WO2019037726A1 - 参考信号传输、参数发送方法及装置、终端、基站 - Google Patents

参考信号传输、参数发送方法及装置、终端、基站 Download PDF

Info

Publication number
WO2019037726A1
WO2019037726A1 PCT/CN2018/101605 CN2018101605W WO2019037726A1 WO 2019037726 A1 WO2019037726 A1 WO 2019037726A1 CN 2018101605 W CN2018101605 W CN 2018101605W WO 2019037726 A1 WO2019037726 A1 WO 2019037726A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
frequency domain
hopping
frequency
information
Prior art date
Application number
PCT/CN2018/101605
Other languages
English (en)
French (fr)
Inventor
张淑娟
鲁照华
李儒岳
王瑜新
蒋创新
吴昊
张楠
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP18849239.1A priority Critical patent/EP3675404A4/en
Priority to US16/640,928 priority patent/US11431527B2/en
Publication of WO2019037726A1 publication Critical patent/WO2019037726A1/zh
Priority to US17/862,584 priority patent/US11757680B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • H04B1/7143Arrangements for generation of hop patterns
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/08Upper layer protocols

Definitions

  • the present application relates to the field of communications, and in particular, to a reference signal transmission, a parameter transmission method and apparatus, a terminal, and a base station.
  • the structure of the Sounding Reference Signal adopts a tree structure as shown in FIG. 1.
  • the SRS has two transmission modes: frequency hopping and non-hopping.
  • New Radio when the bandwidth supported by the base station and the bandwidth supported by the terminal are different, for example, the base station 100 MHz, the terminal 1 MHz, and the preferred bandwidth of 1 MHz for the terminal in the range of 100 MHz, the LTE is used.
  • the frequency hopping mode at least 100 SRS time domain symbols are needed, and the delay is too long, which is not tolerated by the system.
  • the NR is based on beam transmission, the frequency selection is further reduced, and a new hopping pattern scheme needs to be considered.
  • the SRS transmission mode in LTE cannot be well adapted to the many needs of NR. It is necessary to further consider the relevant improvement mode of SRS so that it can adapt to the many needs of NR.
  • the embodiment of the present application provides a reference signal transmission, a parameter sending method and device, a terminal, and a base station, to at least solve the problem that the SRS pattern in the LTE in the related art cannot meet the requirement of the NR.
  • a reference signal transmission method including: determining that a frequency domain position occupied by a reference signal satisfies a predetermined condition, wherein the predetermined condition includes: a frequency domain position occupied by the reference signal exists a continuous frequency band; transmitting the reference signal at a determined frequency domain location.
  • a reference signal transmission method including: receiving physical layer dynamic control signaling; wherein physical layer dynamic control signaling carries parameter information for determining a frequency hopping pattern of a reference signal; Determining a frequency hopping pattern of the reference signal according to the parameter information; transmitting the reference signal according to the determined frequency hopping pattern.
  • a reference signal transmission method including: determining transmission parameter information of a reference signal; transmitting a reference signal according to the determined transmission parameter information; wherein the transmission parameter information includes at least one of the following parameters: The frequency domain location information occupied by the reference signal, the antenna port grouping information corresponding to the reference signal, and the pattern information of the reference signal in the frequency domain location.
  • a parameter sending method including: sending physical layer dynamic control signaling, where physical layer dynamic control signaling carries parameter information for determining a hopping pattern of a reference signal.
  • a method for transmitting an uplink channel or a signal includes:
  • the uplink channel or signal When the uplink channel or signal meets a predetermined condition, the uplink channel or signal is sent according to the rate matching information;
  • the uplink channel or signal that is sent cannot occupy the resources included in the rate matching information.
  • a reference signal transmission apparatus including: a determining module, configured to determine that a frequency domain position occupied by a reference signal satisfies a predetermined condition, wherein the predetermined condition includes: the reference signal possesses There is a discontinuous frequency band in the frequency domain location; a transmission module is configured to transmit the reference signal in the determined frequency domain location.
  • a reference signal transmission apparatus including: a receiving module, configured to receive physical layer dynamic control signaling; wherein physical layer dynamic control signaling carries frequency hopping for determining a reference signal Parameter information of the pattern; a determining module, configured to determine a frequency hopping pattern of the reference signal according to the parameter information; and a transmitting module, configured to transmit the reference signal according to the determined frequency hopping pattern.
  • a reference signal transmission apparatus including: a determining module, configured to determine transmission parameter information of a reference signal; and a transmission module, configured to transmit a reference signal according to the determined transmission parameter information; wherein, the transmission
  • the parameter information includes at least one of the following information: time domain hopping unit information, group information of the port group, frequency domain repetition factor information corresponding to the frequency domain location, grouping information of the reference signal resource group, hopping and frequency of the reference signal resource group The relationship between domain hopping, the relationship between the hopping of the port group of the reference signal and the frequency domain hopping; wherein one reference signal resource group includes one or more reference signal ports.
  • a parameter sending apparatus including: a sending module, configured to send physical layer dynamic control signaling, where a physical layer dynamic control signaling carries a frequency hopping pattern for determining a reference signal Parameter information.
  • an apparatus for transmitting an uplink channel or a signal including:
  • Determining a module configured to determine rate matching information; determining whether an uplink channel or signal satisfies a predetermined condition;
  • a sending module configured to send the uplink channel or signal according to the rate matching information when the uplink channel or the signal meets a predetermined condition
  • the uplink channel or signal that is sent cannot occupy the resources included in the rate matching information.
  • a terminal comprising: a processor, the processor for running a program, wherein the program is executed to perform the method of any of the above.
  • a base station comprising: a processor, the processor for running a program, wherein the program is executed to perform the method of any of the above.
  • a storage medium comprising a stored program, wherein the program is executed while performing the method of any of the above.
  • a processor for running a program wherein the program is executed to perform the method of any of the above.
  • the frequency domain position occupied by the determined reference signal satisfies a predetermined condition, wherein the predetermined condition includes: the frequency domain position occupied by the reference signal has a discontinuous frequency band, and the reference can be transmitted at the determined frequency domain position.
  • the predetermined condition includes: the frequency domain position occupied by the reference signal has a discontinuous frequency band, and the reference can be transmitted at the determined frequency domain position.
  • the signal can quickly locate the preferred frequency band and better adapt to the NR requirement. Therefore, the SRS pattern in the LTE cannot be satisfied in the related art. The problem of demand.
  • FIG. 1 is a schematic diagram of a tree structure of an SRS in the related art
  • FIG. 2 is a schematic diagram of a frequency hopping pattern in LTE
  • FIG. 3 is a block diagram showing the hardware structure of a mobile terminal according to a reference signal transmission method according to an embodiment of the present application
  • FIG. 4 is a flowchart 1 of a reference signal transmission method according to an embodiment of the present application.
  • FIG. 5 is a second flowchart of a reference signal transmission method according to an embodiment of the present application.
  • FIG. 6 is a flowchart 3 of a reference signal transmission method according to an embodiment of the present application.
  • FIG. 7 is a structural block diagram 1 of a reference signal transmission apparatus according to an embodiment of the present application.
  • FIG. 8 is a second structural diagram of a reference signal transmission apparatus according to an embodiment of the present application.
  • FIG. 9 is a structural block diagram 3 of a reference signal transmission apparatus according to an embodiment of the present application.
  • FIG. 10a is a diagram 1 showing a different bandwidth index set of different bandwidth level hopping according to the preferred embodiment 1 of the present application;
  • FIG. 10b is a diagram 1 showing an example of performing frequency hopping based on a frequency hopping bandwidth level set according to a preferred embodiment 1 of the present application;
  • FIG. 10b is a diagram 1 showing an example of performing frequency hopping based on a frequency hopping bandwidth level set according to a preferred embodiment 1 of the present application;
  • 10c is a first schematic diagram of a union of frequency domain positions occupied by reference signal hopping in the hopping pattern shown in FIG. 10b according to a preferred embodiment 1 of the present application;
  • FIG. 11a is a second example of a different bandwidth index set according to different bandwidth level hopping provided by the preferred embodiment 1 of the present application;
  • FIG. 11b is a second example diagram of frequency hopping based on a frequency hopping bandwidth level set according to a preferred embodiment 1 of the present application.
  • 11c is a first schematic diagram of a union of frequency domain positions occupied by reference signal hopping in the hopping pattern shown in FIG. 11b according to a preferred embodiment 1 of the present application;
  • FIG. 12a is a third example of a different bandwidth index set of different bandwidth level hopping according to the preferred embodiment 1 of the present application.
  • 12b is a third example diagram of frequency hopping based on a set of frequency hopping bandwidth levels according to a preferred embodiment 1 of the present application;
  • FIG. 13 is a schematic diagram of a reference signal occupying a non-contiguous frequency domain position on a time domain symbol according to a preferred embodiment 2 of the present application;
  • FIG. 14 is a diagram showing an example of a frequency hopping pattern in which a reference signal on a time domain symbol occupies a discontinuous frequency domain position according to a preferred embodiment 2 of the present application;
  • 15a is a schematic diagram 1 of a plurality of non-contiguous frequency bands on a time domain symbol according to a frequency hopping process provided by a preferred embodiment 2 of the present application;
  • 15b is a second schematic diagram of a plurality of non-contiguous frequency bands on a time domain symbol in a frequency hopping process according to a preferred embodiment 2 of the present application;
  • 15c is a schematic diagram 3 of a plurality of non-contiguous frequency bands on a time domain symbol in a frequency hopping process according to a preferred embodiment 2 of the present application;
  • FIG. 16 is a schematic diagram of a time domain frequency hopping unit according to a preferred embodiment 3 of the present application as two time domain symbols;
  • 17 is a schematic diagram of a relationship between a high-level triggered SRS and a dynamically triggered SRS according to a preferred embodiment 3 of the present application;
  • FIG. 18a is a schematic diagram of a simultaneous port group hopping according to a frequency domain hopping provided by the preferred embodiment 4 of the present application;
  • FIG. 18a is a schematic diagram of a simultaneous port group hopping according to a frequency domain hopping provided by the preferred embodiment 4 of the present application;
  • FIG. 18b is a schematic diagram of a first antenna port hopping and frequency domain hopping according to a preferred embodiment 4 of the present application.
  • FIG. 18c is a schematic diagram of a pre-frequency domain hopping re-port group hopping according to a preferred embodiment 4 of the present application.
  • FIG. 19a is a schematic diagram of a simultaneous SRS resource hopping according to a frequency domain hopping provided by a preferred embodiment 5 of the present application;
  • FIG. 19a is a schematic diagram of a simultaneous SRS resource hopping according to a frequency domain hopping provided by a preferred embodiment 5 of the present application;
  • FIG. 19b is a schematic diagram of a first SRS resource group hopping and a frequency domain hopping according to a preferred embodiment 5 of the present application;
  • 19c is a schematic diagram of a pre-frequency domain hopping re-port group hopping according to a preferred embodiment 5 of the present application;
  • 20a is a schematic diagram of a preferred frequency band set selected by a base station according to a preferred embodiment 7 of the present application, where the preferred frequency band set has a discontinuous frequency band;
  • FIG. 20b is a schematic diagram of frequency hopping of a terminal on a virtual frequency domain resource according to a preferred embodiment of the present application.
  • 21 is a schematic diagram of frequency domain hopping occurring in a virtual bandwidth according to a preferred embodiment 9 of the present application.
  • Figure 22a is a first schematic diagram showing the relationship between time domain hopping units and time according to a preferred embodiment 10 of the present application;
  • Figure 22b is a second schematic diagram of the relationship between time domain hopping units and time provided in accordance with a preferred embodiment 10 of the present application.
  • FIG. 3 is a hardware structural block diagram of a mobile terminal of a reference signal transmission method according to an embodiment of the present application.
  • the mobile terminal 30 may include one or more (only one shown) processor 302 (the processor 302 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA).
  • FIG. 3 is merely illustrative and does not limit the structure of the above electronic device.
  • the mobile terminal 30 may also include more or fewer components than those shown in FIG. 3, or have a different configuration than that shown in FIG.
  • the memory 304 can be used to store software programs and modules of application software, such as program instructions/modules corresponding to the reference signal transmission method in the embodiment of the present application, and the processor 302 executes each by running a software program and a module stored in the memory 304.
  • a functional application and data processing, that is, the above method is implemented.
  • Memory 304 can include high speed random access memory and can also include non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid state memory.
  • memory 304 can further include memory remotely located relative to processor 302, which can be connected to mobile terminal 30 over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • Transmission device 306 is for receiving or transmitting data via a network.
  • the above-described network specific example may include a wireless network provided by a communication provider of the mobile terminal 30.
  • transmission device 306 includes a Network Interface Controller (NIC) that can be connected to other network devices through a base station to communicate with the Internet.
  • NIC Network Interface Controller
  • the transmission device 306 can be a Radio Frequency (RF) module for communicating with the Internet wirelessly.
  • RF Radio Frequency
  • the hopping pattern of LTE is obtained based on the following formula:
  • UpPTS Up Pilot Time Slot
  • b hop When b hop ⁇ B SRS, frequency hopping, otherwise no frequency hopping, Is the number of PRBs corresponding to the uplink system bandwidth allocated to the terminal, Is the number of subcarriers in a PRB, 12, n f is the frame index, n hf is 0 in the first half of the radio frame, 1 is in the second half of the radio frame, and N SP is a radio frame
  • the number of special subframes in , k TC , B SRS , n RRC , and b hop are all configured at a high level. Specifically, in the tree structure shown in FIG.
  • FIG. 2 is a schematic diagram of a frequency hopping pattern in LTE, as shown in FIG. 2 . It is shown that the ninth time domain symbol starts, the frequency domain position occupied by the SRS is the same as the time domain symbol occupied by the SRS on the first time domain symbol in FIG. 2, and the eight time domain symbols shown in FIG. Frequency hopping period.
  • the UE will hop all the leaves in all B SRS bandwidth levels included in one leaf of the tree structure corresponding to b hop . That is, the frequency hopping needs to be completed once. Time domain OFDM symbols.
  • FIG. 4 is a flowchart 1 of a reference signal transmission method according to an embodiment of the present application. As shown in FIG. 4, the flow includes the following steps:
  • Step S402 determining that a frequency domain position occupied by the reference signal satisfies a predetermined condition, where the predetermined condition includes: a frequency band in which the reference signal occupies a non-contiguous frequency band;
  • Step S404 transmitting the reference signal at the determined frequency domain position.
  • the frequency domain position occupied by the determined reference signal satisfies a predetermined condition, wherein the predetermined condition includes: the frequency domain position occupied by the reference signal has a discontinuous frequency band, and then the reference may be transmitted in the determined frequency domain position.
  • the signal can quickly locate the preferred frequency band and better adapt to the NR requirement. Therefore, the SRS pattern in the LTE cannot be satisfied in the related art. The problem of demand.
  • the non-contiguous frequency band in the frequency domain position occupied by the reference signal may include at least one of the following: in one time domain symbol, the frequency domain position occupied by the reference signal has a discontinuous frequency band; in one frequency hopping period The reference signal occupies a non-contiguous frequency band in the frequency domain position; the reference signal has a non-contiguous frequency band in the frequency domain position occupied by the frequency hopping mode.
  • the above transmission pattern may include a frequency hopping pattern, but is not limited thereto.
  • the frequency hopping period satisfies at least one of the following characteristics: in different frequency hopping periods, the frequency domain position occupied by the reference signal has a repeated frequency band; in different frequency hopping periods, the frequency domain occupied by the reference signal The location relationship is the same; the relationship between the relationship item in the first mapping relationship and the relationship item in the second mapping relationship, wherein the first mapping relationship is the frequency domain position and the time domain parameter occupied by the reference signal in the first frequency hopping period The mapping relationship between the frequency domain location and the time domain parameter occupied by the reference signal in the second hopping period.
  • one frequency band may include at least one of the following: one physical resource block PRB, one frequency domain sub-band, one bandwidth part, and one component carrier frequency frequency domain bandwidth.
  • the foregoing one frequency band includes one PRB as an example, and it is assumed that there are four PRBs, which are respectively PRB1, PRB2, PRB3, and PRB4; if the frequency domain position occupied by the reference signal is PRB1, PRB3, PRB4, or If it is PRB1, PRB3, etc., it is considered that there is a discontinuous frequency band in the frequency domain position occupied by the reference signal, but it is not limited thereto.
  • the predetermined condition may further include at least one of: a union of frequency bands occupied by the reference signal is less than or equal to a frequency hopping bandwidth; and the reference signal is on a virtual frequency domain resource corresponding to the physical frequency domain resource.
  • Frequency hopping; the frequency domain positions occupied by the reference signal in the frequency hopping manner are equally spaced on the hopping bandwidth; the frequency domain positions occupied by the reference signal in the frequency hopping manner are randomly distributed over the hopping bandwidth; wherein the frequency hopping bandwidth is based on the reference The bandwidth determined by the two frequency domain locations furthest from the frequency domain location occupied by the signal or the predetermined bandwidth obtained by receiving the first signaling message.
  • the foregoing one frequency band includes one PRB as an example. It is assumed that there are four PRBs, namely, PRB1, PRB2, PRB3, and PRB4. If the frequency band occupied by the reference signal is PRB1 and PRB3, the union is PRB1. And PRB3; and the frequency hopping bandwidth is the difference between the end frequency domain position of PRB4 and the initial frequency domain position of PRB1, but is not limited thereto.
  • the frequency domain bandwidth index corresponding to the reference signal satisfies at least one of the following conditions: frequency hopping in the frequency domain bandwidth level that does not belong to the reference signal When the bandwidth level is set, the frequency domain bandwidth index corresponding to the reference signal is a fixed value; when the frequency domain bandwidth level does not belong to the frequency hopping bandwidth level set of the reference signal, the frequency domain bandwidth index set corresponding to the reference signal corresponds to the frequency domain bandwidth level.
  • the true subset of the frequency domain bandwidth index set when the frequency domain bandwidth level does not belong to the hopping bandwidth level set of the reference signal, the frequency domain bandwidth index corresponding to the reference signal changes with time and the frequency domain bandwidth index set corresponding to the reference signal is a true subset of the frequency domain bandwidth index set corresponding to the frequency domain bandwidth level; wherein the frequency domain bandwidth level is a frequency domain bandwidth of the N-1th level, including one or more frequency domain bandwidth levels of the Nth frequency band bandwidth.
  • the wide frequency domain bandwidth level included is an index of multiple frequency domain bandwidths of the Nth level; the frequency domain bandwidth index set corresponding to the frequency domain bandwidth level includes a frequency domain in which the frequency domain bandwidth level is the N-1th level in the tree structure
  • the bandwidth includes a frequency domain bandwidth class that is a set of indices of all frequency domain bandwidths of the Nth level; wherein N is an integer greater than or equal to one.
  • the frequency domain bandwidth index set corresponding to the reference signal may also be referred to as a frequency domain bandwidth index occupied by the reference signal, but is not limited thereto.
  • the frequency domain bandwidth index occupied by the reference signal may further satisfy at least one of the following: when the frequency domain bandwidth level belongs to the frequency hopping bandwidth level set of the reference signal, the frequency domain bandwidth index occupied by the reference signal changes with time; When the frequency domain bandwidth level belongs to the hopping bandwidth level set of the reference signal, the frequency domain bandwidth index set of the reference signal hopping is a true subset of the frequency domain bandwidth index set corresponding to the frequency domain bandwidth level.
  • the foregoing frequency hopping bandwidth level set may satisfy at least one of the following: the level in the hopping bandwidth level set is discontinuous; the maximum level in the hopping bandwidth level set is less than or equal to the first level, where the first The level is the maximum frequency domain bandwidth level in the frequency domain bandwidth level corresponding to the reference signal; the frequency hopping bandwidth level set may be an empty set; on one time domain symbol, the reference signal corresponds to two or more frequency hopping bandwidth level sets; frequency hopping The bandwidth level set information is carried in the received signaling information.
  • the frequency domain position occupied by the reference signal changes with time. Therefore, the frequency domain position changed with time may be expressed as a pattern, but is not limited thereto.
  • the frequency domain position k(t) occupied by the reference signal can be determined in the following manner:
  • t is a time parameter
  • t is a real number greater than or equal to 0
  • b or b' is a frequency domain bandwidth level index corresponding to the reference signal in the multi-level frequency domain bandwidth level
  • b or b' 0, 1, ..., B
  • B is the maximum frequency domain bandwidth level in the frequency domain bandwidth level corresponding to the reference signal
  • B is a non-negative integer
  • N b is an index included in one of the frequency domain bandwidth levels whose index is max(b-1, 0)
  • N b ' is one of the frequency domain bandwidth levels indexed max(b'-1,0), including one of the frequency domain bandwidth levels indexed b'
  • max() is a function of the maximum value
  • orig is the initial frequency domain bandwidth index of the reference signal in the frequency domain bandwidth class indexed b
  • n b (t) is the reference signal at time t
  • b hopA satisfies at least one of: max(b hopA ) ⁇ B; b hopA includes a non-contiguous frequency domain bandwidth level index; b hopA may be an empty set; and in a time domain symbol, a reference signal Corresponds to more than two b hopA .
  • the method may further include: receiving the second signaling message, where the second signaling message includes at least one of the following information: a frequency domain bandwidth index set of reference signal hopping in each level of the frequency domain bandwidth level, and a frequency domain bandwidth index set of reference signal hopping in the frequency hopping bandwidth level set; wherein the frequency domain bandwidth level is one of the N-1th level
  • the frequency domain bandwidth includes one or more frequency domain bandwidths of the Nth frequency band, and one or more frequency domain bandwidths exist in one frequency domain bandwidth level, where N is an integer greater than or equal to 1.
  • the reference signal in a case where the reference signal frequency domain bandwidth is multiple levels, the reference signal may satisfy at least one of the following characteristics: the frequency domain bandwidth level of the reference signal is divided into multiple frequency domain bandwidth level packets.
  • the different frequency domain bandwidth level packets correspond to different relationships, wherein the relationship includes at least one of the following: a mapping relationship between the frequency domain bandwidth index and the time domain parameter corresponding to the reference signal, and the reference signal corresponds to a frequency domain bandwidth level.
  • the reference signal in one time domain symbol, corresponds to more than two frequency domain bandwidth indexes in one frequency domain bandwidth level;
  • the reference signal corresponds to two or more initial frequency domain bandwidth level information;
  • the reference signal corresponds to two or more end frequency domain bandwidth level information;
  • the reference signal first performs frequency domain bandwidth hopping in the frequency domain bandwidth group, and then performs frequency domain bandwidth Frequency domain bandwidth hopping between groups; wherein a frequency domain bandwidth group is a reference frequency signal corresponding to a frequency domain bandwidth level in the N-1th stage
  • a frequency domain bandwidth includes a frequency domain bandwidth class that is one frequency domain bandwidth group formed by one or more of the plurality of frequency domain bandwidths in the Nth stage.
  • the method may further include: receiving a third signaling message, where the third signaling message is used to determine whether the reference signal is in one Hopping in the frequency domain bandwidth group.
  • step S402 receiving the third signaling message may be performed before step S402, or may be performed after step S402, but is not limited thereto.
  • the frequency domain position k(t) occupied by the reference signal can be determined in the following manner:
  • t is a time parameter
  • t is a real number greater than or equal to 0
  • b or b' is a frequency domain bandwidth level index corresponding to the reference signal in the multi-level frequency domain bandwidth level
  • b or b' 0, 1, ..., B
  • B is the maximum frequency domain bandwidth level in the frequency domain bandwidth level corresponding to the reference signal
  • B is a non-negative integer
  • N b is an index included in one of the frequency domain bandwidth levels whose index is max(b-1, 0)
  • N b ' is one of the frequency domain bandwidth levels indexed max(b'-1,0), including one of the frequency domain bandwidth levels indexed b'
  • max() is a function of the maximum value
  • orig is the initial frequency domain bandwidth index of the reference signal in the frequency domain bandwidth class indexed b
  • n b (t) is the reference signal at time t
  • the foregoing method may further include: acquiring at least one of the following parameters by receiving the fourth signaling message or the agreed rule: ⁇ b (l), k b , x b .
  • FIG. 5 is a flowchart 2 of a reference signal transmission method according to an embodiment of the present application, where the method includes:
  • Step S502 Receive physical layer dynamic control signaling, where the physical layer dynamic control signaling carries parameter information for determining a hopping pattern of the reference signal.
  • Step S504 determining a frequency hopping pattern of the reference signal according to the parameter information
  • Step S506 transmitting a reference signal according to the determined frequency hopping pattern.
  • the hopping pattern of the reference signal may be determined by the manner in which the physical layer dynamic control signaling carries the parameter information for determining the hopping pattern of the reference signal, and the related layer does not support the physical layer dynamic control signaling.
  • the implementation of the physical layer dynamic control signaling to carry information related to the hopping pattern is implemented, thereby being able to better adapt to the NR requirement and solving the related technology in LTE.
  • the SRS pattern in the middle cannot meet the problem of NR requirements.
  • the physical layer dynamic control signaling is included in the physical layer control channel, and/or the information in the physical layer dynamic control signaling may be dynamically changed in each time unit.
  • the physical layer dynamic control signaling carries all parameter information or partial parameter information for determining a hopping pattern of the reference signal.
  • the method may further include: receiving high layer signaling, where the high layer signaling carries parameter information for determining a hopping pattern of the reference signal, and the parameter information carried in the high layer signaling is The union of the parameter information carried in the physical layer dynamic control signaling is all parameter information. Further, the network side may configure several sets of frequency hopping parameter sets through high layer signaling, and then notify the terminal of the set index of the frequency hopping parameter set through dynamic control signaling.
  • the parameters carried in the physical layer dynamic control signaling may be the same as the parameters carried in the foregoing high-layer signaling, or may be partially the same or may be completely different, as long as the physical layer dynamic control signaling is used.
  • the combination of the carried parameters and the parameters carried in the above high layer signaling may be all parameters for determining the hopping pattern of the reference signal.
  • the parameter information for determining the hopping pattern of the reference signal includes at least one of the following: a hopping bandwidth level set information, a hopping bandwidth starting level information, a frequency hopping bandwidth ending level information, and a reference signal at one time.
  • the foregoing reference signal may correspond to multiple hopping bandwidth start level information on one time domain symbol, or the reference signal may correspond to multiple hopping bandwidth end level information on one time domain symbol, or the above reference.
  • the signal may correspond to a plurality of frequency domain bandwidth levels of the frequency domain bandwidth occupied by the reference signal on a time domain symbol on a time domain symbol, or the reference signal may correspond to a frequency domain bandwidth corresponding to the reference signal in a time domain symbol. Multiple maximums in the rank, but are not limited to this. Therefore, the foregoing reference information may include multiple hopping bandwidth start level information, or multiple hopping bandwidth end level information, or a frequency domain in which the plurality of reference signals occupy a frequency domain bandwidth on a time domain symbol. The bandwidth level, or the maximum of the frequency domain bandwidth levels corresponding to the plurality of reference signals, but is not limited thereto.
  • time domain hopping unit information may further include at least one of the following: time domain symbol number information, and time domain symbol occupies time unit number information.
  • the foregoing method may further include: at least one of the following: the time domain resource occupied by the reference signal triggered by the physical layer dynamic control signaling is a reference signal possessed by the first control signaling a subset of the time domain resources; when the reference signal triggered by the physical layer dynamic control signaling and the reference signal triggered by the first control signaling occupy the same time domain symbol, only the physical layer dynamic control signal is transmitted And causing the triggered reference signal to discard the reference signal triggered by the first control signaling; the frequency domain location occupied by the reference signal triggered by the physical layer dynamic control signaling does not have a discontinuous frequency band, and the first control signaling The frequency domain location occupied by the reference signal is in a non-contiguous frequency band; the frequency hopping bandwidth level set corresponding to the reference signal triggered by the physical layer dynamic control signaling belongs to the first set, and is configured by the first control signaling.
  • the set of frequency hopping bandwidth levels corresponding to the triggered reference signal belongs to the second set; the transmission parameter and time of the reference signal that is transmitted are triggered according to the first control signaling And determining a transmission parameter of the reference signal triggered by the physical layer dynamic control signaling; the transmission parameter configuration range of the reference signal triggered by the physical layer dynamic control signaling is triggered according to the reference signal transmitted by the first control signaling
  • the transmission parameter configuration information is determined; wherein the first control signaling includes at least one of the following: high layer control signaling, and control signaling that is closest to a transmission time of the physical layer dynamic control signaling.
  • all or part of the parameter information carried in the high-level signaling may be applicable to both the reference signal triggered by the physical layer dynamic control signaling and the reference signal triggered by the higher layer signaling.
  • the transmission pattern of the reference signal triggered by the physical layer dynamic control signaling may be expressed as: a reference of the physical layer dynamic control signaling trigger transmission.
  • the transmission parameter of the signal, the high-level signaling triggers the transmission parameter and the time parameter of the transmitted reference signal to determine the transmission pattern of the reference signal triggered by the physical layer dynamic control signaling; but is not limited thereto.
  • FIG. 6 is a flowchart 3 of a reference signal transmission method according to an embodiment of the present application, where the method includes:
  • Step S602 determining transmission parameter information of the reference signal
  • Step S604 The reference signal is transmitted according to the determined transmission parameter information, where the transmission parameter information includes at least one of the following parameters: frequency domain location information occupied by the reference signal, antenna port grouping information corresponding to the reference signal, and the reference Pattern information of the signal in the frequency domain position.
  • the foregoing transmission parameter information of the reference signal can be obtained, so that the requirement of the NR can be better adapted, and thus the problem that the SRS pattern in the LTE cannot meet the requirement of the NR in the related art can be solved.
  • the transmission parameter information includes at least one of the following information: time domain frequency hopping unit information, port group group information, frequency domain location corresponding frequency domain repetition factor information, reference signal resource group grouping information, reference The relationship between the hopping of the signal resource group and the frequency domain hopping, the relationship between the hopping of the port group of the reference signal and the frequency domain hopping; the hopping bandwidth level set information, the hopping bandwidth end level information, a frequency domain bandwidth level of the frequency domain bandwidth occupied by the reference signal on a time domain symbol, a maximum value of the frequency domain bandwidth level corresponding to the reference signal, a frequency hopping period number information, and the reference signal in one
  • the time domain symbol index information occupied in the time unit, the time domain symbol number information occupied by the reference signal in one time unit, the reference signal port group hopping pattern information, and the initial frequency domain position occupied by the reference signal The number of times the reference signal is hopped in the frequency domain, the adjacent frequency domain hopping corresponds to the frequency domain interval between the frequency domain positions, and the reference frequency signal occupie
  • the function type of the change the frequency domain bandwidth index set information corresponding to the reference signal in a frequency domain bandwidth level, the frequency hopping frequency band set information of the reference signal, whether the reference signal is a continuous frequency domain frequency hopping mode or discontinuous Frequency domain frequency hopping mode, frequency domain bandwidth level group information, used to indicate whether the frequency domain bandwidth level group has frequency hopping information, frequency domain bandwidth group information, frequency domain bandwidth group hopping information, frequency domain bandwidth group hopping order Information; wherein: one of the reference signal resource groups includes one or more reference signal ports, and the time domain frequency hopping unit information includes the reference signal performing frequency hopping every other time domain hopping unit and at one location The frequency domain position of the reference signal in the time domain frequency hopping unit is unchanged.
  • the antenna port information of the measurement reference signal is obtained according to port group information of the measurement reference signal.
  • time domain frequency hopping unit information may include that the reference signal performs frequency hopping every other time domain hopping unit and the frequency domain position of the reference signal does not change in a time domain hopping unit; and/or different The repetition factor corresponding to the frequency domain position is different.
  • T 1 is the time-domain frequency hopping unit information
  • the time-domain frequency hopping unit of information is the number of time domain symbols occupied by the reference signal measurement, wherein when said time domain symbol comprising a time unit Domain symbols, and/or time domain symbols in multiple time units;
  • the time domain frequency hopping unit information includes at least one of the following: the period information of the measurement reference signal, and the time domain symbol number information included in the measurement reference signal in one cycle.
  • the frequency domain location information occupied by the measurement reference signal includes tree structure information C SRS , where the C SRS is included in the proprietary control signaling;
  • the antenna port information of the measurement reference signal is obtained according to the measurement reference signal resource group information
  • the antenna port information of the measurement reference signal is obtained according to the measurement reference signal resource information
  • the antenna port information of the measurement reference signal is obtained according to port group information of the measurement reference signal.
  • the group information of the port group may include the port group.
  • the number of time domain frequency hopping units there is a correspondence between the number of time domain frequency hopping units and the number of port groups; in the case where the group information of the port group can include the number of port groups, the number of port groups and the reference signal are on one time unit
  • the time domain hopping unit information of the reference signal is different at different times.
  • the foregoing transmission parameter information may further include: a correspondence between a time domain frequency hopping unit and time.
  • the relationship between the hopping of the reference signal resource group and the frequency domain hopping may include one of the following: the hopping of the reference signal resource group is earlier than the frequency domain hopping, and the hopping and frequency of the reference signal resource group.
  • the domain hopping occurs simultaneously, and the frequency domain hopping is earlier than the hopping of the reference signal resource group.
  • the relationship between the hopping of the port group and the frequency domain hopping includes one of the following: the hop of the port group is earlier than the hopping of the frequency domain.
  • the frequency domain hopping is earlier than the hopping of the port group, and the hopping of the port group is performed simultaneously with the frequency domain hopping.
  • transmission parameter information may be included in at least one of the following control signaling: physical layer dynamic control signaling, and upper layer control signaling.
  • high layer control signaling may be RRC control signaling or MAC CE control signaling, but is not limited thereto.
  • execution body of the steps of the foregoing method in FIG. 4 and FIG. 5 may be a terminal, such as a mobile terminal, but is not limited thereto, and the execution body of the steps of the method described in FIG. 6 may be a base station. It is also possible to terminal, but is not limited to this.
  • a method for transmitting a parameter applied to a base station includes: sending physical layer dynamic control signaling, where the physical layer dynamic control signaling carries a frequency hopping pattern for determining a reference signal. Parameter information.
  • the physical layer dynamic control signaling carries all parameter information or partial parameter information for determining a hopping pattern of the reference signal.
  • the foregoing method may further include: sending high layer signaling, where the high layer signaling carries parameter information for determining a hopping pattern of the reference signal, and parameter information carried in the high layer signaling
  • the union of the parameter information carried in the physical layer dynamic control signaling is all parameter information.
  • the physical layer dynamic control signaling and the sending high layer signaling may be performed simultaneously, or the physical layer dynamic control signaling may be sent first to send high layer signaling, or the upper layer signaling may be sent first and then the physical may be sent.
  • Layer dynamic control signaling but is not limited to this.
  • the parameter information for determining the hopping pattern of the reference signal may include at least one of the following: a hopping bandwidth level set information, a hopping bandwidth starting level information, a frequency hopping bandwidth ending level information, and a reference signal in one The frequency domain bandwidth level of the frequency domain bandwidth occupied by the time domain symbol, the maximum value of the frequency domain bandwidth level corresponding to the reference signal, the number of frequency hopping period information, the number of time domain symbols occupied by the reference signal, and the reference signal Period information, reference signal period offset information, time domain symbol index information occupied by the reference signal in one time unit, time domain symbol number information occupied by the reference signal in one time unit, time domain frequency hopping unit information of the reference signal , the number of ports corresponding to the reference signal, the number of port groups of the reference signal, the reference signal port group hopping pattern information, the reference signal hopping parameter set index information, the reference signal resource group hopping and the frequency domain hopping Relationship between the transition of the port group and the frequency domain hop, the initial frequency domain position occupied by the
  • execution body of this embodiment may be a base station, but is not limited thereto.
  • a method for transmitting an uplink channel or a signal includes: determining rate matching information; determining whether an uplink channel or a signal meets a predetermined condition; and when the uplink channel or signal meets a predetermined condition, according to The rate matching information sends the uplink channel or signal; wherein the uplink channel or signal sent cannot occupy resources included in the rate matching information.
  • the resource included in the match match information is an available resource of the uplink channel or signal.
  • the predetermined condition includes at least one of the following conditions:
  • the uplink channel or signal is a periodic channel or signal
  • the upstream channel or signal is a semi-persistent channel or signal
  • the uplink channel or signal is not a channel or signal scheduled by the physical layer dynamic control signaling.
  • the resource included in the rate matching information includes at least one of the following resources: at least one of the following resources: a time domain resource, a frequency domain resource, a reference signal resource, a port resource, an air domain resource, and an uplink measurement reference signal resource. Pool information.
  • the uplink signal that is sent is an uplink measurement reference signal in a frequency hopping state, and when there is an overlap between the uplink measurement reference signal and the resource included in the rate matching information, perform at least one of the following operations. :
  • the frequency domain position that the current frequency hopping uplink measurement reference signal needs to occupy is postponed to the next frequency hopping resource.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present application which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a mobile phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present application.
  • a reference signal transmission device is also provided in the embodiment, which is used to implement the above-mentioned embodiments and preferred embodiments, and will not be described again.
  • the term “module” may implement a combination of software and/or hardware of a predetermined function.
  • the devices described in the following embodiments are preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 7 is a structural block diagram 1 of a reference signal transmission apparatus according to an embodiment of the present application. As shown in FIG. 7, the apparatus includes:
  • the determining module 72 is configured to determine that a frequency domain position occupied by the reference signal satisfies a predetermined condition, where the predetermined condition includes: a frequency band in which the reference signal occupies a non-contiguous frequency band;
  • the transmission module 74 is coupled to the determining module 72 and configured to transmit the reference signal at a determined frequency domain location.
  • the frequency domain position occupied by the determined reference signal satisfies a predetermined condition, wherein the predetermined condition includes: the frequency domain position occupied by the reference signal has a discontinuous frequency band, and the reference can be transmitted at the determined frequency domain position.
  • the predetermined condition includes: the frequency domain position occupied by the reference signal has a discontinuous frequency band, and the reference can be transmitted at the determined frequency domain position.
  • the signal can quickly locate the preferred frequency band and better adapt to the NR requirement. Therefore, the SRS pattern in the LTE cannot be satisfied in the related art. The problem of demand.
  • the non-contiguous frequency band in the frequency domain position occupied by the reference signal may include at least one of the following: in one time domain symbol, the frequency domain position occupied by the reference signal has a discontinuous frequency band; in one frequency hopping period The reference signal occupies a non-contiguous frequency band in the frequency domain position; the reference signal has a non-contiguous frequency band in the frequency domain position occupied by the frequency hopping mode.
  • the above transmission pattern may include a frequency hopping pattern, but is not limited thereto.
  • the frequency hopping period satisfies at least one of the following characteristics: in different frequency hopping periods, the frequency domain position occupied by the reference signal has a repeated frequency band; in different frequency hopping periods, the frequency domain occupied by the reference signal The location relationship is the same; the relationship between the relationship item in the first mapping relationship and the relationship item in the second mapping relationship, wherein the first mapping relationship is the frequency domain position and the time domain parameter occupied by the reference signal in the first frequency hopping period The mapping relationship between the frequency domain location and the time domain parameter occupied by the reference signal in the second hopping period.
  • one frequency band may include at least one of the following: one physical resource block PRB, one frequency domain sub-band, one bandwidth part, and one component carrier frequency frequency domain bandwidth.
  • the foregoing one frequency band includes one PRB as an example, and it is assumed that there are four PRBs, which are respectively PRB1, PRB2, PRB3, and PRB4; if the frequency domain position occupied by the reference signal is PRB1, PRB3, PRB4, or If it is PRB1, PRB3, etc., it is considered that there is a discontinuous frequency band in the frequency domain position occupied by the reference signal, but it is not limited thereto.
  • the predetermined condition may further include at least one of: a union of frequency bands occupied by the reference signal is less than or equal to a frequency hopping bandwidth; and the reference signal is on a virtual frequency domain resource corresponding to the physical frequency domain resource.
  • Frequency hopping; the frequency domain positions occupied by the reference signal in the frequency hopping manner are equally spaced on the hopping bandwidth; the frequency domain positions occupied by the reference signal in the frequency hopping manner are randomly distributed over the hopping bandwidth; wherein the frequency hopping bandwidth is based on the reference The bandwidth determined by the two frequency domain locations furthest from the frequency domain location occupied by the signal or the predetermined bandwidth obtained by receiving the first signaling message.
  • the foregoing one frequency band includes one PRB as an example. It is assumed that there are four PRBs, namely, PRB1, PRB2, PRB3, and PRB4. If the frequency band occupied by the reference signal is PRB1 and PRB3, the union is PRB1. And PRB3; and the frequency hopping bandwidth is the difference between the end frequency domain position of PRB4 and the initial frequency domain position of PRB1, but is not limited thereto.
  • the frequency domain bandwidth index corresponding to the reference signal satisfies at least one of the following conditions: frequency hopping in the frequency domain bandwidth level that does not belong to the reference signal When the bandwidth level is set, the frequency domain bandwidth index corresponding to the reference signal is a fixed value; when the frequency domain bandwidth level does not belong to the frequency hopping bandwidth level set of the reference signal, the frequency domain bandwidth index set corresponding to the reference signal corresponds to the frequency domain bandwidth level.
  • the true subset of the frequency domain bandwidth index set when the frequency domain bandwidth level does not belong to the hopping bandwidth level set of the reference signal, the frequency domain bandwidth index corresponding to the reference signal changes with time and the frequency domain bandwidth index set corresponding to the reference signal is a true subset of the frequency domain bandwidth index set corresponding to the frequency domain bandwidth level; wherein the frequency domain bandwidth level is a frequency domain bandwidth of the N-1th level, including one or more frequency domain bandwidth levels of the Nth frequency band bandwidth.
  • the wide frequency domain bandwidth level included is an index of multiple frequency domain bandwidths of the Nth level; the frequency domain bandwidth index set corresponding to the frequency domain bandwidth level includes a frequency domain in which the frequency domain bandwidth level is the N-1th level in the tree structure
  • the bandwidth includes a frequency domain bandwidth class that is a set of indices of all frequency domain bandwidths of the Nth level; wherein N is an integer greater than or equal to one.
  • the frequency domain bandwidth index set corresponding to the reference signal may also be referred to as a frequency domain bandwidth index occupied by the reference signal, but is not limited thereto.
  • the frequency domain bandwidth index occupied by the reference signal may further satisfy at least one of the following: when the frequency domain bandwidth level belongs to the frequency hopping bandwidth level set of the reference signal, the frequency domain bandwidth index occupied by the reference signal changes with time; When the frequency domain bandwidth level belongs to the hopping bandwidth level set of the reference signal, the frequency domain bandwidth index set of the reference signal hopping is a true subset of the frequency domain bandwidth index set corresponding to the frequency domain bandwidth level.
  • the foregoing frequency hopping bandwidth level set may satisfy at least one of the following: the level in the hopping bandwidth level set is discontinuous; the maximum level in the hopping bandwidth level set is less than or equal to the first level, where the first The level is the maximum frequency domain bandwidth level in the frequency domain bandwidth level corresponding to the reference signal; the frequency hopping bandwidth level set may be an empty set; on one time domain symbol, the reference signal corresponds to two or more frequency hopping bandwidth level sets; frequency hopping The bandwidth level set information is carried in the received signaling information.
  • the determining module 72 may determine the frequency domain position k(t) occupied by the reference signal by:
  • t is a time parameter
  • t is a real number greater than or equal to 0
  • b or b' is a frequency domain bandwidth level index corresponding to the reference signal in the multi-level frequency domain bandwidth level
  • b or b' 0, 1, ..., B
  • B is the maximum frequency domain bandwidth level in the frequency domain bandwidth level corresponding to the reference signal
  • B is a non-negative integer
  • N b is an index included in one of the frequency domain bandwidth levels whose index is max(b-1, 0)
  • N b ' is one of the frequency domain bandwidth levels indexed max(b'-1,0), including one of the frequency domain bandwidth levels indexed b'
  • max() is a function of the maximum value
  • orig is the initial frequency domain bandwidth index of the reference signal in the frequency domain bandwidth class indexed b
  • n b (t) is the reference signal at time t
  • b hopA satisfies at least one of: max(b hopA ) ⁇ B; b hopA includes a non-contiguous frequency domain bandwidth level index; b hopA may be an empty set; and in a time domain symbol, a reference signal Corresponds to more than two b hopA .
  • the foregoing apparatus may further include: a receiving module, configured to receive the second signaling message, where the second signaling message includes the following At least one of the information: a frequency domain bandwidth index set of reference signal hopping in each frequency domain bandwidth level, and a frequency domain bandwidth index set of reference signal hopping in the frequency hopping bandwidth level set; wherein the frequency domain bandwidth level is Nth
  • a frequency domain bandwidth of the -1 level includes one or more frequency domain bandwidths of the Nth frequency band, and one or more frequency domain bandwidths at one frequency domain bandwidth level.
  • the reference signal in a case where the reference signal frequency domain bandwidth is multiple levels, the reference signal may satisfy at least one of the following characteristics: the frequency domain bandwidth level of the reference signal is divided into multiple frequency domain bandwidth level packets.
  • the different frequency domain bandwidth level packets correspond to different relationships, wherein the relationship includes at least one of the following: a mapping relationship between the frequency domain bandwidth index and the time domain parameter corresponding to the reference signal, and the reference signal corresponds to a frequency domain bandwidth level.
  • the reference signal in one time domain symbol, corresponds to more than two frequency domain bandwidth indexes in one frequency domain bandwidth level;
  • the reference signal corresponds to two or more initial frequency domain bandwidth level information;
  • the reference signal corresponds to two or more end frequency domain bandwidth level information;
  • the reference signal first performs frequency domain bandwidth hopping in the frequency domain bandwidth group, and then performs frequency domain bandwidth Frequency domain bandwidth hopping between groups; wherein a frequency domain bandwidth group is a reference frequency signal corresponding to a frequency domain bandwidth level in the N-1th stage
  • Frequency-domain frequency domain bandwidth includes bandwidth level to a plurality of frequency domain or a frequency domain bandwidth of a bandwidth of the group consisting of the bandwidth of the first plurality of frequency domain in the N stage.
  • the receiving module is further configured to receive a third signaling message, where the third signaling message is used to determine whether the reference signal is in the case that the frequency bandwidth of the reference signal is multiple.
  • a frequency domain bandwidth group jumps.
  • the determining module 72 may further determine the frequency domain position k(t) occupied by the reference signal by:
  • t is a time parameter
  • t is a real number greater than or equal to 0
  • b or b' is a frequency domain bandwidth level index corresponding to the reference signal in the multi-level frequency domain bandwidth level
  • b or b' 0, 1, ..., B
  • B is the maximum frequency domain bandwidth level in the frequency domain bandwidth level corresponding to the reference signal
  • B is a non-negative integer
  • N b is an index included in one of the frequency domain bandwidth levels whose index is max(b-1, 0)
  • N b ' is one of the frequency domain bandwidth levels indexed max(b'-1,0), including one of the frequency domain bandwidth levels indexed b'
  • max() is a function of the maximum value
  • orig is the initial frequency domain bandwidth index of the reference signal in the frequency domain bandwidth class indexed b
  • n b (t) is the reference signal at time t
  • the foregoing apparatus further includes: an obtaining module, configured to acquire at least one of the following parameters by receiving a fourth signaling message or a contract rule: ⁇ b (l), k b , x b .
  • the above device may be located in the terminal, but is not limited thereto.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • a reference signal transmission device is also provided in the embodiment, which is used to implement the above-mentioned embodiments and preferred embodiments, and will not be described again.
  • the term “module” may implement a combination of software and/or hardware of a predetermined function.
  • the devices described in the following embodiments are preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 8 is a structural block diagram 2 of a reference signal transmission apparatus according to an embodiment of the present application. As shown in FIG. 8, the apparatus includes:
  • the receiving module 82 is configured to receive physical layer dynamic control signaling, where the physical layer dynamic control signaling carries parameter information for determining a hopping pattern of the reference signal;
  • the determining module 84 is connected to the receiving module 82, and configured to determine a frequency hopping pattern of the reference signal according to the parameter information;
  • the transmission module 86 is coupled to the determining module 84 and configured to transmit the reference signal according to the determined hopping pattern.
  • the hopping pattern of the reference signal may be determined by the manner that the physical layer dynamic control signaling carries the parameter information for determining the hopping pattern of the reference signal, and the related layer does not support the physical layer dynamic control signaling.
  • the implementation of the physical layer dynamic control signaling to carry information related to the hopping pattern is implemented, thereby being able to better adapt to the NR requirement and solving the related technology in LTE.
  • the SRS pattern in the middle cannot meet the problem of NR requirements.
  • the physical layer dynamic control signaling is included in the physical layer control channel, and/or the information in the physical layer dynamic control signaling may be dynamically changed in each time unit.
  • the physical layer dynamic control signaling carries all parameter information or partial parameter information for determining a hopping pattern of the reference signal.
  • the receiving module 82 may be further configured to receive high layer signaling, where the high layer signaling carries parameter information for determining a hopping pattern of the reference signal, and is carried in the high layer signaling.
  • the union of the parameter information and the parameter information carried in the physical layer dynamic control signaling is all parameter information.
  • the parameters carried in the physical layer dynamic control signaling may be the same as the parameters carried in the high-layer signaling, or may be partially the same or different, as long as the physical layer dynamic control signaling is carried in the physical layer.
  • the combination of the parameters and the parameters carried in the above high layer signaling may be all parameters for determining the hopping pattern of the reference signal.
  • the parameter information for determining the hopping pattern of the reference signal includes at least one of the following: a hopping bandwidth level set information, a hopping bandwidth starting level information, a frequency hopping bandwidth ending level information, and a reference signal at one time.
  • the foregoing reference signal may correspond to multiple hopping bandwidth start level information on one time domain symbol, or the reference signal may correspond to multiple hopping bandwidth end level information on one time domain symbol, or the above reference.
  • the signal may correspond to a plurality of frequency domain bandwidth levels of the frequency domain bandwidth occupied by the reference signal on a time domain symbol on a time domain symbol, or the reference signal may correspond to a frequency domain bandwidth corresponding to the reference signal in a time domain symbol. Multiple maximums in the rank, but are not limited to this. Therefore, the foregoing reference information may include multiple hopping bandwidth start level information, or multiple hopping bandwidth end level information, or a frequency domain in which the plurality of reference signals occupy a frequency domain bandwidth on a time domain symbol. The bandwidth level, or the maximum of the frequency domain bandwidth levels corresponding to the plurality of reference signals, but is not limited thereto.
  • time domain frequency hopping unit information may further include at least one of the following: the time domain symbol number information, and the time domain symbol occupies the time unit number information.
  • the time domain resource occupied by the reference signal triggered by the physical layer dynamic control signaling is a subset of the time domain resource occupied by the reference signal triggered by the first control signaling;
  • the reference signal triggered by the physical layer dynamic control signaling and the reference signal triggered by the first control signaling occupy the same time domain symbol, only the reference signal triggered by the physical layer dynamic control signaling is transmitted, and the first control is discarded.
  • the frequency domain location occupied by the reference signal triggered by the physical layer dynamic control signaling does not have a discontinuous frequency band, and the frequency domain occupied by the reference signal triggered by the first control signaling a non-contiguous frequency band exists in the location;
  • the frequency hopping bandwidth level set corresponding to the reference signal triggered by the physical layer dynamic control signaling belongs to the first set, and the hopping bandwidth level corresponding to the reference signal triggered by the first control signaling
  • the set belongs to the second set;
  • the transmission parameter of the reference signal triggered by the physical layer dynamic control signaling may trigger the transmitted reference signal according to the first control signaling
  • the transmission parameter and the time parameter are determined;
  • the transmission parameter configuration range of the reference signal triggered by the physical layer dynamic control signaling is determined according to the transmission parameter configuration information of the reference signal triggered by the first control signaling; wherein, the first The control signaling includes at least one of the following: high layer control signaling, and control signaling that is closest to the transmission time of the physical layer dynamic control signaling.
  • all or part of the parameter information carried in the high-level signaling may be applicable to both the reference signal triggered by the physical layer dynamic control signaling and the reference signal triggered by the higher layer signaling.
  • the transmission pattern of the reference signal triggered by the physical layer dynamic control signaling may be expressed as: a reference of the physical layer dynamic control signaling trigger transmission.
  • the transmission parameter of the signal, the high-level signaling triggers the transmission parameter and the time parameter of the transmitted reference signal to determine the transmission pattern of the reference signal triggered by the physical layer dynamic control signaling; but is not limited thereto.
  • execution body of the above steps may be a terminal, but is not limited thereto.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • a reference signal transmission device is also provided in the embodiment, which is used to implement the above-mentioned embodiments and preferred embodiments, and will not be described again.
  • the term “module” may implement a combination of software and/or hardware of a predetermined function.
  • the devices described in the following embodiments are preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 9 is a structural block diagram 3 of a reference signal transmission apparatus according to an embodiment of the present application. As shown in FIG. 9, the apparatus includes:
  • a determining module 92 configured to determine transmission parameter information of the reference signal
  • the transmission module 94 is connected to the determining module 92, and configured to transmit the reference signal according to the determined transmission parameter information.
  • the transmission parameter information includes at least one of the following parameters: frequency domain location information occupied by the reference signal, the reference signal Corresponding antenna port grouping information, pattern information of the reference signal in a frequency domain position.
  • the foregoing transmission parameter information of the reference signal can be obtained, so that the requirement of the NR can be better adapted, and thus the problem that the SRS pattern in the LTE cannot meet the requirement of the NR in the related art can be solved.
  • the transmission parameter information includes at least one of the following information: time domain frequency hopping unit information, port group group information, frequency domain location corresponding frequency domain repetition factor information, reference signal resource group grouping information, reference The relationship between the hopping of the signal resource group and the frequency domain hopping, the relationship between the hopping of the port group of the reference signal and the frequency domain hopping; the hopping bandwidth level set information, the hopping bandwidth end level information, a frequency domain bandwidth level of the frequency domain bandwidth occupied by the reference signal on a time domain symbol, a maximum value of the frequency domain bandwidth level corresponding to the reference signal, a frequency hopping period number information, and the reference signal in one
  • the time domain symbol index information occupied in the time unit, the time domain symbol number information occupied by the reference signal in one time unit, the reference signal port group hopping pattern information, and the initial frequency domain position occupied by the reference signal The number of times the reference signal is hopped in the frequency domain, the adjacent frequency domain hopping corresponds to the frequency domain interval between the frequency domain positions, and the reference frequency signal occupie
  • the function type of the change, the frequency domain bandwidth index set information corresponding to the reference signal in a frequency domain bandwidth level, the frequency hopping frequency band set information of the reference signal, the reference signal is a continuous frequency domain frequency hopping mode or not Continuous frequency domain frequency hopping mode, frequency domain bandwidth level group information, used to indicate whether the frequency domain bandwidth level group has frequency hopping information, frequency domain bandwidth group information, frequency domain bandwidth group hopping information, frequency domain bandwidth group frequency hopping Sequence information; wherein: one of the reference signal resource groups includes one or more reference signal ports, and the time domain frequency hopping unit information includes the reference signal performing frequency hopping every other time domain hopping unit and The frequency domain position of the reference signal in the time domain hopping unit is unchanged.
  • time domain frequency hopping unit information may include that the reference signal performs frequency hopping every other time domain hopping unit and the frequency domain position of the reference signal does not change in a time domain hopping unit; and/or different The repetition factor corresponding to the frequency domain position is different.
  • T 1 is the time domain frequency hopping unit information
  • the time domain frequency hopping unit information is a number of time domain symbols occupied by the measurement reference signal, wherein the time domain symbol includes a time domain symbol in a time unit, and/or a time domain symbol in multiple time units And/or, the time domain frequency hopping unit information includes at least one of the following: a period information of the measurement reference signal, a time domain symbol number information included in the measurement reference signal in one period, a time domain symbol Number information, the number of time units occupied by the time domain symbol.
  • the frequency domain location information occupied by the measurement reference signal includes tree structure information C SRS , where the C SRS is included in the proprietary control signaling;
  • the antenna port information of the measurement reference signal is obtained according to the measurement reference signal resource group information
  • the antenna port information of the measurement reference signal is obtained according to the measurement reference signal resource information
  • the antenna port information of the measurement reference signal is obtained according to port group information of the measurement reference signal.
  • the group information of the port group may include the port group.
  • the number of time domain frequency hopping units there is a correspondence between the number of time domain frequency hopping units and the number of port groups; in the case where the group information of the port group can include the number of port groups, the number of port groups and the reference signal are on one time unit
  • the time domain hopping unit information of the reference signal is different at different times.
  • the foregoing transmission parameter information may further include: a correspondence between a time domain frequency hopping unit and time.
  • the relationship between the hopping of the reference signal resource group and the frequency domain hopping may include one of the following: the hopping of the reference signal resource group is earlier than the frequency domain hopping, and the hopping and frequency of the reference signal resource group.
  • the domain hopping occurs simultaneously, and the frequency domain hopping is earlier than the hopping of the reference signal resource group.
  • the relationship between the hopping of the port group and the frequency domain hopping includes one of the following: the hop of the port group is earlier than the hopping of the frequency domain.
  • the frequency domain hopping is earlier than the hopping of the port group, and the hopping of the port group is performed simultaneously with the frequency domain hopping.
  • transmission parameter information may be included in at least one of the following control signaling: physical layer dynamic control signaling, and upper layer control signaling.
  • high layer control signaling may be RRC control signaling or MAC CE control signaling, but is not limited thereto.
  • the foregoing apparatus may be located in the terminal or may be located in the base station, and is not limited thereto.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • a parameter sending device is also provided, which is used to implement the above-mentioned embodiments and preferred embodiments, and has not been described again.
  • the term “module” may implement a combination of software and/or hardware of a predetermined function.
  • the devices described in the following embodiments are preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • the parameter sending apparatus includes: a sending module configured to send physical layer dynamic control signaling, where the physical layer dynamic control signaling carries parameter information for determining a hopping pattern of the reference signal.
  • the physical layer dynamic control signaling carries all parameter information or partial parameter information for determining a hopping pattern of the reference signal.
  • the sending module is further configured to send high layer signaling, where the high layer signaling carries parameter information for determining a hopping pattern of the reference signal, and the parameter information carried in the high layer signaling
  • the union of the parameter information carried in the physical layer dynamic control signaling is all parameter information.
  • the physical layer dynamic control signaling and the sending high layer signaling may be performed simultaneously, or the physical layer dynamic control signaling may be sent first to send high layer signaling, or the upper layer signaling may be sent first and then the physical may be sent.
  • Layer dynamic control signaling but is not limited to this.
  • the parameter information for determining the hopping pattern of the reference signal may include at least one of the following: a hopping bandwidth level set information, a hopping bandwidth starting level information, a frequency hopping bandwidth ending level information, and a reference signal in one The frequency domain bandwidth level of the frequency domain bandwidth occupied by the time domain symbol, the maximum value of the frequency domain bandwidth level corresponding to the reference signal, the number of frequency hopping period information, the number of time domain symbols occupied by the reference signal, and the reference signal Period information, reference signal period offset information, time domain symbol index information occupied by the reference signal in one time unit, time domain symbol number information occupied by the reference signal in one time unit, time domain frequency hopping unit information of the reference signal , the number of ports corresponding to the reference signal, the number of port groups of the reference signal, the reference signal port group hopping pattern information, the reference signal hopping parameter set index information, the reference signal resource group hopping and the frequency domain hopping Relationship between the transition of the port group and the frequency domain hop, the initial frequency domain position occupied by the
  • the foregoing apparatus may be located in the base station, but is not limited thereto.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • an apparatus for transmitting an uplink channel or a signal includes:
  • Determining a module configured to determine rate matching information; determining whether an uplink channel or signal satisfies a predetermined condition;
  • a sending module configured to send the uplink channel or signal according to the rate matching information when the uplink channel or the signal meets a predetermined condition
  • the uplink channel or signal that is sent cannot occupy the resources included in the rate matching information.
  • the resource included in the match match information is an available resource of the uplink channel or signal.
  • the predetermined condition includes at least one of the following conditions:
  • the uplink channel or signal is a periodic channel or signal
  • the upstream channel or signal is a semi-persistent channel or signal
  • the uplink channel or signal is not a channel or signal scheduled by the physical layer dynamic control signaling.
  • the resource included in the rate matching information includes at least one of the following resources: at least one of the following resources: a time domain resource, a frequency domain resource, a reference signal resource, a port resource, an air domain resource, and an uplink measurement reference signal resource. Pool information.
  • the uplink signal that is sent is an uplink measurement reference signal in a frequency hopping state, and when there is an overlap between the uplink measurement reference signal and the resource included in the rate matching information, perform at least one of the following operations. :
  • the frequency domain location that the uplink measurement reference signal needs to be sent is sent to the next frequency hopping opportunity of the uplink measurement reference signal in the frequency domain resource that is included in the rate matching information;
  • the frequency domain position that the current frequency hopping uplink measurement reference signal needs to occupy is postponed to the next frequency hopping resource.
  • the embodiment of the present invention provides a terminal, where the terminal includes: a processor, where the processor is used to run a program, where the program is executed to execute FIG. 4 or FIG. 5 or FIG. 6 in Embodiment 1 above.
  • the terminal includes: a processor, where the processor is used to run a program, where the program is executed to execute FIG. 4 or FIG. 5 or FIG. 6 in Embodiment 1 above. The method described in the illustrated embodiment.
  • the embodiment of the present application further provides a base station, where the base station includes: a processor, where the processor is used to run a program, where the method or the embodiment of the embodiment shown in FIG. 6 in Embodiment 1 is executed when the program is running. 1 parameter transmission method.
  • the embodiment of the present application further provides a storage medium, which includes a stored program, wherein the program runs to perform the method described in any of the above.
  • the foregoing storage medium may include, but is not limited to, a USB flash drive, a Read-Only Memory (ROM), and a Random Access Memory (Random Access Memory). , referred to as RAM), mobile hard disk, disk or optical disk, and other media that can store program code.
  • ROM Read-Only Memory
  • Random Access Memory Random Access Memory
  • the embodiment of the present application further provides a processor for running a program, wherein the program executes the steps in any of the above methods when the program is running.
  • Cyclic and aperiodic SRS triggering modes are supported in LTE, and periodic and aperiodic SRS parameters are independently configured.
  • Acyclic SRS does not support frequency hopping mode.
  • the non-periodic triggering SRS since one SRS resource in one slot can support multiple time domain symbols, in order to quickly locate the preferred frequency band, it can be considered that the non-periodic triggering SRS also supports the frequency hopping mode, and further consideration is needed for the non-periodic triggered SRS to support the hopping pattern. Configurable parameters. And the link between periodic hopping and aperiodic hopping.
  • the system bandwidth occupied by SRS in LTE and the tree structure of SRS are notified by system messages.
  • the subframe position occupied by SRS is sent through system messages and is Cell Specific.
  • the SRS parameters of the Cell-Specific are configured for the rate matching of the PUCCH/PUSCH, but this also causes a certain waste of resources, because the SRS resources configured by the Cell-Specific may not have any terminal possession. Further considering the time domain start position and the time domain end position of the PUSCH that may be dynamically notified in the NR, how the PUCCH/PUSCH performs rate matching with the SRS is also a problem that needs further consideration.
  • SRS in NR also needs to support beam scanning. How to design SRS pattern to adapt to beam scanning is also a problem to be considered in this paper.
  • the SRS transmission mode in LTE cannot be well adapted to the many needs of NR. It is necessary to further consider the relevant improvement mode of SRS so that it can adapt to the many needs of NR.
  • the preferred embodiment provided by the present application can adapt the reference signal to many new requirements of the NR. For example, when the bandwidth corresponding to the base station is much larger than the bandwidth supported by the terminal, the preferred bandwidth of the terminal can be quickly locked, and the real-time finer in the preferred bandwidth.
  • the channel sounding process combines the beam training process with the frequency hopping scheme of the reference signal, and the hopping scheme of the port group considers the hopping scheme of the reference signal.
  • the uplink reference signal SRS in order to support an edge user, or a power limited user, or increase the capacity of the SRS, the uplink reference signal SRS supports a frequency hopping rule, but the frequency domain of the SRS hopping frequency is continuous, not There is a discontinuous frequency band. That is, the SRS needs to transmit the reference signal in all frequency bands within the frequency hopping bandwidth.
  • the frequency domain bandwidth level is simply referred to as simply The bandwidth level
  • the frequency domain bandwidth is simply referred to as the bandwidth.
  • the number of frequency domain bandwidths corresponding to the bandwidth level indexed by b, or N b may also be referred to as one of the levels of the bandwidth level max(b-1, 0) included.
  • the number of leaves of level b, wherein the tree structure is one of the multi-level frequency domain bandwidth structures.
  • this application does not exclude other multi-level frequency domain bandwidth structures.
  • FIG. 2 is an example of a frequency domain position occupied by SRS in a hopping period, in different frequency hopping periods.
  • the pattern of the frequency domain position relative to the time change occupied by the SRS is repeated, or the union of the frequency domain positions occupied by the SRS in different frequency hopping periods is the same.
  • the frequency domain position occupied by the reference signal in a frequency hopping period indicated by the cell fills the frequency hopping bandwidth.
  • the SRS occupies only one time domain symbol in a time unit (such as a subframe or a slot), it takes 8 SRS cycles to complete a probe.
  • a frequency hopping method cannot be tolerated, and considering the beam transmission in the NR, the frequency selection characteristic is further reduced, and the preferred frequency band can be obtained without full bandwidth hopping, and it is necessary to consider adapting to the NR.
  • the frequency hopping mode considers that the maximum bandwidth supported by the base station in the NR is much larger than the supported bandwidth of the terminal. How to quickly find the preferred bandwidth of the terminal in the large bandwidth supported by the base station is also one of the requirements for speeding up the frequency hopping speed. .
  • the frequency hopping bandwidth level set information of the reference signal in the tree structure may be notified, and the frequency domain bandwidth index information corresponding to the reference signal does not change with time in the bandwidth level that does not belong to the hopping bandwidth level set (
  • the frequency domain bandwidth index corresponding to the reference signal may also be referred to as the frequency domain bandwidth index occupied by the reference signal.
  • the frequency domain bandwidth index of the reference signal changes with time.
  • FIG. 1 is similar to N b in the foregoing embodiment, in the tree structure of the SRS, at b ⁇ b.
  • the bandwidth index corresponding to the SRS traverses all the bandwidth indexes of the bandwidth level (all the bandwidth indexes corresponding to one of the bandwidth levels are more than one bandwidth corresponding to the previous level of the bandwidth level)
  • FIG. 10c is a schematic diagram of a union of frequency domain positions occupied by reference signal hopping in the hopping pattern shown in FIG. 10b, wherein FIG. 10b is based on a frequency hopping bandwidth according to a preferred embodiment 1 of the present application.
  • An example of the level set for frequency hopping is shown in Figure 1.
  • the hopping pattern of the SRS on the port p is determined by the following formula:
  • B is a non-negative integer, which is a time domain symbol
  • B is the bandwidth level corresponding to the reference signal. Minimum bandwidth level).
  • N b is the number of leaves in the bandwidth level of the index b of one of the bandwidth levels indexed as min(b+1, 0) (or N b is the bandwidth level indexed as min(b+1, 0)
  • One of the bandwidths includes an index of the number of bandwidths in the bandwidth class of b ), n b, orig is the starting index of the reference signal in the bandwidth class indexed b , and n b (t) is the time t
  • the reference signal corresponds to the frequency domain bandwidth index in a bandwidth level indexed by b, Is a non-negative integer, Frequency domain length information occupied by a leaf (or a bandwidth) in the bandwidth class indexed as b, such as
  • the unit is subcarrier, of course, this embodiment does not exclude The unit is in other cases, such as a physical PRB.
  • the frequency domain bandwidth index is index information of multiple leaves of the current level included in a leaf of the upper level in the tree structure, and the frequency domain bandwidth index set corresponding to the frequency domain bandwidth level includes a previous one in the tree structure.
  • a leaf of the level includes a collection of index information for all leaves of the class.
  • the above parameters t, B, n b, orig can be obtained by the base station notification and/or looking up a predetermined form, or one or more of the above parameters can be obtained based on the following formula:
  • n f is the frame index
  • n s is the subframe index
  • T SRS is the period of the SRS (in units of subframes)
  • n f may also be the first time unit index
  • n s is the second time unit index, where The first time unit includes one or more second time units.
  • T offset is the period offset
  • Is the maximum value of the periodic offset
  • N SP is the number of special subframes in a radio frame.
  • comb offset comb offset
  • k TC the total number of dressing levels, that is, RPF (repetition factor)
  • B SRS is used to determine the frequency domain bandwidth length parameter information that SRS occupies on a time domain symbol, that is, SRS is The tree-level level corresponding to the frequency domain bandwidth occupied by a time domain symbol, or the B SRS is the maximum frequency domain bandwidth level in the frequency domain bandwidth level corresponding to the SRS, and the m SRS can be obtained according to the b value table , b , n RRC is The frequency domain location information of the SRS is a multiple of 4.
  • n f is the frame index
  • n hf is 0 in the first half of the radio frame
  • 1 is in the second half of the radio frame
  • N SP is a radio frame
  • the number of special subframes (or the number of GAPs in a radio frame, where GAP is the guard interval between uplink and downlink), k TC , B SRS , n RRC , and b hop are all configured at a high level. Specifically, in the tree structure shown in FIG.
  • the frequency domain position occupied by the reference signal hopping has a discontinuous frequency band, and/or
  • FIG. 11a wherein FIG. 11a is a preferred embodiment 1 according to the present application.
  • Different examples of bandwidth index sets provided for different bandwidth level hoppings are shown in FIG. 2; further, formulas (7-1) to (8-4) are used, and the reference signals are used.
  • a hopping pattern (ie, a pattern of frequency domain variation of the reference signal occupied with time) is shown in FIG. 11b, wherein FIG. 11b is an example of frequency hopping based on a set of frequency hopping bandwidth levels according to a preferred embodiment 1 of the present application. 2, the frequency domain position occupied by the reference signal in one frequency hopping period is shown in the shaded portion of FIG. 11c, wherein FIG. 11c is provided in FIG. 11b according to the preferred embodiment 1 of the present application. Schematic diagram of the union of the frequency domain positions occupied by reference signal hopping in the hopping pattern.
  • the frequency domain bandwidth index information of the reference signal in the level not belonging to the set of frequency hopping levels, does not change with time, and belongs to the frequency hopping level set. In the level of the frequency domain, the frequency domain index bandwidth index of the reference signal changes with time. In another implementation manner of this embodiment, the frequency domain bandwidth index information of the reference signal changes with time in a level that does not belong to the frequency hopping level set, but the reference signal corresponds to the bandwidth level.
  • the frequency domain bandwidth index set is a true subset of the frequency domain bandwidth index set corresponding to the frequency domain bandwidth level, and the frequency domain bandwidth index occupied by the reference signal changes with time in the hopping domain bandwidth level set level; And in the frequency domain bandwidth level set level, the frequency domain bandwidth index set occupied by the reference signal is a frequency domain bandwidth index set corresponding to the frequency domain bandwidth level.
  • the bandwidth index set of the frequency hopping is a true subset of the set of all bandwidth indexes corresponding to the bandwidth level. That is, there are three sets of levels ⁇ 0, 1 ⁇ 2 ⁇ 3 ⁇ .
  • the bandwidth index occupied by the reference signal is a fixed value that does not change with time, in the bandwidth level of ⁇ 2 ⁇
  • the bandwidth index occupied by the reference signal traverses all the bandwidth indexes, and the bandwidth index occupied by the reference signal in the bandwidth level is the true subset of the bandwidth index set corresponding to the bandwidth level.
  • the bandwidth index corresponding to the bandwidth level N is a bandwidth index corresponding to multiple bandwidths in the bandwidth level N included in one of the bandwidth levels N-1.
  • N is an integer greater than 0, that is, the bandwidth level is divided into multiple groups, and different bandwidth level groups correspond to different relationships, wherein the relationship includes at least one of: the frequency domain bandwidth index and the time domain parameter corresponding to the reference signal.
  • Inter-map relationship the relationship between the corresponding frequency domain bandwidth index set of the reference signal in a frequency domain bandwidth level and all frequency domain bandwidth index sets corresponding to the frequency domain bandwidth level; whether the bandwidth level has frequency hopping, bandwidth The frequency hopping order of the rank group.
  • ⁇ b (l) is an integer, or
  • the frequency hopping pattern shown in FIG. 12b is obtained based on the formula (9), and FIG. 12b is the frequency hopping based on the frequency hopping bandwidth level set provided according to the preferred embodiment 1 of the present application.
  • Example Figure 3 optionally
  • ⁇ b (1) represents a frequency hopping sequence for controlling whether the bandwidth packet is frequency hopping, and/or a different bandwidth packet, wherein the bandwidth packet indicates that one of the b-1th bandwidth levels is included
  • the N b bandwidths in the b- th bandwidth level are grouped into multiple bandwidths. Preferably these bandwidth packets are equally spaced.
  • the frequency domain bandwidth index set information corresponding to the reference signal in each bandwidth level may be further notified, so that the reference signal is indicated in the bandwidth level by the bandwidth index in its corresponding bandwidth index set.
  • the frequency hopping is performed in the bandwidth, and the bandwidth that is not in the bandwidth index set is not hopped (ie, the reference signal is not transmitted in the bandwidth indicated by the bandwidth index).
  • FIG. 13 is a schematic diagram of a reference signal occupying a non-contiguous frequency domain position on a time domain symbol according to a preferred embodiment 2 of the present application.
  • the frequency domain position occupied by the measurement reference signal transmitted on one time domain symbol has a discontinuous frequency band, as shown in FIG. 14, wherein FIG. 14 is a time provided according to the preferred embodiment 2 of the present application.
  • FIG. 14 is a time provided according to the preferred embodiment 2 of the present application.
  • the frequency domain position occupied by the reference signal shown in FIG. 13 and the reference signal, and the frequency hopping pattern of the reference signal are only examples. This embodiment does not exclude other reference signal frequency domain positions, or other reference signal frequency hopping patterns.
  • FIG. 15a is a multi-time symbol in the frequency hopping process according to the preferred embodiment 2 of the present application.
  • the two bandwidths complete the channel sounding in the bandwidth 0 and the bandwidth 1, respectively, as shown in Fig.
  • the frequency band 0 includes 4 small frequency bands
  • the frequency band 1 includes 4 small frequency bands
  • the reference signal only occupies in one frequency band at a time.
  • one SRS resource 1 can be allocated for bandwidth 0, SRS resource 2 is allocated for bandwidth 2, and one SRS resource is included for one SRS resource.
  • the frequency hopping parameters are configured for SRS resource 1 and SRS resource 2.
  • SRS resource 1 and SRS resource 2 are transmitted on the same time domain symbol, and the corresponding SRS ports may be the same.
  • the other configuration parameters of SRS resource 1 and SRS resource 2 are the same.
  • the difference is that the initial frequency hopping position is different, that is, the n RRC in LTE is different.
  • FIG. 15b is a schematic diagram 2 of multiple non-contiguous frequency bands in a time domain symbol according to the frequency hopping process provided by the preferred embodiment 2 of the present application, and the bandwidth 0 and the bandwidth 2 are configured differently.
  • FIG. 15c is a schematic diagram 3 of the presence of multiple non-contiguous frequency bands in a time domain symbol according to the frequency hopping process provided by the preferred embodiment 2 of the present application, and configuring three SRS resources as bandwidth 0.
  • the frequency hopping configuration SRS resource 1, the bandwidth hopping SRS resource 2 in the bandwidth bandwidth 1, the bandwidth 2, configures the SRS resource 3 for the frequency hopping in the bandwidth 3, and can configure independent frequency hopping parameters for the SRS resources.
  • These SRS resources can be selected to share some parameter configurations, such as antenna port configuration.
  • a plurality of consecutive frequency bands existing on one time domain symbol are respectively configured with independent SRS resources, and the plurality of consecutive frequency bands are discontinuous.
  • one SRS resource is configured in multiple consecutive frequency bands existing on one time domain symbol, but only the SRS resource corresponds to multiple independent parameter configuration information.
  • the SRS resources in FIG. 15a to 15b correspond to two sets of parameter configurations, and the 15c corresponds to three sets of parameter configurations.
  • the different SRS resources or different SRS parameter configurations may include at least one of the following parameters: a frequency hopping level set, and a hopping Frequency start level information, frequency hop end level information.
  • the dynamic control signaling notifies the hopping pattern, and the dynamic control signaling notifies at least one of the following information: a hopping bandwidth level set information, a hopping bandwidth starting level information, and a hopping bandwidth ending level information.
  • the frequency hopping parameter set information is carried in the high layer control signaling (such as the high layer signaling includes RRC signaling, and/or MAC CE signaling), and the time domain frequency hopping unit information of the reference signal refers to the The reference signal performs frequency hopping after every time domain symbol included in the time domain hopping unit, and the frequency domain position of the reference signal does not change in the time domain hopping unit.
  • the high layer control signaling such as the high layer signaling includes RRC signaling, and/or MAC CE signaling
  • the relationship between the hopping of the reference signal resource group and the frequency domain hopping, the relationship between the hopping of the port group and the frequency domain hopping, the initial frequency domain position occupied by the reference signal, and the reference signal frequency domain The number of hops, the frequency domain interval between adjacent frequency domain hops corresponding to the frequency domain position, the function type of the frequency domain position occupied by the reference signal as a function of time, and the reference signal is in a frequency domain bandwidth level Corresponding frequency domain bandwidth index set information; hopping frequency band set information of the reference signal, whether the reference signal is a continuous frequency domain hopping mode or a discontinuous frequency domain hopping mode; frequency domain bandwidth level grouping information, frequency domain Whether the bandwidth level group has frequency hopping information, frequency domain bandwidth group information, frequency domain bandwidth group hopping information, frequency domain bandwidth group hopping order information.
  • the frequency hopping bandwidth level set information is b hopA as described in the embodiment, and the hopping bandwidth start level information is similar to b hop in LTE, or implemented.
  • the minimum value of b hopA described in Example 1 the frequency hopping bandwidth end level information is similar to the B SRS in LTE, or the maximum value of b hopA described in Embodiment 1.
  • the frequency domain bandwidth level information occupied by the reference signal on one time domain symbol is similar to the B SRS in LTE, or the B. frequency hopping period number information described in Embodiment 1 indicates the number of times the same frequency domain position reference signal is transmitted. As shown in FIG.
  • the number of time domain symbols occupied by the reference signal indicates that the current dynamic triggering reference signal resource possesses
  • the number of time domain symbols includes the number of occupied slots in a slot and the number of occupied slots
  • the number information of the time domain symbols occupied by the reference signal may be reference signal resource level (ie, a reference signal resource corresponding to A number information, that is, the total number of time domain symbols occupied by the reference signal resource.
  • the reference signal port occupies the time domain symbol of the number information.
  • the total number of time domain symbols occupied by the reference signal resource is greater than one port occupancy.
  • the period signal is not satisfied between the different time domain symbols, the reference signal period offset information, and the time domain symbol index information occupied by the reference signal in one time unit (for example, the time unit is a slot or a sub A frame, a time domain symbol occupied by a slot is contiguous or time-spaced, and only the start time domain symbol index and/or the end time domain symbol index are notified, or the start time domain symbol index and time are notified.
  • the time domain hopping unit information of the reference signal (now the time domain hopping unit in LTE is 1 time domain symbol, the time domain symbol changes, the frequency domain begins to hop, in NR, due to the consideration of receive beam training, one Multiple time domain symbols can be activated in the slot, and the port group hopping and frequency domain hopping may be considered. It is necessary to consider frequency domain hopping between the time domain symbols of each N reference signals, where N is a natural number, as shown in FIG.
  • 16 is a schematic diagram of a time domain frequency hopping unit provided in accordance with a preferred embodiment 3 of the present application as two time domain symbols; after every two reference signal time domain symbols, a frequency domain hop occurs), reference is made to The number of ports corresponding to the signal, the number of port groups of the reference signal (grouping the reference signal ports in a reference signal resource, according to the number of ports and the number of port groups in the signal resource group, and the agreed rules Grouping the ports in the reference signal resource), reference signal port group hopping pattern information (when there are multiple reference signal port groups, how the port group hops), reference signal hopping parameters
  • the set index information, wherein the set of frequency hopping parameters is configured by high layer signaling (such as RRC signaling and/or MAC CE signaling configuration, wherein a plurality of reference signal hopping parameter sets, dynamic signaling may be notified in the high layer signaling Further, the selection information in the plurality of reference signal frequency hopping parameter sets notified by the high layer signaling is further notified, for example, the high frequency signal
  • the one reference signal hopping parameter set may include one or more of the reference signal hopping pattern parameters described herein).
  • the relationship between the hopping of the reference signal resource group and the frequency domain hopping for example, when there are multiple SRS resources, whether the SRS resource hops first, then the frequency domain resource hops, or the frequency domain hopping and then the SRS resource hopping Change, or the frequency domain hopping while the SRS resource also hops
  • the relationship between the hopping of the port group and the frequency domain hopping for example, one SRS resource includes multiple antenna ports, and these antenna ports are divided into antenna port groups.
  • the SRS port group also hops while hopping, the initial frequency domain position occupied by the reference signal (such as the initial frequency domain position where the reference signal is located at the time of frequency hopping), and the number of times the reference signal hops in the frequency domain ( That is, the frequency of the frequency domain change of the reference signal), the adjacent frequency domain hopping corresponds to the frequency domain interval between the frequency domain positions (the interval of the hopping, the unit of the frequency domain interval is one frequency band, and one frequency band is at least as follows One: one PRB, one subband, one bandwidth part, one component The bandwidth corresponding to the carrier frequency, the function type of the frequency domain position occupied by the reference signal as a function of time (for example, there are multiple frequency hopping pattern functions, and the frequency hopping pattern function is determined by signaling or
  • the reference signal has a discontinuous frequency band in the frequency domain position occupied by one frequency hopping period)
  • Frequency domain bandwidth level packet information (dividing the frequency domain bandwidth level into a plurality of groups, the different frequency domain bandwidth level packets corresponding to different relationships, wherein the relationship includes at least one of: a frequency domain bandwidth index corresponding to the reference signal And a relationship between the time domain parameters, the relationship between the corresponding frequency domain bandwidth index set in a frequency domain bandwidth level and all frequency domain bandwidth index sets corresponding to the frequency domain bandwidth level, such as a hierarchical grouping
  • the bandwidth index corresponding to the reference signal changes with time
  • the bandwidth index corresponding to the reference signal is a subset 1 of all frequency domain bandwidth index sets corresponding to the bandwidth level
  • the level grouping In the bandwidth level of 2, the bandwidth index corresponding to the reference signal does not change with time, and/or the bandwidth index corresponding to the reference signal is a subset of all frequency domain bandwidth index sets corresponding to
  • the domain bandwidth level group has frequency hopping information, frequency domain bandwidth group information (for example, multiple Nth level bandwidths included in one of the N-1th bandwidth levels, etc.)
  • the bandwidth in the bandwidth is divided into multiple groups), whether the frequency domain bandwidth group has frequency hopping information, and the frequency domain bandwidth group hopping sequence information (for example, the frequency hopping order is frequency domain bandwidth group 1, frequency domain bandwidth group 2, frequency domain bandwidth group 3, It is also the frequency domain bandwidth group 1, the frequency domain bandwidth group 3, and the frequency domain bandwidth group 2, wherein the frequency hopping order is the order of transmission time of different bandwidth groups).
  • the frequency hopping related parameter information is notified in the physical layer dynamic control signaling, and the embodiment does not exclude at least one of the following information in the physical layer dynamic control signaling: tree structure information (similar to According to this parameter, the C SRS in LTE can establish its tree structure, such as the number of levels of the tree, the number of leaves included in each level, and the bandwidth length information corresponding to each leaf.
  • tree structure information similar to According to this parameter, the C SRS in LTE can establish its tree structure, such as the number of levels of the tree, the number of leaves included in each level, and the bandwidth length information corresponding to each leaf.
  • the foregoing information is notified in the physical layer dynamic control signaling, and the embodiment does not exclude that the parameter part parameter is notified in the physical layer dynamic signaling, and some parameters are notified in the high layer control signaling. Combine to determine the frequency hopping parameters.
  • the SRS configuration parameters triggered by the high-level LTE and the SRS configuration parameters triggered by the dynamic signaling are independent. In this embodiment, some parameters are shared between the two, or the parameter configuration of the SRS triggered by the dynamic signaling needs to depend on the high-level configuration.
  • the configuration parameters of the SRS such as the set of time domain symbol positions occupied by the SRS triggered by the dynamic signaling, are a subset of the set of time domain symbol positions occupied by the high-level triggered SRS.
  • FIG. 17 is a schematic diagram of a relationship between a high-level triggered SRS and a dynamically triggered SRS according to a preferred embodiment 3 of the present application, where the coarse-side phase is a high-level triggered SRS or a previously transmitted
  • the second control signaling triggers, such as periodic transmission, and the SRS occupies a concatenation of frequency domain resources in a non-contiguous frequency band (as shown in FIG. 17, the reference signal occupies one bandwidth for every four bandwidths).
  • the base station selects one of the two bandwidth groups (where bandwidth group 1 includes ⁇ bandwidth 0 to bandwidth 3 ⁇ , and bandwidth group 2 includes ⁇ bandwidth 4 to bandwidth 7 ⁇ ), and dynamic signaling is triggered.
  • the thin side of a bandwidth group for example, jumps in all bandwidths in one of the bandwidth groups in the thin side phase.
  • FIG. 17 dynamically triggers the hopping in the first bandwidth group after the first coarse side, and the base station selects the second bandwidth group to perform the fine side after the second coarse side.
  • the reference signal is no longer transmitted for the bandwidth that the coarse-side phase reference signal already occupies in the coarse-side phase.
  • the base station selects the bandwidth group 1, in the coarse side phase.
  • the terminal has transmitted the reference signal on the bandwidth 0 in the bandwidth group 1, and the terminal only needs to transmit the reference signal on the bandwidth 1 to the bandwidth 3 in the bandwidth group 0 in the thin side phase.
  • the starting bandwidth position in Bandwidth Group 1 is not starting from Band 0 where the reference signal has been transmitted. That is, the frequency domain location of the SRS triggered by the dynamic signaling is determined according to the configuration parameters and time domain parameters of the SRS triggered by the high layer signaling.
  • the time domain resources occupied by the dynamic signaling triggered SRS are a subset of the time domain resources in the coarse side phase.
  • the coarse measurement is a high-level signaling configuration
  • a dynamic signaling trigger such as a half-cycle SRS
  • the fine-measurement parameter is also a high-level signaling configuration, and dynamic signaling is triggered.
  • there is an association between the two high-level configuration signalings for example, Some parameters between the two high-level configuration signaling are shared.
  • the coarse measurement is RRC signaling configuration, dynamic signaling triggering (such as half-cycle SRS), the fine-measurement parameter is MAC CE signaling configuration, dynamic signaling triggering, and at this time, the RRC signaling configuration and the MAC CE signaling configuration are For example, some parameters between two high-level configuration signaling are shared, or the parameter configuration range of the MAC CE depends on the parameter configuration of the RRC signaling.
  • the physical layer dynamic control signaling is included in a PDCCH (Physical Downlink Control Channel), for example, the physical layer dynamic control information is included in the DCI.
  • PDCCH Physical Downlink Control Channel
  • reference signal port group hopping and frequency domain hopping is specifically described.
  • the first relationship is a frequency domain hopping while the port group is also hopping, as shown in FIG. 18a, wherein FIG. 18a is a frequency domain hopping provided according to the preferred embodiment 4 of the present application.
  • the port group is also a schematic diagram of the hopping.
  • the second relationship is to refer to the signal port group hopping and then the frequency domain hopping, as shown in FIG. 18b.
  • FIG. 18b is a first antenna according to the preferred embodiment 4 of the present application.
  • a schematic diagram of port hopping and frequency domain hopping; the third relationship is a frequency domain hopping, and then a port group hopping, as shown in FIG. 18c, wherein FIG. 18c is a preamble according to a preferred embodiment 4 of the present application.
  • port 0 and port 1 in FIG. 18a to FIG. 18c A schematic diagram of a domain hopping and a port group hopping is performed in the port 0 and port 1 in FIG. 18a to FIG. 18c.
  • port 0, port1 may correspond to the first port group and the second port group, and each port group includes at least one reference. Signal port.
  • a frequency hopping relationship may be fixed, or a hopping relationship may be signaled or a hop relationship may be determined according to the number of time domain symbols occupied by reference signal resources in a slot. Or determining which relationship is based on the number of consecutive time domain symbols occupied by the reference signal, wherein the consecutive time domain symbols may be in a plurality of slots.
  • the second relationship is adopted, otherwise the first relationship is adopted.
  • the predetermined threshold is the number of port groups. Relationships can also be called hopping patterns.
  • resource hopping of different reference signals needs to meet certain rules, that is, frequency hopping between different reference signal resources satisfies certain constraints.
  • Configuring relevant parameters in configuration information in a reference signal resource group (which may also be referred to as a reference signal resource set, including a plurality of reference signal resources), all reference signal resources in the reference signal resource group being according to the configured parameters, Perform resource hopping and frequency domain hopping;
  • reference signal resource hopping and frequency domain hopping has the following hopping relationships.
  • FIG. 19a is a frequency domain hopping according to the preferred embodiment 5 of the present application, and the SRS resource also hops.
  • FIG. 19b is a schematic diagram of the first SRS resource group hopping and frequency domain hopping according to the preferred embodiment 5 of the present application. .
  • FIG. 19c is a schematic diagram of a frequency domain hopping re-port group hopping according to a preferred embodiment 5 of the present application;
  • the transmission resource 1 may correspond to the transmission resource group 1
  • the transmission resource 0 may correspond to the transmission resource group 0
  • the one transmission resource group includes at least one transmission. Resources, resources in one sending resource group are sent at the same time, and resources in different sending resource groups are sent in time.
  • the number of domain symbols determines which relationship is in which the consecutive time domain symbols may be in a plurality of slots, wherein the reference signal resource set includes the plurality of reference signal resources of the hop, such as SRS resource set ( Or SRS resource group) includes ⁇ SRS resource 0, SRS resource 1 ⁇ .
  • the second relationship is adopted, otherwise the first relationship is adopted, such as a predetermined threshold.
  • a predetermined threshold Is the number of port groups. Relationships can also be called hopping patterns.
  • the tree structure information is added to the proprietary control signaling, and the tree structure can be established according to the parameter, such as the number of levels of the tree, the number of leaves included in each level, and each leaf Corresponding information such as bandwidth length information, similar to C SRS in LTE.
  • the PUCCH/PUSCH does not transmit the PUCCH/PUSCH on the time domain symbol occupied by the SRS. This causes a waste of resources, because on the one hand, there may be no SRS resources allocated to any terminal on the SRS resources of the Cell-Specific configuration.
  • the initial time domain location and the end time domain location of the PUCCH/PUSCH may be dynamically notified, so the PUCCH/PUSCH does not need to avoid the resources of the SRS, or the PUCCH that dynamically schedules the time domain/frequency domain resource does not need to avoid the resources of the SRS. Only the periodic PUCCH needs to avoid SRS resources.
  • the SRS resource pool information may be configured for the PUSCH/PUCCH, or the SRS resource pool, the PUCCH/PUSCH, or the periodic PUCCH may be configured for the periodic PUCCH to avoid the configured SRS resource pool resource.
  • the configured SRS resource pool resource is configured in proprietary control signaling.
  • the PRB that occupies only the SRS is avoided, and the PRB that does not occupy the time domain symbol corresponding to the SRS does not need to be avoided.
  • the SRS resource includes at least one of the following resources: an SRS resource, an SRS time domain resource, an SRS frequency domain resource, an SRS code domain resource, and an SRS airspace resource.
  • the base station allocates a non-contiguous frequency domain resource group, and the terminal regards the non-contiguous frequency domain resource blocks as virtual frequency domain resource blocks, and combines them into a tree structure similar to LTE to perform virtual frequency domain resources.
  • Frequency domain hopping occurs in consecutive virtual frequency domain resource blocks, and virtual frequency domain resource blocks to physical frequency domain resource blocks have agreed mapping rules.
  • FIG. 20a is a schematic diagram of a preferred frequency band set selected by a base station according to a preferred embodiment 7 of the present application.
  • the preferred frequency band set has a schematic diagram of a discontinuous frequency band, which is transmitted by full bandwidth SRS, or full bandwidth hopping.
  • the base station selects a preferred bandwidth set for one UE, wherein there is a non-contiguous frequency band in the preferred bandwidth set.
  • the terminal provides frequency hopping on the virtual frequency domain resource, and then uses the frequency hopping as shown in FIG. 20b.
  • the frequency domain ranges of these hops correspond to the actual frequency.
  • the physical resource bandwidth has a discontinuous frequency band.
  • the one frequency domain resource block may be a PRB (Physical Resource Block), or a subband, or a partial band, or a bandwidth part (similar to the bandwidth in the NR discussion). Part, such as a bandwidth portion of 1 MHz), or a frequency domain bandwidth corresponding to a carrier component (such as a frequency domain bandwidth corresponding to a CC).
  • PRB Physical Resource Block
  • Part such as a bandwidth portion of 1 MHz
  • a frequency domain bandwidth corresponding to a carrier component such as a frequency domain bandwidth corresponding to a CC.
  • the antenna port transmitting the SRS is determined based on the SRS resource group ID, and/or the antenna port group ID, and/or the time domain parameter.
  • the antenna port group may also be referred to as an antenna port class, or other name.
  • the antenna port for transmitting the SRS by one SRS resource is determined according to the SRS resource group ID and the number of antenna ports in the SRS resource.
  • different SRS resources in one SRS resource group use the same antenna port to send SRS
  • different SRS resource groups may correspond to different antenna ports.
  • an SRS resource group includes N SRS resources, and each SRS resource includes one or two SRS ports.
  • These SRS resources are for beam training. For fairness, it is necessary to limit these beams from the same transmit antenna. Since the same transmit beam is sent from a different transmit antenna, the performance at the receive end is different. However, since there are multiple panels in the terminal, beam training is required for different panels. In this case, there are two SRS resource sets.
  • the SRS resource in each SRS resource set includes one or two SRS ports, but different SRS resources.
  • the transmit antenna corresponding to one or two SRS ports included in the SRS resource in the set should come from different panels.
  • SRS resource group 1 there are two SRS resource groups ⁇ SRS resource group 1, SRS resource group 2 ⁇ , SRS resource group 1 includes 4 SRS resources, and SRS resource group 2 includes 8 SRS resources for each SRS.
  • the resource includes one SRS port.
  • the correspondence between the SRS resource resource group and the SRS antenna port is shown in Table 1.
  • SRS port 10 and SRS port 11 are different antenna ports. Unlike all SRS resources including one SRS port in LTE, only corresponding to antenna port 10, specifically antenna port management in LTE, as shown in Table 2, need to be enhanced in NR as shown in Table 3 or Table 4. That is, there are multiple 1 antenna ports at this time, and there may be multiple 2 antenna ports. There are 4 types of 1 antenna ports in Table 3, 3 types of 2 antenna ports, and 2 types of 4 antenna ports, just examples, and do not exclude other. Kind of situation.
  • the antenna ports transmitting the SRS in Table 4 are determined according to the number of antenna ports and the index of the antenna port group.
  • port 10 there is no association between port 10 and port 20 to port 21 and port 40 to port 43 in LTE, and the terminal is implemented.
  • the SRS resource of the 1 antenna port is used in the beam training phase in the NR
  • the SRS resource of the 4 antenna port is used in the uplink PMI acquisition phase.
  • port 10 can be further defined to be associated with ⁇ port40 ⁇ port 41 ⁇ .
  • port10 is selected from ⁇ port40 ⁇ port 41 ⁇ , but cannot be combined.
  • N is less than or equal to M, or N, M is a fixed combination, N
  • the antenna port relationship between different SRS resources may be determined according to the time parameter, for example, different SRS resources at different times correspond to different transmitting antennas, or antenna ports of different SRS resources at the same time are not associated, for example, different times.
  • the different SRS resources on the same correspond to the same transmit antenna (further, the SRS resources are included in one SRS resource group, or the antenna ports of different SRS resources at different times are associated with each other) (such as these SRS resources include When they are sent in one SRS resource group and not at the same time, they correspond to the same antenna port).
  • different bandwidth resources correspond to different RPFs, as shown in FIG. 21, where FIG. 21 is a frequency domain hopping in the virtual bandwidth according to the preferred embodiment 9 of the present application.
  • FIG. 21 is a frequency domain hopping in the virtual bandwidth according to the preferred embodiment 9 of the present application.
  • a schematic diagram of the change. The relationship between the bandwidth resource and the RPF is determined by signaling information or rules agreed by the base station and the terminal.
  • the RPF corresponding to the SRS is 2
  • the frequency domain position 1 also referred to as the frequency domain bandwidth 1
  • the RSF corresponding to the SRS is 4.
  • the unit of the frequency domain location is at least one of the following: a PRB (Physical Resource Block), a subband (including a predetermined number of PRBs), or a partial band, Either a bandwidth part (similar to the bandwidth part in the NR discussion) or a frequency domain bandwidth corresponding to a carrier component (such as the frequency domain bandwidth of a CC).
  • the unit of the RPF intermediate frequency domain repetition factor is a subcarrier, that is, every RPF subcarrier, the reference signal occupies one RE.
  • FIG. 22a is a schematic diagram 1 showing the relationship between the time domain frequency hopping unit and the time according to the preferred embodiment 10 of the present application.
  • a frequency hopping period the first three frequency domain hoppings are performed.
  • the time domain hopping unit is 2, and the time domain hopping unit corresponding to the added frequency domain hopping is 1.
  • the base station can obtain the preferred receiving beam according to the first 3 frequency hopping, and then adopt the preferred receiving beam receiving. The remaining frequency hopping in this hopping period.
  • FIG. 22b is a schematic diagram 2 showing the relationship between the time domain frequency hopping unit and the time according to the preferred embodiment 10 of the present application.
  • the previous frequency domain hopping is 2
  • the time domain hopping unit corresponding to the added frequency domain hopping is 1.
  • the base station can obtain the preferred receiving beam according to the previous frequency domain, and then adopt the preferred receiving beam. Receive, the remaining frequency hopping in this hopping period.
  • the time domain hopping unit is 2, 1 is only an example, and other time domain hopping units are not excluded in this embodiment.
  • the time domain frequency hopping unit indicates that the frequency domain of the reference signal in the time domain hopping unit is constant, and the frequency domain of the reference signal changes between the time domain hopping units.
  • the time domain hopping unit information may be the number of time domain symbols occupied by the reference signal (the reference signal may be in one slot or in multiple slots), or the time domain hopping unit information is The period information of the reference signal and/or the number of time domain symbols included in one cycle.
  • the relationship between the time domain hopping unit and time is determined according to a predetermined rule and/or determined by signaling information.
  • the hopping pattern function formula (6) in LTE needs to be changed to the following form:
  • T 1 in the above four formulas is the time domain frequency hopping unit information.
  • T 1, b is the time domain hopping unit information corresponding to the bandwidth level b, and according to the signaling information or the agreed rule, T 1, b is obtained .
  • the frequency hopping reference signal is not sent on the reserved resource, or the frequency domain position that the reference signal needs to occupy on the reserved resource is extended to the next hop. Send on the frequency resource. Or if there is overlap, the current frequency hopping reference signal will not be transmitted, the current frequency hopping will be discarded, or the frequency domain position that the current frequency hopping reference signal needs to occupy will be postponed to the next frequency hopping resource.
  • the reference signal in the above embodiment may be an uplink reference signal or a downlink reference signal.
  • the frequency domain bandwidth level may also be referred to as a bandwidth length index, or a tree level, or a tree hierarchy.
  • the bandwidth index may also be referred to as a frequency domain location index, or a leaf index, or other name,
  • the creativity of the application does not constitute an impact.
  • a frequency domain block includes at least one physical resource block (PRB), and the reference signal occupies the frequency domain block to indicate that the reference signal occupies an RE in the frequency domain block, such as occupying the frequency.
  • a frequency domain block may be a subband (including a predetermined number of PRBs), or a frequency domain.
  • Block Partial band Either a bandwidth part (similar to the bandwidth part in the NR discussion) or a bandwidth corresponding to a component carrier frequency.
  • the unit of the frequency domain location is at least one of the following: a PRB (Physical Resource Block), a subband (including a predetermined number of PRBs), or Is a partial band, or a bandwidth part (similar to the bandwidth part in the NR discussion).
  • PRB Physical Resource Block
  • subband including a predetermined number of PRBs
  • Is a partial band or a bandwidth part (similar to the bandwidth part in the NR discussion).
  • the consecutive frequency bands in the application are based on NP physical continuous or logically consecutive N PRB sets, where N is an integer greater than or equal to 1, if the PRBs contained in the two bands are physically or logically discontinuous
  • the two bands are non-continuous.
  • min(A) represents the minimum value of the set A
  • max(A) represents the maximum value of the set A. Indicates that the x is rounded down. Indicates rounding up x.
  • modules or steps of the present application can be implemented by a general computing device, which can be concentrated on a single computing device or distributed in a network composed of multiple computing devices.
  • they may be implemented by program code executable by a computing device such that they may be stored in a storage device by a computing device and, in some cases, may be different from
  • the steps shown or described are performed sequentially, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated into a single integrated circuit module.
  • the application is not limited to any particular combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种参考信号传输、参数发送方法及装置、终端、基站;其中,参考信号传输方法,包括:确定参考信号占有的频域位置满足预定条件,其中,所述预定条件包括:所述参考信号占有的频域位置存在非连续的频段;在确定的频域位置上传输所述参考信号。

Description

参考信号传输、参数发送方法及装置、终端、基站
相关申请的交叉引用
本申请基于申请号为201710720425.3、申请日为2017年08月21日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及通信领域,具体而言,涉及一种参考信号传输、参数发送方法及装置、终端、基站。
背景技术
在长期演进(Long Term Evolution,简称LTE)中,探测参考信号(Sounding reference signal,简称SRS)的结构采用树状结构如图1所示,SRS有跳频和非跳频两种发送模式。在新空口(New Radio,简称为NR)中,当基站支持的带宽和终端支持的带宽不同,比如基站100MHz,终端1MHz,在100MHz范围内对于此终端较优的1MHz的优选带宽,沿用LTE的跳频模式,起码需要100个SRS时域符号,时延太长,是系统不能容忍的,在NR中当基于波束传输,频选进一步降低,需要考虑新的跳频图样方案。
总之,LTE中的SRS的发送模式,不能很好地适应NR的诸多需求,需要进一步考虑SRS的相关改进模式,使其能够适应NR的诸多需求。
发明内容
本申请实施例提供了一种参考信号传输、参数发送方法及装置、终端、基站,以至少解决相关技术中LTE中的SRS图样不能满足NR的需求的问题。
根据本申请的一个实施例,提供了一种参考信号传输方法,包括:确定参考信号占有的频域位置满足预定条件,其中,所述预定条件包括:所述参考信号占有的频域位置存在非连续的频段;在确定的频域位置上 传输所述参考信号。
根据本申请的一个实施例,提供了一种参考信号传输方法,包括:接收物理层动态控制信令;其中,物理层动态控制信令中携带用于确定参考信号的跳频图样的参数信息;根据参数信息确定参考信号的跳频图样;根据确定的跳频图样传输参考信号。
根据本申请的一个实施例,提供了一种参考信号传输方法,包括:确定参考信号的传输参数信息;根据确定的传输参数信息传输参考信号;其中,传输参数信息包括以下参数至少之一:所述参考信号占有的频域位置信息,所述参考信号对应的天线端口分组信息,所述参考信号在频域位置中的图样信息。
根据本申请的一个实施例,提供了一种参数发送方法,包括:发送物理层动态控制信令,其中,物理层动态控制信令中携带用于确定参考信号的跳频图样的参数信息。
根据本申请的一个实施例,提供了一种上行信道或信号的发送方法,所述方法包括:
确定速率匹配信息;
确定上行信道或信号是否满足预定条件;
所述上行信道或信号满足预定条件时,根据所述速率匹配信息发送所述上行信道或信号;
其中,发送的所述上行信道或信号不能占有所述速率匹配信息中包括的资源。
根据本申请的一个实施例,提供了一种参考信号传输装置,包括:确定模块,用于确定参考信号占有的频域位置满足预定条件,其中,所述预定条件包括:所述参考信号占有的频域位置存在非连续的频段;传输模块,用于在确定的频域位置上传输所述参考信号。
根据本申请的一个实施例,提供了一种参考信号传输装置,包括:接收模块,用于接收物理层动态控制信令;其中,物理层动态控制信令中携带用于确定参考信号的跳频图样的参数信息;确定模块,用于根据参数信息确定参考信号的跳频图样;传输模块,用于根据确定的跳频图样传输参考信号。
根据本申请的一个实施例,提供了一种参考信号传输装置,包括:确定模块,用于确定参考信号的传输参数信息;传输模块,用于根据确定的传输参数信息传输参考信号;其中,传输参数信息包括以下至少之 一信息:时域跳频单位信息,端口组的分组信息,频域位置对应的频域重复因子信息,参考信号资源组的分组信息,参考信号资源组的跳变和频域跳变之间的关系,参考信号的端口组的跳变和频域跳变之间的关系;其中,一个参考信号资源组中包括一个或者多个参考信号端口。
根据本申请的一个实施例,提供了一种参数发送装置,包括:发送模块,用于发送物理层动态控制信令,其中,物理层动态控制信令中携带用于确定参考信号的跳频图样的参数信息。
根据本申请的一个实施例,提供了一种上行信道或信号的发送装置,包括:
确定模块,配置为确定速率匹配信息;确定上行信道或信号是否满足预定条件;
发送模块,配置为所述上行信道或信号满足预定条件时,根据所述速率匹配信息发送所述上行信道或信号;
其中,发送的所述上行信道或信号不能占有所述速率匹配信息中包括的资源。
根据本申请的一个实施例,提供了一种终端,包括:处理器,处理器用于运行程序,其中,程序运行时执行上述任一项所述的方法。
根据本申请的一个实施例,提供了一种基站,包括:处理器,处理器用于运行程序,其中,程序运行时执行上述任一项所述的方法。
根据本申请的一个实施例,提供了一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行上述任一项所述的方法。
根据本申请的一个实施例,提供了一种处理器,所述处理器用于运行程序,其中,所述程序运行时执行上述任一项所述的方法。
通过本申请,由于确定的参考信号占有的频域位置满足预定条件,其中,该预定条件包括:参考信号占有的频域位置存在非连续的频段,进而可以在确定的上述频域位置上传输参考信号,与相关技术中参考信号占有的频域位置都是连续的相比,可以快速定位优选的频段,更好地适应NR的需求,因此,可以解决相关技术中LTE中的SRS图样不能满足NR的需求的问题。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对 本申请的不当限定。在附图中:
图1是相关技术中SRS的树状结构的示意图;
图2是LTE中的跳频图样的示意图;
图3是本申请实施例的一种参考信号传输方法的移动终端的硬件结构框图;
图4是根据本申请实施例的参考信号传输方法的流程图一;
图5是根据本申请实施例的参考信号传输方法的流程图二;
图6是根据本申请实施例的参考信号传输方法的流程图三;
图7是根据本申请实施例的参考信号传输装置的结构框图一;
图8是根据本申请实施例提供的参考信号传输装置的结构框图二;
图9是根据本申请实施例提供的参考信号传输装置的结构框图三;
图10a是根据本申请优选实施例1提供的不同带宽等级跳变的带宽索引集合不同的示例图一;
图10b为根据本申请优选实施例1提供的基于跳频带宽等级集合进行跳频的示例图一;
图10c是根据本申请优选实施例1提供的在图10b所示的跳频图样中参考信号跳频所占的频域位置的并集的示意图一;
图11a是根据本申请优选实施例1提供的不同带宽等级跳变的带宽索引集合不同的示例图二;
图11b是根据本申请优选实施例1提供的基于跳频带宽等级集合进行跳频的示例图二;
图11c是根据本申请优选实施例1提供的在图11b所示的跳频图样中参考信号跳频所占的频域位置的并集的示意图一;
图12a是根据本申请优选实施例1提供的不同带宽等级跳变的带宽索引集合不同的示例图三;
图12b是根据本申请优选实施例1提供的基于跳频带宽等级集合进行跳频的示例图三;
图13是根据本申请优选实施例2提供的在一个时域符号上参考信号占有非连续的频域位置的示意图;
图14是根据本申请优选实施例2提供的一个时域符号上参考信号占有非连续的频域位置的一种跳频图样示例图;
图15a是根据本申请优选实施例2提供的跳频过程中一个时域符号上存在多个非连续的频段的示意图一;
图15b是根据本申请优选实施例2提供的跳频过程中一个时域符号上存在多个非连续的频段的示意图二;
图15c是根据本申请优选实施例2提供的跳频过程中一个时域符号上存在多个非连续的频段的示意图三;
图16是根据本申请优选实施例3提供的时域跳频单元为2个时域符号的示意图;
图17是根据本申请优选实施例3提供的高层触发的SRS和动态触发的SRS之间的关系示意图;
图18a是根据本申请优选实施例4提供的频域跳变的同时端口组也在跳变的示意图;
图18b是根据本申请优选实施例4提供的先天线端口跳变再频域跳变的示意图;
图18c是根据本申请优选实施例4提供的先频域跳变再端口组跳变的示意图;
图19a是根据本申请优选实施例5提供的频域跳变的同时SRS资源也跳变的示意图;
图19b是根据本申请优选实施例5提供的先SRS资源组跳变,再频域跳变的示意图;
图19c是根据本申请优选实施例5提供的先频域跳变再端口组跳变的示意图;
图20a是根据本申请优选实施例7提供的基站挑选的优选频带集合,所述优选频带集合存在非连续频段的示意图;
图20b是根据本申请优选实施例提供的终端在虚拟频域资源上进行跳频的示意图;
图21是根据本申请优选实施例9提供的在虚拟带宽中发生频域跳变的示意图;
图22a是根据本申请优选实施例10提供的时域跳频单位和时间之间关系的示意图一;
图22b是根据本申请优选实施例10提供的时域跳频单位和时间之间关系的示意图二。
具体实施方式
下文中将参考附图并结合实施例来详细说明本申请。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
本申请实施例1所提供的方法实施例可以在移动终端、计算机终端或者类似的运算装置中执行。以运行在移动终端上为例,图3是本申请实施例的一种参考信号传输方法的移动终端的硬件结构框图。如图3所示,移动终端30可以包括一个或多个(图中仅示出一个)处理器302(处理器302可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)、用于存储数据的存储器304、以及用于通信功能的传输装置306。本领域普通技术人员可以理解,图3所示的结构仅为示意,其并不对上述电子装置的结构造成限定。例如,移动终端30还可包括比图3中所示更多或者更少的组件,或者具有与图3所示不同的配置。
存储器304可用于存储应用软件的软件程序以及模块,如本申请实施例中的参考信号传输方法对应的程序指令/模块,处理器302通过运行存储在存储器304内的软件程序以及模块,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器304可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器304可进一步包括相对于处理器302远程设置的存储器,这些远程存储器可以通过网络连接至移动终端30。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置306用于经由一个网络接收或者发送数据。上述的网络具体实例可包括移动终端30的通信供应商提供的无线网络。在一个实例中,传输装置306包括一个网络适配器(Network Interface Controller,NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置306可以为射频(Radio Frequency,RF)模块,其用于通过无线方式与互联网进行通讯。
为便于理解本申请实施例的技术方案,以下对LTE中的跳频模式进行说明,LTE的跳频图样基于如下公式得到:
Figure PCTCN2018101605-appb-000001
Figure PCTCN2018101605-appb-000002
对于除上行导频时隙(UpPTS)上的SRS之外,
Figure PCTCN2018101605-appb-000003
对于UpPTS上传输的SRS,
Figure PCTCN2018101605-appb-000004
Figure PCTCN2018101605-appb-000005
Figure PCTCN2018101605-appb-000006
Figure PCTCN2018101605-appb-000007
其中在公式(6)中
Figure PCTCN2018101605-appb-000008
Figure PCTCN2018101605-appb-000009
其中,
Figure PCTCN2018101605-appb-000010
是梳妆偏移(comb offset),k TC是梳妆等级总数,也即RPF(repetition factor)、B SRS是用于确定SRS在一个时域符号上占有的频域带宽长度参数信息,也即SRS在一个时域符号上占有的频域带宽对应的树状等级,根据b值查表可以得到m SRS,b,n RRC是SRS的频域位置信息,是4的倍数,b hop是跳频范围配置,当b hop<B SRS时才跳频,否则不跳频、
Figure PCTCN2018101605-appb-000011
是分给此终端的上行系统带宽对应的PRB的个数,
Figure PCTCN2018101605-appb-000012
是一个PRB中的子载波的个数,为12、n f是帧索引,n hf是在前半个无线帧中值为0,在后半个无线帧中值为1,N SP是一个无线帧中的特殊子帧的个 数,
Figure PCTCN2018101605-appb-000013
k TC,B SRS,n RRC,b hop都是高层配置的。具体地如图1所示的树状结构中,总共有4种不同带宽长度的SRS,依次为{32PRB,16PRB,8PRB,4PRB},图1中斜线画的长度为4PRB频域位置,其在b=0,1,2,3的频域带宽等级中对应的频域带宽索引为n 0=0,n 1=0,n 2=0,n 3=1。
具体地当配置b hop=0,B SRS=3,n RRC=0,完成一次完整的跳频,需要8个SRS时域符号,图2是LTE中的跳频图样的示意图,如图2所示,第9个时域符号开始,SRS所占的频域位置和图2中第一个时域符号上SRS所占的时域符号相同,图2所示的8个时域符号上构成一个跳频周期。
从上面的公式和图示可以看出,LTE中通过设置b hop,UE会将b hop对应的树状结构的一个树叶中包括的所有B SRS带宽等级中的树叶都跳频完成。即一次完成的跳频需要
Figure PCTCN2018101605-appb-000014
个时域OFDM符号。
在本实施例中提供了一种运行于上述移动终端的参考信号传输方法,图4是根据本申请实施例的参考信号传输方法的流程图一,如图4所示,该流程包括如下步骤:
步骤S402,确定参考信号占有的频域位置满足预定条件,其中,所述预定条件包括:所述参考信号占有的频域位置存在非连续的频段;
步骤S404,在确定的频域位置上传输所述参考信号。
通过上述步骤,由于确定的参考信号占有的频域位置满足预定条件,其中,该预定条件包括:参考信号占有的频域位置存在非连续的频段,进而可以在确定的上述频域位置上传输参考信号,与相关技术中参考信号占有的频域位置都是连续的相比,可以快速定位优选的频段,更好地适应NR的需求,因此,可以解决相关技术中LTE中的SRS图样不能满足NR的需求的问题。
需要说明的是,参考信号占有的频域位置存在非连续的频段可以包括以下至少之一:在一个时域符号上,参考信号占有的频域位置存在非连续的频段;在一个跳频周期中,参考信号占有的频域位置存在非连续的频段;参考信号以跳频方式占有的频域位置存在非连续的频段。
需要说明的是,上述传输图样可以包括跳频图样,但并不限于此。
需要说明的是,上述跳频周期满足如下特征至少之一:在不同的跳频周期中,参考信号占有的频域位置存在重复的频段;在不同的跳频周 期中,参考信号占有的频域位置相同;第一映射关系中的关系项和第二映射关系中的关系项之间存在对应关系,其中,第一映射关系为第一跳频周期中参考信号占有的频域位置与时域参数之间的映射关系,第二映射关系为第二跳频周期中参考信号占有的频域位置与时域参数之间的映射关系。
需要说明的是,一个频段可以包括以下至少之一:一个物理资源块PRB,一个频域子带,一个带宽部分,一个分量载频的频域带宽。
需要说明的是,以上述一个频段包括一个PRB为例进行说明,假设存在4个PRB,分别为PRB1、PRB2、PRB3、PRB4;如果上述参考信号占有的频域位置为PRB1、PRB3,PRB4,或者为PRB1、PRB3等,则认为上述参考信号占有的频域位置存在非连续的频段,但并不限于此。
在本申请的一个实施例中,上述预定条件还可以包括以下至少之一:参考信号占有的频段的并集小于或者等于跳频带宽;参考信号在与物理频域资源对应的虚拟频域资源上跳频;参考信号以跳频方式占有的频域位置在跳频带宽上等间隔分布;参考信号以跳频方式占有的频域位置在跳频带宽上随机分布;其中,跳频带宽为根据参考信号占有的频域位置中距离最远的两个频域位置确定的带宽或者通过接收第一信令消息获取的预定带宽。
需要说明的是,以上述一个频段包括一个PRB为例进行说明,假设存在4个PRB,分别为PRB1、PRB2、PRB3、PRB4;假设参考信号占有的频段为PRB1和PRB3,则该并集为PRB1和PRB3;而跳频带宽则为PRB4的结束频域位置与PRB1的起始频域位置之差,但并不限于此。
在本申请的一个实施例中,在参考信号的频域带宽存在多级的情况下,参考信号对应的频域带宽索引满足以下至少之一条件:在频域带宽等级不属于参考信号的跳频带宽等级集合时,参考信号对应的频域带宽索引为固定值;在频域带宽等级不属于参考信号的跳频带宽等级集合时,参考信号对应的频域带宽索引集合为与频域带宽等级对应的频域带宽索引集合的真子集;在频域带宽等级不属于参考信号的跳频带宽等级集合时,参考信号对应的频域带宽索引随时间变化且参考信号对应的频域带宽索引集合为与频域带宽等级对应的频域带宽索引集合的真子集;其中,频域带宽等级为第N-1级的一个频域带宽包括一个或者多个频域带宽等级为第N级的频域带宽,在一个频域带宽等级下存在一个或多个 频域带宽,频域带宽索引为频域带宽等级为第N-1级的一个频域带宽包括的频域带宽等级为第N级的多个频域带宽的索引;与频域带宽等级对应的频域带宽索引集合包括树状结构中频域带宽等级为第N-1级的一个频域带宽包括的频域带宽等级为第N级的所有频域带宽的索引的集合;其中,N为大于或者等于1的整数。
需要说明的是,上述参考信号对应的频域带宽索引集合也可以称为参考信号占有的频域带宽索引,但并不限于此。
需要说明的是,上述参考信号占有的频域带宽索引还可以满足以下至少之一:在频域带宽等级属于参考信号的跳频带宽等级集合时,参考信号占有的频域带宽索引随时间变化;在频域带宽等级属于参考信号的跳频带宽等级集合时,参考信号跳频的频域带宽索引集合为与频域带宽等级对应的频域带宽索引集合的真子集。
需要说明的是,上述跳频带宽等级集合可以满足以下至少之一:跳频带宽等级集合中的等级是非连续的;跳频带宽等级集合中的最大等级小于或者等于第一等级,其中,第一等级为参考信号对应的频域带宽等级中的最大频域带宽等级;跳频带宽等级集合可以为空集;在一个时域符号上,参考信号对应两个以上的跳频带宽等级集合;跳频带宽等级集合信息携带在接收的信令信息中。
需要说明的是,参考信号占有的频域位置是随时间变化的,因而,上述随时间变化的频域位置可以表现为是一个图样,但并不限于此。
在本申请的一个实施例中,可以通过以下方式确定参考信号占有的频域位置k(t):
Figure PCTCN2018101605-appb-000015
Figure PCTCN2018101605-appb-000016
Figure PCTCN2018101605-appb-000017
其中,t为时间参数,t为大于或者等于0的实数,b或者b'为多级 频域带宽等级中参考信号对应的频域带宽等级索引,b或者b'=0,1,…,B,B为参考信号对应的频域带宽等级中最大频域带宽等级,且B为非负整数,N b为索引为max(b-1,0)的频域带宽等级中的一个带宽包括的索引为b的频域带宽等级中的带宽个数,N b’为索引为max(b’-1,0)的频域带宽等级中的一个带宽包括的索引为b’的频域带宽等级中的带宽个数,max()为取最大值的函数,n b,orig是参考信号在索引为b的频域带宽等级中的起始频域带宽索引,n b(t)是时间t上参考信号在索引为b的频域带宽等级中对应的频域带宽索引,k org为一个非负整数,
Figure PCTCN2018101605-appb-000018
为索引为b的频域带宽等级中一个带宽对应的频域长度,Π为连乘运算,mod为求余函数,b hopA为频域带宽等级集合。
需要说明的是,在上述步骤S402之前,上述方法还可以包括:通过第二信令信息和/或约定表格方式获取以下至少之一参数:B,N b,n b,orig,k org
Figure PCTCN2018101605-appb-000019
b hopA,b hopA_min,b hopA_max;其中,b hopA={b,b hopA_min≤b≤b hopA_max},b hopA_min,b hopA_max为非负整数或者b hopA_min,b hopA_max为小于B的非负整数。
需要说明的是,b hopA满足以下至少之一:max(b hopA)≤B;b hopA中包括非连续的频域带宽等级索引;b hopA可以为空集;在一个时域符号上,参考信号对应两个以上的b hopA
在本申请的一个实施例中,在参考信号频域带宽为多级的情况下,上述方法还可以包括:接收第二信令消息,其中,第二信令消息中包括以下信息至少之一:每一级频域带宽等级中参考信号跳变的频域带宽索引集合,跳频带宽等级集合中参考信号跳变的频域带宽索引集合;其中,频域带宽等级为第N-1级的一个频域带宽包括一个或者多个频域带宽等级为第N级的频域带宽,在一个频域带宽等级下存在一个或多个频域带宽,其中,N为大于或者等于1的整数。
在本申请的一个实施例中,在参考信号频域带宽为多级的情况下,上述参考信号可以满足以下至少之一特征:参考信号的频域带宽等级被分为多个频域带宽等级分组,其中,不同频域带宽等级分组对应不同的关系,其中,关系包括以下至少之一:参考信号对应的频域带宽索引和时域参数之间映射关系,参考信号在一个频域带宽等级中对应的频域带宽索引集合和频域带宽等级对应的所有频域带宽索引集合之间的关系;在一个时域符号上,参考信号在一个频域带宽等级中对应两个以上的频 域带宽索引;参考信号对应两个以上的起始频域带宽等级信息;参考信号对应两个以上的结束频域带宽等级信息;参考信号先进行频域带宽组内的频域带宽跳变,再进行频域带宽组间的频域带宽跳变;其中,一个频域带宽组为参考信号对应的频域带宽等级为第N-1级中的一个频域带宽包括的频域带宽等级为第N级中的多个频域带宽中的一个或者多个频域带宽构成的一个频域带宽组。
在本申请的一个实施例中,在参考信号频域带宽为多级的情况下,上述方法还可以包括:接收第三信令消息,其中,第三信令消息用于确定参考信号是否在一个频域带宽组中跳变。
需要说明的是,上述接收第三信令消息可以执行在步骤S402之前,也可以执行在步骤S402之后,但并不限于此。
在本申请的一个实施例中,可以通过以下方式确定参考信号占有的频域位置k(t):
Figure PCTCN2018101605-appb-000020
Figure PCTCN2018101605-appb-000021
Figure PCTCN2018101605-appb-000022
Figure PCTCN2018101605-appb-000023
其中,t为时间参数,t为大于或者等于0的实数,b或者b'为多级频域带宽等级中参考信号对应的频域带宽等级索引,b或者b'=0,1,…,B,B为参考信号对应的频域带宽等级中最大频域带宽等级,且B为非负整数,N b为索引为max(b-1,0)的频域带宽等级中的一个带宽包括的索引为b的频域带宽等级中的带宽个数,N b'为索引为max(b’-1,0)的频域带宽等级中的一个带宽包括的索引为b’的频域带宽等级中的带宽个数,max()为取最大值的函数,n b,orig是参考信号在索引为b的频域带宽等级中的起始频域带宽索引,n b(t)是时间t上参考信号在索引为b的 频域带宽等级中对应的频域带宽索引,k org为一个非负整数,
Figure PCTCN2018101605-appb-000024
为索引为b的频域带宽等级中一个带宽对应的频域长度,Π为连乘运算,mod为求余函数,b hopA为频域带宽等级集合,x b,k b为小于或者等于N b的自然数,,β b(l)∈{0,1,...,x b-1}。
需要说明的是,上述方法还可以包括:通过接收第四信令消息或者约定规则的方式获取如下参数中的至少之一:β b(l),k b,x b
需要说明的是,上述接收第四信令消息可以执行在上述步骤S402之前,但并不限于此。
本申请实施例还提供了一种运行于上述移动终端的参考信号传输方法,图5是根据本申请实施例的参考信号传输方法的流程图二,该方法包括:
步骤S502,接收物理层动态控制信令;其中,物理层动态控制信令中携带用于确定参考信号的跳频图样的参数信息;
步骤S504,根据参数信息确定参考信号的跳频图样;
步骤S506,根据确定的跳频图样传输参考信号。
通过上述步骤,可以通过物理层动态控制信令携带用于确定参考信号的跳频图样的参数信息的方式来确定参考信号的跳频图样,与相关技术中并不支持物理层动态控制信令可以携带用于确定参考信号的跳频图样的参数信息相比,实现了支持物理层动态控制信令携带与跳频图样相关的信息,因而能够更好地适应NR的需求,可以解决相关技术中LTE中的SRS图样不能满足NR的需求的问题。
需要说明的是,上述物理层动态控制信令包括在物理层控制信道中,和/或上述物理层动态控制信令中的信息可以在每个时间单元动态改变。
需要说明的是,上述物理层动态控制信令中携带用于确定参考信号的跳频图样的全部参数信息或部分参数信息。
在本申请的一个实施例中,上述方法还可以包括:接收高层信令,其中,高层信令中携带用于确定参考信号的跳频图样的参数信息,且高层信令中携带的参数信息和物理层动态控制信令中携带的参数信息的并集为全部参数信息。进一步,网络侧可以通过高层信令配置几套跳频参数集合,再通过动态控制信令向终端通知跳频参数集合的集合索引。
需要说明的是,上述物理层动态控制信令中携带的参数与上述高层信令中携带的参数可以是相同的,也可以是部分相同,也可以完全不同,只要上述物理层动态控制信令中携带的参数和上述高层信令中携带的参数的并集可以是用于确定参考信号的跳频图样的全部参数即可。
需要说明的是,用于确定参考信号的跳频图样的参数信息包括以下至少之一:跳频带宽等级集合信息,跳频带宽起始等级信息,跳频带宽结束等级信息,参考信号在一个时域符号上占有的频域带宽所在的频域带宽等级,参考信号对应的频域带宽等级中的最大值,跳频周期个数信息,参考信号占有的时域符号的个数信息,参考信号周期信息,参考信号周期偏置信息,参考信号在一个时间单元中占有的时域符号索引信息,参考信号在一个时间单元中占有的时域符号个数信息,参考信号的时域跳频单位信息,参考信号对应的端口个数信息,参考信号的端口组个数信息,参考信号端口组跳变图样信息,参考信号跳频参数集合索引信息,参考信号资源组的跳变和频域跳变之间的关系,端口组的跳变和频域跳变之间的关系,参考信号占有的起始频域位置,参考信号频域跳变的次数,相邻的频域跳变对应频域位置之间的频域间隔,参考信号占有的频域位置随时间变化的函数类型,参考信号在一个频域带宽等级中对应的频域带宽索引集合信息,所述参考信号的跳频频段集合信息,所述参考信号是连续频域跳频模式还是非连续频域跳频模式,频域带宽等级分组信息,用于指示频域带宽等级组是否跳频的信息,频域带宽分组信息,频域带宽组是否跳频的信息,频域带宽组跳频顺序信息;其中,时域跳频单位信息包括参考信号每隔一个时域跳频单位进行一次跳频且在一个时域跳频单位内参考信号的频域位置不变。
需要说明的是,上述参考信号在一个时域符号上可以对应多个跳频带宽起始等级信息,或者上述参考信号在一个时域符号上可以对应多个跳频带宽结束等级信息,或者上述参考信号在一个时域符号上可以对应参考信号在一个时域符号上占有的频域带宽所在的多个频域带宽等级,或者上述参考信号在一个时域符号上可以对应参考信号对应的频域带宽等级中的多个最大值,但并不限于此。因而,上述参考信息中可以包括多个跳频带宽起始等级信息,或者多个跳频带宽结束等级信息,或者多个所述参考信号在一个时域符号上占有的频域带宽所在的频域带宽等级,或者多个所述参考信号对应的频域带宽等级中的最大值,但并不限于此。
需要说明的是,上述时域跳频单位信息还可以包括以下至少之一: 时域符号个数信息,时域符号占有的时间单元个数信息。
在本申请的一个实施例中,上述方法还可以包括以下至少之一:由所述物理层动态控制信令触发的所述参考信号占有的时域资源是第一控制信令触发的参考信号占有的时域资源的子集;由所述物理层动态控制信令触发的所述参考信号和第一控制信令触发的参考信号占有相同时域符号时,只传输由所述物理层动态控制信令触发的参考信号,丢弃第一控制信令触发的参考信号;由所述物理层动态控制信令触发的所述参考信号占有的频域位置不存在非连续的频段,由第一控制信令触发的所述参考信号占有的频域位置存在非连续的频段;由所述物理层动态控制信令触发的所述参考信号对应的跳频带宽等级集合属于第一集合,由第一控制信令触发的所述参考信号对应的跳频带宽等级集合属于第二集合;根据第一控制信令触发传输的参考信号的传输参数和时间参数,确定由所述物理层动态控制信令触发的参考信号的传输参数;所述物理层动态控制信令触发的参考信号的传输参数配置范围根据所述第一控制信令触发传输的参考信号的传输参数配置信息确定;其中,所述第一控制信令包括以下至少之一:高层控制信令,与所述物理层动态控制信令的传输时间最接近的控制信令。
需要说明的是,高层信令中携带的参数信息中的全部或者部分参数可以既适合于由物理层动态控制信令触发的参考信号也可以适用于由高层信令触发的参考信号。
需要说明的是,根据高层信令触发传输的参考信号的传输参数和时间参数,确定由物理层动态控制信令触发的参考信号的传输图样可以表现为:物理层动态控制信令触发传输的参考信号的传输参数,高层信令触发传输的参考信号的传输参数和时间参数来确定由物理层动态控制信令触发的参考信号的传输图样;但并不限于此。
本申请实施例还提供了一种运行于上述移动终端或基站的参考信号传输方法,图6是根据本申请实施例的参考信号传输方法的流程图三,该方法包括:
步骤S602,确定参考信号的传输参数信息;
步骤S604,根据确定的传输参数信息传输参考信号;其中,传输参数信息包括以下参数至少之一:所述参考信号占有的频域位置信息,所述参考信号对应的天线端口分组信息,所述参考信号在频域位置中的图样信息。
通过上述步骤,可以获取到上述参考信号的上述传输参数信息,使得能够更好地适应NR的需求,因而可以解决相关技术中LTE中的SRS图样不能满足NR的需求的问题。
需要说明的是,所述传输参数信息包括以下至少之一信息:时域跳频单位信息,端口组的分组信息,频域位置对应的频域重复因子信息,参考信号资源组的分组信息,参考信号资源组的跳变和频域跳变之间的关系,所述参考信号的端口组的跳变和频域跳变之间的关系;跳频带宽等级集合信息,跳频带宽结束等级信息,所述参考信号在一个时域符号上占有的频域带宽所在的频域带宽等级,所述参考信号对应的频域带宽等级中的最大值,跳频周期个数信息,所述参考信号在一个时间单元中占有的时域符号索引信息,所述参考信号在一个时间单元中占有的时域符号个数信息,参考信号端口组跳变图样信息,所述参考信号占有的起始频域位置,所述参考信号频域跳变的次数,相邻的频域跳变对应频域位置之间的频域间隔,所述参考信号占有的频域位置随时间变化的函数类型,所述参考信号在一个频域带宽等级中对应的频域带宽索引集合信息,所述参考信号的跳频频段集合信息,所述参考信号是连续频域跳频模式还是非连续频域跳频模式,频域带宽等级分组信息,用于指示频域带宽等级组是否跳频的信息,频域带宽分组信息,频域带宽组是否跳频的信息,频域带宽组跳频顺序信息;其中,一个所述参考信号资源组中包括一个或者多个参考信号端口,所述时域跳频单位信息包括所述参考信号每隔一个时域跳频单位进行一次跳频且在一个所述时域跳频单位内所述参考信号的频域位置不变。
需要说明的是,不同参考信号的端口组发送参考信号的时间不同。
所述测量参考信号的天线端口信息根据测量参考信号的端口组信息获取。
需要说明的是,时域跳频单位信息可以包括参考信号每隔一个时域跳频单位进行一次跳频且在一个时域跳频单位内参考信号的频域位置不变;和/或,不同频域位置对应的所述重复因子不同。
需要说明的是,所述测量参考信号占有的频域资源按照如下公式得到:
Figure PCTCN2018101605-appb-000025
其中,
Figure PCTCN2018101605-appb-000026
其中所述T 1为所述时域跳频单位信息;所述时域跳频单位信息是所述测量参考信号占有的时域符号个数,其中所述时域符号包括一个时间单元中的时域符号,和/或多个时间单元中的时域符号;
所述时域跳频单位信息包括如下信息至少之一:所述测量参考信号的周期信息,所述测量参考信号在一个周期中包括的时域符号个数信息。
需要说明的是,所述测量参考信号满足如下特征之一:
所述测量参考信号占有的频域位置信息包括树状结构信息C SRS,其中所述C SRS包括在专有控制信令中;
所述测量参考信号的天线端口信息根据测量参考信号资源组信息获取;
所述测量参考信号的天线端口信息根据测量参考信号资源信息获取;
所述测量参考信号的天线端口信息根据测量参考信号的端口组信息获取。
需要说明的是,与时域跳频单位信息对应的时域跳频单位和参考信号在一个时间单元上占有的时域符号个数之间存在对应关系;在端口组的分组信息可以包括端口组个数的情况下,时域跳频单元和端口组个数之间存在对应关系;在端口组的分组信息可以包括端口组个数的情况下,端口组个数和参考信号在一个时间单元上占有的时域符号个数之间存在对应关系。
需要说明的是,在一个跳频周期中,不同时间上参考信号的时域跳频单位信息不同。
在本申请的一个实施例中,上述传输参数信息还可以包括:时域跳频单元与时间之间的对应关系。
需要说明的是,参考信号资源组的跳变和频域跳变之间的关系可以 包括以下之一:参考信号资源组的跳变早于频域跳变,参考信号资源组的跳变与频域跳变同时进行,频域跳变早于参考信号资源组的跳变。
需要说明的是,端口组的跳变和频域跳变之间的关系包括以下之一:端口组的跳变早于频域跳变。频域跳变早于端口组的跳变,端口组的跳变与频域跳变同时进行。
需要说明的是,所述传输参数信息可以包括在以下至少之一控制信令中:物理层动态控制信令,高层控制信令。
需要说明的是,上述高层控制信令可以是RRC控制信令,也可以是MAC CE控制信令,但并不限于此。
需要说明的是,上述图4和图5所述的方法的步骤的执行主体可以是终端,比如移动终端,但并不限于此,上述图6所述的方法的步骤的执行主体可以是基站,也可以终端,但不限于此。
需要说明的是,上述图4所示实施例、图5所示实施例和图6所示实施例可以相互结合,并不限于此。
在本申请实施例中还提供了一种应用于基站的参数发送方法,该方法包括:发送物理层动态控制信令,其中,物理层动态控制信令中携带用于确定参考信号的跳频图样的参数信息。
需要说明的是,物理层动态控制信令中携带用于确定参考信号的跳频图样的全部参数信息或部分参数信息。
在本申请的一个实施例中,上述方法还可以包括:发送高层信令,其中,高层信令中携带用于确定参考信号的跳频图样的参数信息,且高层信令中携带的参数信息和物理层动态控制信令中携带的参数信息的并集为全部参数信息。
需要说明的是,发送物理层动态控制信令和发送高层信令可以是同时执行,也可以是先发送物理层动态控制信令再发送高层信令,也可以是先发送高层信令再发送物理层动态控制信令,但并不限于此。
需要说明的是,用于确定参考信号的跳频图样的参数信息可以包括以下至少之一:跳频带宽等级集合信息,跳频带宽起始等级信息,跳频带宽结束等级信息,参考信号在一个时域符号上占有的频域带宽所在的频域带宽等级,参考信号对应的频域带宽等级中的最大值,跳频周期个数信息,参考信号占有的时域符号的个数信息,参考信号周期信息,参考信号周期偏置信息,参考信号在一个时间单元中占有的时域符号索引信息,参考信号在一个时间单元中占有的时域符号个数信息,参考信号 的时域跳频单位信息,参考信号对应的端口个数信息,参考信号的端口组个数信息,参考信号端口组跳变图样信息,参考信号跳频参数集合索引信息,参考信号资源组的跳变和频域跳变之间的关系,端口组的跳变和频域跳变之间的关系,参考信号占有的起始频域位置,参考信号频域跳变的次数,相邻的频域跳变对应频域位置之间的频域间隔,参考信号占有的频域位置随时间变化的函数类型,参考信号在一个频域带宽等级中对应的频域带宽索引集合信息,所述参考信号的跳频频段集合信息,所述参考信号是连续频域跳频模式还是非连续频域跳频模式;频域带宽等级分组信息,频域带宽等级组是否跳频信息,频域带宽分组信息,频域带宽组是否跳频信息,频域带宽组跳频顺序信息;其中,时域跳频单位信息包括参考信号每隔一个时域跳频单位进行一次跳频且在一个时域跳频单位内参考信号的频域位置不变。
需要说明的是,该实施例的执行主体可以是基站,但并不限于此。
在本申请实施例中还提供了一种上行信道或信号的发送方法,该方法包括:确定速率匹配信息;确定上行信道或信号是否满足预定条件;所述上行信道或信号满足预定条件时,根据所述速率匹配信息发送所述上行信道或信号;其中,发送的所述上行信道或信号不能占有所述速率匹配信息中包括的资源。
需要说明的是,所述上行信道或信号不满足预定条件时,所述速配匹配信息中包括的资源是所述上行信道或信号的可用资源。
需要说明的是,所述预定条件包括如下条件至少之一:
所述上行信道或信号为周期信道或信号;
所述上行信道或信号为半持续信道或信号;
所述上行信道或信号不是物理层动态控制信令调度的信道或信号。
需要说明的是,所述速率匹配信息包括的资源包括如下资源至少之一:包括如下资源至少之一:时域资源,频域资源,参考信号资源,端口资源,空域资源,上行测量参考信号资源池信息。
需要说明的是,所述发送的上行信号为处于跳频状态的上行测量参考信号,当所述上行测量参考信号和所述速率匹配信息包括的资源之间存在重叠时,进行如下操作至少之一:
在所述速率匹配信息包括的资源上不发送上行测量参考信号所述参考信号;
在所述速率匹配信息包括的频域资源中所述上行测量参考信号需 要发送的频域位置顺延到所述上行测量参考信号的下一个跳频机会上发送;
不发送本次跳频参考信号,将本次跳频丢弃;
将本次跳频上行测量参考信号需要占有的频域位置顺延到下一次跳频资源上。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
实施例1
在本实施例中还提供了一种参考信号传输装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图7是根据本申请实施例的参考信号传输装置的结构框图一,如图7所示,该装置包括:
确定模块72,配置为确定参考信号占有的频域位置满足预定条件,其中,所述预定条件包括:所述参考信号占有的频域位置存在非连续的频段;
传输模块74,与上述确定模块72连接,配置为在确定的频域位置上传输所述参考信号。
通过上述装置,由于确定的参考信号占有的频域位置满足预定条件,其中,该预定条件包括:参考信号占有的频域位置存在非连续的频段,进而可以在确定的上述频域位置上传输参考信号,与相关技术中参考信号占有的频域位置都是连续的相比,可以快速定位优选的频段,更好地适应NR的需求,因此,可以解决相关技术中LTE中的SRS图样不能满足NR的需求的问题。
需要说明的是,参考信号占有的频域位置存在非连续的频段可以包 括以下至少之一:在一个时域符号上,参考信号占有的频域位置存在非连续的频段;在一个跳频周期中,参考信号占有的频域位置存在非连续的频段;参考信号以跳频方式占有的频域位置存在非连续的频段。
需要说明的是,上述传输图样可以包括跳频图样,但并不限于此。
需要说明的是,上述跳频周期满足如下特征至少之一:在不同的跳频周期中,参考信号占有的频域位置存在重复的频段;在不同的跳频周期中,参考信号占有的频域位置相同;第一映射关系中的关系项和第二映射关系中的关系项之间存在对应关系,其中,第一映射关系为第一跳频周期中参考信号占有的频域位置与时域参数之间的映射关系,第二映射关系为第二跳频周期中参考信号占有的频域位置与时域参数之间的映射关系。
需要说明的是,一个频段可以包括以下至少之一:一个物理资源块PRB,一个频域子带,一个带宽部分,一个分量载频的频域带宽。
需要说明的是,以上述一个频段包括一个PRB为例进行说明,假设存在4个PRB,分别为PRB1、PRB2、PRB3、PRB4;如果上述参考信号占有的频域位置为PRB1、PRB3,PRB4,或者为PRB1、PRB3等,则认为上述参考信号占有的频域位置存在非连续的频段,但并不限于此。
在本申请的一个实施例中,上述预定条件还可以包括以下至少之一:参考信号占有的频段的并集小于或者等于跳频带宽;参考信号在与物理频域资源对应的虚拟频域资源上跳频;参考信号以跳频方式占有的频域位置在跳频带宽上等间隔分布;参考信号以跳频方式占有的频域位置在跳频带宽上随机分布;其中,跳频带宽为根据参考信号占有的频域位置中距离最远的两个频域位置确定的带宽或者通过接收第一信令消息获取的预定带宽。
需要说明的是,以上述一个频段包括一个PRB为例进行说明,假设存在4个PRB,分别为PRB1、PRB2、PRB3、PRB4;假设参考信号占有的频段为PRB1和PRB3,则该并集为PRB1和PRB3;而跳频带宽则为PRB4的结束频域位置与PRB1的起始频域位置之差,但并不限于此。
在本申请的一个实施例中,在参考信号的频域带宽存在多级的情况下,参考信号对应的频域带宽索引满足以下至少之一条件:在频域带宽等级不属于参考信号的跳频带宽等级集合时,参考信号对应的频域带宽 索引为固定值;在频域带宽等级不属于参考信号的跳频带宽等级集合时,参考信号对应的频域带宽索引集合为与频域带宽等级对应的频域带宽索引集合的真子集;在频域带宽等级不属于参考信号的跳频带宽等级集合时,参考信号对应的频域带宽索引随时间变化且参考信号对应的频域带宽索引集合为与频域带宽等级对应的频域带宽索引集合的真子集;其中,频域带宽等级为第N-1级的一个频域带宽包括一个或者多个频域带宽等级为第N级的频域带宽,在一个频域带宽等级下存在一个或多个频域带宽,频域带宽索引为频域带宽等级为第N-1级的一个频域带宽包括的频域带宽等级为第N级的多个频域带宽的索引;与频域带宽等级对应的频域带宽索引集合包括树状结构中频域带宽等级为第N-1级的一个频域带宽包括的频域带宽等级为第N级的所有频域带宽的索引的集合;其中,N为大于或者等于1的整数。
需要说明的是,上述参考信号对应的频域带宽索引集合也可以称为参考信号占有的频域带宽索引,但并不限于此。
需要说明的是,上述参考信号占有的频域带宽索引还可以满足以下至少之一:在频域带宽等级属于参考信号的跳频带宽等级集合时,参考信号占有的频域带宽索引随时间变化;在频域带宽等级属于参考信号的跳频带宽等级集合时,参考信号跳频的频域带宽索引集合为与频域带宽等级对应的频域带宽索引集合的真子集。
需要说明的是,上述跳频带宽等级集合可以满足以下至少之一:跳频带宽等级集合中的等级是非连续的;跳频带宽等级集合中的最大等级小于或者等于第一等级,其中,第一等级为参考信号对应的频域带宽等级中的最大频域带宽等级;跳频带宽等级集合可以为空集;在一个时域符号上,参考信号对应两个以上的跳频带宽等级集合;跳频带宽等级集合信息携带在接收的信令信息中。
在本申请的一个实施例中,上述确定模块72可以通过以下方式确定参考信号占有的频域位置k(t):
Figure PCTCN2018101605-appb-000027
Figure PCTCN2018101605-appb-000028
Figure PCTCN2018101605-appb-000029
其中,t为时间参数,t为大于或者等于0的实数,b或者b'为多级频域带宽等级中参考信号对应的频域带宽等级索引,b或者b'=0,1,…,B,B为参考信号对应的频域带宽等级中最大频域带宽等级,且B为非负整数,N b为索引为max(b-1,0)的频域带宽等级中的一个带宽包括的索引为b的频域带宽等级中的带宽个数,N b'为索引为max(b’-1,0)的频域带宽等级中的一个带宽包括的索引为b’的频域带宽等级中的带宽个数,max()为取最大值的函数,n b,orig是参考信号在索引为b的频域带宽等级中的起始频域带宽索引,n b(t)是时间t上参考信号在索引为b的频域带宽等级中对应的频域带宽索引,k org为一个非负整数,
Figure PCTCN2018101605-appb-000030
为索引为b的频域带宽等级中一个带宽对应的频域长度,Π为连乘运算,mod为求余函数,b hopA为频域带宽等级集合。
需要说明的是,上述装置还可以包括:获取模块,与上述确定模块72连接,用于通过第二信令信息和/或约定表格方式获取以下至少之一参数:B,N b,n b,orig,k org
Figure PCTCN2018101605-appb-000031
b hopA,b hopA_min,b hopA_max;其中,b hopA={b,b hopA_min≤b≤b hopA_max},b hopA_min,b hopA_max为非负整数或者b hopA_min,b hopA_max为小于B的非负整数。
需要说明的是,b hopA满足以下至少之一:max(b hopA)≤B;b hopA中包括非连续的频域带宽等级索引;b hopA可以为空集;在一个时域符号上,参考信号对应两个以上的b hopA
在本申请的一个实施例中,在参考信号频域带宽为多级的情况下,上述装置还可以包括:接收模块,配置为接收第二信令消息,其中,第二信令消息中包括以下信息至少之一:每一级频域带宽等级中参考信号跳变的频域带宽索引集合,跳频带宽等级集合中参考信号跳变的频域带宽索引集合;其中,频域带宽等级为第N-1级的一个频域带宽包括一个或者多个频域带宽等级为第N级的频域带宽,在一个频域带宽等级下存在一个或多个频域带宽。
在本申请的一个实施例中,在参考信号频域带宽为多级的情况下,上述参考信号可以满足以下至少之一特征:参考信号的频域带宽等级被分为多个频域带宽等级分组,其中,不同频域带宽等级分组对应不同的关系,其中,关系包括以下至少之一:参考信号对应的频域带宽索引和时域参数之间映射关系,参考信号在一个频域带宽等级中对应的频域带宽索引集合和频域带宽等级对应的所有频域带宽索引集合之间的关系;在一个时域符号上,参考信号在一个频域带宽等级中对应两个以上的频域带宽索引;参考信号对应两个以上的起始频域带宽等级信息;参考信号对应两个以上的结束频域带宽等级信息;参考信号先进行频域带宽组内的频域带宽跳变,再进行频域带宽组间的频域带宽跳变;其中,一个频域带宽组为参考信号对应的频域带宽等级为第N-1级中的一个频域带宽包括的频域带宽等级为第N级中的多个频域带宽中的一个或者多个频域带宽构成的一个频域带宽组。
在本申请的一个实施例中,在参考信号频域带宽为多级的情况下,上述接收模块,还用于接收第三信令消息,其中,第三信令消息用于确定参考信号是否在一个频域带宽组中跳变。
在本申请的一个实施例中,上述确定模块72还可以通过以下方式确定参考信号占有的频域位置k(t):
Figure PCTCN2018101605-appb-000032
Figure PCTCN2018101605-appb-000033
Figure PCTCN2018101605-appb-000034
Figure PCTCN2018101605-appb-000035
其中,t为时间参数,t为大于或者等于0的实数,b或者b'为多级频域带宽等级中参考信号对应的频域带宽等级索引,b或者b'=0,1,…,B,B为参考信号对应的频域带宽等级中最大频域带宽等级,且B为非负整数,N b为索引为max(b-1,0)的频域带宽等级中的一个带宽包括 的索引为b的频域带宽等级中的带宽个数,N b'为索引为max(b’-1,0)的频域带宽等级中的一个带宽包括的索引为b’的频域带宽等级中的带宽个数,max()为取最大值的函数,n b,orig是参考信号在索引为b的频域带宽等级中的起始频域带宽索引,n b(t)是时间t上参考信号在索引为b的频域带宽等级中对应的频域带宽索引,k org为一个非负整数,
Figure PCTCN2018101605-appb-000036
为索引为b的频域带宽等级中一个带宽对应的频域长度,Π为连乘运算,mod为求余函数,b hopA为频域带宽等级集合,x b,k b为小于或者等于N b的自然数,,β b(l)∈{0,1,...,x b-1}。
需要说明的是,上述装置还包括:获取模块用于通过接收第四信令消息或者约定规则的方式获取如下参数中的至少之一:β b(l),k b,x b
需要说明的是,上述装置可以位于终端中,但并不限于此。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例2
在本实施例中还提供了一种参考信号传输装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图8是根据本申请实施例提供的参考信号传输装置的结构框图二,如图8所示,该装置包括:
接收模块82,配置为接收物理层动态控制信令;其中,物理层动态控制信令中携带用于确定参考信号的跳频图样的参数信息;
确定模块84,与上述接收模块82连接,配置为根据参数信息确定参考信号的跳频图样;
传输模块86,与上述确定模块84连接,配置为根据确定的跳频图样传输参考信号。
通过上述装置,可以通过物理层动态控制信令携带用于确定参考信号的跳频图样的参数信息的方式来确定参考信号的跳频图样,与相关技 术中并不支持物理层动态控制信令可以携带用于确定参考信号的跳频图样的参数信息相比,实现了支持物理层动态控制信令携带与跳频图样相关的信息,因而能够更好地适应NR的需求,可以解决相关技术中LTE中的SRS图样不能满足NR的需求的问题。
需要说明的是,上述物理层动态控制信令包括在物理层控制信道中,和/或上述物理层动态控制信令中的信息可以在每个时间单元动态改变。
需要说明的是,上述物理层动态控制信令中携带用于确定参考信号的跳频图样的全部参数信息或部分参数信息。
在本申请的一个实施例中,上述接收模块82,还可以用于接收高层信令,其中,高层信令中携带用于确定参考信号的跳频图样的参数信息,且高层信令中携带的参数信息和物理层动态控制信令中携带的参数信息的并集为全部参数信息。
需要说明的是,上述物理层动态控制信令中携带的参数与上述高层信令中携带的参数可以是相同的,也可以部分相同,也可以完全不同,只要上述物理层动态控制信令中携带的参数和上述高层信令中携带的参数的并集可以是用于确定参考信号的跳频图样的全部参数即可。
需要说明的是,用于确定参考信号的跳频图样的参数信息包括以下至少之一:跳频带宽等级集合信息,跳频带宽起始等级信息,跳频带宽结束等级信息,参考信号在一个时域符号上占有的频域带宽所在的频域带宽等级,参考信号对应的频域带宽等级中的最大值,跳频周期个数信息,参考信号占有的时域符号的个数信息,参考信号周期信息,参考信号周期偏置信息,参考信号在一个时间单元中占有的时域符号索引信息,参考信号在一个时间单元中占有的时域符号个数信息,参考信号的时域跳频单位信息,参考信号对应的端口个数信息,参考信号的端口组个数信息,参考信号端口组跳变图样信息,参考信号跳频参数集合索引信息,参考信号资源组的跳变和频域跳变之间的关系,端口组的跳变和频域跳变之间的关系,参考信号占有的起始频域位置,参考信号频域跳变的次数,相邻的频域跳变对应频域位置之间的频域间隔,参考信号占有的频域位置随时间变化的函数类型,参考信号在一个频域带宽等级中对应的频域带宽索引集合信息,所述参考信号的跳频频段集合信息,所述参考信号是连续频域跳频模式还是非连续频域跳频模式,频域带宽等级分组信息,用于指示频域带宽等级组是否跳频的信息,频域带宽分组信息,频域带宽组是否跳频的信息,频域带宽组跳频顺序信息;其中, 时域跳频单位信息包括参考信号每隔一个时域跳频单位进行一次跳频且在一个时域跳频单位内参考信号的频域位置不变。
需要说明的是,上述参考信号在一个时域符号上可以对应多个跳频带宽起始等级信息,或者上述参考信号在一个时域符号上可以对应多个跳频带宽结束等级信息,或者上述参考信号在一个时域符号上可以对应参考信号在一个时域符号上占有的频域带宽所在的多个频域带宽等级,或者上述参考信号在一个时域符号上可以对应参考信号对应的频域带宽等级中的多个最大值,但并不限于此。因而,上述参考信息中可以包括多个跳频带宽起始等级信息,或者多个跳频带宽结束等级信息,或者多个所述参考信号在一个时域符号上占有的频域带宽所在的频域带宽等级,或者多个所述参考信号对应的频域带宽等级中的最大值,但并不限于此。
需要说明的是,上述时域跳频单位信息还可以包括以下至少之一:时域符号个数信息,时域符号占有的时间单元个数信息。
在本申请的一个实施例中,由所述物理层动态控制信令触发的所述参考信号占有的时域资源是第一控制信令触发的参考信号占有的时域资源的子集;由所述物理层动态控制信令触发的所述参考信号和第一控制信令触发的参考信号占有相同时域符号时,只传输由所述物理层动态控制信令触发的参考信号,丢弃第一控制信令触发的参考信号;由所述物理层动态控制信令触发的所述参考信号占有的频域位置不存在非连续的频段,由第一控制信令触发的所述参考信号占有的频域位置存在非连续的频段;由所述物理层动态控制信令触发的所述参考信号对应的跳频带宽等级集合属于第一集合,由第一控制信令触发的参考信号对应的跳频带宽等级集合属于第二集合;由所述物理层动态控制信令触发的参考信号的传输参数可以根据第一控制信令触发传输的参考信号的传输参数和时间参数确定;所述物理层动态控制信令触发的参考信号的传输参数配置范围根据所述第一控制信令触发传输的参考信号的传输参数配置信息确定;其中,所述第一控制信令包括以下至少之一:高层控制信令,与所述物理层动态控制信令的传输时间最接近的控制信令。
需要说明的是,高层信令中携带的参数信息中的全部或者部分参数可以既适合于由物理层动态控制信令触发的参考信号也可以适用于由高层信令触发的参考信号。
需要说明的是,根据高层信令触发传输的参考信号的传输参数和时间参数,确定由物理层动态控制信令触发的参考信号的传输图样可以表 现为:物理层动态控制信令触发传输的参考信号的传输参数,高层信令触发传输的参考信号的传输参数和时间参数来确定由物理层动态控制信令触发的参考信号的传输图样;但并不限于此。
需要说明的是,上述步骤的执行主体可以是终端,但并不限于此。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例3
在本实施例中还提供了一种参考信号传输装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图9是根据本申请实施例提供的参考信号传输装置的结构框图三,如图9所示,该装置包括:
确定模块92,配置为确定参考信号的传输参数信息;
传输模块94,与上述确定模块92连接,配置为根据确定的传输参数信息传输参考信号;其中,传输参数信息包括以下参数至少之一:所述参考信号占有的频域位置信息,所述参考信号对应的天线端口分组信息,所述参考信号在频域位置中的图样信息。
通过上述装置,可以获取到上述参考信号的上述传输参数信息,使得能够更好地适应NR的需求,因而可以解决相关技术中LTE中的SRS图样不能满足NR的需求的问题。
需要说明的是,所述传输参数信息包括以下至少之一信息:时域跳频单位信息,端口组的分组信息,频域位置对应的频域重复因子信息,参考信号资源组的分组信息,参考信号资源组的跳变和频域跳变之间的关系,所述参考信号的端口组的跳变和频域跳变之间的关系;跳频带宽等级集合信息,跳频带宽结束等级信息,所述参考信号在一个时域符号上占有的频域带宽所在的频域带宽等级,所述参考信号对应的频域带宽等级中的最大值,跳频周期个数信息,所述参考信号在一个时间单元中占有的时域符号索引信息,所述参考信号在一个时间单元中占有的时域符号个数信息,参考信号端口组跳变图样信息,所述参考信号占有的 起始频域位置,所述参考信号频域跳变的次数,相邻的频域跳变对应频域位置之间的频域间隔,所述参考信号占有的频域位置随时间变化的函数类型,所述参考信号在一个频域带宽等级中对应的频域带宽索引集合信息,所述参考信号的跳频频段集合信息,所述参考信号是连续频域跳频模式还是非连续频域跳频模式,频域带宽等级分组信息,用于指示频域带宽等级组是否跳频的信息,频域带宽分组信息,频域带宽组是否跳频的信息,频域带宽组跳频顺序信息;其中,一个所述参考信号资源组中包括一个或者多个参考信号端口,所述时域跳频单位信息包括所述参考信号每隔一个时域跳频单位进行一次跳频且在一个所述时域跳频单位内所述参考信号的频域位置不变。
需要说明的是,不同参考信号的端口组发送参考信号的时间不同。
需要说明的是,时域跳频单位信息可以包括参考信号每隔一个时域跳频单位进行一次跳频且在一个时域跳频单位内参考信号的频域位置不变;和/或,不同频域位置对应的所述重复因子不同。
需要说明的是,所述测量参考信号占有的频域资源按照如下公式得到:
Figure PCTCN2018101605-appb-000037
其中,
Figure PCTCN2018101605-appb-000038
其中所述T 1为所述时域跳频单位信息;
所述时域跳频单位信息是所述测量参考信号占有的时域符号个数,其中所述时域符号包括一个时间单元中的时域符号,和/或多个时间单元中的时域符号;和/或,所述时域跳频单位信息包括如下信息至少之一:所述测量参考信号的周期信息,所述测量参考信号在一个周期中包括的时域符号个数信息,时域符号个数信息,时域符号占有的时间单元个数信息。
需要说明的是,所述测量参考信号满足如下特征之一:
所述测量参考信号占有的频域位置信息包括树状结构信息C SRS, 其中所述C SRS包括在专有控制信令中;
所述测量参考信号的天线端口信息根据测量参考信号资源组信息获取;
所述测量参考信号的天线端口信息根据测量参考信号资源信息获取;
所述测量参考信号的天线端口信息根据测量参考信号的端口组信息获取。
需要说明的是,与时域跳频单位信息对应的时域跳频单位和参考信号在一个时间单元上占有的时域符号个数之间存在对应关系;在端口组的分组信息可以包括端口组个数的情况下,时域跳频单元和端口组个数之间存在对应关系;在端口组的分组信息可以包括端口组个数的情况下,端口组个数和参考信号在一个时间单元上占有的时域符号个数之间存在对应关系。
需要说明的是,在一个跳频周期中,不同时间上参考信号的时域跳频单位信息不同。
在本申请的一个实施例中,上述传输参数信息还可以包括:时域跳频单元与时间之间的对应关系。
需要说明的是,参考信号资源组的跳变和频域跳变之间的关系可以包括以下之一:参考信号资源组的跳变早于频域跳变,参考信号资源组的跳变与频域跳变同时进行,频域跳变早于参考信号资源组的跳变。
需要说明的是,端口组的跳变和频域跳变之间的关系包括以下之一:端口组的跳变早于频域跳变。频域跳变早于端口组的跳变,端口组的跳变与频域跳变同时进行。
需要说明的是,所述传输参数信息可以包括在以下至少之一控制信令中:物理层动态控制信令,高层控制信令。
需要说明的是,上述高层控制信令可以是RRC控制信令,也可以是MAC CE控制信令,但并不限于此。
需要说明的是,上述装置可以位于终端中,也可以位于基站中,并不限于此。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例4
在本实施例中还提供了一种参数发送装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
本申请实施例提供的参数发送装置包括:发送模块,配置为发送物理层动态控制信令,其中,物理层动态控制信令中携带用于确定参考信号的跳频图样的参数信息。
需要说明的是,物理层动态控制信令中携带用于确定参考信号的跳频图样的全部参数信息或部分参数信息。
在本申请的一个实施例中,上述发送模块,还配置为发送高层信令,其中,高层信令中携带用于确定参考信号的跳频图样的参数信息,且高层信令中携带的参数信息和物理层动态控制信令中携带的参数信息的并集为全部参数信息。
需要说明的是,发送物理层动态控制信令和发送高层信令可以是同时执行,也可以是先发送物理层动态控制信令再发送高层信令,也可以是先发送高层信令再发送物理层动态控制信令,但并不限于此。
需要说明的是,用于确定参考信号的跳频图样的参数信息可以包括以下至少之一:跳频带宽等级集合信息,跳频带宽起始等级信息,跳频带宽结束等级信息,参考信号在一个时域符号上占有的频域带宽所在的频域带宽等级,参考信号对应的频域带宽等级中的最大值,跳频周期个数信息,参考信号占有的时域符号的个数信息,参考信号周期信息,参考信号周期偏置信息,参考信号在一个时间单元中占有的时域符号索引信息,参考信号在一个时间单元中占有的时域符号个数信息,参考信号的时域跳频单位信息,参考信号对应的端口个数信息,参考信号的端口组个数信息,参考信号端口组跳变图样信息,参考信号跳频参数集合索引信息,参考信号资源组的跳变和频域跳变之间的关系,端口组的跳变和频域跳变之间的关系,参考信号占有的起始频域位置,参考信号频域跳变的次数,相邻的频域跳变对应频域位置之间的频域间隔,参考信号占有的频域位置随时间变化的函数类型,参考信号在一个频域带宽等级中对应的频域带宽索引集合信息,所述参考信号的跳频频段集合信息,所述参考信号是连续频域跳频模式还是非连续频域跳频模式;频域带宽等级分组信息,频域带宽等级组是否跳频信息,频域带宽分组信息, 频域带宽组是否跳频信息,频域带宽组跳频顺序信息;其中,时域跳频单位信息包括参考信号每隔一个时域跳频单位进行一次跳频且在一个时域跳频单位内参考信号的频域位置不变。
需要说明的是,上述装置可以位于基站中,但并不限于此。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例5
在本实施例中还提供了一种上行信道或信号的发送装置,所述装置包括:
确定模块,配置为确定速率匹配信息;确定上行信道或信号是否满足预定条件;
发送模块,配置为所述上行信道或信号满足预定条件时,根据所述速率匹配信息发送所述上行信道或信号;
其中,发送的所述上行信道或信号不能占有所述速率匹配信息中包括的资源。
需要说明的是,所述上行信道或信号不满足预定条件时,所述速配匹配信息中包括的资源是所述上行信道或信号的可用资源。
需要说明的是,所述预定条件包括如下条件至少之一:
所述上行信道或信号为周期信道或信号;
所述上行信道或信号为半持续信道或信号;
所述上行信道或信号不是物理层动态控制信令调度的信道或信号。
需要说明的是,所述速率匹配信息包括的资源包括如下资源至少之一:包括如下资源至少之一:时域资源,频域资源,参考信号资源,端口资源,空域资源,上行测量参考信号资源池信息。
需要说明的是,所述发送的上行信号为处于跳频状态的上行测量参考信号,当所述上行测量参考信号和所述速率匹配信息包括的资源之间存在重叠时,进行如下操作至少之一:
在所述速率匹配信息包括的资源上不发送上行测量参考信号所述参考信号;
在所述速率匹配信息包括的频域资源中所述上行测量参考信号需要发送的频域位置顺延到所述上行测量参考信号的下一个跳频机会上发送;
不发送本次跳频参考信号,将本次跳频丢弃;
将本次跳频上行测量参考信号需要占有的频域位置顺延到下一次跳频资源上。
实施例6
本发明本申请实施例提供了一种终端,该终端包括:处理器,用于所述处理器用于运行程序,其中,所述程序运行时执行上述实施例1中图4或图5或图6所示的实施例所述的方法。
本申请实施例还提供了一种基站,该基站包括:处理器,所述处理器用于运行程序,其中,所述程序运行时执行实施例1中图6所示的实施例的方法或实施例1中参数发送方法。
实施例7
本发明本申请的实施例还提供了一种存储介质,该存储介质包括存储的程序,其中,上述程序运行时执行上述任一项所述的方法。
可选地,在一实施方式中,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
本发明本申请的实施例还提供了一种处理器,该处理器用于运行程序,其中,该程序运行时执行上述任一项方法中的步骤。
可选地,在一实施方式中,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
为更好地理解本申请实施例,以下结合优选的实施例对本申请做进一步解释。
LTE中支持周期和非周期的SRS触发方式,周期和非周期的SRS参数独立配置。非周期的SRS不支持跳频模式。在NR中由于支持一个slot中一个SRS资源可以占有多个时域符号,为了快速定位优选频带,可以考虑非周期触发的SRS也支持跳频模式,需要进一步考虑非周期触发的SRS支持跳频图样的可配置参数。以及周期跳频和非周期跳频之间的联系。
LTE中SRS所占的系统带宽,SRS的树状结构,是通过系统消息通知的,SRS所占的子帧位置是通过系统消息发送的,是Cell Specific的。通过配置Cell-Specific的SRS参数,用于PUCCH/PUSCH的速率匹配,但是这时候也造成一定的资源浪费,因为Cell-Specific配置的SRS资源可能没有任何终端占有。进一步考虑NR中可能动态通知PUSCH的时域起始位置和时域结束位置,PUCCH/PUSCH如何和SRS做速率匹配也是需要进一步考虑的问题。
NR中SRS也需要支持波束扫描,如何设计SRS图样使其适应波束扫描也是本文要考虑的问题。
总之,LTE中的SRS的发送模式,不能很好地适应NR的诸多需求,需要进一步考虑SRS的相关改进模式,使其能够适应NR的诸多需求。
本申请提供的优选实施例,可以使得参考信号适应于NR的诸多新需求,比如在基站对应的带宽远大于终端支持的带宽时,能够快速锁定终端的优选带宽,在优选带宽中实时进行更精细信道探测过程,使得参考信号的跳频方案中结合波束训练过程,参考信号的跳频方案中考虑端口组的跳变方案。
优选实施例1
相关技术的LTE中,为了支持边缘用户,或者功率受限用户,或者增加SRS的容量,上行参考信号SRS支持跳频规则,但是SRS的跳频所占有的频域的并集是连续的,不存在非连续频段。即SRS需要在跳频带宽范围内的所有频段上都发送参考信号。
具体地,如图1所示SRS的树状结构中,其中b即为频域带宽等级索引,N b即为带宽等级(即为频域带宽等级,在下文中为了简单将频域带宽等级简称为带宽等级,频域带宽简称为带宽)索引为b的带宽等级对应的频域带宽个数,或者N b也可以称为带宽等级为max(b-1,0)的等级中的一个树叶包括的等级为b的树叶的个数,其中所述树状结构为所述多级频域带宽结构中的一类。当然本申请并不排除其他的多级频域带宽结构。
当配置b hop=0,B SRS=3时,终端基于图2所示的跳频图样发送SRS,图2中是一个跳频周期中SRS占有的频域位置示例图,在不同的跳频周期中所述SRS占有的频域位置相对时间变化的图样是重复的、或者不同跳频周期中SRS占有的频域位置的并集是相同的。此时一个跳频周期 中,所述SRS占有的频域位置的并集占满跳频带宽,即图1中所示的b=0的一个频域带宽为跳频带宽,如图2中方格所示一个跳频周期中所述参考信号占有的频域位置占满所述跳频带宽。此时要完成全频域探测,且终端每个时刻只能发送b=3中的一个树叶对应的频域带宽情况下,需要8个时域符号。当SRS在一个时间单元中(比如子帧或者slot中)只占有一个时域符号时,需要8个SRS周期才能完成一次探测。对于NR中的大带宽,这样的跳频方式是不能容忍的,而且考虑到NR中基于波束传输,频选特性进一步降低,不需要全带宽跳频就可以得到优选频带,需要考虑适应于NR中的跳频模式,另一方面考虑到NR中基站支持的最大带宽远远大于终端的支持带宽,如何在在基站支持的大带宽中快速找到终端的优选带宽也是需要加速跳频速度的需求之一。
为此,可以通知参考信号在树状结构中的跳频带宽等级集合信息,在不属于所述跳频带宽等级集合的带宽等级中,所述参考信号对应的频域带宽索引信息不随时间变化(参考信号对应的频域带宽索引也可以称为参考信号占有的频域带宽索引),在属于所述跳频带宽等级集合的带宽等级中,所述参考信号的频域带宽索引随着时间变化。
具体地,以SRS为例,SRS采用树状结构,通知b hopA(即所述跳频带宽等级集合),比如b hopA={1,2},如图10a所示,其中,图10a是根据本申请优选实施例1提供的不同带宽等级跳变的带宽索引集合不同的示例图一,图10a中的N_b类似于上述实施例中的N b,在SRS的树状结构中,在b∈b hopA={1,2}等级中,SRS对应的带宽索引遍历该带宽等级的所有带宽索引(其中一个带宽等级对应的所有带宽索引为该带宽等级的上一级的一个带宽对应的本级的多个带宽的索引信息),即n 1(t)∈{0,1,...N 1-1}={0,1},n 2(t)∈{0,1,...N 2-1}={0,1},当
Figure PCTCN2018101605-appb-000039
其跳频带宽索引不变,如图10a所示,n 1(t)=0,n 3(t)=1。在图10a中虽然n 1(t)∈{0,1,...N 1-1}={0,1},n 2(t)∈{0,1,...N 2-1}={0,1},SRS在{1,2}带宽等级上对应的饿带宽索引遍历该跳频带宽等级的所有带宽索引,但是每次发送只发送b=3中的一个带宽长度的SRS,即参考信号跳频所占的频域位置的并集(或者称为SRS在一个跳频周期中占有的频域位置)如图10c斜线阴影部分所示,其中,图10c是根据本申请优选实施例1提供的在图10b所示的跳频图样中参考信号跳频所占的频域位置的并集的示意图一,其中,图10b为根据本申请优选实施例1提供的基于跳频带宽等级集合进行跳频的示例图一。
进一步地端口p上的SRS的跳频图样通过如下公式确定:
Figure PCTCN2018101605-appb-000040
Figure PCTCN2018101605-appb-000041
Figure PCTCN2018101605-appb-000042
其中t是时间参数(比如第t次的SRS发送),b是所述带宽等级索引,b=0,1,...,B,其中B为一个非负整数,是一个时域符号上所述参考信号占有的最大连续频域带宽对应的树状结构中的带宽等级信息,或者是所述参考信号对应的频域带宽等级中的最大带宽等级(本实施例中,带宽等级0表示最小/最高带宽等级,即带宽等级0中的一个带宽长度是所有带宽中长度最大的,当然本实施例也不排除带宽等级0表示最大/最低带宽等级,那此时B就是参考信号对应的带宽等级中最小的带宽等级)。N b是索引为min(b+1,0)的带宽等级中一个树叶包括的索引为b的带宽等级中的树叶个数(或者N b是索引为min(b+1,0)的带宽等级中一个带宽包括的索引为b的带宽等级中的带宽的个数),n b,orig是所述参考信号在索引为b的带宽等级中的起始索引,n b(t)是时间t上所述参考信号在索引为b的带宽等级中对应的所述频域带宽索引,
Figure PCTCN2018101605-appb-000043
为一个非负整数,
Figure PCTCN2018101605-appb-000044
为索引为b的带宽等级中一个树叶(或者称为一个带宽)占有的频域长度信息,比如
Figure PCTCN2018101605-appb-000045
的单位为子载波,当然本实施例也不排除
Figure PCTCN2018101605-appb-000046
的单位为其他情况,比如为一个物理PRB。其中所述频域带宽索引是树状结构中上一级的一个树叶包括的本级的多个树叶的索引信息,所述频域带宽等级对应的频域带宽索引集合包括树状结构中上一级的一个树叶包括的本级的所有树叶的索引信息的集合。
进一步地,上述参数t,B,n b,orig
Figure PCTCN2018101605-appb-000047
可以通过基站通知和/或查找预定表格得到,或者基于如下公式得到上述参数中的一个或者多个:
Figure PCTCN2018101605-appb-000048
Figure PCTCN2018101605-appb-000049
Figure PCTCN2018101605-appb-000050
Figure PCTCN2018101605-appb-000051
Figure PCTCN2018101605-appb-000052
Figure PCTCN2018101605-appb-000053
B=B SRS
其中n f是帧索引,n s是子帧索引,T SRS是SRS的周期(以子帧为单位),当然n f也可以是第一时间单元索引,n s是第二时间单元索引,其中第一时间单元中包括一个或者多个第二时间单元。T offset是周期偏置,
Figure PCTCN2018101605-appb-000054
是周期偏移最大值,N SP是一个无线帧中的特殊子帧的个数,
Figure PCTCN2018101605-appb-000055
是梳妆偏移(comb offset),k TC是梳妆等级总数,也即RPF(repetition factor)、B SRS是用于确定SRS在一个时域符号上占有的频域带宽长度参数信息,也即SRS在一个时域符号上占有的频域带宽对应的树状等级,或者B SRS是SRS对应的频域带宽等级中的最大频域带宽等级,根据b值查表可以得到m SRS,b,n RRC是SRS的频域位置信息,是4的倍数。
Figure PCTCN2018101605-appb-000056
是分给此终端的上行系统带宽对应的PRB的个数,
Figure PCTCN2018101605-appb-000057
是一个PRB中的子载波的个数,为12、n f是帧索引,n hf是在前半个无线帧中值为0,在后半个无线帧中值为1,N SP是一个无线帧中的特殊子帧的个数(或者一个无线帧中GAP中的个数,其中GAP是上下行之间的保护间隔),
Figure PCTCN2018101605-appb-000058
k TC,B SRS,n RRC,b hop都是高层配置的。具体地以图1所示的树状结构,设置b hopA={1,2},B SRS=3,采用公式(7-1)~(8-4)的跳频图样,则跳频图样如图10b所示,从而参考信号跳频所占的频域位置的并集如图10c 中的阴影部分所示,即此时参考信号跳频所占的频域位置存在非连续频段,和/或参考信号所占的频域位置小于跳频带宽(此时跳频带宽为b=max(min(b hopA),0)=0的带宽等级对应的一个带宽长度),在上述设置中b hopA中的跳频等级集合是连续的,只是跳频等级集合中的最大值小于B SRS,即max(b hopA)<B SRS、当然本实施例中也不排除跳频等级集合中的跳频等级是非连续的,比如配置b hopA={1,3},B SRS=3,则SRS在每个带宽等级中所对应的带宽索引如图11a所示,其中,图11a是根据本申请优选实施例1提供的不同带宽等级跳变的带宽索引集合不同的示例图二;进一步地采用公式(7-1)~(8-4),所述参考信号的跳频图样(即所述参考信号占有的频域随时间变化的图样)如图11b所示,其中,图11b是根据本申请优选实施例1提供的基于跳频带宽等级集合进行跳频的示例图二,此时所述参考信号在一个跳频周期中占有的频域位置如图11c的斜线阴影部分所示,其中,图11c是根据本申请优选实施例1提供的在图11b所示的跳频图样中参考信号跳频所占的频域位置的并集的示意图一。
在公式(7-1)~(7-2)中,在不属于所述跳频等级集合的等级中,所述参考信号的频域带宽索引信息不随时间变化,在属于所述跳频等级集合的等级中,所述参考信号的频域索引带宽索引随着时间变化。在本实施例的另一种实施方式中,在不属于所述跳频等级集合的等级中,所述参考信号的频域带宽索引信息随时间变化,但是所述参考信号在该带宽等级对应的频域带宽索引集合是所述频域带宽等级对应的频域带宽索引集合的真子集,在属于所述跳域带宽等级集合等级中,所述参考信号占有的频域带宽索引随着时间改变;且在属于所述频域带宽等级集合等级中,所述参考信号占有的频域带宽索引集合为所述频域带宽等级对应的频域带宽索引集合。
比如设置跳频等级集合为b hopA=2,如图12a所示,其中,图12a是根据本申请优选实施例1提供的不同带宽等级跳变的带宽索引集合不同的示例图三,当b=0,1的时候,n b(t)=0,当b=2的时候,n 2(t)∈{0,1}={0,1,...N 2-1},即跳频的带宽索引集合为该带宽等级中的所有带宽索引的集合{0,1,...N 2-1},当b=3的时候,n 3(t)∈{0,2}∈{0,1,...N 3-1},即跳频的带宽索引集合为该带宽等级对应的所有带宽索引的集合的真子集。即存在3种等级集合{0,1}{2}{3},对于{0,1}带宽等级集合,参考信号所占的带宽索引是不随时间改变的固定值,{2}带宽等级中的 参考信号所占的带宽索引遍历所有的带宽索引,{3}带宽等级中参考信号所占的带宽索引是该带宽等级对应的带宽索引集合的真子集。其中所述带宽等级N对应的所有带宽索引,为带宽等级N-1中的一个带宽包括的带宽等级N中的多个带宽对应的带宽索引。其中N为大于0的整数,即将带宽等级划分为多个组,不同带宽等级组对应不同关系,其中所述关系包括如下至少之一:所述参考信号对应的频域带宽索引和时域参数之间映射关系,所述参考信号在一个频域带宽等级中对应的频域带宽索引集合和所述频域带宽等级对应的所有频域带宽索引集合之间的关系;带宽等级是否有跳频,带宽等级组的跳频顺序。
进一步地,将公式(7-3)改为如下公式:
Figure PCTCN2018101605-appb-000059
其中,
Figure PCTCN2018101605-appb-000060
默认的β b(l)=l,k b=2,当然也可以配置β b(l),k b的值,当N b为偶数时,k b要是N b的因子。β b(l)为整数,或者
Figure PCTCN2018101605-appb-000061
对于图12a所示的跳频等级集合配置,基于公式(9)得到如图12b所示的跳频图样,图12b是根据本申请优选实施例1提供的基于跳频带宽等级集合进行跳频的示例图三,可选地
Figure PCTCN2018101605-appb-000062
或者公式(9-1)统一公式(9-3):
Figure PCTCN2018101605-appb-000063
其中
Figure PCTCN2018101605-appb-000064
其中x b为小于或者等于N b的自然数,可选地
Figure PCTCN2018101605-appb-000065
或者
Figure PCTCN2018101605-appb-000066
表示带宽分组的个数信息,β b(l)表示用于控制带宽分组是否跳频,和/或不同带宽分组的跳频顺序,其中带宽分组表示将第b-1带宽等级中的一个带宽包括的第b带宽等级中的N b个带宽化为为多个带宽分组。优选地这些带宽分组是等间隔划分的。
在一实施方式中,可以进一步通知每个带宽等级中所述参考信号对应的频域带宽索引集合信息,使得所述参考信号在带宽等级中就在其对应的带宽索引集合中的带宽索引指示的带宽中进行跳频,不属于带宽索引集合中的带宽不进行跳变(即在所述带宽索引指示的带宽中不传输参考信号)。
优选实施例2
在本优选实施例中,一个时域符号上发送的测量参考信号占有的频域位置存在非连续频段。如图13所示,其中,图13是根据本申请优选实施例2提供的在一个时域符号上参考信号占有非连续的频域位置的示意图。
进一步地,在跳频中,一个时域符号上发送的测量参考信号占有的频域位置存在非连续频段,如图14所示,其中,图14是根据本申请优选实施例2提供的一个时域符号上参考信号占有非连续的频域位置的一种跳频图样示例图。
其中,图13,图14所示参考信号占有的频域位置,以及参考信号的跳频图样只是示例,本实施例并不排除其他的参考信号频域位置,或者其他的参考信号跳频图样。
在一个时域符号上存在非连续的频段,一种方式是每个连续频段配置独立的参考信号资源,另一种方式是在一个参考信号资源中同时分配这些非连续频段。
具体地,以上行参考信号SRS为例,当需要触发如图15a所示的跳频图样时,其中,图15a是根据本申请优选实施例2提供的跳频过程中一个时域符号上存在多个非连续的频段的示意图一;此时在一个时域符号上,SRS占有两个频段,这两个频段还是非连续的,即此时在一个时域符号上,SRS占有两个频域带宽。两个带宽分别完成在带宽0和带宽1中的信道探测,如图15a所示,频带0中包括4个小频带,频带1中包括4个小频带,参考信号每次在一个频带中只占有一个小频带。如果继续采用多级带宽结构,即比如图15a中的带宽0,1,2对应b=1级的一个带宽,图15a中带宽i中的一个小带宽对应b=2级的一个大带宽。 此时可以为带宽0分配一个SRS资源1,带宽2分配SRS资源2,一个SRS资源包括一个或者多个SRS端口。分配为SRS资源1和SRS资源2配置跳频参数。但是此时SRS资源1和SRS资源2在相同的时域符号上发送,对应的SRS端口可以是相同的。比如SRS资源1和SRS资源2的其他配置参数都相同,差别就是起始跳频位置不同,即类似LTE中的n RRC不同。类似地如图15b所示,其中,图15b是根据本申请优选实施例2提供的跳频过程中一个时域符号上存在多个非连续的频段的示意图二,为带宽0和带宽2配置不同的SRS资源,这两个资源可以在相同时域符号上发送,两者之间的差别是起始跳频位置不同,即类似LTE中的n RRC不同。或者如图15c所示,其中,图15c是根据本申请优选实施例2提供的跳频过程中一个时域符号上存在多个非连续的频段的示意图三,配置3个SRS资源,为带宽0中的跳频配置SRS资源1,{带宽1,带宽2}中的跳频配置SRS资源2,为带宽3中的跳频配置SRS资源3,可以为这些SRS资源配置独立的跳频参数,可选地这些SRS资源可以共享一些参数配置,比如天线端口配置。
上述举例中是在一个时域符号上存在的多个连续频段分别配置独立的SRS资源,这多个连续频段之间是非连续的。本实施例的另一种实施方式中,在一个时域符号上存在的多个连续频段配置一个SRS资源,只是这个SRS资源对应多讨论独立的参数配置信息。比如图15a~15b中的SRS资源对应2套参数配置,15c中对应3套参数配置。
进一步地,为一个时域符号上多个连续频段配置的多个SRS资源或者多个SRS参数配置中,不同SRS资源或者不同SRS参数配置中可以包括如下参数至少之一:跳频等级集合,跳频起始等级信息,跳频结束等级信息。
优选实施例3
在本实施例中,动态控制信令通知跳频图样,所述动态控制信令中通知如下信息至少之一:跳频带宽等级集合信息,跳频带宽起始等级信息,跳频带宽结束等级信息,参考信号在一个时域符号上占有的频域带宽等级信息,跳频周期个数信息,所述参考信号占有的时域符号的个数信息,所述参考信号周期信息,所述参考信号周期偏置信息,所述参考信号在一个时间单元中占有的时域符号索引信息,所述参考信号在一个时间单元中占有的时域符号个数信息,所述参考信号的时域跳频单位信息,参考信号对应的端口个数信息,参考信号的端口组个数信息,参考信号端口组跳变图样信息,参考信号跳频参数集合索引信息;
其中所述跳频参数集合信息携带在高层控制信令中(比如所述高层信令包括RRC信令,和/或MAC CE信令),所述参考信号的时域跳频单位信息指所述参考信号每隔所述时域跳频单位中包括的时域符号之后进行一次跳频,在所述时域跳频单位内所述参考信号的频域位置不变。参考信号资源组的跳变和频域跳变之间的关系,端口组的跳变和频域跳变之间的关系,所述参考信号占有的起始频域位置,所述参考信号频域跳变的次数,相邻的频域跳变对应频域位置之间的频域间隔,所述参考信号占有的频域位置随时间变化的函数类型,所述参考信号在一个频域带宽等级中对应的频域带宽索引集合信息;,所述参考信号的跳频频段集合信息,所述参考信号是连续频域跳频模式还是非连续频域跳频模式;频域带宽等级分组信息,频域带宽等级组是否跳频信息,频域带宽分组信息,频域带宽组是否跳频信息,频域带宽组跳频顺序信息。
具体地,类似于LTE建立参考信号频域位置的树状结构,跳频带宽等级集合信息为实施例所述的b hopA,跳频带宽起始等级信息为类似于LTE中的b hop,或者实施例1讲述的b hopA的最小值,跳频带宽结束等级信息类似于LTE中的B SRS,或者实施例1中讲述的b hopA的最大值。参考信号在一个时域符号上占有的频域带宽等级信息类似于LTE中的B SRS,或者实施例1中讲述的B.跳频周期个数信息表示相同的频域位置参考信号发送的次数,如图2中,跳频周期个数为1,图11b,12b,14中跳频周期个数为2、所述参考信号占有的时域符号的个数信息表示当前动态触发的参考信号资源占有的时域符号个数,包括一个slot中占有的个数和占有的slot的个数,所述参考信号占有的时域符号的个数信息可以是参考信号资源级别的(即一个参考信号资源对应一个数信息,也即这个参考信号资源总共占有的时域符号个数,此时可能存在参考信号资源中的一个参考信号端口占有的时域符号个数小于参考信号资源占有的时域符号个数),也可以是端口级别的(即一个参考信号资源中不同参考信号端口可以占有不同的时域符号个数,或者一个参考信号资源中的所有参考信号端口占有所述个数信息个时域符号,当一个时域符号上只传输参考信号资源中的部分参考信号端口时,参考信号资源占有的时域符号总个数要大于一个端口占有的时域符号个数)、所述参考信号周期信息(表示参考信号时域符号之间的周期信息,或者参考信号占有slot周期,每个slot中可以占有多个时域符号,一个slot中的不同时域符号之间不满足所述周期特性),所述参考信号周期偏置信息,所述参考信号在一个时间单元中占有的时域符号索引信息(比如所述时间单元为slot 或者一个子帧,一个slot中占有的时域符号是连续的或者时域等间隔分布的,此时只通知起始时域符号索引和/或结束时域符号索引,或者通知起始时域符号索引和时域持续时间,和/或通知时域符号之间的间隔信息),所述参考信号在一个时间单元中占有的时域符号个数信息,所述参考信号的时域跳频单位信息(现在LTE中的时域跳频单位是1个时域符号,即时域符号发生变化,频域就开始跳频,在NR中由于考虑接收波束训练,一个slot中可以激活多个时域符号,以及考虑可能先端口组跳,再频域跳,需要考虑每N个参考信号时域符号之间再进行频域跳频,其中N为自然数,如图16所示,其中,图16是根据本申请优选实施例3提供的时域跳频单元为2个时域符号的示意图;每2个参考信号时域符号之后,发生一次频域跳变),参考信号对应的端口个数信息,参考信号的端口组个数信息(将一个参考信号资源中的参考信号端口进行分组,根据信号资源组中的端口个数和端口组个数信息,以及约定的规则对参考信号资源中的端口进行分组),参考信号端口组跳变图样信息(当有多个参考信号端口组时,端口组如何跳变的相关信息),参考信号跳频参数集合索引信息,其中所述跳频参数集合通过高层信令配置(比如RRC信令和/或MAC CE信令配置,其中高层信令中可以通知多个参考信号跳频参数集合,动态信令中进一步通知在高层信令通知的多个参考信号跳频参数集合中的选择信息,比如高层信令通知了8个跳频参数集合,动态信令进一步通知当前参考信号的跳频参数集合为这8个中的哪一个,当然高层信令通知的多个参考信号集合中的不同参考信号集合可以对应不同的参考信号资源。其中所述一个参考信号跳频参数集合中可以包括本文所述的参考信号跳频图样参数中的一个或者多个参数)。参考信号资源组的跳变和频域跳变之间的关系(比如当有多个SRS资源时,是先SRS资源跳变,再频域资源跳变,还是先频域跳变再SRS资源跳变,还是频域跳变的同时SRS资源也跳变),端口组的跳变和频域跳变之间的关系(比如1个SRS资源包括多个天线端口,将这些天线端口分成天线端口组,需要确定天线端口组的跳变和频域跳变之间的关系,是先SRS端口组跳变,再频域资源跳变,还是先频域跳变再SRS端口组跳变,还是频域跳变的同时SRS端口组也跳变),所述参考信号占有的起始频域位置(比如跳频时参考信号所在的起始频域位置),所述参考信号频域跳变的次数(即参考信号频域改变的次数),相邻的频域跳变对应频域位置之间的频域间隔(跳变的间隔,单位频域间隔的单位为一个频段,其中一个频段为如下至少之一:一个PRB,一个子带,一个带宽部分,一个分量载频对应的带宽),所述参考信号占有的频域 位置随时间变化的函数类型(比如存在多个跳频图样函数,通过信令或者约定规则确定跳频图样函数,其中跳频图样是所述参考信号占有的频域位置随时间变化的函数),所述参考信号在一个频域带宽等级中对应的频域带宽索引集合信息(在多级频域带宽的情况下,所述参考信号在一个频域带宽等级中对应的频域带宽索引集合为所述参考信号占有的频域带宽索引);所述参考信号的跳频频段集合信息(比如基站给终端分配跳频频段为{频段1,频段5,频段6},终端在分配的跳频频段集合中进行跳频),所述参考信号是连续频域跳频模式还是非连续频域跳频模式(如图2方格所示,参考信号在一个跳频周期占有的频域位置是连续的,如图10c中的阴影部分所述,参考信号在一个跳频周期中占有的频域位置存在非连续的频段);频域带宽等级分组信息(将频域带宽等级分为多个组,不同频域带宽等级分组对应不同的关系,其中,所述关系包括以下至少之一:所述参考信号对应的频域带宽索引和时域参数之间映射关系,所述参考信号在一个频域带宽等级中对应的频域带宽索引集合和所述频域带宽等级对应的所有频域带宽索引集合之间的关系,比如等级分组1中的带宽等级中,所述参考信号对应的带宽索引随时间改变,和/或所述参考信号对应的带宽索引为所述带宽等级对应的所有频域带宽索引集合的子集1,等级分组2中的带宽等级中,所述参考信号对应的带宽索引不随时间改变,和/或所述参考信号对应的带宽索引为所述带宽等级对应的所有频域带宽索引集合的子集2),频域带宽等级组是否跳频信息,频域带宽分组信息(比如将第N-1带宽等级中的一个带宽包括的多个第N级带宽等级中的带宽分成多个组),频域带宽组是否跳频信息,频域带宽组跳频顺序信息(比如跳频顺序是频域带宽组1,频域带宽组2,频域带宽组3,还是频域带宽组1,频域带宽组3,频域带宽组2,其中跳频顺序即不同带宽组的发送时间的先后顺序)。
在上述实施方式中,是在物理层动态控制信令中通知跳频相关参数信息,本实施例也不排除在物理层动态控制信令中通知如下信息至少之一:树状结构信息(类似于LTE中的C SRS,根据此参数可以建立其树状结构,比如树的等级个数,每个等级中包括的树叶个数,每个树叶对应的带宽长度信息等信息)。
上述实施方式中,是在物理层动态控制信令中通知如上信息,本实施例也不排除上述参数部分参数在物理层动态信令中通知,部分参数在高层控制信令中通通知。结合起来确定跳频参数。
LTE中高层触发的SRS配置参数和动态信令触发的SRS配置参数 是独立的,本实施例中,两者之间有些参数是共享的,或者动态信触发的SRS的参数配置需要依赖于高层配置的SRS的配置参数,比如动态信令触发的SRS占有的时域符号位置集合是高层触发的SRS占有的时域符号位置集合的子集。当同一符号上既要发送高层触发的SRS也要发送动态信令触发的SRS,丢弃高层触发的SRS,或者当只有两者之间占有的频域资源有重叠时,丢弃高层触发的SRS。如图17所示,其中,图17是根据本申请优选实施例3提供的高层触发的SRS和动态触发的SRS之间的关系示意图,所述粗侧阶段是高层触发的SRS或者之前发送的第二控制信令触发,比如周期发送,而且SRS占有的频域资源的并集存在非连续频段(如图17所示,每4个带宽中参考信号占有一个带宽)。在粗侧周期之间,基站会在两个带宽组中选择其一(其中带宽组1包括{带宽0~带宽3},带宽组2包括{带宽4~带宽7}),动态信令触发在一个带宽组中细侧,比如在细侧阶段在其中一个带宽组中所有带宽中跳变。比如图17在第一次粗侧之后动态触发第一带宽组中跳变,第二次粗侧之后基站选择第二带宽组进行细侧。细侧阶段,对于粗侧阶段参考信号在粗侧阶段已经占有的带宽上不再发送参考信号,比如图17所示,在第一次粗侧周期之后,基站选择带宽组1,在粗侧阶段终端已经在带宽组1中的带宽0上发送了参考信号,则终端在细侧阶段只需要在带宽组0中的{带宽1~带宽3}上发送参考信号。或者起码在细测阶段,带宽组1中的起始带宽位置不是从已经发送了参考信号的带宽0开始。即动态信令触发的SRS的所占频域位置根据高层信令触发的SRS的配置参数和时域参数确定。另一方面为了减少SRS占有的时域资源,动态信令触发的SRS占有的时域资源为粗侧阶段的时域资源的子集。当有动态信令触发的SRS和高层信令(或者周期发送的SRS参考信号)碰撞时,调度周期发送的SRS。
或者粗测是高层信令配置,动态信令触发(比如半周期的SRS),细测参数也是高层信令配置,动态信令触发,此时这两个高层配置信令之间有关联,比如两个高层配置信令之间有些参数是共享的。
或者粗测是RRC信令配置,动态信令触发(比如半周期的SRS),细测参数是MAC CE信令配置,动态信令触发,此时这RRC信令配置和MAC CE信令配置之间,比如两个高层配置信令之间有些参数是共享的,或者MAC CE的参数配置范围取决于RRC信令的参数配置。
本优选实施例中,所述物理层动态控制信令包括在PDCCH(Physical Downlink control channel)、比如所述物理层动态控制信息包括在DCI 中。
优选实施例4
在本优选实施例中,具体讲述参考信号端口组跳变和频域跳变之间的关系。
有如下三种模式,第一种关系是频域跳变的同时端口组也在跳变,如图18a所示,其中,图18a是根据本申请优选实施例4提供的频域跳变的同时端口组也在跳变的示意图,第二种关系是先参考信号端口组跳变,再频域跳变,如图18b所示,其中,图18b是根据本申请优选实施例4提供的先天线端口跳变再频域跳变的示意图;第三种关系是先频域跳变,再端口组跳变,如图18c所示,其中,图18c是根据本申请优选实施例4提供的先频域跳变再端口组跳变的示意图,在图18a~18c中以port0,port1示例,类似地port0,port1可以对应第一端口组和第二端口组,每个端口组中至少包括1个参考信号端口。
可以固定一种跳频关系,或者信令通知是哪一种跳变关系或者根据一个slot中参考信号资源占有的时域符号个数确定哪一种跳变关系。或者是根据参考信号占有的连续的时域符号个数确定是哪一种关系,其中所述连续的时域符号可以是在多个slot中。
具体地,当一个slot中参考信号资源占有的时域符号个数(或者参考信号占有的连续的使用符号个数)大于或者等于预定阀值,则采用第二种关系,否则采用第一种关系,比如预定阀值为端口组的个数。关系也可以称为跳变模式。
优选实施例5
本实施例中,不同的参考信号的资源跳频需要满足一定的规则,即不同参考信号资源之间的跳频满足一定的约束条件。在参考信号资源组(也可以称为参考信号资源集合,包括多个参考信号资源)中的配置信息中配置相关参数,所述参考信号资源组中的所有参考信号资源根据所述配置的参数,进行资源跳变和频域跳变;
比如参考信号资源跳变和频域跳变之间的关系,其存在如下几种跳变关系。
第一种:频域跳变的同时发送资源组也在跳变,如图19a所示,其中,图19a是根据本申请优选实施例5提供的频域跳变的同时SRS资源也跳变的示意图;
第二种:先发送资源组跳变再频域跳变,如图19b所示,其中,图 19b是根据本申请优选实施例5提供的先SRS资源组跳变,再频域跳变的示意图。
第三种:先频域跳频,再参考信号资源跳频,如图19c所示,其中,图19c是根据本申请优选实施例5提供的先频域跳变再端口组跳变的示意图;
图19a~图19b中,以发送资源1和发送资源0示例,类似地,发送资源1可以对应发送资源组1,发送资源0可以对应发送资源组0,一个发送资源组中至少包括1个发送资源,一个发送资源组中的资源同时发送,不同发送资源组中的资源分时发送。
可以固定一种跳频关系,或者信令通知是哪一种关系或者根据一个slot中参考信号资源集合占有的时域符号个数确定是哪一种关系,或者是根据参考信号占有的连续的时域符号个数确定是哪一种关系,其中所述连续的时域符号可以是在多个slot中,,其中参考信号资源集合包括所述跳变的多个参考信号资源,比如SRS resource set(或者SRS资源组)包括{SRS资源0,SRS资源1}。
具体地,当一个slot中参考信号资源集合(或者参考信号资源组)占有的时域符号个数大于或者等于预定阀值,则采用第二种关系,否则采用第一种关系,比如预定阀值为端口组的个数。关系也可以称为跳变模式。
优选实施例6
在本优选实施例中,在专有控制信令中加入树状结构信息,根据此参数可以建立其树状结构,比如树的等级个数,每个等级中包括的树叶个数,每个树叶对应的带宽长度信息等信息,类似于LTE中的C SRS
在LTE中Cell Specific通知C SRS和SRS的周期信息和周期偏置信息,PUCCH/PUSCH当和Cell Specific的SRS资源在相同子帧时,在SRS占有的时域符号上不发送PUCCH/PUSCH,这个造成资源的浪费,因为一方面可能Cell-Specific配置的SRS资源上可能没有给任何终端分配SRS资源。NR中PUCCH/PUSCH的起始时域位置和结束时域位置中可能动态通知,所以PUCCH/PUSCH不需要避让SRS的资源,或者对于动态调度时域/频域资源的PUCCH不需要避让SRS的资源,只有周期PUCCH需要避让SRS资源。
进一步地,可以为PUSCH/PUCCH配置SRS资源池信息,或者只为周期PUCCH配置SRS资源池,所述PUCCH/PUSCH,或者周期 PUCCH,避让所述配置的SRS资源池资源。优选地所述配置的SRS资源池资源是专有控制信令中配置。
优选地避让只避让SRS占有的PRB,对应SRS所在的时域符号上没有占有的PRB不需要避让。
UE-Specific的发送的SRS资源一种方式是落在上述为PUCCH/PUSCH/周期PUCCH速率匹配的SRS资源池中,另一种方式是UE-Specific发送的SRS的资源可以在上述为PUCCH/PUSCH/周期PUCCH速率匹配的SRS资源池之外。其中SRS资源包括如下资源至少之一:SRS资源,SRS时域资源,SRS频域资源,SRS码域资源,SRS空域资源。
优选实施例7
在本优选实施例中,基站分配一个非连续频域资源组,终端将这些非连续的频域资源块看成虚拟频域资源块,组合成类似LTE中的树状结构,进行虚拟频域资源块范围内全部频域资源块的跳频,或者部分虚拟频域资源块的跳频。
在连续的虚拟频域资源块中进行频域的跳变,虚拟频域资源块到物理频域资源块有约定的映射规则。
如图20a所示,其中,图20a是根据本申请优选实施例7提供的基站挑选的优选频带集合,所述优选频带集合存在非连续频段的示意图,通过全带宽SRS的发送,或者全带宽跳变的SRS的发送,基站选择出对于一个UE来说优选的带宽集合,其中优选带宽集合中存在非连续的频段。将这些选择出的优选带宽集合中的带宽进行虚拟化编号,如图20b中的将这些虚拟化带宽组合成b=0,1,2的3级树状结构,图20b是根据本申请优选实施例提供的终端在虚拟频域资源上进行跳频的示意图,然后采用如图20b跳频、在图20a中,虽然虚拟化带宽完成全跳频,但是这些跳变的频域范围对应的实际的物理资源带宽存在非连续频段。
本优选实施例中,所述一个频域资源块,可以是一个PRB(Physical resource block),也可以是一个子带,或者是一个partial band、或者是一个带宽部分(类似于NR讨论中的bandwidth part,比如一个带宽部分为1MHz),或者是一个载频分量对应的频域带宽(比如一个CC对应的频域带宽)。
优选实施例8
在本优选实施例中,发送SRS的天线端口根据SRS资源组ID,和/或天线端口组ID确定,和/或时域参数。其中天线端口组也可以称为天线端口类别,或者其他名称。
进一步地,一个SRS资源发送SRS的天线端口根据SRS资源组ID和SRS资源中天线端口个数确定。
具体地,一个SRS资源组中的不同SRS资源,采用相同的天线端口发送SRS,不同的SRS资源组可以对应不同的天线端口。比如一个SRS resource组中包括N个SRS resource,每个SRS resource包括1个或者2个SRS端口。这些SRS resource是为了波束训练,为了公平性,需要限制这些波束来自于同一个发送天线。因为同一发送波束从不同发送天线发出之后,到达接收端的性能不同。但是由于终端有多个panel是,需要对于不同panel进行波束训练,此时需要有2个SRS resource set,每个SRS resource set中的SRS resource都包括1个或者2个SRS端口,但是不同SRS resource set中的SRS resource包括的1个或者2个SRS port对应的发送天线应该来自不同的panel。
具体地如表1所示,有两个SRS resource组{SRS资源组1,SRS资源组2},SRS资源组1中包括4个SRS resource,SRS资源组2中包括8个SRS resource每个SRS resource中包括1个SRS端口,此时SRS resource资源组和SRS天线端口之间的对应关系如表1所示。
表1
SRS资源组ID SRS port
1 10
2 11
其中SRS port 10和SRS port11是不同的天线端口。而不像LTE中包括一个SRS端口的所有SRS资源,只对应到天线端口10、具体地LTE中的天线端口管理如表2所示,在NR中需要增强为如表3或者表4所示。即此时存在多个1天线端口,也可以有多个2天线端口,表3中1天线端口有4种,2天线端口有3种,4天线端口有2种,只是示例,并不排除其他种数情况。表4中发送SRS的天线端口根据天线端口数和天线端口组索引确定。
表2
Figure PCTCN2018101605-appb-000067
Figure PCTCN2018101605-appb-000068
表3
Figure PCTCN2018101605-appb-000069
表4
Figure PCTCN2018101605-appb-000070
Figure PCTCN2018101605-appb-000071
另一方面,LTE中port10和port20~port21,port40~port43之间没有关联,留做终端实现,但是NR中波束训练阶段采用1天线端口的SRS资源,上行PMI获取阶段采用4天线端口的SRS资源,对于波束训练可以进一步限定port10是和{port40~port 41}之间有关联,比如port10是{port40~port 41}中选择,而不能组合。总之,不同天线端口数的天线端口之间有关联,即包括N个端口的SRS资源1和包括M个天线端口的SRS资源2,N小于或者等于M,或者N,M为固定组合时,N个天线端口和M个天线端口之间有关联,比如(N=1,M=4)之间有关联。
进一步地可以根据时间参数确定不同SRS资源之间的天线端口关系,比如相同时间上的不同SRS资源对应不同的发送天线,或者相同时间上的不同SRS资源的天线端口之间没有关联,比如不同时间上的不同SRS资源对应相同的发送天线(进一步地这些SRS资源包括在一个SRS资源组中时采用这个限定),或者不同时间上的不同SRS资源的天线端口之间有关联(比如这些SRS资源包括在一个SRS资源组中且不同时发送时,他们之间对应相同的天线端口)。
优选实施例9
在本优选实施例中,不同的带宽资源(或者频域位置)对应不同的RPF,如图21所示,其中,图21是根据本申请优选实施例9提供的在虚拟带宽中发生频域跳变的示意图。通过信令信息或者基站和终端约定的规则确定带宽资源和RPF之间的关系。
在图21中,频域位置0(也可以称为频域带宽0)中,SRS对应的RPF为2,频域位置1(也可以称为频域带宽1)中,SRS对应的RPF为4。
在本申请中,频域位置(或者频域带宽)的单位为如下至少之一:PRB(Physical Resource Block物理资源块),子带(其中包括预定个数个PRB),或者是一个partial band、或者是一个带宽部分(类似于NR讨论中的bandwidth part),或者是一个载频分量对应的频域带宽(比如一个CC对应的频域带宽)。而RPF中频域重复因子的单位是子载波, 即每隔RPF个子载波,所述参考信号占有一个RE。
优选实施例10
在本实施例中,讲述跳频过程中,时域跳频单位随时间变化的情况。
如图22a所示,其中,图22a是根据本申请优选实施例10提供的时域跳频单位和时间之间关系的示意图一,在一个跳频周期中,前3次的频域跳变的时域跳频单位为2,后加的频域跳变对应的时域跳频单位为1,对于波束训练,基站可以根据前3次的跳频得到优选接收波束,然后采用优选的接收波束接收本跳频周期中的其余跳频。
或者如图22b所示,其中,图22b是根据本申请优选实施例10提供的时域跳频单位和时间之间关系的示意图二,在一个跳频周期中,前1次的频域跳变的时域跳频单位为2,后加的频域跳变对应的时域跳频单位为1,对于波束训练,基站可以根据前1次的频域得到优选接收波束,然后采用优选的接收波束接收,本跳频周期中的其余跳频。
图22a~22b中,所述时域跳频单位是2,1只是示例,本实施例并不排除其他的时域跳频单位。所述时域跳频单位表示在时域跳频单位中的参考信号的频域不变,时域跳频单位之间,参考信号的频域发生改变。其中所述时域跳频单位信息可以是参考信号占有的时域符号个数(所述参考信号可以在一个slot中,也可以在多个slot中),或者所述时域跳频单位信息为参考信号的周期信息和/或一个周期中包括的时域符号个数信息。
所述时域跳频单位和时间之间的关系根据预定规则确定,和/或通过信令信息确定。
在一实施方式中,LTE中的跳频图样函数公式(6)需要改为如下形式:
Figure PCTCN2018101605-appb-000072
或者公式(7-3)中的跳频图样函数改为如下公式:
Figure PCTCN2018101605-appb-000073
或者将公式(9-1)中的跳频图样函数改为如下公式
Figure PCTCN2018101605-appb-000074
或者是将(9-3)改为如下形式:
Figure PCTCN2018101605-appb-000075
上述四个公式中的T 1即为时域跳频单位信息。
或者上述四个公式改为如下公式
Figure PCTCN2018101605-appb-000076
Figure PCTCN2018101605-appb-000077
Figure PCTCN2018101605-appb-000078
Figure PCTCN2018101605-appb-000079
其中T 1,b是带宽等级b对应的时域跳频单位信息,根据信令信息或者约定规则,得到T 1,b
优选实施例11
在NR的Rel-15版本中,会有信令通知Reserved资源,在这些资源上不发送或者接收信号,这这些资源留给未来的版本中的信号使用,用于后向兼容性。
在跳频过程中,当分配的参考信号资源和分配的reserved资源有重叠时,在reserved资源上不发送跳频参考信号,或者在reserved资源上参考信号需要占有的频域位置顺延到下一个跳频资源上发送。或者有重叠时,将不发送本次跳频参考信号,将本次跳频丢弃,或者将本次跳频参考信号需要占有的频域位置顺延到下一次跳频资源上。
上述实施例参考信号可以是上行参考信号也可以是下行参考信号。
在申请中,所述频域带宽等级也可以称为带宽长度索引,或者树的等级,或者树的层级,所述带宽索引也可以称为频域位置索引,或者叶子索引,或者其他名称,对本申请的创造性不构成影响。
在本申请中,一个频域块至少包括一个物理资源块(Physical resource block PRB),所述参考信号占有所述一频域块表示这个参考信号在这个频域块中占有RE,比如占有这个频域块中的部分RE(比如一个PRB中占有D个RE,比如D=1,3等),或者一个频域块可以为一个子带(其中包括预定个数个PRB),或者是一个频域块Partial band(部分带宽)。或者是一个带宽部分(类似于NR讨论中的bandwidth part),或者是一个分量载频对应的带宽。即在本申请中,频域位置(或者一个频段/一个频域带宽)的单位为如下至少之一:PRB(Physical resource block物理资源块),子带(其中包括预定个数个PRB),或者是一个partial band、或者是一个带宽部分(类似于NR讨论中的bandwidth part)。
在申请中连续的频段是以NP物理上连续或逻辑上连续的N个PRB集合为基本单位的,其中N为大于等于1的整数,如果两个频段包含的PRB在物理上或逻辑上非连续的,则这两个频段是非连续的。
在本申请中min(A)表示取集合A的最小值,max(A)表示取集合A的最大值,
Figure PCTCN2018101605-appb-000080
表示对x向下取整,
Figure PCTCN2018101605-appb-000081
表示对x向上取整。
显然,本领域的技术人员应该明白,上述的本申请的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,在一实施方式中,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序 执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本申请不限制于任何特定的硬件和软件结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (53)

  1. 一种参考信号传输方法,包括:
    确定参考信号占有的频域位置满足预定条件,其中,所述预定条件包括:所述参考信号占有的频域位置存在非连续的频段;
    在确定的频域位置上传输所述参考信号。
  2. 根据权利要求1所述的方法,其中,所述参考信号占有的频域位置存在非连续的频段包括以下至少之一:
    在一个时域符号上,所述参考信号占有的频域位置存在非连续的频段;
    在一个跳频周期中,所述参考信号占有的频域位置存在非连续的频段;
    所述参考信号以跳频方式占有的频域位置存在非连续的频段。
  3. 根据权利要求2所述的方法,其中,所述跳频周期满足如下特征至少之一:
    在不同的跳频周期中,所述参考信号占有的频域位置存在重复的频段;
    在不同的跳频周期中,所述参考信号占有的频域位置相同;
    第一映射关系中的关系项和第二映射关系中的关系项之间存在对应关系,其中,所述第一映射关系为第一跳频周期中所述参考信号占有的频域位置与时域参数之间的映射关系,所述第二映射关系为第二跳频周期中所述参考信号占有的频域位置与时域参数之间的映射关系。
  4. 根据权利要求1至3中任一项所述的方法,其中,一个所述频段包括以下至少之一:一个物理资源块PRB,一个频域子带,一个带宽部分,一个分量载频的频域带宽。
  5. 根据权利要求1所述的方法,其中,所述预定条件还包括以下至少之一:
    所述参考信号占有的频段的并集小于或者等于跳频带宽;
    所述参考信号在与物理频域资源对应的虚拟频域资源上跳频;
    所述参考信号以跳频方式占有的频域位置在跳频带宽上等间隔分布;
    所述参考信号以跳频方式占有的频域位置在跳频带宽上随机分布;
    其中,所述跳频带宽为根据所述参考信号占有的频域位置中距离 最远的两个频域位置确定的带宽或者通过接收第一信令消息获取的预定带宽。
  6. 根据权利要求1所述的方法,其中,在所述参考信号的频域带宽存在多级的情况下,所述参考信号对应的频域带宽索引满足以下至少之一条件:
    在频域带宽等级不属于所述参考信号的跳频带宽等级集合时,所述参考信号对应的频域带宽索引为固定值;
    在频域带宽等级不属于所述参考信号的跳频带宽等级集合时,所述参考信号对应的频域带宽索引集合为与所述频域带宽等级对应的频域带宽索引集合的真子集;
    在频域带宽等级不属于所述参考信号的跳频带宽等级集合时,所述参考信号对应的频域带宽索引随时间变化且所述参考信号对应的频域带宽索引集合为与所述频域带宽等级对应的频域带宽索引集合的真子集;
    其中,频域带宽等级为第N-1级的一个频域带宽包括一个或者多个频域带宽等级为第N级的频域带宽,在一个频域带宽等级下存在一个或多个频域带宽,所述频域带宽索引为频域带宽等级为第N-1级的一个频域带宽包括的所述频域带宽等级为第N级的多个频域带宽的索引;
    所述与所述频域带宽等级对应的频域带宽索引集合包括频域带宽等级为第N-1级的一个频域带宽包括的所述频域带宽等级为第N级的所有频域带宽的索引的集合;其中,N为大于或者等于1的整数。
  7. 根据权利要求6所述的方法,其中,所述参考信号占有的频域带宽索引还满足以下至少之一:
    在频域带宽等级属于所述参考信号的跳频带宽等级集合时,所述参考信号占有的频域带宽索引随时间变化;
    在频域带宽等级属于所述参考信号的跳频带宽等级集合时,所述参考信号跳频的频域带宽索引集合为与所述频域带宽等级对应的频域带宽索引集合的真子集。
  8. 根据权利要求6或7所述的方法,其中,所述跳频带宽等级集合满足以下至少之一:
    所述跳频带宽等级集合中的等级是非连续的;
    所述跳频带宽等级集合中的最大等级小于或者等于第一等级,其中,所述第一等级为所述参考信号对应的频域带宽等级中的最大频域带宽等级;
    所述跳频带宽等级集合可以为空集;
    在一个时域符号上,所述参考信号对应两个以上的跳频带宽等级集合;
    所述跳频带宽等级集合信息携带在接收的信令信息中。
  9. 根据权利要求1所述的方法,其中,通过以下方式确定参考信号占有的频域位置k(t):
    Figure PCTCN2018101605-appb-100001
    Figure PCTCN2018101605-appb-100002
    Figure PCTCN2018101605-appb-100003
    其中,t为时间参数,t为大于或者等于0的实数,b或者b'为多级频域带宽等级中所述参考信号对应的频域带宽等级索引,b或者b'=0,1,…,B,B为所述参考信号对应的频域带宽等级中最大频域带宽等级,且B为非负整数,N b为索引为max(b-1,0)的频域带宽等级中的一个带宽包括的索引为b的频域带宽等级中的带宽个数,N b'为索引为max(b’-1,0)的频域带宽等级中的一个带宽包括的索引为b’的频域带宽等级中的带宽个数,max()为取最大值的函数,n b,orig是所述参考信号在索引为b的频域带宽等级中的起始频域带宽索引,n b(t)是时间t上所述参考信号在索引为b的频域带宽等级中对应的频域带宽索引,k org为一个非负整数,
    Figure PCTCN2018101605-appb-100004
    为索引为b的频域带宽等级中一个带宽对应的频域长度,Π为连乘运算,mod为求余函数,b hopA为频域带宽等级集合。
  10. 根据权利要求9所述的方法,其中,在确定参考信号占有的频域位置之前,所述方法还包括:
    通过第二信令信息和/或约定表格方式获取以下至少之一参数:B,N b,n b,orig,k org
    Figure PCTCN2018101605-appb-100005
    b hopA,b hopA_min,b hopA_max;其中,b hopA={b,b hopA_min≤b≤b hopA_max},b hopA_min,b hopA_max为非负整数或者b hopA_min,b hopA_max为小于所述B的非负整数。
  11. 根据权利要求9所述的方法,所述b hopA满足以下至少之一:
    max(b hopA)≤B;
    b hopA中包括非连续的频域带宽等级索引;
    b hopA可以为空集;
    在一个时域符号上,所述参考信号对应两个以上的b hopA
  12. 根据权利要求1所述的方法,其中,在所述参考信号频域带宽为多级的情况下,所述方法还包括:
    接收第二信令消息,其中,所述第二信令消息中包括以下信息至少之一:每一级频域带宽等级中所述参考信号跳变的频域带宽索引集合,跳频带宽等级集合中所述参考信号跳变的频域带宽索引集合;其中,频域带宽等级为第N-1级的一个频域带宽包括一个或者多个频域带宽等级为第N级的频域带宽,在一个频域带宽等级下存在一个或多个频域带宽,其中,N为大于或者等于1的整数。
  13. 根据权利要求1所述的方法,其中,在所述参考信号频域带宽为多级的情况下,所述参考信号满足以下至少之一特征:
    所述参考信号的频域带宽等级被分为多个频域带宽等级分组,其中,不同频域带宽等级分组对应不同的关系,其中,所述关系包括以下至少之一:所述参考信号对应的频域带宽索引和时域参数之间映射关系,所述参考信号在一个频域带宽等级中对应的频域带宽索引集合和所述频域带宽等级对应的所有频域带宽索引集合之间的关系;
    在一个时域符号上,所述参考信号在一个频域带宽等级中对应两个以上的频域带宽索引;
    所述参考信号对应两个以上的起始频域带宽等级信息;
    所述参考信号对应两个以上的结束频域带宽等级信息;
    所述参考信号先进行频域带宽组内的频域带宽跳变,再进行频域带宽组间的频域带宽跳变;
    其中,一个所述频域带宽组为所述参考信号对应的频域带宽等级为第N-1级中的一个频域带宽包括的频域带宽等级为第N级中的多个频域带宽中的一个或者多个频域带宽构成的一个频域带宽组。
  14. 根据权利要求1所述的方法,其中,在所述参考信号频域带宽为多级的情况下,所述方法还包括:
    接收第三信令消息,其中,所述第三信令消息用于确定所述参考信号是否在一个频域带宽组中跳变。
  15. 根据权利要求1所述的方法,其中,通过以下方式确定参考 信号占有的频域位置k(t):
    Figure PCTCN2018101605-appb-100006
    Figure PCTCN2018101605-appb-100007
    Figure PCTCN2018101605-appb-100008
    Figure PCTCN2018101605-appb-100009
    其中,t为时间参数,t为大于或者等于0的实数,b或者b'为多级频域带宽等级中所述参考信号对应的频域带宽等级索引,b或者b'=0,1,…,B,B为所述参考信号对应的频域带宽等级中最大频域带宽等级,且B为非负整数,N b为索引为max(b-1,0)的频域带宽等级中的一个带宽包括的索引为b的频域带宽等级中的带宽个数,N b'为索引为max(b’-1,0)的频域带宽等级中的一个带宽包括的索引为b’的频域带宽等级中的带宽个数,max()为取最大值的函数,n b,orig是所述参考信号在索引为b的频域带宽等级中的起始频域带宽索引,n b(t)是时间t上所述参考信号在索引为b的频域带宽等级中对应的频域带宽索引,k org为一个非负整数,
    Figure PCTCN2018101605-appb-100010
    为索引为b的频域带宽等级中一个带宽对应的频域长度,Π为连乘运算,mod为求余函数,b hopA为频域带宽等级集合,x b,k b为小于或者等于N b的自然数,β b(l)∈{0,1,...,x b-1}。
  16. 根据权利要求15所述的方法,其中,所述方法还包括:
    通过接收第四信令消息或者约定规则的方式获取如下参数中的至少之一:β b(l),k b,x b
  17. 一种参考信号传输方法,包括:
    接收物理层动态控制信令;其中,所述物理层动态控制信令中携带用于确定参考信号的跳频图样的参数信息;
    根据所述参数信息确定所述参考信号的跳频图样;
    根据确定的所述跳频图样传输所述参考信号。
  18. 根据权利要求17所述的方法,其中,所述物理层动态控制 信令中携带用于确定参考信号的跳频图样的全部参数信息或部分参数信息。
  19. 根据权利要求18所述的方法,其中,所述方法还包括:
    接收高层信令,其中,所述高层信令中携带用于确定所述参考信号的跳频图样的参数信息,所述高层信令中携带的参数信息和所述物理层动态控制信令中携带的所述参数信息的并集为所述全部参数信息。
  20. 根据权利要求17~19任一项所述的方法,其中,确定参考信号的跳频图样的参数信息包括以下至少之一:
    跳频带宽等级集合信息,跳频带宽起始等级信息,跳频带宽结束等级信息,所述参考信号在一个时域符号上占有的频域带宽所在的频域带宽等级,所述参考信号对应的频域带宽等级中的最大值,跳频周期个数信息,所述参考信号占有的时域符号的个数信息,所述参考信号周期信息,所述参考信号周期偏置信息,所述参考信号在一个时间单元中占有的时域符号索引信息,所述参考信号在一个时间单元中占有的时域符号个数信息,所述参考信号的时域跳频单位信息,参考信号对应的端口个数信息,参考信号的端口组个数信息,参考信号端口组跳变图样信息,参考信号跳频参数集合索引信息,参考信号资源组的跳变和频域跳变之间的关系,端口组的跳变和频域跳变之间的关系,所述参考信号占有的起始频域位置,所述参考信号频域跳变的次数,相邻的频域跳变对应频域位置之间的频域间隔,所述参考信号占有的频域位置随时间变化的函数类型,所述参考信号在一个频域带宽等级中对应的频域带宽索引集合信息,所述参考信号的跳频频段集合信息,所述参考信号是连续频域跳频模式还是非连续频域跳频模式,频域带宽等级分组信息,用于指示频域带宽等级组是否跳频的信息,频域带宽分组信息,频域带宽组是否跳频的信息,频域带宽组跳频顺序信息;
    其中,所述时域跳频单位信息包括所述参考信号每隔一个时域跳频单位进行一次跳频且在一个所述时域跳频单位内所述参考信号的频域位置不变。
  21. 根据权利要求20所述的方法,其中,所述时域跳频单位信息还包括以下至少之一:时域符号个数信息,时域符号占有的时间单元个数信息。
  22. 根据权利要求17所述的方法,其中,所述方法还包括以下至少之一:
    由所述物理层动态控制信令触发的所述参考信号占有的时域资源是第一控制信令触发的参考信号占有的时域资源的子集;
    由所述物理层动态控制信令触发的所述参考信号和第一控制信令触发的参考信号占有相同时域符号时,只传输由所述物理层动态控制信令触发的参考信号,丢弃第一控制信令触发的参考信号;
    由所述物理层动态控制信令触发的所述参考信号占有的频域位置不存在非连续的频段,由第一控制信令触发的所述参考信号占有的频域位置存在非连续的频段;
    由所述物理层动态控制信令触发的所述参考信号对应的跳频带宽等级集合属于第一集合,由第一控制信令触发的所述参考信号对应的跳频带宽等级集合属于第二集合;
    根据第一控制信令触发传输的参考信号的传输参数和时间参数,确定由所述物理层动态控制信令触发的参考信号的传输参数;
    所述物理层动态控制信令触发的参考信号的传输参数配置范围根据所述第一控制信令触发传输的参考信号的传输参数配置信息确定;
    其中,所述第一控制信令包括以下至少之一:高层控制信令,与所述物理层动态控制信令的传输时间最接近的控制信令。
  23. 根据权利要求19所述的方法,其中,所述高层信令中携带的参数信息中的全部或者部分参数既适合于由所述物理层动态控制信令触发的参考信号也适用于由所述高层信令触发的参考信号。
  24. 一种参考信号传输方法,包括:
    确定参考信号的传输参数信息;
    根据所述确定的传输参数信息传输所述参考信号;
    其中,所述传输参数信息包括以下参数至少之一:所述参考信号占有的频域位置信息,所述参考信号对应的天线端口分组信息,所述参考信号在频域位置中的图样信息。
  25. 根据权利要求24所述的方法,其中,所述传输参数信息包括以下至少之一信息:时域跳频单位信息,端口组的分组信息,频域位置对应的频域重复因子信息,参考信号资源组的分组信息,参考信号资源组的跳变和频域跳变之间的关系,所述参考信号的端口组的跳变和频域跳变之间的关系;跳频带宽等级集合信息,跳频带宽结束等级信息,所述参考信号在一个时域符号上占有的频域带宽所在的频域带宽等级,所述参考信号对应的频域带宽等级中的最大值,跳频周期个数信息,所述参考信号在一个时间单元中占有的时域符号索引 信息,所述参考信号在一个时间单元中占有的时域符号个数信息,参考信号端口组跳变图样信息,所述参考信号占有的起始频域位置,所述参考信号频域跳变的次数,相邻的频域跳变对应频域位置之间的频域间隔,所述参考信号占有的频域位置随时间变化的函数类型,所述参考信号在一个频域带宽等级中对应的频域带宽索引集合信息,所述参考信号的跳频频段集合信息,所述参考信号是连续频域跳频模式还是非连续频域跳频模式,频域带宽等级分组信息,用于指示频域带宽等级组是否跳频的信息,频域带宽分组信息,频域带宽组是否跳频的信息,频域带宽组跳频顺序信息;
    其中,一个所述参考信号资源组中包括一个或者多个参考信号端口,所述时域跳频单位信息包括所述参考信号每隔一个时域跳频单位进行一次跳频且在一个所述时域跳频单位内所述参考信号的频域位置不变。
  26. 根据权利要求24所述的方法,其中,不同参考信号的端口组发送所述参考信号的时间不同。
  27. 根据权利要求25所述的方法,其中,
    所述时域跳频单位信息包括所述参考信号每隔一个所述时域跳频单位进行一次跳频且在一个所述时域跳频单位内所述参考信号的频域位置不变;和/或,
    不同频域位置对应的所述重复因子不同。
  28. 根据权利要求25所述的方法,其中,所述测量参考信号占有的频域资源按照如下公式得到:
    Figure PCTCN2018101605-appb-100011
    其中,
    Figure PCTCN2018101605-appb-100012
    其中所述T 1为所述时域跳频单位信息;
    所述时域跳频单位信息是所述测量参考信号占有的时域符号个数,其中所述时域符号包括一个时间单元中的时域符号,和/或多个时间单元中的时域符号;和/或,所述时域跳频单位信息包括如下信息至 少之一:所述测量参考信号的周期信息,所述测量参考信号在一个周期中包括的时域符号个数信息,时域符号个数信息,时域符号占有的时间单元个数信息。
  29. 根据权利要求24所述的方法,其中,所述测量参考信号满足如下特征之一:
    所述测量参考信号占有的频域位置信息包括树状结构信息C SRS,其中所述C SRS包括在专有控制信令中;
    所述测量参考信号的天线端口信息根据测量参考信号资源组信息获取;
    所述测量参考信号的天线端口信息根据测量参考信号资源信息获取;
    所述测量参考信号的天线端口信息根据测量参考信号的端口组信息获取。
  30. 根据权利要求25所述的方法,其中,
    与所述时域跳频单位信息对应的时域跳频单位和所述参考信号在一个时间单元上占有的时域符号个数之间存在对应关系;
    在所述端口组的分组信息包括端口组个数的情况下,所述时域跳频单元和所述端口组个数之间存在对应关系;
    在所述端口组的分组信息包括端口组个数的情况下,所述端口组个数和所述参考信号在一个时间单元上占有的时域符号个数之间存在对应关系。
  31. 根据权利要求25所述的方法,其中,在一个跳频周期中,不同时间上所述参考信号的所述时域跳频单位信息不同。
  32. 根据权利要求24所述的方法,其中,所述传输参数信息还包括:时域跳频单元与时间之间的对应关系。
  33. 根据权利要求24所述的方法,其中,参考信号资源组的跳变和频域跳变之间的关系包括以下之一:所述参考信号资源组的跳变早于所述频域跳变,所述参考信号资源组的跳变与所述频域跳变同时进行,所述频域跳变早于所述参考信号资源组的跳变。
  34. 根据权利要求24所述的方法,其中,端口组的跳变和频域跳变之间的关系包括以下之一:所述端口组的跳变早于所述频域跳变,所述频域跳变早于所述端口组的跳变,所述端口组的跳变与所述频域跳变同时进行。
  35. 根据权利要求24所述的方法,所述传输参数信息包括在以下至少之一控制信令中:
    物理层动态控制信令,高层控制信令。
  36. 一种参数发送方法,包括:
    发送物理层动态控制信令,其中,所述物理层动态控制信令中携带用于确定参考信号的跳频图样的参数信息。
  37. 根据权利要求36所述的方法,其中,所述物理层动态控制信令中携带用于确定参考信号的跳频图样的全部参数信息或部分参数信息。
  38. 根据权利要求37所述的方法,其中,所述方法还包括:发送高层信令,其中,所述高层信令中携带用于确定所述参考信号的跳频图样的参数信息,且所述高层信令中携带的参数信息和所述物理层动态控制信令中携带的所述参数信息的并集为所述全部参数信息。
  39. 根据权利要求36~38中的任一项所述的方法,其中,用于确定参考信号的跳频图样的参数信息包括以下至少之一:
    跳频带宽等级集合信息,跳频带宽起始等级信息,跳频带宽结束等级信息,所述参考信号在一个时域符号上占有的频域带宽所在的频域带宽等级,所述参考信号对应的频域带宽等级中的最大值,跳频周期个数信息,所述参考信号占有的时域符号的个数信息,所述参考信号周期信息,所述参考信号周期偏置信息,所述参考信号在一个时间单元中占有的时域符号索引信息,所述参考信号在一个时间单元中占有的时域符号个数信息,所述参考信号的时域跳频单位信息,参考信号对应的端口个数信息,参考信号的端口组个数信息,参考信号端口组跳变图样信息,参考信号跳频参数集合索引信息,参考信号资源组的跳变和频域跳变之间的关系,端口组的跳变和频域跳变之间的关系,所述参考信号占有的起始频域位置,所述参考信号频域跳变的次数,相邻的频域跳变对应频域位置之间的频域间隔,所述参考信号占有的频域位置随时间变化的函数类型,所述参考信号在一个频域带宽等级中对应的频域带宽索引集合信息,所述参考信号的跳频频段集合信息,所述参考信号是连续频域跳频模式还是非连续频域跳频模式,频域带宽等级分组信息,频域带宽等级组是否跳频信息,频域带宽分组信息,频域带宽组是否跳频信息,频域带宽组跳频顺序信息;
    其中,所述时域跳频单位信息包括所述参考信号每隔一个时域跳频单位进行一次跳频且在一个所述时域跳频单位内所述参考信号的频域位置不变。
  40. 一种上行信道或信号的发送方法,所述方法包括:
    确定速率匹配信息;
    确定上行信道或信号是否满足预定条件;
    所述上行信道或信号满足预定条件时,根据所述速率匹配信息发送所述上行信道或信号;
    其中,发送的所述上行信道或信号不能占有所述速率匹配信息中包括的资源。
  41. 根据权利要求40所述的方法,其中,所述上行信道或信号不满足预定条件时,所述速配匹配信息中包括的资源是所述上行信道或信号的可用资源。
  42. 根据权利要求40或41所述的方法,所述预定条件包括如下条件至少之一:
    所述上行信道或信号为周期信道或信号;
    所述上行信道或信号为半持续信道或信号;
    所述上行信道或信号不是物理层动态控制信令调度的信道或信号。
  43. 根据权利要求40或41所述的方法,其中,
    所述速率匹配信息包括的资源包括如下资源至少之一:包括如下资源至少之一:时域资源,频域资源,参考信号资源,端口资源,空域资源,上行测量参考信号资源池信息。
  44. 根据权利要求40或41所述的方法,其中,所述发送的上行信号为处于跳频状态的上行测量参考信号,当所述上行测量参考信号和所述速率匹配信息包括的资源之间存在重叠时,进行如下操作至少之一:
    在所述速率匹配信息包括的资源上不发送上行测量参考信号所述参考信号;
    在所述速率匹配信息包括的频域资源中所述上行测量参考信号需要发送的频域位置顺延到所述上行测量参考信号的下一个跳频机会上发送;
    不发送本次跳频参考信号,将本次跳频丢弃;
    将本次跳频上行测量参考信号需要占有的频域位置顺延到下一次跳频资源上。
  45. 一种参考信号传输装置,包括:
    确定模块,配置为确定参考信号占有的频域位置满足预定条件,其中,所述预定条件包括:所述参考信号占有的频域位置存在非连续的频段;
    传输模块,配置为在确定的频域位置上传输所述参考信号。
  46. 一种参考信号传输装置,包括:
    接收模块,配置为接收物理层动态控制信令;其中,所述物理层动态控制信令中携带用于确定参考信号的跳频图样的参数信息;
    确定模块,配置为根据所述参数信息确定所述参考信号的跳频图样;
    传输模块,配置为根据确定的所述跳频图样传输所述参考信号。
  47. 一种参考信号传输装置,包括:
    确定模块,配置为确定参考信号的传输参数信息;
    传输模块,配置为根据所述确定的传输参数信息传输所述参考信号;
    其中,所述传输参数信息包括以下至少之一信息:时域跳频单位信息,端口组的分组信息,频域位置对应的频域重复因子信息,参考信号资源组的分组信息,参考信号资源组的跳变和频域跳变之间的关系,所述参考信号的端口组的跳变和频域跳变之间的关系;其中,一个所述参考信号资源组中包括一个或者多个参考信号端口。
  48. 一种参数发送装置,包括:
    发送模块,配置为发送物理层动态控制信令,其中,所述物理层动态控制信令中携带用于确定参考信号的跳频图样的参数信息。
  49. 一种上行信道或信号的发送装置,包括:
    确定模块,配置为确定速率匹配信息;确定上行信道或信号是否满足预定条件;
    发送模块,配置为所述上行信道或信号满足预定条件时,根据所述速率匹配信息发送所述上行信道或信号;
    其中,发送的所述上行信道或信号不能占有所述速率匹配信息中包括的资源。
  50. 一种终端,包括:处理器,所述处理器用于运行程序,其中,所述程序运行时执行权利要求1至44中任一项所述的方法。
  51. 一种基站,包括:处理器,所述处理器用于运行程序,其中,所述程序运行时执行权利要求24至44中任一项所述的方法。
  52. 一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行权利要求1至44中任一项所述的方法。
  53. 一种处理器,所述处理器用于运行程序,其中,所述程序运行时执行权利要求1至44中任一项所述的方法。
PCT/CN2018/101605 2017-08-21 2018-08-21 参考信号传输、参数发送方法及装置、终端、基站 WO2019037726A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18849239.1A EP3675404A4 (en) 2017-08-21 2018-08-21 REFERENCE SIGNAL TRANSMISSION AND PARAMETER SENDING PROCESSES, DEVICE, TERMINAL AND BASE STATION
US16/640,928 US11431527B2 (en) 2017-08-21 2018-08-21 Reference signal transmission and parameter sending methods, device, terminal and base station
US17/862,584 US11757680B2 (en) 2017-08-21 2022-07-12 Reference signal sending and receiving methods, device and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710720425.3 2017-08-21
CN201710720425.3A CN108111279B (zh) 2017-08-21 2017-08-21 参考信号传输、参数发送方法及装置、终端、基站

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/640,928 A-371-Of-International US11431527B2 (en) 2017-08-21 2018-08-21 Reference signal transmission and parameter sending methods, device, terminal and base station
US17/862,584 Continuation US11757680B2 (en) 2017-08-21 2022-07-12 Reference signal sending and receiving methods, device and storage medium

Publications (1)

Publication Number Publication Date
WO2019037726A1 true WO2019037726A1 (zh) 2019-02-28

Family

ID=62206397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/101605 WO2019037726A1 (zh) 2017-08-21 2018-08-21 参考信号传输、参数发送方法及装置、终端、基站

Country Status (4)

Country Link
US (2) US11431527B2 (zh)
EP (1) EP3675404A4 (zh)
CN (2) CN115021879A (zh)
WO (1) WO2019037726A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210194538A1 (en) * 2018-09-06 2021-06-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Synchronization beacon

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10263744B2 (en) * 2009-01-29 2019-04-16 Sun Patent Trust Wireless transmitter and reference signal transmission method
WO2018199696A1 (ko) * 2017-04-27 2018-11-01 엘지전자 주식회사 Srs를 전송하는 방법 및 이를 위한 단말
US10736074B2 (en) 2017-07-31 2020-08-04 Qualcomm Incorporated Systems and methods to facilitate location determination by beamforming of a positioning reference signal
CN115021879A (zh) * 2017-08-21 2022-09-06 中兴通讯股份有限公司 参考信号传输方法及装置、终端、基站和存储介质
US11700093B2 (en) * 2017-10-10 2023-07-11 Lg Electronics Inc. Method for transmitting and receiving SRS and communication device therefor
US11374798B2 (en) * 2018-01-05 2022-06-28 Lg Electronics Inc. Method for transmitting and receiving sounding reference signal in wireless communication system, and apparatus therefor
KR102414678B1 (ko) * 2018-01-08 2022-06-29 삼성전자주식회사 무선통신시스템에서 상향링크 전송전력 제어 방법 및 장치
EP3753115A1 (en) * 2018-02-16 2020-12-23 Telefonaktiebolaget Lm Ericsson (Publ) Physical uplink shared channel (pusch) frequency hopping allocation
CN110475352B (zh) * 2018-05-11 2022-06-28 华为技术有限公司 一种参考信号传输方法及通信设备
KR20210024079A (ko) 2018-06-28 2021-03-04 지티이 코포레이션 기준 신호 매핑을 사용한 송신 링크 구성
US11737084B2 (en) * 2018-07-30 2023-08-22 Qualcomm Incorporated Demodulation reference signal port hopping for grant-free physical uplink shared channel communication
CN110856096B (zh) 2018-07-30 2022-07-15 中兴通讯股份有限公司 定位参考信号生成方法、相关装置、通信系统及存储介质
CN114666906A (zh) * 2018-12-28 2022-06-24 维沃移动通信有限公司 上行信号发送方法及装置
CN111541526B (zh) * 2019-01-21 2022-02-25 华为技术有限公司 参考信号的传输方法及装置
EP3697014A1 (en) * 2019-02-16 2020-08-19 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. Srs configuration and indication for codebook and non-codebook based ul transmissions in a network
CN111277385B (zh) * 2019-03-22 2021-10-22 维沃移动通信有限公司 定位参考信号配置方法、网络设备及终端
US11777764B2 (en) 2019-03-28 2023-10-03 Qualcomm Incorporated Sounding reference signal waveform design for wireless communications
EP3723332A1 (en) * 2019-04-08 2020-10-14 Mitsubishi Electric R&D Centre Europe B.V. Circular pilot sequences for joint channel and phase noise estimation
CN111278130B (zh) * 2019-04-30 2022-11-01 维沃移动通信有限公司 Srs资源配置方法、bwp的切换处理方法和相关设备
US11239967B2 (en) * 2019-05-02 2022-02-01 Qualcomm Incorporated Patterns for reference signals used for positioning in a wireless communications system
US11082183B2 (en) 2019-09-16 2021-08-03 Qualcomm Incorporated Comb shift design
US11601177B2 (en) * 2020-01-09 2023-03-07 Qualcomm Incorporated Channel state information (CSI) reporting for frequency hopping in unlicensed frequency bands
CN113162874B (zh) * 2020-01-22 2023-06-27 维沃移动通信有限公司 一种参考信号发送方法、设备及系统
WO2021155586A1 (en) * 2020-02-07 2021-08-12 Qualcomm Incorporated Sounding reference signal (srs) enhancements
US11638245B2 (en) * 2020-02-14 2023-04-25 Qualcomm Incorporated Physical downlink control channel candidate hopping
US20230239124A1 (en) * 2020-06-08 2023-07-27 Qualcomm Incorporated Combinable a sub-resource block (rb) sounding reference signal (srs) transmission for coverage enhancement
US20210391963A1 (en) * 2020-06-12 2021-12-16 Qualcomm Incorporated Sounding reference signal (srs) resource configuration techniques
US11996927B2 (en) * 2020-07-31 2024-05-28 Qualcomm Incorporated Beam measurement timing in a wireless communications system
WO2022067802A1 (zh) * 2020-09-30 2022-04-07 Oppo广东移动通信有限公司 探测参考信号配置方法与装置、终端和网络设备
JP2024506479A (ja) * 2021-01-15 2024-02-14 華為技術有限公司 通信方法および装置
CN115134199A (zh) * 2021-03-29 2022-09-30 维沃移动通信有限公司 Srs的发送方法、接收方法、配置方法及装置
EP4320799A1 (en) * 2021-04-06 2024-02-14 Nokia Technologies Oy Uplink (ul) sounding reference signal (srs) resource configuration
US20240204934A1 (en) * 2021-09-24 2024-06-20 Apple Inc. Frequency hopping enhancement for partial frequency sounding
CN115883290A (zh) * 2021-09-30 2023-03-31 华为技术有限公司 一种通信方法及装置
US11700031B1 (en) * 2021-12-29 2023-07-11 Qualcomm Incorporated Hopping techniques for single carrier waveforms

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101777945A (zh) * 2009-01-12 2010-07-14 大唐移动通信设备有限公司 多天线通信系统中参考信号的发送方法和基站
CN101777940A (zh) * 2009-01-12 2010-07-14 华为技术有限公司 上行信息的传输方法、装置及系统
CN102711263A (zh) * 2012-03-13 2012-10-03 北京邮电大学 一种非连续接收模式下多用户上行控制信号的发送方法
US20130156014A1 (en) * 2010-05-12 2013-06-20 Lg Electronics Inc. Method for transmitting an srs-triggering-based srs in a wireless communication system
CN104022796A (zh) * 2014-06-18 2014-09-03 电子科技大学 一种基于非连续频段的跳频序列产生方法及结构
CN108111279A (zh) * 2017-08-21 2018-06-01 中兴通讯股份有限公司 参考信号传输、参数发送方法及装置、终端、基站

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2713202C (en) * 2008-03-20 2014-02-11 Nokia Siemens Networks Oy Frequency hopping pattern and arrangement for sounding reference signal
US8842554B2 (en) 2008-05-07 2014-09-23 Mitsubishi Electric Research Laboratories, Inc. Antenna selection with frequency-hopped sounding reference signals
KR101441500B1 (ko) * 2008-06-20 2014-11-04 삼성전자주식회사 다중 안테나 및 사운딩 레퍼런스 신호 호핑을 사용하는상향링크 무선 통신 시스템에서의 사운딩 레퍼런스 신호전송 장치 및 방법
CN102265648B (zh) * 2008-06-24 2014-01-29 三菱电机株式会社 利用跳频探测参考信号的天线选择
WO2010016240A1 (ja) * 2008-08-05 2010-02-11 パナソニック株式会社 無線通信装置および電力密度設定方法
CN101651469B (zh) 2008-08-15 2013-07-24 三星电子株式会社 用于lte系统中发送上行监测参考符号的跳频方法
JP5538930B2 (ja) * 2010-02-04 2014-07-02 シャープ株式会社 移動局装置、基地局装置、無線通信システムおよび無線通信方法
CN102223167B (zh) * 2010-04-16 2015-11-25 华为技术有限公司 多天线系统中的探测参考信号发送方法及装置
CN102281642B (zh) * 2010-06-10 2015-12-16 中兴通讯股份有限公司 一种lte系统中srs资源分配方法和装置
CN102378383B (zh) * 2010-08-09 2014-04-02 华为技术有限公司 发送与接收探测参考信号的方法、基站和用户设备
WO2013038716A1 (ja) * 2011-09-16 2013-03-21 パナソニック株式会社 無線送信装置及び無線受信装置、並びに無線通信方法
CN103457690B (zh) * 2012-05-31 2017-11-03 中兴通讯股份有限公司 探测参考信号的传输方法、装置及系统和用户设备
CN104283581B (zh) * 2013-07-01 2019-01-15 中兴通讯股份有限公司 一种确定探测参考信号跳频图案的方法及系统
CN106105288B (zh) * 2015-02-17 2020-01-17 华为技术有限公司 一种上行参考信号的通信装置及方法
WO2017135773A1 (ko) * 2016-02-05 2017-08-10 엘지전자 주식회사 무선 통신 시스템에서 사운딩 참조 신호를 전송하는 방법 및 이를 지원하는 장치
WO2018170846A1 (en) * 2017-03-23 2018-09-27 Nokia Technologies Oy Enhanced srs frequency hopping scheme for 5g nr
CN108632008B (zh) * 2017-03-24 2023-06-02 华为技术有限公司 一种参考信号发送方法及装置
CN109391395A (zh) * 2017-08-09 2019-02-26 索尼公司 无线通信系统中的装置和方法、计算机可读存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101777945A (zh) * 2009-01-12 2010-07-14 大唐移动通信设备有限公司 多天线通信系统中参考信号的发送方法和基站
CN101777940A (zh) * 2009-01-12 2010-07-14 华为技术有限公司 上行信息的传输方法、装置及系统
US20130156014A1 (en) * 2010-05-12 2013-06-20 Lg Electronics Inc. Method for transmitting an srs-triggering-based srs in a wireless communication system
CN102711263A (zh) * 2012-03-13 2012-10-03 北京邮电大学 一种非连续接收模式下多用户上行控制信号的发送方法
CN104022796A (zh) * 2014-06-18 2014-09-03 电子科技大学 一种基于非连续频段的跳频序列产生方法及结构
CN108111279A (zh) * 2017-08-21 2018-06-01 中兴通讯股份有限公司 参考信号传输、参数发送方法及装置、终端、基站

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210194538A1 (en) * 2018-09-06 2021-06-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Synchronization beacon
US11817897B2 (en) * 2018-09-06 2023-11-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Synchronization beacon

Also Published As

Publication number Publication date
EP3675404A1 (en) 2020-07-01
US20200213161A1 (en) 2020-07-02
US20220360474A1 (en) 2022-11-10
CN115021879A (zh) 2022-09-06
US11757680B2 (en) 2023-09-12
US11431527B2 (en) 2022-08-30
EP3675404A4 (en) 2021-05-19
CN108111279A (zh) 2018-06-01
CN108111279B (zh) 2022-06-03

Similar Documents

Publication Publication Date Title
WO2019037726A1 (zh) 参考信号传输、参数发送方法及装置、终端、基站
CN108347776B (zh) 一种通信系统中资源分配的方法及设备
US20200068534A1 (en) Method and user equipment for multi-carrier data transmission
WO2019157958A1 (zh) 信道状态信息csi报告的发送、接收方法及装置、电子装置
EP3301848A2 (en) Method and apparatus for receiving control channel for multiple numerologies in a wireless communications system
TWI665926B (zh) 電信裝置及方法
CN112262540A (zh) 在载波聚合中具有超量预定的搜索空间设计
CN108633052B (zh) 一种资源配置方法、装置和设备
JP7304412B2 (ja) Nr-uにおける広帯域キャリア動作のためのレートマッチング
WO2016107286A1 (zh) 探测参考信号srs发送方法、装置及接收方法、装置
CN107371184B (zh) 资源配置方法、装置及基站
Bankov et al. IEEE 802.11 ax uplink scheduler to minimize, delay: A classic problem with new constraints
WO2018228500A1 (zh) 一种调度信息传输方法及装置
CN104067640A (zh) 用于通信系统中的公共控制信道的系统和方法
WO2018141180A1 (zh) 控制信息的传输方法、接收方法、装置、基站及终端
RU2728281C1 (ru) Способ, устройство, терминал, устройство доступа к сети и система для передачи данных по восходящей линии связи
CN108540985A (zh) 一种nr系统中pdsch与pdcch资源共享的方法
US20180368156A1 (en) Method and apparatus for performing scheduling request to support plurality of services efficiently
CN116998208A (zh) 无线通信系统的调度增强
WO2017167078A1 (zh) 一种载波中prb资源分配方法、装置和计算机存储介质
WO2017133340A1 (zh) 下行控制信道的确定方法及装置、终端、基站
JP2023533083A (ja) 繰り返しベースの上りリンク送信を行うための無線通信方法及びユーザ機器
CN111901858A (zh) 功率确定、信息发送、参数发送方法、通信节点及介质
WO2015123870A1 (zh) 使用无线资源的控制方法、装置、网元及终端
WO2017031643A1 (zh) 资源分配、指示及识别资源类型、接收数据的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18849239

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018849239

Country of ref document: EP

Effective date: 20200323