WO2019039188A1 - Battery temperature regulator and external heat source supply device - Google Patents

Battery temperature regulator and external heat source supply device Download PDF

Info

Publication number
WO2019039188A1
WO2019039188A1 PCT/JP2018/028140 JP2018028140W WO2019039188A1 WO 2019039188 A1 WO2019039188 A1 WO 2019039188A1 JP 2018028140 W JP2018028140 W JP 2018028140W WO 2019039188 A1 WO2019039188 A1 WO 2019039188A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
heat
heat exchanger
vehicle
external
Prior art date
Application number
PCT/JP2018/028140
Other languages
French (fr)
Japanese (ja)
Inventor
康光 大見
義則 毅
功嗣 三浦
竹内 雅之
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201880036209.XA priority Critical patent/CN110692163A/en
Publication of WO2019039188A1 publication Critical patent/WO2019039188A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/637Control systems characterised by the use of reversible temperature-sensitive devices, e.g. NTC, PTC or bimetal devices; characterised by control of the internal current flowing through the cells, e.g. by switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6552Closed pipes transferring heat by thermal conductivity or phase transition, e.g. heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6572Peltier elements or thermoelectric devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/663Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present disclosure relates to a battery temperature control device that adjusts the temperature of a secondary battery (hereinafter referred to as "battery”) mounted in a vehicle, and an external heat source supply device that supplies cold or heat to the battery temperature control device. It is.
  • the current value flowing to the battery at the time of rapid charging is larger than the current value flowing to the battery at the time of traveling the vehicle using the electric motor.
  • the output during rapid charge may be 150 kW or more.
  • Patent Document 1 when charging a battery mounted on a vehicle, a heat medium is supplied from a charging device installed outside the vehicle to a liquid circuit provided on the vehicle, and the battery is cooled using cold heat of the heat medium Technology is described. Specifically, in this technology, when charging a battery mounted on a vehicle, a plug for heat medium supply provided in a charging device installed outside the vehicle is inserted into a heat medium introducing portion of the vehicle, and the charging device The cooled heat medium is supplied to a liquid circuit provided in the vehicle. In this technique, the heat mediums are heat exchanged between the first liquid circuit to which the heat medium is supplied from the charging device and the second liquid circuit separately provided in the vehicle. Then, the battery is cooled by the heat medium circulating in the second liquid circuit. Thus, in the technology of Patent Document 1, it is possible to cool the battery without increasing the cooling capacity of the battery cooling device mounted on the vehicle.
  • the plug for heating medium supply provided in the charging device at the start of charging of the battery mounted on the vehicle is inserted into the heating medium introduction portion of the vehicle, and the plug is heated at the end of charging. It is necessary to remove it from the medium introduction unit. Therefore, there is a possibility that foreign matter and the like may enter the liquid circuit provided in the vehicle from the connection point between the heat medium supply plug and the heat medium introducing portion of the vehicle. If the fluid circuit provided in the vehicle is clogged by the foreign matter, there is a problem that the fluid circuit may be broken.
  • a battery temperature control device that adjusts the temperature of a battery mounted on a vehicle using heat supplied from an external heat source supply device installed outside the vehicle, comprising: A battery heat exchanger that exchanges heat between the battery and the heat medium; Piping connected to the battery heat exchanger and through which the heat medium flows; It has an on-board thermal contact surface that can be in direct thermal contact with the external thermal contact surface of the external heat source supply device or indirectly via the thermal conduction member, and heat is transmitted from the external thermal contact surface via the on-board thermal contact surface And a connected heat exchanger for cooling or heating the heat medium flowing through the piping.
  • the heat medium cooled or heated in the connection heat exchanger by the thermal contact between the external thermal contact surface and the on-vehicle thermal contact surface flows through the pipe to the battery heat exchanger.
  • the battery heat exchanger can cool or warm up the battery by heat exchange between the heat medium and the battery. Therefore, in the battery temperature control device, the heat medium does not flow from the external heat source supply device into the circuit of the heat medium of the battery temperature control device as in the technique described in Patent Document 1, so the heat temperature of the battery temperature control device Contamination of foreign matter is prevented in the circuit of the medium.
  • the heat medium does not leak or drip between the external thermal contact surface and the in-vehicle thermal contact surface, the vehicle, the charging operator or the charging place is prevented from being contaminated by the thermal medium.
  • the battery temperature control device adjusts the temperature of the battery mounted on the vehicle using heat supplied from an external heat source supply device installed outside the vehicle, thereby increasing the weight and size of the battery temperature control device It is possible to increase the cooling capacity of the battery without Therefore, the battery temperature control device can prevent the circuit failure and can adjust the temperature of the battery cleanly, safely and with a large capacity.
  • An external heat source supply device installed outside the vehicle, A pump for circulating the heat medium to the heat medium circuit; A heat source unit for cooling or heating the heat medium flowing through the heat medium circuit; A heat retention tank which stores the heat medium cooled or heated by the heat source section at a predetermined temperature state; It has an external thermal contact surface that can be in direct thermal contact with the on-board thermal contact surface provided in the vehicle or indirectly via the thermal conduction member, and the heat supplied by the thermal medium flowing through the thermal medium circuit can be And an externally connected heat exchanger capable of being transmitted from the contact surface to the on-board thermal contact surface.
  • the external heat source supply device requires a large capacity in a short time for temperature control of the battery, such as at the time of quick charge, by storing the heat medium brought to the predetermined temperature state in the heat retention tank. The case can also be addressed.
  • the battery temperature control device 1 of the first embodiment is mounted on an electric vehicle such as an electric vehicle or a hybrid vehicle (hereinafter, simply referred to as “vehicle 3").
  • vehicle 3 an electric vehicle
  • the battery temperature control device 1 of the first embodiment cools or warms up a secondary battery (hereinafter, referred to as “battery 2”) mounted on the vehicle 3 to adjust the temperature of the battery 2.
  • battery 2 a secondary battery mounted on the vehicle 3 to adjust the temperature of the battery 2.
  • a large battery 2 installed in a vehicle 3 is mounted under a seat of the vehicle 3 or under a trunk room as a battery pack (i.e., a storage device) storing a plurality of battery modules in which a plurality of battery cells are combined. .
  • the power stored in the battery 2 is supplied to the vehicle drive motor via an inverter or the like.
  • the battery 2 is configured to be chargeable by the power supplied from the charging device 70 installed outside the vehicle 3.
  • the charging device 70 may be a rapid charging device capable of performing quick charging with an output of 150 kW or more, or may be a charging device with an output of 150 kW or less.
  • the battery 2 generates heat at the time of discharge and charge such as while the vehicle is traveling, and at the time of charge where power is supplied from the charging device 70 installed outside the vehicle 3.
  • a cooling device for maintaining the battery 2 at a certain temperature or lower is required.
  • the internal resistance of the battery 2 becomes large and charging can not be performed. Therefore, a warm-up device is required to warm up the battery 2 in a low temperature state at the start of charging in a low temperature environment.
  • battery 2 is configured as a battery module including a plurality of battery cells, if there is variation in the temperature of each battery cell, battery cell deterioration occurs unevenly, and the storage performance of battery 2 decreases. . This is because the input / output characteristics of the power storage device are determined in accordance with the most deteriorated battery cell characteristics. Therefore, in order to cause the battery 2 to exhibit desired performance over a long period of time, it is important to make the temperature uniform to reduce the temperature variation among the plurality of battery cells.
  • the battery temperature control device 1 of the first embodiment adopts a thermo-siphon system in which the temperature of the battery 2 is adjusted by natural circulation of the heat medium.
  • the battery temperature control device 1 uses cold heat or heat supplied from an external heat source supply device 80 provided in a charging device 70 installed outside the vehicle 3. It is a device capable of adjusting the temperature of the battery 2 mounted on the vehicle 3.
  • the charging device 70 of the present embodiment includes an external heat source supply device 80 and an external power supply device 90.
  • the external power supply device 90 includes an external power supply device main body 91, a charging cable 92, a charging connector 93, and the like.
  • the charging connector 93 provided in the external power supply device 90 can be inserted into the charging port 4 provided in the vehicle 3. In that state, external power supply device 90 is connected to battery 2 mounted on vehicle 3 from external power supply device main body 91 through charging cable 92, charging connector 93, charging port 4 and wiring 5 inside the vehicle. Supply power. When power is supplied from the external power supply device 90 to the battery 2, the battery 2 is charged.
  • the external heat source supply apparatus 80 includes an external heat source supply apparatus main body 81, an external pipe 82, an external connection heat exchanger 83, and the like.
  • the external connection heat exchanger 83 provided in the external heat source supply device 80 may be in direct contact with the on-board thermal contact surface 35 provided in the vehicle 3 or may be in indirect thermal contact via the thermal conduction member 6 It is possible.
  • the external heat source supply device 80 supplies cold heat or heat to the on-vehicle thermal contact surface 35 from the external heat source supply device body 81 through the external pipe 82 and the externally connected heat exchanger 83.
  • the battery temperature adjustment device 1 cools or warms up the battery 2 using the heat.
  • the external heat source supply device 80 may be provided separately from the charging device 70.
  • the battery temperature adjustment device 1 includes a battery heat exchanger 10, pipes 21 and 22, a connection heat exchanger 30, and an on-vehicle heat source unit 40.
  • the battery temperature control device 1 constitutes a thermosyphon circuit in which a heat medium circulates.
  • a heat medium for example, fluorocarbon working fluid such as HFO-1234yf or HFC-134a is used.
  • the battery heat exchanger 10 includes an upper header tank 11, a lower header tank 12, and a plurality of tubes 13 communicating the upper header tank 11 with the lower header tank 12.
  • the plurality of tubes 13 of the battery heat exchanger 10 extend along the direction of gravity.
  • “along the direction of gravity” means, in addition to a state parallel to the direction of gravity, a state including an angle of about 30 ° with respect to the direction of gravity.
  • the liquid surface FL1 of the heat medium circulating in the thermosyphon circuit is located in the middle of the flow passage inside the tube 13 of the battery heat exchanger 10.
  • the battery heat exchanger 10 is bonded to the battery 2 by an adhesive heat-radiating sheet or the like (not shown). Therefore, the battery heat exchanger 10 can perform heat exchange between the battery 2 and the heat medium.
  • the connection heat exchanger 30 also has an upper header tank 31, a lower header tank 32, and a plurality of tubes 33 communicating the upper header tank 31 with the lower header tank 32.
  • a plurality of tubes 33 of the connecting heat exchanger 30 also extend along the gravity direction.
  • the liquid surface FL2 of the heat medium circulating in the thermosyphon circuit is located in the middle of the flow path inside the tube 33 of the connection heat exchanger 30.
  • the connection heat exchanger 30 has an on-vehicle thermal contact surface 35 at a position where it can be exposed to the outside of the vehicle.
  • the on-vehicle thermal contact surface 35 is formed along the direction of gravity.
  • the in-vehicle thermal contact surface 35 is hatched although it is not a cross section.
  • a cover (not shown) may be provided on the outer wall of the vehicle located outside the on-board thermal contact surface 35, and the on-board thermal contact surface 35 may be exposed outside the vehicle by opening the cover.
  • the external thermal contact surface 84 of the external connection heat exchanger 83 provided in the external heat source supply device 80 is in direct contact with the on-vehicle thermal contact surface 35 or indirectly via the thermal conduction member 6 such as a heat dissipation sheet. It is possible to make thermal contact.
  • the external connection heat exchanger 83 provided in the external heat source supply device 80 is illustrated with respect to the vehicle 3 or the connection heat exchanger 30 in a state where the in-vehicle thermal contact surface 35 and the external thermal contact surface 84 are in thermal contact. It is fixed by a clamp device etc. In the connection heat exchanger 30, the heat medium flowing inside the connection heat exchanger 30 is cooled or heated by cold heat or heat transferred from the external heat contact surface 84 of the external heat source supply device 80 through the on-vehicle heat contact surface 35.
  • the pipe 21 connects the battery heat exchanger 10 and the connection heat exchanger 30 and circulates the heat medium therebetween.
  • the pipe 22 connects the battery heat exchanger 10 and the on-vehicle heat source unit 40, and circulates the heat medium therebetween.
  • the pipe 21 connecting the battery heat exchanger 10 and the connection heat exchanger 30 is referred to as a first pipe 21.
  • the pipe 22 connecting the battery heat exchanger 10 and the on-vehicle heat source unit 40 is referred to as a second pipe 22.
  • the first pipe 21 has a first liquid passage 211 and a first gas passage 212.
  • the first liquid passage 211 connects the outlet / inlet 121 provided in the lower header tank 12 of the battery heat exchanger 10 and the outlet / inlet 321 provided in the lower header tank 32 of the connection heat exchanger 30. . That is, the first liquid passage 211 is the outlet / inlet 121 provided below the liquid surface FL1 of the heat medium in the battery heat exchanger 10, and the liquid surface FL2 of the heat medium in the connection heat exchanger 30. It connects with the outflow inlet 321 provided on the lower side.
  • the first gas passage 212 connects the outlet / inlet 111 provided in the upper header tank 11 of the battery heat exchanger 10 and the outlet / inlet 311 provided in the upper header tank 31 of the connection heat exchanger 30. . That is, the first gas passage 212 is provided from the outflow / inflow port 111 provided above the liquid surface FL1 of the heat medium in the battery heat exchanger 10 and the liquid surface FL2 of the heat medium in the connection heat exchanger 30. It connects with the outflow inlet 311 provided on the upper side.
  • the battery heat exchanger 10, the connection heat exchanger 30, the first liquid passage 211, and the first gas passage 212 constitute a first thermosyphon circuit 100 in which a heat medium circulates.
  • the on-vehicle heat source unit 40 is configured of one or more radiators.
  • the on-vehicle heat source unit 40 includes an air radiator 41 and a refrigerant radiator 42 connected to the evaporator 51 of the refrigeration cycle 50.
  • the air radiator 41 exchanges heat between the heat medium flowing inside the air radiator 41 and the outside air passing through the air radiator 41 to radiate the heat of the heat medium flowing inside the air radiator 41 to the outside air Heat exchanger.
  • the refrigerant radiator 42 performs heat exchange between the heat medium flowing inside the refrigerant radiator 42 and the low-temperature low-pressure refrigerant circulating in the refrigeration cycle 50, whereby the heat of the heat medium flowing inside the refrigerant radiator 42 Is dissipated to the refrigerant circulating in the refrigeration cycle 50.
  • the air radiator 41 and the refrigerant radiator 42 can be selectively used according to the heat generation state of the battery 2 or the traveling state of the vehicle 3 or the like.
  • the on-vehicle heat source unit 40 may be a liquid cooling radiator which performs heat exchange between a heat medium and a liquid such as cooling water flowing in a liquid circuit (not shown) instead of the air radiator 41 or the refrigerant radiator 42. .
  • the on-vehicle heat source unit 40 may be configured by a Peltier element.
  • the second pipe 22 has a second liquid passage 221 and a second gas passage 222.
  • the second liquid passage 221 includes an outlet port 122 provided in the lower header tank 12 of the battery heat exchanger 10, an outlet port 411 provided below the air radiator 41, and a lower side of the refrigerant radiator 42. It connects with the outflow inlet 421 provided in.
  • the second gas passage 222 is provided on the upper side of the refrigerant outlet 42, the outlet / inlet 412 provided on the upper side of the air radiator 41, and the upper side of the refrigerant radiator 42. And the connected outlet 422.
  • the battery heat exchanger 10, the air radiator 41, the refrigerant radiator 42, the second liquid passage 221, and the second gas passage 222 also constitute a second thermosiphon circuit 200 in which the heat medium circulates.
  • the first thermosiphon circuit 100 and the second thermosiphon circuit 200 communicate with each other, and the same heat medium circulates.
  • the movement of the heat medium when the battery temperature control device 1 cools the battery 2 will be described with reference to FIG.
  • the movement of the heat medium of gas is indicated by a broken arrow
  • the movement of the heat medium of liquid is indicated by a solid arrow.
  • the movement of the heat medium shown in FIG. 2 is performed when the battery 2 is being charged in a state where the charging connector 93 included in the external power supply device 90 is inserted into the charging port 4 provided in the vehicle 3 belongs to.
  • the movement of the heat medium is caused by the external connection heat exchanger 83 provided in the external heat source supply device 80 making direct contact with the on-vehicle thermal contact surface 35 or making indirect thermal contact via the heat conducting member 6 It is in the state. In that state, the external heat source supply device 80 supplies cold heat from the externally connected heat exchanger 83 to the on-vehicle thermal contact surface 35.
  • the heat is absorbed by the heat medium in the battery heat exchanger 10, and the heat medium evaporates inside the battery heat exchanger 10.
  • a portion of the heat medium that has become gas in the battery heat exchanger 10 flows from the battery heat exchanger 10 through the first gas passage 212 into the connection heat exchanger 30.
  • another part of the heat medium that has become a gas in the battery heat exchanger 10 flows from the battery heat exchanger 10 through the second gas passage 222 into the air radiator 41 and the refrigerant radiator 42. That is, the heat absorbed by the heat medium inside the battery heat exchanger 10 from the battery is transported by the heat medium to the connection heat exchanger 30, the air radiator 41, and the refrigerant radiator 42.
  • the external thermal contact surface 84 of the external connection heat exchanger 83 and the on-board thermal contact surface 35 of the connection heat exchanger 30 are in direct thermal contact or indirect thermal contact via the thermal conductive member 6. ing. Therefore, cold heat is supplied from the external heat contact surface 84 of the external heat source supply device 80 to the heat medium of the connection heat exchanger 30 via the on-vehicle heat contact surface 35. As a result, the heat medium of the connection heat exchanger 30 dissipates heat to the external thermal contact surface 84 via the on-board thermal contact surface 35 and condenses. The heat medium that has become liquid in the connection heat exchanger 30 flows through the first liquid passage 211 and flows into the battery heat exchanger 10.
  • the heat medium which has flowed to the air radiator 41 radiates heat to the outside air and condenses. Further, the heat medium that has flowed to the refrigerant radiator 42 dissipates heat to the refrigerant flowing through the refrigeration cycle 50 and condenses.
  • the heat medium which has become a liquid by the air radiator 41 and the refrigerant radiator 42 flows down the second liquid passage 221 and flows into the battery heat exchanger 10.
  • the heat generated from the battery 2 is transported to the connection heat exchanger 30, the air radiator 41 and the refrigerant radiator 42 by the heat medium evaporated in the battery heat exchanger 10, and the respective devices are externally
  • the heat is dissipated to the heat contact surface 84, the outside air, or the refrigerant flowing through the refrigeration cycle 50.
  • the battery temperature adjustment device 1 of the first embodiment can cool the battery 2 mounted on the vehicle 3.
  • the movement of the heat medium when the battery temperature control device 1 warms up the battery 2 in the low temperature state at the start of charging in a low temperature environment will be described with reference to FIG. Also in FIG. 4, the movement of the heat medium of the gas is indicated by a broken arrow, and the movement of the heat medium of the liquid is indicated by a solid arrow.
  • the externally connected heat exchanger 83 provided in the external heat source supply device 80 is in direct contact with the on-vehicle thermal contact surface 35 or indirectly via the heat conducting member 6. It is in a state of thermal contact.
  • the heat is supplied from the external thermal contact surface 84 of the external heat source supply device 80 to the on-board thermal contact surface 35 of the connection heat exchanger 30.
  • the heat medium flowing through the connection heat exchanger 30 absorbs heat from the on-board thermal contact surface 35 and the external thermal contact surface 84, and the heat medium evaporates in the connection heat exchanger 30.
  • the heat medium that has become gas in the connection heat exchanger 30 flows from the connection heat exchanger 30 through the first gas passage 212 into the battery heat exchanger 10.
  • the heat medium of the gas flowing into the battery heat exchanger 10 dissipates heat to the battery 2 and condenses. Thereby, the battery 2 is warmed up.
  • the heat medium that has become liquid in the battery heat exchanger 10 flows through the first liquid passage 211 and flows into the connection heat exchanger 30.
  • the heat supplied from the external heat contact surface 84 of the external heat source supply device 80 to the on-vehicle heat contact surface 35 is transported to the battery heat exchanger 10 by the heat medium evaporated in the connection heat exchanger 30. It is transmitted to the battery 2. Thereby, the battery temperature adjustment device 1 of the first embodiment can warm up the battery 2 mounted on the vehicle 3.
  • connection heat exchanger 30 included in the battery temperature adjustment device 1 is in direct contact with the external thermal contact surface 84 of the external heat source supply device 80 or indirectly through the thermal conduction member 6 It has an on-vehicle thermal contact surface 35 that can be contacted.
  • the connection heat exchanger 30 cools or heats the heat medium by the heat transmitted from the external thermal contact surface 84 of the external heat source supply device 80 through the on-board thermal contact surface 35.
  • the heat medium cooled or heated by the thermal contact between the external thermal contact surface 84 and the on-board thermal contact surface 35 flows through the first pipe 21 to the battery heat exchanger 10.
  • the battery heat exchanger 10 can cool or warm up the battery 2 by heat exchange between the heat medium and the battery 2. Therefore, since the heat medium does not flow from the external heat source supply device 80 into the battery temperature control apparatus 1 as in the technology described in Patent Document 1, the heat medium of the battery temperature control apparatus 1 is not Contamination of foreign matter is prevented in the circuit of In addition, since the heat medium does not leak or drip between the external heat contact surface 84 and the on-vehicle heat contact surface 35, the vehicle 3, the charging operator, the charging place, etc. are prevented from being contaminated by the heat medium.
  • the battery temperature adjustment device 1 adjusts the temperature of the battery 2 using heat supplied from the external heat source supply device 80 installed outside the vehicle 3, the weight and size of the battery temperature adjustment device 1 are increased. It is possible to increase the cooling capacity of the battery 2 without causing the problem. Therefore, the battery temperature control device 1 can prevent the circuit failure and can adjust the temperature of the battery 2 cleanly, safely and with a large capacity.
  • the battery heat exchanger 10 the first pipe 21 and the connecting heat exchanger 30 included in the battery temperature adjustment device 1 constitute a first thermosyphon circuit 100.
  • the liquid surfaces FL1 and FL2 of the heat medium circulating in the first thermosyphon circuit 100 are located in the middle of the flow path inside the battery heat exchanger 10 and in the flow path inside the connection heat exchanger 30. It is located in the middle. According to this, in the flow path inside the battery heat exchanger 10, the heat medium can perform both evaporation and condensation. Further, in the flow path inside the connection heat exchanger 30, the heat medium can perform both evaporation and condensation.
  • the battery temperature adjustment device 1 cools and warms up the battery 2 by cold heat or heat transferred from the external heat contact surface 84 of the external heat source supply device 80 to the connection heat exchanger 30 via the on-vehicle heat contact surface 35. It is possible to do both.
  • the battery temperature adjustment device 1 includes the refrigerant radiator 42 connected to the evaporator 51 of the refrigeration cycle 50 and the air radiator 41 as the on-vehicle heat source unit 40. According to this, according to the state of the vehicle when charging and discharging the battery 2 and the heat generation state of the battery, the battery temperature control device 1 cools the battery using the on-vehicle heat source unit 40 as a cold heat supply source and the external heat source. Battery cooling using the supply device 80 as a cold heat source can be used properly.
  • both the external heat source supply device 80 and the on-vehicle heat source unit 40 are used as a cold heat source. It is possible to perform battery cooling. Further, in this case, when the calorific value of the battery 2 is small and the occupant is in the vehicle, battery cooling is performed using the external heat source supply device 80 as a cold heat source, and the refrigeration cycle 50 is an air conditioner in the passenger compartment. It can also be used as a source of cold heat for On the other hand, when the battery 2 is charged and discharged when the vehicle travels, it is possible to perform battery cooling using the on-vehicle heat source unit 40 as a cold heat source.
  • the second embodiment will be described with reference to FIG.
  • the second embodiment is the same as the first embodiment except that the arrangement of the connection heat exchanger 30 is changed from the first embodiment, and therefore, only the portions different from the first embodiment will be described. Do.
  • the battery temperature control device 1 configures a thermosyphon circuit as in the first embodiment.
  • the connection heat exchanger 30 included in the battery temperature adjustment device 1 is provided above the battery heat exchanger 10 in the direction of gravity.
  • the liquid surface FL1 of the heat medium circulating in the thermosyphon circuit is located in the middle of the flow path inside the battery heat exchanger 10.
  • the liquid surface FL1 of the heat medium may be located in the middle of the first pipe 21 connecting the battery heat exchanger 10 and the connection heat exchanger 30.
  • the vehicle-mounted thermal contact surface 35 of 2nd Embodiment is also provided in the position which can be exposed out of a vehicle similarly to 1st Embodiment.
  • the external thermal contact surface 84 of the external connection heat exchanger 83 provided in the external heat source supply device 80 is in direct contact with the on-vehicle thermal contact surface 35 or indirectly via the thermal conduction member 6 such as a heat dissipation sheet. It is possible to make thermal contact.
  • the connection heat exchanger 30 can cool the heat medium flowing inside the connection heat exchanger 30 by cold heat transmitted from the external heat contact surface 84 of the external heat source supply device 80 through the on-vehicle heat contact surface 35. is there.
  • the heat when the battery 2 generates heat, the heat is absorbed by the heat medium in the battery heat exchanger 10, and the heat medium evaporates in the battery heat exchanger 10.
  • the heat medium that has become gas in the battery heat exchanger 10 flows from the battery heat exchanger 10 through the first gas passage 212 into the connection heat exchanger 30.
  • the heat medium flowing through the connection heat exchanger 30 dissipates heat to the external thermal contact surface 84 via the on-board thermal contact surface 35 and condenses.
  • the heat medium that has become liquid in the connection heat exchanger 30 flows through the first liquid passage 211 and flows into the battery heat exchanger 10.
  • the heat medium flowing from the battery heat exchanger 10 to the air radiator 41 and the refrigerant radiator 42 also radiates heat to the outside air or the refrigerant flowing in the refrigeration cycle 50 and condenses.
  • the heat medium that has become a liquid in the air radiator 41 or the refrigerant radiator 42 flows through the second liquid passage 221 and flows into the battery heat exchanger 10.
  • the battery temperature control device 1 of the second embodiment can also cool the battery 2 mounted on the vehicle 3 as in the first embodiment.
  • the battery temperature control device 1 is configured by a liquid circuit in which a liquid such as water or oil circulates.
  • a liquid such as water or oil is an example of a heat carrier circulating in the liquid circuit.
  • the battery temperature control device 1 includes a battery heat exchanger 10, a first pipe 21, a connection heat exchanger 30, a second pipe 22, an on-vehicle heat source unit 40, and the like.
  • the battery temperature control device 1 of the third embodiment includes the first pump 25 provided in the middle of the first pipe 21, and the second pump 26 and the valve 27 provided in the middle of the second pipe 22. Have. Note that one of the first pump 25 and the second pump 26 can be omitted.
  • the battery heat exchanger 10, the first pipe 21, the connection heat exchanger 30 and the first pump 25 constitute a first liquid circuit 300.
  • the first pipe 21 has a first forward passage 213 and a first return passage 214 for connecting the battery heat exchanger 10 and the connection heat exchanger 30.
  • the heat medium circulates in the first liquid circuit 300.
  • the battery heat exchanger 10, the second pipe 22, the on-vehicle heat source 40, the second pump 26, and the valve 27 constitute a second liquid circuit 400.
  • the second pipe 22 has a second forward passage 223 and a second return passage 224 connecting the battery heat exchanger 10 and the connection heat exchanger 30. With the valve 27 open, when the second pump 26 is driven, the heat medium circulates in the second liquid circuit 400.
  • the first liquid circuit 300 and the second liquid circuit 400 communicate with each other, and the same heat medium circulates.
  • the movement of the heat medium when the battery temperature control device 1 cools the battery 2 is indicated by an arrow. That is, the movement of the heat medium shown in FIG. 6 is performed when the battery 2 is being charged in a state where the charging connector 93 provided in the external power supply device 90 is inserted into the charging port 4 provided in the vehicle 3 belongs to.
  • the movement of the heat medium is a state in which the externally connected heat exchanger 83 is in direct contact with the on-board thermal contact surface 35 or indirectly in thermal contact with the on-board thermal contact surface 35 via the heat conducting member 6.
  • the cold heat is supplied from the externally connected heat exchanger 83 to the on-vehicle thermal contact surface 35.
  • the heat medium flowing inside the battery heat exchanger 10 When the battery 2 generates heat, the heat is absorbed by the heat medium flowing inside the battery heat exchanger 10.
  • the first pump 25 is driven, the heat medium heated by the battery heat exchanger 10 flows from the battery heat exchanger 10 through the first return path 214 into the connection heat exchanger 30. Further, when the valve 27 is opened and the second pump 26 is driven, the heat medium heated by the battery heat exchanger 10 passes from the battery heat exchanger 10 through the second return path 224 and the air radiator 41 and the liquid are discharged. It flows into the cold radiator 43.
  • the external thermal contact surface 84 of the external connection heat exchanger 83 and the on-board thermal contact surface 35 of the connection heat exchanger 30 are in direct thermal contact or indirect thermal contact via the thermal conductive member 6. ing. Therefore, cold heat is supplied from the external heat contact surface 84 of the external heat source supply device 80 to the heat medium flowing through the connection heat exchanger 30 via the on-vehicle heat contact surface 35. Therefore, the heat medium flowing through the connection heat exchanger 30 dissipates heat to the external thermal contact surface 84 via the on-board thermal contact surface 35. The heat medium cooled by the connection heat exchanger 30 flows through the first forward passage 213 and flows into the battery heat exchanger 10.
  • the heat medium which has flowed to the air radiator 41 radiates heat to the outside air. Further, the heat medium that has flowed to the liquid cooling radiator 43 dissipates heat to the refrigerant flowing in the refrigeration cycle 50. The heat medium respectively cooled by the air radiator 41 and the liquid cooling radiator 43 flows into the battery heat exchanger 10 from the second forward passage 223.
  • the heat generated from the battery 2 is transported from the battery heat exchanger 10 to the connecting heat exchanger 30, the air radiator 41 and the liquid cooling radiator 43 by the heat medium, and in each of the devices, external The heat is dissipated to the heat contact surface 84, the outside air, or the refrigerant flowing through the refrigeration cycle 50.
  • the battery temperature adjustment device 1 of the third embodiment can cool the battery 2 mounted on the vehicle 3.
  • the movement of the heat medium when the battery temperature adjustment device 1 warms up the battery 2 in the low temperature state at the start of charging in a low temperature environment is not shown by an arrow.
  • the heat is supplied from the external thermal contact surface 84 of the external heat source supply device 80 to the on-board thermal contact surface 35 of the connection heat exchanger 30.
  • the heat medium flowing through the connection heat exchanger 30 absorbs heat from the on-board thermal contact surface 35 and the external thermal contact surface 84, and the heat medium is heated in the connection heat exchanger 30.
  • the heat medium heated by the connection heat exchanger 30 flows from the connection heat exchanger 30 through the first return path 214 into the battery heat exchanger 10.
  • the heat medium flowing into the battery heat exchanger 10 dissipates heat to the battery 2. Thereby, the battery 2 is warmed up.
  • the heat supplied from the external heat contact surface 84 of the external heat source supply device 80 to the on-vehicle heat contact surface 35 is transported to the battery heat exchanger 10 by the heat medium heated by the connection heat exchanger 30. , Transmitted to the battery 2.
  • the battery temperature control device 1 of the third embodiment can also warm up the battery 2 mounted on the vehicle 3.
  • the battery temperature control device 1 has a simple configuration using a liquid circuit, and uses the heat supplied from the external heat source supply device 80 to measure the temperature of the battery 2 mounted on the vehicle 3 It can be adjusted.
  • the fourth embodiment is different from the first embodiment in that a Peltier device 71 is provided between the external thermal contact surface 84 and the on-board thermal contact surface 35.
  • heat transfer is performed between the external thermal contact surface 84 and the on-vehicle thermal contact surface 35 via the Peltier device 71.
  • the Peltier device 71 of the fourth embodiment is provided on the external heat contact surface 84 of the external connection heat exchanger 83 provided in the external heat source supply device 80.
  • the Peltier device 71 is driven by supplying power from a Peltier power supply circuit 72 provided in the charging device 70 through the wiring 73.
  • the temperature of the external thermal contact surface 84 of the externally connected heat exchanger 83 is further lowered by the Peltier element 71, and the in-vehicle thermal contact It is possible to supply more cold to the surface 35.
  • the surface 711 of the Peltier device 71 on the heat contact surface 35 side of the Peltier device 71 is a heat dissipation surface
  • the surface 712 of the Peltier device 71 on the external heat contact surface 84 is a cooling surface
  • the temperature of the external thermal contact surface 84 of the externally connected heat exchanger 83 is made higher by the Peltier element 71, and It is possible to supply more heat to the contact surface 35.
  • the temperature of the external thermal contact surface 84 ⁇ the temperature of the surface 712 of the Peltier element 71 on the external thermal contact surface 84 side ⁇ the temperature of the surface 711 of the Peltier element 71 on the thermal contact surface 35 side.
  • the cold heat or heat supplied from the external heat source supply device 80 to the connection heat exchanger 30 can be increased by the Peltier element 71. Therefore, the battery temperature control device 1 can enhance the temperature control capability of the battery 2.
  • the fifth embodiment will be described with reference to FIG.
  • the fifth embodiment is different from the fourth embodiment in that the Peltier element 75 is provided on the on-board thermal contact surface 35 of the connection heat exchanger 30 instead of on the external thermal contact surface 84.
  • the Peltier device 75 is driven by power supplied from a power supply circuit (not shown) provided in the vehicle 3.
  • a Peltier liquid circuit 730 for cooling a surface 752 of the Peltier element 75 opposite to the thermal contact surface 35 is provided.
  • the Peltier liquid circuit 730 is configured of a Peltier heat exchanger 76, a pump 77, a pipe 78, a radiator 79, and the like.
  • the Peltier heat exchanger 76 is provided on a surface 752 of the Peltier element 75 opposite to the thermal contact surface 35.
  • the liquid medium circulates in the Peltier liquid circuit 730.
  • the liquid medium circulating in the Peltier liquid circuit 730 is cooled by radiating heat to the air by the radiator 79.
  • the liquid medium flowing from the radiator 79 into the Peltier heat exchanger 76 via the piping 78 exchanges heat with the surface 752 of the Peltier element 75 opposite to the thermal contact surface 35 and cools the surface. .
  • the battery 2 At the time of charging of the battery 2, the battery 2 in a state where the external thermal contact surface 84 of the external heat source supply device 80 and the Peltier heat exchanger 76 are in direct thermal contact or indirect thermal contact via the thermal conduction member 6.
  • the case of cooling the In FIG. 7, the movement of the heat medium of the gas in the case of cooling the battery 2 is indicated by a broken arrow, and the movement of the heat medium of the liquid is indicated by a solid arrow.
  • the surface 751 on the in-vehicle thermal contact surface 35 side of the Peltier element 75 is a cooling surface
  • the surface 752 on the Peltier heat exchanger side of the Peltier element 75 is a heat dissipation surface. .
  • the temperature of the external thermal contact surface 84 can be further lowered by the Peltier device 75 to supply a larger amount of cold heat to the on-vehicle thermal contact surface 35.
  • the temperature of the surface 751 is
  • the battery temperature control device 1 of the fifth embodiment cools the battery 2 by driving the Peltier device 75 and supplying cold heat from the Peltier device 75 to the on-vehicle thermal contact surface 35 even while the vehicle is traveling.
  • the surface 751 on the in-vehicle thermal contact surface 35 side of the Peltier element 75 is a cooling surface
  • the surface 752 on the Peltier heat exchanger side of the Peltier element 75 is a heat dissipation surface.
  • the battery temperature control device 1 of the fifth embodiment can enhance the temperature control capability of the battery 2.
  • the sixth embodiment shows a control method of the battery temperature adjusting device 1 and the charging device 70.
  • the temperature of the battery 2 is detected by the temperature sensor 7.
  • the temperature of the battery 2 detected by the temperature sensor 7 is transmitted to the battery control device 8 mounted on the vehicle 3.
  • the battery control device 8 is configured to be able to communicate with the charge control device 9 provided in the charging device 70 installed outside the vehicle 3.
  • the charge control device 9 controls the operation of the external power supply device 90 included in the charging device 70 and the operation of the external heat source supply device 80.
  • the battery control device 8 includes a processor that performs control processing and arithmetic processing, a ROM that stores programs, data, and the like, a microcomputer including a storage unit such as a RAM, and peripheral circuits thereof.
  • the storage unit of the battery control device 8 is configured of a non-transitional substantial storage medium.
  • the battery control device 8 performs various control processing and arithmetic processing based on the program stored in the storage unit, and controls the operation of each device connected to the output port. The same applies to the charge control device 9.
  • Control processing performed by the battery control device 8 and the charge control device 9 will be described with reference to the flowchart in FIG.
  • This control process is performed at the start of charging and at the time of charging. That is, in this control process, the charging connector 93 of the charging device 70 is inserted into the charging port 4 provided in the vehicle 3, and the external connection heat exchanger 83 makes direct contact or heat conduction with the on-vehicle thermal contact surface 35. It is carried out in a state of indirect thermal contact via the component 6.
  • the battery control device 8 detects the temperature of the battery 2 by the temperature sensor 7 in step S10.
  • step S20 the battery control device 8 determines whether the temperature of the battery 2 is within the battery temperature threshold range.
  • the upper limit of the battery temperature threshold is the temperature at which the battery 2 may deteriorate due to the high temperature of the battery 2 as the upper limit, and the lower temperature of the battery 2 where the internal resistance is large and rapid charging can not be performed. It is
  • the battery temperature threshold is set in advance by experiments and the like, and is stored in the storage unit of the battery control device 8. If the battery control unit 8 determines that the temperature of the battery 2 is out of the range of the battery temperature threshold, it transmits that to the charge control unit 9 and shifts the process to step S50.
  • step S50 the charge control device 9 performs a cooling operation or a warm-up operation of the battery 2 by the external heat source supply device 80. Specifically, when the temperature of the battery 2 is higher than the battery temperature threshold, cold heat is supplied from the external heat source supply device main body 81 to the on-vehicle thermal contact surface 35 via the external piping 82 and the external connection heat exchanger 83. , And the cooling operation of the battery 2 is performed. On the other hand, when the temperature of the battery 2 is lower than the battery temperature threshold, the heat is supplied from the external heat source supply device body 81 to the on-vehicle thermal contact surface 35 via the external piping 82 and the externally connected heat exchanger 83. Warm-up operation is performed.
  • step S50 After the cooling operation or the warming-up operation of the battery 2 is started in step S50, while the operation is continued, the above-described control processing is repeatedly performed from step S10 again. Thereby, the cooling operation or the warm-up operation of the battery 2 is executed until the temperature of the battery 2 falls within the range of the battery temperature threshold.
  • step S20 If the battery control unit 8 determines in step S20 that the temperature of the battery 2 is within the battery temperature threshold range, it transmits that to the charge control unit 9, and the process proceeds to step S30.
  • the charge control device 9 performs quick charging by the external power supply device 90. Specifically, electric power is supplied from the external power supply device main body 91 to the battery 2 mounted on the vehicle 3 via the charging cable 92, the charging connector 93, the charging port 4 and the wiring 5 inside the vehicle. Thereby, the battery 2 is rapidly charged.
  • step S40 following step S30 the charge control device 9 performs a cooling operation of the battery 2 by the external heat source supply device 80. Specifically, cold heat is supplied from the external heat source supply device main body 81 to the on-vehicle thermal contact surface 35 through the external pipe 82 and the external connection heat exchanger 83, and the battery 2 is cooled. The cooling operation of the battery 2 is continuously performed until the rapid charge of the battery 2 is completed.
  • the battery control device 8 communicates the heat amount supplied from the external heat source supply device 80 to the connection heat exchanger 30 by communication with the charge control device 9 to the temperature of the battery 2. It may be adjusted accordingly. Thereby, the amount of cold heat according to the temperature of the battery 2 is supplied from the external heat source supply device 80 to the battery temperature adjustment device 1. Therefore, it is possible to prevent the temperature of the battery 2 from being out of the range of the battery temperature threshold during rapid charging.
  • the battery control device 8 and the charge control device 9 perform the external heat source supply device until the temperature of the battery 2 falls within the predetermined battery temperature threshold before the rapid charging of the battery 2 is started. Control is performed to supply cold or warm heat to the connection heat exchanger 30. Further, the battery control device 8 and the charge control device 9 control the external power supply device 90 to start the rapid charging of the battery 2 after the temperature of the battery 2 falls within the predetermined battery temperature threshold range. . This prevents the battery 2 from becoming hot and deteriorating during rapid charging. In addition, even in a low temperature environment, quick charging can be performed after the battery 2 is warmed up.
  • battery control unit 8 determines whether the temperature difference between the plurality of battery cells is smaller than a predetermined battery cell temperature threshold before starting the rapid charging and during the rapid charging operation. May be determined.
  • the inter-battery cell temperature threshold is a temperature at which the battery 2 may be degraded because the temperature of some of the plurality of battery cells is high.
  • the inter-battery cell temperature threshold is set in advance by experiments or the like, and stored in the storage unit of the battery control device 8. If the battery control unit 8 determines that the temperature difference between the plurality of battery cells is smaller than the battery cell temperature threshold before the rapid charge start, it transmits that to the charge control unit 9, and the battery 2 by the external heat source supply unit 80. Perform cooling operation or warm-up operation.
  • the battery control device 8 controls the amount of cold heat supplied from the external heat source supply device 80 to the connection heat exchanger 30 such that the temperature difference between the plurality of battery cells becomes smaller than the inter-battery cell temperature threshold. This prevents the temperature difference between the plurality of battery cells from becoming large.
  • the seventh embodiment describes a charging device 70 installed outside the vehicle 3.
  • the charging device 70 includes an external power supply device 90 and an external heat source supply device 80.
  • the external power supply device 90 includes an external power supply device main body 91, a charging cable 92, a charging connector 93, and the like. Electric power is supplied to the external power supply main body 91 from a power plant (not shown) via the substation 95 and the like.
  • the charging connector 93 provided in the external power supply device 90 can be inserted into the charging port 4 provided in the vehicle 3. In that state, external power supply device 90 is connected to battery 2 mounted on vehicle 3 from external power supply device main body 91 through charging cable 92, charging connector 93, charging port 4 and wiring 5 inside the vehicle. Supply power.
  • the external power supply device 90 can charge the battery 2 mounted on the vehicle 3.
  • the external heat source supply device 80 is installed in the charging device 70 together with the external power supply device 90.
  • the external heat source supply device 80 supplies cold heat or heat to the battery temperature control device 1 mounted on the vehicle 3.
  • the external heat source supply device 80 includes a heat medium circuit 800 in which a heat medium such as water, oil or liquid nitrogen flows.
  • the heat source control device 801 controls the operation of each component of the heat medium circuit 800.
  • the heat medium circuit 800 includes a pump 802, a first valve 803, a radiator 804, a chiller 805, a heat retention tank 806, a second valve 807, an externally connected heat exchanger 83, and the like connected by a pipe 809.
  • the pump 802 circulates the heat medium to the heat medium circuit 800.
  • the first valve 803 switches the flow path so that the heat medium flowing out of the pump 802 flows to the radiator 804 or the chiller 805.
  • the radiator 804 exchanges heat between the outside air blown by the fan 810 and the heat medium to cool the heat medium.
  • the radiator 804 is an example of a heat source unit for supplying cold heat to the heat medium.
  • the chiller 805 cools the heat medium by heat exchange between the low-temperature low-pressure refrigerant flowing in the refrigeration cycle 811 and the heat medium.
  • the refrigerant compressed by the compressor 812 is radiated to the outside air by the condenser 813 and then decompressed and expanded by the expansion valve 814.
  • the refrigerant absorbs heat from the heat medium flowing through the chiller 805.
  • the heat medium is cooled by heat exchange with the refrigerant circulating in the refrigeration cycle 811. Therefore, the refrigeration cycle 811 is also an example of a heat source unit for supplying cold heat to the heat medium.
  • thermoelectric device or a coolant circuit (not shown) as a heat source unit for supplying cold heat to the heat medium.
  • the heat medium cooled by the heat source unit such as the radiator 804 or the refrigeration cycle 811 flows through the pipe 809 and is stored in the heat retention tank 806.
  • the heat retention tank 806 can store the heat medium at a predetermined temperature state.
  • the temperature sensor 816 detects the temperature of the heat medium stored in the heat retention tank 806.
  • the temperature of the heat medium of the heat retention tank 806 detected by the temperature sensor 816 is transmitted to the heat source control device 801.
  • the heat retention tank 806 is set to a size capable of storing a cold heat amount corresponding to the calorific value of the battery 2 at the time of quick charge.
  • the external heat source supply device 80 stores the heat medium brought into a predetermined temperature state in the heat insulation tank 806, thereby rapidly charging the battery 2 in a short time for temperature control. Sometimes you can cope.
  • the heat medium flowing out of the heat retention tank 806 flows to the externally connected heat exchanger 83 via the second valve 807.
  • the second valve 807 switches the flow path so that the heat medium flowing out of the heat retention tank 806 flows to the externally connected heat exchanger 83 or the pump 802.
  • the external connection heat exchanger 83 has an external thermal contact surface 84 which can be in direct thermal contact with the on-vehicle thermal contact surface 35 provided on the vehicle 3 or indirectly through the thermal conductive member 6.
  • the external connection heat exchanger 83 can transfer the heat supplied by the heat medium flowing through the pipe 809 and the external pipe 82 from the external thermal contact surface 84 to the on-vehicle thermal contact surface 35.
  • the power supplied to the charging device 70 is stored in the storage battery 820 for the external heat source supply device 80 separately from the external power supply device main body 91.
  • the electric power stored in storage battery 820 drives pump 802 provided in heat medium circuit 800, fan 810 of radiator 804, compressor 812 and fan 817 of refrigeration cycle 811, first valve 803, second valve 807, etc. Do.
  • the storage battery 820 stores power capable of driving those devices at the time of quick charge.
  • the external heat source supply device 80 can be driven by the power stored in the storage battery 820 even when large power is used for the external power supply device main body 91 at the time of rapid charging.
  • the charging device 70 of the seventh embodiment described above corresponds to the battery temperature control device 1 described in the first to sixth embodiments.
  • the shape of the components when referring to a positional relationship or the like, except in particular clearly the case and principle specific shape, etc. If to be limited to the positional relationship or the like, the shape, It is not limited to the positional relationship and the like.
  • the external heat contact surface 84 of the external connection heat exchanger 83 provided in the external heat source supply device 80 and the on-vehicle heat contact surface 35 of the connection heat exchanger 30 provided in the battery temperature adjustment device 1 are , It does not restrict to what thermal contact mutually.
  • the external thermal contact surface 84 may be in thermal contact only with the upper portion of the in-vehicle thermal contact surface 35 of the connection heat exchanger 30 included in the battery temperature adjustment device 1 or the in-vehicle thermal contact of the connection heat exchanger 30
  • the external thermal contact surface 84 may be in thermal contact with only the lower portion of the surface 35.
  • the battery temperature adjustment device 1 may be configured such that a plurality of battery heat exchangers 10 are connected to one connection heat exchanger 30 via piping. In that case, the plurality of battery heat exchangers 10 may be connected in parallel or in series to one connection heat exchanger 30.
  • the battery temperature control device is mounted on the vehicle using heat supplied from an external heat source supply device installed outside the vehicle. Adjust the battery temperature.
  • the battery temperature control apparatus includes a battery heat exchanger, piping, and a connection heat exchanger.
  • the battery heat exchanger exchanges heat between the battery and the heat medium.
  • the piping is connected to the battery heat exchanger, and the heat medium flows.
  • the connection heat exchanger has an on-board thermal contact surface that can be in direct thermal contact with the external thermal contact surface of the external heat source supply device or indirectly through a thermal conductive member.
  • the connection heat exchanger cools or heats the heat medium flowing through the pipe by the heat transmitted from the external thermal contact surface of the external heat source supply device through the on-board thermal contact surface.
  • the battery temperature control apparatus further includes a pump provided in the middle of the pipe.
  • the piping has a forward passage and a return passage connecting the battery heat exchanger and the connection heat exchanger.
  • the battery heat exchanger, the forward passage, the return passage, the connection heat exchanger, and the pump constitute a liquid circuit in which a liquid heat medium circulates.
  • the battery temperature control device can adjust the temperature of the battery mounted on the vehicle by using the cold heat or the heat supplied from the external heat source supply device with a simple configuration using the liquid circuit. .
  • the pipe has a liquid passage and a gas passage.
  • the liquid passage includes an outlet / inlet provided below the liquid surface of the heat medium in the battery heat exchanger, and an outlet / inlet provided below the liquid surface of the heat medium in the connected heat exchanger.
  • Connect The gas passage connects an outlet / inlet provided above the liquid surface of the heat medium in the battery heat exchanger and an outlet / inlet provided above the liquid surface of the heat medium in the connected heat exchanger.
  • the battery heat exchanger, the piping, and the connection heat exchanger constitute a thermosyphon circuit in which a heat medium circulates.
  • the liquid surface of the heat medium circulating in the thermosyphon circuit is located midway in the flow path inside the battery heat exchanger, and also midway in the flow path inside the connection heat exchanger.
  • the heat medium can perform both evaporation and condensation in the flow path inside the battery heat exchanger. Also, in the flow path inside the connecting heat exchanger, the heat medium can perform both evaporation and condensation. Therefore, the battery temperature control device can perform both cooling and warming-up of the battery by cold heat or heat transferred from the external heat contact surface of the external heat source supply device to the connection heat exchanger through the on-vehicle heat contact surface. It is. Therefore, the battery temperature control device has a high heat transfer efficiency using a thermosyphon circuit, and can adjust the temperature of the battery mounted on the vehicle using the heat supplied from the external heat source supply device.
  • the battery temperature control apparatus further includes an on-vehicle heat source unit.
  • the on-vehicle heat source unit is mounted on a vehicle, is configured such that the heat medium flows through the pipe, and cools or heats the heat medium flowing through the pipe by heat exchange between the heat medium and the other heat medium.
  • the battery temperature control device adjusts the temperature of the battery using the on-vehicle heat source unit as a heat source, and supplies the external heat source.
  • the temperature control of the battery which made the apparatus a heat supply can be used properly. For example, when charging the battery from the external power supply device while the vehicle is stopped, when the calorific value of the battery is large, temperature control of the battery is performed using both the external heat source supply device and the on-vehicle heat source unit as heat sources.
  • the battery using the external heat source supply device as a heat supply source The temperature control may be performed, and the on-vehicle heat source unit may be used as a heat source of the indoor air conditioning system.
  • the on-vehicle heat source unit when the battery generates heat due to charge and discharge when the vehicle is traveling, it is possible to adjust the temperature of the battery using the on-vehicle heat source unit as a heat supply source.
  • the on-vehicle heat source unit is a refrigerant radiator connected to an evaporator provided in a refrigeration cycle mounted on a vehicle, a liquid-cooled radiator connected to a liquid circuit mounted on a vehicle, air radiation Or a Peltier element. According to this, it is possible to adopt various configurations as the on-vehicle heat source unit.
  • the battery temperature control apparatus further includes a Peltier element provided between the external thermal contact surface and the on-board thermal contact surface. According to this, it is possible to increase cold heat or heat supplied from the external heat source supply device to the connection heat exchanger by the Peltier element. For example, in the case where cold heat is supplied from the external heat source supply device to the connection heat exchanger, it is possible to supply larger cold heat to the on-vehicle thermal contact surface, with the temperature of the external thermal contact surface being lower by the Peltier element. is there. Moreover, when supplying heat from the external heat source supply device to the connection heat exchanger, it is possible to supply larger heat to the on-vehicle thermal contact surface, with the temperature of the external thermal contact surface being a higher temperature by the Peltier element. is there. Therefore, the battery temperature control device can enhance the temperature control capability of the battery.
  • the battery is configured to be chargeable by the power supplied from the external power supply device installed outside the vehicle.
  • the battery temperature control device includes a battery control device that can communicate with a charge control device that controls the drive of the external power supply device and the drive of the external heat source supply device.
  • the battery control unit communicates with the charge control unit during rapid charge of the battery so that the external heat source supply unit cools or heats the connected heat exchanger until the battery temperature falls within the predetermined battery temperature threshold range. Control to supply.
  • the battery control device controls the external power supply device to start the rapid charging of the battery after the temperature of the battery reaches a predetermined battery temperature threshold value by communication with the charge control device.
  • the battery control device controls to start rapid charge after setting the temperature of the battery to a predetermined chargeable temperature using an external heat source supply device by communication with the charge control device.
  • the battery control device adjusts the amount of heat supplied from the external heat source supply device to the connected heat exchanger according to the temperature of the battery by communication with the charge control device. According to this, the battery control device can appropriately control the amount of heat supplied from the external heat source supply device by communicating with the charge control device, and can bring the battery into a predetermined temperature range that can be charged in a short time .
  • the external heat source supply device installed outside the vehicle includes the pump, the heat source unit, the heat retention tank, and the externally connected heat exchanger.
  • the pump circulates the heat medium through the heat medium circuit.
  • the heat source cools or heats the heat medium flowing through the heat medium circuit.
  • the heat retention tank stores the heat medium cooled or heated by the heat source unit at a predetermined temperature.
  • the external connection heat exchanger has an external thermal contact surface which can be in direct thermal contact with the on-board thermal contact surface provided in the vehicle or indirectly through a thermal conductive member. The externally connected heat exchanger can then transfer the heat supplied by the heat medium flowing through the heat medium circuit from the external heat contact surface to the on-vehicle heat contact surface.
  • the external heat source supply device copes with the time of rapid charging which requires a large capacity in a short time for temperature control of the battery by storing the heat medium brought into the predetermined temperature state in the heat retention tank. be able to.
  • the external heat source supply device further includes a storage battery that stores power for driving the pump and the heat source unit.
  • the external heat source supply device stores the electric power in the storage battery at the time other than the time of the rapid charge, and stores it in the storage battery also at the time of the rapid charge that requires a large electric power to charge the battery. Power can be used to cool the battery.

Abstract

This battery temperature regulator (1) uses heat supplied from an external heat source supply device (80) installed outside of the vehicle (3) to regulate the temperature of a battery (2) mounted in the vehicle (3). The battery temperature regulator (1) is provided with a battery heat exchanger (10), tubes (21, 22), and a connection heat exchanger (30). The battery heat exchanger (10) exchanges heat between the battery (2) and a heat medium. The tubes (21, 22) are connected to the battery heat exchanger (10), and the heat medium flows through said tubes. The connection heat exchanger (30) has a vehicle-mounted thermal contact surface (35) which can thermally contact the outer thermal contact surface (84) of the external heat source supply device (80) directly, or indirectly through a heat transmission member (6). Said connection heat exchanger (30) cools or heats the heat medium flowing through the tube (21) by means of heat transmitted from the outer thermal contact surface (84) of the external heat source supply device (80) through the vehicle-mounted thermal contact surface (35).

Description

電池温調装置および外部熱源供給装置Battery temperature control device and external heat source supply device 関連出願への相互参照CROSS-REFERENCE TO RELATED APPLICATIONS
 本出願は、2017年8月24日に出願された日本特許出願番号2017-161261号に基づくもので、ここにその記載内容が参照により組み入れられる。 This application is based on Japanese Patent Application No. 2017-161261 filed on Aug. 24, 2017, the contents of which are incorporated herein by reference.
 本開示は、車両に搭載される二次電池(以下、「電池」という)の温度を調節する電池温調装置、および、その電池温調装置に冷熱または温熱を供給する外部熱源供給装置に関するものである。 The present disclosure relates to a battery temperature control device that adjusts the temperature of a secondary battery (hereinafter referred to as "battery") mounted in a vehicle, and an external heat source supply device that supplies cold or heat to the battery temperature control device. It is.
 近年、電気自動車やハイブリッド車などの電動車両(以下、「車両」という)において、車両に搭載される電池の充電時間を短くするため、急速充電時に電池に流す電流値を増加させることが検討されている。その場合、急速充電時に電池に流す電流値は、電気モータを使用した車両走行時に電池に流れる電流値よりも大きいものとなる。具体的には、急速充電時の出力は150kW又はそれ以上となることがある。ここで、電池の発熱量Qと、電池に流れる電流値Iと、電池の内部抵抗値Rとの関係は、Q=I×Rで表される。すなわち、電池の発熱量は、電流値の二乗に比例して大きくなる。そのため、急速充電を行う場合には、電池を十分に冷却することが求められる。電池の冷却を、車両用空調装置に用いられる冷凍サイクルでつくられた冷熱を利用して行う場合、充電時の出力が4kW程度の電池発熱に対応することが可能であるが、それ以上の出力の電池発熱には対応できない。車両に搭載される電池冷却装置の冷却能力を大きくして急速充電時の電池発熱に対応する場合、次のような問題が考えられる。例えば、電池冷却装置の大型化に伴い、車両搭載スペースの確保が困難になる。電池冷却装置の重量増加と共に車両重量が増加し、電気モータを使用した車両走行可能距離が短くなる。または、電池冷却装置にかかるコストが増加する、などの問題である。 In recent years, in electric vehicles such as electric vehicles and hybrid vehicles (hereinafter referred to as "vehicles"), in order to shorten the charging time of the battery mounted on the vehicle, it is considered to increase the current value supplied to the battery at the time of rapid charging. ing. In that case, the current value flowing to the battery at the time of rapid charging is larger than the current value flowing to the battery at the time of traveling the vehicle using the electric motor. Specifically, the output during rapid charge may be 150 kW or more. Here, the relationship between the calorific value Q of the battery, the current value I flowing through the battery, and the internal resistance value R of the battery is represented by Q = I 2 × R. That is, the calorific value of the battery increases in proportion to the square of the current value. Therefore, in the case of quick charging, it is required to sufficiently cool the battery. When the battery is cooled using the cold energy generated by the refrigeration cycle used in a vehicle air conditioner, it is possible to cope with battery heat generation with an output of about 4 kW during charging, but more than that It can not cope with the battery heat of. When the cooling capacity of a battery cooling device mounted on a vehicle is increased to cope with battery heat generation during rapid charging, the following problems may be considered. For example, with the increase in size of the battery cooling device, it becomes difficult to secure a vehicle mounting space. As the weight of the battery cooling device increases, the weight of the vehicle increases, and the travel distance of the vehicle using the electric motor decreases. Alternatively, the cost for the battery cooling device may increase.
 特許文献1には、車両搭載の電池の充電時に、車両の外部に設置される充電装置から車両に設けられた液回路に熱媒体を供給し、その熱媒体の冷熱を利用して電池を冷却する技術が記載されている。具体的には、この技術は、車両搭載の電池の充電時に、車両の外部に設置される充電装置に設けられた熱媒体供給用のプラグを車両の熱媒体導入部に差し込み、その充電装置で冷却した熱媒体を車両に設けられた液回路に供給するものである。なお、この技術では、充電装置から熱媒体が供給される第1の液回路と、それとは別に車両に設けた第2の液回路との間で熱媒体同士を熱交換させている。そして、第2の液回路を循環する熱媒体により電池を冷却している。これにより、特許文献1の技術では、車両に搭載される電池冷却装置の冷却能力を大きくすることなく、電池の冷却を可能としている。 According to Patent Document 1, when charging a battery mounted on a vehicle, a heat medium is supplied from a charging device installed outside the vehicle to a liquid circuit provided on the vehicle, and the battery is cooled using cold heat of the heat medium Technology is described. Specifically, in this technology, when charging a battery mounted on a vehicle, a plug for heat medium supply provided in a charging device installed outside the vehicle is inserted into a heat medium introducing portion of the vehicle, and the charging device The cooled heat medium is supplied to a liquid circuit provided in the vehicle. In this technique, the heat mediums are heat exchanged between the first liquid circuit to which the heat medium is supplied from the charging device and the second liquid circuit separately provided in the vehicle. Then, the battery is cooled by the heat medium circulating in the second liquid circuit. Thus, in the technology of Patent Document 1, it is possible to cool the battery without increasing the cooling capacity of the battery cooling device mounted on the vehicle.
特開2017-4677号公報JP, 2017-4677, A
 しかしながら、特許文献1の技術は、車両搭載の電池の充電開始時に充電装置に設けられた熱媒体供給用のプラグを車両の熱媒体導入部に差し込む作業と、充電終了時にそのプラグを車両の熱媒体導入部から取り外す作業が必要である。そのため、熱媒体供給用のプラグと車両の熱媒体導入部との接続箇所から、車両に設けられた液回路に異物などが入り込むおそれがある。その異物により車両に設けられた液回路が詰まると、液回路の故障に繋がるといった問題がある。また、熱媒体供給用のプラグと車両の熱媒体導入部との間からの熱媒体の漏れや、熱媒体の液垂れが生じると、車両、充電作業者または充電場などが熱媒体によって汚れてしまうといった問題がある。仮に、熱媒体に可燃性の液体が使用される場合には、引火の危険性もある。 However, according to the technique of Patent Document 1, the plug for heating medium supply provided in the charging device at the start of charging of the battery mounted on the vehicle is inserted into the heating medium introduction portion of the vehicle, and the plug is heated at the end of charging. It is necessary to remove it from the medium introduction unit. Therefore, there is a possibility that foreign matter and the like may enter the liquid circuit provided in the vehicle from the connection point between the heat medium supply plug and the heat medium introducing portion of the vehicle. If the fluid circuit provided in the vehicle is clogged by the foreign matter, there is a problem that the fluid circuit may be broken. In addition, if leakage of the heat medium from the plug for heat medium supply and the heat medium introduction part of the vehicle or dripping of the heat medium occurs, the vehicle, the charging worker or the charging place is contaminated by the heat medium There is a problem of If a flammable liquid is used as the heat medium, there is also the danger of ignition.
 本開示は、外部熱源供給装置から熱接触により供給される熱を利用して電池の温度を調整可能な電池温調装置を提供することを目的とする。また、本開示は、その電池温調装置に冷熱または温熱を供給する外部熱源供給装置を提供することを目的とする。 An object of the present disclosure is to provide a battery temperature adjustment device capable of adjusting the temperature of the battery using heat supplied from the external heat source supply device by thermal contact. Another object of the present disclosure is to provide an external heat source supply device for supplying cold heat or heat to the battery temperature control device.
 本開示の1つの観点によれば、
 車両の外部に設置される外部熱源供給装置から供給される熱を用いて車両に搭載された電池の温度を調節する電池温調装置であって、
 電池と熱媒体との熱交換を行う電池用熱交換器と、
 電池用熱交換器に接続され、熱媒体が流れる配管と、
 外部熱源供給装置が有する外部熱接触面に直接接触または熱伝導部材を介して間接的に熱接触可能な車載熱接触面を有し、外部熱接触面から車載熱接触面を介して伝わる熱により、配管を通じて流れる熱媒体を冷却又は加熱する接続熱交換器と、を備える。
According to one aspect of the present disclosure,
A battery temperature control device that adjusts the temperature of a battery mounted on a vehicle using heat supplied from an external heat source supply device installed outside the vehicle, comprising:
A battery heat exchanger that exchanges heat between the battery and the heat medium;
Piping connected to the battery heat exchanger and through which the heat medium flows;
It has an on-board thermal contact surface that can be in direct thermal contact with the external thermal contact surface of the external heat source supply device or indirectly via the thermal conduction member, and heat is transmitted from the external thermal contact surface via the on-board thermal contact surface And a connected heat exchanger for cooling or heating the heat medium flowing through the piping.
 これによれば、外部熱接触面と車載熱接触面との熱接触により接続熱交換器で冷却又は加熱された熱媒体は、配管を通じて電池用熱交換器に流れる。電池用熱交換器は、その熱媒体と電池との熱交換を行うことで、電池を冷却または暖機することが可能である。そのため、この電池温調装置は、特許文献1に記載の技術のように外部熱源供給装置から電池温調装置の熱媒体の回路に熱媒体が流入することがないので、電池温調装置の熱媒体の回路に異物等の混入が防がれる。また、外部熱接触面と車載熱接触面との間に熱媒体の漏れや液垂れが生じないので、車両、充電作業者または充電場などが熱媒体によって汚れることが防がれる。さらに、電池温調装置は、車両の外部に設置される外部熱源供給装置から供給される熱を用いて車両に搭載された電池の温度を調節するので、電池温調装置の重量および体格を増加させることなく、電池の冷却能力を増加させることが可能である。したがって、この電池温調装置は、回路の故障を防ぐと共に、清潔、安全、且つ、大能力で電池の温度を調整することができる。 According to this, the heat medium cooled or heated in the connection heat exchanger by the thermal contact between the external thermal contact surface and the on-vehicle thermal contact surface flows through the pipe to the battery heat exchanger. The battery heat exchanger can cool or warm up the battery by heat exchange between the heat medium and the battery. Therefore, in the battery temperature control device, the heat medium does not flow from the external heat source supply device into the circuit of the heat medium of the battery temperature control device as in the technique described in Patent Document 1, so the heat temperature of the battery temperature control device Contamination of foreign matter is prevented in the circuit of the medium. In addition, since the heat medium does not leak or drip between the external thermal contact surface and the in-vehicle thermal contact surface, the vehicle, the charging operator or the charging place is prevented from being contaminated by the thermal medium. Furthermore, the battery temperature control device adjusts the temperature of the battery mounted on the vehicle using heat supplied from an external heat source supply device installed outside the vehicle, thereby increasing the weight and size of the battery temperature control device It is possible to increase the cooling capacity of the battery without Therefore, the battery temperature control device can prevent the circuit failure and can adjust the temperature of the battery cleanly, safely and with a large capacity.
 また、別の観点によれば、
 車両の外部に設置される外部熱源供給装置であって、
 熱媒体回路に熱媒体を循環させるポンプと、
 熱媒体回路を流れる熱媒体を冷却または加熱する熱源部と、
 熱源部で冷却または加熱された熱媒体を、所定の温度状態で貯留する保温タンクと、
 車両に設けられた車載熱接触面に直接接触または熱伝導部材を介して間接的に熱接触可能な外部熱接触面を有し、熱媒体回路を流れる熱媒体により供給される熱を、外部熱接触面から車載熱接触面へ伝えることの可能な外部接続熱交換器と、を備える。
Also, according to another point of view,
An external heat source supply device installed outside the vehicle,
A pump for circulating the heat medium to the heat medium circuit;
A heat source unit for cooling or heating the heat medium flowing through the heat medium circuit;
A heat retention tank which stores the heat medium cooled or heated by the heat source section at a predetermined temperature state;
It has an external thermal contact surface that can be in direct thermal contact with the on-board thermal contact surface provided in the vehicle or indirectly via the thermal conduction member, and the heat supplied by the thermal medium flowing through the thermal medium circuit can be And an externally connected heat exchanger capable of being transmitted from the contact surface to the on-board thermal contact surface.
 これによれば、外部熱源供給装置は、所定の温度状態にした熱媒体を保温タンクに貯留しておくことで、急速充電時など、電池の温度調整のために短時間に大能力が必要な場合にも対応することができる。 According to this, the external heat source supply device requires a large capacity in a short time for temperature control of the battery, such as at the time of quick charge, by storing the heat medium brought to the predetermined temperature state in the heat retention tank. The case can also be addressed.
 なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。 The reference numerals in parentheses attached to each component, etc., shows an example of a relationship of the specific component such as described in the following embodiments and their components, and the like.
第1実施形態に係る電池温調装置を搭載した車両と充電装置の模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram of the vehicle and charging device which mount the battery temperature control apparatus which concerns on 1st Embodiment. 第1実施形態に係る電池温調装置と充電装置の回路構成図である。It is a circuit block diagram of the battery temperature control apparatus which concerns on 1st Embodiment, and a charging device. 第1実施形態に係る電池温調装置の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the battery temperature control apparatus which concerns on 1st Embodiment. 第1実施形態に係る電池温調装置と充電装置の回路構成図である。It is a circuit block diagram of the battery temperature control apparatus which concerns on 1st Embodiment, and a charging device. 第2実施形態に係る電池温調装置を搭載した車両と充電装置の模式図である。It is a schematic diagram of the vehicle and charging device which mount the battery temperature control apparatus which concerns on 2nd Embodiment. 第3実施形態に係る電池温調装置と充電装置の回路構成図である。It is a circuit block diagram of the battery temperature control apparatus which concerns on 3rd Embodiment, and a charging device. 第4実施形態に係る電池温調装置と充電装置の回路構成図である。It is a circuit block diagram of the battery temperature control apparatus which concerns on 4th Embodiment, and a charging device. 第5実施形態に係る電池温調装置と充電装置の回路構成図である。It is a circuit block diagram of the battery temperature control apparatus which concerns on 5th Embodiment, and a charging device. 第6実施形態に係る電池温調装置を搭載した車両と充電装置の模式図である。It is a schematic diagram of the vehicle and charging device which mount the battery temperature control apparatus which concerns on 6th Embodiment. 電池制御装置と充電制御装置が実行する制御処理を示すフローチャートである。It is a flowchart which shows the control processing which a battery control apparatus and a charge control apparatus perform. 第7実施形態に係る充電装置の回路構成図である。It is a circuit block diagram of the charging device which concerns on 7th Embodiment.
 以下、本開示の実施形態について図を参照しつつ説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, parts that are the same as or equivalent to each other will be described with the same reference numerals.
 (第1実施形態)
 第1実施形態について、図1~図3を参照して説明する。第1実施形態の電池温調装置1は、電気自動車やハイブリッド車などの電動車両(以下、単に「車両3」という)に搭載される。第1実施形態の電池温調装置1は、車両3に搭載される二次電池(以下、「電池2」という)を冷却または暖機し、電池2の温度を調節するものである。
First Embodiment
The first embodiment will be described with reference to FIGS. 1 to 3. The battery temperature control device 1 of the first embodiment is mounted on an electric vehicle such as an electric vehicle or a hybrid vehicle (hereinafter, simply referred to as "vehicle 3"). The battery temperature control device 1 of the first embodiment cools or warms up a secondary battery (hereinafter, referred to as “battery 2”) mounted on the vehicle 3 to adjust the temperature of the battery 2.
 まず、電池温調装置1が冷却対象および暖機対象とする電池2について説明する。車両3に設置される大型の電池2は、複数の電池セルが組み合わされた電池モジュールが複数格納された電池パック(すなわち蓄電装置)として、車両3の座席下またはトランクルームの下などに搭載される。電池2に蓄えた電力は、インバータなどを介して車両走行用モータに供給される。この電池2は、車両3の外部に設置される充電装置70から供給される電力により充電可能な構成である。なお、充電装置70は、出力が150kW又はそれ以上の急速充電を行うことの可能な急速充電装置であってもよく、または、出力が150kW以下の充電装置であってもよい。 First, the battery 2 to be cooled and warmed up by the battery temperature adjustment device 1 will be described. A large battery 2 installed in a vehicle 3 is mounted under a seat of the vehicle 3 or under a trunk room as a battery pack (i.e., a storage device) storing a plurality of battery modules in which a plurality of battery cells are combined. . The power stored in the battery 2 is supplied to the vehicle drive motor via an inverter or the like. The battery 2 is configured to be chargeable by the power supplied from the charging device 70 installed outside the vehicle 3. The charging device 70 may be a rapid charging device capable of performing quick charging with an output of 150 kW or more, or may be a charging device with an output of 150 kW or less.
 電池2は車両走行中などの放電時および充電時や、車両3の外部に設置される充電装置70から電力が供給される充電時に自己発熱する。電池2は高温になると、十分な機能を発揮できないだけでなく、劣化や破損を招くので、電池2を一定温度以下に維持するための冷却装置が必要となる。一方、電池2が低温状態にあると、電池2の内部抵抗が大きくなり、充電を行うことができない。そのため、低温環境下での充電開始時に低温状態の電池2を暖機するための暖機装置が必要となる。 The battery 2 generates heat at the time of discharge and charge such as while the vehicle is traveling, and at the time of charge where power is supplied from the charging device 70 installed outside the vehicle 3. When the temperature of the battery 2 becomes high, it not only can not exert sufficient functions but also causes deterioration or breakage, so a cooling device for maintaining the battery 2 at a certain temperature or lower is required. On the other hand, when the battery 2 is in a low temperature state, the internal resistance of the battery 2 becomes large and charging can not be performed. Therefore, a warm-up device is required to warm up the battery 2 in a low temperature state at the start of charging in a low temperature environment.
 さらに、電池2は、複数の電池セルを含む電池モジュールとして構成されているが、各電池セルの温度にばらつきがあると電池セルの劣化に偏りが生じ、電池2の蓄電性能が低下してしまう。これは、最も劣化した電池セルの特性に合わせて蓄電装置の入出力特性が決まることによる。そのため、長期間にわたって電池2に所望の性能を発揮させるためには、複数の電池セル相互間の温度ばらつきを低減させる均温化が重要となる。 Furthermore, although battery 2 is configured as a battery module including a plurality of battery cells, if there is variation in the temperature of each battery cell, battery cell deterioration occurs unevenly, and the storage performance of battery 2 decreases. . This is because the input / output characteristics of the power storage device are determined in accordance with the most deteriorated battery cell characteristics. Therefore, in order to cause the battery 2 to exhibit desired performance over a long period of time, it is important to make the temperature uniform to reduce the temperature variation among the plurality of battery cells.
 また、一般に、電池2を冷却する他の冷却装置として、ブロワによる送風方式が採用されることがある。しかし、ブロワは車室内の空気を送風するだけなので、冷却能力は低い。また、ブロワによる送風では空気の顕熱で電池2を冷却するので、空気流れの上流と下流との間で温度差が大きくなり、複数の電池セル同士の温度ばらつきを十分に抑制できない。このような背景から、第1実施形態の電池温調装置1は、熱媒体の自然循環によって電池2の温度を調整するサーモサイフォン方式を採用している。 Also, in general, as another cooling device for cooling the battery 2, a blower system using a blower may be adopted. However, since the blower only blows the air in the passenger compartment, the cooling capacity is low. Further, since the battery 2 is cooled by the sensible heat of the air in the blowing by the blower, the temperature difference between the upstream and the downstream of the air flow becomes large, and the temperature variation between the plurality of battery cells can not be sufficiently suppressed. From such a background, the battery temperature control device 1 of the first embodiment adopts a thermo-siphon system in which the temperature of the battery 2 is adjusted by natural circulation of the heat medium.
 図1に示すように、第1実施形態の電池温調装置1は、車両3の外部に設置される充電装置70に設けられた外部熱源供給装置80から供給される冷熱または温熱を用いて、車両3に搭載された電池2の温度を調節することが可能な装置である。 As shown in FIG. 1, the battery temperature control device 1 according to the first embodiment uses cold heat or heat supplied from an external heat source supply device 80 provided in a charging device 70 installed outside the vehicle 3. It is a device capable of adjusting the temperature of the battery 2 mounted on the vehicle 3.
 本実施形態の充電装置70は、外部熱源供給装置80と外部電力供給装置90とを備えている。外部電力供給装置90は、外部電力供給装置本体91、充電ケーブル92、および、充電用コネクタ93などを備えている。外部電力供給装置90が備える充電用コネクタ93は、車両3に設けられた充電口4に差し込むことが可能である。その状態で、外部電力供給装置90は、外部電力供給装置本体91から充電ケーブル92、充電用コネクタ93、充電口4および車両内部の配線5などを介して、車両3に搭載された電池2に電力を供給する。外部電力供給装置90から電池2に対し電力が供給されると、電池2が充電される。 The charging device 70 of the present embodiment includes an external heat source supply device 80 and an external power supply device 90. The external power supply device 90 includes an external power supply device main body 91, a charging cable 92, a charging connector 93, and the like. The charging connector 93 provided in the external power supply device 90 can be inserted into the charging port 4 provided in the vehicle 3. In that state, external power supply device 90 is connected to battery 2 mounted on vehicle 3 from external power supply device main body 91 through charging cable 92, charging connector 93, charging port 4 and wiring 5 inside the vehicle. Supply power. When power is supplied from the external power supply device 90 to the battery 2, the battery 2 is charged.
 一方、外部熱源供給装置80は、外部熱源供給装置本体81、外部配管82、および、外部接続熱交換器83などを備えている。外部熱源供給装置80が備える外部接続熱交換器83は、車両3に設けられた車載熱接触面35に対し直接接触するか、または、熱伝導部材6を介して間接的に熱接触することが可能である。その状態で、外部熱源供給装置80は、外部熱源供給装置本体81から外部配管82、および、外部接続熱交換器83を介して、車載熱接触面35に冷熱または温熱を供給する。外部熱源供給装置80から電池温調装置1に対して冷熱または温熱が供給されると、電池温調装置1はその熱を利用して電池2を冷却または暖機する。なお、外部熱源供給装置80は、充電装置70とは別体で設けられていてもよい。 On the other hand, the external heat source supply apparatus 80 includes an external heat source supply apparatus main body 81, an external pipe 82, an external connection heat exchanger 83, and the like. The external connection heat exchanger 83 provided in the external heat source supply device 80 may be in direct contact with the on-board thermal contact surface 35 provided in the vehicle 3 or may be in indirect thermal contact via the thermal conduction member 6 It is possible. In that state, the external heat source supply device 80 supplies cold heat or heat to the on-vehicle thermal contact surface 35 from the external heat source supply device body 81 through the external pipe 82 and the externally connected heat exchanger 83. When cold heat or heat is supplied from the external heat source supply device 80 to the battery temperature adjustment device 1, the battery temperature adjustment device 1 cools or warms up the battery 2 using the heat. The external heat source supply device 80 may be provided separately from the charging device 70.
 次に、電池温調装置1の構成について説明する。図2および図3に示すように、電池温調装置1は、電池用熱交換器10、配管21、22、接続熱交換器30、および、車載熱源部40を備えている。電池温調装置1は、熱媒体が循環するサーモサイフォン回路を構成している。その熱媒体には、例えば、HFO-1234yfまたはHFC-134aなどのフロン系の作動流体が用いられる。 Next, the configuration of the battery temperature control device 1 will be described. As shown in FIGS. 2 and 3, the battery temperature adjustment device 1 includes a battery heat exchanger 10, pipes 21 and 22, a connection heat exchanger 30, and an on-vehicle heat source unit 40. The battery temperature control device 1 constitutes a thermosyphon circuit in which a heat medium circulates. As the heat medium, for example, fluorocarbon working fluid such as HFO-1234yf or HFC-134a is used.
 電池用熱交換器10は、上ヘッダタンク11、下ヘッダタンク12、および、その上ヘッダタンク11と下ヘッダタンク12とを連通する複数のチューブ13を有している。電池用熱交換器10が有する複数のチューブ13は、重力方向に沿うように延びている。なお、本明細書において「重力方向に沿う」とは、重力方向に平行な状態に加え、重力方向に対して30°程度傾いている状態も含むことを意味している。サーモサイフォン回路を循環する熱媒体の液面FL1は、電池用熱交換器10のチューブ13の内側の流路の途中に位置している。電池用熱交換器10は、電池2に対し、図示していない粘着性の放熱シート等により接着されている。そのため、電池用熱交換器10は、電池2と熱媒体との熱交換を行うことが可能である。 The battery heat exchanger 10 includes an upper header tank 11, a lower header tank 12, and a plurality of tubes 13 communicating the upper header tank 11 with the lower header tank 12. The plurality of tubes 13 of the battery heat exchanger 10 extend along the direction of gravity. In the present specification, “along the direction of gravity” means, in addition to a state parallel to the direction of gravity, a state including an angle of about 30 ° with respect to the direction of gravity. The liquid surface FL1 of the heat medium circulating in the thermosyphon circuit is located in the middle of the flow passage inside the tube 13 of the battery heat exchanger 10. The battery heat exchanger 10 is bonded to the battery 2 by an adhesive heat-radiating sheet or the like (not shown). Therefore, the battery heat exchanger 10 can perform heat exchange between the battery 2 and the heat medium.
 接続熱交換器30も、上ヘッダタンク31、下ヘッダタンク32、および、その上ヘッダタンク31と下ヘッダタンク32とを連通する複数のチューブ33を有している。接続熱交換器30が有する複数のチューブ33も、重力方向に沿うように延びている。サーモサイフォン回路を循環する熱媒体の液面FL2は、接続熱交換器30のチューブ33の内側の流路の途中に位置している。接続熱交換器30は、車外に露出可能な位置に、車載熱接触面35を有している。車載熱接触面35は、重力方向に沿うように形成されている。図3では、車載熱接触面35の範囲を分かりやすく示すため、断面ではないが、車載熱接触面35にハッチングを付している。なお、車載熱接触面35の外側に位置する車両外壁に図示していないカバーを設け、そのカバーを開けることで、車載熱接触面35が車外に露出する構成としてもよい。 The connection heat exchanger 30 also has an upper header tank 31, a lower header tank 32, and a plurality of tubes 33 communicating the upper header tank 31 with the lower header tank 32. A plurality of tubes 33 of the connecting heat exchanger 30 also extend along the gravity direction. The liquid surface FL2 of the heat medium circulating in the thermosyphon circuit is located in the middle of the flow path inside the tube 33 of the connection heat exchanger 30. The connection heat exchanger 30 has an on-vehicle thermal contact surface 35 at a position where it can be exposed to the outside of the vehicle. The on-vehicle thermal contact surface 35 is formed along the direction of gravity. In FIG. 3, in order to clearly show the range of the in-vehicle thermal contact surface 35, the in-vehicle thermal contact surface 35 is hatched although it is not a cross section. A cover (not shown) may be provided on the outer wall of the vehicle located outside the on-board thermal contact surface 35, and the on-board thermal contact surface 35 may be exposed outside the vehicle by opening the cover.
 車載熱接触面35には、外部熱源供給装置80が備える外部接続熱交換器83の外部熱接触面84が、直接接触するか、または、放熱シートなどの熱伝導部材6を介して間接的に熱接触することが可能である。なお、車載熱接触面35と外部熱接触面84とが熱接触した状態で、外部熱源供給装置80が備える外部接続熱交換器83は、車両3または接続熱交換器30に対して図示していないクランプ装置などにより固定される。接続熱交換器30は、外部熱源供給装置80が有する外部熱接触面84から車載熱接触面35を介して伝わる冷熱または温熱により、接続熱交換器30の内側を流れる熱媒体が冷却または加熱されるように構成されている。 The external thermal contact surface 84 of the external connection heat exchanger 83 provided in the external heat source supply device 80 is in direct contact with the on-vehicle thermal contact surface 35 or indirectly via the thermal conduction member 6 such as a heat dissipation sheet. It is possible to make thermal contact. The external connection heat exchanger 83 provided in the external heat source supply device 80 is illustrated with respect to the vehicle 3 or the connection heat exchanger 30 in a state where the in-vehicle thermal contact surface 35 and the external thermal contact surface 84 are in thermal contact. It is fixed by a clamp device etc. In the connection heat exchanger 30, the heat medium flowing inside the connection heat exchanger 30 is cooled or heated by cold heat or heat transferred from the external heat contact surface 84 of the external heat source supply device 80 through the on-vehicle heat contact surface 35. Are configured to
 配管21は、電池用熱交換器10と接続熱交換器30を接続し、その間に熱媒体を循環させる。また、配管22は、電池用熱交換器10と車載熱源部40とを接続し、その間に熱媒体を循環させる。以下の説明では、電池用熱交換器10と接続熱交換器30を接続する配管21を、第1配管21と称する。また、電池用熱交換器10と車載熱源部40とを接続する配管22を、第2配管22と称する。 The pipe 21 connects the battery heat exchanger 10 and the connection heat exchanger 30 and circulates the heat medium therebetween. The pipe 22 connects the battery heat exchanger 10 and the on-vehicle heat source unit 40, and circulates the heat medium therebetween. In the following description, the pipe 21 connecting the battery heat exchanger 10 and the connection heat exchanger 30 is referred to as a first pipe 21. The pipe 22 connecting the battery heat exchanger 10 and the on-vehicle heat source unit 40 is referred to as a second pipe 22.
 第1配管21は、第1液体通路211および第1気体通路212を有している。第1液体通路211は、電池用熱交換器10の下ヘッダタンク12に設けられた流出入口121と、接続熱交換器30の下ヘッダタンク32に設けられた流出入口321とを接続している。すなわち、第1液体通路211は、電池用熱交換器10のうちで熱媒体の液面FL1より下側に設けられた流出入口121と、接続熱交換器30のうちで熱媒体の液面FL2より下側に設けられた流出入口321とを接続している。第1気体通路212は、電池用熱交換器10の上ヘッダタンク11に設けられた流出入口111と、接続熱交換器30の上ヘッダタンク31に設けられた流出入口311とを接続している。すなわち、第1気体通路212は、電池用熱交換器10のうちで熱媒体の液面FL1より上側に設けられた流出入口111と、接続熱交換器30のうちで熱媒体の液面FL2より上側に設けられた流出入口311とを接続している。これにより、電池用熱交換器10、接続熱交換器30、第1液体通路211および第1気体通路212は、熱媒体が循環する第1のサーモサイフォン回路100を構成する。 The first pipe 21 has a first liquid passage 211 and a first gas passage 212. The first liquid passage 211 connects the outlet / inlet 121 provided in the lower header tank 12 of the battery heat exchanger 10 and the outlet / inlet 321 provided in the lower header tank 32 of the connection heat exchanger 30. . That is, the first liquid passage 211 is the outlet / inlet 121 provided below the liquid surface FL1 of the heat medium in the battery heat exchanger 10, and the liquid surface FL2 of the heat medium in the connection heat exchanger 30. It connects with the outflow inlet 321 provided on the lower side. The first gas passage 212 connects the outlet / inlet 111 provided in the upper header tank 11 of the battery heat exchanger 10 and the outlet / inlet 311 provided in the upper header tank 31 of the connection heat exchanger 30. . That is, the first gas passage 212 is provided from the outflow / inflow port 111 provided above the liquid surface FL1 of the heat medium in the battery heat exchanger 10 and the liquid surface FL2 of the heat medium in the connection heat exchanger 30. It connects with the outflow inlet 311 provided on the upper side. Thus, the battery heat exchanger 10, the connection heat exchanger 30, the first liquid passage 211, and the first gas passage 212 constitute a first thermosyphon circuit 100 in which a heat medium circulates.
 車載熱源部40は、1つまたは複数の放熱器により構成されている。第1実施形態では、車載熱源部40は、空気放熱器41と、冷凍サイクル50の蒸発器51に接続された冷媒放熱器42により構成されている。空気放熱器41は、空気放熱器41の内側を流れる熱媒体と空気放熱器41を通過する外気との熱交換を行うことで、空気放熱器41の内側を流れる熱媒体の熱を外気に放熱させる熱交換器である。また、冷媒放熱器42は、冷媒放熱器42の内側を流れる熱媒体と冷凍サイクル50を循環する低温低圧の冷媒との熱交換を行うことで、冷媒放熱器42の内側を流れる熱媒体の熱を、冷凍サイクル50を循環する冷媒に放熱させる熱交換器である。なお、空気放熱器41と冷媒放熱器42は、電池2の発熱状態または車両3の走行状態などに応じて使い分けることが可能である。また、車載熱源部40は、空気放熱器41または冷媒放熱器42に代えて、図示していない液回路を流れる冷却水等の液体と熱媒体との熱交換を行う液冷放熱器としてもよい。また、車載熱源部40は、ペルチェ素子により構成してもよい。 The on-vehicle heat source unit 40 is configured of one or more radiators. In the first embodiment, the on-vehicle heat source unit 40 includes an air radiator 41 and a refrigerant radiator 42 connected to the evaporator 51 of the refrigeration cycle 50. The air radiator 41 exchanges heat between the heat medium flowing inside the air radiator 41 and the outside air passing through the air radiator 41 to radiate the heat of the heat medium flowing inside the air radiator 41 to the outside air Heat exchanger. Further, the refrigerant radiator 42 performs heat exchange between the heat medium flowing inside the refrigerant radiator 42 and the low-temperature low-pressure refrigerant circulating in the refrigeration cycle 50, whereby the heat of the heat medium flowing inside the refrigerant radiator 42 Is dissipated to the refrigerant circulating in the refrigeration cycle 50. The air radiator 41 and the refrigerant radiator 42 can be selectively used according to the heat generation state of the battery 2 or the traveling state of the vehicle 3 or the like. Further, the on-vehicle heat source unit 40 may be a liquid cooling radiator which performs heat exchange between a heat medium and a liquid such as cooling water flowing in a liquid circuit (not shown) instead of the air radiator 41 or the refrigerant radiator 42. . Further, the on-vehicle heat source unit 40 may be configured by a Peltier element.
 第2配管22は、第2液体通路221および第2気体通路222を有している。第2液体通路221は、電池用熱交換器10の下ヘッダタンク12に設けられた流出入口122と、空気放熱器41の下側に設けられた流出入口411と、冷媒放熱器42の下側に設けられた流出入口421とを接続している。第2気体通路222は、電池用熱交換器10の上ヘッダタンク11に設けられた流出入口112と、空気放熱器41の上側に設けられた流出入口412と、冷媒放熱器42の上側に設けられた流出入口422とを接続している。これにより、電池用熱交換器10、空気放熱器41、冷媒放熱器42、第2液体通路221および第2気体通路222も、熱媒体が循環する第2のサーモサイフォン回路200を構成する。なお、第1のサーモサイフォン回路100と第2のサーモサイフォン回路200とは連通しており、同一の熱媒体が循環する。 The second pipe 22 has a second liquid passage 221 and a second gas passage 222. The second liquid passage 221 includes an outlet port 122 provided in the lower header tank 12 of the battery heat exchanger 10, an outlet port 411 provided below the air radiator 41, and a lower side of the refrigerant radiator 42. It connects with the outflow inlet 421 provided in. The second gas passage 222 is provided on the upper side of the refrigerant outlet 42, the outlet / inlet 412 provided on the upper side of the air radiator 41, and the upper side of the refrigerant radiator 42. And the connected outlet 422. Thus, the battery heat exchanger 10, the air radiator 41, the refrigerant radiator 42, the second liquid passage 221, and the second gas passage 222 also constitute a second thermosiphon circuit 200 in which the heat medium circulates. The first thermosiphon circuit 100 and the second thermosiphon circuit 200 communicate with each other, and the same heat medium circulates.
 続いて、電池温調装置1が電池2を冷却するときの熱媒体の動きを、図2を参照して説明する。図2では、気体の熱媒体の動きを破線の矢印で示し、液体の熱媒体の動きを実線の矢印で示している。なお、図2に示す熱媒体の動きは、外部電力供給装置90が備える充電用コネクタ93が車両3に設けられた充電口4に差し込まれた状態で、電池2の充電が行われているときのものである。また、その熱媒体の動きは、外部熱源供給装置80が備える外部接続熱交換器83が車載熱接触面35に対し直接接触するか、または、熱伝導部材6を介して間接的に熱接触した状態のものである。その状態で、外部熱源供給装置80は外部接続熱交換器83から車載熱接触面35に冷熱を供給する。 Subsequently, the movement of the heat medium when the battery temperature control device 1 cools the battery 2 will be described with reference to FIG. In FIG. 2, the movement of the heat medium of gas is indicated by a broken arrow, and the movement of the heat medium of liquid is indicated by a solid arrow. The movement of the heat medium shown in FIG. 2 is performed when the battery 2 is being charged in a state where the charging connector 93 included in the external power supply device 90 is inserted into the charging port 4 provided in the vehicle 3 belongs to. Also, the movement of the heat medium is caused by the external connection heat exchanger 83 provided in the external heat source supply device 80 making direct contact with the on-vehicle thermal contact surface 35 or making indirect thermal contact via the heat conducting member 6 It is in the state. In that state, the external heat source supply device 80 supplies cold heat from the externally connected heat exchanger 83 to the on-vehicle thermal contact surface 35.
 電池2が発熱すると、その熱は電池用熱交換器10内の熱媒体に吸熱され、電池用熱交換器10の内側で熱媒体が蒸発する。電池用熱交換器10で気体となった熱媒体の一部は、電池用熱交換器10から第1気体通路212を通り、接続熱交換器30に流入する。また、電池用熱交換器10で気体となった熱媒体の他の一部は、電池用熱交換器10から第2気体通路222を通り、空気放熱器41と冷媒放熱器42に流入する。すなわち、電池から電池用熱交換器10の内側の熱媒体に吸熱された熱は、その熱媒体によって、接続熱交換器30と空気放熱器41と冷媒放熱器42へ輸送される。 When the battery 2 generates heat, the heat is absorbed by the heat medium in the battery heat exchanger 10, and the heat medium evaporates inside the battery heat exchanger 10. A portion of the heat medium that has become gas in the battery heat exchanger 10 flows from the battery heat exchanger 10 through the first gas passage 212 into the connection heat exchanger 30. Further, another part of the heat medium that has become a gas in the battery heat exchanger 10 flows from the battery heat exchanger 10 through the second gas passage 222 into the air radiator 41 and the refrigerant radiator 42. That is, the heat absorbed by the heat medium inside the battery heat exchanger 10 from the battery is transported by the heat medium to the connection heat exchanger 30, the air radiator 41, and the refrigerant radiator 42.
 上述したように、外部接続熱交換器83が有する外部熱接触面84と接続熱交換器30が有する車載熱接触面35とは、直接接触または熱伝導部材6を介して間接的に熱接触している。そのため、外部熱源供給装置80が有する外部熱接触面84から車載熱接触面35を介して接続熱交換器30の熱媒体に冷熱が供給される。これにより、接続熱交換器30の熱媒体は、車載熱接触面35を介して外部熱接触面84に放熱し、凝縮する。接続熱交換器30で液体となった熱媒体は、第1液体通路211を流れ、電池用熱交換器10に流入する。 As described above, the external thermal contact surface 84 of the external connection heat exchanger 83 and the on-board thermal contact surface 35 of the connection heat exchanger 30 are in direct thermal contact or indirect thermal contact via the thermal conductive member 6. ing. Therefore, cold heat is supplied from the external heat contact surface 84 of the external heat source supply device 80 to the heat medium of the connection heat exchanger 30 via the on-vehicle heat contact surface 35. As a result, the heat medium of the connection heat exchanger 30 dissipates heat to the external thermal contact surface 84 via the on-board thermal contact surface 35 and condenses. The heat medium that has become liquid in the connection heat exchanger 30 flows through the first liquid passage 211 and flows into the battery heat exchanger 10.
 一方、空気放熱器41に流れた熱媒体は、外気に放熱し、凝縮する。また、冷媒放熱器42に流れた熱媒体は、冷凍サイクル50を流れる冷媒に放熱し、凝縮する。空気放熱器41と冷媒放熱器42でそれぞれ液体となった熱媒体は、第2液体通路221を流下し、電池用熱交換器10に流入する。 On the other hand, the heat medium which has flowed to the air radiator 41 radiates heat to the outside air and condenses. Further, the heat medium that has flowed to the refrigerant radiator 42 dissipates heat to the refrigerant flowing through the refrigeration cycle 50 and condenses. The heat medium which has become a liquid by the air radiator 41 and the refrigerant radiator 42 flows down the second liquid passage 221 and flows into the battery heat exchanger 10.
 このようにして、電池2から生じた熱は、電池用熱交換器10で蒸発した熱媒体によって接続熱交換器30、空気放熱器41および冷媒放熱器42に輸送され、それぞれの機器で、外部熱接触面84、外気、または、冷凍サイクル50を流れる冷媒に放熱される。これにより、第1実施形態の電池温調装置1は、車両3に搭載される電池2を冷却することが可能である。 Thus, the heat generated from the battery 2 is transported to the connection heat exchanger 30, the air radiator 41 and the refrigerant radiator 42 by the heat medium evaporated in the battery heat exchanger 10, and the respective devices are externally The heat is dissipated to the heat contact surface 84, the outside air, or the refrigerant flowing through the refrigeration cycle 50. Thereby, the battery temperature adjustment device 1 of the first embodiment can cool the battery 2 mounted on the vehicle 3.
 次に、低温環境下における充電開始時に、電池温調装置1が低温状態の電池2を暖機するときの熱媒体の動きを、図4を参照して説明する。図4でも、気体の熱媒体の動きを破線の矢印で示し、液体の熱媒体の動きを実線の矢印で示している。なお、図4に示す熱媒体の動きは、外部熱源供給装置80が備える外部接続熱交換器83が車載熱接触面35に対し直接接触するか、または、熱伝導部材6を介して間接的に熱接触した状態のものである。 Next, the movement of the heat medium when the battery temperature control device 1 warms up the battery 2 in the low temperature state at the start of charging in a low temperature environment will be described with reference to FIG. Also in FIG. 4, the movement of the heat medium of the gas is indicated by a broken arrow, and the movement of the heat medium of the liquid is indicated by a solid arrow. In the movement of the heat medium shown in FIG. 4, the externally connected heat exchanger 83 provided in the external heat source supply device 80 is in direct contact with the on-vehicle thermal contact surface 35 or indirectly via the heat conducting member 6. It is in a state of thermal contact.
 低温環境下における充電開始時では、外部熱源供給装置80が有する外部熱接触面84から接続熱交換器30が有する車載熱接触面35に温熱が供給される。これにより、接続熱交換器30を流れる熱媒体は車載熱接触面35および外部熱接触面84から吸熱し、接続熱交換器30内で熱媒体が蒸発する。接続熱交換器30で気体となった熱媒体は、接続熱交換器30から第1気体通路212を通り、電池用熱交換器10に流入する。電池用熱交換器10に流入した気体の熱媒体は、電池2に放熱して凝縮する。これにより、電池2が暖機される。電池用熱交換器10で液体になった熱媒体は、第1液体通路211を流れ、接続熱交換器30に流入する。 At the start of charging in a low temperature environment, the heat is supplied from the external thermal contact surface 84 of the external heat source supply device 80 to the on-board thermal contact surface 35 of the connection heat exchanger 30. As a result, the heat medium flowing through the connection heat exchanger 30 absorbs heat from the on-board thermal contact surface 35 and the external thermal contact surface 84, and the heat medium evaporates in the connection heat exchanger 30. The heat medium that has become gas in the connection heat exchanger 30 flows from the connection heat exchanger 30 through the first gas passage 212 into the battery heat exchanger 10. The heat medium of the gas flowing into the battery heat exchanger 10 dissipates heat to the battery 2 and condenses. Thereby, the battery 2 is warmed up. The heat medium that has become liquid in the battery heat exchanger 10 flows through the first liquid passage 211 and flows into the connection heat exchanger 30.
 このようにして、外部熱源供給装置80の外部熱接触面84から車載熱接触面35に供給された温熱は、接続熱交換器30で蒸発した熱媒体によって電池用熱交換器10へ輸送され、電池2に伝えられる。これにより、第1実施形態の電池温調装置1は、車両3に搭載される電池2を暖機することが可能である。 Thus, the heat supplied from the external heat contact surface 84 of the external heat source supply device 80 to the on-vehicle heat contact surface 35 is transported to the battery heat exchanger 10 by the heat medium evaporated in the connection heat exchanger 30. It is transmitted to the battery 2. Thereby, the battery temperature adjustment device 1 of the first embodiment can warm up the battery 2 mounted on the vehicle 3.
 以上説明した第1実施形態の電池温調装置1は、次の作用効果を奏するものである。
 (1)第1実施形態では、電池温調装置1が備える接続熱交換器30は、外部熱源供給装置80が有する外部熱接触面84に直接接触または熱伝導部材6を介して間接的に熱接触可能な車載熱接触面35を有する。その接続熱交換器30は、外部熱源供給装置80が有する外部熱接触面84から車載熱接触面35を介して伝わる熱により熱媒体を冷却又は加熱する。
The battery temperature control device 1 according to the first embodiment described above has the following effects.
(1) In the first embodiment, the connection heat exchanger 30 included in the battery temperature adjustment device 1 is in direct contact with the external thermal contact surface 84 of the external heat source supply device 80 or indirectly through the thermal conduction member 6 It has an on-vehicle thermal contact surface 35 that can be contacted. The connection heat exchanger 30 cools or heats the heat medium by the heat transmitted from the external thermal contact surface 84 of the external heat source supply device 80 through the on-board thermal contact surface 35.
 これによれば、外部熱接触面84と車載熱接触面35との熱接触により冷却又は加熱された熱媒体は、第1配管21を通って電池用熱交換器10に流れる。電池用熱交換器10は、その熱媒体と電池2との熱交換を行うことで、電池2を冷却または暖機することが可能である。そのため、この電池温調装置1は、特許文献1に記載の技術のように外部熱源供給装置80から電池温調装置1に熱媒体が流入することがないので、電池温調装置1の熱媒体の回路に異物等の混入が防がれる。また、外部熱接触面84と車載熱接触面35との間に熱媒体の漏れや液垂れが生じないので、車両3、充電作業者または充電場などが熱媒体によって汚れることが防がれる。さらに、電池温調装置1は、車両3の外部に設置される外部熱源供給装置80から供給される熱を用いて電池2の温度を調節するので、電池温調装置1の重量および体格を増加させることなく、電池2の冷却能力を増加させることが可能である。したがって、この電池温調装置1は、回路の故障を防ぐと共に、清潔、安全、且つ、大能力で電池2の温度を調整することができる。 According to this, the heat medium cooled or heated by the thermal contact between the external thermal contact surface 84 and the on-board thermal contact surface 35 flows through the first pipe 21 to the battery heat exchanger 10. The battery heat exchanger 10 can cool or warm up the battery 2 by heat exchange between the heat medium and the battery 2. Therefore, since the heat medium does not flow from the external heat source supply device 80 into the battery temperature control apparatus 1 as in the technology described in Patent Document 1, the heat medium of the battery temperature control apparatus 1 is not Contamination of foreign matter is prevented in the circuit of In addition, since the heat medium does not leak or drip between the external heat contact surface 84 and the on-vehicle heat contact surface 35, the vehicle 3, the charging operator, the charging place, etc. are prevented from being contaminated by the heat medium. Furthermore, since the battery temperature adjustment device 1 adjusts the temperature of the battery 2 using heat supplied from the external heat source supply device 80 installed outside the vehicle 3, the weight and size of the battery temperature adjustment device 1 are increased. It is possible to increase the cooling capacity of the battery 2 without causing the problem. Therefore, the battery temperature control device 1 can prevent the circuit failure and can adjust the temperature of the battery 2 cleanly, safely and with a large capacity.
 (2)第1実施形態では、電池温調装置1が備える電池用熱交換器10と第1配管21と接続熱交換器30は、第1のサーモサイフォン回路100を構成している。第1のサーモサイフォン回路100を循環する熱媒体の液面FL1、FL2は、電池用熱交換器10の内側の流路の途中に位置し、且つ、接続熱交換器30の内側の流路の途中に位置している。これによれば、電池用熱交換器10の内側の流路で、熱媒体は蒸発と凝縮のどちらも行うことが可能である。また、接続熱交換器30の内側の流路で、熱媒体は蒸発と凝縮のどちらも行うことが可能である。したがって、電池温調装置1は、外部熱源供給装置80が有する外部熱接触面84から車載熱接触面35を介して接続熱交換器30に伝わる冷熱または温熱により、電池2の冷却と暖機の両方を行うことが可能である。 (2) In the first embodiment, the battery heat exchanger 10, the first pipe 21 and the connecting heat exchanger 30 included in the battery temperature adjustment device 1 constitute a first thermosyphon circuit 100. The liquid surfaces FL1 and FL2 of the heat medium circulating in the first thermosyphon circuit 100 are located in the middle of the flow path inside the battery heat exchanger 10 and in the flow path inside the connection heat exchanger 30. It is located in the middle. According to this, in the flow path inside the battery heat exchanger 10, the heat medium can perform both evaporation and condensation. Further, in the flow path inside the connection heat exchanger 30, the heat medium can perform both evaporation and condensation. Therefore, the battery temperature adjustment device 1 cools and warms up the battery 2 by cold heat or heat transferred from the external heat contact surface 84 of the external heat source supply device 80 to the connection heat exchanger 30 via the on-vehicle heat contact surface 35. It is possible to do both.
 (3)第1実施形態では、電池温調装置1は、車載熱源部40として、冷凍サイクル50の蒸発器51に接続された冷媒放熱器42と、空気放熱器41とを備える。これによれば、電池温調装置1は、電池2を充放電しているときの車両の状態や電池の発熱状態に応じて、車載熱源部40を冷熱供給源とした電池冷却と、外部熱源供給装置80を冷熱供給源とした電池冷却を使い分けることができる。例えば、車両3の停車中に外部電力供給装置90から電池2に充電を行う場合、電池2の発熱量が大きいときは、外部熱源供給装置80と車載熱源部40の両方を冷熱供給源とした電池冷却を行うことが可能である。また、その場合、電池2の発熱量が小さく、且つ、車内に乗員が乗車しているときは、外部熱源供給装置80を冷熱供給源とした電池冷却を行い、冷凍サイクル50は車室内空調装置の冷熱供給源として利用することも可能である。一方、車両走行時に電池2が充放電する場合には、車載熱源部40を冷熱供給源とした電池冷却を行うことが可能である。 (3) In the first embodiment, the battery temperature adjustment device 1 includes the refrigerant radiator 42 connected to the evaporator 51 of the refrigeration cycle 50 and the air radiator 41 as the on-vehicle heat source unit 40. According to this, according to the state of the vehicle when charging and discharging the battery 2 and the heat generation state of the battery, the battery temperature control device 1 cools the battery using the on-vehicle heat source unit 40 as a cold heat supply source and the external heat source. Battery cooling using the supply device 80 as a cold heat source can be used properly. For example, when the battery 2 is charged from the external power supply device 90 while the vehicle 3 is stopped, when the calorific value of the battery 2 is large, both the external heat source supply device 80 and the on-vehicle heat source unit 40 are used as a cold heat source. It is possible to perform battery cooling. Further, in this case, when the calorific value of the battery 2 is small and the occupant is in the vehicle, battery cooling is performed using the external heat source supply device 80 as a cold heat source, and the refrigeration cycle 50 is an air conditioner in the passenger compartment. It can also be used as a source of cold heat for On the other hand, when the battery 2 is charged and discharged when the vehicle travels, it is possible to perform battery cooling using the on-vehicle heat source unit 40 as a cold heat source.
 (第2実施形態)
 第2実施形態について図5を参照して説明する。第2実施形態は、第1実施形態に対して接続熱交換器30の配置を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
Second Embodiment
The second embodiment will be described with reference to FIG. The second embodiment is the same as the first embodiment except that the arrangement of the connection heat exchanger 30 is changed from the first embodiment, and therefore, only the portions different from the first embodiment will be described. Do.
 第2実施形態でも、電池温調装置1は、第1実施形態と同様に、サーモサイフォン回路を構成している。この電池温調装置1が備える接続熱交換器30は、電池用熱交換器10よりも重力方向上側に設けられている。この場合、サーモサイフォン回路を循環する熱媒体の液面FL1は、電池用熱交換器10の内側の流路の途中に位置している。または、熱媒体の液面FL1は、電池用熱交換器10と接続熱交換器30とを接続する第1配管21の途中に位置していてもよい。なお、第2実施形態の車載熱接触面35も、第1実施形態と同様に、車外に露出可能な位置に設けられている。車載熱接触面35には、外部熱源供給装置80が備える外部接続熱交換器83の外部熱接触面84が、直接接触するか、または、放熱シートなどの熱伝導部材6を介して間接的に熱接触することが可能である。接続熱交換器30は、外部熱源供給装置80が有する外部熱接触面84から車載熱接触面35を介して伝わる冷熱により、接続熱交換器30の内側を流れる熱媒体を冷却することが可能である。 Also in the second embodiment, the battery temperature control device 1 configures a thermosyphon circuit as in the first embodiment. The connection heat exchanger 30 included in the battery temperature adjustment device 1 is provided above the battery heat exchanger 10 in the direction of gravity. In this case, the liquid surface FL1 of the heat medium circulating in the thermosyphon circuit is located in the middle of the flow path inside the battery heat exchanger 10. Alternatively, the liquid surface FL1 of the heat medium may be located in the middle of the first pipe 21 connecting the battery heat exchanger 10 and the connection heat exchanger 30. In addition, the vehicle-mounted thermal contact surface 35 of 2nd Embodiment is also provided in the position which can be exposed out of a vehicle similarly to 1st Embodiment. The external thermal contact surface 84 of the external connection heat exchanger 83 provided in the external heat source supply device 80 is in direct contact with the on-vehicle thermal contact surface 35 or indirectly via the thermal conduction member 6 such as a heat dissipation sheet. It is possible to make thermal contact. The connection heat exchanger 30 can cool the heat medium flowing inside the connection heat exchanger 30 by cold heat transmitted from the external heat contact surface 84 of the external heat source supply device 80 through the on-vehicle heat contact surface 35. is there.
 第2実施形態においても、電池2が発熱すると、その熱は電池用熱交換器10内の熱媒体に吸熱され、電池用熱交換器10で熱媒体が蒸発する。電池用熱交換器10で気体となった熱媒体は、電池用熱交換器10から第1気体通路212を通り、接続熱交換器30に流入する。接続熱交換器30を流れる熱媒体は、車載熱接触面35を介して外部熱接触面84に放熱し、凝縮する。接続熱交換器30で液体となった熱媒体は、第1液体通路211を流れ、電池用熱交換器10に流入する。なお、図示していないが、電池用熱交換器10から空気放熱器41と冷媒放熱器42に流れた熱媒体も、外気、または、冷凍サイクル50を流れる冷媒に放熱し、凝縮する。空気放熱器41または冷媒放熱器42で液体となった熱媒体は、第2液体通路221を流れ、電池用熱交換器10に流入する。これにより、第2実施形態の電池温調装置1も、第1実施形態と同様に、車両3に搭載される電池2を冷却することが可能である。 Also in the second embodiment, when the battery 2 generates heat, the heat is absorbed by the heat medium in the battery heat exchanger 10, and the heat medium evaporates in the battery heat exchanger 10. The heat medium that has become gas in the battery heat exchanger 10 flows from the battery heat exchanger 10 through the first gas passage 212 into the connection heat exchanger 30. The heat medium flowing through the connection heat exchanger 30 dissipates heat to the external thermal contact surface 84 via the on-board thermal contact surface 35 and condenses. The heat medium that has become liquid in the connection heat exchanger 30 flows through the first liquid passage 211 and flows into the battery heat exchanger 10. Although not shown, the heat medium flowing from the battery heat exchanger 10 to the air radiator 41 and the refrigerant radiator 42 also radiates heat to the outside air or the refrigerant flowing in the refrigeration cycle 50 and condenses. The heat medium that has become a liquid in the air radiator 41 or the refrigerant radiator 42 flows through the second liquid passage 221 and flows into the battery heat exchanger 10. Thus, the battery temperature control device 1 of the second embodiment can also cool the battery 2 mounted on the vehicle 3 as in the first embodiment.
 (第3実施形態)
 第3実施形態について図6を参照して説明する。第3実施形態は、電池温調装置1を、水または油などの液体が循環する液回路で構成したものである。水または油などの液体は、液回路を循環する熱媒体の一例である。
Third Embodiment
A third embodiment will be described with reference to FIG. In the third embodiment, the battery temperature control device 1 is configured by a liquid circuit in which a liquid such as water or oil circulates. A liquid such as water or oil is an example of a heat carrier circulating in the liquid circuit.
 第3実施形態の電池温調装置1は、電池用熱交換器10、第1配管21、接続熱交換器30、第2配管22、車載熱源部40などを備えている。それに加えて、第3実施形態の電池温調装置1は、第1配管21の途中に設けられた第1ポンプ25と、第2配管22の途中に設けられた第2ポンプ26およびバルブ27を備えている。なお、第1ポンプ25と第2ポンプ26のうち、いずれか一方を省略することも可能である。 The battery temperature control device 1 according to the third embodiment includes a battery heat exchanger 10, a first pipe 21, a connection heat exchanger 30, a second pipe 22, an on-vehicle heat source unit 40, and the like. In addition to that, the battery temperature control device 1 of the third embodiment includes the first pump 25 provided in the middle of the first pipe 21, and the second pump 26 and the valve 27 provided in the middle of the second pipe 22. Have. Note that one of the first pump 25 and the second pump 26 can be omitted.
 電池用熱交換器10、第1配管21、接続熱交換器30および第1ポンプ25は、第1の液回路300を構成している。なお、第1配管21は、電池用熱交換器10と接続熱交換器30を接続する第1往路通路213および第1復路通路214を有している。第1ポンプ25が駆動すると、第1の液回路300を熱媒体が循環する。 The battery heat exchanger 10, the first pipe 21, the connection heat exchanger 30 and the first pump 25 constitute a first liquid circuit 300. The first pipe 21 has a first forward passage 213 and a first return passage 214 for connecting the battery heat exchanger 10 and the connection heat exchanger 30. When the first pump 25 is driven, the heat medium circulates in the first liquid circuit 300.
 電池用熱交換器10、第2配管22、車載熱源部40、第2ポンプ26およびバルブ27は、第2の液回路400を構成している。なお、第2配管22は、電池用熱交換器10と接続熱交換器30を接続する第2往路通路223および第2復路通路224を有している。バルブ27が開いた状態で、第2ポンプ26が駆動すると、第2の液回路400を熱媒体が循環する。なお、第1の液回路300と第2の液回路400とは連通しており、同一の熱媒体が循環する。 The battery heat exchanger 10, the second pipe 22, the on-vehicle heat source 40, the second pump 26, and the valve 27 constitute a second liquid circuit 400. The second pipe 22 has a second forward passage 223 and a second return passage 224 connecting the battery heat exchanger 10 and the connection heat exchanger 30. With the valve 27 open, when the second pump 26 is driven, the heat medium circulates in the second liquid circuit 400. The first liquid circuit 300 and the second liquid circuit 400 communicate with each other, and the same heat medium circulates.
 図6では、電池温調装置1が電池2を冷却するときの熱媒体の動きを矢印により示している。すなわち、図6に示す熱媒体の動きは、外部電力供給装置90が備える充電用コネクタ93が車両3に設けられた充電口4に差し込まれた状態で、電池2の充電が行われているときのものである。また、その熱媒体の動きは、外部接続熱交換器83が車載熱接触面35に対し直接接触するか、又は、熱伝導部材6を介して車載熱接触面35に間接的に熱接触した状態で、外部接続熱交換器83から車載熱接触面35に冷熱が供給されているときのものである。 In FIG. 6, the movement of the heat medium when the battery temperature control device 1 cools the battery 2 is indicated by an arrow. That is, the movement of the heat medium shown in FIG. 6 is performed when the battery 2 is being charged in a state where the charging connector 93 provided in the external power supply device 90 is inserted into the charging port 4 provided in the vehicle 3 belongs to. In addition, the movement of the heat medium is a state in which the externally connected heat exchanger 83 is in direct contact with the on-board thermal contact surface 35 or indirectly in thermal contact with the on-board thermal contact surface 35 via the heat conducting member 6. The cold heat is supplied from the externally connected heat exchanger 83 to the on-vehicle thermal contact surface 35.
 電池2が発熱すると、その熱は電池用熱交換器10の内側を流れる熱媒体に吸熱される。第1ポンプ25が駆動すると、電池用熱交換器10で加熱された熱媒体は、電池用熱交換器10から第1復路通路214を通り、接続熱交換器30に流入する。また、バルブ27が開き、第2ポンプ26が駆動すると、電池用熱交換器10で加熱された熱媒体は、電池用熱交換器10から第2復路通路224を通り、空気放熱器41と液冷放熱器43に流入する。 When the battery 2 generates heat, the heat is absorbed by the heat medium flowing inside the battery heat exchanger 10. When the first pump 25 is driven, the heat medium heated by the battery heat exchanger 10 flows from the battery heat exchanger 10 through the first return path 214 into the connection heat exchanger 30. Further, when the valve 27 is opened and the second pump 26 is driven, the heat medium heated by the battery heat exchanger 10 passes from the battery heat exchanger 10 through the second return path 224 and the air radiator 41 and the liquid are discharged. It flows into the cold radiator 43.
 上述したように、外部接続熱交換器83が有する外部熱接触面84と接続熱交換器30が有する車載熱接触面35とは、直接接触または熱伝導部材6を介して間接的に熱接触している。そのため、外部熱源供給装置80が有する外部熱接触面84から車載熱接触面35を介して接続熱交換器30を流れる熱媒体に冷熱が供給される。そのため、接続熱交換器30を流れる熱媒体は、車載熱接触面35を介して外部熱接触面84に放熱する。接続熱交換器30で冷却された熱媒体は、第1往路通路213を流れ、電池用熱交換器10に流入する。 As described above, the external thermal contact surface 84 of the external connection heat exchanger 83 and the on-board thermal contact surface 35 of the connection heat exchanger 30 are in direct thermal contact or indirect thermal contact via the thermal conductive member 6. ing. Therefore, cold heat is supplied from the external heat contact surface 84 of the external heat source supply device 80 to the heat medium flowing through the connection heat exchanger 30 via the on-vehicle heat contact surface 35. Therefore, the heat medium flowing through the connection heat exchanger 30 dissipates heat to the external thermal contact surface 84 via the on-board thermal contact surface 35. The heat medium cooled by the connection heat exchanger 30 flows through the first forward passage 213 and flows into the battery heat exchanger 10.
 一方、空気放熱器41に流れた熱媒体は、外気に放熱する。また、液冷放熱器43に流れた熱媒体は、冷凍サイクル50を流れる冷媒に放熱する。空気放熱器41と液冷放熱器43でそれぞれ冷却された熱媒体は、第2往路通路223から電池用熱交換器10に流入する。 On the other hand, the heat medium which has flowed to the air radiator 41 radiates heat to the outside air. Further, the heat medium that has flowed to the liquid cooling radiator 43 dissipates heat to the refrigerant flowing in the refrigeration cycle 50. The heat medium respectively cooled by the air radiator 41 and the liquid cooling radiator 43 flows into the battery heat exchanger 10 from the second forward passage 223.
 このようにして、電池2から生じた熱は、熱媒体によって電池用熱交換器10から接続熱交換器30、空気放熱器41および液冷放熱器43に輸送され、それぞれの機器内で、外部熱接触面84、外気、または、冷凍サイクル50を流れる冷媒に放熱される。これにより、第3実施形態の電池温調装置1は、車両3に搭載される電池2を冷却することが可能である。 In this way, the heat generated from the battery 2 is transported from the battery heat exchanger 10 to the connecting heat exchanger 30, the air radiator 41 and the liquid cooling radiator 43 by the heat medium, and in each of the devices, external The heat is dissipated to the heat contact surface 84, the outside air, or the refrigerant flowing through the refrigeration cycle 50. Thereby, the battery temperature adjustment device 1 of the third embodiment can cool the battery 2 mounted on the vehicle 3.
 なお、第3実施形態において、低温環境下における充電開始時に、電池温調装置1が低温状態の電池2を暖機するときの熱媒体の動きについては、矢印による図示を省略する。低温環境下における充電開始時では、外部熱源供給装置80の外部熱接触面84から接続熱交換器30が有する車載熱接触面35に温熱が供給される。これにより、接続熱交換器30を流れる熱媒体は車載熱接触面35および外部熱接触面84から吸熱し、接続熱交換器30内で熱媒体が加熱される。第1ポンプ25の駆動により、接続熱交換器30で加熱された熱媒体は、接続熱交換器30から第1復路通路214を通り、電池用熱交換器10に流入する。電池用熱交換器10に流入した熱媒体は、電池2に放熱する。これにより、電池2が暖機される。 In the third embodiment, the movement of the heat medium when the battery temperature adjustment device 1 warms up the battery 2 in the low temperature state at the start of charging in a low temperature environment is not shown by an arrow. At the start of charging in a low temperature environment, the heat is supplied from the external thermal contact surface 84 of the external heat source supply device 80 to the on-board thermal contact surface 35 of the connection heat exchanger 30. As a result, the heat medium flowing through the connection heat exchanger 30 absorbs heat from the on-board thermal contact surface 35 and the external thermal contact surface 84, and the heat medium is heated in the connection heat exchanger 30. By driving the first pump 25, the heat medium heated by the connection heat exchanger 30 flows from the connection heat exchanger 30 through the first return path 214 into the battery heat exchanger 10. The heat medium flowing into the battery heat exchanger 10 dissipates heat to the battery 2. Thereby, the battery 2 is warmed up.
 このようにして、外部熱源供給装置80の外部熱接触面84から車載熱接触面35に供給された温熱は、接続熱交換器30で加熱された熱媒体によって電池用熱交換器10へ輸送され、電池2に伝えられる。これにより、第3実施形態の電池温調装置1も、車両3に搭載される電池2を暖機することが可能である。 Thus, the heat supplied from the external heat contact surface 84 of the external heat source supply device 80 to the on-vehicle heat contact surface 35 is transported to the battery heat exchanger 10 by the heat medium heated by the connection heat exchanger 30. , Transmitted to the battery 2. As a result, the battery temperature control device 1 of the third embodiment can also warm up the battery 2 mounted on the vehicle 3.
 以上説明した第3実施形態の電池温調装置1は、液回路を使用した簡素な構成で、外部熱源供給装置80から供給される熱を用いて、車両3に搭載された電池2の温度を調整することができる。 The battery temperature control device 1 according to the third embodiment described above has a simple configuration using a liquid circuit, and uses the heat supplied from the external heat source supply device 80 to measure the temperature of the battery 2 mounted on the vehicle 3 It can be adjusted.
 (第4実施形態)
 第4実施形態について図7を参照して説明する。第4実施形態は、第1実施形態に対し、外部熱接触面84と車載熱接触面35との間にペルチェ素子71を備えたものである。第4実施形態では、外部熱接触面84と車載熱接触面35とは、ペルチェ素子71を介して熱移動が行われる。第4実施形態のペルチェ素子71は、外部熱源供給装置80が備える外部接続熱交換器83の外部熱接触面84に設けられている。このペルチェ素子71は、充電装置70に設けられたペルチェ用電源回路72から配線73を通じて電力を供給されて駆動する。
Fourth Embodiment
A fourth embodiment will be described with reference to FIG. The fourth embodiment is different from the first embodiment in that a Peltier device 71 is provided between the external thermal contact surface 84 and the on-board thermal contact surface 35. In the fourth embodiment, heat transfer is performed between the external thermal contact surface 84 and the on-vehicle thermal contact surface 35 via the Peltier device 71. The Peltier device 71 of the fourth embodiment is provided on the external heat contact surface 84 of the external connection heat exchanger 83 provided in the external heat source supply device 80. The Peltier device 71 is driven by supplying power from a Peltier power supply circuit 72 provided in the charging device 70 through the wiring 73.
 外部熱接触面84とペルチェ素子71と車載熱接触面35とを、直接接触または熱伝導部材6を介して間接的に熱接触させた状態で電池2を冷却する場合について説明する。図7では、電池2を冷却する場合の気体の熱媒体の動きを破線の矢印で示し、液体の熱媒体の動きを実線の矢印で示している。電池2を冷却する場合、ペルチェ素子71は、ペルチェ素子71のうち車載熱接触面35側の面711が冷却面となり、ペルチェ素子71のうち外部熱接触面84側の面712が放熱面となる。これにより、外部接続熱交換器83から接続熱交換器30に冷熱を供給するとき、外部接続熱交換器83の外部熱接触面84の温度をペルチェ素子71でさらに低い温度にして、車載熱接触面35に対し、より大きい冷熱を供給することが可能である。具体的には、外部熱接触面84の温度≧ペルチェ素子71のうち外部熱接触面84側の面712の温度>ペルチェ素子71のうち車載熱接触面35側の面711の温度、となる。 The case where the battery 2 is cooled in a state where the external thermal contact surface 84, the Peltier element 71, and the on-vehicle thermal contact surface 35 are in direct thermal contact or indirect thermal contact via the thermal conductive member 6 will be described. In FIG. 7, the movement of the heat medium of the gas in the case of cooling the battery 2 is indicated by a broken arrow, and the movement of the heat medium of the liquid is indicated by a solid arrow. When the battery 2 is to be cooled, in the Peltier device 71, the surface 711 on the in-vehicle thermal contact surface 35 side of the Peltier device 71 is a cooling surface, and the surface 712 on the external thermal contact surface 84 of the Peltier device 71 is a heat dissipation surface. . Thereby, when cold heat is supplied from the externally connected heat exchanger 83 to the connected heat exchanger 30, the temperature of the external thermal contact surface 84 of the externally connected heat exchanger 83 is further lowered by the Peltier element 71, and the in-vehicle thermal contact It is possible to supply more cold to the surface 35. Specifically, the temperature of the external thermal contact surface 84 温度 the temperature of the surface 712 on the external thermal contact surface 84 of the Peltier elements 71> the temperature of the surface 711 on the automotive thermal contact surface 35 of the Peltier elements 71.
 次に、外部熱接触面84とペルチェ素子71と車載熱接触面35とを、直接接触または熱伝導部材6を介して間接的に熱接触させた状態で電池2を暖機する場合について説明する。電池2を暖機する場合、ペルチェ素子71は、ペルチェ素子71のうち車載熱接触面35側の面711が放熱面となり、ペルチェ素子71のうち外部熱接触面84側の面712が冷却面となる。これにより、外部接続熱交換器83から接続熱交換器30に温熱を供給するとき、外部接続熱交換器83の外部熱接触面84の温度を、ペルチェ素子71でさらに高い温度にして、車載熱接触面35に対し、より大きい温熱を供給することが可能である。具体的には、外部熱接触面84の温度≦ペルチェ素子71のうち外部熱接触面84側の面712の温度<ペルチェ素子71のうち車載熱接触面35側の面711の温度、となる。 Next, the case where the battery 2 is warmed up in a state where the external thermal contact surface 84, the Peltier element 71, and the on-vehicle thermal contact surface 35 are in direct thermal contact or indirect thermal contact via the thermal conductive member 6 will be described. . When the battery 2 is warmed up, the surface 711 of the Peltier device 71 on the heat contact surface 35 side of the Peltier device 71 is a heat dissipation surface, and the surface 712 of the Peltier device 71 on the external heat contact surface 84 is a cooling surface Become. As a result, when supplying heat from the externally connected heat exchanger 83 to the connected heat exchanger 30, the temperature of the external thermal contact surface 84 of the externally connected heat exchanger 83 is made higher by the Peltier element 71, and It is possible to supply more heat to the contact surface 35. Specifically, the temperature of the external thermal contact surface 84 ≦ the temperature of the surface 712 of the Peltier element 71 on the external thermal contact surface 84 side <the temperature of the surface 711 of the Peltier element 71 on the thermal contact surface 35 side.
 以上説明した第4実施形態の電池温調装置1は、外部熱源供給装置80から接続熱交換器30に供給される冷熱または温熱をペルチェ素子71により増加させることが可能である。したがって、この電池温調装置1は、電池2の温度調整能力を高めることができる。 In the battery temperature control device 1 of the fourth embodiment described above, the cold heat or heat supplied from the external heat source supply device 80 to the connection heat exchanger 30 can be increased by the Peltier element 71. Therefore, the battery temperature control device 1 can enhance the temperature control capability of the battery 2.
 (第5実施形態)
 第5実施形態について図8を参照して説明する。第5実施形態は、第4実施形態に対し、ペルチェ素子75を外部熱接触面84に設けることに代えて、接続熱交換器30の車載熱接触面35に設けるようにしたものである。このペルチェ素子75は、車両3に設けられた図示していない電源回路から電力を供給されて駆動する。
Fifth Embodiment
The fifth embodiment will be described with reference to FIG. The fifth embodiment is different from the fourth embodiment in that the Peltier element 75 is provided on the on-board thermal contact surface 35 of the connection heat exchanger 30 instead of on the external thermal contact surface 84. The Peltier device 75 is driven by power supplied from a power supply circuit (not shown) provided in the vehicle 3.
 第5実施形態では、ペルチェ素子75のうち車載熱接触面35とは反対側の面752を冷却するためのペルチェ用液回路730が設けられている。このペルチェ用液回路730は、ペルチェ用熱交換器76、ポンプ77、配管78および放熱器79などにより構成されている。ペルチェ用熱交換器76は、ペルチェ素子75のうち車載熱接触面35とは反対側の面752に設けられている。 In the fifth embodiment, a Peltier liquid circuit 730 for cooling a surface 752 of the Peltier element 75 opposite to the thermal contact surface 35 is provided. The Peltier liquid circuit 730 is configured of a Peltier heat exchanger 76, a pump 77, a pipe 78, a radiator 79, and the like. The Peltier heat exchanger 76 is provided on a surface 752 of the Peltier element 75 opposite to the thermal contact surface 35.
 ポンプ77が駆動すると、ペルチェ用液回路730に液媒体が循環する。ペルチェ用液回路730を循環する液媒体は、放熱器79で空気に放熱することで冷却される。放熱器79から配管78を経由してペルチェ用熱交換器76に流入した液媒体は、ペルチェ素子75のうち車載熱接触面35とは反対側の面752と熱交換し、その面を冷却する。 When the pump 77 is driven, the liquid medium circulates in the Peltier liquid circuit 730. The liquid medium circulating in the Peltier liquid circuit 730 is cooled by radiating heat to the air by the radiator 79. The liquid medium flowing from the radiator 79 into the Peltier heat exchanger 76 via the piping 78 exchanges heat with the surface 752 of the Peltier element 75 opposite to the thermal contact surface 35 and cools the surface. .
 電池2の充電時において、外部熱源供給装置80が有する外部熱接触面84とペルチェ用熱交換器76とを、直接接触または熱伝導部材6を介して間接的に熱接触させた状態で電池2を冷却する場合について説明する。図7では、電池2を冷却する場合の気体の熱媒体の動きを破線の矢印で示し、液体の熱媒体の動きを実線の矢印で示している。電池2を冷却する場合、ペルチェ素子75は、ペルチェ素子75のうち車載熱接触面35側の面751が冷却面となり、ペルチェ素子75のうちペルチェ用熱交換器側の面752が放熱面となる。これにより、外部熱接触面84の温度をペルチェ素子75でさらに低い温度にして、車載熱接触面35に対し、より大きい冷熱を供給することが可能である。具体的には、外部熱接触面84の温度≧ペルチェ用熱交換器76の温度≧ペルチェ素子75のうちペルチェ用熱交換器側の面752の温度>ペルチェ素子75のうち車載熱接触面35側の面751の温度、となる。 At the time of charging of the battery 2, the battery 2 in a state where the external thermal contact surface 84 of the external heat source supply device 80 and the Peltier heat exchanger 76 are in direct thermal contact or indirect thermal contact via the thermal conduction member 6. The case of cooling the In FIG. 7, the movement of the heat medium of the gas in the case of cooling the battery 2 is indicated by a broken arrow, and the movement of the heat medium of the liquid is indicated by a solid arrow. When the battery 2 is to be cooled, in the Peltier element 75, the surface 751 on the in-vehicle thermal contact surface 35 side of the Peltier element 75 is a cooling surface, and the surface 752 on the Peltier heat exchanger side of the Peltier element 75 is a heat dissipation surface. . As a result, the temperature of the external thermal contact surface 84 can be further lowered by the Peltier device 75 to supply a larger amount of cold heat to the on-vehicle thermal contact surface 35. Specifically, the temperature of the external thermal contact surface 84 温度 the temperature of the Peltier heat exchanger 76 温度 the temperature of the surface 752 on the Peltier heat exchanger side of the Peltier element 75> the on-vehicle thermal contact surface 35 of the Peltier element 75 The temperature of the surface 751 is
 さらに、第5実施形態の電池温調装置1は、車両走行時においても、ペルチェ素子75を駆動してペルチェ素子75から車載熱接触面35に冷熱を供給することにより、電池2を冷却することが可能である。その場合も、ペルチェ素子75は、ペルチェ素子75のうち車載熱接触面35側の面751が冷却面となり、ペルチェ素子75のうちペルチェ用熱交換器側の面752が放熱面となる。車両走行時にペルチェ素子75から車載熱接触面35に冷熱を供給する場合、放熱器79からペルチェ用熱交換器76に流入する液媒体の温度を、ペルチェ素子75でさらに低い温度にして、車載熱接触面35に対し、より大きい冷熱を供給することが可能である。具体的には、放熱器79からペルチェ用熱交換器76に流入する液媒体の温度≧ペルチェ素子75のうちペルチェ用熱交換器側の面752の温度>ペルチェ素子75のうち車載熱接触面35側の面751の温度、となる。したがって、第5実施形態の電池温調装置1は、電池2の温度調整能力を高めることができる。 Furthermore, the battery temperature control device 1 of the fifth embodiment cools the battery 2 by driving the Peltier device 75 and supplying cold heat from the Peltier device 75 to the on-vehicle thermal contact surface 35 even while the vehicle is traveling. Is possible. Also in this case, in the Peltier element 75, the surface 751 on the in-vehicle thermal contact surface 35 side of the Peltier element 75 is a cooling surface, and the surface 752 on the Peltier heat exchanger side of the Peltier element 75 is a heat dissipation surface. When cold heat is supplied from the Peltier element 75 to the on-vehicle thermal contact surface 35 while the vehicle is traveling, the temperature of the liquid medium flowing from the radiator 79 into the Peltier heat exchanger 76 is made lower by the Peltier element 75. It is possible to supply more cold to the contact surface 35. Specifically, the temperature of the liquid medium flowing from the radiator 79 into the Peltier heat exchanger 7676the temperature of the surface 752 on the Peltier heat exchanger side of the Peltier element 75> the on-board thermal contact surface 35 of the Peltier element 75 The temperature of the side surface 751 is obtained. Therefore, the battery temperature control device 1 of the fifth embodiment can enhance the temperature control capability of the battery 2.
 (第6実施形態)
 第6実施形態について図9および図10を参照して説明する。第6実施形態は、電池温調装置1と充電装置70の制御方法を示したものである。
Sixth Embodiment
A sixth embodiment will be described with reference to FIG. 9 and FIG. The sixth embodiment shows a control method of the battery temperature adjusting device 1 and the charging device 70.
 図9に示すように、電池温調装置1が搭載される車両3では、電池2の温度は温度センサ7によって検出される。温度センサ7によって検出された電池2の温度は、その車両3に搭載される電池制御装置8に伝送される。電池制御装置8は、車両3の外部に設置される充電装置70に設けられる充電制御装置9と通信可能な構成である。充電制御装置9は、充電装置70が備える外部電力供給装置90の動作と外部熱源供給装置80の動作を制御するものである。 As shown in FIG. 9, in the vehicle 3 on which the battery temperature control device 1 is mounted, the temperature of the battery 2 is detected by the temperature sensor 7. The temperature of the battery 2 detected by the temperature sensor 7 is transmitted to the battery control device 8 mounted on the vehicle 3. The battery control device 8 is configured to be able to communicate with the charge control device 9 provided in the charging device 70 installed outside the vehicle 3. The charge control device 9 controls the operation of the external power supply device 90 included in the charging device 70 and the operation of the external heat source supply device 80.
 なお、電池制御装置8は、制御処理や演算処理を行うプロセッサ、プログラムやデータ等を記憶するROM、RAM等の記憶部を含むマイクロコンピュータ、およびその周辺回路で構成されている。なお、電池制御装置8の記憶部は、非遷移的実体的記憶媒体で構成されている。電池制御装置8は、記憶部に記憶されたプログラムに基づいて、各種制御処理および演算処理を行い、出力ポートに接続された各機器の作動を制御する。このことは、充電制御装置9についても同じである。 The battery control device 8 includes a processor that performs control processing and arithmetic processing, a ROM that stores programs, data, and the like, a microcomputer including a storage unit such as a RAM, and peripheral circuits thereof. The storage unit of the battery control device 8 is configured of a non-transitional substantial storage medium. The battery control device 8 performs various control processing and arithmetic processing based on the program stored in the storage unit, and controls the operation of each device connected to the output port. The same applies to the charge control device 9.
 電池制御装置8と充電制御装置9が行う制御処理について、図10のフローチャートを参照して説明する。この制御処理は、充電開始時および充電時に実行される。すなわち、この制御処理は、充電装置70の充電用コネクタ93が車両3に設けられた充電口4に差し込まれ、且つ、外部接続熱交換器83が車載熱接触面35に対し直接接触または熱伝導部材6を介して間接的に熱接触している状態で実行される。 Control processing performed by the battery control device 8 and the charge control device 9 will be described with reference to the flowchart in FIG. This control process is performed at the start of charging and at the time of charging. That is, in this control process, the charging connector 93 of the charging device 70 is inserted into the charging port 4 provided in the vehicle 3, and the external connection heat exchanger 83 makes direct contact or heat conduction with the on-vehicle thermal contact surface 35. It is carried out in a state of indirect thermal contact via the component 6.
 ステップS10で電池制御装置8は、温度センサ7により電池2の温度を検出する。次に、ステップS20で電池制御装置8は、電池2の温度が電池温度閾値の範囲内であるか否かを判定する。電池温度閾値の範囲とは、電池2が高温であることで電池2が劣化するおそれのある温度を上限とし、電池2が低温であることで内部抵抗が大きくて急速充電ができない温度を下限とするものである。この電池温度閾値は、予め実験などにより設定され、電池制御装置8の記憶部に記憶されている。電池制御装置8は、電池2の温度が電池温度閾値の範囲外にあると判定すると、充電制御装置9にそのことを伝送し、処理をステップS50に移行する。 The battery control device 8 detects the temperature of the battery 2 by the temperature sensor 7 in step S10. Next, in step S20, the battery control device 8 determines whether the temperature of the battery 2 is within the battery temperature threshold range. The upper limit of the battery temperature threshold is the temperature at which the battery 2 may deteriorate due to the high temperature of the battery 2 as the upper limit, and the lower temperature of the battery 2 where the internal resistance is large and rapid charging can not be performed. It is The battery temperature threshold is set in advance by experiments and the like, and is stored in the storage unit of the battery control device 8. If the battery control unit 8 determines that the temperature of the battery 2 is out of the range of the battery temperature threshold, it transmits that to the charge control unit 9 and shifts the process to step S50.
 ステップS50で充電制御装置9は、外部熱源供給装置80による電池2の冷却運転または暖機運転を行う。具体的には、電池2の温度が電池温度閾値より高い場合、外部熱源供給装置本体81から外部配管82、および、外部接続熱交換器83を介して、車載熱接触面35に冷熱が供給され、電池2の冷却運転が行われる。一方、電池2の温度が電池温度閾値より低い場合、外部熱源供給装置本体81から外部配管82、および、外部接続熱交換器83を介して、車載熱接触面35に温熱が供給され、電池2の暖機運転が行われる。
 ステップS50で電池2の冷却運転または暖機運転が開始された後、その運転が継続中、再びステップS10から上述の制御処理が繰り返し実行される。これにより、電池2の温度が電池温度閾値の範囲内になるまで、電池2の冷却運転または暖機運転が実行される。
In step S50, the charge control device 9 performs a cooling operation or a warm-up operation of the battery 2 by the external heat source supply device 80. Specifically, when the temperature of the battery 2 is higher than the battery temperature threshold, cold heat is supplied from the external heat source supply device main body 81 to the on-vehicle thermal contact surface 35 via the external piping 82 and the external connection heat exchanger 83. , And the cooling operation of the battery 2 is performed. On the other hand, when the temperature of the battery 2 is lower than the battery temperature threshold, the heat is supplied from the external heat source supply device body 81 to the on-vehicle thermal contact surface 35 via the external piping 82 and the externally connected heat exchanger 83. Warm-up operation is performed.
After the cooling operation or the warming-up operation of the battery 2 is started in step S50, while the operation is continued, the above-described control processing is repeatedly performed from step S10 again. Thereby, the cooling operation or the warm-up operation of the battery 2 is executed until the temperature of the battery 2 falls within the range of the battery temperature threshold.
 ステップS20において、電池制御装置8は、電池2の温度が電池温度閾値の範囲内にあると判定すると、充電制御装置9にそのことを伝送し、処理をステップS30に移行する。ステップS30で充電制御装置9は、外部電力供給装置90による急速充電を行う。具体的には、外部電力供給装置本体91から充電ケーブル92、充電用コネクタ93、充電口4および車両内部の配線5などを介して、車両3に搭載された電池2に電力が供給される。これにより、電池2が急速充電される。 If the battery control unit 8 determines in step S20 that the temperature of the battery 2 is within the battery temperature threshold range, it transmits that to the charge control unit 9, and the process proceeds to step S30. In step S30, the charge control device 9 performs quick charging by the external power supply device 90. Specifically, electric power is supplied from the external power supply device main body 91 to the battery 2 mounted on the vehicle 3 via the charging cable 92, the charging connector 93, the charging port 4 and the wiring 5 inside the vehicle. Thereby, the battery 2 is rapidly charged.
 ステップS30に続くステップS40で充電制御装置9は、外部熱源供給装置80による電池2の冷却運転を行う。具体的には、外部熱源供給装置本体81から外部配管82、および、外部接続熱交換器83を介して、車載熱接触面35に冷熱が供給され、電池2の冷却運転が行われる。電池2の冷却運転は、電池2の急速充電が終了するまで、継続して行われる。なお、電池2の冷却運転を行う際、電池制御装置8は、充電制御装置9との通信により、外部熱源供給装置80が接続熱交換器30に対して供給する熱量を、電池2の温度に応じて調整してもよい。これにより、電池2の温度に応じた冷熱量が外部熱源供給装置80から電池温調装置1に対して供給される。したがって、急速充電中に電池2の温度が電池温度閾値の範囲から外れることが防がれる。 In step S40 following step S30, the charge control device 9 performs a cooling operation of the battery 2 by the external heat source supply device 80. Specifically, cold heat is supplied from the external heat source supply device main body 81 to the on-vehicle thermal contact surface 35 through the external pipe 82 and the external connection heat exchanger 83, and the battery 2 is cooled. The cooling operation of the battery 2 is continuously performed until the rapid charge of the battery 2 is completed. In addition, when performing the cooling operation of the battery 2, the battery control device 8 communicates the heat amount supplied from the external heat source supply device 80 to the connection heat exchanger 30 by communication with the charge control device 9 to the temperature of the battery 2. It may be adjusted accordingly. Thereby, the amount of cold heat according to the temperature of the battery 2 is supplied from the external heat source supply device 80 to the battery temperature adjustment device 1. Therefore, it is possible to prevent the temperature of the battery 2 from being out of the range of the battery temperature threshold during rapid charging.
 以上説明した第6実施形態では、電池制御装置8と充電制御装置9は、電池2の急速充電を開始する前、電池2の温度が所定の電池温度閾値の範囲内となるまで外部熱源供給装置80が接続熱交換器30に対して冷熱または温熱を供給するように制御する。また、電池制御装置8と充電制御装置9は、電池2の温度が所定の電池温度閾値の範囲になった後、外部電力供給装置90が電池2に対して急速充電を開始するように制御する。これにより、急速充電時に電池2が高温となって劣化することが防がれる。また、低温環境においても電池2を暖機した後に急速充電を行うことができる。 In the sixth embodiment described above, the battery control device 8 and the charge control device 9 perform the external heat source supply device until the temperature of the battery 2 falls within the predetermined battery temperature threshold before the rapid charging of the battery 2 is started. Control is performed to supply cold or warm heat to the connection heat exchanger 30. Further, the battery control device 8 and the charge control device 9 control the external power supply device 90 to start the rapid charging of the battery 2 after the temperature of the battery 2 falls within the predetermined battery temperature threshold range. . This prevents the battery 2 from becoming hot and deteriorating during rapid charging. In addition, even in a low temperature environment, quick charging can be performed after the battery 2 is warmed up.
 なお、上述した制御処理において、電池制御装置8は、急速充電を開始する前、および、急速充電運転中において、複数の電池セル同士の温度差が所定の電池セル間温度閾値より小さいか否かを判定してもよい。電池セル間温度閾値とは、複数の電池セルのうち一部の電池セルの温度が高温であることで電池2が劣化するおそれのある温度である。この電池セル間温度閾値は、予め実験などにより設定され、電池制御装置8の記憶部に記憶されている。急速充電開始前、電池制御装置8は、複数の電池セル同士の温度差が電池セル間温度閾値より小さいと判定すると、充電制御装置9にそのことを伝送し、外部熱源供給装置80による電池2の冷却運転または暖機運転を行う。これにより、複数の電池セル同士の温度差が大きくなることで電池2が劣化することを防ぐことができる。急速充電中、電池制御装置8は、複数の電池セル同士の温度差が電池セル間温度閾値より小さくなるように、外部熱源供給装置80から接続熱交換器30に供給する冷熱量を制御する。これにより、複数の電池セル同士の温度差が大きくなることが防がれる。 In the control process described above, battery control unit 8 determines whether the temperature difference between the plurality of battery cells is smaller than a predetermined battery cell temperature threshold before starting the rapid charging and during the rapid charging operation. May be determined. The inter-battery cell temperature threshold is a temperature at which the battery 2 may be degraded because the temperature of some of the plurality of battery cells is high. The inter-battery cell temperature threshold is set in advance by experiments or the like, and stored in the storage unit of the battery control device 8. If the battery control unit 8 determines that the temperature difference between the plurality of battery cells is smaller than the battery cell temperature threshold before the rapid charge start, it transmits that to the charge control unit 9, and the battery 2 by the external heat source supply unit 80. Perform cooling operation or warm-up operation. Thereby, it can prevent that the battery 2 degrades by the temperature difference of several battery cells becoming large. During the rapid charge, the battery control device 8 controls the amount of cold heat supplied from the external heat source supply device 80 to the connection heat exchanger 30 such that the temperature difference between the plurality of battery cells becomes smaller than the inter-battery cell temperature threshold. This prevents the temperature difference between the plurality of battery cells from becoming large.
 (第7実施形態)
 第7実施形態について図11を参照して説明する。第7実施形態は、車両3の外部に設置される充電装置70について説明する。充電装置70は、外部電力供給装置90と外部熱源供給装置80を備えている。
Seventh Embodiment
A seventh embodiment will be described with reference to FIG. The seventh embodiment describes a charging device 70 installed outside the vehicle 3. The charging device 70 includes an external power supply device 90 and an external heat source supply device 80.
 外部電力供給装置90は、外部電力供給装置本体91、充電ケーブル92、および、充電用コネクタ93などを備えている。外部電力供給装置本体91には、図示していない発電所から変電所95などを経由して電力が供給される。外部電力供給装置90が備える充電用コネクタ93は、車両3に設けられた充電口4に差し込むことが可能である。その状態で、外部電力供給装置90は、外部電力供給装置本体91から充電ケーブル92、充電用コネクタ93、充電口4および車両内部の配線5などを介して、車両3に搭載された電池2に電力を供給する。これにより、外部電力供給装置90は、車両3に搭載された電池2を充電することが可能である。 The external power supply device 90 includes an external power supply device main body 91, a charging cable 92, a charging connector 93, and the like. Electric power is supplied to the external power supply main body 91 from a power plant (not shown) via the substation 95 and the like. The charging connector 93 provided in the external power supply device 90 can be inserted into the charging port 4 provided in the vehicle 3. In that state, external power supply device 90 is connected to battery 2 mounted on vehicle 3 from external power supply device main body 91 through charging cable 92, charging connector 93, charging port 4 and wiring 5 inside the vehicle. Supply power. Thus, the external power supply device 90 can charge the battery 2 mounted on the vehicle 3.
 外部熱源供給装置80は、外部電力供給装置90と共に充電装置70に設置される。外部熱源供給装置80は、車両3に搭載される電池温調装置1に冷熱または温熱を供給するものである。外部熱源供給装置80は、水、油または液体窒素などの熱媒体が流れる熱媒体回路800を備えている。熱源制御装置801は、その熱媒体回路800の各構成の動作を制御する。熱媒体回路800は、ポンプ802、第1バルブ803、ラジエータ804、チラー805、保温タンク806、第2バルブ807および、外部接続熱交換器83などが配管809によって接続されている。ポンプ802は、熱媒体回路800に熱媒体を循環させる。第1バルブ803は、ポンプ802から流出した熱媒体がラジエータ804またはチラー805に流れるように流路を切り替える。ラジエータ804は、ファン810によって送風される外気と、熱媒体とを熱交換させ、熱媒体を冷却するものである。ラジエータ804は、熱媒体に対し冷熱を供給するための熱源部の一例である。 The external heat source supply device 80 is installed in the charging device 70 together with the external power supply device 90. The external heat source supply device 80 supplies cold heat or heat to the battery temperature control device 1 mounted on the vehicle 3. The external heat source supply device 80 includes a heat medium circuit 800 in which a heat medium such as water, oil or liquid nitrogen flows. The heat source control device 801 controls the operation of each component of the heat medium circuit 800. The heat medium circuit 800 includes a pump 802, a first valve 803, a radiator 804, a chiller 805, a heat retention tank 806, a second valve 807, an externally connected heat exchanger 83, and the like connected by a pipe 809. The pump 802 circulates the heat medium to the heat medium circuit 800. The first valve 803 switches the flow path so that the heat medium flowing out of the pump 802 flows to the radiator 804 or the chiller 805. The radiator 804 exchanges heat between the outside air blown by the fan 810 and the heat medium to cool the heat medium. The radiator 804 is an example of a heat source unit for supplying cold heat to the heat medium.
 チラー805は、冷凍サイクル811を流れる低温低圧の冷媒と熱媒体との熱交換により、熱媒体を冷却するものである。冷凍サイクル811では、コンプレッサ812で圧縮された冷媒がコンデンサ813で外気に放熱された後、膨張弁814で減圧膨張される。そしてその冷媒はチラー805を流れる熱媒体から吸熱する。これにより、熱媒体は、冷凍サイクル811を循環する冷媒との熱交換により冷却される。したがって、冷凍サイクル811も、熱媒体に対し冷熱を供給するための熱源部の一例である。なお、熱媒体に対し冷熱を供給するための熱源部として、図示していないペルチェ素子や冷却液回路を採用することも可能である。ラジエータ804または冷凍サイクル811などの熱源部によって冷却された熱媒体は、配管809を流れて保温タンク806に貯留される。 The chiller 805 cools the heat medium by heat exchange between the low-temperature low-pressure refrigerant flowing in the refrigeration cycle 811 and the heat medium. In the refrigeration cycle 811, the refrigerant compressed by the compressor 812 is radiated to the outside air by the condenser 813 and then decompressed and expanded by the expansion valve 814. The refrigerant absorbs heat from the heat medium flowing through the chiller 805. Thus, the heat medium is cooled by heat exchange with the refrigerant circulating in the refrigeration cycle 811. Therefore, the refrigeration cycle 811 is also an example of a heat source unit for supplying cold heat to the heat medium. In addition, it is also possible to employ a Peltier device or a coolant circuit (not shown) as a heat source unit for supplying cold heat to the heat medium. The heat medium cooled by the heat source unit such as the radiator 804 or the refrigeration cycle 811 flows through the pipe 809 and is stored in the heat retention tank 806.
 保温タンク806は、その熱媒体を、所定の温度状態で貯留することが可能である。温度センサ816は、保温タンク806に貯留された熱媒体の温度を検出する。温度センサ816により検出された保温タンク806の熱媒体の温度は、熱源制御装置801に伝送される。保温タンク806は、急速充電時の電池2の発熱量に対応する冷熱量を貯留可能な大きさに設定されている。これにより、外部熱源供給装置80は、この保温タンク806に、所定の温度状態にした熱媒体を貯留しておくことで、電池2の温度調整のために短時間に大能力が必要な急速充電時に対応することができる。 The heat retention tank 806 can store the heat medium at a predetermined temperature state. The temperature sensor 816 detects the temperature of the heat medium stored in the heat retention tank 806. The temperature of the heat medium of the heat retention tank 806 detected by the temperature sensor 816 is transmitted to the heat source control device 801. The heat retention tank 806 is set to a size capable of storing a cold heat amount corresponding to the calorific value of the battery 2 at the time of quick charge. As a result, the external heat source supply device 80 stores the heat medium brought into a predetermined temperature state in the heat insulation tank 806, thereby rapidly charging the battery 2 in a short time for temperature control. Sometimes you can cope.
 保温タンク806から流出した熱媒体は、第2バルブ807を経由して外部接続熱交換器83に流れる。なお、第2バルブ807は、保温タンク806から流出した熱媒体が外部接続熱交換器83またはポンプ802に流れるように流路を切り替えるものである。外部接続熱交換器83は、車両3に設けられた車載熱接触面35に直接接触または熱伝導部材6を介して間接的に熱接触可能な外部熱接触面84を有している。外部接続熱交換器83は、配管809および外部配管82を流れる熱媒体により供給される熱を、外部熱接触面84から車載熱接触面35へ伝えることが可能である。 The heat medium flowing out of the heat retention tank 806 flows to the externally connected heat exchanger 83 via the second valve 807. The second valve 807 switches the flow path so that the heat medium flowing out of the heat retention tank 806 flows to the externally connected heat exchanger 83 or the pump 802. The external connection heat exchanger 83 has an external thermal contact surface 84 which can be in direct thermal contact with the on-vehicle thermal contact surface 35 provided on the vehicle 3 or indirectly through the thermal conductive member 6. The external connection heat exchanger 83 can transfer the heat supplied by the heat medium flowing through the pipe 809 and the external pipe 82 from the external thermal contact surface 84 to the on-vehicle thermal contact surface 35.
 充電装置70に供給される電力は、外部電力供給装置本体91とは別に、外部熱源供給装置80用の蓄電池820に蓄電される。蓄電池820に蓄電された電力により、熱媒体回路800に設けられたポンプ802、および、ラジエータ804のファン810、冷凍サイクル811のコンプレッサ812およびファン817、第1バルブ803および第2バルブ807などが駆動する。蓄電池820は、それらの装置を急速充電時に駆動することが可能な電力を蓄電している。これにより、外部熱源供給装置80は、急速充電時に外部電力供給装置本体91に大電力が使用されるときにも、蓄電池820に蓄えた電力により駆動することができる。 The power supplied to the charging device 70 is stored in the storage battery 820 for the external heat source supply device 80 separately from the external power supply device main body 91. The electric power stored in storage battery 820 drives pump 802 provided in heat medium circuit 800, fan 810 of radiator 804, compressor 812 and fan 817 of refrigeration cycle 811, first valve 803, second valve 807, etc. Do. The storage battery 820 stores power capable of driving those devices at the time of quick charge. Thus, the external heat source supply device 80 can be driven by the power stored in the storage battery 820 even when large power is used for the external power supply device main body 91 at the time of rapid charging.
 以上説明した第7実施形態の充電装置70は、第1~第6実施形態で説明した電池温調装置1に対応するものである。 The charging device 70 of the seventh embodiment described above corresponds to the battery temperature control device 1 described in the first to sixth embodiments.
 (他の実施形態)
 本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。
(Other embodiments)
The present disclosure is not limited to the embodiments described above, and can be modified as appropriate. Further, the above embodiments are not irrelevant to each other, combination unless obviously impossible, can be appropriately combined. In each of the above embodiments, the elements constituting the embodiments, unless such case considered if explicitly and in principle clearly essential to be essential, it is not necessarily indispensable needless to say Yes. Further, in the above embodiments, when numerical values such as the number, numerical value, amount, range, etc. of constituent elements of the embodiment are mentioned, it is clearly indicated that they are particularly essential and clearly limited to a specific number in principle. It is not limited to the specific number except when it is done. In each of the above embodiments, the shape of the components, when referring to a positional relationship or the like, except in particular clearly the case and principle specific shape, etc. If to be limited to the positional relationship or the like, the shape, It is not limited to the positional relationship and the like.
 (1)他の実施形態では、外部熱源供給装置80が備える外部接続熱交換器83の外部熱接触面84と、電池温調装置1が備える接続熱交換器30の車載熱接触面35とは、全面同士が熱接触するものに限らない。例えば、電池温調装置1が備える接続熱交換器30の車載熱接触面35の上側の部位のみに外部熱接触面84が熱接触する構成でもよく、または、接続熱交換器30の車載熱接触面35の下側の部位のみに外部熱接触面84が熱接触する構成でもよい。 (1) In the other embodiment, the external heat contact surface 84 of the external connection heat exchanger 83 provided in the external heat source supply device 80 and the on-vehicle heat contact surface 35 of the connection heat exchanger 30 provided in the battery temperature adjustment device 1 are , It does not restrict to what thermal contact mutually. For example, the external thermal contact surface 84 may be in thermal contact only with the upper portion of the in-vehicle thermal contact surface 35 of the connection heat exchanger 30 included in the battery temperature adjustment device 1 or the in-vehicle thermal contact of the connection heat exchanger 30 The external thermal contact surface 84 may be in thermal contact with only the lower portion of the surface 35.
 (2)他の実施形態では、電池温調装置1は、1つの接続熱交換器30に対し、複数の電池用熱交換器10が配管を介して接続される構成としてもよい。その場合、1つの接続熱交換器30に対し、複数の電池用熱交換器10は並列に接続されてもよく、または、直列に接続されてもよい。 (2) In another embodiment, the battery temperature adjustment device 1 may be configured such that a plurality of battery heat exchangers 10 are connected to one connection heat exchanger 30 via piping. In that case, the plurality of battery heat exchangers 10 may be connected in parallel or in series to one connection heat exchanger 30.
 (まとめ)
 上述の実施形態の一部または全部で示された第1の観点によれば、電池温調装置は、車両の外部に設置される外部熱源供給装置から供給される熱を用いて車両に搭載された電池の温度を調節する。電池温調装置は、電池用熱交換器、配管および接続熱交換器を備える。電池用熱交換器は、電池と熱媒体との熱交換を行う。配管は、電池用熱交換器に接続され、熱媒体が流れる。接続熱交換器は、外部熱源供給装置が有する外部熱接触面に直接接触または熱伝導部材を介して間接的に熱接触可能な車載熱接触面を有する。その接続熱交換器は、外部熱源供給装置が有する外部熱接触面から車載熱接触面を介して伝わる熱により、配管を通じて流れる熱媒体を冷却又は加熱する。
(Summary)
According to the first aspect of the present invention described in part or all of the above embodiments, the battery temperature control device is mounted on the vehicle using heat supplied from an external heat source supply device installed outside the vehicle. Adjust the battery temperature. The battery temperature control apparatus includes a battery heat exchanger, piping, and a connection heat exchanger. The battery heat exchanger exchanges heat between the battery and the heat medium. The piping is connected to the battery heat exchanger, and the heat medium flows. The connection heat exchanger has an on-board thermal contact surface that can be in direct thermal contact with the external thermal contact surface of the external heat source supply device or indirectly through a thermal conductive member. The connection heat exchanger cools or heats the heat medium flowing through the pipe by the heat transmitted from the external thermal contact surface of the external heat source supply device through the on-board thermal contact surface.
 第2の観点によれば、電池温調装置は、配管の途中に設けられたポンプをさらに備える。配管は、電池用熱交換器と接続熱交換器を接続する往路通路および復路通路を有する。電池用熱交換器、往路通路、復路通路、接続熱交換器およびポンプは、液体の熱媒体が循環する液回路を構成している。これによれば、電池温調装置は、液回路を使用した簡素な構成で、外部熱源供給装置から供給される冷熱または温熱を用いて、車両に搭載された電池の温度を調整することができる。 According to the second aspect, the battery temperature control apparatus further includes a pump provided in the middle of the pipe. The piping has a forward passage and a return passage connecting the battery heat exchanger and the connection heat exchanger. The battery heat exchanger, the forward passage, the return passage, the connection heat exchanger, and the pump constitute a liquid circuit in which a liquid heat medium circulates. According to this, the battery temperature control device can adjust the temperature of the battery mounted on the vehicle by using the cold heat or the heat supplied from the external heat source supply device with a simple configuration using the liquid circuit. .
 第3の観点によれば、配管は、液体通路および気体通路を有する。液体通路は、電池用熱交換器のうちで熱媒体の液面より下側に設けられた流出入口と、接続熱交換器のうちで熱媒体の液面より下側に設けられた流出入口とを接続する。気体通路は、電池用熱交換器のうちで熱媒体の液面より上側に設けられた流出入口と、接続熱交換器のうちで熱媒体の液面より上側に設けられた流出入口とを接続する。電池用熱交換器と配管と接続熱交換器は、熱媒体が循環するサーモサイフォン回路を構成している。サーモサイフォン回路を循環する熱媒体の液面は、電池用熱交換器の内側の流路の途中に位置し、且つ、接続熱交換器の内側の流路の途中に位置している。 According to a third aspect, the pipe has a liquid passage and a gas passage. The liquid passage includes an outlet / inlet provided below the liquid surface of the heat medium in the battery heat exchanger, and an outlet / inlet provided below the liquid surface of the heat medium in the connected heat exchanger. Connect The gas passage connects an outlet / inlet provided above the liquid surface of the heat medium in the battery heat exchanger and an outlet / inlet provided above the liquid surface of the heat medium in the connected heat exchanger. Do. The battery heat exchanger, the piping, and the connection heat exchanger constitute a thermosyphon circuit in which a heat medium circulates. The liquid surface of the heat medium circulating in the thermosyphon circuit is located midway in the flow path inside the battery heat exchanger, and also midway in the flow path inside the connection heat exchanger.
 これによれば、電池用熱交換器の内側の流路で、熱媒体は蒸発と凝縮のどちらも行うことが可能である。また、接続熱交換器の内側の流路で、熱媒体は蒸発と凝縮のどちらも行うことが可能である。そのため、電池温調装置は、外部熱源供給装置が有する外部熱接触面から車載熱接触面を介して接続熱交換器に伝わる冷熱または温熱により、電池の冷却と暖機の両方を行うことが可能である。したがって、電池温調装置は、サーモサイフォン回路を用いた熱輸送効率の高い構成で、外部熱源供給装置から供給される熱を用いて、車両に搭載された電池の温度を調整することができる。 According to this, the heat medium can perform both evaporation and condensation in the flow path inside the battery heat exchanger. Also, in the flow path inside the connecting heat exchanger, the heat medium can perform both evaporation and condensation. Therefore, the battery temperature control device can perform both cooling and warming-up of the battery by cold heat or heat transferred from the external heat contact surface of the external heat source supply device to the connection heat exchanger through the on-vehicle heat contact surface. It is. Therefore, the battery temperature control device has a high heat transfer efficiency using a thermosyphon circuit, and can adjust the temperature of the battery mounted on the vehicle using the heat supplied from the external heat source supply device.
 第4の観点によれば、電池温調装置は、車載熱源部をさらに備える。車載熱源部は、車両に搭載され、配管を通じて熱媒体が流れるように構成され、熱媒体と他の熱媒体との熱交換により、配管を通じて流れる熱媒体を冷却または加熱する。 According to the fourth aspect, the battery temperature control apparatus further includes an on-vehicle heat source unit. The on-vehicle heat source unit is mounted on a vehicle, is configured such that the heat medium flows through the pipe, and cools or heats the heat medium flowing through the pipe by heat exchange between the heat medium and the other heat medium.
 これによれば、電池温調装置は、電池を充放電しているときの車両の状態や電池の発熱状態に応じて、車載熱源部を熱供給源とした電池の温度調整と、外部熱源供給装置を熱供給源とした電池の温度調整を使い分けることができる。例えば、車両停車中に外部電力供給装置から電池に充電を行う場合、電池の発熱量が大きいときは、外部熱源供給装置と車載熱源部の両方を熱供給源とした電池の温度調整を行う。また、車両停車中に外部電力供給装置から電池に充電を行う場合、電池の発熱量が小さく、且つ、車内に乗員が乗車しているときは、外部熱源供給装置を熱供給源とした電池の温度調整を行い、車載熱源部は車室内空調設備の熱供給源として利用してもよい。一方、車両走行時に電池が充放電により発熱する場合には、車載熱源部を熱供給源とした電池の温度調整を行うことが可能である。 According to this, according to the state of the vehicle when charging and discharging the battery and the heat generation state of the battery, the battery temperature control device adjusts the temperature of the battery using the on-vehicle heat source unit as a heat source, and supplies the external heat source. The temperature control of the battery which made the apparatus a heat supply can be used properly. For example, when charging the battery from the external power supply device while the vehicle is stopped, when the calorific value of the battery is large, temperature control of the battery is performed using both the external heat source supply device and the on-vehicle heat source unit as heat sources. In addition, when the battery is charged from the external power supply device while the vehicle is stopped, the calorific value of the battery is small, and when the passenger is in the car, the battery using the external heat source supply device as a heat supply source The temperature control may be performed, and the on-vehicle heat source unit may be used as a heat source of the indoor air conditioning system. On the other hand, when the battery generates heat due to charge and discharge when the vehicle is traveling, it is possible to adjust the temperature of the battery using the on-vehicle heat source unit as a heat supply source.
 第5の観点によれば、車載熱源部は、車両に搭載される冷凍サイクルが備える蒸発器に接続された冷媒放熱器、車両に搭載される液回路に接続された液冷放熱器、空気放熱器、またはペルチェ素子により構成されている。これによれば、車載熱源部として、種々の構成を採用することが可能である。 According to the fifth aspect, the on-vehicle heat source unit is a refrigerant radiator connected to an evaporator provided in a refrigeration cycle mounted on a vehicle, a liquid-cooled radiator connected to a liquid circuit mounted on a vehicle, air radiation Or a Peltier element. According to this, it is possible to adopt various configurations as the on-vehicle heat source unit.
 第6の観点によれば、電池温調装置は、外部熱接触面と車載熱接触面との間に設けられるペルチェ素子をさらに備える。これによれば、外部熱源供給装置から接続熱交換器に供給される冷熱または温熱をペルチェ素子により増加させることが可能である。例えば、外部熱源供給装置から接続熱交換器に冷熱を供給する場合、外部熱接触面の温度をペルチェ素子でさらに低い温度として、車載熱接触面に対し、より大きい冷熱を供給することが可能である。また、外部熱源供給装置から接続熱交換器に温熱を供給する場合、外部熱接触面の温度をペルチェ素子でさらに高い温度として、車載熱接触面に対し、より大きい温熱を供給することが可能である。したがって、電池温調装置は、電池の温度調整能力を高めることができる。 According to the sixth aspect, the battery temperature control apparatus further includes a Peltier element provided between the external thermal contact surface and the on-board thermal contact surface. According to this, it is possible to increase cold heat or heat supplied from the external heat source supply device to the connection heat exchanger by the Peltier element. For example, in the case where cold heat is supplied from the external heat source supply device to the connection heat exchanger, it is possible to supply larger cold heat to the on-vehicle thermal contact surface, with the temperature of the external thermal contact surface being lower by the Peltier element. is there. Moreover, when supplying heat from the external heat source supply device to the connection heat exchanger, it is possible to supply larger heat to the on-vehicle thermal contact surface, with the temperature of the external thermal contact surface being a higher temperature by the Peltier element. is there. Therefore, the battery temperature control device can enhance the temperature control capability of the battery.
 第7の観点によれば、電池は、車両の外部に設置される外部電力供給装置から供給される電力により充電可能な構成である。電池温調装置は、外部電力供給装置の駆動および外部熱源供給装置の駆動を制御する充電制御装置と通信可能な電池制御装置を備える。その電池制御装置は、電池の急速充電時、充電制御装置との通信により、電池の温度が所定の電池温度閾値の範囲となるまで外部熱源供給装置が接続熱交換器に対して冷熱または温熱を供給するように制御する。また、電池制御装置は、充電制御装置との通信により、電池の温度が所定の電池温度閾値の範囲になった後、外部電力供給装置が電池に対して急速充電を開始するように制御する。 According to the seventh aspect, the battery is configured to be chargeable by the power supplied from the external power supply device installed outside the vehicle. The battery temperature control device includes a battery control device that can communicate with a charge control device that controls the drive of the external power supply device and the drive of the external heat source supply device. The battery control unit communicates with the charge control unit during rapid charge of the battery so that the external heat source supply unit cools or heats the connected heat exchanger until the battery temperature falls within the predetermined battery temperature threshold range. Control to supply. Further, the battery control device controls the external power supply device to start the rapid charging of the battery after the temperature of the battery reaches a predetermined battery temperature threshold value by communication with the charge control device.
 これによれば、電池の温度が高いときに急速充電を行うと、電池が劣化するおそれがある。一方、電池の温度が低いと、電池の内部抵抗が大きくなり、急速充電を行うことができない。そのため、電池制御装置は、電池の急速充電時、充電制御装置との通信により、外部熱源供給装置を用いて電池の温度を充電可能な所定の温度とした後、急速充電を開始するように制御する。 According to this, when the battery is rapidly charged when the temperature of the battery is high, the battery may be degraded. On the other hand, when the temperature of the battery is low, the internal resistance of the battery is large, and rapid charging can not be performed. Therefore, at the time of rapid charge of the battery, the battery control device controls to start rapid charge after setting the temperature of the battery to a predetermined chargeable temperature using an external heat source supply device by communication with the charge control device. Do.
 第8の観点によれば、電池制御装置は、充電制御装置との通信により、外部熱源供給装置から接続熱交換器に対して供給する熱量を電池の温度に応じて調整する。これによれば、電池制御装置は、充電制御装置との通信により、外部熱源供給装置から供給される熱量を適切に制御し、電池を短時間で充電可能な所定の温度範囲にすることができる。 According to the eighth aspect, the battery control device adjusts the amount of heat supplied from the external heat source supply device to the connected heat exchanger according to the temperature of the battery by communication with the charge control device. According to this, the battery control device can appropriately control the amount of heat supplied from the external heat source supply device by communicating with the charge control device, and can bring the battery into a predetermined temperature range that can be charged in a short time .
 第9の観点によれば、車両の外部に設置される外部熱源供給装置は、ポンプ、熱源部、保温タンク、および、外部接続熱交換器を備える。ポンプは、熱媒体回路に熱媒体を循環させる。熱源部は、熱媒体回路を流れる熱媒体を冷却または加熱する。保温タンクは、熱源部で冷却または加熱された熱媒体を、所定の温度で貯留する。外部接続熱交換器は、車両に設けられた車載熱接触面に直接接触または熱伝導部材を介して間接的に熱接触可能な外部熱接触面を有する。そして外部接続熱交換器は、熱媒体回路を流れる熱媒体により供給される熱を、外部熱接触面から車載熱接触面へ伝えることが可能である。 According to the ninth aspect, the external heat source supply device installed outside the vehicle includes the pump, the heat source unit, the heat retention tank, and the externally connected heat exchanger. The pump circulates the heat medium through the heat medium circuit. The heat source cools or heats the heat medium flowing through the heat medium circuit. The heat retention tank stores the heat medium cooled or heated by the heat source unit at a predetermined temperature. The external connection heat exchanger has an external thermal contact surface which can be in direct thermal contact with the on-board thermal contact surface provided in the vehicle or indirectly through a thermal conductive member. The externally connected heat exchanger can then transfer the heat supplied by the heat medium flowing through the heat medium circuit from the external heat contact surface to the on-vehicle heat contact surface.
 これによれば、外部熱源供給装置は、所定の温度状態にした熱媒体を保温タンクに貯留しておくことで、電池の温度調整のために短時間に大能力が必要な急速充電時に対応することができる。 According to this, the external heat source supply device copes with the time of rapid charging which requires a large capacity in a short time for temperature control of the battery by storing the heat medium brought into the predetermined temperature state in the heat retention tank. be able to.
 第10の観点によれば、外部熱源供給装置は、ポンプおよび熱源部を駆動するための電力を蓄電する蓄電池をさらに備える。これによれば、外部熱源供給装置は、急速充電時を除く時間に蓄電池に電力を蓄電しておくことで、電池の充電のために大電力が必要な急速充電時にも、予め蓄電池に蓄えた電力を使って電池の冷却を行うことが可能である。 According to the tenth aspect, the external heat source supply device further includes a storage battery that stores power for driving the pump and the heat source unit. According to this, the external heat source supply device stores the electric power in the storage battery at the time other than the time of the rapid charge, and stores it in the storage battery also at the time of the rapid charge that requires a large electric power to charge the battery. Power can be used to cool the battery.

Claims (10)

  1.  車両(3)の外部に設置される外部熱源供給装置(80)から供給される熱を用いて前記車両に搭載された電池(2)の温度を調節する電池温調装置であって、
     前記電池と熱媒体との熱交換を行う電池用熱交換器(10)と、
     前記電池用熱交換器に接続され、熱媒体が流れる配管(21、22)と、
     前記外部熱源供給装置が有する外部熱接触面(84)に直接接触または熱伝導部材(6)を介して間接的に熱接触可能な車載熱接触面(35)を有し、前記外部熱接触面から前記車載熱接触面を介して伝わる熱により、前記配管を通じて流れる熱媒体を冷却又は加熱する接続熱交換器(30)と、を備える電池温調装置。
    A battery temperature control apparatus that adjusts the temperature of a battery (2) mounted on the vehicle using heat supplied from an external heat source supply device (80) installed outside the vehicle (3),
    A battery heat exchanger (10) for exchanging heat between the battery and a heat medium;
    Piping (21, 22) connected to the battery heat exchanger and through which a heat medium flows;
    It has an on-board thermal contact surface (35) which can be in direct thermal contact with the external thermal contact surface (84) of the external heat source supply device or indirectly via the thermal conduction member (6), the external thermal contact surface And a connection heat exchanger (30) for cooling or heating the heat medium flowing through the pipe by the heat transmitted from the on-board thermal contact surface.
  2.  前記配管の途中に設けられたポンプ(25)をさらに備え、
     前記配管は、前記電池用熱交換器と前記接続熱交換器を接続する往路通路(213)および復路通路(214)を有するものであり、
     前記電池用熱交換器、前記往路通路、前記復路通路、前記接続熱交換器および前記ポンプは、液体の熱媒体が循環する液回路(300)を構成している、請求項1に記載の電池温調装置。
    It further comprises a pump (25) provided in the middle of the piping,
    The piping has a forward passage (213) and a return passage (214) connecting the battery heat exchanger and the connection heat exchanger,
    The battery according to claim 1, wherein the battery heat exchanger, the forward passage, the return passage, the connection heat exchanger, and the pump constitute a liquid circuit (300) in which a heat medium of liquid circulates. Temperature control device.
  3.  前記配管は、
     前記電池用熱交換器のうちで熱媒体の液面(FL1)より下側に設けられた流出入口(121)と、前記接続熱交換器のうちで熱媒体の液面(FL2)より下側に設けられた流出入口(321)とを接続する液体通路(211)と、
     前記電池用熱交換器のうちで熱媒体の液面より上側に設けられた流出入口(111)と、前記接続熱交換器のうちで熱媒体の液面より上側に設けられた流出入口(311)とを接続する気体通路(212)と、を有するものであり、
     前記電池用熱交換器と前記配管と前記接続熱交換器は、熱媒体が循環するサーモサイフォン回路(100)を構成しており、
     前記サーモサイフォン回路を循環する熱媒体の液面(FL1、FL2)は、前記電池用熱交換器の内側の流路の途中に位置し、且つ、前記接続熱交換器の内側の流路の途中に位置している、請求項1に記載の電池温調装置。
    The piping is
    The outflow inlet (121) provided below the liquid surface (FL1) of the heat medium in the battery heat exchanger, and the liquid surface (FL2) of the heat medium in the connected heat exchanger. A fluid passage (211) connecting the outlet (321) provided in the
    The outlet / inlet (111) provided above the liquid surface of the heat medium in the battery heat exchanger, and the outlet / inlet (311) provided above the liquid surface of the heat medium in the connected heat exchanger. And a gas passage (212) connecting the
    The battery heat exchanger, the pipe, and the connection heat exchanger constitute a thermosyphon circuit (100) in which a heat medium circulates,
    The liquid level (FL1, FL2) of the heat medium circulating in the thermosyphon circuit is located midway in the flow path inside the battery heat exchanger, and midway in the flow path inside the connection heat exchanger The battery temperature control device according to claim 1, which is located in
  4.  前記車両に搭載され、前記配管を通じて熱媒体が流れるように構成され、熱媒体と他の熱媒体との熱交換により、前記配管を通じて流れる熱媒体を冷却または加熱する車載熱源部(40)をさらに備える、請求項1ないし3のいずれか1つに記載の電池温調装置。 The on-vehicle heat source unit (40) is mounted on the vehicle, configured to flow the heat medium through the pipe, and performs heat exchange between the heat medium and another heat medium to cool or heat the heat medium flowing through the pipe. The battery temperature control device according to any one of claims 1 to 3, comprising.
  5.  前記車載熱源部は、前記車両に搭載される冷凍サイクル(50)が備える蒸発器(51)に接続された冷媒放熱器(42)、前記車両に搭載される液回路(400)に接続された液冷放熱器(43)、空気放熱器(41)、またはペルチェ素子(75)により構成されている、請求項4に記載の電池温調装置。 The on-vehicle heat source unit is connected to a refrigerant radiator (42) connected to an evaporator (51) provided in a refrigeration cycle (50) mounted on the vehicle, and a liquid circuit (400) mounted on the vehicle The battery temperature control device according to claim 4, which is constituted by a liquid cooling radiator (43), an air radiator (41), or a Peltier element (75).
  6.  前記外部熱接触面と前記車載熱接触面との間に設けられるペルチェ素子(71、75)をさらに備える、請求項1ないし5のいずれか1つに記載の電池温調装置。 The battery temperature control device according to any one of claims 1 to 5, further comprising a Peltier element (71, 75) provided between the external thermal contact surface and the on-vehicle thermal contact surface.
  7.  前記電池は、前記車両の外部に設置される外部電力供給装置(90)から供給される電力により充電可能な構成であり、
     前記電池温調装置は、前記外部電力供給装置の駆動および前記外部熱源供給装置の駆動を制御する充電制御装置(9)と通信可能な電池制御装置(8)をさらに備え、
     前記電池制御装置は、前記電池の急速充電時、前記充電制御装置との通信により、前記電池の温度が所定の電池温度閾値の範囲となるまで、前記外部熱源供給装置が前記接続熱交換器に対して冷熱または温熱を供給するように制御し(S50)、
     前記電池の温度が所定の電池温度閾値の範囲になった後、前記外部電力供給装置が前記電池に対して急速充電を開始するように制御する(S30)、請求項1ないし6のいずれか1つに記載の電池温調装置。
    The battery is configured to be chargeable by the power supplied from an external power supply device (90) installed outside the vehicle,
    The battery temperature control device further includes a battery control device (8) capable of communicating with a charge control device (9) that controls the drive of the external power supply device and the drive of the external heat source supply device,
    In the battery control device, the external heat source supply device is connected to the connection heat exchanger until the temperature of the battery falls within a predetermined battery temperature threshold range by communication with the charge control device at the time of rapid charge of the battery. Control to supply cold heat or heat (S50),
    The external power supply device controls the battery so as to start rapid charging of the battery after the temperature of the battery reaches a predetermined battery temperature threshold (S30), any one of claims 1 to 6, Battery temperature controller as described in 5.
  8.  前記電池制御装置は、前記充電制御装置との通信により、前記外部熱源供給装置が前記接続熱交換器に対して供給する熱量を前記電池の温度に応じて調整する(S40)、請求項7に記載の電池温調装置。 The battery control device adjusts the amount of heat supplied by the external heat source supply device to the connection heat exchanger according to the temperature of the battery by communication with the charge control device (S40). Battery temperature control device as described.
  9.  車両の外部に設置される外部熱源供給装置であって、
     熱媒体回路(800)に熱媒体を循環させるポンプ(802)と、
     前記熱媒体回路を流れる熱媒体を冷却または加熱する熱源部(804、811)と、
     前記熱源部で冷却または加熱された熱媒体を、所定の温度状態で貯留する保温タンク(806)と、
     前記車両に設けられた車載熱接触面に直接接触または熱伝導部材を介して間接的に熱接触可能な外部熱接触面(84)を有し、前記熱媒体回路を流れる熱媒体により供給される熱を、前記外部熱接触面から前記車載熱接触面へ伝えることの可能な外部接続熱交換器(83)と、を備える外部熱源供給装置。
    An external heat source supply device installed outside the vehicle,
    A pump (802) for circulating the heat medium to the heat medium circuit (800);
    A heat source unit (804, 811) for cooling or heating the heat medium flowing through the heat medium circuit;
    A heat retention tank (806) for storing the heat medium cooled or heated by the heat source section at a predetermined temperature state;
    It has an external thermal contact surface (84) which can be in direct thermal contact with the on-vehicle thermal contact surface provided in the vehicle or indirectly via the thermal conduction member, and is supplied by the thermal medium flowing through the thermal medium circuit An externally connected heat exchanger (83) capable of transferring heat from the external thermal interface to the on-board thermal interface.
  10.  前記外部熱源供給装置は、前記ポンプおよび前記熱源部を駆動するための電力を蓄電する蓄電池(820)をさらに備える、請求項9に記載の外部熱源供給装置。 The external heat source supply device according to claim 9, wherein the external heat source supply device further comprises a storage battery (820) for storing the electric power for driving the pump and the heat source unit.
PCT/JP2018/028140 2017-08-24 2018-07-26 Battery temperature regulator and external heat source supply device WO2019039188A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880036209.XA CN110692163A (en) 2017-08-24 2018-07-26 Battery temperature adjusting device and external heat source supply device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-161261 2017-08-24
JP2017161261A JP6879122B2 (en) 2017-08-24 2017-08-24 Battery temperature controller

Publications (1)

Publication Number Publication Date
WO2019039188A1 true WO2019039188A1 (en) 2019-02-28

Family

ID=65438720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028140 WO2019039188A1 (en) 2017-08-24 2018-07-26 Battery temperature regulator and external heat source supply device

Country Status (3)

Country Link
JP (1) JP6879122B2 (en)
CN (1) CN110692163A (en)
WO (1) WO2019039188A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112670618A (en) * 2020-12-23 2021-04-16 安徽浩瀚星宇新能源科技有限公司 New energy automobile battery pack with sun-proof and anti-collision functions and spontaneous combustion preventing system
CN113263959A (en) * 2021-07-07 2021-08-17 上海加冷松芝汽车空调股份有限公司 Electric vehicle charging and liquid cooling heat management system
CN113619449A (en) * 2020-05-07 2021-11-09 比亚迪股份有限公司 Battery thermal management system and charging station
DE102020117581A1 (en) 2020-07-03 2022-01-05 Man Truck & Bus Se System and method for temperature control of an electrical battery system and / or power electronics
EP4091862A1 (en) * 2021-05-20 2022-11-23 Yantai Chungway New Energy Technology Co., Ltd. Battery pack charging system and charging method thereof
CN117525684A (en) * 2023-12-29 2024-02-06 山东科技大学 Battery thermal management system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6930357B2 (en) * 2017-10-13 2021-09-01 株式会社デンソー Battery cooling system
CN113629310B (en) * 2020-05-07 2023-03-14 比亚迪股份有限公司 Battery thermal management system, vehicle and charging station
RU201905U1 (en) * 2020-10-20 2021-01-21 федеральное государственное бюджетное образовательное учреждение высшего образования "Тольяттинский государственный университет" Electric vehicle battery heater for low ambient temperatures
CN113459836B (en) * 2021-06-16 2022-08-26 重庆市计量质量检测研究院 AGV intelligent wireless charging device for charging electric automobile

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000017927A1 (en) * 1998-09-18 2000-03-30 Mitsubishi Denki Kabushiki Kaisha Semiconductor power converter and application device of the same
US20120043935A1 (en) * 2011-07-25 2012-02-23 Lightening Energy Station for rapidly charging an electric vehicle battery
JP2013099024A (en) * 2011-10-28 2013-05-20 Mitsubishi Motors Corp Charging method and charging device for motor car
JP2016522537A (en) * 2013-04-18 2016-07-28 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for adjusting the temperature of a traction battery arranged in a vehicle during a charging process at a charging station, and a charging station for performing such a method

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2414758B2 (en) * 1974-03-27 1976-04-15 Varta Batterie Ag, 3000 Hannover ELECTROLYTE COOLING DEVICE FOR ACCUMULATOR BATTERIES CONSISTING OF MULTIPLE CELLS
DE4309070A1 (en) * 1993-03-20 1994-09-22 Licentia Gmbh High-temperature battery
JP3208655B2 (en) * 1996-08-13 2001-09-17 富士通電装株式会社 Charging device for electric vehicles
JP4134359B2 (en) * 1997-07-17 2008-08-20 株式会社デンソー Battery cooling device
JP2002354608A (en) * 2001-05-28 2002-12-06 Honda Motor Co Ltd Battery cooling device for electric automobile
FR2933539B1 (en) * 2008-07-07 2011-02-25 Cooltech Applications METHOD AND DEVICE FOR THERMALLY REGULATING A RECHARGEABLE BATTERY FOR STORING ELECTRIC ENERGY
FR2940631B1 (en) * 2008-12-30 2011-08-19 Renault Sas DEVICE FOR COOLING THE BATTERIES OF A PARTICULARLY ELECTRIC VEHICLE AND VEHICLE EQUIPPED WITH SUCH A DEVICE
JP2011143911A (en) * 2009-12-15 2011-07-28 Toyota Industries Corp Vehicular air-conditioning unit and vehicular air-conditioning system
US9786961B2 (en) * 2011-07-25 2017-10-10 Lightening Energy Rapid charging electric vehicle and method and apparatus for rapid charging
JP2013098082A (en) * 2011-11-02 2013-05-20 Toyota Industries Corp Temperature control mechanism for battery
JP6020064B2 (en) * 2011-12-05 2016-11-02 株式会社デンソー Heat exchange system
GB201300885D0 (en) * 2013-01-17 2013-03-06 True Energy Ltd Cooling Apparatus
JP5942943B2 (en) * 2013-08-20 2016-06-29 トヨタ自動車株式会社 Battery temperature control device
US9586497B2 (en) * 2013-08-22 2017-03-07 Lightening Energy Electric vehicle recharging station including a battery bank
KR20150042104A (en) * 2013-10-10 2015-04-20 현대자동차주식회사 Air conditioning system and method for high-voltage battery of vehicle
JP2017004677A (en) * 2015-06-08 2017-01-05 株式会社豊田自動織機 Cooling system for secondary battery
JP2017105290A (en) * 2015-12-09 2017-06-15 三菱自動車工業株式会社 Temperature control device of battery for driving
CN205900740U (en) * 2016-06-24 2017-01-18 天津三电汽车空调有限公司 Battery for electric vehicle thermal management system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000017927A1 (en) * 1998-09-18 2000-03-30 Mitsubishi Denki Kabushiki Kaisha Semiconductor power converter and application device of the same
US20120043935A1 (en) * 2011-07-25 2012-02-23 Lightening Energy Station for rapidly charging an electric vehicle battery
JP2013099024A (en) * 2011-10-28 2013-05-20 Mitsubishi Motors Corp Charging method and charging device for motor car
JP2016522537A (en) * 2013-04-18 2016-07-28 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for adjusting the temperature of a traction battery arranged in a vehicle during a charging process at a charging station, and a charging station for performing such a method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113619449A (en) * 2020-05-07 2021-11-09 比亚迪股份有限公司 Battery thermal management system and charging station
CN113619449B (en) * 2020-05-07 2023-06-13 比亚迪股份有限公司 Battery thermal management system and charging station
DE102020117581A1 (en) 2020-07-03 2022-01-05 Man Truck & Bus Se System and method for temperature control of an electrical battery system and / or power electronics
CN112670618A (en) * 2020-12-23 2021-04-16 安徽浩瀚星宇新能源科技有限公司 New energy automobile battery pack with sun-proof and anti-collision functions and spontaneous combustion preventing system
CN112670618B (en) * 2020-12-23 2023-12-01 苏州众鑫凯能源科技有限公司 New energy automobile battery pack with sun-proof anticollision function and prevent spontaneous combustion system
EP4091862A1 (en) * 2021-05-20 2022-11-23 Yantai Chungway New Energy Technology Co., Ltd. Battery pack charging system and charging method thereof
CN113263959A (en) * 2021-07-07 2021-08-17 上海加冷松芝汽车空调股份有限公司 Electric vehicle charging and liquid cooling heat management system
CN117525684A (en) * 2023-12-29 2024-02-06 山东科技大学 Battery thermal management system
CN117525684B (en) * 2023-12-29 2024-04-05 山东科技大学 Battery thermal management system

Also Published As

Publication number Publication date
JP6879122B2 (en) 2021-06-02
CN110692163A (en) 2020-01-14
JP2019040731A (en) 2019-03-14

Similar Documents

Publication Publication Date Title
WO2019039188A1 (en) Battery temperature regulator and external heat source supply device
US11192425B2 (en) Integrated thermal management module for vehicle
KR101855759B1 (en) Betterly cooling system for vehicle
JP5757502B2 (en) Battery temperature control unit and battery temperature control device
JP4891584B2 (en) Automotive heat exchanger
KR101903492B1 (en) Battery temperature regulation system and battery temperature regulation unit
JP5325259B2 (en) Thermal management system with dual-mode coolant loop
KR101628120B1 (en) Betterly cooling system for vehicle
WO2018047539A1 (en) Device temperature adjusting apparatus
US11142037B2 (en) Thermal management system for vehicle
JP2012510697A (en) Battery module
JP6693480B2 (en) Terminal cooling device
CN102668228A (en) Method for controlling the temperature of an electrical power source of a vehicle
CN109477696B (en) Equipment temperature adjusting device
JP2020100389A (en) Vehicle, heat exchange plate, and battery pack
CN114144321A (en) Thermal management device for vehicle and thermal management method for vehicle
WO2019039187A1 (en) Battery temperature regulator
CN113580871B (en) Vehicle and thermal management system thereof
US20120222429A1 (en) Vehicle air conditioner
CN108417926B (en) Power battery pack and electric automobile
CN113696793A (en) Fuel cell thermal management system
CN216033622U (en) Integrated thermal management system and vehicle
CN115257300A (en) Integrated thermal management module with eight-way valve and vehicle
CN112060865A (en) Thermal management system of electric automobile
CN112002925A (en) Fuel cell automobile management system and control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18848547

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18848547

Country of ref document: EP

Kind code of ref document: A1