WO2019037940A1 - Verfahren und vorrichtung zum bestimmen einer hochgenauen position und zum betreiben eines automatisierten fahrzeugs - Google Patents

Verfahren und vorrichtung zum bestimmen einer hochgenauen position und zum betreiben eines automatisierten fahrzeugs Download PDF

Info

Publication number
WO2019037940A1
WO2019037940A1 PCT/EP2018/068884 EP2018068884W WO2019037940A1 WO 2019037940 A1 WO2019037940 A1 WO 2019037940A1 EP 2018068884 W EP2018068884 W EP 2018068884W WO 2019037940 A1 WO2019037940 A1 WO 2019037940A1
Authority
WO
WIPO (PCT)
Prior art keywords
weather
automated vehicle
environment
determining
features
Prior art date
Application number
PCT/EP2018/068884
Other languages
English (en)
French (fr)
Inventor
Jan Rohde
Daniel Zaum
Holger Mielenz
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to US16/638,910 priority Critical patent/US20200192401A1/en
Priority to EP18740796.0A priority patent/EP3673234A1/de
Priority to CN201880054285.3A priority patent/CN110998238A/zh
Publication of WO2019037940A1 publication Critical patent/WO2019037940A1/de

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096708Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control
    • G08G1/096725Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control where the received information generates an automatic action on the vehicle control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0274Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/005Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 with correlation of navigation data from several sources, e.g. map or contour matching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036Specially adapted to detect a particular component
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/01Determining conditions which influence positioning, e.g. radio environment, state of motion or energy consumption
    • G01S5/018Involving non-radio wave signals or measurements
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/0088Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0112Measuring and analyzing of parameters relative to traffic conditions based on the source of data from the vehicle, e.g. floating car data [FCD]
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • G08G1/0129Traffic data processing for creating historical data or processing based on historical data
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0137Measuring and analyzing of parameters relative to traffic conditions for specific applications
    • G08G1/0145Measuring and analyzing of parameters relative to traffic conditions for specific applications for active traffic flow control
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096766Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission
    • G08G1/096775Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission where the origin of the information is a central station
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9322Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles using additional data, e.g. driver condition, road state or weather data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9323Alternative operation using light waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9324Alternative operation using ultrasonic waves

Definitions

  • the present invention relates to a method and apparatus for determining a high accuracy position and operating an automated vehicle, comprising a step of receiving map data values from an external server, a step of determining a weather specific environmental state, a step of acquiring ambient data values, a step determining the high-precision position and a step of operating the automated vehicle, depending on the high-precision position.
  • the inventive method for determining a high-accuracy position and for operating an automated vehicle comprises a step of receiving map data values from an external server representing a map, the map including weather-specific environmental features, a weather-specific environmental condition determining step, and a step of Acquiring environmental data values, wherein the environmental data values represent an environment of the automated vehicle, the environment being dynamic
  • Environmental features includes.
  • the inventive method further comprises a step of determining the high-accuracy position based on an alignment between the weather-specific environmental features and the dynamic ones
  • an automated vehicle is a partially, highly or fully automated vehicle to understand. Under an operation of the automated vehicle is to be understood that the automated vehicle is partially, fully or fully automated operation. In this case, the operation includes, for example, determining a trajectory for the automated vehicle and / or traversing the trajectory by means of an automated lateral and / or longitudinal control and / or carrying out safety-relevant driving functions, etc.
  • a highly accurate position means a position which is so accurate within a given coordinate system, for example GNSS coordinates, that this position does not exceed a maximum allowable blur.
  • the maximum blur may depend on the environment of the automated vehicle.
  • the maximum blur may for example depend on whether the automated vehicle is partially, fully or fully automated operated.
  • the maximum blur is so low that a safe operation of the automated vehicle is guaranteed.
  • the maximum blur is for example in one
  • An environment of the automated vehicle is to be understood, for example, as an area that can be detected by means of an environmental sensor system of the vehicle.
  • a map is meant, for example, a digital map, which is designed, for example, in connection with a navigation system and / or a control device of the automated vehicle and / or in conjunction with a smartphone, which is connected to the automated vehicle or from this
  • the method according to the invention advantageously solves the problem that a safe and reliable operation of an automated vehicle in many cases depends on the knowledge of a highly accurate position of the automated vehicle. There are usually several methods for determining the high-precision position, with some of the methods working more reliably than others, for example, depending on certain environmental factors. The method described here helps to determine the high-precision position, especially in bad weather conditions. Especially in the event of rain and / or snowfall, conventional localization systems can lead to a considerable restriction of the availability and / or accuracy of the localization, which leads overall to a restriction in the operation of the automated vehicle.
  • an evaluation of the matching is carried out according to predetermined criteria and is transmitted to the external server depending on the evaluation of at least one of the dynamic environment features.
  • the predetermined criteria determine whether or not the at least one of the dynamic environmental features could be detected with a highly accurate position, and this at least one dynamic environmental feature is transmitted only when the high accuracy position is known.
  • the weather-specific environmental features were previously detected by at least one other vehicle and transmitted to the external server.
  • the card received by the external server also includes state-of-the-art weather-specific environmental features, whereby the high-precision position is determined, for example, more reliably and / or more accurately.
  • the weather-specific environmental features and / or the dynamic environmental features preferably include light reflections and / or lanes of the at least one further vehicle.
  • the light reflections include, for example, headlights and / or lights of street lamps, neon signs, shop windows, traffic signs, etc., which are reflected on the wet and / or snow-covered road.
  • the lanes are, for example, tracks to be understood, which are emerging due to the wet and / or snow-covered road.
  • a weather-specific environmental feature and / or a dynamic environmental feature for example, an area to be understood, in which during and / or after a precipitation - for example, due to
  • the inventive device for determining a high-precision position and for operating an automated vehicle comprises first means for receiving map data values from an external server representing a map, the map comprising weather-specific environmental features, second means for determining a weather-specific environmental condition and third means for Acquiring environmental data values, wherein the environmental data values represent an environment of the automated vehicle, the environment being dynamic
  • the device according to the invention further comprises fourth means for determining the high-precision position, based on a comparison between the weather-specific environmental features and the dynamic
  • the first means and / or the second means and / or the third means and / or the fourth means and / or the fifth means are adapted to carry out a method according to at least one of the method claims.
  • Advantageous developments of the invention are specified in the subclaims and listed in the description.
  • FIG. 3 purely by way of example an embodiment of the method according to the invention in the form of a flowchart.
  • Figure 1 shows an automated vehicle 100, which is the inventive
  • Device 1 10 for determining 340 a highly accurate position 150 and for operating 350 of the automated vehicle 100 includes.
  • the device 110 includes first means 11 for receiving 310 map data from an external server 210 representing a map, the map comprising weather-specific environmental features 220, second means 1 12 for determining 320 a weather-specific environmental condition, and third means 13 for Collecting 330 environmental data values, wherein the environmental data values represent an environment 200 of the automated vehicle 100, the environment including dynamic environmental features 230.
  • the device 110 further includes fourth means 1114 for determining 340 the high-accuracy position 150 based on an alignment between the weather-specific environmental features 220 and the dynamic ones
  • the first means 1 1 1 for receiving 310 card data values from an external server 210 are, for example, transmitters. and / or receiving unit formed. In a further embodiment, the first means 1 1 1 are designed such that they are connected to a transmitting and / or receiving unit already included in the vehicle.
  • Ambient conditions are formed, for example, as a transmitting and / or receiving unit, which requests the weather-specific environmental condition, for example, from a weather station and / or another external server.
  • the weather-specific environmental condition for example, from a weather station and / or another external server.
  • the transmitting and / or receiving unit is identical to the transmitting and / or receiving unit of the first means 1 1 1.
  • the second means 1 12 are designed in such a way that the weather-specific ambient state is determined by means of an environmental sensor system 101, which is included in the automated vehicle 100.
  • the second means 1 12 comprise, for example, a computing unit (processor, main memory, hard disk, software), which is designed, based on environmental data, which by means of the environment sensor 101 - for example in the form of an image from a video sensor and / or in the form of moisture values be detected by a humidity sensor, evaluate accordingly.
  • the third means 13 for acquiring 330 ambient data values are designed, for example, such that they comprise their own surroundings sensors or are connected to an environment sensor 101 already included in the automated vehicle 100.
  • the first means comprise, for example, a computing unit (processor,
  • At least one video and / or at least one radar and / or at least one lidar and / or at least one are present under the surroundings sensor 101
  • Ultrasonic and / or at least one further sensor to understand which is adapted to detect the environment 200 of the automated vehicle 100 in the form of environmental data.
  • Ambient state for example, are designed as a control unit and / or arithmetic unit. They include, for example, a processor, memory and a hard disk and suitable software for determining 340 a high-precision position 150 of the automated vehicle 100.
  • the fifth means 15 for operating 350 of the automated vehicle 100, depending on the high-precision position 150, are embodied, for example, as a control unit.
  • Figure 2 shows a schematic representation of an embodiment of the
  • Method 300 according to the invention.
  • an automated vehicle 100 automatically drives on a road.
  • the automated vehicle receives map data values representing a map from an external server 210 by means of the first means 11 1, the map comprising weather-specific environmental features 220.
  • the map data values are received at regular time and / or location intervals, depending on the (non-highly accurate) position of the automated vehicle 100.
  • the automated vehicle 100 requests the map data values when there is no current map and / or determining 340 a high accuracy location 150 is not possible.
  • the map data values are transmitted from the external server 210 when, for example, an update of the map has been made.
  • the automated vehicle 100 further determines a weather-specific environmental condition by means of the second means 12. In one embodiment, this step occurs by transmitting the weather-specific environmental condition together with the map data values from the external server 210 and receiving them by the first means 11 1.
  • the weather-specific environmental condition occurs by transmitting the weather-specific environmental condition together with the map data values from the external server 210 and receiving them by the first means 11 1.
  • the weather-specific environmental condition occurs by transmitting the weather-specific environmental
  • Ambient state independent of the received map data values - for example, determined by means of an environment sensor 101 of the automated vehicle 100.
  • the automated vehicle 100 further acquires environmental data values, wherein the environmental data values represent an environment 200 of the automated vehicle 100, wherein the environment 200 includes dynamic environmental features 230.
  • the dynamic environment feature corresponds, for example, to a lane of at least one other vehicle 250, which has its own high-precision position, for example, in advance - at regular intervals - to the vehicle external server 210 transmits.
  • the external server 210 in turn transmits the
  • Map data values wherein the map now the expected lane of the at least one other vehicle 250 as a weather-specific environment feature 220 - on dry roads, the lane is not visible - includes.
  • the high accuracy position 150 of the automated vehicle 100 is determined based on an alignment between the weather specific environmental features 220 and the dynamic environmental features 230 (here, for example, the lane of the at least one other wet road vehicle 250) depending on the weather specific environmental condition.
  • the weather-specific ambient state is used, for example, to determine the actual high-precision position 150, since corresponding parameters are used on the basis of this state.
  • the weather-specific ambient state decides, for example, whether the weather-specific
  • the lane in a light rain is better suited to be detected by the third means 1 13, as in a very heavy rain, as the
  • Lane is hardly recognizable due to increasing water masses.
  • the high accuracy position 150 is determined, for example, by detecting the dynamic environmental feature 230 and determining a relative position of the automated vehicle 100 thereto. This is done for example by means of a direction vector and a distance between the dynamic environment feature 230 and the automated vehicle 100. Since the likewise highly accurate position of the
  • weather-specific environmental feature 220 is stored in the map data values, the highly accurate position 150 of the automated vehicle 100 is determined based on this position and the relative position, for example by means of vector addition.
  • the weather-specific environment feature 220 used is, for example, a light reflection which can be detected by means of the environmental sensor system 101 as a dynamic environmental feature 230, as long as, for example the road on which the automated vehicle 100 is located has a wet roadway.
  • the automated vehicle 100 acquires and transmits to the external server 210 a dynamic environment feature 230 that is not included in the map.
  • FIG. 3 shows an exemplary embodiment of a method 300 for determining 340 a highly accurate position 150 and for operating 350 an automated vehicle 100.
  • step 301 the method 300 starts.
  • step 310 map data values from an external server 210 representing a map, the map comprising weather-specific environmental features 220, are received.
  • step 320 a weather specific environmental condition is determined.
  • step 330 environmental data values, wherein the environmental data values represent an environment 200 of the automated vehicle 100, wherein the environment 200 includes dynamic environmental features 230, are captured.
  • step 340 the high accuracy position 150 is determined based on an alignment between weather specific environmental features 220 and dynamic
  • Environmental features 230 depending on the weather-specific environmental condition determined.
  • step 350 the automated vehicle 100 is operated depending on the high accuracy position 150.
  • step 360 the method 300 ends.

Abstract

Verfahren (300) und Vorrichtung (110) zum Bestimmen (340) einer hochgenauen Position (150) und zum Betreiben (350) eines automatisierten Fahrzeugs (100), umfassend einen Schritt des Empfangens (310) von Kartendatenwerten von einem externen Server (210), welche eine Karte repräsentieren, wobei die Karte wetterspezifische Umgebungsmerkmale (220) umfasst, einem Schritt des Bestimmens (320) eines wetterspezifischen Umgebungszustands, einem Schritt des Erfassens (330) von Umgebungsdatenwerten, wobei die Umgebungsdatenwerte eine Umgebung (200) des automatisierten Fahrzeugs (100) repräsentieren, wobei die Umgebung (200) dynamische Umgebungsmerkmale (230) umfasst, einem Schritt des Bestimmens (340) der hochgenauen Position (150),basierend auf einem Abgleich zwischen den wetterspezifischen Umgebungsmerkmalen (220) und den dynamischen Umgebungsmerkmalen (230), abhängig von dem wetterspezifischen Umgebungszustand, undeinem Schritt des Betreibens (350) des automatisierten Fahrzeugs (100), abhängig von der hochgenauen Position (150).

Description

Beschreibung
Titel
Verfahren und Vorrichtung zum Bestimmen einer hochgenauen Position und zum
Betreiben eines automatisierten Fahrzeugs
Die vorliegende Erfindung betrifft ein Verfahren sowie eine Vorrichtung zum Bestimmen einer hochgenauen Position und zum Betreiben eines automatisierten Fahrzeugs, mit einem Schritt des Empfangens von Kartendatenwerten von einem externen Server, einem Schritt des Bestimmens eines wetterspezifischen Umgebungszustands, einem Schritt des Erfassens von Umgebungsdatenwerten, einem Schritt des Bestimmens der hochgenauen Position und einem Schritt des Betreibens des automatisierten Fahrzeugs, abhängig von der hochgenauen Position.
Offenbarung der Erfindung
Das erfindungsgemäße Verfahren zum Bestimmen einer hochgenauen Position und zum Betreiben eines automatisierten Fahrzeugs, umfasst einen Schritt des Empfangens von Kartendatenwerten von einem externen Server, welche eine Karte repräsentieren, wobei die Karte wetterspezifische Umgebungsmerkmale umfasst, einen Schritt des Bestimmens eines wetterspezifischen Umgebungszustands und einen Schritt des Erfassens von Umgebungsdatenwerten, wobei die Umgebungsdatenwerte eine Umgebung des automatisierten Fahrzeugs repräsentieren, wobei die Umgebung dynamische
Umgebungsmerkmale umfasst. Das erfindungsgemäße Verfahren umfasst weiterhin einen Schritt des Bestimmens der hochgenauen Position, basierend auf einem Abgleich zwischen den wetterspezifischen Umgebungsmerkmalen und den dynamischen
Umgebungsmerkmalen, abhängig von dem wetterspezifischen Umgebungszustand, und einen Schritt des Betreibens des automatisierten Fahrzeugs, abhängig von der hochgenauen Position. Unter einem automatisierten Fahrzeug ist ein teil-, hoch- oder vollautomatisiertes Fahrzeug zu verstehen. Unter einem Betreiben des automatisierten Fahrzeugs ist zu verstehen, dass das automatisierte Fahrzeug teil-, hoch- oder vollautomatisiert betrieben wird. Dabei umfasst das Betreiben beispielsweise das Bestimmen einer Trajektorie für das automatisierte Fahrzeug und/oder das Abfahren der Trajektorie mittels einer automatisierten Quer- und/oder Längssteuerung und/oder das Ausführen sicherheitsrelevanter Fahrfunktionen etc.
Unter einer hochgenauen Position ist eine Position zu verstehen, welche innerhalb eines vorgegebenen Koordinatensystems, beispielsweise GNSS-Koordinaten, derart genau ist, dass diese Position eine maximal zulässige Unschärfe nicht überschreitet. Dabei kann die maximale Unschärfe beispielsweise von der Umgebung des automatisierten Fahrzeugs abhängen. Weiterhin kann die maximale Unschärfe beispielsweise davon abhängen, ob das automatisierte Fahrzeug teil-, hoch- oder vollautomatisiert betrieben wird.
Grundsätzlich ist die maximale Unschärfe so gering, dass ein sicheres Betreiben des automatisierten Fahrzeugs gewährleistet ist. Für ein vollautomatisiertes Betreiben des automatisierten Fahrzeugs liegt die maximale Unschärfe beispielsweise in einer
Größenordnung von etwa 10 Zentimeter. Unter einer Umgebung des automatisierten Fahrzeugs ist beispielsweise ein Bereich zu verstehen, welcher mittels einer Umfeldsensorik des Fahrzeugs erfasst werden kann.
Unter einer Karte ist beispielsweise eine digitale Karte zu verstehen, welche dazu ausgebildet ist, beispielsweise in Verbindung mit einem Navigationssystem und/oder einem Steuergerät des automatisierten Fahrzeugs und/oder in Verbindung mit einem Smartphone, welches mit dem automatisierten Fahrzeug verbunden bzw. von diesem umfasst wird, das automatisierte Fahrzeug zu lokalisieren und/oder eine Funktion, abhängig von der Lokalisierung, auszuführen, etc. Das erfindungsgemäße Verfahren löst auf vorteilhafte Weise das Problem, dass ein sicheres und zuverlässiges Betreiben eines automatisierten Fahrzeugs in vielen Fällen von der Kenntnis einer hochgenauen Position des automatisierten Fahrzeugs abhängt. In der Regel stehen mehrere Methoden zum Bestimmen der hochgenauen Position zu Verfügung, wobei einige der Methoden - beispielsweise abhängig von bestimmten Umgebungseinflüssen - zuverlässiger arbeiten als andere. Das hier beschriebene Verfahren unterstützt das Bestimmen der hochgenauen Position insbesondere bei schlechten Wetterbedingungen. Gerade bei Regen und/oder Schneefall können herkömmliche Lokalisierungssysteme zu einer erheblichen Einschränkung der Verfügbarkeit und/oder Genauigkeit der Lokalisierung führen, was insgesamt zu einer Einschränkung im Betreiben des automatisierten Fahrzeugs führt.
Vorzugsweise wird nach vorgegebenen Kriterien eine Bewertung des Abgleiche durchgeführt und wird abhängig von der Bewertung wenigstens eines der dynamischen Umgebungsmerkmale an den externen Server übertragen.
Die vorgegebenen Kriterien legen beispielsweise fest, ob das wenigstens eine der dynamischen Umgebungsmerkmale mit einer hochgenauen Position erfasst werden konnte oder nicht, wobei dieses wenigstens eine dynamische Umgebungsmerkmal nur dann übertragen wird, wenn die hochgenaue Position bekannt ist.
Hierin zeigt sich der Vorteil, dass das automatisierte Fahrzeug beispielsweise selbst zu einer Verbesserung und/oder Aktualisierung der Karte beiträgt, welche dann anderen (automatisierten) Fahrzeugen zur Verfügung gestellt werden kann.
Vorzugsweise wurden die wetterspezifischen Umgebungsmerkmale vorab von wenigstens einem weiteren Fahrzeug erfasst und an den externen Server übertragen.
Hierin zeigt sich der Vorteil, dass die von dem externen Server empfangene Karte auch hochaktuelle wetterspezifische Umgebungsmerkmale umfasst, wodurch die hochgenaue Position beispielsweise zuverlässiger und/oder genauer bestimmt wird.
Vorzugsweise umfassen die wetterspezifischen Umgebungsmerkmale und/oder die dynamischen Umgebungsmerkmale Lichtreflexionen und/oder Fahrspuren des wenigstens einen weiteren Fahrzeugs.
Unter den Lichtreflexionen sind beispielsweise Scheinwerferlichter und/oder Lichter von Straßenlaternen, Leuchtreklamen, Schaufenstern, Verkehrszeichen, etc. zu verstehen, welche auf der nassen und/oder schneebedeckten Fahrbahn reflektiert werden. Unter den Fahrspuren sind beispielsweise Spuren zu verstehen, welche sich aufgrund der nassen und/oder schneebedeckten Fahrbahn abzeichnen. Weiterhin ist unter einem wetterspezifischen Umgebungsmerkmal und/oder einem dynamischen Umgebungsmerkmal beispielsweise ein Bereich zu verstehen, an dem sich während und/oder nach einem Niederschlag - beispielweise aufgrund von
Fahrbahnunebenheiten - Wasser sammelt, etc.
Hierin zeigt sich der Vorteil, dass gerade die schlechten Wetterbedingungen zu zusätzlichen (wetterspezifischen, dynamischen) Umgebungsmerkmalen führen, welche zum Bestimmen der hochgenauen Position verwendet werden, wohingegen andere Umgebungsmerkmale gerade bei schlechten Wetterbedingungen nicht verwendet werden können.
Die erfindungsgemäße Vorrichtung zum Bestimmen einer hochgenauen Position und zum Betreiben eines automatisierten Fahrzeugs, umfasst erste Mittel zum Empfangen von Kartendatenwerten von einem externen Server, welche eine Karte repräsentieren, wobei die Karte wetterspezifische Umgebungsmerkmale umfasst, zweite Mittel zum Bestimmen eines wetterspezifischen Umgebungszustands und dritte Mittel zum Erfassen von Umgebungsdatenwerten, wobei die Umgebungsdatenwerte eine Umgebung des automatisierten Fahrzeugs repräsentieren, wobei die Umgebung dynamische
Umgebungsmerkmale umfasst. Die erfindungsgemäße Vorrichtung umfasst weiterhin vierte Mittel zum Bestimmen der hochgenauen Position, basierend auf einem Abgleich zwischen den wetterspezifischen Umgebungsmerkmalen und den dynamischen
Umgebungsmerkmalen, abhängig von dem wetterspezifischen Umgebungszustand, und fünfte Mittel zum Betreiben des automatisierten Fahrzeugs, abhängig von der
hochgenauen Position.
Vorzugsweise sind die ersten Mittel und/oder die zweiten Mittel und/oder die dritten Mittel und/oder die vierten Mittel und/oder die fünften Mittel dazu ausgebildet, ein Verfahren gemäß wenigstens einem der Verfahrensansprüche auszuführen. Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben und in der Beschreibung aufgeführt.
Zeichnungen Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in den nachfolgenden Beschreibungen näher erläutert. Es zeigen: Figur 1 rein beispielhaft ein erstes Ausführungsbeispiel der erfindungsgemäßen
Vorrichtung; Figur 2 rein beispielhaft ein zweites Ausführungsbeispiel der erfindungsgemäßen
Vorrichtung; und
Figur 3 rein beispielhaft ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens in Form einen Ablaufdiagramms.
Ausführungsformen der Erfindung
Figur 1 zeigt ein automatisiertes Fahrzeug 100, welches die erfindungsgemäße
Vorrichtung 1 10 zum Bestimmen 340 einer hochgenauen Position 150 und zum Betreiben 350 des automatisierten Fahrzeugs 100 umfasst.
Die Vorrichtung 1 10 umfasst erste Mittel 1 1 1 zum Empfangen 310 von Kartendatenwerten von einem externen Server 210, welche eine Karte repräsentieren, wobei die Karte wetterspezifische Umgebungsmerkmale 220 umfasst, zweite Mittel 1 12 zum Bestimmen 320 eines wetterspezifischen Umgebungszustands und dritte Mittel 1 13 zum Erfassen 330 von Umgebungsdatenwerten, wobei die Umgebungsdatenwerte eine Umgebung 200 des automatisierten Fahrzeugs 100 repräsentieren, wobei die Umgebung dynamische Umgebungsmerkmale 230 umfasst. Die Vorrichtung 1 10 umfasst weiterhin vierte Mittel 1 14 zum Bestimmen 340 der hochgenauen Position 150, basierend auf einem Abgleich zwischen den wetterspezifischen Umgebungsmerkmalen 220 und den dynamischen
Umgebungsmerkmalen 230, abhängig von dem wetterspezifischen Umgebungszustand, und fünfte Mittel 1 15 zum Betreiben 350 des automatisierten Fahrzeugs 100, abhängig von der hochgenauen Position 150. Die ersten Mittel 1 1 1 zum Empfangen 310 von Kartendatenwerten von einem externen Server 210 sind beispielsweise als Sende- und/oder Empfangseinheit ausgebildet. In einer weiteren Ausführungsform sind die ersten Mittel 1 1 1 derart ausgebildet, dass sie mit einer bereits von dem Fahrzeug umfassten Sende- und/oder Empfangseinheit verbunden sind. Die zweiten Mittel 1 12 zum Bestimmen 320 eines wetterspezifischen
Umgebungszustands sind beispielsweise als Sende- und/oder Empfangseinheit ausgebildet, welche den wetterspezifischen Umgebungszustand beispielsweise von einer Wetterstation und/oder einem weiteren externen Server anfordert. In einer
Ausführungsform ist die Sende- und/oder Empfangseinheit identisch mit der Sende- und/oder Empfangseinheit der ersten Mittel 1 1 1.
In einer weiteren Ausführungsform sind die zweiten Mittel 1 12 derart ausgebildet, dass der wetterspezifische Umgebungszustand mittels einer Umfeldsensorik 101 , welche von dem automatisierten Fahrzeug 100 umfasst wird, bestimmt wird. Dazu umfassen die zweiten Mittel 1 12 beispielsweise eine Recheneinheit (Prozessor, Arbeitsspeicher, Festplatte, Software), welche dazu ausgebildet ist, ausgehend von Umgebungsdaten, welche mittels der Umfeldsensorik 101 - beispielsweise in Form eines Bildes von einem Videosensor und/oder in Form von Feuchtigkeitswerten von einem Feuchtigkeitssensor- erfasst werden, entsprechend auszuwerten.
Die dritten Mittel 1 13 zum Erfassen 330 von Umgebungsdatenwerten sind beispielsweise derart ausgebildet, dass sie eine eigene Umfeldsensorik umfassen oder mit einer bereits von dem automatisierten Fahrzeug 100 umfassten Umfeldsensorik 101 verbunden sind. Weiterhin umfassen die ersten Mittel beispielsweise eine Recheneinheit (Prozessor,
Arbeitsspeicher, Festplatte, Software), welche die Umgebungsdatenwerte verarbeitet und auswertet.
Unter der Umfeldsensorik 101 sind beispielsweise wenigstens ein Video- und/oder wenigstens ein Radar- und/oder wenigstens ein Lidar- und/oder wenigstens ein
Ultraschall- und/oder wenigstens ein weiterer Sensor zu verstehen, welcher dazu ausgebildet ist, die Umgebung 200 des automatisierten Fahrzeugs 100 in Form von Umgebungsdatenwerten zu erfassen. Die vierten Mittel 1 14 zum Bestimmen 340 der hochgenauen Position 150, basierend auf einem Abgleich zwischen den wetterspezifischen Umgebungsmerkmalen 220 und den dynamischen Umgebungsmerkmalen 230, abhängig von dem wetterspezifischen
Umgebungszustand, sind beispielsweise als Steuergerät und/oder Recheneinheit ausgebildet. Sie umfassen beispielsweis einen Prozessor, Arbeitsspeicher und eine Festplatte sowie eine geeignete Software zum Bestimmen 340 einer hochgenauen Position 150 des automatisierten Fahrzeugs 100. Die fünften Mittel 1 15 zum Betreiben 350 des automatisierten Fahrzeugs 100, abhängig von der hochgenauen Position 150, sind beispielsweise als Steuergerät ausgebildet. Figur 2 zeigt eine schematische Darstellung eines Ausführungsbeispiels des
erfindungsgemäßen Verfahrens 300. Dabei fährt ein automatisiertes Fahrzeug 100 automatisiert auf einer Straße.
Das automatisierte Fahrzeug empfängt von einem externen Server 210 mittels der ersten Mittel 1 1 1 Kartendatenwerte, welche eine Karte repräsentieren, wobei die Karte wetterspezifische Umgebungsmerkmale 220 umfasst. In einer Ausführungsform werden die Kartendatenwerte beispielsweise in regelmäßigen Zeit- und/oder Ortsabständen, abhängig von der (nicht-hochgenauen) Position des automatisierten Fahrzeugs 100, empfangen. In einer weiteren Ausführungsform fordert das automatisierte Fahrzeug 100 beispielsweise die Kartendatenwerte an, wenn keine aktuelle Karte vorliegt und/oder ein Bestimmen 340 einer hochgenauen Position 150 nicht möglich ist. In einer weiteren Ausführungsform werden die Kartendatenwerte von dem externen Server 210 übertragen, wenn beispielsweise eine Aktualisierung der Karte vorgenommen wurde. Das automatisierte Fahrzeug 100 bestimmt weiterhin mittels der zweiten Mittel 1 12 einen wetterspezifischen Umgebungszustand. In einer Ausführungsform erfolgt dieser Schritt, indem der wetterspezifische Umgebungszustand zusammen mit den Kartendatenwerten von dem externen Server 210 übertragen und mittels der ersten Mittel 1 1 1 empfangen werden. In einer weiteren Ausführungsform wird der wetterspezifische
Umgebungszustand unabhängig von den empfangenen Kartendatenwerten - beispielsweise mittels einer Umfeldsensorik 101 des automatisierten Fahrzeugs 100 bestimmt.
Das automatisierte Fahrzeug 100 erfasst weiterhin Umgebungsdatenwerte, wobei die Umgebungsdatenwerte eine Umgebung 200 des automatisierten Fahrzeugs 100 repräsentieren, wobei die Umgebung 200 dynamische Umgebungsmerkmale 230 umfasst.
In einer Ausführungsform entspricht das dynamische Umgebungsmerkmal beispielsweise einer Fahrspur wenigstens eines weiteren Fahrzeugs 250, welches seine eigene hochgenaue Position beispielsweise vorab - in regelmäßigen Abständen - an den externen Server 210 überträgt. Der externe Server 210 wiederum überträgt die
Kartendatenwerte, wobei die Karte nun die zu erwartende Fahrspur des wenigstens einen weiteren Fahrzeugs 250 als wetterspezifisches Umgebungsmerkmal 220 - auf trockener Fahrbahn ist die Fahrspur nicht zu sehen - umfasst.
Diese Fahrspur beispielsweise wird nun mittels den dritten Mitteln 1 13 des
automatisierten Fahrzeugs 100 als dynamisches Umgebungsmerkmal 230 erfasst.
Anschließend wird die hochgenaue Position 150 des automatisierten Fahrzeugs 100, basierend auf einem Abgleich zwischen den wetterspezifischen Umgebungsmerkmalen 220 und den dynamischen Umgebungsmerkmalen 230 (hier beispielsweise die Fahrspur des wenigstens einen weiteren Fahrzeugs 250 auf der nassen Fahrbahn), abhängig von dem wetterspezifischen Umgebungszustand, bestimmt. Dabei wird der wetterspezifische Umgebungszustand beispielsweise dazu verwendet, die tatsächliche hochgenaue Position 150 zu bestimmen, da aufgrund dieses Zustande entsprechende Parameter verwendet werden. In einer weiteren Ausführungsform entscheidet der wetterspezifische Umgebungszustand beispielsweise darüber ob sich das wetterspezifische
Umgebungsmerkmal zum Bestimmen 340 der hochgenauen Position 150 eignet.
Beispielsweise ist die Fahrspur bei einem leichten Regen besser dazu geeignet, mittels der dritten Mittel 1 13 erfasst zu werden, als bei einem sehr starken Regen, da die
Fahrspur aufgrund zunehmenden Wassermassen kaum zu erkennen ist.
Die hochgenaue Position 150 wird beispielsweise bestimmt, indem das dynamische Umgebungsmerkmal 230 erfasst und eine relative Position des automatisierten Fahrzeugs 100 dazu bestimmt wird. Dies erfolgt beispielsweise mittels eines Richtungsvektors und einem Abstand zwischen dem dynamischen Umgebungsmerkmal 230 und dem automatisierten Fahrzeug 100. Da die ebenfalls hochgenaue Position des
wetterspezifischen Umgebungsmerkmals 220 in den Kartendatenwerten hinterlegt ist, wird ausgehend von dieser Position und der relativen Position die hochgenaue Position 150 des automatisierten Fahrzeugs 100 - beispielsweise mittels Vektoraddition - bestimmt.
In einer weiteren Ausführungsform wird als wetterspezifisches Umgebungsmerkmal 220 beispielsweise eine Lichtreflexion verwendet, welche mittels der Umfeldsensorik 101 als dynamisches Umgebungsmerkmal 230 erfasst werden kann, so lange sich beispielsweise die Straße auf der sich das automatisierte Fahrzeug 100 befindet, eine nasse Fahrbahn aufweist.
In einer Ausführungsform wird beispielsweise von dem automatisierten Fahrzeug 100 ein dynamisches Umgebungsmerkmal 230, welches nicht von der Karte umfasst wird, erfasst und an den externen Server 210 übertragen.
Figur 3 zeigt ein Ausführungsbeispiel eines Verfahrens 300 zum Bestimmen 340 einer hochgenauen Position 150 und zum Betreiben 350 eines automatisierten Fahrzeugs 100.
In Schritt 301 startet das Verfahren 300.
In Schritt 310 werden Kartendatenwerte von einem externen Server 210, welche eine Karte repräsentieren, wobei die Karte wetterspezifische Umgebungsmerkmale 220 umfasst, empfangen.
In Schritt 320 wird ein wetterspezifischer Umgebungszustand bestimmt.
In Schritt 330 werden Umgebungsdatenwerte, wobei die Umgebungsdatenwerte eine Umgebung 200 des automatisierten Fahrzeugs 100 repräsentieren, wobei die Umgebung 200 dynamische Umgebungsmerkmale 230 umfasst, erfasst.
In Schritt 340 wird die hochgenaue Position 150, basierend auf einem Abgleich zwischen den wetterspezifischen Umgebungsmerkmalen 220 und den dynamischen
Umgebungsmerkmalen 230, abhängig von dem wetterspezifischen Umgebungszustand, bestimmt.
In Schritt 350 wird das automatisierte Fahrzeug 100, abhängig von der hochgenauen Position 150, betrieben.
In Schritt 360 endet das Verfahren 300.

Claims

Ansprüche
1 . Verfahren (300) zum Bestimmen (340) einer hochgenauen Position (150) und zum Betreiben (350) eines automatisierten Fahrzeugs (100), umfassend folgende Schritte:
- Empfangen (310) von Kartendatenwerten von einem externen Server (210),
o welche eine Karte repräsentieren,
o wobei die Karte wetterspezifische Umgebungsmerkmale (220) umfasst;
- Bestimmen (320) eines wetterspezifischen Umgebungszustands;
- Erfassen (330) von Umgebungsdatenwerten,
o wobei die Umgebungsdatenwerte eine Umgebung (200) des
automatisierten Fahrzeugs (100) repräsentieren,
o wobei die Umgebung (200) dynamische Umgebungsmerkmale (230)
umfasst;
- Bestimmen (340) der hochgenauen Position (150),
o basierend auf einem Abgleich zwischen den wetterspezifischen Umgebungsmerkmalen (220) und den dynamischen
Umgebungsmerkmalen (230),
o abhängig von dem wetterspezifischen Umgebungszustand; und
- Betreiben (350) des automatisierten Fahrzeugs (100),
o abhängig von der hochgenauen Position (150).
2. Verfahren (300) nach Anspruch 1 , dadurch gekennzeichnet, dass
• nach vorgegebenen Kriterien eine Bewertung des Abgleichs durchgeführt wird und
• abhängig von der Bewertung wenigstens eines der dynamischen
Umgebungsmerkmale (230) an den externen Server (210) übertragen wird.
3. Verfahren (300) nach Anspruch 1 , dadurch gekennzeichnet, dass
• die wetterspezifischen Umgebungsmerkmale (220) vorab von wenigstens einem weiteren Fahrzeug (250) erfasst und an den externen Server (210) übertragen wurden.
4. Verfahren (300) nach Anspruch 1 oder 3, dadurch gekennzeichnet, dass
• die wetterspezifischen Umgebungsmerkmale (220) und/oder die dynamischen Umgebungsmerkmale (230)
o Lichtreflexionen und/oder
o Fahrspuren des wenigstens einen weiteren Fahrzeugs (250) umfassen.
5. Vorrichtung (1 10) zum Bestimmen (340) einer hochgenauen Position (150) und zum Betreiben (350) eines automatisierten Fahrzeugs (100), umfassend folgende Mittel: - Erste Mittel (1 1 1 ) zum Empfangen (310) von Kartendatenwerten von einem
externen Server (210),
o welche eine Karte repräsentieren,
o wobei die Karte wetterspezifische Umgebungsmerkmale (220) umfasst;
- Zweite Mittel (1 12) zum Bestimmen (320) eines wetterspezifischen
Umgebungszustands;
- Dritte Mittel (1 13) zum Erfassen (330) von Umgebungsdatenwerten,
o wobei die Umgebungsdatenwerte eine Umgebung (200) des
automatisierten Fahrzeugs (100) repräsentieren,
o wobei die Umgebung dynamische Umgebungsmerkmale (230) umfasst; - Vierte Mittel (1 14) zum Bestimmen (340) der hochgenauen Position (150),
o basierend auf einem Abgleich zwischen den wetterspezifischen
Umgebungsmerkmalen (220) und den dynamischen
Umgebungsmerkmalen (230),
o abhängig von dem wetterspezifischen Umgebungszustand; und - Fünfte Mittel (1 15) zum Betreiben (350) des automatisierten Fahrzeugs,
o abhängig von der hochgenauen Position (150).
6. Vorrichtung (1 10) nach Anspruch 5, dadurch gekennzeichnet, dass
• die ersten Mittel (1 1 1 ) und/oder die zweiten Mittel (1 12) und/oder die dritten Mittel (1 13) und/oder die vierten Mittel (1 14) und/oder die fünften Mittel (1 15) dazu ausgebildet sind, ein Verfahren (300) gemäß wenigstens einem der Ansprüche 1 bis 4 auszuführen.
PCT/EP2018/068884 2017-08-23 2018-07-12 Verfahren und vorrichtung zum bestimmen einer hochgenauen position und zum betreiben eines automatisierten fahrzeugs WO2019037940A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/638,910 US20200192401A1 (en) 2017-08-23 2018-07-12 Method and device for determining a highly-precise position and for operating an automated vehicle
EP18740796.0A EP3673234A1 (de) 2017-08-23 2018-07-12 Verfahren und vorrichtung zum bestimmen einer hochgenauen position und zum betreiben eines automatisierten fahrzeugs
CN201880054285.3A CN110998238A (zh) 2017-08-23 2018-07-12 用于确定高精度位置和用于运行自动化车辆的方法和设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017214729.6 2017-08-23
DE102017214729.6A DE102017214729A1 (de) 2017-08-23 2017-08-23 Verfahren und Vorrichtung zum Bestimmen einer hochgenauen Position und zum Betreiben eines automatisierten Fahrzeugs

Publications (1)

Publication Number Publication Date
WO2019037940A1 true WO2019037940A1 (de) 2019-02-28

Family

ID=62916660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/068884 WO2019037940A1 (de) 2017-08-23 2018-07-12 Verfahren und vorrichtung zum bestimmen einer hochgenauen position und zum betreiben eines automatisierten fahrzeugs

Country Status (5)

Country Link
US (1) US20200192401A1 (de)
EP (1) EP3673234A1 (de)
CN (1) CN110998238A (de)
DE (1) DE102017214729A1 (de)
WO (1) WO2019037940A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021043478A1 (de) * 2019-09-06 2021-03-11 Robert Bosch Gmbh Verfahren und vorrichtung zum betreiben eines automatisierten fahrzeugs

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019205994A1 (de) 2019-04-26 2020-10-29 Robert Bosch Gmbh Verfahren zum Ausbilden einer Lokalisierungsschicht einer digitalen Lokalisierungskarte zum automatisierten Fahren

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140376777A1 (en) * 2012-02-10 2014-12-25 Isis Innovation Limited Method Of Locating A Sensor And Related Apparatus
US9298992B2 (en) * 2014-02-20 2016-03-29 Toyota Motor Engineering & Manufacturing North America, Inc. Geographic feature-based localization with feature weighting
DE102015215699A1 (de) * 2015-08-18 2017-02-23 Robert Bosch Gmbh Verfahren zum Lokalisieren eines automatisierten Kraftfahrzeugs
WO2018026603A1 (en) * 2016-08-02 2018-02-08 Pcms Holdings, Inc. System and method for optimizing autonomous vehicle capabilities in route planning

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105593875B (zh) * 2011-06-17 2020-02-07 罗伯特·博世有限公司 用于识别车辆的周围环境中的天气状况的方法和控制设备
DE102014221888A1 (de) * 2014-10-28 2016-04-28 Robert Bosch Gmbh Verfahren und Vorrichtung zur Lokalisierung eines Fahrzeugs in seinem Umfeld

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140376777A1 (en) * 2012-02-10 2014-12-25 Isis Innovation Limited Method Of Locating A Sensor And Related Apparatus
US9298992B2 (en) * 2014-02-20 2016-03-29 Toyota Motor Engineering & Manufacturing North America, Inc. Geographic feature-based localization with feature weighting
DE102015215699A1 (de) * 2015-08-18 2017-02-23 Robert Bosch Gmbh Verfahren zum Lokalisieren eines automatisierten Kraftfahrzeugs
WO2018026603A1 (en) * 2016-08-02 2018-02-08 Pcms Holdings, Inc. System and method for optimizing autonomous vehicle capabilities in route planning

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021043478A1 (de) * 2019-09-06 2021-03-11 Robert Bosch Gmbh Verfahren und vorrichtung zum betreiben eines automatisierten fahrzeugs

Also Published As

Publication number Publication date
US20200192401A1 (en) 2020-06-18
DE102017214729A1 (de) 2019-02-28
CN110998238A (zh) 2020-04-10
EP3673234A1 (de) 2020-07-01

Similar Documents

Publication Publication Date Title
DE102015111535B4 (de) Algorithmus zur genauen Krümmungsschätzung für die Bahnplanung von autonom fahrenden Fahrzeugen
EP3380810B1 (de) Verfahren, vorrichtung, kartenverwaltungseinrichtung und system zum punktgenauen lokalisieren eines kraftfahrzeugs in einem umfeld
DE102014217847A1 (de) Fahrerassistenzsystem, Verkehrstelematiksystem und Verfahren zum Aktualisieren einer digitalen Karte
DE102010049093A1 (de) Verfahren zum Betreiben zumindest eines Sensors eines Fahrzeugs und Fahrzeug mit zumindest einem Sensor
DE102015210015A1 (de) Verfahren und Vorrichtung zur Positionsbestimmung eines Fahrzeugs
DE102013206707A1 (de) Verfahren zur Überprüfung eines Umfelderfassungssystems eines Fahrzeugs
DE102015220695A1 (de) Verfahren und Vorrichtung zum Bewerten des Inhalts einer Karte
DE102011112404A1 (de) Verfahren zum Bestimmen der Position eines Kraftfahrzeugs
DE102014226020A1 (de) Verfahren und Vorrichtung zur Kalibrierung mindestens einer mobilen Sensoreinrichtung
EP3663719A1 (de) Verfahren zum bereitstellen von kartendaten in einem kraftfahrzeug, kraftfahrzeug und zentrale datenverarbeitungseinrichtung
DE112014002958T5 (de) Verwalten von Sensorerkennung in einem Fahrerassistenzsystem eines Fahrzeugs
EP3449277A1 (de) Verfahren und vorrichtung für ein kraftfahrzeug zum vergleich von umgebungskartendaten mit umgebungssensordaten zur ermittlung der passierbarkeit eines strassenobjekts
DE102017220139A1 (de) Verfahren und Vorrichtung zum Bereitstellen einer Position wenigstens eines Objekts
WO2019037940A1 (de) Verfahren und vorrichtung zum bestimmen einer hochgenauen position und zum betreiben eines automatisierten fahrzeugs
DE102016220581A1 (de) Verfahren und vorrichtung zur bestimmung eines umfeldmodells
DE102017213390A1 (de) Verfahren und Vorrichtung zum Betreiben eines automatisierten mobilen Systems
DE102017207441A1 (de) Verfahren zum Überprüfen einer digitalen Umgebungskarte für ein Fahrerassistenzsystem eines Kraftfahrzeugs, Rechenvorrichtung, Fahrerassistenzsystem sowie Kraftfahrzeug
DE102017211887A1 (de) Verfahren und Vorrichtung zum Lokalisieren und automatisierten Betreiben eines Fahrzeugs
DE102020200133A1 (de) Verfahren und Vorrichtung zum Betreiben eines automatisierten Fahrzeugs
EP3688412B1 (de) Verfahren und vorrichtung zum bestimmen einer hochgenauen position und zum betreiben eines automatisierten fahrzeugs
DE102015014191A1 (de) Verfahren zur Überprüfung einer digitalen Karte
DE102019206847A1 (de) Verfahren und Vorrichtung zum Betreiben eines automatisierten Fahrzeugs
DE102016223290A1 (de) Verfahren und Vorrichtung zum Kalibrieren eines Sensors für ein Fahrzeug
DE112021006804T5 (de) Kartenerzeugungsvorrichtung, kartenerzeugungsprogramm und fahrzeugeigene ausrüstung
WO2017089136A1 (de) Verfahren, vorrichtung, kartenverwaltungseinrichtung und system zum punktgenauen lokalisieren eines kraftfahrzeugs in einem umfeld

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18740796

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018740796

Country of ref document: EP

Effective date: 20200323