission time window.
  • Sending the DRS, the transmission time window is a time interval for transmitting the DRS.
  • the network side device before sending the DRS on the first fixed channel in a sending time window, further includes: in the sending time window, in the Performing a channel idle evaluation CCA on a fixed channel; when the evaluation result of the CCA indicates that the first fixed channel is occupied, the network side device calculates a first remaining duration in the transmission time window; When the remaining duration is not less than the sum of the duration of the CCA and the duration of the DRS, the network side device re-executes the CCA on the first fixed channel; the network side device is in a transmission time window, Transmitting the DRS on the first fixed channel includes: when the re-evaluated CCA evaluation result indicates that the first fixed channel is idle, the network side device sends the DRS.
  • the network side device determines a transmission time window on the first fixed channel before transmitting the DRS, and may perform multiple CCAs in the transmission time window.
  • the network side device may also Continue to perform CCA in the transmission time window until the remaining time of the transmission time window is insufficient or the DRS has been transmitted, which improves the success rate of transmitting the DRS.
  • the network side device sends the DRS on the first fixed channel in a sending time window, including: when M ⁇ 2, the network side device is in the During the transmission time window, the CCA is synchronously performed on the first fixed channel; the network side device transmits the DRS on the second fixed channel in the transmission time window; the second fixed channel is the Among the first fixed channels, the first one obtains a channel indicating the evaluation result of the channel idle.
  • the method further includes: after the network side device sends the DRS on the second fixed channel, calculate a second remaining duration in the sending time window; When the second remaining duration is not less than the sum of the duration of performing the CCA and the duration of transmitting the DRS, the network side device is in the first fixed channel. CCA is performed synchronously on channels other than the second fixed channel.
  • the network side device may perform CCA on the plurality of first fixed channels, and send on the first fixed channel that first obtains the CCA evaluation result of the channel idle. DRS, and after the DRS is sent, this step can be repeated on the remaining first fixed channel, which improves the success rate of transmitting the DRS.
  • the DRS includes start time offset information, where the start time offset information is used to indicate a start of data transmission between the network side device and the user terminal. The offset between the time point and the start time point or end time point of the DRS.
  • the DRS includes start time offset information, which is used to indicate an offset between the start time of the data transmission and the start time or the end time of the DRS, and helps the user terminal to quickly determine the data.
  • the starting moment of transmission improves the efficiency of data transmission.
  • the method further includes: when M ⁇ N, for the third fixed channel in the first fixed channel, when detecting that the third fixed channel continues for a predetermined period of time When occupied, the network side device determines a new first fixed channel in the N fixed channels, and the third fixed channel is not included in the new first fixed channel.
  • the method further includes: the network side device sending, by using a broadcast channel, fixed channel indication information to the user terminal, where the fixed channel indication information is used to indicate that the next change period is used. Said a new first fixed channel.
  • the network side device may replace the new first fixed channel, and notify the user terminal to use the new first fixed channel in the next change period, and improve the part.
  • the success rate of transmitting the DRS is guaranteed.
  • the method before the network side device sends the discovery reference signal DRS on the first fixed channel, the method further includes: determining, by the network side device, the sending time according to the preset time window configuration information. The window, or the network side device determines the sending time window according to the identifier of the cell accessed by the user terminal.
  • the network side device determines the first fixed channel from the N fixed channels, including: the network side device from the N fixed channels according to preset fixed channel configuration information. Determining the first fixed channel, or the network side device determining the first fixed channel from the N fixed channels according to an identifier of a cell accessed by the user terminal.
  • the first fixed channels corresponding to the neighboring cells are the same, and the sending time windows corresponding to the neighboring cells are different; or A fixed channel is different.
  • the network side device sends the discovery reference signal DRS on the first fixed channel, where the network side device sends the data channel configuration information on the first fixed channel.
  • the DRS, the data channel configuration information indicating a duration for uplink transmission and a duration for downlink transmission for each of the predetermined length of time.
  • the duration for the uplink transmission and the duration for the downlink transmission in each of the predetermined time lengths can be flexibly configured, thereby improving the flexibility of data transmission.
  • a second aspect provides a wireless communication method, where the method includes: determining, by a user terminal, N fixed channels according to a preset frequency point, where N is an integer greater than or equal to 2; and the user terminal is fixed in the N Detecting a first fixed channel on the channel, the first fixed channel is M channels of the N fixed channels, M ⁇ N, and M is a positive integer; the user terminal receives a discovery reference signal DRS on the first fixed channel, the DRS includes at least one of a synchronization signal, a broadcast information, and a system message; the user terminal is in a data channel according to the DRS Data transmission is performed between the network side device and the network side device by using a frequency hopping method, and the data channel is all or part of channels other than the N fixed channels.
  • the user terminal performs data transmission by using a frequency hopping manner on the data channel and the network side device according to the DRS, including: the user terminal is included according to the DRS.
  • the start time offset information is used to calculate a start time of the data channel, where the start time offset information is used to indicate a start time point of data transmission between the network side device and the user terminal, and the DRS An offset between the start time point or the end time point;
  • the user terminal calculates a transmission frequency point of the data channel according to the frequency hopping pattern and the frequency hopping time information included in the DRS;
  • the user terminal Determining an uplink and downlink location in the data channel according to data channel configuration information included in the DRS, where the data channel configuration information indicates a duration for uplink transmission and a duration for downlink transmission in each predetermined time length;
  • the user terminal performs data transmission between the network side device and the network side device according to the start time, the transmission frequency point, and the uplink and downlink position of the data channel.
  • a communication device having the functionality of a wireless communication method provided by the above-described first aspect and possible implementations of the first aspect.
  • the functions may be implemented by hardware, or may be implemented by hardware, or the functions may be implemented by a chip.
  • the hardware or software includes one or more than one unit corresponding to the functions described above.
  • an apparatus having the functionality of a wireless communication method provided by the possible implementations of the second and second aspects described above.
  • the functions may be implemented by hardware, or may be implemented by hardware, or the functions may be implemented by a chip.
  • the hardware or software includes one or more than one unit corresponding to the functions described above.
  • a network side device comprising: a processor, a communication interface, and a memory; the communication interface is controlled by a processor; the processor in the device is implemented by executing a program or an instruction stored in the memory
  • the wireless communication method provided by the above first aspect and possible implementation of the first aspect.
  • an apparatus comprising: a processor, a communication interface, and a memory; the communication interface is controlled by a processor; the processor in the apparatus implements the foregoing by executing a program or an instruction stored in the memory
  • a wireless communication method provided by the second aspect and the possible implementation of the second aspect.
  • the embodiment of the present application further provides a computer readable storage medium, where the computer readable storage medium stores at least one instruction, at least one program, a code set, or a set of instructions, the at least one instruction, at least one program
  • the code set or the set of instructions may be executed by a processor to implement the wireless communication method provided by the first aspect and the possible implementations of the first aspect.
  • the embodiment of the present application further provides a computer readable storage medium, where the computer readable storage medium stores at least one instruction, at least one program, a code set, or a set of instructions, the at least one instruction, at least one step
  • the sequence, code set, or set of instructions may be executed by a processor to implement the wireless communication methods provided by the second and second possible implementations of the second aspect.
  • FIG. 1 is a block diagram of a wireless communication system according to an embodiment of the present application.
  • FIG. 2 is a flowchart of a method of a wireless communication method provided by an exemplary embodiment of the present application
  • FIG. 3 is a wireless communication application scenario involved in the embodiment shown in FIG. 2;
  • FIG. 4 is another wireless communication application scenario involved in the embodiment shown in FIG. 2;
  • FIG. 5 is still another wireless communication application scenario involved in the embodiment shown in FIG. 2; FIG.
  • FIG. 6 is still another wireless communication application scenario involved in the embodiment shown in FIG. 2; FIG.
  • FIG. 7 is another wireless communication application scenario involved in the embodiment shown in FIG. 2; FIG.
  • FIG. 8 is a structural diagram of a DRS according to the embodiment shown in FIG. 2; FIG.
  • FIG. 9 is a schematic structural diagram of a network side device 90 according to an exemplary embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of an apparatus 100 according to an exemplary embodiment of the present disclosure.
  • FIG. 11 is a structural block diagram of a communication apparatus according to an exemplary embodiment of the present application.
  • FIG. 12 is a structural block diagram of another apparatus provided by an exemplary embodiment of the present application.
  • FIG. 1 is a structural diagram of a wireless communication system according to an embodiment of the present application.
  • the wireless communication system includes: a network side device 110 and a user terminal 120.
  • the wireless communication system may be a cellular mobile communication system.
  • the wireless communication system may be a 3th generation mobile communication (3G) system or a fourth generation mobile communication technology (the 4th).
  • the generation mobile communication, 4G) system also known as the Long Term Evolution (LTE) system
  • the wireless communication system may also be a 5G system, also known as a new radio (NR) system.
  • the network side device 110 may be a base station (BS) in a 3G system or an evolved base station (eNB) employed in a 4G system.
  • eNB evolved base station
  • the network side device 110 may also be a base station (gNB) that adopts a centralized distributed architecture in a 5G system.
  • the network side device 110 When the network side device 110 adopts a centralized distributed architecture, it generally includes a central unit (CU) and at least two distributed units (DUs). a centralized data unit is provided with a Packet Data Convergence Protocol (PDCP) layer, a Radio Link Control (RLC) layer, and a Media Access Control (MAC) layer protocol stack; A physical (physical, PHY) layer protocol stack is provided in the unit.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Media Access Control
  • a physical (physical, PHY) layer protocol stack is provided in the unit.
  • the specific implementation manner of the network side device 110 is not limited in this embodiment.
  • the wireless communication system may also be a Bluetooth Low Energy (BLE) system
  • the network side device 110 may be a BLE master device
  • the user terminal 120 may be a BLE slave device.
  • BLE Bluetooth Low Energy
  • the wireless communication system may also be a wireless local area networks (WLAN) system
  • the network side device 110 may be an access point (AP) or a transmission receiving point in the wireless local area network. (transmission reception point, TRP).
  • AP access point
  • TRP transmission reception point
  • the wireless communication system can be other types of wireless communication systems as well.
  • User terminal 120 may be a device that provides voice and/or data connectivity to the user.
  • the user terminal 120 can communicate with one or more core networks via a Radio Access Network (RAN), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and with a mobile terminal.
  • RAN Radio Access Network
  • the computer for example, can be a portable, pocket, handheld, computer built-in or in-vehicle mobile device.
  • STA station
  • Remote terminal Remote terminal
  • an access terminal a user terminal, a user agent, a user device, or a user equipment (UE).
  • UE user equipment
  • multiple network side devices 110 and/or multiple user terminals 120 may be included, and one network side device 110 and one terminal 120 are illustrated in FIG. The description is not limited to this embodiment.
  • the network side device 110 may determine at least one first fixed channel from the N fixed channels, and send the DRS on the first fixed channel, and on the data channel other than the N fixed channels.
  • the user terminal performs data communication. That is, in the solution shown in the embodiment of the present application, there are multiple fixed channels that the network side device 110 can use to transmit the DRS, and the network side device 110 can select one or more fixed channels to send the DRS, compared to all. In the multi-cell scenario, the solution shown in the embodiment of the present application provides more opportunities for the network-side device 110 to send DRS, thereby improving the user terminal and the part of the network. The access efficiency and data transmission efficiency between the side devices achieve the effect of increasing the system capacity.
  • the network side device 110 and the user terminal 120 can communicate on the unlicensed spectrum.
  • the Listen before talk (LBT) technology is A commonly used channel estimation technique.
  • FIG. 2 is a flowchart of a method of a wireless communication method provided by an exemplary embodiment of the present application.
  • the above wireless communication method can be performed by the network side device 110 and the user terminal 120 in the wireless communication system shown in FIG. 1 described above to implement communication on an unlicensed spectrum.
  • the wireless communication method may include the following steps:
  • Step 201 The network side device determines N fixed channels according to a preset frequency point, where N is an integer greater than or equal to 2.
  • the communication device (such as the network side device and the user equipment involved in the various embodiments of the present application) can determine the wireless channel for transmitting and receiving signals by using a preset frequency point.
  • N frequency points for transmitting DRS are preset in the network side device, and each frequency point corresponds to one fixed channel.
  • the network side device may determine N fixed channels corresponding to the N frequency points respectively according to the N preset frequency points.
  • the frequency point may be preset by the wireless communication system in the network side device or the user terminal by means of system signaling; or the frequency may be pre-defined by the developer/installation maintenance personnel in the network side device or the user terminal. Settings, optional, when the above frequency is set by the developer/installation maintenance personnel, the above frequency can also be updated by software upgrade.
  • N is an integer greater than or equal to 2, that is, the number of fixed channels allocated by the wireless communication system to each network side device to transmit DRS is at least two, and the network side device may be two or more.
  • the DRS is sent on the fixed channel.
  • the value of the above N may be a value of 2, 3 or more, which is not limited by the embodiment of the present application.
  • the preset frequency point may be an adjacent frequency point, that is, the determined N fixed channels are adjacent N wireless channels; or, the preset frequency point may also be The discrete frequency points, that is, the determined N fixed channels are non-adjacent wireless channels; or, some of the preset frequency points are adjacent frequency points, and other partial frequency points and the partial frequency points Non-adjacent, that is, among the N fixed channels determined, some fixed channels are adjacent, and other fixed channels are not adjacent to the fixed channels. For example, if N is 3 (that is, there are 3 fixed channels) There may be two fixed channels adjacent to each other, and the other fixed channel is not adjacent to the two fixed channels.
  • the specific frequency points corresponding to the N fixed channels and the relationship between the frequency points are not limited in this embodiment of the present application.
  • Step 202 The network side device determines a first fixed channel from the N fixed channels, where the first fixed channel is M channels of the N fixed channels, M ⁇ N, and M is a positive integer.
  • the network side device may determine M first fixed channels from the N fixed channels as a channel for subsequently transmitting the DRS.
  • the network side device determines the first fixed channel from the N fixed channels according to preset fixed channel configuration information.
  • the fixed channel configuration information is used to indicate a first fixed channel of the N fixed channels.
  • which one or more of the N fixed channels are used by each network side device as a fixed channel for transmitting the DRS may be preset.
  • the installation/maintenance personnel may set fixed channel configuration information in the network side device, where the fixed channel configuration information indicates which one or which of the N fixed channels are the first fixed. channel.
  • the wireless communication system may set the fixed channel configuration information in the network side device.
  • the network side device may determine the first fixed channel from the N fixed channels according to the identifier of the cell corresponding to the network side device.
  • the network side device may calculate the first fixed channel according to the identifier of the cell that it supports, such as the cell ID.
  • the cell ID may be a number, or the cell ID may be converted into a number by using a certain algorithm;
  • the N fixed channels are numbered starting from 0, that is, the numbers of the N fixed channels are 0, 1, ..., N-1, respectively.
  • the network side device divides the number corresponding to the cell ID by N, and the obtained remainder is the number of the first fixed channel.
  • the network side device may also determine two or more first fixed channels by using the method. For example, when M ⁇ 2, the network side device may be in the channel numbered as the above remainder, and in the N fixed channels. The M-1 channels before and after the channel are determined as the first fixed channel.
  • the network side device needs to determine 2 fixed channels as the first fixed channel; the network side device corresponds to the current cell ID. The value of the value is divided by 3 to obtain a remainder. When the remainder is 1, the network side device can determine the fixed channel numbered 1 and 2 as the first fixed channel, and when the remainder is 2, the network side device can be numbered 2 The fixed channel of 0 and 0 is determined as the first fixed channel.
  • the network side device may also determine all N fixed channels as the first fixed channel.
  • Step 203 The network side device sends the DRS on the first fixed channel.
  • the DRS may be sent on the first fixed channel.
  • the DRS may include at least one of a synchronization signal, broadcast information, and a system message.
  • the synchronization signal may include a Primary Synchronization Signal (PSS), a Secondary Synchronization Signal (SSS), and the like.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the broadcast information may be an SIB-MF-BR message, and the SIB-MF-BR message may include multiple broadcast information required by the user terminal, such as an adaptive frequency hopping channel map and frequency hopping time information.
  • the time point indicating the frequency hopping, the hyper SFN, the system information update tag, the discovery signal measurement timing configuration (DMTC), and the like.
  • MIB Master Information Block
  • SIB System Information Blocks
  • the DRS sent by the network side device may further include a Physical Broadcast Channel (PBCH).
  • PBCH Physical Broadcast Channel
  • the network side device may send the DRS on the first fixed channel within a transmission time window, where the transmission time window is a time interval for transmitting the DRS.
  • the network side device when the network side device and the user terminal communicate through the unlicensed spectrum, when the network side device sends the DRS, the network side device can transmit by using the LBT technology.
  • the LBT technology means that before transmitting a signal or data, the transmitting device first performs a Clear Channel Assessment (CCA) on the channel to be transmitted to measure the energy condition on the current channel, if the measured energy exceeds the threshold.
  • CCA Clear Channel Assessment
  • the channel is occupied, it is determined that the channel is not idle (that is, the channel is currently occupied by other transmitting devices), and cannot be sent at this time; otherwise, if the measured energy is lower than the threshold, the evaluation result is determined as The channel is idle (that is, the channel is not currently occupied by other transmitting devices), and can be sent at this time, so that time division multiplexing of the channels is implemented between the respective transmitting devices to avoid mutual interference caused by simultaneous transmission.
  • the network side device before the network side device sends the DRS, performing channel idle evaluation CCA on the first fixed channel in the foregoing sending time window, and when the CCA evaluation result indicates that the first fixed channel is idle, in the first The DRS is sent on a fixed channel.
  • the time when the network side device sends the DRS and the time when the network side device and the user terminal perform the data transmission are isolated from each other.
  • the continuous time interval of the DRS that is allowed to be sent by the network side device may be referred to as a transmission time window.
  • the network side device sends the DRS in the LBT mode in each transmission time window, that is, in each transmission time window, the network side device performs CCA on each first fixed channel, and the CCA evaluation result indicates that the current channel is not occupied.
  • the DRS is transmitted on the first fixed channel.
  • the network side device determines the sending time window according to the preset time window configuration information or the identifier of the cell accessed by the user terminal.
  • the network side device determines the sending time window according to the preset time window configuration information.
  • the time window configuration information is used to indicate a time interval for transmitting the DRS in the first fixed channel.
  • the installation/maintenance personnel may set time window configuration information in the network side device, and the time window configuration information indicates which time interval in the first fixed channel is used to send the DRS. .
  • the wireless communication system may set the time window configuration information in the network side device.
  • the network side device may determine the sending time window according to the identifier of the cell corresponding to the network side device.
  • the cell ID may be a number, or the cell ID may be converted into a number by using a certain algorithm; at the same time, the network side device may divide a certain time interval in one channel into several small time intervals, as several The transmission time window, starting from 0, numbers these transmission time windows, that is, the number of several transmission time windows is 0, 1, .... The network side device divides the number corresponding to the cell ID by the number of transmission time windows, and the obtained remainder is the number of the transmission time window.
  • the first fixed channels corresponding to the neighboring cells are the same, and the corresponding transmission time windows of the neighboring cells are different; or the first fixed channels corresponding to the neighboring cells are different.
  • the network side device corresponding to the neighboring cell may send the DRS on the same first fixed channel, but the transmission time window corresponding to the different cell must be time-division, or when the first fixed channel corresponding to a certain cell
  • the network side device corresponding to the neighboring cell may transmit the DRS on other fixed channels than the M first fixed channels.
  • the network side device may perform the CCA only once in a sending time window, that is, when the CCA evaluation result is that the current channel is occupied, the network side device does not try the next time in the sending time window. CCA will also not send DRS.
  • the length of time of one transmission time window may also be greater than the sum of the duration of one CCA and the duration of one DRS transmission, that is, within one transmission time window, the network side device may Perform multiple CCAs.
  • the network side device performs a channel idle evaluation CCA on the first fixed channel in the sending time window, and when the CCA evaluation result indicates that the first fixed channel is occupied, the network side device calculates the sending time.
  • the first remaining duration in the window when the first remaining duration is not less than the sum of the duration of performing the CCA and the duration of transmitting the DRS, the network side device re-executes the CCA on the first fixed channel, when re-executing
  • the network side device transmits the DRS on the first fixed channel.
  • the terminal performs one or more CCAs, and each evaluation result indicates that the first fixed channel is occupied, if the remaining duration in the current transmission time window is enough, the CCA plus DRS is once. If the CCA is successful, the network side device can continue to perform the CCA. If the CCA is successful, the DRS is sent, and the network side device repeatedly performs the CCA step until the DRS is successfully sent in the sending time window, or until the remaining time is insufficient to perform the CCA once. DRS is sent.
  • the network side device may separately perform in the two or more fixed channels.
  • LBT that is, the DRS transmission process in the two or more fixed channels does not affect each other.
  • the network side device may only be on one of the two or more fixed channels.
  • Send DRS or, The network side device transmits the DRS only on one of two or more fixed channels at the same time.
  • the network side device synchronously performs CCA on the first fixed channel in a transmission time window, and the network side device sends the second fixed channel in the transmission time window.
  • the DRS, the second fixed channel is a channel in the first fixed channel, and the first one obtains an evaluation result indicating that the channel is idle.
  • the network side device can simultaneously perform CCA on the two or more fixed channels in one transmission time window.
  • the evaluation result indicating that the corresponding channel is idle is first obtained on a certain fixed channel
  • the network side device transmits the DRS on the fixed channel, and the other ones of the two or more fixed channels that have not yet obtained the evaluation result
  • the channel regardless of whether the subsequent evaluation result obtained indicates that the corresponding channel is idle, the network side device does not transmit the DRS on other channels within the current transmission time window.
  • the second remaining duration in the sending time window may also be calculated, when the second remaining duration is not less than the duration of the CCA and the sending once.
  • the network side device performs CCA synchronization on the channels other than the second fixed channel in the first fixed channel.
  • the network side device when the first fixed channel includes two or more fixed channels, when the evaluation result indicating that the corresponding channel is idle is first obtained on a certain fixed channel, the network side device is in the After the DRS is sent on the fixed channel, if the remaining time in the current time window is enough to perform one or more CCA plus DRS transmissions, the network side device may also have not sent the DRS in the two or more fixed channels.
  • the CCA detection and the DRS transmission are continued on the channel, that is, the network side device simultaneously performs CCA detection on the channel on which the DRS has not been transmitted, and transmits the DRS on the channel in which the first one is detected to be unoccupied, and the network side device can Repeating the above steps of CCA plus DRS transmission until DRS is sent on two or more fixed channels in the current transmission time window, or until the remaining duration of the current transmission time window is insufficient for one CCA plus DRS send.
  • the network side device determines three first fixed channels: channel 0, channel 1, channel 2, the transmission time window on each first fixed channel is 10 ms, it takes 1 ms to perform CCA once, and the time required to transmit DRS is 3ms, the network side device can perform CCA on the three first fixed channels at the same time. If the CCA result first indicates that the channel 2 is idle, the DRS is sent on the channel 2, and the remaining time of the transmission time window is 6 ms, which is greater than If the sum of the duration of the CCA and the DRS is sent once, the network side device can perform CCA again on channel 0 and channel 1. If the CCA result first indicates that channel 0 is idle, then the DRS is sent again on channel 0, and the transmission time is now. Only 2ms of time remains in the window, not enough for one CCA and one DRS, and CCA and DRS are no longer performed.
  • the time when the network side device performs CCA for the first time on the first fixed channel may also be before the transmission time window.
  • the duration required for performing the CCA may be preset by the development/operation and maintenance personnel in the network side device, and the length of time required to send the DRS may be determined by the length of the time domain occupied by the DRS, for example, required for transmitting the DRS.
  • the duration can be the length of the time domain occupied by the DRS.
  • Step 204 The user terminal determines N fixed channels according to a preset frequency point.
  • the N fixed channels can be determined according to the preset frequency points.
  • the manner in which the user terminal determines the N fixed channels is similar to the manner in which the network side device determines the N fixed channels, and details are not described herein again.
  • Step 205 The user terminal detects the first fixed channel on the N fixed channels.
  • the user terminal After determining the N fixed channels, the user terminal detects the first fixed channel on the N fixed channels, where the first fixed channel is M channels in the N fixed channels, for example, the user determines N fixed. After the channel, the DRS can be detected on the N fixed channels respectively (for example, the DRS can be detected by means of blind detection).
  • the user terminal detects the DRS sent by the network side device on one or more fixed channels, That is, it can be confirmed that the one or more fixed channels are the first fixed channel used by the network side device to transmit the DRS.
  • Step 206 The user terminal receives the DRS sent by the network side device on the first fixed channel.
  • the user terminal After the user terminal detects the first fixed channel of the N fixed channels, the user terminal detects the DRS sent by the network side device on the first fixed channel during the subsequent communication with the network side device.
  • the network side device when M ⁇ N, for the third fixed channel in the first fixed channel, when the network side device detects that the third fixed channel continues to be occupied for a predetermined period of time, the network side device is at the N A new first fixed channel is determined in the fixed channel, and the third fixed channel is not included in the new first fixed channel.
  • the network side device may send the fixed channel indication information to the user terminal through the broadcast channel during the current change period or at the start time of the next change period, and the user terminal receives the network side device through the broadcast channel in the next change period.
  • Transmitted fixed channel indication information the fixed channel indication information is used to indicate a new first fixed channel, and the user terminal receives the DRS on the new first fixed channel.
  • the change period may be a fixed time interval between two system information update times in the communication system.
  • the user terminal needs to first detect that the first fixed channel that sends the DRS is detected in the determined N fixed channels, and then in the first fixed The DRS is received on the channel.
  • the network side device detects that one of the M first fixed channels is continuously occupied for a predetermined period of time (the detection method may be that the channel obtains the occupied CCA evaluation result within a predetermined time period)
  • the user terminal sends the fixed channel indication information, so that the user terminal can receive the information of the new first fixed channel in time, and then the user equipment receives the DRS on the new first fixed channel.
  • the method for determining, by the network side device, the new first fixed channel may be randomly selecting a new first fixed channel from the first fixed channel except the continuously occupied channel, or may be in a predetermined order.
  • the first new fixed channel after the channel that is continuously occupied is selected, which is not limited in this embodiment.
  • Step 207 The network side device and the user terminal perform data transmission by using a frequency hopping manner on the data channel, where the data channel is all or part of the channels other than the N fixed channels.
  • the network side device performs data transmission with the user terminal for at least one predetermined time length on the data channel of the p between two adjacent transmissions of the DRS, p ⁇ 1, and p is an integer, when p When it is not less than 2, the time interval for data transmission on the p data channel is different.
  • the DRS further includes data channel configuration information indicating a duration for uplink transmission and a duration for downlink transmission for each predetermined time length.
  • the network side device performs CCA on the first data channel before performing the data transmission of the predetermined time length on the first data channel, where the first data channel is any of the p data channels. And a data channel, if the evaluation result of the CCA indicates that the first data channel is idle, the network side device performs data transmission of the predetermined time length on the first data channel.
  • the data transmission can be performed by using a frequency hopping method on the data channel with the network side device, and the data channel is all or part of channels except N fixed channels in all channels.
  • the N fixed channels and the data channels are channels in the working bandwidth of the wireless communication system where the network side device and the user terminal are located, that is, the data channel is in each channel in the working bandwidth of the wireless communication system. All or part of the channel except N fixed channels.
  • the network side device may perform at least one predetermined time length of data transmission with the user terminal on at least one data channel.
  • the predetermined length of time is the length of time that the network side device and the user terminal perform a continuous data transmission on the data channel, which may be preset by the development/operation and maintenance personnel.
  • the time interval is the interval between the start time and the end time of each data transmission; in practical applications, the time lengths of the foregoing time intervals are usually the same, but the start time points of the two time intervals are different. For example, for two adjacent time intervals, the end time point of the previous time interval may be the start time point of the latter time interval.
  • the network side device and the user terminal may perform data transmission for a predetermined length of time, or may perform data transmission for a predetermined time length, and the predetermined time length may be any of, for example, 80 ms, 100 ms.
  • a length of time, and in the predetermined length of time, the duration for the uplink transmission and the duration for the downlink transmission may be flexibly configured, and the configuration information may be included in the DRS for indicating the uplink transmission in a predetermined length of time The duration of the downlink transmission.
  • the DRS may also include a start time offset in the Control Channel Element (CCE).
  • CCE Control Channel Element
  • a shift information where the start time offset information is used to indicate an offset between a start time point of data transmission between the network side device and the user terminal and any time point of the DRS, where the DRS is A point in time may be the starting time point of the DRS, or may be the ending time point of the DRS, or may be other time points in the middle of the DRS.
  • the start time of the data channel may be calculated according to the start time offset information included in the DRS, according to the frequency hopping pattern and frequency hopping included in the DRS.
  • the time information calculates a transmission frequency point of the data channel, and determines an uplink and downlink position in the data channel according to the data channel configuration information included in the DRS.
  • the user terminal is configured according to a start time, a transmission frequency point, and a top and bottom of the data channel.
  • the line position and the network side device perform data transmission by frequency hopping.
  • the uplink transmission may adopt a non-adaptive frequency hopping transmission mode, that is, the CCA is not directly transmitted at the starting position of the uplink transmission, and the uplink data is directly transmitted, and the downlink transmission may be performed by first performing CCA resending data. That is, the CCA is performed once at the beginning of the downlink transmission. If the CCA evaluation result indicates that the downlink channel is idle, the downlink data is sent. If the CCA evaluation result indicates that the downlink channel is occupied, the transmission opportunity is abandoned, and the next transmission opportunity is awaited. .
  • FIG. 3 is a schematic diagram of a wireless communication application scenario according to the embodiment shown in FIG. 2.
  • each channel occupies 6 resource blocks in the frequency domain, that is, 1.08 MHz, and three fixed channels determined by the network side device and the user terminal: channel 1, channel 7, and channel 9
  • the first fixed channel determined by the network side device is channel 1.
  • the DRS includes a primary synchronization signal and a secondary synchronization signal, a broadcast signal, and broadcast information.
  • the DRS occupies 4 ms, and the transmission time window on the channel 1 has a window length of 5 ms.
  • the time required for the network side device to perform CCA once is 1 ms, and the network side device is transmitting DRS.
  • the CCA is performed once in the transmission time window. If the CCA evaluation result indicates that the channel 1 is idle, the DRS is transmitted on the channel 1 in the transmission time window. If the CCA evaluation result indicates that the channel 1 is occupied, the network device is in the Send the DRS in the send time window and wait for the next send time window to arrive. If the network side device detects that the channel 1 continues to be occupied for a predetermined period of time, it may determine a new first fixed channel, and notify the user terminal that the first fixed channel will be switched by broadcasting before switching the channel.
  • the network side device and the user terminal After the user terminal receives the DRS, between the current transmission time window and the next transmission time window, the network side device and the user terminal perform data transmission for a predetermined time length on a data channel (shown as channel 3 in FIG. 3). Between the next time window and the next time window, the network side device and the user terminal hop to another data channel (shown as channel 5 in FIG. 3) for a predetermined length of time, and so on. That is, the network side device sends the DRS alternately with the data transmission. In FIG. 3, the network side device performs CCA once before each predetermined length of time data transmission, and if the CCA evaluation result indicates that the current data channel is not occupied, the data is performed on the current data channel for a predetermined length of time. transmission.
  • the uplink and downlink transmissions are alternately performed.
  • D represents downlink transmission
  • U represents uplink transmission
  • each uplink and downlink transmission time is 10 ms, and the user terminal does not need to perform CCA before uplink transmission, and directly sends uplink data.
  • the duration of the uplink and downlink data transmission may be configured by the network side device and sent to the user terminal through the DRS, for example, taking a predetermined time length of 80 ms as an example, the network side device
  • the downlink transmission duration in the data transmission of a predetermined length of time may be set to 60 ms, and the uplink transmission duration is set to 20 ms.
  • the specific duration of the uplink and downlink data transmission is not limited in this embodiment of the present application.
  • the neighboring cell may also use the channel 1 as the first fixed channel at the same time, and the transmission time window corresponding to the different cells may be time-division.
  • FIG. 4 is another wireless communication application scenario involved in the embodiment shown in FIG. 2.
  • each channel occupies one resource block in the frequency domain, that is, 180 kHz, and three fixed channels determined by the network side device and the user terminal: channel 1, channel 3, and channel 5,
  • the network side device determines that the three fixed channels are the first fixed channel, the DRS occupies 10 ms, the three first fixed channels have a transmission time window, and the window length is 10 ms.
  • the network side device does not need to perform CCA before transmitting the DRS, and directly sends the DRS.
  • the network side device and the user terminal After the user terminal receives the DRS, between the current transmission time window and the next transmission time window, the network side device and the user terminal perform data transmission for a predetermined time length on one data channel (shown as channel 7 in FIG. 4). Between the next time window and the next time window, the network side device and the user terminal hop to another data channel (shown as channel 9 in FIG. 4) for a predetermined length of data transmission, and so on, ie The network side device sends DRS alternately with the data transmission.
  • the predetermined time length is 90 ms.
  • the uplink and downlink transmission time is 40 ms, and a special subframe S is included between the downlink transmission time D and the uplink transmission time U.
  • the length is 10ms, and the network side device and the user terminal do not need to perform CCA before the uplink and downlink transmission, and directly send the uplink and downlink data.
  • the duration of the uplink and downlink data transmission may be configured by the network side device and sent to the user terminal through the DRS, for example, a predetermined time length of 90 ms, for example, the network side device
  • the downlink transmission duration in a data transmission of a predetermined length of time may be set to 60 ms, the uplink transmission duration is set to 20 ms, and the special subframe is set to 10 ms.
  • the broadcast information included in the DRS sent by the network side device carries the system time information, which can assist the user terminal to calculate the frequency hopping pattern, and the neighboring cell can use the same fixed channel as the first fixed channel, and the corresponding time window of the corresponding cell. It may be time-division; alternatively, neighboring cells may also use different fixed channels as the first fixed channel.
  • FIG. 5 is still another wireless communication application scenario involved in the embodiment shown in FIG. 2. Please refer to FIG. 5, in this application scenario, Each channel occupies one resource block in the frequency domain, that is, 180 kHz.
  • the network side device determines that the three fixed channels are the first.
  • a fixed channel the network side device does not need to perform CCA before transmitting the DRS, and directly sends the DRS.
  • the network side device and the user terminal adopt the frequency hopping mode.
  • the network The side device and the user terminal adopt the frequency hopping mode again, and perform data transmission for a predetermined time length on channel 5, channel 9, channel 6, channel 7, and channel 8, respectively, and so on; wherein, the predetermined time length is 80 ms.
  • the total data transmission time length is 400 ms
  • the network side device may perform CCA or not CCA before each predetermined length of data transmission (FIG. 4 shows each data).
  • the network side device does not lose before CCA), transmits downlink data directly.
  • the neighboring cell may use the same fixed channel as the first fixed channel, and the corresponding transmission time window of different cells may be time-division; or, the neighboring cell may also use different fixed channels as the first fixed channel.
  • FIG. 6 is still another wireless communication application scenario involved in the embodiment shown in FIG. 2.
  • each channel occupies 6 resource blocks in the frequency domain, that is, 1.08 MHz, and three fixed channels determined by the network side device and the user terminal: channel 1, channel 7, and channel 9
  • the first fixed channel determined by the network side device is channel 1.
  • the DRS includes a primary synchronization signal and a secondary synchronization signal, a broadcast signal, and broadcast information, where the broadcast information includes an adaptive frequency hopping pattern, a super frame number, a system message update identifier, In the area, the signal measurement time is configured, and the DRS occupies 3 ms.
  • the channel 1 has a transmission time window and the window length is 5 ms.
  • the time required for the network side device to perform a CCA is 1 ms, that is, the network side device is in the transmission time window. There are up to 3 CCA opportunities in the network.
  • the network side device performs CCA once in the transmission time window before transmitting the DRS. If the CCA evaluation result indicates that channel 1 is idle, the DRS is sent. If the CCA evaluation result indicates that channel 1 is occupied, continue. The CCA is performed until three chances are used (ie, the remaining time is not enough for one CCA and one DRS transmission).
  • the broadcast information included in the DRS is further included
  • the start time offset information is used to indicate an offset between a start time point of data transmission between the network side device and the user terminal and a start time point of the DRS, so that the user terminal can determine the start time of the data transmission. .
  • the network side device and the user terminal perform data transmission for at least one predetermined time length on one data channel (shown as channel 3 in FIG. 6). (It is shown in FIG.
  • the network side device and the user terminal continuously perform data transmission for two predetermined time lengths), between the next time window and the next time window, the network side device and The user terminal hops to another data channel (shown as channel 5 in Figure 6) for at least one predetermined length of data transmission, and so on. That is, the network side device sends the DRS alternately with the data transmission.
  • the predetermined time length is 40 ms
  • the network side device and the user terminal use the uplink and downlink interval transmission mode for data transmission, wherein the uplink and downlink transmission time can be respectively 20 ms, and each time a predetermined time length of data transmission is performed.
  • the network side device performs the CCA once.
  • the network side device and the user terminal perform data transmission, and the user terminal does not need to perform CCA before the uplink transmission, and directly sends the uplink data.
  • the duration of the uplink and downlink data transmission may be configured by the network side device and sent to the user terminal through the DRS, for example, taking a predetermined time length of 40 ms as an example, the network side device
  • the downlink transmission duration in the data transmission of a predetermined length of time may be set to 30 ms, and the uplink transmission duration is set to 10 ms.
  • the specific duration of the uplink and downlink data transmission is not limited in this embodiment of the present application.
  • the neighboring cell can also use channel 1 as the first fixed channel at the same time, which is different.
  • the corresponding transmission time window of the area may be time division.
  • FIG. 7 is another wireless communication application scenario involved in the embodiment shown in FIG. 2.
  • the network side device and the user terminal determine three fixed channels: channel 1, channel 7, and channel 9, and the network side device determines that the three fixed channels are the first fixed channel, DRS. Only the primary synchronization signal, the secondary synchronization signal, and the broadcast signal are included.
  • the DRS occupies 2 ms
  • the first fixed channel has a transmission time window
  • the window length is 5 ms
  • the time required for the network side device to perform one CCA is 1 ms.
  • the network side device performs CCA on the first three fixed channels at the beginning of the transmission time window before transmitting the DRS.
  • the network side device sends the DRS on the channel 1. After the DRS is transmitted on the channel 1, if the remaining duration of the current transmission time window is not less than 3 ms, the network side device performs CCA on channel 7 and channel 9 at the same time. If channel 7 first obtains the evaluation result indicating that the channel is idle, then The DRS is transmitted on the channel 7; after the DRS is transmitted on the channel 7, if the remaining duration of the current transmission time window is not less than 3 ms, the network side device finally performs CCA on the channel 9, and if the evaluation result indicates that the channel 9 is idle, then The DRS is transmitted on channel 9.
  • the network After transmitting the DRS on a fixed channel, if the remaining duration in the current transmission time window is less than 3 ms, that is, not enough for one CCA and one DRS transmission, even if there are other fixed channels not sent to the DRS, the network The side device no longer performs CCA detection within the current transmission time window.
  • the broadcast information included in the DRS further includes start time offset information, which is used to indicate an offset between a start time point of data transmission between the network side device and the user terminal and a start time point of the DRS, It is convenient for the user terminal to determine the starting time of the data transmission.
  • the network side device and the user terminal After the user terminal receives the DRS, between the current transmission time window and the next transmission time window, the network side device and the user terminal perform data transmission for a predetermined time length on one data channel (shown as channel 3 in FIG. 7). Between the next time window and the next time window, the network side device and the user terminal hop to another data channel (shown as channel 5 in FIG. 7) for a predetermined length of time, and so on. That is, the network side device sends the DRS alternately with the data transmission. In FIG. 7, the network side device performs CCA once before each predetermined length of time data transmission, and if the CCA evaluation result indicates that the current data channel is not occupied, the data is performed on the current data channel for a predetermined length of time. transmission.
  • the uplink and downlink transmissions are alternately performed.
  • different first fixed channels can simultaneously transmit DRS without time division multiplexing, and neighboring cells can simultaneously use the same fixed channel as the first fixed channel, and the corresponding time window of different cells. It can be time.
  • FIG. 8 is a structural diagram of a DRS according to the embodiment shown in FIG. 2.
  • the DRS includes a primary synchronization signal PSS, a secondary synchronization signal SSS, a physical broadcast channel PBCH, and a broadcast information SIB-MF-BR, SIB.
  • the MF-BR includes an adaptive frequency hopping pattern, a superframe number, a system message update identifier, a proximity discovery signal measurement time configuration DMTC, and the like.
  • the DRS occupies 3 ms, wherein the reserved CCA duration, the primary synchronization signal PSS, the secondary synchronization signal SSS, and the physical broadcast channel PBCH occupy 2 ms, and the broadcast information SIB-MF-BR occupies 1 ms.
  • the network side device determines N fixed channels (N ⁇ 2, and N is an integer) according to the pre-configured frequency point, and determines M first fixed channels therefrom, and The DRS is sent in the first fixed channel, and the data is transmitted to the user terminal by using a frequency hopping method on the other data channels except the N fixed channels.
  • the network side device can be used to send There are multiple fixed channels of the DRS, and the network side device can select one or more fixed channels to transmit DRS, compared to all network side devices, only transmitting DRS on one fixed channel, in a multi-cell scenario.
  • the solution shown in the embodiment of the present application causes the network side device 110 There are more opportunities to send DRS, thereby improving the access efficiency and data transmission efficiency between the user terminal and the network side devices, and achieving the effect of increasing the system capacity.
  • FIG. 9 is a schematic structural diagram of a network side device 90 provided by an exemplary embodiment of the present application.
  • the network side device 90 may be implemented as the network side device 110 in the system shown in FIG. 1.
  • the network side device 90 may include a processor 91 and a communication interface 94.
  • the processor 91 may include one or more processing units, which may be a central processing unit (CPU) or a network processor (NP).
  • processing units may be a central processing unit (CPU) or a network processor (NP).
  • CPU central processing unit
  • NP network processor
  • Communication interface 94 can include a wired communication interface and a wireless communication interface.
  • the wired communication interface is used to connect to other network entities (such as network devices in the core network, etc.), for example, the network interface may be used to connect to a Serving Gateway (SGW) or a Mobility Management Entity (Mobility Management Entity, MME).
  • SGW Serving Gateway
  • MME Mobility Management Entity
  • the wired communication interface may include an Ethernet interface or a fiber interface.
  • the wireless communication interface is configured to communicate with the user terminal through a wireless air interface, which may include a wireless local area network interface, a cellular mobile network interface, or a BLE interface.
  • the network side device 90 may further include a memory 93.
  • Memory 93 can be used to store software programs that can be executed by processor 91.
  • various types of service data or user data can also be stored in the memory 93.
  • the software program can include a channel determination module and a transceiver module; optionally, the software program can further include a calculation module and a time window determination module.
  • the channel determining module is executed by the processor 91 to implement the function of determining N fixed channels according to preset frequency points in the embodiment shown in FIG. 2, and determining the function of the first fixed channel from the N fixed channels. .
  • the transceiver module is controlled by the processor 91 to control the communication interface 94 to implement the function of transmitting the DRS on the first fixed channel in the embodiment shown in FIG. 2, and performing the frequency hopping method on the data channel and the user terminal.
  • the function of data transmission is controlled by the processor 91 to control the communication interface 94 to implement the function of transmitting the DRS on the first fixed channel in the embodiment shown in FIG. 2, and performing the frequency hopping method on the data channel and the user terminal. The function of data transmission.
  • the calculation module is executed by the processor 91 controlling the communication interface 94 to implement the function of calculating the first remaining duration in the current transmission time window when the evaluation result of the CCA indicates that the first fixed channel is occupied in the embodiment shown in FIG. And a function of calculating a second remaining duration in the transmission time window after transmitting the DRS on the second fixed channel.
  • the time window determination module is executed by the processor 91 to implement the function of determining the transmission time window in the embodiment shown in Fig. 2 described above.
  • the processor 91 can be connected to the memory 93 and the communication interface 94 by a bus.
  • the network side device 90 may further include an output device 95 and an input device 97.
  • Output device 95 and input device 97 are coupled to processor 91.
  • the output device 95 can be a display for displaying information, a power amplifier device for playing sound, or a printer, etc.
  • the output device 95 can also include an output controller for providing output to a display screen, a power amplifier device, or a printer.
  • the input device 97 may be a device such as a mouse, a keyboard, an electronic stylus or a touch panel for inputting information by the user, and the input device 97 may further include an output controller for receiving and processing from the mouse, the keyboard, the electronic Input from devices such as stylus or touch panel.
  • FIG. 10 is a schematic structural diagram of an apparatus 100 provided by an exemplary embodiment of the present application.
  • the apparatus 100 may be implemented as all or part of the user terminal 120 in the system shown in FIG. 1.
  • the apparatus 100 can include a processor 1001 and a communication interface 1004.
  • the processor 1001 may include one or more processing units, which may be a central processing unit (CPU) or a network processor (NP).
  • processing units may be a central processing unit (CPU) or a network processor (NP).
  • CPU central processing unit
  • NP network processor
  • Communication interface 1004 can include a wireless communication interface.
  • the wireless communication interface is configured to communicate with the network side device through a wireless air interface, and the wireless communication interface may include a wireless local area network interface, a cellular mobile network interface, or a BLE interface.
  • the device 100 may further include a memory 1003.
  • the memory 1003 can be used to store a software program that can be executed by the processor 1001.
  • various types of service data or user data can also be stored in the memory 1003.
  • the software program may include a channel determination module, a channel detection module, and a transceiver module; optionally, the software program may further include a calculation module and a location determination module.
  • the channel determining module is executed by the processor 1001 to implement the function of determining N fixed channels according to the preset frequency points in the foregoing embodiment shown in FIG. 2 .
  • the channel detection module is executed by the processor 1001 controlling the communication interface 1004 to implement the function of detecting the first fixed channel on the N fixed channels in the embodiment shown in FIG.
  • the transceiver module is executed by the processor 1001 to control the communication interface 1004 to implement the function of receiving the DRS on the first fixed channel in the embodiment shown in FIG. 2, and by using the frequency hopping method on the data channel and the network side device.
  • the function of data transmission is executed by the processor 1001 to control the communication interface 1004 to implement the function of receiving the DRS on the first fixed channel in the embodiment shown in FIG. 2, and by using the frequency hopping method on the data channel and the network side device. The function of data transmission.
  • the calculation module is executed by the processor 1001 to implement the function of calculating the start time of the data channel according to the start time offset information included in the DRS in the embodiment shown in FIG. 2, and according to the frequency hopping pattern included in the DRS.
  • the frequency hopping time information is used to calculate the function of the transmission frequency of the data channel.
  • the location determining module is executed by the processor 1001 to implement the function of determining the uplink and downlink locations in the data channel according to the data channel configuration information included in the DRS in the embodiment shown in FIG. 2 above.
  • the processor 1001 can be connected to the memory 1003 and the communication interface 1004 by using a bus.
  • the device 100 may further include an output device 1005 and an input device 1007.
  • the output device 1005 and the input device 1007 are connected to the processor 1001.
  • the output device 1005 may be a display for displaying information, a power amplifier device or a printer that plays sound, and the output device 1005 may further include an output controller for providing output to a display screen, a power amplifier device, or a printer.
  • the input device 1007 may be a device such as a mouse, a keyboard, an electronic stylus, or a touch panel for inputting information by the user, and the input device 1007 may further include an output controller for receiving and processing from the mouse, the keyboard, and the electronic Input from devices such as stylus or touch panel.
  • FIG. 11 is a structural block diagram of a communication apparatus according to an exemplary embodiment of the present application.
  • the communication apparatus may be implemented as part or all of a network side device by a combination of hardware circuits or software and hardware.
  • the network side device may be the above figure.
  • the communication device may include a channel determining unit 1101, a transceiving unit 1102, a calculating unit 1103, and a time window determining unit 1104.
  • the channel determining unit 1101 is executed by the processor to implement the function of determining N fixed channels according to preset frequency points in the foregoing embodiment shown in FIG. 2, and determining the function of the first fixed channel from the N fixed channels. .
  • the transceiver unit is executed by the processor control communication interface to implement the function of transmitting the DRS on the first fixed channel in the embodiment shown in FIG. 2, and performing data transmission by using a frequency hopping method on the data channel and the user terminal.
  • the function is executed by the processor control communication interface to implement the function of transmitting the DRS on the first fixed channel in the embodiment shown in FIG. 2, and performing data transmission by using a frequency hopping method on the data channel and the user terminal.
  • the computing unit 1103 is executed by the processor control communication interface to implement the function of calculating the first remaining duration in the current transmission time window when the evaluation result of the CCA indicates that the first fixed channel is occupied, in the embodiment shown in FIG. 2, And a function of calculating a second remaining duration in the transmission time window after transmitting the DRS on the second fixed channel.
  • the time window determining unit 1104 is executed by the processor to implement the function of determining the transmission time window in the embodiment shown in FIG. 2 described above.
  • the functions implemented by the foregoing units may also be implemented by a chip.
  • FIG. 12 is a structural block diagram of another apparatus according to an exemplary embodiment of the present application.
  • the apparatus may be implemented as part or all of a user terminal by a combination of hardware circuits or software and hardware.
  • the user terminal may be as shown in FIG. 1 above.
  • User terminal 120 in the embodiment.
  • the device may include: a channel determining unit 1201, a channel detecting unit 1202, a transceiver unit 1203, a calculating unit 1204, and a location determining unit 1205;
  • the channel determination 1201 is performed by the processor to implement the function of determining N fixed channels according to the preset frequency points in the embodiment shown in FIG. 2 above.
  • the channel detecting unit 1202 is executed by the processor control communication interface to implement the function of detecting the first fixed channel on the N fixed channels in the embodiment shown in FIG. 2 described above.
  • the transceiver unit 1203 is executed by the processor control communication interface to implement the function of receiving the DRS on the first fixed channel in the embodiment shown in FIG. 2, and performing the frequency hopping manner on the data channel and the network side device. The function of data transmission.
  • the calculating unit 1204 is executed by the processor to implement the function of calculating the starting time of the data channel according to the start time offset information included in the DRS in the embodiment shown in FIG. 2, and according to the frequency hopping pattern included in the DRS.
  • the frequency hopping time information is used to calculate the function of the transmission frequency of the data channel.
  • the location determining unit 1205 is executed by the processor to implement the function of determining the uplink and downlink locations in the data channel according to the data channel configuration information included in the DRS in the embodiment shown in FIG. 2 above.
  • the functions implemented by the foregoing units may also be implemented by a chip.
  • the communication device/device provided in the above embodiment is only exemplified by the division of the above functional units when performing DRS transmission and reception and data communication. In actual applications, the functions may be assigned differently according to needs.
  • the functional unit is completed, that is, the internal structure of the device/terminal is divided into different functional units to complete all or part of the functions described above.
  • the communication device/device provided by the foregoing embodiment is the same as the method embodiment of the wireless communication method, and the specific implementation process is described in detail in the method embodiment, and details are not described herein again.
  • the embodiment of the present application further provides a computer readable storage medium, where the computer readable storage medium stores at least one instruction, at least one program, a code set, or a set of instructions, the at least one instruction, at least one program, and a code set.
  • the instruction set may be executed by a processor of the network side device to complete all or part of the steps performed by the network side device in the wireless communication method shown in each embodiment of the present application; or the at least one instruction, the at least one program, and the code
  • the set or set of instructions may be executed by a processor of the user terminal to perform all or part of the steps performed by the user terminal in the wireless communication method illustrated in various embodiments of the present application.
  • the computer readable storage medium may be a ROM, a random access memory (RAM), a CD-ROM, Tapes, floppy disks, and optical data storage devices.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种无线通信方法、装置、网络侧设备及用户终端,涉及无线通信技术领域,所述方法包括:网络侧设备根据预先设置的频点确定N个固定信道,N为大于或者等于2的整数;所述网络侧设备从所述N个固定信道中确定第一固定信道,所述第一固定信道是所述N个固定信道中的M个信道,M≤N,且M为正整数;所述网络侧设备在所述第一固定信道上发送发现参考信号DRS,所述DRS包括同步信号、广播信息以及系统消息中的至少一种;所述网络侧设备在数据信道上与用户终端之间通过跳频方式进行数据传输,所述数据信道是所述N个固定信道之外的全部或者部分信道。通过所述方法,网络侧设备可以用来发送DRS的固定信道有多个,网络侧设备可以从中选择一个或多个固定信道来发送DRS,使得网络侧设备发送DRS的机会更多,从而提高用户终端与这部分网络侧设备之间的接入效率和数据传输效率,达到提高系统容量的效果。

Description

无线通信方法、网络侧设备及装置 技术领域
本申请涉及无线通信技术领域,特别涉及一种无线通信方法、网络侧设备及装置。
背景技术
随着移动通信数据的不断增长,无线通信的频谱资源也越来越紧张,对非授权频谱的有效利用也变得越来越重要。
网络侧设备和用户终端之间利用非授权频谱进行通信时,网络侧设备需要发送发现参考信号(Discovery Reference Signal,DRS)来辅助用户终端进行信道估计或信道探测。具体的,在相关技术中,网络侧设备在一条固定信道上发送DRS时,首先检测该固定信道是否空闲,若检测结果为该固定信道空闲,说明没有其它网络侧设备在该固定的信道上发送DRS,则该节点设备此时可以发送DRS;若检测结果为该固定信道不空闲,则网络侧设备在等待一段时间后,再次检测该固定信道是否空闲。
在多小区场景下,多个网络侧设备同时发送DRS时,会导致其中部分网络侧设备始终得不到发送DRS的机会(即连续多次检测出固定信道不空闲),从而影响用户终端与这部分网络侧设备之间的接入或者数据传输。
发明内容
为了解决在多小区场景下,多个网络侧设备同时发送DRS时导致的其中部分网络侧设备始终得不到发送DRS的机会(即连续多次检测出固定信道不空闲),从而影响用户终端与这部分网络侧设备之间的接入或者数据传输的问题,本申请的实施例提供了一种无线通信方法、网络侧设备及装置。
第一方面,提供了一种无线通信方法,所述方法包括:
网络侧设备根据预先设置的频点确定N个固定信道,N为大于或者等于2的整数;从所述N个固定信道中确定第一固定信道,所述第一固定信道是所述N个固定信道中的M个信道,M≤N,且M为正整数;在所述第一固定信道上发送发现参考信号DRS,所述DRS包括同步信号、广播信息以及系统消息中的至少一种;在数据信道上与用户终端之间通过跳频方式进行数据传输,所述数据信道是所述N个固定信道之外的全部或者部分信道。
本申请实施例提供的方法,网络侧设备根据预先配置的频点确定N个固定信道(N≥2,且N为整数),并从中确定M个第一固定信道,并在确定出的第一固定信道中发送DRS,并在N个固定信道之外的其它数据信道上通过跳频方式与用户终端进行数据传输,即在本申请实施例中,网络侧设备可以用来发送DRS的固定信道有多个,而网络侧设备可以从中选择一个或多个固定信道来发送DRS,相比于所有的网络侧设备都只在一条固定信道上发送DRS来说,在多小区场景下,本申请实施例所示的方案使得网络侧设备发送DRS的机会更多,从而提高用户终端与这部分网络侧设备之间的接入效率和数据传输效率,达到提高 系统容量的效果。
在一种可选的方案中,所述网络侧设备与所述用户终端在所述数据信道上传输用户特定(UE specific)数据。
在一种可选的方案中,所述网络侧设备在数据信道上与用户终端之间通过跳频方式进行数据传输,包括:所述网络侧设备在相邻两次发送所述DRS之间,在p条所述数据信道上与所述用户终端进行至少一次预定时间长度的数据传输,p≥1,且p为整数;其中,当p不小于2时,在p条所述数据信道上进行数据传输的时间区间不同。
在一种可选的方案中,所述网络侧设备在相邻两次发送所述DRS之间,在p条所述数据信道上与所述用户终端进行至少一次预定时间长度的数据传输,包括:所述网络侧设备每次在第一数据信道上进行所述预定时间长度的数据传输之前,在所述第一数据信道上进行信道空闲评估CCA,所述第一数据信道是p条所述数据信道中的任意数据信道;若所述CCA的评估结果指示所述第一数据信道空闲,则所述网络侧设备在所述第一数据信道上进行所述预定时间长度的数据传输。
本申请实施例提供的方法,在网络侧设备和用户终端进行数据传输之前,先在数据信道上进行信道空闲评估CCA,当CCA的评估结果指示数据信道空闲时再进行数据传输,避免了在同一信道上因同时发送数据而产生干扰,提高了数据传输的效率和质量。
在一种可选的方案中,所述网络侧设备在所述第一固定信道上发送发现参考信号DRS,包括:所述网络侧设备在一个发送时间窗内,在所述第一固定信道上发送所述DRS,所述发送时间窗是用于发送所述DRS的时间区间。
在一种可选的方案中,所述网络侧设备在一个发送时间窗内,在所述第一固定信道上发送所述DRS之前,还包括:在所述发送时间窗内,在所述第一固定信道上进行信道空闲评估CCA;当所述CCA的评估结果指示所述第一固定信道被占用时,所述网络侧设备计算所述发送时间窗内的第一剩余时长;当所述第一剩余时长不小于进行一次CCA的时长与发送一次DRS的时长之和时,所述网络侧设备在所述第一固定信道上重新进行CCA;所述网络侧设备在一个发送时间窗内,在所述第一固定信道上发送所述DRS,包括:当所述重新进行的CCA的评估结果指示所述第一固定信道空闲时,所述网络侧设备在所述第一固定信道上发送所述DRS。
在上述可选方案中,网络侧设备在发送DRS之前,在第一固定信道上确定发送时间窗,在发送时间窗内可以进行多次CCA,当一次CCA评估结果指示信道被占用时,还可以继续在发送时间窗内进行CCA,直至发送时间窗的剩余时长不足或者已经发送了DRS,提高了发送DRS的成功率。
在一种可选的方案中,所述网络侧设备在一个发送时间窗内,在所述第一固定信道上发送所述DRS,包括:当M≥2时,所述网络侧设备在所述发送时间窗内,在所述第一固定信道上同步进行CCA;所述网络侧设备在所述发送时间窗内,在第二固定信道上发送所述DRS;所述第二固定信道是所述第一固定信道中,第一个获得指示信道空闲的评估结果的信道。
在一种可选的方案中,所述方法还包括:所述网络侧设备在所述第二固定信道上发送所述DRS之后,计算所述发送时间窗内的第二剩余时长;当所述第二剩余时长不小于进行一次CCA的时长与发送一次DRS的时长之和时,所述网络侧设备在所述第一固定信道中 除了所述第二固定信道之外的其它信道上同步进行CCA。
在上述可选方案中,当确定的第一固定信道大于一个时,网络侧设备可以在多个第一固定信道上进行CCA,在最先获得信道空闲的CCA评估结果的第一固定信道上发送DRS,且发送完DRS之后可以在剩余第一固定信道上重复该步骤,提高了发送DRS的成功率。
在一种可选的方案中,所述DRS中包含起始时间偏移信息,所述起始时间偏移信息用于指示所述网络侧设备与所述用户终端之间进行数据传输的起始时间点与所述DRS的起始时间点或者结束时间点之间的偏移量。
在上述可选方案中,DRS中包含起始时间偏移信息,用于指示数据传输的起始时刻与DRS的起始时刻或者结束时刻之间的偏移量,有助于用户终端快速确定数据传输的起始时刻,提高数据传输的效率。
在一种可选的方案中,所述方法还包括:当M<N时,对于所述第一固定信道中的第三固定信道,当检测出所述第三固定信道在预定时间段内持续被占用时,所述网络侧设备在所述N个固定信道中确定新的第一固定信道,所述新的第一固定信道中不包含所述第三固定信道。
在一种可选的方案中,所述方法还包括:所述网络侧设备通过广播信道向所述用户终端发送固定信道指示信息,所述固定信道指示信息用于指示在下一个变更周期内使用所述新的第一固定信道。
在上述可选方案中,当检测到某一信道持续被占用时,网络侧设备可以更换新的第一固定信道,并通知用户终端在下一个变更周期内使用新的第一固定信道,提高在部分固定信道持续被占用时,保证发送DRS的成功率。
在一种可选的方案中,所述网络侧设备在所述第一固定信道上发送发现参考信号DRS之前,还包括:所述网络侧设备根据预先配置的时间窗配置信息确定所述发送时间窗,或者,所述网络侧设备根据所述用户终端接入的小区的标识确定所述发送时间窗。
在一种可选的方案中,所述网络侧设备从所述N个固定信道中确定第一固定信道,包括:所述网络侧设备根据预先设置的固定信道配置信息从所述N个固定信道中确定出所述第一固定信道,或者,所述网络侧设备根据所述用户终端接入的小区的标识从所述N个固定信道中确定出所述第一固定信道。
在一种可选的方案中,其中,相邻小区各自对应的所述第一固定信道相同,且相邻小区各自对应的所述发送时间窗不同;或者,相邻小区各自对应的所述第一固定信道不同。
在一种可选的方案中,所述网络侧设备在所述第一固定信道上发送发现参考信号DRS,包括:所述网络侧设备在所述第一固定信道上发送包含数据信道配置信息的所述DRS,所述数据信道配置信息指示每个所述预定时间长度内用于上行传输的持续时间和用于下行传输的持续时间。
本申请实施例提供的方法,数据传输过程中,每个所述预定时间长度内用于上行传输的持续时间和用于下行传输的持续时间可以灵活配置,提高了数据传输的灵活性。
第二方面,提供了一种无线通信方法,所述方法包括:用户终端根据预先设置的频点确定N个固定信道,N为大于或者等于2的整数;所述用户终端在所述N个固定信道上检测第一固定信道,所述第一固定信道是所述N个固定信道中的M个信道,M≤N,且M为 正整数;所述用户终端在所述第一固定信道上接收发现参考信号DRS,所述DRS包括同步信号、广播信息以及系统消息中的至少一种;所述用户终端根据所述DRS在数据信道上与所述网络侧设备之间通过跳频方式进行数据传输,所述数据信道是所述N个固定信道之外的全部或者部分信道。
在一种可选的方案中,所述用户终端根据所述DRS在数据信道上与所述网络侧设备之间通过跳频方式进行数据传输,包括:所述用户终端根据所述DRS中包含起始时间偏移信息计算所述数据信道的起始时刻,所述起始时间偏移信息用于指示所述网络侧设备与所述用户终端之间进行数据传输的起始时间点与所述DRS的起始时间点或者结束时间点之间的偏移量;所述用户终端根据所述DRS中包含的跳频图案和跳频时间信息,计算所述数据信道的发送频点;所述用户终端根据所述DRS中包含的数据信道配置信息确定所述数据信道中上下行位置,所述数据信道配置信息指示每个预定时间长度内用于上行传输的持续时间和用于下行传输的持续时间;所述用户终端根据所述数据信道的起始时刻、发送频点以及上下行位置,与所述网络侧设备之间通过跳频方式进行数据传输。
第三方面,提供了一种通信装置,该装置具有实现上述第一方面及第一方面的可能的实现方案所提供的无线通信方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,或者,所述功能也可以通过一芯片实现。所述硬件或软件包括一个或多于一个与上述功能相对应的单元。
第四方面,提供了一种装置,该装置具有实现上述第二方面及第二方面的可能的实现方案所提供的无线通信方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,或者,所述功能也可以通过一芯片实现。所述硬件或软件包括一个或多于一个与上述功能相对应的单元。
第五方面,提供了一种网络侧设备,该设备包括:处理器、通信接口和存储器;该通信接口由处理器控制;该设备中的处理器,通过执行存储器中存储的程序或指令以实现上述第一方面及第一方面的可能的实现方案所提供的无线通信方法。
第六方面,提供了一种装置,该装置包括:处理器、通信接口和存储器;该通信接口由处理器控制;该装置中的处理器,通过执行存储器中存储的程序或指令以实现上述第二方面及第二方面的可能的实现方案所提供的无线通信方法。
第七方面,本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,该至少一条指令、至少一段程序、代码集或指令集可由处理器执行,以实现上述第一方面及第一方面的可能的实现方案所提供的无线通信方法。
第八方面,本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,该至少一条指令、至少一段程 序、代码集或指令集可由处理器执行,以实现上述第二方面及第二方面的可能的实现方案所提供的无线通信方法。
附图说明
图1是本申请实施例所涉及的无线通信系统的架构图;
图2是本申请一个示例性实施例提供的无线通信方法的方法流程图;
图3是图2所示实施例涉及的一种无线通信应用场景;
图4是图2所示实施例涉及的另一种无线通信应用场景;
图5是图2所示实施例涉及的又一种无线通信应用场景;
图6是图2所示实施例涉及的再一种无线通信应用场景;
图7是图2所示实施例涉及的另一种无线通信应用场景;
图8是图2所示实施例涉及的一种DRS结构图;
图9是本申请一个示例性实施例提供的网络侧设备90的结构示意图;
图10是本申请一个示例性实施例提供的装置100的结构示意图;
图11是本申请一个示例性实施例提供的一种通信装置的结构方框图;
图12是本申请一个示例性实施例提供的另一种装置的结构方框图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
图1是本申请实施例所涉及的无线通信系统的架构图。该无线通信系统包括:网络侧设备110和用户终端120。
其中,该无线通信系统可以是蜂窝移动通信系统,比如,该无线通信系统可以是第三代移动通信技术(the 3th generation mobile communication,3G)系统,也可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统,或者,该无线通信系统也可以是5G系统,又称新空口(new radio,NR)系统。网络侧设备110可以是3G系统中的基站(Base Station,BS)或者4G系统中采用的演进型基站(eNB)。或者,网络侧设备110也可以是5G系统中采用集中分布式架构的基站(gNB)。当网络侧设备110采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本申请实施例对网络侧设备110的具体实现方式不加以限定。
或者,该无线通信系统也可以是低功耗蓝牙(Bluetooth Low Energy,BLE)系统,该网络侧设备110可以是BLE主设备,用户终端120可以是BLE从设备。
或者,该无线通信系统也可以是无线局域网(wireless local area networks,WLAN)系统,该网络侧设备110可以是无线局域网中的接入点(access point,AP)或者传输接收点 (transmission reception point,TRP)。
或者,该无线通信系统也可以是其它类型的无线通信系统。
用户终端120可以是指向用户提供语音和/或数据连通性的设备。用户终端120可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,用户终端120可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程终端(remote terminal)、接入终端(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户终端(user equipment,UE)。
需要说明的是,在图1所示的无线通信系统中,可以包括多个网络侧设备110和/或多个用户终端120,图1中以示出一个网络侧设备110和一个终端120来举例说明,但本实施例对此不作限定。
在本申请实施例中,网络侧设备110可以从N个固定信道中确定出至少一个第一固定信道,并在第一固定信道上发送DRS,并在N个固定信道之外的数据信道上与用户终端进行数据通信。即在本申请实施例所示的方案中,网络侧设备110可以用来发送DRS的固定信道有多个,而网络侧设备110可以从中选择一个或多个固定信道来发送DRS,相比于所有的网络侧设备都只在一条固定信道上发送DRS来说,在多小区场景下,本申请实施例所示的方案使得网络侧设备110发送DRS的机会更多,从而提高用户终端与这部分网络侧设备之间的接入效率和数据传输效率,达到提高系统容量的效果。
上述图1所示的无线通信系统中,网络侧设备110和用户终端120之间可以在非授权频谱上进行通信。其中,通过非授权频谱进行通信时,为了减少各发射器之间的干扰,在网络侧设备发送前,需要先评估信道的使用情况,其中,先听后说(Listen before talk,LBT)技术是一种常用的信道评估技术。本申请下面的实施例将以网络侧设备110发送之前进行LBT为例,对本申请各个实施例涉及的方案进行举例说明。
请参考图2,其是本申请一个示例性实施例提供的无线通信方法的方法流程图。上述无线通信方法可以由上述图1所示的无线通信系统中的网络侧设备110和用户终端120来执行,以实现在非授权频谱上进行通信。如图2所示,该无线通信方法可以包括如下步骤:
步骤201,网络侧设备根据预先设置的频点确定N个固定信道,N为大于或者等于2的整数。
在无线通信中,通信设备(比如本申请各个实施例中涉及的网络侧设备和用户设备)可以通过预设的频点来确定进行信号收发的无线信道。在本申请实施例中,网络侧设备中预先设置有N个用于发送DRS的频点,每个频点对应一条固定信道。网络侧设备可以根据该N个预先设置的频点,确定出与N个频点分别对应的N个固定信道。
其中,上述频点可以由无线通信系统通过系统信令的方式在网络侧设备或者用户终端中预先设置;或者,上述频点也可以由开发人员/安装维护人员在网络侧设备或者用户终端中预先设置,可选的,当上述频点由开发人员/安装维护人员设置时,上述频点还可以通过软件升级的方式进行更新。
在本申请实施例中,N为大于或者等于2的整数,即无线通信系统预先分配给各个网络侧设备发送DRS的固定信道的数量至少有2个,网络侧设备可以在两条或者两条以上的固定信道上发送DRS。其中,上述N的数值可以为2、3或者更大的数值,本申请实施例对此不做限定。
此外,在本申请实施例中,上述预先设置的频点可以是相邻频点,即确定出的N个固定信道是相邻的N个无线信道;或者,上述预先设置的频点也可以是离散的频点,即确定出的N个固定信道是不相邻的无线信道;或者,上述预先设置的频点中的部分频点是相邻频点,而其它部分频点与该部分频点不相邻,即确定出的N个固定信道中,有一部分固定信道相邻,而其它部分固定信道与这部分固定信道都不相邻,比如,假设N为3(即有3个固定信道),其中可能有两条固定信道相邻,而另外一条固定信道与这两条固定信道都不相邻。本申请实施例对于N条固定信道对应的具体频点以及频点之间的关系不做限定。
步骤202,网络侧设备从该N个固定信道中确定第一固定信道,该第一固定信道是该N个固定信道中的M个信道,M≤N,且M为正整数。
在本申请实施例中,在确定了N个固定信道之后,网络侧设备可以从该N个固定信道中确定M个第一固定信道,作为其后续发送DRS的信道。
在一种可能的实现方式中,网络侧设备根据预先设置的固定信道配置信息从该N个固定信道中确定出该第一固定信道。
其中,该固定信道配置信息用于指示该N个固定信道中的第一固定信道。
为了避免相邻小区之间的DRS发送过程相互影响,在本申请实施例中,可以预先设置每一个网络侧设备使用N个固定信道中哪个或哪些信道作为发送DRS的固定信道。
具体比如,在对网络侧设备进行安装或维护时,安装/维护人员可以在网络侧设备中设置固定信道配置信息,该固定信道配置信息指示该N个固定信道中哪个或哪些信道是第一固定信道。或者,在网络侧设备安装完成后,无线通信系统可以在网络侧设备中设置该固定信道配置信息。
在另一种可能的实现方式中,网络侧设备可以根据该网络侧设备对应的小区的标识从该N个固定信道中确定出该第一固定信道。
在本申请实施例中,网络侧设备可以根据其支持的小区的标识(比如小区ID)来计算第一固定信道。
具体比如,以从N个固定信道中确定出1个固定信道作为第一固定信道为例,小区ID可以是一个数字,或者,小区ID可以通过一定的算法转化为数字;同时,网络侧设备可以从0开始对N个固定信道进行编号,即N个固定信道的编号分别为0,1,……,N-1。网络侧设备将小区ID对应的数字除以N,获得的余数即为第一固定信道的编号。
或者,网络侧设备也可以通过该方法确定两个或两个以上的第一固定信道,比如,当M≥2时,网络侧设备可以将编号为上述余数的信道,以及N个固定信道中处于该信道前后的M-1个信道确定为上述第一固定信道。
比如,假设N的数值为3,即有3个固定信道,编号分别为0、1和2,网络侧设备需要从中确定出2个固定信道作为第一固定信道;网络侧设备将当前小区ID对应的数值除以3获得余数,当该余数为1时,网络侧设备可以将编号为1和2的固定信道确定为第一固定信道,当该余数为2时,网络侧设备可以将编号为2和0的固定信道确定为第一固定信道。
在另一种可能的实现方式中,网络侧设备也可以将N个固定信道都全部确定为第一固定信道。
步骤203,网络侧设备在第一固定信道上发送DRS。
在本申请实施例中,网络侧设备确定出第一固定信道之后,可以在第一固定信道上发送DRS。其中,该DRS可以包括同步信号、广播信息以及系统消息中的至少一种。
其中,同步信号可以包括主同步信号(Primary Synchronization Signal,PSS)以及辅同步信号(secondary Synchronization Signal,SSS)等等。
广播信息可以是SIB-MF-BR消息,该SIB-MF-BR消息中可以包含用户终端需要的多种广播信息,比如自适应跳频图案(adaptive frequency hopping channel map)、跳频时间信息(用于指示跳频的时间点)、超帧号(hyper SFN)、系统消息更新标识(system Info Value Tag)、临区发现信号测量时间配置(discovery signals measurement timing configuration,DMTC)等等。
系统消息可以分为主信息块(Master Information Block,MIB)和多个系统信息块(System Information Blocks,SIB)消息。
在本申请实施例中,除了上述同步信号、广播信息以及系统消息之外,网络侧设备发送的DRS中还可以包含物理广播信道(Physical Broadcast Channel,PBCH)。
在发送DRS时,网络侧设备可以在一个发送时间窗内,在第一固定信道上发送该DRS,该发送时间窗是用于发送该DRS的时间区间。
在本申请实施例中,网络侧设备和用户终端之间通过非授权频谱进行通信时,网络侧设备发送DRS时,可以通过LBT技术进行发送。其中,LBT技术是指在发送信号或者数据之前,发送设备首先在待发送的信道上进行信道空闲评估(Clear Channel Assessment,CCA),以测量当前信道上的能量情况,如果测量得到的能量超过门限,则认为信道被占用,此时确定评估结果为该信道不空闲(即该信道当前被其它发送设备占用),此时不能发送;反之,如果测量得到的能量低于门限,则确定评估结果为信道空闲(即该信道当前未被其它发送设备占用),此时可以发送,这样各个发送设备之间实现了对信道的时分复用,避免因同时发送而产生的相互干扰的情况。
具体的,网络侧设备发送DRS之前,在上述的发送时间窗内,在该第一固定信道上进行信道空闲评估CCA,当该CCA的评估结果指示该第一固定信道空闲时,在该第一固定信道上发送该DRS。
在本申请实施例中,网络侧设备在与用户终端之间进行通信时,网络侧设备发送DRS的时间和网络侧设备与用户终端之间进行数据传输的时间相互隔离。其中,允许网络侧设备发送的DRS的一个连续时间区间可以称为一个发送时间窗。网络侧设备在每个发送时间窗内通过LBT方式发送DRS,即在每个发送时间窗内,网络侧设备在每个第一固定信道上进行CCA,当CCA的评估结果指示当前信道未被占用时,在该发送时间窗内,在该第一固定信道上发送DRS。
可选的,网络侧设备根据预先配置的时间窗配置信息或者该用户终端接入的小区的标识确定发送时间窗。
在一种可能的实现方式中,网络侧设备根据预先设置的时间窗配置信息确定发送时间窗。其中,该时间窗配置信息用于指示第一固定信道中的用于发送DRS的时间区间。
具体比如,在对网络侧设备进行安装或维护时,安装/维护人员可以在网络侧设备中设置时间窗配置信息,该时间窗配置信息指示该第一固定信道中哪段时间区间用于发送DRS。或者,在网络侧设备安装完成后,无线通信系统可以在网络侧设备中设置该时间窗配置信息。
在另一种可能的实现方式中,网络侧设备可以根据该网络侧设备对应的小区的标识从确定发送时间窗。
具体比如,小区ID可以是一个数字,或者,小区ID可以通过一定的算法转化为数字;同时,网络侧设备可以将一个信道中的某段时间区间分为若干个小的时间区间,作为若干个发送时间窗,从0开始对这些发送时间窗进行编号,即若干个发送时间窗的编号分别为0,1,……。网络侧设备将小区ID对应的数字除以发送时间窗的数量,获得的余数即为发送时间窗的编号。
在本申请实施例中,相邻小区各自对应的该第一固定信道相同,且相邻小区各自对应的该发送时间窗不同;或者,相邻小区各自对应的第一固定信道不同。
当相邻小区各自对应的第一固定信道相同时,它们各自对应的发送时间窗不同。即相邻小区对应的网络侧设备可以在同一个第一固定信道上发送DRS,但是此时不同小区对应的发送时间窗必须是时分的,或者,当某个小区对应的第一固定信道的个数M小于固定信道的个数N时,相邻小区对应的网络侧设备可以在除了该M个第一固定信道之外的其它固定信道上发送DRS。
在本申请实施例中,网络侧设备在一个发送时间窗内可以只进行一次CCA,即当CCA的评估结果为当前信道被占用时,网络侧设备在该发送时间窗内,不再尝试下一次CCA,也不会发送DRS。
在另一种可能的实现方式中,一个发送时间窗的时间长度也可以大于一次CCA的时长与一次DRS发送所需的时长之和,也就是说,在一个发送时间窗内,网络侧设备可以进行多次CCA。
具体的,网络侧设备在该发送时间窗内,在该第一固定信道上进行信道空闲评估CCA,当该CCA的评估结果指示该第一固定信道被占用时,该网络侧设备计算该发送时间窗内的第一剩余时长,当该第一剩余时长不小于进行一次CCA的时长与发送一次DRS的时长之和时,该网络侧设备在该第一固定信道上重新进行CCA,当重新进行的CCA的评估结果指示该第一固定信道空闲时,该网络侧设备在该第一固定信道上发送该DRS。
在本申请实施例中,如果终端在进行一次或多次CCA,且每次的评估结果都指示第一固定信道被占用时,如果当前的发送时间窗内的剩余时长还够一次CCA加一次DRS发送,那么网络侧设备可以继续进行CCA,如果CCA成功,则发送DRS,网络侧设备重复执行CCA步骤,直至在该发送时间窗内成功发送DRS,或者,直至剩余时长不足以进行一次CCA加一次DRS发送。
可选的,在本申请实施例中,当M≥2,也就是第一固定信道包含两条或者两条以上固定信道时,网络侧设备可以在该两条或者两条以上固定信道中分别进行LBT,即该两条或者两条以上固定信道中的DRS发送过程互不影响。
或者,在本申请实施例中,当M≥2,也就是第一固定信道包含两条或者两条以上固定信道时,网络侧设备可以只在该两条或者两条以上固定信道中的一条上发送DRS,或者, 网络侧设备在同一时间只在两条或者两条以上固定信道中的一条上发送DRS。
比如,当M≥2时,该网络侧设备在一个发送时间窗内,在该第一固定信道上同步进行CCA,并且,该网络侧设备在该发送时间窗内,在第二固定信道上发送该DRS,该第二固定信道是该第一固定信道中,第一个获得指示信道空闲的评估结果的信道。
在一种可能的实现方式中,当第一固定信道包含两条或者两条以上固定信道时,在一个发送时间窗内,网络侧设备可以在上述两条或者两条以上固定信道上同时进行CCA,当在某一条固定信道上率先获得指示对应的信道空闲的评估结果时,网络侧设备在该固定信道上发送DRS,并且,对于该两条或者两条以上固定信道中尚未获得评估结果的其它信道,无论其后续获得的评估结果是否指示对应的信道空闲,网络侧设备在当前发送时间窗内,都不会在其它信道上发送DRS。
当M≥2时,网络侧设备在上述第二固定信道上发送DRS之后,还可以计算该发送时间窗内的第二剩余时长,当该第二剩余时长不小于进行一次CCA的时长与发送一次DRS的时长之和时,该网络侧设备在该第一固定信道中除了该第二固定信道之外的其它信道上同步进行CCA。
在另一种可能的实现方式中,当第一固定信道包含两条或者两条以上固定信道时,当在某一条固定信道上率先获得指示对应的信道空闲的评估结果时,网络侧设备在该固定信道上发送DRS后,若当前时间窗内的剩余时长还足够再进行一次或多次CCA加DRS发送,则网络侧设备还可以在该两条或者两条以上固定信道中,尚未发送过DRS的信道上继续进行CCA检测和DRS发送,即网络侧设备在,尚未发送过DRS的信道上同时进行CCA检测,并在其中第一个检测出未被占用的信道上发送DRS,网络侧设备可以反复执行上述CCA加DRS发送的步骤,直至在当前发送时间窗内,在两条或者两条以上固定信道上都发送了DRS,或者,直至当前发送时间窗的剩余时长不足以进行一次CCA加DRS发送。
比如,网络侧设备确定了3个第一固定信道:信道0、信道1、信道2,每个第一固定信道上的发送时间窗为10ms,进行一次CCA需要1ms,发送DRS所需的时长为3ms,该网络侧设备可以同时在3个第一固定信道上进行CCA,如果CCA结果先指示信道2空闲,则在信道2上发送DRS,发送完毕后发送时间窗内还剩余6ms的时长,大于进行一次CCA和发送一次DRS的时长之和,则网络侧设备可以再次在信道0和信道1上进行CCA,如果CCA结果先指示信道0空闲,则在信道0上再次发送DRS,此时发送时间窗内只剩余2ms的时长,不足以进行一次CCA和发送一次DRS,则不再进行CCA和发送DRS。
另外,针对某一个发送时间窗,网络侧设备在第一固定信道上第一次进行CCA的时间也可以在发送时间窗之前。
可选的,进行一次CCA所需的时长可以由开发/运维人员在网络侧设备中预先设置,发送DRS所需的时长可以由一次DRS所占的时域长度决定,比如,发送DRS所需的时长可以是DRS所占的时域长度。
步骤204,用户终端根据预先设置的频点确定N个固定信道。
用户终端在开机后准备接入网络时,可以根据预先设置的频点确定N个固定信道。其中,用户终端确定N个固定信道的方式与网络侧设备确定该N个固定信道的方式类似,此处不再赘述。
步骤205,用户终端在该N个固定信道上检测第一固定信道。
用户终端在确定出N个固定信道后,在该N个固定信道上检测第一固定信道,该第一固定信道是N个固定信道中的M个信道,具体比如,用户在确定出N个固定信道后,可以在该N个固定信道上分别检测DRS(比如,可以通过盲检测的方式来检测DRS),当用户终端在某一个或多个固定信道上检测到网络侧设备发送的DRS时,即可以确认该一个或多个固定信道是网络侧设备用于发送DRS的第一固定信道。
步骤206,用户终端在该第一固定信道上接收网络侧设备发送的DRS。
用户终端在检测出N个固定信道中的第一固定信道之后,后续与网络侧设备的通信过程中,用户终端在该第一固定信道上检测接收网络侧设备发送的DRS。
可选的,当M<N时,对于该第一固定信道中的第三固定信道,当网络侧设备检测出该第三固定信道在预定时间段内持续被占用时,网络侧设备在该N个固定信道中确定新的第一固定信道,该新的第一固定信道中不包含该第三固定信道。该网络侧设备可以在当前变更周期内,或者在下一个变更周期的起始时刻,通过广播信道向该用户终端发送固定信道指示信息,该用户终端在下一个变更周期内接收该网络侧设备通过广播信道发送的固定信道指示信息,该固定信道指示信息用于指示新的第一固定信道,该用户终端在该新的第一固定信道上接收该DRS。
其中,变更周期可以是在通信系统中,两次系统信息更新时刻之间的固定的时间间隔。
在本申请实施例中,网络侧设备在第一固定信道上发送完DRS之后,用户终端需要先检测在确定的N个固定信道中检测发送了DRS的第一固定信道,再在该第一固定信道上接收DRS。如果M<N,且网络侧设备检测出M个第一固定信道中的某一信道在预定时间段内持续被占用(检测方法可以是获取预定时间段内该信道获得被占用的CCA评估结果的次数,如果大于预设阈值,就认为该信道持续被占用),网络侧设备可以确定新的第一固定信道,并在当前变更周期内,或者在下一个变更周期的起始时刻,通过广播信道向用户终端发送固定信道指示信息,以便该用户终端能够及时接收到新的第一固定信道的信息,然后该用户设备就在新的第一固定信道上接收DRS。
其中,网络侧设备确定新的第一固定信道的方法可以是从除了该持续被占用的信道之外的其它第一固定信道中随机选取一个新的第一固定信道,也可以是按照预定的顺序,选取该持续被占用的信道之后的第一个新的第一固定信道,对此,本申请实施例不做限定。
步骤207,网络侧设备和用户终端在数据信道上通过跳频方式进行数据传输,该数据信道是该N个固定信道之外的全部或者部分信道。
具体的,该网络侧设备在相邻两次发送该DRS之间,在p条该数据信道上与该用户终端进行至少一次预定时间长度的数据传输,p≥1,且p为整数,当p不小于2时,在p条该数据信道上进行数据传输的时间区间不同。其中,该DRS还包含数据信道配置信息,该数据信道配置信息指示每个预定时间长度内用于上行传输的持续时间和用于下行传输的持续时间。
可选的,该网络侧设备每次在第一数据信道上进行该预定时间长度的数据传输之前,在该第一数据信道上进行CCA,该第一数据信道是p条该数据信道中的任意数据信道,若该CCA的评估结果指示该第一数据信道空闲,则该网络侧设备在该第一数据信道上进行该预定时间长度的数据传输。
在本申请实施例中,当用户终端接收到网络侧设备通过第一固定信道发送的DRS之后, 就可以和网络侧设备在数据信道上通过跳频方式进行数据传输了,数据信道为在所有信道中除了N个固定信道之外的其它全部或部分信道。
需要说明的是,上述N个固定信道以及数据信道都是属于网络侧设备和用户终端所在的无线通信系统的工作带宽内的信道,即上述数据信道是无线通信系统的工作带宽内的各个信道中,除了N个固定信道之外的全部或者部分信道。
在相邻的两次发送DRS之间,网络侧设备可以和用户终端再至少一条数据信道上进行至少一次预定时间长度的数据传输。其中,预定时间长度为网络侧设备和用户终端在数据信道上进行一次连续的数据传输的时间长度,可由开发/运维人员预先设置。
当在两条以及两条以上数据信道上进行数据传输时,每条信道上的数据传输应该是时分的,即时间区间不同。其中,上述时间区间为每次数据传输的起始时刻与结束时刻之间的区间;在实际应用中,上述各个时间区间的时间长度通常是相同的,但是两个时间区间的起始时间点不同,比如,对于相邻的两个时间区间,前一个时间区间的结束时间点可以是后一个时间区间的起始时间点。
在相邻两次发送DRS之间,网络侧设备和用户终端可以进行一次预定时间长度的数据传输,也可以进行多次预定时间长度的数据传输,预定的时间长度可以是如80ms、100ms的任意时间长度,且在该预定时间长度中,用于上行传输的持续时间和用于下行传输的持续时间可以灵活配置,该配置信息可以包含在DRS中,用于指示一次预定时间长度中上行传输和下行传输的持续时间。
另外,由于网络侧设备发送DRS的起始时刻是不固定的,为了方便用户终端确定数据传输的开始时刻,在控制信道单元(Control Channel Element,CCE)中,DRS中还可以包含起始时间偏移信息,该起始时间偏移信息用于指示该网络侧设备与该用户终端之间进行数据传输的起始时间点与该DRS的任一时间点的偏移量,其中,该DRS的任一时间点可以是该DRS的起始时间点,也可以是该DRS的结束时间点,或者,还可以是该DRS中间的其它时间点。
其中,用户终端在根据该DRS与网络侧设备进行数据通信时,可以根据该DRS中包含起始时间偏移信息计算该数据信道的起始时刻,根据该DRS中包含的跳频图案和跳频时间信息计算该数据信道的发送频点,并根据该DRS中包含的数据信道配置信息确定该数据信道中上下行位置,最后,该用户终端根据该数据信道的起始时刻、发送频点以及上下行位置,与该网络侧设备之间通过跳频方式进行数据传输。
在数据传输过程中,上行传输可以采用非自适应跳频的传输方式,即在上行传输的起始位置不进行CCA,直接发送上行数据,下行传输则可以采用先进行CCA再发送数据的方式,即在下行传输的起始位置先进行一次CCA,如果CCA评估结果指示下行信道空闲,则发送下行数据,如果CCA评估结果指示下行信道被占用,则放弃这次发送机会,等待下次发送机会到来。
图3是图2所示实施例涉及的一种无线通信应用场景。请参考图3,在该应用场景中,每个信道在频域上占6个资源块,即1.08MHz,网络侧设备和用户终端确定的固定信道有3条:信道1、信道7和信道9,网络侧设备从中确定的第一固定信道是信道1,DRS包含主同步信号和辅同步信号、广播信号以及广播信息,此时该DRS占4ms,信道1上有发送时间窗,窗长5ms,网络侧设备进行一次CCA所需的时长为1ms,网络侧设备在发送DRS之 前先在发送时间窗内进行一次CCA,如果CCA评估结果指示信道1空闲,则在该发送时间窗内,在信道1上发送DRS,如果CCA评估结果指示信道1被占用,则网络设备在该发送时间窗内放弃发送DRS,等待下一个发送时间窗的到来。若网络侧设备检测出信道1在预定时间段内持续被占用,则可以确定新的第一固定信道,在切换信道前通过广播告知用户终端将切换第一固定信道。用户终端接收到DRS后,在当前发送时间窗与下一个发送时间窗之间,网络侧设备与用户终端在一条数据信道(图3示出为信道3)上进行一次预定时间长度的数据传输,在下一个时间窗与下下一个时间窗之间,网络侧设备与用户终端跳频至另一条数据信道(图3示出为信道5)上进行一次预定时间长度的数据传输,以此类推。即网络侧设备发送DRS与数据传输交替进行。其中,在图3中,每一次预定时间长度的数据传输之前,网络侧设备进行一次CCA,若CCA的评估结果指示当前数据信道未被占用,则在当前数据信道上进行一次预定时间长度的数据传输。此外,在图3所示的每次预定时间长度的数据传输中,上下行传输交替进行。比如,以预定时间长度为80ms为例,图3中D表示下行传输,U表示上行传输,其中每次上下行传输时间都为10ms,用户终端在上行传输之前不需要进行CCA,直接发送上行数据。需要说明的是,在一个预定时间长度的数据传输中,上下行数据传输的时长可以由网络侧设备自行配置并通过DRS发送给用户终端,比如,以预定时间长度为80ms为例,网络侧设备可以将一个预定时间长度的数据传输中的下行传输时长设置为60ms,上行传输时长设置为20ms;本申请实施例对于上下行数据传输的具体时长不做限定。另外,相邻小区也可以同时使用信道1作为第一固定信道,不同小区对应的发送时间窗可以是时分的。
图4是图2所示实施例涉及的另一种无线通信应用场景。请参考图4,在该应用场景中,每个信道在频域上占1个资源块,即180kHz,网络侧设备和用户终端确定的固定信道有3条:信道1、信道3和信道5,网络侧设备确定这三条固定信道都是第一固定信道,DRS占10ms,三条第一固定信道上有发送时间窗,窗长10ms,网络侧设备在发送DRS之前无需进行CCA,直接发送DRS。用户终端接收到DRS后,在当前发送时间窗与下一个发送时间窗之间,网络侧设备与用户终端在一条数据信道(图4示出为信道7)上进行一次预定时间长度的数据传输,在下一个时间窗与下下一个时间窗之间,网络侧设备与用户终端跳频至另一条数据信道(图4示出为信道9)上进行一次预定时间长度的数据传输,以此类推,即网络侧设备发送DRS与数据传输交替进行。以预定时间长度是90ms为例,在图4所示的每次预定时间长度的数据传输中,上下行传输时间都为40ms,下行传输时间D与上行传输时间U之间包含一特殊子帧S,长度为10ms,并且,网络侧设备和用户终端在上下行传输之前都不需要进行CCA,直接发送上下行数据。需要说明的是,在一个预定时间长度的数据传输中,上下行数据传输的时长可以由网络侧设备自行配置并通过DRS发送给用户终端,比如,以预定时间长度为90ms为例,网络侧设备可以将一个预定时间长度的数据传输中的下行传输时长设置为60ms,上行传输时长设置为20ms,特殊子帧设置为10ms,本申请实施例对于上下行数据传输和特殊子帧的具体时长不做限定。另外,网络侧设备发送的DRS中包含的广播信息中携带系统时间信息,可以协助用户终端计算跳频图案,相邻小区可以使用相同的固定信道作为第一固定信道,不同小区对应的发送时间窗可以是时分的;或者,相邻小区也可以使用不同的固定信道作为第一固定信道。
图5是图2所示实施例涉及的又一种无线通信应用场景。请参考图5,在该应用场景中, 每个信道在频域上占1个资源块,即180kHz,网络侧设备和用户终端确定的固定信道有3条:信道1、信道2和信道3,网络侧设备确定这三条固定信道都是第一固定信道,网络侧设备在发送DRS之前无需进行CCA,直接发送DRS,用户终端接收到DRS后,在当前发送时间窗与下一个发送时间窗之间,网络侧设备与用户终端采用跳频方式,分别在信道5、信道9、信道6、信道7、信道8上进行一次预定时间长度的数据传输(图5中示出为Data),在下一个时间窗与下下一个时间窗之间,网络侧设备与用户终端再次采用跳频方式,分别在信道5、信道9、信道6、信道7、信道8上进行一次预定时间长度的数据传输,以此类推;其中,以预定时间长度为80ms为例,总的数据传输时间长度是400ms,在每次预定长度的数据传输之前,网络侧设备可以进行CCA,也可以不进行CCA(图4示出为每次数据传输之前网络侧设备不进行CCA),直接发送上下行数据。另外,相邻小区可以使用相同的固定信道作为第一固定信道,不同小区对应的发送时间窗可以是时分的;或者,相邻小区也可以使用不同固定信道作为第一固定信道。
图6是图2所示实施例涉及的再一种无线通信应用场景。请参考图6,在该应用场景中,每个信道在频域上占6个资源块,即1.08MHz,网络侧设备和用户终端确定的固定信道有3条:信道1、信道7和信道9,网络侧设备从中确定的第一固定信道是信道1,DRS包含主同步信号和辅同步信号、广播信号以及广播信息,广播信息中包含自适应跳频图案、超帧号、系统消息更新标识、临区发现信号测量时间配置等,此时该DRS占3ms,信道1上有发送时间窗,窗长5ms,网络侧设备进行一次CCA所需的时长为1ms,即网络侧设备在该发送时间窗内最多有3次CCA机会,网络侧设备在发送DRS之前先在发送时间窗内进行一次CCA,如果CCA评估结果指示信道1空闲,则发送DRS,如果CCA评估结果指示信道1被占用,则继续进行CCA,直至三次机会用完(即剩余时长不足以进行一次CCA和一次DRS发送)。若网络侧设备检测出信道1在预定时间段内持续被占用,则确定新的第一固定信道,在切换信道前通过广播告知用户终端将切换第一固定信道,DRS包含的广播信息中还包含起始时间偏移信息,用于指示网络侧设备与用户终端之间进行数据传输的起始时间点与DRS的起始时间点之间的偏移量,方便用户终端确定数据传输的起始时刻。用户终端接收到DRS后,在当前发送时间窗与下一个发送时间窗之间,网络侧设备与用户终端在一条数据信道(图6示出为信道3)上进行至少一次预定时间长度的数据传输(图6中示出在两次发送时间窗之间,网络侧设备与用户终端连续进行两次预定时间长度的数据传输),在下一个时间窗与下下一个时间窗之间,网络侧设备与用户终端跳频至另一条数据信道(图6示出为信道5)上进行至少一次预定时间长度的数据传输,以此类推。即网络侧设备发送DRS与数据传输交替进行。其中,以预定时间长度是40ms为例,,网络侧设备与用户终端之间采用上下行间隔传输的方式进行数据传输,其中上下行传输时间可以分别为20ms,每次进行预定时间长度的数据传输之前,网络侧设备先进行一次CCA,如果CCA的评估结果指示下行信道空闲,则网络侧设备与用户终端之间进行数据传输,并且,用户终端在上行传输之前不需要进行CCA,直接发送上行数据。需要说明的是,在一个预定时间长度的数据传输中,上下行数据传输的时长可以由网络侧设备自行配置并通过DRS发送给用户终端,比如,以预定时间长度为40ms为例,网络侧设备可以将一个预定时间长度的数据传输中的下行传输时长设置为30ms,上行传输时长设置为10ms;本申请实施例对于上下行数据传输的具体时长不做限定。另外,相邻小区也可以同时使用信道1作为第一固定信道,不同小 区对应的发送时间窗可以是时分的。
图7是图2所示实施例涉及的另一种无线通信应用场景。请参考图7,在该应用场景中,网络侧设备和用户终端确定的固定信道有3条:信道1、信道7和信道9,网络侧设备确定这三条固定信道都是第一固定信道,DRS只包含主同步信号、辅同步信号和广播信号,此时该DRS占2ms,第一固定信道上有发送时间窗,窗长5ms,网络侧设备进行一次CCA所需的时长为1ms。网络侧设备在发送DRS之前,在发送时间窗的起始时刻先在三条第一固定信道上同时进行CCA,如果信道1先获得指示信道空闲的评估结果,则网络侧设备在信道1上发送DRS;在信道1上发送DRS之后,如果当前发送时间窗的剩余时长不小于3ms,则网络侧设备在信道7和信道9上同时再进行CCA,如果信道7先获得指示信道空闲的评估结果,则在信道7上发送DRS;在信道7上发送DRS之后,如果当前发送时间窗的剩余时长不小于3ms,则网络侧设备最后在信道9上进行CCA,如果评估结果指示信道9空闲,则再在信道9上发送DRS。其中,当在一个固定信道上发送DRS后,如果当前发送时间窗内的剩余时长不足3ms,即不足以进行一次CCA和一次DRS发送,则即便还有其它固定信道上未发送给过DRS,网络侧设备在当前发送时间窗内也不再进行CCA检测。此外,DRS包含的广播信息中还包含起始时间偏移信息,用于指示网络侧设备与用户终端之间进行数据传输的起始时间点与DRS的起始时间点之间的偏移量,方便用户终端确定数据传输的起始时刻。用户终端接收到DRS后,在当前发送时间窗与下一个发送时间窗之间,网络侧设备与用户终端在一条数据信道(图7示出为信道3)上进行一次预定时间长度的数据传输,在下一个时间窗与下下一个时间窗之间,网络侧设备与用户终端跳频至另一条数据信道(图7示出为信道5)上进行一次预定时间长度的数据传输,以此类推。即网络侧设备发送DRS与数据传输交替进行。其中,在图7中,每一次预定时间长度的数据传输之前,网络侧设备进行一次CCA,若CCA的评估结果指示当前数据信道未被占用,则在当前数据信道上进行一次预定时间长度的数据传输。此外,在图7所示的每次预定时间长度的数据传输中,上下行传输交替进行。另外,当系统为宽带系统时,不同的第一固定信道也可以同时发送DRS而无需时分复用,相邻小区也可以同时使用相同的固定信道作为第一固定信道,不同小区对应的发送时间窗可以是时分的。
在上述应用场景中,网络侧设备进行CCA的时间都是在发送DRS的起始时刻之前的,实际上,DRS的时间区间中也可以预留网络侧设备进行CCA的时间。图8是图2所示实施例涉及的一种DRS结构图,请参考图8,图中DRS包括主同步信号PSS、辅同步信号SSS、物理广播信道PBCH和广播信息SIB-MF-BR,SIB-MF-BR中包含自适应跳频图案、超帧号、系统消息更新标识、临区发现信号测量时间配置DMTC等等。该DRS占3ms,其中,预留的CCA时长、主同步信号PSS、辅同步信号SSS和物理广播信道PBCH共占2ms,广播信息SIB-MF-BR共占1ms。
综上所述,本申请实施例提供的方法,网络侧设备根据预先配置的频点确定N个固定信道(N≥2,且N为整数),并从中确定M个第一固定信道,并在确定出的第一固定信道中发送DRS,并在N个固定信道之外的其它数据信道上通过跳频方式与用户终端进行数据传输,即在本申请实施例中,网络侧设备可以用来发送DRS的固定信道有多个,而网络侧设备可以从中选择一个或多个固定信道来发送DRS,相比于所有的网络侧设备都只在一条固定信道上发送DRS来说,在多小区场景下,本申请实施例所示的方案使得网络侧设备110 发送DRS的机会更多,从而提高用户终端与这部分网络侧设备之间的接入效率和数据传输效率,达到提高系统容量的效果。
图9是本申请一个示例性实施例提供的网络侧设备90的结构示意图,该网络侧设备90可以实现为图1所示的系统中的网络侧设备110。如图9所示,该网络侧设备90可以包括:处理器91以及通信接口94。
处理器91可以包括一个或者一个以上处理单元,该处理单元可以是中央处理单元(英文:central processing unit,CPU)或者网络处理器(英文:network processor,NP)等。
通信接口94可以包括有线通信接口和无线通信接口。其中,该有线通信接口用于连接其他网络实体(例如核心网中的网络设备等),比如,该网络接口可以用于连接服务网关(Serving Gateway,SGW)或者移动性管理实体(Mobility Management Entity,MME)。具体的,该有线通信接口可以包括以太网接口或者光纤接口。无线通信接口用于与用户终端之间通过无线空口进行通信,该无线通信接口可以包括无线局域网接口、蜂窝移动网络接口或者BLE接口等。
可选的,该网络侧设备90还可以包括存储器93。存储器93可用于存储软件程序,该软件程序可以由处理器91执行。此外,该存储器93中还可以存储各类业务数据或者用户数据。该软件程序可以包括信道确定模块和收发模块;可选的,该软件程序还可以包括计算模块和时间窗确定模块。
其中,信道确定模块由处理器91执行,以实现上述图2所示实施例中有关根据预先设置的频点确定N个固定信道的功能,以及从N个固定信道中确定第一固定信道的功能。
收发模块由处理器91控制通信接口94执行,以实现上述图2所示实施例中有关在第一固定信道上发送DRS的功能,以及,在数据信道上与用户终端之间通过跳频方式进行数据传输的功能。
计算模块由处理器91控制通信接口94执行,以实现上述图2所示实施例中有关当CCA的评估结果指示第一固定信道被占用时,计算当前发送时间窗内的第一剩余时长的功能,以及有关在第二固定信道上发送DRS之后,计算发送时间窗内的第二剩余时长的功能。
时间窗确定模块由处理器91执行,以实现上述图2所示实施例中有关确定发送时间窗的功能。
可选的,处理器91可以用总线与存储器93和通信接口94相连。
可选地,该网络侧设备90还可以包括输出设备95以及输入设备97。输出设备95和输入设备97与处理器91相连。输出设备95可以是用于显示信息的显示器、播放声音的功放设备或者打印机等,输出设备95还可以包括输出控制器,用以提供输出到显示屏、功放设备或者打印机。输入设备97可以是用于用户输入信息的诸如鼠标、键盘、电子触控笔或者触控面板之类的设备,输入设备97还可以包括输出控制器以用于接收和处理来自鼠标、键盘、电子触控笔或者触控面板等设备的输入。
图10是本申请一个示例性实施例提供的装置100的结构示意图,该装置100可以实现为图1所示的系统中的用户终端120的全部或部分。如图10所示,该装置100可以包括:处理器1001以及通信接口1004。
处理器1001可以包括一个或者一个以上处理单元,该处理单元可以是中央处理单元(英文:central processing unit,CPU)或者网络处理器(英文:network processor,NP)等。
通信接口1004可以包括无线通信接口。该无线通信接口用于与网络侧设备之间通过无线空口进行通信,该无线通信接口可以包括无线局域网接口、蜂窝移动网络接口或者BLE接口等。
可选的,该装置100还可以包括存储器1003。存储器1003可用于存储软件程序,该软件程序可以由处理器1001执行。此外,该存储器1003中还可以存储各类业务数据或者用户数据。该软件程序可以包括信道确定模块、信道检测模块和收发模块;可选的,该软件程序还可以包括计算模块和位置确定模块。
其中,信道确定模块由处理器1001执行,以实现上述图2所示实施例中有关根据预先设置的频点确定N个固定信道的功能。
信道检测模块由处理器1001控制通信接口1004执行,以实现上述图2所示实施例中有关在N个固定信道上检测第一固定信道的功能。
收发模块由处理器1001控制通信接口1004执行,以实现上述图2所示实施例中有关在第一固定信道上接收DRS的功能,以及,在数据信道上与网络侧设备之间通过跳频方式进行数据传输的功能。
计算模块由处理器1001执行,以实现上述图2所示实施例中有关根据DRS中包含起始时间偏移信息计算数据信道的起始时刻的功能,以及,根据DRS中包含的跳频图案和跳频时间信息,计算数据信道的发送频点的功能。
位置确定模块由处理器1001执行,以实现上述图2所示实施例中有关根据DRS中包含的数据信道配置信息确定数据信道中上下行位置的功能。
可选的,处理器1001可以用总线与存储器1003和通信接口1004相连。
可选地,该装置100还可以包括输出设备1005以及输入设备1007。输出设备1005和输入设备1007与处理器1001相连。输出设备1005可以是用于显示信息的显示器、播放声音的功放设备或者打印机等,输出设备1005还可以包括输出控制器,用以提供输出到显示屏、功放设备或者打印机。输入设备1007可以是用于用户输入信息的诸如鼠标、键盘、电子触控笔或者触控面板之类的设备,输入设备1007还可以包括输出控制器以用于接收和处理来自鼠标、键盘、电子触控笔或者触控面板等设备的输入。
下述为本申请的装置实施例,可以用于执行本申请的方法实施例。对于本申请的装置实施例中未披露的细节,请参照本申请的方法实施例。
图11是本申请一个示例性实施例提供的一种通信装置的结构方框图,该通信装置可以通过硬件电路或者软件硬件的结合实现成为网络侧设备的部分或者全部,该网络侧设备可以是上述图1所示的实施例中的网络侧设备110。该通信装置可以包括:信道确定单元1101、收发单元1102、计算单元1103以及时间窗确定单元1104。
其中,信道确定单元1101由处理器执行,以实现上述图2所示实施例中有关根据预先设置的频点确定N个固定信道的功能,以及从N个固定信道中确定第一固定信道的功能。
收发单元由处理器控制通信接口执行,以实现上述图2所示实施例中有关在第一固定信道上发送DRS的功能,以及,在数据信道上与用户终端之间通过跳频方式进行数据传输 的功能。
计算单元1103由处理器控制通信接口执行,以实现上述图2所示实施例中有关当CCA的评估结果指示第一固定信道被占用时,计算当前发送时间窗内的第一剩余时长的功能,以及有关在第二固定信道上发送DRS之后,计算发送时间窗内的第二剩余时长的功能。
时间窗确定单元1104由处理器执行,以实现上述图2所示实施例中有关确定发送时间窗的功能。
可选的,上述各个单元所实现的功能也可以通过一芯片来实现。
图12是本申请一个示例性实施例提供的另一种装置的结构方框图,该装置可以通过硬件电路或者软件硬件的结合实现成为用户终端的部分或者全部,该用户终端可以是上述图1所示的实施例中的用户终端120。该装置可以包括:信道确定单元1201、信道检测单元1202、收发单元1203、计算单元1204以及位置确定单元1205;
其中,信道确定1201由处理器执行,以实现上述图2所示实施例中有关根据预先设置的频点确定N个固定信道的功能。
信道检测单元1202由处理器控制通信接口执行,以实现上述图2所示实施例中有关在N个固定信道上检测第一固定信道的功能。
收发单元1203由处理器控制通信接口执行,以实现上述图2所示实施例中有关在第一固定信道上接收DRS的功能,以及,在数据信道上与网络侧设备之间通过跳频方式进行数据传输的功能。
计算单元1204由处理器执行,以实现上述图2所示实施例中有关根据DRS中包含起始时间偏移信息计算数据信道的起始时刻的功能,以及,根据DRS中包含的跳频图案和跳频时间信息,计算数据信道的发送频点的功能。
位置确定单元1205由处理器执行,以实现上述图2所示实施例中有关根据DRS中包含的数据信道配置信息确定数据信道中上下行位置的功能。
可选的,上述各个单元所实现的功能也可以通过一芯片来实现。
需要说明的是:上述实施例提供的通信装置/装置在进行DRS收发和数据通信时,仅以上述各功能单元的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元完成,即将设备/终端的内部结构划分成不同的功能单元,以完成以上描述的全部或者部分功能。另外,上述实施例提供的通信装置/装置与无线通信方法的方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
此外,本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,上述至少一条指令、至少一段程序、代码集或指令集可由网络侧设备的处理器执行以完成本申请上述各个实施例所示的无线通信方法中,由网络侧设备执行的全部或部分步骤;或者,上述至少一条指令、至少一段程序、代码集或指令集可由用户终端的处理器执行以完成本申请上述各个实施例所示的无线通信方法中,由用户终端执行的全部或部分步骤。
其中,上述计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、 磁带、软盘和光数据存储设备等。
上述本申请的实施例序号仅仅为了描述,不代表实施例的优劣。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (40)

  1. 一种网络侧设备,其特征在于,所述网络侧设备包括:处理器和通信接口;
    所述处理器,用于根据预先设置的频点确定N个固定信道,N为大于或者等于2的整数;
    所述处理器,用于从所述N个固定信道中确定第一固定信道,所述第一固定信道是所述N个固定信道中的M个信道,M≤N,且M为正整数;
    所述处理器,用于控制所述通信接口在所述第一固定信道上发送发现参考信号DRS,所述DRS包括同步信号、广播信息以及系统消息中的至少一种;
    所述处理器,用于控制所述通信接口在数据信道上与用户终端之间通过跳频方式进行数据传输,所述数据信道是所述N个固定信道之外的全部或者部分信道。
  2. 根据权利要求1所述的网络侧设备,其特征在于,所述处理器,还用于控制所述通信接口,与所述用户终端在所述数据信道上传输用户特定数据。
  3. 根据权利要求1所述的网络侧设备,其特征在于,在数据信道上与用户终端之间通过跳频方式进行数据传输时,
    所述处理器,用于在相邻两次发送所述DRS之间,控制所述通信接口在p条所述数据信道上与所述用户终端进行至少一次预定时间长度的数据传输,p≥1,且p为整数;
    其中,当p不小于2时,在p条所述数据信道上进行数据传输的时间区间不同。
  4. 根据权利要求1所述的网络侧设备,其特征在于,在所述第一固定信道上发送发现参考信号DRS时,
    所述处理器,用于在一个发送时间窗内,控制所述通信接口在所述第一固定信道上发送所述DRS,所述发送时间窗是用于发送所述DRS的时间区间。
  5. 根据权利要求4所述的网络侧设备,其特征在于,在一个发送时间窗内,在所述第一固定信道上发送所述DRS之前,
    所述处理器,还用于在所述发送时间窗内,控制所述通信接口在所述第一固定信道上进行信道空闲评估CCA;
    所述处理器,还用于当所述CCA的评估结果指示所述第一固定信道被占用时,计算所述发送时间窗内的第一剩余时长;
    所述处理器,还用于当所述第一剩余时长不小于进行一次CCA的时长与发送一次DRS的时长之和时,控制所述通信接口在所述第一固定信道上重新进行CCA;
    在一个发送时间窗内,在所述第一固定信道上发送所述DRS时,所述处理器,具体用于当所述重新进行的CCA的评估结果指示所述第一固定信道空闲时,控制所述通信接口在所述第一固定信道上发送所述DRS。
  6. 根据权利要求4所述的网络侧设备,其特征在于,在一个发送时间窗内,在所述第一固定信道上发送所述DRS时,所述处理器,具体用于,
    当M≥2时,在所述发送时间窗内,控制所述通信接口在所述第一固定信道上同步进行CCA;在所述发送时间窗内,控制所述通信接口在第二固定信道上发送所述DRS;所述第二固定信道是所述第一固定信道中,第一个获得指示信道空闲的评估结果的信道。
  7. 根据权利要求6所述的网络侧设备,其特征在于,
    所述处理器,用于在所述第二固定信道上发送所述DRS之后,计算所述发送时间窗内的第二剩余时长;
    所述处理器,用于当所述第二剩余时长不小于进行一次CCA的时长与发送一次DRS的时长之和时,控制所述通信接口在所述第一固定信道中除了所述第二固定信道之外的其它信道上同步进行CCA。
  8. 根据权利要求1至7任一所述的网络侧设备,其特征在于,所述DRS中包含起始时间偏移信息,所述起始时间偏移信息用于指示所述数据传输的起始时间点与所述DRS的起始时间点或者结束时间点之间的偏移量。
  9. 根据权利要求1至7任一所述的网络侧设备,其特征在于,在所述第一固定信道上发送发现参考信号DRS之前,
    所述处理器,还用于根据预先配置的时间窗配置信息确定所述发送时间窗,或者,根据所述用户终端接入的小区的标识确定所述发送时间窗。
  10. 根据权利要求1至7任一所述的网络侧设备,其特征在于,在从所述N个固定信道中确定第一固定信道时,
    所述处理器,具体用于根据预先设置的固定信道配置信息从所述N个固定信道中确定出所述第一固定信道,或者,根据所述用户终端接入的小区的标识从所述N个固定信道中确定出所述第一固定信道。
  11. 根据权利要求3所述的网络侧设备,其特征在于,在所述第一固定信道上发送发现参考信号DRS时,
    所述处理器,具体用于控制所述通信接口在所述第一固定信道上发送包含数据信道配置信息的所述DRS,所述数据信道配置信息指示每个所述预定时间长度内用于上行传输的持续时间和用于下行传输的持续时间。
  12. 一种装置,其特征在于,所述装置包括:处理器和通信接口;
    所述处理器,用于根据预先设置的频点确定N个固定信道,N为大于或者等于2的整数;
    所述处理器,用于控制所述通信接口在所述N个固定信道上检测第一固定信道,所述第一固定信道是所述N个固定信道中的M个信道,M≤N,且M为正整数;
    所述处理器,用于控制所述通信接口在所述第一固定信道上接收发现参考信号DRS,所述DRS包括同步信号、广播信息以及系统消息中的至少一种;
    所述处理器,用于根据所述DRS,控制所述通信接口在数据信道上与网络侧设备之间通 过跳频方式进行数据传输,所述数据信道是所述N个固定信道之外的全部或者部分信道。
  13. 根据权利要求12所述的装置,其特征在于,在根据所述DRS在数据信道上与所述网络侧设备之间通过跳频方式进行数据传输时,所述处理器,具体用于,
    根据所述DRS中包含起始时间偏移信息计算所述数据信道的起始时刻,所述起始时间偏移信息用于指示所述数据传输的起始时间点与所述DRS的起始时间点或者结束时间点之间的偏移量;
    根据所述DRS中包含的跳频图案和跳频时间信息,计算所述数据信道的发送频点;
    根据所述DRS中包含的数据信道配置信息确定所述数据信道中上下行位置,所述数据信道配置信息指示每个预定时间长度内用于上行传输的持续时间和用于下行传输的持续时间;
    根据所述数据信道的起始时刻、发送频点以及上下行位置,控制所述通信接口与所述网络侧设备之间通过跳频方式进行数据传输。
  14. 一种通信装置,其特征在于,所述装置包括:
    信道确定单元,用于根据预先设置的频点确定N个固定信道,N为大于或者等于2的整数;
    所述信道确定单元,还用于从所述N个固定信道中确定第一固定信道,所述第一固定信道是所述N个固定信道中的M个信道,M≤N,且M为正整数;
    收发单元,用于在所述第一固定信道上发送发现参考信号DRS,所述DRS包括同步信号、广播信息以及系统消息中的至少一种;
    所述收发单元,还用于在数据信道上与用户终端之间通过跳频方式进行数据传输,所述数据信道是所述N个固定信道之外的全部或者部分信道。
  15. 根据权利要求14所述的装置,其特征在于,所述收发单元,还用于与所述用户终端在所述数据信道上传输用户特定数据。
  16. 根据权利要求14所述的装置,其特征在于,在数据信道上与用户终端之间通过跳频方式进行数据传输时,所述收发单元,具体用于,
    在相邻两次发送所述DRS之间,在p条所述数据信道上与所述用户终端进行至少一次预定时间长度的数据传输,p≥1,且p为整数;
    其中,当p不小于2时,在p条所述数据信道上进行数据传输的时间区间不同。
  17. 根据权利要求14所述的装置,其特征在于,在所述第一固定信道上发送发现参考信号DRS时,所述收发单元,具体用于,
    在一个发送时间窗内,在所述第一固定信道上发送所述DRS,所述发送时间窗是用于发送所述DRS的时间区间。
  18. 根据权利要求17所述的装置,其特征在于,
    所述收发单元,还用于在所述发送时间窗内,在所述第一固定信道上进行信道空闲评估 CCA;
    所述装置还包括:
    计算单元,用于当所述CCA的评估结果指示所述第一固定信道被占用时,计算所述发送时间窗内的第一剩余时长;
    所述收发单元,还用于当所述第一剩余时长不小于进行一次CCA的时长与发送一次DRS的时长之和时,在所述第一固定信道上重新进行CCA;当所述重新进行的CCA的评估结果指示所述第一固定信道空闲时,在所述第一固定信道上发送所述DRS。
  19. 根据权利要求17所述的装置,其特征在于,在一个发送时间窗内,在所述第一固定信道上进行CCA时,所述收发单元,具体用于,
    当M≥2时,在所述发送时间窗内,在所述第一固定信道上同步进行CCA;在所述发送时间窗内,在第二固定信道上发送所述DRS;所述第二固定信道是所述第一固定信道中,第一个获得指示信道空闲的评估结果的信道。
  20. 根据权利要求19所述的装置,其特征在于,
    所述计算单元,还用于在所述收发单元在所述第二固定信道上发送所述DRS之后,计算所述发送时间窗内的第二剩余时长;
    所述收发单元,还用于当所述第二剩余时长不小于进行一次CCA的时长与发送一次DRS的时长之和时,在所述第一固定信道中除了所述第二固定信道之外的其它信道上同步进行CCA。
  21. 根据权利要求14至20任一所述的装置,其特征在于,所述DRS中包含起始时间偏移信息,所述起始时间偏移信息用于指示所述数据传输的起始时间点与所述DRS的起始时间点或者结束时间点之间的偏移量。
  22. 根据权利要求14至20任一所述的装置,其特征在于,所述装置还包括:
    时间窗确定单元,用于在所述收发单元在所述第一固定信道上发送发现参考信号DRS之前,根据预先配置的时间窗配置信息确定所述发送时间窗,或者,根据所述用户终端接入的小区的标识确定所述发送时间窗。
  23. 根据权利要求14至20任一所述的装置,其特征在于,在从所述N个固定信道中确定第一固定信道时,所述信道确定单元,具体用于,
    根据预先设置的固定信道配置信息从所述N个固定信道中确定出所述第一固定信道,或者,根据所述用户终端接入的小区的标识从所述N个固定信道中确定出所述第一固定信道。
  24. 根据权利要求16所述的装置,其特征在于,在所述第一固定信道上发送发现参考信号DRS时,所述收发单元,具体用于,
    在所述第一固定信道上发送包含数据信道配置信息的所述DRS,所述数据信道配置信息指示每个所述预定时间长度内用于上行传输的持续时间和用于下行传输的持续时间。
  25. 一种装置,其特征在于,所述装置包括:
    信道确定单元,用于根据预先设置的频点确定N个固定信道,N为大于或者等于2的整数;
    信道检测单元,用于在所述N个固定信道上检测第一固定信道,所述第一固定信道是所述N个固定信道中的M个信道,M≤N,且M为正整数;
    收发单元,用于在所述第一固定信道上接收发现参考信号DRS,所述DRS包括同步信号、广播信息以及系统消息中的至少一种;
    所述收发单元,还用于根据所述DRS在数据信道上与网络侧设备之间通过跳频方式进行数据传输,所述数据信道是所述N个固定信道之外的全部或者部分信道。
  26. 根据权利要求25所述的装置,其特征在于,所述装置还包括:
    计算单元,用于根据所述DRS中包含起始时间偏移信息计算所述数据信道的起始时刻,所述起始时间偏移信息用于指示所述数据传输的起始时间点与所述DRS的起始时间点或者结束时间点之间的偏移量;根据所述DRS中包含的跳频图案和跳频时间信息,计算所述数据信道的发送频点;
    位置确定单元,用于根据所述DRS中包含的数据信道配置信息确定所述数据信道中上下行位置,所述数据信道配置信息指示每个预定时间长度内用于上行传输的持续时间和用于下行传输的持续时间;
    所述收发单元,具体用于根据所述数据信道的起始时刻、发送频点以及上下行位置,与所述网络侧设备之间通过跳频方式进行数据传输。
  27. 一种无线通信方法,其特征在于,所述方法包括:
    网络侧设备根据预先设置的频点确定N个固定信道,N为大于或者等于2的整数;
    所述网络侧设备从所述N个固定信道中确定第一固定信道,所述第一固定信道是所述N个固定信道中的M个信道,M≤N,且M为正整数;
    所述网络侧设备在所述第一固定信道上发送发现参考信号DRS,所述DRS包括同步信号、广播信息以及系统消息中的至少一种;
    所述网络侧设备在数据信道上与用户终端之间通过跳频方式进行数据传输,所述数据信道是所述N个固定信道之外的全部或者部分信道。
  28. 根据权利要求27所述的方法,其特征在于,所述方法还包括:
    所述网络侧设备与所述用户终端在所述数据信道上传输用户特定数据。
  29. 根据权利要求27所述的方法,其特征在于,所述网络侧设备在数据信道上与用户终端之间通过跳频方式进行数据传输,包括:
    所述网络侧设备在相邻两次发送所述DRS之间,在p条所述数据信道上与所述用户终端进行至少一次预定时间长度的数据传输,p≥1,且p为整数;
    其中,当p不小于2时,在p条所述数据信道上进行数据传输的时间区间不同。
  30. 根据权利要求27所述的方法,其特征在于,所述网络侧设备在所述第一固定信道上发送发现参考信号DRS,包括:
    所述网络侧设备在一个发送时间窗内,在所述第一固定信道上发送所述DRS,所述发送时间窗是用于发送所述DRS的时间区间。
  31. 根据权利要求30所述的方法,其特征在于,所述网络侧设备在一个发送时间窗内,在所述第一固定信道上发送所述DRS之前,还包括:
    在所述发送时间窗内,在所述第一固定信道上进行信道空闲评估CCA;
    当所述CCA的评估结果指示所述第一固定信道被占用时,所述网络侧设备计算所述发送时间窗内的第一剩余时长;
    当所述第一剩余时长不小于进行一次CCA的时长与发送一次DRS的时长之和时,所述网络侧设备在所述第一固定信道上重新进行CCA;
    所述网络侧设备在一个发送时间窗内,在所述第一固定信道上发送所述DRS,包括:
    当所述重新进行的CCA的评估结果指示所述第一固定信道空闲时,所述网络侧设备在所述第一固定信道上发送所述DRS。
  32. 根据权利要求30所述的方法,其特征在于,所述网络侧设备在一个发送时间窗内,在所述第一固定信道上发送所述DRS,包括:
    当M≥2时,所述网络侧设备在所述发送时间窗内,在所述第一固定信道上同步进行CCA;
    所述网络侧设备在所述发送时间窗内,在第二固定信道上发送所述DRS;所述第二固定信道是所述第一固定信道中,第一个获得指示信道空闲的评估结果的信道。
  33. 根据权利要求32所述的方法,其特征在于,所述方法还包括:
    所述网络侧设备在所述第二固定信道上发送所述DRS之后,计算所述发送时间窗内的第二剩余时长;
    当所述第二剩余时长不小于进行一次CCA的时长与发送一次DRS的时长之和时,所述网络侧设备在所述第一固定信道中除了所述第二固定信道之外的其它信道上同步进行CCA。
  34. 根据权利要求27至33任一所述的方法,其特征在于,所述DRS中包含起始时间偏移信息,所述起始时间偏移信息用于指示所述数据传输的起始时间点与所述DRS的起始时间点或者结束时间点之间的偏移量。
  35. 根据权利要求27至33任一所述的方法,其特征在于,所述网络侧设备在所述第一固定信道上发送发现参考信号DRS之前,还包括:
    所述网络侧设备根据预先配置的时间窗配置信息确定所述发送时间窗,或者,所述网络侧设备根据所述用户终端接入的小区的标识确定所述发送时间窗。
  36. 根据权利要求27至33任一所述的方法,其特征在于,所述网络侧设备从所述N个 固定信道中确定第一固定信道,包括:
    所述网络侧设备根据预先设置的固定信道配置信息从所述N个固定信道中确定出所述第一固定信道,或者,所述网络侧设备根据所述用户终端接入的小区的标识从所述N个固定信道中确定出所述第一固定信道。
  37. 根据权利要求29所述的方法,其特征在于,所述网络侧设备在所述第一固定信道上发送发现参考信号DRS,包括:
    所述网络侧设备在所述第一固定信道上发送包含数据信道配置信息的所述DRS,所述数据信道配置信息指示每个所述预定时间长度内用于上行传输的持续时间和用于下行传输的持续时间。
  38. 一种无线通信方法,其特征在于,所述方法包括:
    用户终端根据预先设置的频点确定N个固定信道,N为大于或者等于2的整数;
    所述用户终端在所述N个固定信道上检测第一固定信道,所述第一固定信道是所述N个固定信道中的M个信道,M≤N,且M为正整数;
    所述用户终端在所述第一固定信道上接收发现参考信号DRS,所述DRS包括同步信号、广播信息以及系统消息中的至少一种;
    所述用户终端根据所述DRS在数据信道上与网络侧设备之间通过跳频方式进行数据传输,所述数据信道是所述N个固定信道之外的全部或者部分信道。
  39. 根据权利要求38所述的方法,其特征在于,所述用户终端根据所述DRS在数据信道上与所述网络侧设备之间通过跳频方式进行数据传输,包括:
    所述用户终端根据所述DRS中包含起始时间偏移信息计算所述数据信道的起始时刻,所述起始时间偏移信息用于指示所述数据传输的起始时间点与所述DRS的起始时间点或者结束时间点之间的偏移量;
    所述用户终端根据所述DRS中包含的跳频图案和跳频时间信息,计算所述数据信道的发送频点;
    所述用户终端根据所述DRS中包含的数据信道配置信息确定所述数据信道中上下行位置,所述数据信道配置信息指示每个预定时间长度内用于上行传输的持续时间和用于下行传输的持续时间;
    所述用户终端根据所述数据信道的起始时刻、发送频点以及上下行位置,与所述网络侧设备之间通过跳频方式进行数据传输。
  40. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由处理器加载并执行以实现如权利要求27至39任一所述的无线通信方法。
PCT/CN2017/099804 2017-08-31 2017-08-31 无线通信方法、网络侧设备及装置 WO2019041209A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2017/099804 WO2019041209A1 (zh) 2017-08-31 2017-08-31 无线通信方法、网络侧设备及装置
CN201780092361.5A CN110771234B (zh) 2017-08-31 2017-08-31 无线通信方法、网络侧设备及装置
EP17923967.8A EP3664542B1 (en) 2017-08-31 2017-08-31 Wireless communication method and network side device and apparatus
US16/805,039 US11323220B2 (en) 2017-08-31 2020-02-28 Wireless communication method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/099804 WO2019041209A1 (zh) 2017-08-31 2017-08-31 无线通信方法、网络侧设备及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/805,039 Continuation US11323220B2 (en) 2017-08-31 2020-02-28 Wireless communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2019041209A1 true WO2019041209A1 (zh) 2019-03-07

Family

ID=65524692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/099804 WO2019041209A1 (zh) 2017-08-31 2017-08-31 无线通信方法、网络侧设备及装置

Country Status (4)

Country Link
US (1) US11323220B2 (zh)
EP (1) EP3664542B1 (zh)
CN (1) CN110771234B (zh)
WO (1) WO2019041209A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114641938A (zh) * 2019-11-25 2022-06-17 高通股份有限公司 非许可频带中的上行链路跳频

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11825416B2 (en) * 2019-11-25 2023-11-21 Qualcomm Incorporated Skipping downlink frequency hops in unlicensed frequency band
CN114513227B (zh) * 2022-02-24 2023-10-24 南京大鱼半导体有限公司 音频设备的信道探测方法、装置、设备及存储介质
US12040830B2 (en) * 2022-08-30 2024-07-16 Texas Instruments Incorporated Adaptive frequency hopping in a wireless battery management system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103702341A (zh) * 2013-12-12 2014-04-02 南京熊猫电子股份有限公司 Lte上行探测信号频域位置的快速配置方法
WO2017026980A1 (en) * 2015-08-13 2017-02-16 Intel IP Corporation Discovery reference signal design for lte in unlicensed bands
CN106559880A (zh) * 2015-09-25 2017-04-05 中兴通讯股份有限公司 发现信号和物理下行共享信道复用发送、接收方法和设备
CN107046724A (zh) * 2016-02-05 2017-08-15 中兴通讯股份有限公司 一种上行信号/信道的发送方法及装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016019555A1 (en) * 2014-08-07 2016-02-11 Nec Corporation Method and apparatus for channel state information measurement
CN106161292B (zh) * 2014-11-07 2020-09-08 北京三星通信技术研究有限公司 一种传输数据的方法和设备
CN105634700A (zh) * 2014-11-07 2016-06-01 中兴通讯股份有限公司 非授权载波中信道的设计方法及装置
US10219159B2 (en) * 2015-01-30 2019-02-26 Electronics And Telecommunications Research Institute Method and apparatus for transmitting and receiving reference signal using unlicensed band
US20160234763A1 (en) * 2015-02-09 2016-08-11 Electronics And Telecommunications Research Institute Base station, signal transmitting method of the same, communication system comprising thereof
US10383109B2 (en) * 2015-03-12 2019-08-13 Lg Electronics Inc. Method for receiving data in unlicensed band and device using same
US10827485B2 (en) * 2015-04-17 2020-11-03 Qualcomm Incorporated Narrowband dependent subframe availability for MTC
CN106304091B (zh) * 2015-05-15 2022-06-14 索尼公司 用于未授权频段的频率分配的方法和装置
WO2017023056A1 (ko) * 2015-07-31 2017-02-09 삼성전자 주식회사 비면허 대역 채널에서 클리어 채널 평가에 근거한 신호 전송 방법 및 이동 통신 시스템
US10630440B2 (en) * 2015-08-12 2020-04-21 Electronics And Telecommunications Research Institute Method and apparatus for transmitting and receiving signal in communication network
EP3335353B8 (en) * 2015-08-13 2021-01-20 Apple Inc. Discovery reference signal transmission for lte in unlicensed band
EP3387874A1 (en) * 2015-12-08 2018-10-17 Nokia Solutions and Networks Oy Method and apparatus for implementing autonomous determination of uplink resources by user equipment
US11057873B2 (en) * 2016-02-05 2021-07-06 Qualcomm Incorporated Techniques for long term evolution licensed assisted-access(LTE LAA) coexistence with other radio access technologies
CN107294686A (zh) * 2016-04-01 2017-10-24 中兴通讯股份有限公司 探测参考信号发送、接收方法、装置、ue及基站
WO2018144638A1 (en) * 2017-02-03 2018-08-09 Intel IP Corporation ANCHOR CHANNEL DESIGN FOR UNLICENSED INTERNET OF THINGS (IoT)
DE112018001997T5 (de) * 2017-04-12 2019-12-24 Intel IP Corporation Ankerkanaldesign für unlizenziertes Internet of Things (IoT)
US10298289B2 (en) * 2017-04-19 2019-05-21 Qualcomm Incorporated Synchronization and paging channel design for wireless communications
US11071149B2 (en) * 2017-05-05 2021-07-20 Apple Inc. Multefire design of random access channel and random access channel procedure for Internet of Things device operation in unlicensed spectrum
US10367617B2 (en) * 2017-08-02 2019-07-30 Telefonaktiebolaget Lm Ericsson (Publ) Method, base station and user equipment for transmission
US11206605B2 (en) * 2017-08-25 2021-12-21 Qualcomm Incorporated Discovery procedures for multi-band operation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103702341A (zh) * 2013-12-12 2014-04-02 南京熊猫电子股份有限公司 Lte上行探测信号频域位置的快速配置方法
WO2017026980A1 (en) * 2015-08-13 2017-02-16 Intel IP Corporation Discovery reference signal design for lte in unlicensed bands
CN106559880A (zh) * 2015-09-25 2017-04-05 中兴通讯股份有限公司 发现信号和物理下行共享信道复用发送、接收方法和设备
CN107046724A (zh) * 2016-02-05 2017-08-15 中兴通讯股份有限公司 一种上行信号/信道的发送方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3664542A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114641938A (zh) * 2019-11-25 2022-06-17 高通股份有限公司 非许可频带中的上行链路跳频
CN114641938B (zh) * 2019-11-25 2024-04-19 高通股份有限公司 非许可频带中的上行链路跳频

Also Published As

Publication number Publication date
EP3664542A1 (en) 2020-06-10
US11323220B2 (en) 2022-05-03
EP3664542A4 (en) 2020-08-05
US20200220682A1 (en) 2020-07-09
CN110771234A (zh) 2020-02-07
CN110771234B (zh) 2022-04-26
EP3664542B1 (en) 2021-06-30

Similar Documents

Publication Publication Date Title
CN105898770B (zh) 一种空频道检测方法及节点设备
JP5383789B2 (ja) ランダムアクセス応答メッセージのグループid生成方法及びランダムアクセス方法
CN102484845B (zh) 无线局域网系统中的信道扫描方法
WO2017028556A1 (zh) 基于非授权频段的发现参考信号配置方法、装置和基站
KR101889515B1 (ko) 전력 제어를 위한 시스템 및 방법
US11323220B2 (en) Wireless communication method and apparatus
CN107925859A (zh) 终端装置、基站装置、通信系统、测定方法以及集成电路
JP2017520149A (ja) ライセンスド周波数帯タイミングを有するアンライセンスド周波数帯
CN107925897A (zh) 终端装置、基站装置、通信系统、测定方法以及集成电路
CN109150483B (zh) 参数确定方法、基站及用户设备
WO2017133368A1 (zh) 一种非授权频谱中prach信号的传输方法和设备
WO2011085678A1 (zh) 定时提前分组的确定方法、设备及系统
US20160316403A1 (en) Neighboring cell measurement method and device
WO2016004969A1 (en) Secondary cell group configuration
WO2017206102A1 (zh) 信道竞争方法及装置
US11812255B2 (en) Congestion aware DRX_ON adaptation in sidelink unicast
WO2013104296A1 (zh) 数据的传输方法及装置
WO2017128285A1 (zh) 一种上行传输方法、基站及终端设备
US20220200765A1 (en) Telecommunications apparatus and methods
CN105120529A (zh) 基于长期演进蜂窝网络的设备到设备通信建立装置及方法
CN111345094A (zh) 用于上行链路调度的方法和装置
WO2018014666A1 (zh) 一种上行参考信号的传输方法和装置
WO2018028675A1 (zh) 随机接入信号配置方法、装置、设备、系统和存储介质
US20160309453A1 (en) Tdd uplink-downlink configuration acquiring method and apparatus
US20230049532A1 (en) Random access method and terminal device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17923967

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017923967

Country of ref document: EP

Effective date: 20200303