WO2016107286A1 - 探测参考信号srs发送方法、装置及接收方法、装置 - Google Patents

探测参考信号srs发送方法、装置及接收方法、装置 Download PDF

Info

Publication number
WO2016107286A1
WO2016107286A1 PCT/CN2015/094032 CN2015094032W WO2016107286A1 WO 2016107286 A1 WO2016107286 A1 WO 2016107286A1 CN 2015094032 W CN2015094032 W CN 2015094032W WO 2016107286 A1 WO2016107286 A1 WO 2016107286A1
Authority
WO
WIPO (PCT)
Prior art keywords
bandwidth
srs
terminal
prbs
specified
Prior art date
Application number
PCT/CN2015/094032
Other languages
English (en)
French (fr)
Inventor
张雯
夏树强
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016107286A1 publication Critical patent/WO2016107286A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received

Definitions

  • the present invention relates to the field of communications, and in particular to a method, an apparatus, and a receiving method and apparatus for transmitting a sounding reference signal SRS.
  • Machine Type Communication (MTC) User Equipment User Equipment, or Terminal
  • M2M Machine to Machine
  • LTE Long-Term Evolution
  • LTE-Advance Long-Term Evolution Advance
  • MTC multi-class data services based on LTE/LTE-A will also be more attractive.
  • the MTC device is usually a low-cost device with a radio frequency (Radio Frequency, RF for short) bandwidth, a single receiving antenna, and the RF transmission and reception bandwidth is generally 1.4 MHz.
  • RF Radio Frequency
  • the system bandwidth is greater than 1.4 MHz, if the MTC UE allocates multiple narrowbands for uplink transmission on the uplink frequency band, the indication overhead of resource allocation may be reduced, and for the MTC UEs that need coverage enhancement, the repetition of the transmission may be reduced. Times, saving wireless resources.
  • the cell broadcasts a cell-specific parameter called a Sounding Reference Signal (SRS) bandwidth, which is the maximum SRS bandwidth of the cell, which is referred to as the SRS bandwidth of the cell.
  • SRS Sounding Reference Signal
  • the evolved base station E-UTRAN NodeB, hereinafter referred to as eNB
  • eNB also configures the UE to transmit the SRS bandwidth, that is, the SRS bandwidth of the UE, and the UE in the cell is configured according to the eNB within the SRS bandwidth of the cell.
  • the SRS bandwidth of the UE transmits the SRS.
  • Ebb obtains the channel condition of the UE by measuring the SRS.
  • the UE When scheduling the UE transmission, the UE may be scheduled to a suitable frequency domain location for data transmission according to the obtained channel condition of the UE to obtain a scheduling gain.
  • the SRS bandwidth configured by the eNB for the UE is an integer multiple of 4 PRBs.
  • the SRS bandwidth of up to 4 PRBs can be supported for each transmission.
  • the frequency band in which the MTC UE operates is usually only a part of the entire system bandwidth. If the MTC UE completely uses the relevant periodic SRS transmission mode, that is, the SRS bandwidth of the four PRBs is hopped and transmitted on the SRS bandwidth of the cell, and is not allocated to the MTC UE.
  • the frequency domain location also sends SRS, which has done a lot of "useless work" for the UE, which is not conducive to UE energy saving.
  • the embodiment of the invention provides a method, a device and a receiving method and a device for transmitting a sounding reference signal SRS, so as to at least solve the problem that the terminal transmitting SRS is low in the related art.
  • a method for transmitting a sounding reference signal SRS including: acquiring, by a terminal, information of a specified bandwidth; wherein the specified bandwidth is discontinued by one or more of system bandwidths of the terminal serving cell
  • the physical resource block is composed of PRB clusters, wherein the PRB cluster is composed of a part of consecutive PRBs in the system bandwidth, and the specified bandwidth is different from the SRS bandwidth of the serving cell; and the terminal transmits the SRS in the specified bandwidth.
  • the specified bandwidth and/or the number of PRBs included in the PRB cluster are integer multiples of 4 or integer multiples of 6.
  • the manner in which the terminal acquires the information of the specified bandwidth includes one of the following: acquiring the foregoing information according to a preset manner; and receiving the foregoing information from the base station.
  • receiving the foregoing information from the base station includes: receiving, by the base station, a public message or a proprietary message of the terminal, where the public message or the proprietary message of the terminal carries the foregoing information.
  • the specified bandwidth is a frequency domain resource of at least one of the following: a physical uplink shared channel PUSCH, a physical uplink control channel PUCCH, and a physical random access channel PRACH.
  • the specified bandwidth is a frequency domain resource that includes an integer multiple of 4 or 6 PRBs obtained by expanding or reducing the frequency domain resources.
  • the sending, by the terminal, the SRS in the specified bandwidth at least one of the following: when the number of PRBs included in the specified bandwidth is an integer multiple of 4, the terminal sends an SRS in the specified bandwidth, where The SRS bandwidth of the terminal is 4 PRBs; when the number of PRBs included in the specified bandwidth is an integer multiple of 6, the terminal transmits the SRS in the specified bandwidth, where the SRS bandwidth of the terminal is 6 PRBs; When the number of PRBs included in the specified bandwidth is a common multiple of 4 and 6, the terminal transmits the SRS in the specified bandwidth, wherein the SRS bandwidth of the terminal is 4 or 6 PRBs.
  • the terminal when the number of the PRBs included in the specified bandwidth is a common multiple of 4 and 6, the terminal sends the SRS in the specified bandwidth, where the SRS bandwidth of the terminal is 4 or 6 PRBs, including: The preset manner determines that the SRS bandwidth of the terminal is 4 or 6 PRBs; and the indication information sent by the receiving base station determines that the SRS bandwidth of the terminal is 4 or 6 PRBs.
  • the sending, by the terminal, the SRS in the specified bandwidth includes: in the specified bandwidth, the terminal hopping and transmitting the SRS between subframes.
  • a method for receiving a sounding reference signal SRS comprising: receiving, by a base station, an SRS sent by a terminal by using a specified bandwidth, wherein the specified bandwidth is within a system bandwidth of a serving cell under the base station; And one or more discontinuous physical resource block PRB clusters, wherein the PRB cluster is composed of a partially continuous PRB in the system bandwidth, and the specified bandwidth is different from the SRS bandwidth of the serving cell.
  • the method further includes: sending, by the base station, information carrying the specified bandwidth to the terminal.
  • the specified bandwidth and/or the number of PRBs included in the PRB cluster are integer multiples of 4 or 6 Integer multiple.
  • the sending, by the base station, the information that carries the specified bandwidth to the terminal includes: sending, by the base station, a public message or a proprietary message of the terminal to the terminal, where the public message or the proprietary message of the terminal carries Have the above information.
  • the specified bandwidth is a frequency domain resource of at least one of the following: a physical uplink shared channel PUSCH, a physical uplink control channel PUCCH, and a physical random access channel PRACH.
  • the specified bandwidth is a frequency domain resource that includes an integer multiple of 4 or 6 PRBs obtained by expanding or reducing the frequency domain resources.
  • a sounding reference signal SRS transmitting apparatus wherein the apparatus is applied to a terminal, the apparatus comprising: an acquiring module configured to acquire information of a specified bandwidth; wherein the specified bandwidth is from the terminal One or more non-contiguous physical resource block PRB clusters in the system bandwidth of the serving cell, wherein the PRB cluster is composed of a part of consecutive PRBs in the system bandwidth, and the specified bandwidth is different from the SRS bandwidth of the serving cell; Set to send SRS within the specified bandwidth above.
  • the acquiring module includes: an acquiring unit, configured to acquire the foregoing information according to a preset manner; and/or a receiving unit configured to receive the foregoing information sent by the base station.
  • the receiving unit is further configured to receive a public message or a proprietary message of the terminal from the base station, where the public message or the proprietary message of the terminal carries the information.
  • the sending module includes: a first sending unit, configured to: when the number of PRBs included in the specified bandwidth is an integer multiple of 4, the terminal sends an SRS in the specified bandwidth, where the SRS of the terminal is The bandwidth is 4 PRBs; and/or the second sending unit is configured to: when the number of PRBs included in the specified bandwidth is an integer multiple of 6, the terminal sends the SRS in the specified bandwidth, where the terminal is The SRS bandwidth is 6 PRBs; and/or the third transmitting unit is configured to transmit the SRS in the specified bandwidth when the number of PRBs included in the specified bandwidth is a common multiple of 4 and 6.
  • the SRS bandwidth of the terminal is 4 or 6 PRBs.
  • the sending module includes: a fourth sending unit, configured to perform the foregoing SRS frequency hopping between subframes in the specified bandwidth.
  • a receiving apparatus for detecting a reference signal SRS, the apparatus being applied to a base station, the apparatus comprising: a receiving module configured to receive an SRS transmitted by a terminal by a specified bandwidth, wherein the specified bandwidth is determined by the foregoing One or more discontinuous physical resource block PRB clusters in the system bandwidth of the serving cell under the base station, wherein the PRB cluster is composed of a part of consecutive PRBs in the system bandwidth, and the specified bandwidth is different from the SRS bandwidth of the served cell.
  • the apparatus further includes: a sending module, configured to send information carrying the specified bandwidth to the terminal.
  • a sending module configured to send information carrying the specified bandwidth to the terminal.
  • the sending module is further configured to send a public message to the terminal or a specific cancellation of the terminal.
  • the foregoing indication information is sent, where the public message or the proprietary message of the terminal carries the foregoing information.
  • the terminal acquires information of a specified bandwidth, where the designated bandwidth is composed of one or more discontinuous physical resource block PRB clusters within the system bandwidth of the terminal serving cell, and the PRB cluster is part of the system bandwidth.
  • a continuous PRB consisting of a specified bandwidth different from the SRS bandwidth of the serving cell.
  • FIG. 1 is a flowchart of a method for transmitting a sounding reference signal SRS according to an embodiment of the present invention
  • FIG. 2 is a structural block diagram of a sounding reference signal SRS transmitting apparatus according to an embodiment of the present invention
  • FIG. 3 is a structural block diagram (1) of a sounding reference signal SRS transmitting apparatus according to an embodiment of the present invention
  • FIG. 4 is a structural block diagram (2) of a sounding reference signal SRS transmitting apparatus according to an embodiment of the present invention.
  • FIG. 5 is a structural block diagram (3) of a sounding reference signal SRS transmitting apparatus according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of a method for receiving a sounding reference signal SRS according to an embodiment of the present invention
  • FIG. 7 is a structural block diagram of a sounding reference signal SRS receiving apparatus according to an embodiment of the present invention.
  • FIG. 8 is a structural block diagram (1) of a sounding reference signal SRS receiving apparatus according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a first bandwidth according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a first bandwidth obtained after frequency domain resource expansion according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a first bandwidth obtained after a frequency domain resource is reduced according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of SRS transmission when a SRS bandwidth of a UE is 4 in a first bandwidth according to an embodiment of the present invention
  • FIG. 13 is a schematic diagram of SRS transmission when a SRS bandwidth of a UE is 6 in a first bandwidth according to an embodiment of the present invention.
  • FIG. 1 is a flowchart of a method for transmitting a sounding reference signal SRS according to an embodiment of the present invention. As shown in FIG. 1, the flow includes the following steps:
  • Step S102 The terminal acquires information of a specified bandwidth, where the specified bandwidth is within a system bandwidth of the serving cell of the terminal.
  • One or more discontinuous physical resource block PRB clusters the PRB cluster consists of a part of consecutive PRBs in the system bandwidth, and the specified bandwidth is different from the SRS bandwidth of the serving cell of the terminal;
  • step S104 the terminal transmits the SRS within the specified bandwidth.
  • multiple PRBs are selected in the system bandwidth allocated by the serving cell to form a specified bandwidth, where the designated bandwidth is composed of one or more discontinuous PRB clusters, and the terminal sends the SRS in the specified bandwidth, compared with the related art.
  • the terminal transmits the SRS in the SRS bandwidth of the cell.
  • the specified bandwidth is different from the SRS bandwidth of the cell, and the specified bandwidth is a true subset of the SRS bandwidth of the cell, or may not overlap with the PRB included in the SRS bandwidth of the cell, or overlap with a partial PRB of the SRS bandwidth, and some PRBs do not overlap. .
  • the number of PRBs included in the specified bandwidth and/or PRB cluster is an integer multiple of 4 or an integer multiple of 6, so that the terminal can use an integer multiple of 4 or an integer multiple of 6. Bandwidth transfer data.
  • the foregoing step S102 involves the terminal acquiring the information of the specified bandwidth. It should be noted that the terminal can obtain the information of the specified bandwidth in multiple manners, which is exemplified below. In an optional embodiment, the terminal acquires information indicating the bandwidth according to a preset manner. In another optional embodiment, the terminal may receive information indicating the bandwidth from the base station.
  • the terminal receives a public message or a proprietary message of the terminal from the base station, where the public message or the terminal's proprietary message carries information indicating the bandwidth.
  • the specified bandwidth may be a frequency domain resource that sends multiple types of information.
  • the specified bandwidth may be a frequency domain resource of a physical uplink shared channel PUSCH, or may be a frequency domain resource of a physical uplink control channel PUCCH. Or it may be a frequency domain resource of the physical random access channel PRACH.
  • the specified bandwidth is a frequency domain resource including an integer multiple of 4 or 6 PRBs obtained after being expanded or reduced.
  • the foregoing step S104 involves the terminal transmitting the SRS in the specified bandwidth.
  • the terminal when the number of the PRBs included in the specified bandwidth is an integer multiple of 4, the terminal sends the SRS in the specified bandwidth, where the terminal The SRS bandwidth is 4 PRBs.
  • the terminal when the number of PRBs included in the specified bandwidth is an integer multiple of 6, the terminal transmits the SRS in the specified bandwidth, where the SRS bandwidth of the terminal is 6 PRB;
  • the number of PRBs included in the specified bandwidth is a common multiple of 4 and 6, the terminal transmits the SRS in the specified bandwidth, where the SRS bandwidth of the terminal is 4 PRBs or 6 PRB.
  • the SRS bandwidth of the terminal is determined to be 4 or 6 PRBs according to a preset manner, or the indication information sent by the receiving base station determines that the SRS bandwidth of the terminal is 4 or 6 PRB.
  • the terminal hops to transmit the SRS between subframes.
  • a sounding reference signal SRS transmitting device is also provided, which is used to implement the above-mentioned embodiments and preferred embodiments, and has not been described again.
  • the term “module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • the apparatus includes: an acquiring module 22 configured to acquire information of a specified bandwidth, where The bandwidth is composed of one or more discontinuous physical resource block PRB clusters in the system bandwidth of the terminal serving cell, wherein the PRB cluster is composed of a part of consecutive PRBs in the system bandwidth, and the designated bandwidth is different from the SRS bandwidth of the serving cell;
  • the sending module 24 is configured to transmit the SRS within the specified bandwidth.
  • the specified bandwidth and/or the number of PRBs included in the PRB cluster are all integer multiples of 4 or integer multiples of 6.
  • the obtaining module 22 includes: an obtaining unit 222, configured to acquire information indicating a bandwidth according to a preset manner;
  • the receiving unit 224 is configured to receive the foregoing information sent by the base station.
  • the receiving unit 224 is further configured to receive a public message or a proprietary message of the terminal, where the public message or the terminal's proprietary message carries the above information.
  • the frequency domain resource with the bandwidth of at least one of the following channels is specified: a physical uplink shared channel PUSCH, a physical uplink control channel PUCCH, and a physical random access channel PRACH.
  • the specified bandwidth is a frequency domain resource that includes an integer multiple of 4 or 6 PRBs obtained by expanding or reducing the frequency domain resources.
  • the transmitting module 24 includes: a first transmitting unit 242, configured to be a PRB included in the specified bandwidth.
  • the terminal transmits the SRS in the specified bandwidth, where the SRS bandwidth of the terminal is 4 PRBs; and the second sending unit 244 is set to be the PRB included in the specified bandwidth.
  • the terminal transmits the SRS in the specified bandwidth, where the SRS bandwidth of the terminal is 6 PRBs; and the third sending unit 246 is set to be the PRB included in the specified bandwidth.
  • the number is a common multiple of 4 and 6
  • the terminal transmits the SRS within the specified bandwidth, where the SRS bandwidth of the terminal is 4 PRBs or 6 PRBs.
  • the transmitting module 24 further includes: a fourth sending unit 248, configured to be in a specified bandwidth, the terminal is in a sub Inter-frame frequency hopping sends SRS.
  • FIG. 6 is a flowchart of a method for receiving a sounding reference signal SRS according to an embodiment of the present invention. As shown in FIG. 6, the flow includes the following steps:
  • Step S602 The base station receives the SRS sent by the terminal by using the specified bandwidth, where the designated bandwidth is composed of one or more discontinuous physical resource block PRB clusters within the system bandwidth of the serving cell under the base station, and the PRB cluster is used by the system bandwidth.
  • a partially continuous PRB consisting of a specified bandwidth different from the SRS bandwidth of the serving cell.
  • multiple PRBs are selected from the system bandwidth allocated by the serving cell to form a specified bandwidth, and the designated bandwidth is composed of one or more discontinuous PRB clusters, and the base station receives the SRS sent by the terminal in the specified bandwidth, compared to the related technology.
  • the above-mentioned steps solve the problem that the transmission mode of the periodic SRS used by the terminal in the related art causes the terminal to transmit the SRS with low efficiency, thereby improving the terminal transmission. The efficiency of SRS.
  • the base station before the base station receives the SRS sent by the terminal by using the specified bandwidth, the base station carries information for indicating the specified bandwidth to the terminal.
  • the specified bandwidth and/or the number of PRBs included in the PRB cluster are all integer multiples of 4 or integer multiples of 6.
  • the base station can send the information of the specified bandwidth to the terminal in a plurality of manners.
  • the base station sends the public message or the proprietary message of the terminal to the terminal, where the public message or the proprietary message of the terminal is carried. There is information for the specified bandwidth.
  • the specified bandwidth may be a variety of information.
  • the specified bandwidth may be a frequency domain resource of a physical uplink shared channel PUSCH, or may be a frequency domain resource of a physical uplink control channel PUCCH, or may be physically random.
  • the frequency domain resource is a frequency domain resource including an integer multiple of 4 or 6 PRBs obtained after being expanded or reduced.
  • the frequency domain resource is a frequency domain resource that is extended or reduced to include an integer multiple of 4 or 6 PRBs.
  • a receiving device for detecting the reference signal SRS is further provided, and the device is used to implement the above-mentioned embodiments and preferred embodiments, and details are not described herein.
  • the term “module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 7 is a structural block diagram of a sounding reference signal SRS receiving apparatus according to an embodiment of the present invention.
  • the apparatus is applied to a base station.
  • the method includes: a receiving module 72, configured to receive an SRS sent by a terminal by using a specified bandwidth, where The specified bandwidth is composed of one or more discontinuous PRB clusters within the system bandwidth of the serving cell under the base station, wherein the PRB cluster is composed of a part of consecutive PRBs in the system bandwidth, and the specified bandwidth is different from the SRS bandwidth of the serving cell. .
  • FIG. 8 is a structural block diagram (1) of a sounding reference signal SRS receiving apparatus according to an embodiment of the present invention. As shown in FIG. 8, the apparatus further includes: a transmitting module 82 configured to transmit information carrying a specified bandwidth to the terminal.
  • a transmitting module 82 configured to transmit information carrying a specified bandwidth to the terminal.
  • the number of PRBs included in the specified bandwidth and/or PRB cluster is an integer multiple of 4 or an integer multiple of 6.
  • the sending module 82 is further configured to send a public message or a proprietary message of the terminal to the terminal, where the public message or the proprietary message of the terminal carries the foregoing information.
  • the frequency domain resource with the bandwidth of at least one of the following channels is specified: a physical uplink shared channel PUSCH, a physical uplink control channel PUCCH, and a physical random access channel PRACH.
  • the frequency domain resource is a frequency domain resource that includes an integer multiple of 4 or 6 PRBs obtained after being expanded or reduced.
  • each of the foregoing modules may be implemented by software or hardware.
  • each of the above modules is located in the same processor; or, each of the above modules is located in the first processor, the second processor, and the third processor, respectively.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • a method for transmitting an SRS comprising transmitting an SRS on a first bandwidth (corresponding to the specified bandwidth).
  • the first bandwidth is a virtual continuous bandwidth consisting of one or more discrete PRB clusters.
  • a PRB cluster consists of multiple consecutive PRBs in the system bandwidth. The number of PRBs included in a plurality of discontinuous PRB clusters may be the same or different.
  • FIG. 9 is a schematic diagram of a first bandwidth according to an embodiment of the present invention. As shown in FIG. 9, two PRB clusters indicated by diagonal lines in the system bandwidth are virtualized into a continuous first bandwidth, and the UE will follow a certain frequency within the first bandwidth. A pattern cycle sends SRS.
  • the first bandwidth and the number of PRBs included in the PRB cluster should be an integer multiple of 4.
  • the first bandwidth may be indicated by the eNB, as indicated by a common message, such as the eNB notifying a certain type of UE, such as a narrowband UE, by its SIB message, its first bandwidth location or its included PRB, such as represented by a bitmap. Or indicating by the UE-specific message, that is, the eNB indicates the location of the first bandwidth of the UE for the UE, and may be notified through RRC signaling or through physical layer signaling.
  • the UE may be divided into a plurality of groups, and the first bandwidth corresponding to the UEs in the group is also the same. The UEs in the group send the SRS on the corresponding first bandwidth.
  • the first bandwidth of the UEs in different groups is different.
  • the first bandwidth may also be preset. For example, for each system bandwidth, a first bandwidth is required, for example, in Frequency Division Duplexing (FDD): system, between downlink bandwidth and uplink bandwidth.
  • FDD Frequency Division Duplexing
  • the first bandwidth may be determined according to a downlink working narrowband allocated to the narrowband UE, or according to the latest one or more uplink working narrowbands.
  • the first bandwidth is preset for transmitting a physical uplink shared channel (Physical Uplink Shared Channe, abbreviated as PUSCH) and/or a physical uplink control channel (Physical Uplink Control Channel, abbreviated as PUCCH) and/or physical random access.
  • PUSCH Physical Uplink shared channel
  • PUCCH Physical Uplink Control Channel
  • PRACH Physical Random Access Channel
  • the first bandwidth is an integer multiple of the PRB obtained by expanding or reducing the frequency domain resource.
  • Frequency domain resources The way to expand or shrink can be predefined or notified. In this way, an integer multiple of 4 PRBs is included in the first bandwidth, so that the UE can transmit according to the SRS of 4 PRBs in the first bandwidth.
  • the frequency domain resources used to transmit the PUSCH and/or PUCCH and/or PRACH are preset or indicated by the eNB.
  • the first bandwidth is a preset or a frequency domain resource indicated by the eNB for transmitting the PUSCH.
  • the PRB of the frequency domain resource used for transmitting the PUSCH is not an integer multiple of 4
  • the first bandwidth is a frequency domain resource including an integer multiple of 4 PRBs obtained by expanding or reducing the frequency domain resource.
  • the PUSCH and the PUCCH may be mixed and transmitted in multiple narrowbands
  • the first bandwidth is a preset or frequency domain resource indicated by the eNB for transmitting the PUSCH or the hybrid transmission PUSCH and the PUCCH.
  • the first bandwidth is a frequency domain resource including an integer multiple of 4 PRBs obtained by expanding or reducing the frequency domain resource.
  • a frequency domain resource used for a narrowband UE is composed of five narrowbands.
  • the five narrowbands are frequency domain resources used by the eNB for the UE to transmit the PUSCH.
  • Each narrowband contains 6 PRBs, two of which are contiguous, and the other three narrowbands are contiguous, forming two PRB clusters, 12 PRBs and 18 PRBs respectively, of which 18 PRBs are not 4 PRBs.
  • Integer multiple by extending the adjacent two PRBs into two, forming 20 PRBs, which become a multiple of 4, then the 12 PRBs and 20 PRBs constitute a virtual first bandwidth containing 32 PRBs, and the UE is in the first
  • the SRS bandwidth of 4 PRBs is used for transmission within the bandwidth.
  • a frequency band used for a narrowband UE is composed of five narrowbands, each of which is composed of five narrowbands.
  • the narrowband contains 6 PRBs, two of which are continuous, and the other three narrowbands are continuous, forming a two-part operating frequency band of 12 PRBs and 18 PRBs, of which 18 PRBs are not integers of 4 PRBs.
  • the trellis portion is removed, forming 16 PRBs, which become a multiple of 4, and then the 12 PRBs and 16 PRBs are composed of virtual 28s.
  • the first bandwidth of the PRB the UE transmits with the SRS bandwidth of 4 PRBs in the first bandwidth.
  • the first bandwidth can be regarded as the frequency domain transmission range of the SRS.
  • the eNB also notifies the UE of the starting position of the frequency domain, the combed teeth, the transmission period, and the offset, the cyclic offset of the adopted sequence, and the UE according to the information notified by the eNB, according to the relevant frequency hopping pattern in the first bandwidth.
  • the eNB notifies the start position of the frequency domain of the UE, and may indicate only in the first bandwidth. For example, if there are 32 PRBs in the first bandwidth, and a total of 8 SRS bandwidths of 4 PRBs are received, 3 bits may be used to indicate The starting position is which SPR bandwidth of 4 PRBs.
  • FIG. 12 is a schematic diagram of SRS transmission when the SRS bandwidth of the UE is 4 in the first bandwidth according to an embodiment of the present invention.
  • a preset rule is given on a subframe for transmitting an SRS.
  • the SRS is transmitted by frequency hopping, traversing the entire first bandwidth, wherein the symbol for transmitting the SRS is represented by a black portion.
  • the preset rule or frequency hopping formula is related to the first bandwidth. The actual application is not limited to this transmission method.
  • the eNB receives the SRS according to the same rule, obtains the channel condition of the UE, and schedules the UE to send an uplink signal.
  • the eNB may also configure the relevant SRS for the narrowband UE, that is, the frequency domain range of the frequency hopping is the SRS bandwidth of the cell configured by the eNB.
  • the eNB can configure the period of the related SRS to be larger than the hopping period in the present invention, so that the eNB can not only receive the SRS quickly in the working frequency band of the UE, but also obtain the channel condition of the UE, and then schedule the PDCCH.
  • the UE transmits the PUSCH, and the channel condition of the UE in other frequency bands can also be obtained, as a basis for adjusting the UE operating frequency band in the future.
  • a priority may be defined, such as preferentially transmitting the relevant SRS, or preferentially transmitting the SRS on the first bandwidth.
  • the first bandwidth can also be varied.
  • the eNB allocates the PRBs #0 to 17 to the UE#1 as the frequency band for which the SRS is transmitted.
  • the UE virtualizes it as the first bandwidth, and then sends the SRS on the first bandwidth.
  • the eNB can also pass the eNB. It is known that the frequency band in which the UE transmits the SRS changes, and becomes PRB#23-29. After receiving the change information, the UE virtualizes it as the first bandwidth, and then transmits the SRS on the first bandwidth.
  • the eNB In order not to cause interference to the SRS of the relevant LTE UE and to avoid interference of the relevant LTE UE to the narrowband UE, the eNB should separate the resources occupied by the two UEs when configuring the parameters.
  • the eNB may configure different cyclic offsets for the two UEs, such as 8 cyclic offsets, 4 of which are used by the relevant LTE UEs, and others are allocated to the narrowband UEs; or to the two UEs.
  • Configuring different combs for example, assigning combs corresponding to even subcarriers to relevant LTE UEs, and assigning combos corresponding to odd subcarriers to narrowband UEs; or configuring different transmitting subframes for the two UEs to ensure that they do not Appearing in the same sub-frame; or configuring the two UEs with different frequency domain ranges for transmitting SRS, the frequency range of the relevant LTE UE transmitting the SRS is the SRS bandwidth of the cell, and generally occupies several PRBs of the entire system bandwidth center.
  • the frequency domain range in which the narrowband UE transmits the SRS may be configured outside the SRS bandwidth of the cell; or any two or more of the foregoing may be combined to isolate the resources occupied by the two UEs.
  • the two UEs use different SRS frequency hopping mechanisms, interference does not occur.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the first bandwidth is used as the frequency domain transmission range of the SRS, and the SRS is transmitted on the first bandwidth.
  • the difference is that the SRS bandwidth of the six PRBs is used. That is, the SRS sent by the UE on the SRS transmission subframe occupies 6 PRBs in the frequency domain.
  • the frequency hopping formula is determined by the first bandwidth.
  • the number of PRBs included in the first bandwidth is an integer multiple of 6.
  • the UE transmits the SRS in the first bandwidth according to the preset hopping pattern according to the configuration of the eNB.
  • the eNB may inform the UE of the starting position of the frequency domain, the combed teeth, the transmission period, and the offset, the cyclic offset of the adopted sequence, and the frequency hopping mode is predefined or notified. In this way, for a UE with an RF transmission bandwidth of only 1.4 MHz, an SRS that fills the entire working narrow band can be sent on the six PRBs in which it operates, thereby improving the transmission efficiency of the SRS.
  • FIG. 13 is a schematic diagram of SRS transmission when a SRS bandwidth of a UE is 6 in a first bandwidth according to an embodiment of the present invention.
  • a UE is provided according to a preset on a subframe for transmitting an SRS.
  • the actual application is not limited to this transmission method.
  • the frequency domain resource used for transmitting the PUSCH and/or the PUCCH and/or the PRACH includes a PRB that is not an integer multiple of 6, the first bandwidth is obtained by expanding or reducing the frequency domain resource.
  • the number of PRBs included in the first bandwidth is a common multiple of 4 and 6, in the first bandwidth, according to the SRS bandwidth of 4 PRBs or the SRS bandwidth of 6 PRBs, according to which SRS bandwidth is sent. It can be notified by the eNB or it can be preset.
  • the first bandwidth is preset or the frequency domain resource used by the eNB to transmit the PUSCH, or the frequency domain resource is expanded or reduced.
  • the first bandwidth is a preset or a frequency domain resource indicated by the eNB for transmitting the PUSCH or the hybrid transmission PUSCH and the PUCCH, or the frequency domain resource is extended or The frequency domain resource including the integer multiple of 6 PRB obtained after the reduction.
  • the eNB receives the SRS according to the same rule, obtains the channel condition of the UE, and schedules the UE to send an uplink signal in the first bandwidth or in the one or more working frequency bands.
  • the eNB In order not to cause interference to the SRS of the relevant LTE UE and to avoid interference of the relevant LTE UE to the narrowband UE, the eNB should separate the resources occupied by the two UEs when configuring the parameters.
  • the eNB may configure different combs for the two types of UEs, for example, assigning combs corresponding to the even subcarriers to the relevant LTE UEs, and assigning combs corresponding to the odd subcarriers to the narrowband UEs; or configuring different sending of the two UEs.
  • the subframes are guaranteed to not appear in the same subframe; or the frequency ranges of different SRSs are configured for the two UEs, and the frequency range of the relevant LTE UEs that send the SRSs is the SRS bandwidth of the cells, which generally occupies the entire system.
  • a plurality of PRBs in the bandwidth center may be configured to configure the frequency domain range in which the narrowband UE transmits the SRS outside the SRS bandwidth of the cell; or any two or more of the foregoing may be combined to isolate resources occupied by the two UEs.
  • the two UEs use different SRS frequency hopping mechanisms, interference does not occur.
  • the present invention provides a method for transmitting an SRS, so that an MTC UE or a narrowband UE efficiently transmits an SRS, and the eNB quickly obtains an uplink channel condition of the MTC UE or the narrowband UE, and obtains a scheduling gain.
  • a storage medium is further provided, wherein the software includes the above-mentioned software, including but not limited to: an optical disk, a floppy disk, a hard disk, an erasable memory, and the like.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the terminal acquires information of a specified bandwidth, where the designated bandwidth is composed of one or more discontinuous physical resource block PRB clusters within the system bandwidth of the terminal serving cell, and the PRB cluster is part of the system bandwidth.
  • a continuous PRB consisting of a specified bandwidth different from the SRS bandwidth of the serving cell.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种探测参考信号SRS发送方法、装置及接收方法、装置,其中,该发送方法包括:终端获取指定带宽的信息;其中,指定带宽由该终端服务小区的系统带宽内的一个或多个不连续的物理资源块PRB簇组成,该PRB簇由系统带宽中部分连续的PRB组成,指定带宽与该服务小区的SRS带宽不同。通过本发明解决了相关技术中终端发送SRS的效率较低的问题,进而提高了终端发送SRS的效率。

Description

探测参考信号SRS发送方法、装置及接收方法、装置 技术领域
本发明涉及通信领域,具体而言,涉及一种探测参考信号SRS发送方法、装置及接收方法、装置。
背景技术
机器类型通信(Machine Type Communication,简称为MTC)用户终端(User Equipment,简称为用户设备或终端),又称,机器到机器(Machine to Machine,简称为M2M)用户通信设备,是目前物联网的主要应用形式。
近年来,由于长期演进(Long-Term Evolution,简称为LTE)/高级长期演进系统(Long-Term Evolution Advance,简称为LTE-Advance或LTE-A)的频谱效率高,越来越多的移动运营商选择LTE/LTE-A作为宽带无线通信系统的演进方向。基于LTE/LTE-A的MTC多种类数据业务也将更具吸引力。
MTC设备通常是低成本的设备,具有支持的射频(Radio Frequency,简称为RF)带宽比较小、单接收天线等特征,其RF发射和接收带宽一般为1.4MHz。对于系统带宽大于1.4MHz的情况,如果为MTC UE在上行频段上划分出多个上行发送的窄带,可以降低资源分配的指示开销,对于需要覆盖增强的MTC UE来说,可以减少其发送的重复次数,节省无线资源。
在LTE系统中,小区会广播一个小区专用参数叫探测参考信号(Sounding reference signal,简称为SRS)带宽,其为小区最大的SRS带宽,下述将其称为小区的SRS带宽。除了小区的SRS带宽,演进型基站(E-UTRAN NodeB,简称为eNB)还会为UE配置UE发送SRS的带宽,即UE的SRS带宽,小区内的UE在小区的SRS带宽内按照eNB配置的UE的SRS带宽发送SRS。ebb通过测量SRS,得到UE的信道状况。在调度UE传输时,可以根据得到的UE的信道状况,将UE调度到合适的频域位置进行数据传输,以获得调度增益。eNB为UE配置的SRS带宽是4个PRB的整数倍,对于MTC UE来说,每次传输最多只能支持4个PRB的SRS带宽。MTC UE工作的频段通常只是整个系统带宽的一部分,如果MTC UE完全沿用相关的周期SRS的发送方式,即以4个PRB的SRS带宽在小区的SRS带宽上跳频发送,在没有分配给MTC UE的频域位置也发送SRS,对UE来说做了很多的“无用功”,不利于UE节能。
针对相关技术中,终端发送SRS效率较低的问题,还未提出有效的解决方案。
发明内容
本发明实施例提供了一种探测参考信号SRS发送方法、装置及接收方法、装置,以至少解决相关技术中终端发送SRS效率较低的问题。
根据本发明实施例的一个方面,提供了一种探测参考信号SRS发送方法,包括:终端获取指定带宽的信息;其中,上述指定带宽由上述终端服务小区的系统带宽内的一个或多个不连续的物理资源块PRB簇组成,上述PRB簇由上述系统带宽中部分连续的PRB组成,上述指定带宽与上述服务小区的SRS带宽不同;上述终端在上述指定带宽内发送SRS。
可选地,上述指定带宽和/或上述PRB簇中所包含的PRB个数均为4的整数倍或者6的整数倍。
可选地,上述终端获取指定带宽的信息的方式包括以下之一:按照预设的方式获取上述信息;从基站接收上述信息。
可选地,从基站接收上述信息包括:从上述基站接收公共消息或者上述终端的专有消息,其中,上述公共消息或上述终端的专有消息中携带有上述信息。
可选地,上述指定带宽为以下至少之一信道的频域资源:物理上行共享信道PUSCH、物理上行链路控制信道PUCCH、物理随机接入信道PRACH。
可选地,上述指定带宽为上述频域资源经过扩展或者缩小后得到的包括4或者6的整数倍个PRB的频域资源。
可选地,上述终端在上述指定带宽内发送SRS包括以下至少之一:当上述指定带宽所包含的PRB的个数为4的整数倍时,上述终端在上述指定带宽内发送SRS,其中,上述终端的SRS带宽为4个PRB;当上述指定带宽所包含的PRB的个数为6的整数倍时,上述终端在上述指定带宽内发送SRS,其中,上述终端的SRS带宽为6个PRB;当上述指定带宽所包含的PRB的个数为4和6的公倍数时,上述终端在上述指定带宽内发送SRS,其中,上述终端的SRS带宽为4个或者6个PRB。
可选地,当上述指定带宽所包含的PRB的个数为4和6的公倍数时,上述终端在上述指定带宽内发送SRS,其中,上述终端的SRS带宽为4个或者6个PRB包括:按照预设的方式确定上述终端的SRS带宽为4个或者6个PRB;接收基站发送的指示信息确定上述终端的SRS带宽为4个或者6个PRB。
可选地,上述终端在上述指定带宽内发送SRS包括:在上述指定带宽中,上述终端在子帧间跳频发送上述SRS。
根据本发明实施例的另一个方面,提供了一种探测参考信号SRS的接收方法,包括:基站通过指定带宽接收终端发送的SRS,其中,上述指定带宽由上述基站下的服务小区的系统带宽内的一个或多个不连续的物理资源块PRB簇组成,上述PRB簇由上述系统带宽中部分连续的PRB组成,上述指定带宽与上述服务小区的SRS带宽不同。
可选地,上述基站通过指定带宽接收终端发送的SRS之前,还包括:上述基站将携带有上述指定带宽的信息发送给上述终端。
可选地,上述指定带宽和/或上述PRB簇中所包含的PRB个数均为4的整数倍或者6的 整数倍。
可选地,上述基站将携带有上述指定带宽的信息发送给上述终端包括:上述基站向上述终端发送公共消息或者上述终端的专有消息,其中,上述公共消息或上述终端的专有消息中携带有上述信息。
可选地,上述指定带宽为以下至少之一信道的频域资源:物理上行共享信道PUSCH、物理上行链路控制信道PUCCH、物理随机接入信道PRACH。
可选地,上述指定带宽为上述频域资源经过扩展或者缩小后得到的包括4或者6的整数倍个PRB的频域资源。
根据本发明实施例的另一个方面,提供了一种探测参考信号SRS发送装置,上述装置应用于终端,上述装置包括:获取模块,设置为获取指定带宽的信息;其中,上述指定带宽由上述终端服务小区的系统带宽内的一个或多个不连续的物理资源块PRB簇组成,上述PRB簇由上述系统带宽中部分连续的PRB组成,上述指定带宽与上述服务小区的SRS带宽不同;发送模块,设置为在上述指定带宽内发送SRS。
可选地,上述获取模块包括:获取单元,设置为按照预设的方式获取上述信息;和/或,接收单元,设置为接收基站发送的上述信息。
可选地,上述接收单元,还设置为从上述基站接收公共消息或者上述终端的专有消息,其中,上述公共消息或上述终端的专有消息中携带有上述信息。
可选地,上述发送模块包括:第一发送单元,设置为当上述指定带宽所包含的PRB的个数为4的整数倍时,上述终端在上述指定带宽内发送SRS,其中,上述终端的SRS带宽为4个PRB;和/或,第二发送单元,设置为当上述指定带宽所包含的PRB的个数为6的整数倍时,上述终端在上述指定带宽内发送SRS,其中,上述终端的SRS带宽为6个PRB;和/或,第三发送单元,设置为当上述指定带宽所包含的PRB的个数为4和6的公倍数时,上述终端在上述指定带宽内发送SRS,其中,上述终端的SRS带宽为4个或者6个PRB。
可选地,上述发送模块包括:第四发送单元,设置为在上述指定带宽中,在子帧间跳频发送上述SRS。
根据本发明的一个方面,提供了一种探测参考信号SRS的接收装置,上述装置应用于基站,上述装置包括:接收模块,设置为通过指定带宽接收终端发送的SRS,其中,上述指定带宽由上述基站下的服务小区的系统带宽内的一个或多个不连续的物理资源块PRB簇组成,上述PRB簇由上述系统带宽中部分连续的PRB组成,上述指定带宽与所服务小区的SRS带宽不同。
可选地,上述装置还包括:发送模块,设置为将携带有上述指定带宽的信息发送给上述终端。
可选地,上述发送模块,还设置为通过向上述终端发送公共消息或者上述终端的专有消 息发送上述指示信息,其中,上述公共消息或上述终端的专有消息中携带有上述信息。
通过本发明实施例,采用终端获取指定带宽的信息;其中,指定带宽由该终端服务小区的系统带宽内的一个或多个不连续的物理资源块PRB簇组成,该PRB簇由系统带宽中部分连续的PRB组成,指定带宽与该服务小区的SRS带宽不同。解决了相关技术中终端发送SRS效率较低的问题,进而提高了终端发送SRS的效率。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的探测参考信号SRS发送方法的流程图;
图2是根据本发明实施例的探测参考信号SRS发送装置的结构框图;
图3是根据本发明实施例的探测参考信号SRS发送装置的结构框图(1);
图4是根据本发明实施例的探测参考信号SRS发送装置的结构框图(2);
图5是根据本发明实施例的探测参考信号SRS发送装置的结构框图(3);
图6是根据本发明实施例的探测参考信号SRS接收方法的流程图;
图7是根据本发明实施例的探测参考信号SRS接收装置的结构框图;
图8是根据本发明实施例的探测参考信号SRS接收装置的结构框图(1);
图9是根据本发明实施例的第一带宽示意图;
图10是根据本发明实施例的频域资源扩展后得到的第一带宽的示意图;
图11是根据本发明实施例的频域资源缩小后得到的第一带宽的示意图;
图12是根据本发明实施例的在第一带宽内UE的SRS带宽为4时的SRS发送示意图;
图13是根据本发明实施例的在第一带宽内UE的SRS带宽为6时的SRS发送示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
在本实施例中提供了一种探测参考信号SRS发送方法,图1是根据本发明实施例的探测参考信号SRS发送方法的流程图,如图1所示,该流程包括如下步骤:
步骤S102,终端获取指定带宽的信息;其中,指定带宽由终端的服务小区的系统带宽内 的一个或多个不连续的物理资源块PRB簇组成,PRB簇由系统带宽中部分连续的PRB组成,指定带宽与终端的服务小区的SRS带宽不同;
步骤S104,终端在指定带宽内发送SRS。
通过上述步骤,在服务小区分配的系统带宽中选择多个PRB组成指定带宽,其中指定带宽由一个或多个不连续的PRB簇组成,终端在该指定带宽中发送SRS,相比于相关技术中,终端在小区的SRS带宽内发送SRS,上述步骤,解决了相关技术中终端使用的周期SRS的发送方式导致终端发送SRS的效率较低的问题,进而提高了终端发送SRS的效率。其中,指定带宽与小区的SRS带宽不同,包括指定带宽是小区的SRS带宽的真子集,或者可以与小区的SRS带宽包含的PRB完全不重叠,或者与SRS带宽有部分PRB重叠,部分PRB不重叠。
在一个可选实施例中,指定带宽和/或PRB簇中所包含的PRB个数均为4的整数倍或者6的整数倍,从而终端可以使用具有4的整数倍或者6的整数倍的指定带宽传输数据。
上述步骤S102涉及到终端获取指定带宽的信息,需要说明的是,终端可以通过多种方式获取上述指定带宽的信息,下面对此进行举例说明。在一个可选实施例中,终端根据预设的方式获取指示带宽的信息,在另一个可选实施例中,终端可以从基站接收指示带宽的信息。
在一个可选实施例中,终端从基站接收公共消息或者终端的专有消息,其中,公共消息或终端的专有消息中携带有指示带宽的信息。
指定带宽可以为发送多种信息的频域资源,在一个可选实施例中,指定带宽可以是物理上行共享信道PUSCH的频域资源,或者可以是物理上行链路控制信道PUCCH的频域资源,或者可以是物理随机接入信道PRACH的频域资源。在另一个可选实施例中,指定带宽为经过扩展或者缩小后得到的包括4或者6的整数倍个PRB的频域资源。
上述步骤S104涉及到终端在指定带宽内发送SRS,在一个可选实施例中,当指定带宽所包含的PRB的个数为4的整数倍时,终端在指定带宽内发送SRS,其中,终端的SRS带宽为4个PRB;在另一个可选实施例中,当指定带宽所包含的PRB的个数为6的整数倍时,终端在指定带宽内发送SRS,其中,终端的SRS带宽为6个PRB;在另一个可选实施例中,当指定带宽所包含的PRB的个数为4和6的公倍数时,终端在该指定带宽内发送SRS,其中,终端的SRS带宽为4个PRB或者6个PRB。在这种情况下,在另一个可选实施例中,按照预设的方式确定终端的SRS带宽为4个或者6个PRB,或者接收基站发送的指示信息确定终端的SRS带宽为4个或者6个PRB。
在一个可选实施例中,终端在子帧间跳频发送SRS。
在本实施例中还提供了一种探测参考信号SRS发送装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图2是根据本发明实施例的探测参考信号SRS发送装置的结构框图,该装置应用于终端,如图2所示,该装置包括:获取模块22,设置为获取指定带宽的信息,其中,指定带宽由终端服务小区的系统带宽内的一个或多个不连续的物理资源块PRB簇组成,其中,该PRB簇由该系统带宽中部分连续的PRB组成,指定带宽与服务小区的SRS带宽不同;发送模块24,设置为在指定带宽内发送SRS。
可选地,指定带宽和/或该PRB簇中所包含的PRB个数均为4的整数倍或者6的整数倍。
图3是根据本发明实施例的探测参考信号SRS发送装置的结构框图(1),如图3所示,获取模块22包括:获取单元222,设置为按照预设的方式获取指示带宽的信息;接收单元224,设置为接收基站发送的上述信息。
可选地,接收单元224还设置为从接收公共消息或者终端的专有消息,其中,公共消息或终端的专有消息中携带有上述信息。
可选地,指定带宽为以下至少之一信道的频域资源:物理上行共享信道PUSCH、物理上行链路控制信道PUCCH、物理随机接入信道PRACH。
可选地,指定带宽为上述频域资源经过扩展或者缩小后得到的包括4或者6的整数倍个PRB的频域资源。
图4是根据本发明实施例的探测参考信号SRS发送装置的结构框图(2),如图4所示,发送模块24包括:第一发送单元242,设置为当该指定带宽所包含的PRB的个数为4的整数倍时,该终端在该指定带宽内发送SRS,其中,所述终端的SRS带宽为4个PRB;第二发送单元244,设置为当该指定带宽所包含的PRB的个数为6的整数倍时,该终端在该指定带宽内发送SRS,其中,所述终端的SRS带宽为6个PRB;第三发送单元246,设置为当该指定带宽所包含的该PRB的个数为4和6的公倍数时,该终端在该指定带宽内发送SRS,其中,所述终端的SRS带宽为4个PRB或者6个PRB。
图5是根据本发明实施例的探测参考信号SRS发送装置的结构框图(3),如图5所示,发送模块24还包括:第四发送单元248,设置为在指定带宽中,终端在子帧间跳频发送SRS。
在本实施例中还提供了另一种探测参考信号SRS接收方法,图6是根据本发明实施例的探测参考信号SRS接收方法的流程图,如图6所示,该流程包括如下步骤:
步骤S602,基站通过指定带宽接收终端发送的SRS,其中,指定带宽由该基站下的服务小区的系统带宽内的一个或多个不连续的物理资源块PRB簇组成,PRB簇由该系统带宽中部分连续的PRB组成,指定带宽与该服务小区的SRS带宽不同。
通过该步骤,在服务小区分配的系统带宽中选择多个PRB组成指定带宽,指定带宽由一个或多个不连续的PRB簇组成,基站通过指定带宽中接收终端发送的SRS,相比于相关技术中,不加选择的使用系统带宽中的PRB接收终端发送的SRS,上述步骤,解决了相关技术中终端使用的周期SRS的发送方式导致终端发送SRS的效率较低的问题,进而提高了终端发送 SRS的效率。
在一个可选实施例中,基站通过指定带宽接收终端发送的SRS之前,基站将携带有用于指示指定带宽的信息发送给终端。
在一个可选实施例中,指定带宽和/或该PRB簇中所包含的PRB个数均为4的整数倍或者6的整数倍。
基站可以通过多种方式将指定带宽的信息发送给终端,在一个可选实施例中,基站通过向终端发送公共消息或者该终端的专有消息,其中,公共消息或终端的专有消息中携带有指定带宽的信息。
指定带宽可以为多种信息,在一个可选实施例中,指定带宽可以是物理上行共享信道PUSCH的频域资源,或者可以是物理上行链路控制信道PUCCH的频域资源,或者可以是物理随机接入信道PRACH的频域资源。在另一个可选实施例中,频域资源为经过扩展或者缩小后得到的包括4或者6的整数倍个PRB的频域资源。
在一个可选实施例中,频域资源为经过扩展或者缩小后得到的包括4或者6的整数倍个PRB的频域资源。
在本实施例中还提供了一种探测参考信号SRS的接收装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图7是根据本发明实施例的探测参考信号SRS接收装置的结构框图,该装置应用于基站,如图7所示,包括:接收模块72,设置为通过指定带宽接收终端发送的SRS,其中,指定带宽由该基站下的服务小区的系统带宽内的一个或多个不连续的PRB簇组成,其中,PRB簇由所述系统带宽中部分连续的PRB组成,指定带宽与服务小区的SRS带宽不同。
图8是根据本发明实施例的探测参考信号SRS接收装置的结构框图(1),如图8所示,该装置还包括:发送模块82,设置为将携带有指定带宽的信息发送给终端。
可选地,指定带宽和/或PRB簇中所包含的PRB个数均为4的整数倍或者6的整数倍。
可选地,发送模块82还设置为向终端发送公共消息或者该终端的专有消息,其中,公共消息或终端的专有消息中携带有上述信息。
可选地,指定带宽为以下至少之一信道的频域资源:物理上行共享信道PUSCH、物理上行链路控制信道PUCCH、物理随机接入信道PRACH。
可选地,频域资源为经过扩展或者缩小后得到的包括4或者6的整数倍个PRB的频域资源。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以 下方式实现,但不限于此:上述各个模块均位于同一处理器中;或者,上述各个模块分别位于第一处理器、第二处理器和第三处理器…中。
针对相关技术中存在的上述问题,下面结合可选实施例进行说明,本可选实施例结合了上述可选实施例及其可选实施方式。
实施例一:
一种SRS的发送方法,包括在第一带宽(相当于上述指定带宽)上发送SRS。第一带宽是由一个或者多个不连续的PRB簇组成的虚拟的连续带宽。PRB簇由系统带宽中的多个连续的PRB组成。多个不连续的PRB簇包含的PRB个数可以相同也可以不同。
图9是根据本发明实施例的第一带宽示意图,如图9所示,系统带宽中斜线表示的两个PRB簇被虚拟成一个连续的第一带宽,UE将在第一带宽内按照某一种图样周期发送SRS。
为了能够采用4个PRB的SRS带宽发送SRS,第一带宽以及PRB簇包含的PRB数目都应该是4的整数倍。
第一带宽可以是eNB指示的,如通过公共消息指示的,比如eNB通过SIB消息通知某一类UE,如窄带UE,其第一带宽位置或者其包含的PRB,比如用bitmap表示。或者是通过UE专有消息指示的,即eNB为UE指示UE的第一带宽的位置,可以通过RRC信令通知或者通过物理层信令通知。可选地,UE可以被分为很多组,一个组内的UE对应的第一带宽也相同,组内的UE在其对应的第一带宽上发送SRS;不同组的UE的第一带宽不同。可选地,组对应的第一带宽之间没有重叠。
第一带宽也可以是预设的,比如对于每一种系统带宽都会对应一个第一带宽,又比如在频分双工(Frequency Division Duplexing,简称为FDD):系统,下行带宽和上行带宽之间存在一种对应关系,第一带宽可以根据分配给窄带UE的下行工作窄带确定,或者根据最近的一个或者多个上行工作窄带确定。或者第一带宽预设为用于传输物理上行共享信道(Physical Uplink Shared Channe,简称为PUSCH)和/或物理上行链路控制信道(Physical Uplink Control Channel,简称为PUCCH)和/或物理随机接入信道(Physical Random Access Channel,简称为PRACH)的频域资源。当用于传输PUSCH和/或PUCCH和/或PRACH的频域资源包含的PRB不是4的整数倍时,第一带宽是该频域资源经过扩展或者缩小后得到的包含4的整数倍个PRB的频域资源。扩展或者缩小的方式可以是预定义的或者是通知的。这样,在第一带宽内包含4的整数倍个PRB,使得UE能在第一带宽内按照4个PRB的SRS进行发送。该用于传输PUSCH和/或PUCCH和/或PRACH的频域资源是预设的或者是eNB指示的。
可选地,如果PUSCH和PUCCH和PRACH分别对应不同的窄带资源,那么第一带宽是预设的或者eNB指示的用于传输PUSCH的频域资源。当用于传输PUSCH的频域资源包含的PRB不是4的整数倍时,第一带宽是该频域资源经过扩展或者缩小后得到的包含4的整数倍个PRB的频域资源。或者如果PUSCH和PUCCH可能混合在多个窄带内发送,那么第一带宽是预设的或者eNB指示的用于传输PUSCH或者混合传输PUSCH和PUCCH的频域资源。当 用于传输PUSCH或者混合传输PUSCH和PUCCH的频域资源包含的PRB不是4的整数倍时,第一带宽是该频域资源经过扩展或者缩小后得到的包含4的整数倍个PRB的频域资源。
图10是根据本发明实施例的频域资源扩展后得到的第一带宽的示意图,如图10所示,给出了一个扩展的例子,用于窄带UE工作的频域资源由5个窄带组成,该5个窄带是eNB通知的用于UE发送PUSCH的频域资源。每个窄带包含6个PRB,其中两个窄带是连续的,其他三个窄带是连续的,形成了两个PRB簇,分别为12个PRB和18个PRB,其中18个PRB不是4个PRB的整数倍,通过将邻近的2个PRB也扩展进来,形成20个PRB,变成4的倍数,然后这12个PRB和20个PRB组成虚拟的包含32个PRB的第一带宽,UE在第一带宽内采用4个PRB的SRS带宽进行发送。
图11是根据本发明实施例的频域资源缩小后得到的第一带宽的示意图,如图11所示,给出了一个缩小的例子,用于窄带UE工作的频段由5个窄带组成,每个窄带包含6个PRB,其中两个窄带是连续的,其他三个窄带是连续的,形成了两部分工作频段,分别为12个PRB和18个PRB,其中18个PRB不是4个PRB的整数倍,通过将18个PRB组成的PRB簇中频率最低的2个PRB去掉,即将格子部分去掉,形成16个PRB,变成4的倍数,然后这12个PRB和16个PRB组成虚拟的包含28个PRB的第一带宽,UE在第一带宽内采用4个PRB的SRS带宽进行发送。
UE将工作频段虚拟成第一带宽后,就可以将第一带宽当作SRS的频域发送范围。eNB还会通知UE其频域的起始位置、占用的梳齿、发送周期以及offset、采用的序列的循环偏移,UE根据eNB通知的这些信息,在第一带宽内根据相关的跳频图样进行SRS的发送。进一步地,eNB通知UE的频域的起始位置,可以只在第一带宽内指示,比如假设第一带宽内有32个PRB,一共容纳8个4个PRB的SRS带宽,可以采用3bit来指示起始位置是哪个4个PRB的SRS带宽。
图12是根据本发明实施例的在第一带宽内UE的SRS带宽为4时的SRS发送示意图,如图12所示,给出了一个在发送SRS的子帧上按照一种预设的规则跳频发送SRS,遍历整个第一带宽,其中发送SRS的符号由黑色部分表示。该预设的规则或者跳频公式与第一带宽有关。实际应用中不限于这种发送方式。
eNB按照同样的规则接收SRS,获得UE的信道状况,调度UE发送上行信号。
另外,eNB也可以为窄带UE配置相关的SRS,即跳频的频域范围是eNB配置的小区的SRS带宽。优选地,eNB可以将该相关的SRS的周期配置的较大,比本发明中的跳频周期大,这样,eNB不仅可以在UE的工作频带上快速接收SRS,得到UE的信道状况,进而调度该UE发送PUSCH,也可以获得其他频带上UE的信道状况,作为将来调整UE工作频带的依据。当相关的SRS和本发明中的第一带宽上的SRS发生冲突在同一子帧出现时,可以定义一个优先级,比如优先发送相关的SRS,或者优先发送第一带宽上的SRS。
该第一带宽也可以是变化的。比如eNB将PRB#0~17分配给UE#1作为其发送SRS的频段,首先UE将其虚拟为第一带宽,然后在第一带宽上发送SRS,一段时间后,eNB还可以通 知UE其发送SRS的频段发生了变化,变为PRB#23~29,UE收到变更信息之后,将其虚拟为第一带宽,然后在第一带宽上发送SRS。
为了不对相关的LTE UE的SRS造成干扰以及避免相关的LTE UE对窄带UE的干扰,eNB在配置参数时,应将这两种UE占用的资源分开。eNB可以给这两种UE配置不同的序列的循环偏移,比如8种循环偏移中,其中4个配置给相关的LTE UE使用,其他几种分配给窄带UE使用;或者给这两种UE配置不同的梳齿,比如给相关的LTE UE分配偶数子载波对应的梳齿,给窄带UE分配奇数子载波对应的梳齿;或者给这两种UE配置不同的发送子帧,保证其不会在同一个子帧中出现;或者给这两种UE配置不同的发送SRS的频域范围,相关的LTE UE发送SRS的频域范围是小区的SRS带宽,一般占用整个系统带宽中心的若干个PRB,可以将窄带UE发送SRS的频域范围配置在小区的SRS带宽之外;或者也可将上述任意两个或者多个进行联合来隔离这两种UE占用的资源。这样,虽然两种UE采用了不同的SRS跳频机制,但是不会发生干扰。
实施例二:
与实施例一类似,将第一带宽作为SRS的频域发送范围,在该第一带宽上发送SRS。不同的是,采用一种6个PRB的SRS带宽发送方式,即UE在SRS发送子帧上发送的SRS在频域上占用6个PRB。该跳频公式由第一带宽确定。该第一带宽包含的PRB的个数为6的整数倍。UE根据eNB的配置,根据预设的跳频图样在第一带宽内发送SRS。eNB可以通知UE其频域的起始位置、占用的梳齿、发送周期以及offset、采用的序列的循环偏移,跳频方式是预定义的或者是通知的。这样,对于RF发送带宽只有1.4MHz的UE来说,可以在其工作的6个PRB上发一个占满整个工作窄带的SRS,提高了SRS的发送效率。
图13是根据本发明实施例的在第一带宽内UE的SRS带宽为6时的SRS发送示意图,如图13所示,给出了一个UE在发送SRS的子帧上按照一种预设的规则跳频发送SRS的例子,遍历整个第一带宽,其中发送SRS的符号由黑色部分表示。实际应用中不限于这种发送方式。
与实施例一类似,当用于传输PUSCH和/或PUCCH和/或PRACH的频域资源包含的PRB不是6的整数倍时,第一带宽是该频域资源经过扩展或者缩小后得到的包含6的整数倍个PRB的频域资源。
可选地,当第一带宽包含的PRB个数为4和6的公倍数时,在第一带宽内,按照4个PRB的SRS带宽或者6个PRB的SRS带宽进行发送,具体按照哪个SRS带宽发送可以是eNB通知的,也可以是预设的。
可选地,如果PUSCH和PUCCH和PRACH分别对应不同的窄带资源,那么第一带宽是预设的或者eNB指示的用于传输PUSCH的频域资源,或者是该频域资源经过扩展或者缩小后得到的包含6的整数倍个PRB的频域资源。或者如果PUSCH和PUCCH可能混合在多个窄带内发送,那么第一带宽是预设的或者eNB指示的用于传输PUSCH或者混合传输PUSCH和PUCCH的频域资源,或者是该频域资源经过扩展或者缩小后得到的包含6的整数倍个PRB的频域资源。
eNB按照同样的规则接收SRS,获得UE的信道状况,调度UE在该第一带宽内或者该一个或者多个工作频段内发送上行信号。
为了不对相关的LTE UE的SRS造成干扰以及避免相关的LTE UE对窄带UE的干扰,eNB在配置参数时,应将这两种UE占用的资源分开。eNB可以给这两种UE配置不同的梳齿,比如给相关的LTE UE分配偶数子载波对应的梳齿,给窄带UE分配奇数子载波对应的梳齿;或者给这两种UE配置不同的发送子帧,保证其不会在同一个子帧中出现;或者给这两种UE配置不同的发送SRS的频域范围,相关的LTE UE发送SRS的频域范围是小区的SRS带宽,一般占用整个系统带宽中心的若干个PRB,可以将窄带UE发送SRS的频域范围配置在小区的SRS带宽之外;或者也可将上述任意两个或者多个进行联合来隔离这两种UE占用的资源。这样,虽然两种UE采用了不同的SRS跳频机制,但是不会发生干扰。
综上所述,本发明提出了的一种SRS的发送方法,使MTC UE或者窄带UE高效地发送SRS,eNB快速得到MTC UE或者窄带UE的上行信道状况,获得调度增益。
在另外一个实施例中,还提供了一种软件,该软件用于执行上述实施例及优选实施方式中描述的技术方案。
在另外一个实施例中,还提供了一种存储介质,该存储介质中存储有上述软件,该存储介质包括但不限于:光盘、软盘、硬盘、可擦写存储器等。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
通过本发明实施例,采用终端获取指定带宽的信息;其中,指定带宽由该终端服务小区的系统带宽内的一个或多个不连续的物理资源块PRB簇组成,该PRB簇由系统带宽中部分连续的PRB组成,指定带宽与该服务小区的SRS带宽不同。解决了相关技术中终端发送SRS效率较低的问题,进而提高了终端发送SRS的效率。

Claims (23)

  1. 一种探测参考信号SRS发送方法,包括:
    终端获取指定带宽的信息;
    其中,所述指定带宽由所述终端服务小区的系统带宽内的一个或多个不连续的物理资源块PRB簇组成,所述PRB簇由所述系统带宽中部分连续的PRB组成,所述指定带宽与所述服务小区的SRS带宽不同;
    所述终端在所述指定带宽内发送SRS。
  2. 根据权利要求1所述的方法,其中,包括:
    所述指定带宽和/或所述PRB簇中所包含的PRB个数均为4的整数倍或者6的整数倍。
  3. 根据权利要求1所述的方法,其中,所述终端获取指定带宽的信息的方式包括以下之一:
    按照预设的方式获取所述信息;
    从基站接收所述信息。
  4. 根据权利要求3所述的方法,其中,从基站接收所述信息包括:
    从所述基站接收公共消息或者所述终端的专有消息,其中,所述公共消息或所述终端的专有消息中携带有所述信息。
  5. 根据权利要求1所述的方法,其中,所述指定带宽为以下至少之一信道的频域资源:物理上行共享信道PUSCH、物理上行链路控制信道PUCCH、物理随机接入信道PRACH。
  6. 根据权利要求5所述的方法,其中,包括:
    所述指定带宽为所述频域资源经过扩展或者缩小后得到的包括4或者6的整数倍个PRB的频域资源。
  7. 根据权利要求2所述的方法,其中,所述终端在所述指定带宽内发送SRS包括以下至少之一:
    当所述指定带宽所包含的PRB的个数为4的整数倍时,所述终端在所述指定带宽内发送SRS,其中,所述终端的SRS带宽为4个PRB;
    当所述指定带宽所包含的PRB的个数为6的整数倍时,所述终端在所述指定带宽内发送SRS,其中,所述终端的SRS带宽为6个PRB;
    当所述指定带宽所包含的PRB的个数为4和6的公倍数时,所述终端在所述指定带宽内发送SRS,其中,所述终端的SRS带宽为4个或者6个PRB。
  8. 根据权利要求7所述的方法,其中,当所述指定带宽所包含的PRB的个数为4和6的公 倍数时,所述终端在所述指定带宽内发送SRS,其中,所述终端的SRS带宽为4个或者6个PRB包括:
    按照预设的方式确定所述终端的SRS带宽为4个或者6个PRB;
    接收基站发送的指示信息确定所述终端的SRS带宽为4个或者6个PRB。
  9. 根据权利要求1所述的方法,其中,所述终端在所述指定带宽内发送SRS包括:
    在所述指定带宽中,所述终端在子帧间跳频发送所述SRS。
  10. 一种探测参考信号SRS的接收方法,包括:
    基站通过指定带宽接收终端发送的SRS,其中,所述指定带宽由所述基站下的服务小区的系统带宽内的一个或多个不连续的物理资源块PRB簇组成,所述PRB簇由所述系统带宽中部分连续的PRB组成,所述指定带宽与所述服务小区的SRS带宽不同。
  11. 根据权利要求10所述的方法,其中,所述基站通过指定带宽接收终端发送的SRS之前,还包括:
    所述基站将携带有所述指定带宽的信息发送给所述终端。
  12. 根据权利要求10所述的方法,其中,包括:
    所述指定带宽和/或所述PRB簇中所包含的PRB个数均为4的整数倍或者6的整数倍。
  13. 根据权利要求11所述的方法,其中,所述基站将携带有所述指定带宽的信息发送给所述终端包括:
    所述基站向所述终端发送公共消息或者所述终端的专有消息其中,所述公共消息或所述终端的专有消息中携带有所述信息。
  14. 根据权利要求10所述的方法,其中,包括:
    所述指定带宽为以下至少之一信道的频域资源:物理上行共享信道PUSCH、物理上行链路控制信道PUCCH、物理随机接入信道PRACH。
  15. 根据权利要求14所述的方法,其中,包括:
    所述指定带宽为所述频域资源经过扩展或者缩小后得到的包括4或者6的整数倍个PRB的频域资源。
  16. 一种探测参考信号SRS发送装置,所述装置应用于终端,所述装置包括:
    获取模块,设置为获取指定带宽的信息;
    其中,所述指定带宽由所述终端服务小区的系统带宽内的一个或多个不连续的物理 资源块PRB簇组成,所述PRB簇由所述系统带宽中部分连续的PRB组成,所述指定带宽与所述服务小区的SRS带宽不同;
    发送模块,设置为在所述指定带宽内发送SRS。
  17. 根据权利要求16所述的装置,其中,所述获取模块包括:
    获取单元,设置为按照预设的方式获取所述信息;和/或,
    接收单元,设置为接收基站发送的所述信息。
  18. 根据权利要求17所述的装置,其中,所述接收单元,还设置为从所述基站接收公共消息或者所述终端的专有消息,其中,所述公共消息或所述终端的专有消息中携带有所述信息。
  19. 根据权利要求16所述的装置,其中,所述发送模块包括:
    第一发送单元,设置为当所述指定带宽所包含的PRB的个数为4的整数倍时,所述终端在所述指定带宽内发送SRS,其中,所述终端的SRS带宽为4个PRB;和/或,
    第二发送单元,设置为当所述指定带宽所包含的PRB的个数为6的整数倍时,所述终端在所述指定带宽内发送SRS,其中,所述终端的SRS带宽为6个PRB;和/或,
    第三发送单元,设置为当所述指定带宽所包含的PRB的个数为4和6的公倍数时,所述终端在所述指定带宽内发送SRS,其中,所述终端的SRS带宽为4个或者6个PRB。
  20. 根据权利要求16所述的装置,其中,所述发送模块包括:
    第四发送单元,设置为在所述指定带宽中,在子帧间跳频发送所述SRS。
  21. 一种探测参考信号SRS的接收装置,所述装置应用于基站,所述装置包括:
    接收模块,设置为通过指定带宽接收终端发送的SRS,其中,所述指定带宽由所述基站下的服务小区的系统带宽内的一个或多个不连续的物理资源块PRB簇组成,所述PRB簇由所述系统带宽中部分连续的PRB组成,所述指定带宽与所述服务小区的SRS带宽不同。
  22. 根据权利要求21所述的装置,其中,所述装置还包括:
    发送模块,设置为将携带有所述指定带宽的信息发送给所述终端。
  23. 根据权利要求22所述的装置,其中,所述发送模块,还设置为向所述终端发送公共消息或者所述终端的专有消息,其中,所述公共消息或所述终端的专有消息中携带有所述信息。
PCT/CN2015/094032 2014-12-30 2015-11-06 探测参考信号srs发送方法、装置及接收方法、装置 WO2016107286A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410844271.5A CN105812088A (zh) 2014-12-30 2014-12-30 探测参考信号srs发送方法、装置及接收方法、装置
CN201410844271.5 2014-12-30

Publications (1)

Publication Number Publication Date
WO2016107286A1 true WO2016107286A1 (zh) 2016-07-07

Family

ID=56284171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/094032 WO2016107286A1 (zh) 2014-12-30 2015-11-06 探测参考信号srs发送方法、装置及接收方法、装置

Country Status (2)

Country Link
CN (1) CN105812088A (zh)
WO (1) WO2016107286A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019030413A1 (en) * 2017-08-11 2019-02-14 Telefonaktiebolaget Lm Ericsson (Publ) SRS SIGNAL JUMPING PATTERN BASED ON USER EQUIPMENT BANDWIDTH CONFIGURATION
EP3673606A4 (en) * 2017-09-29 2020-08-19 Samsung Electronics Co., Ltd. METHOD AND APPARATUS FOR TRANSMITTING A REFERENCE SIGNAL IN A WIRELESS COMMUNICATION SYSTEM
WO2021093139A1 (en) 2020-01-03 2021-05-20 Zte Corporation Methods and devices for enhancement on sounding reference signal (srs) transmission signaling
US11330590B2 (en) 2017-09-29 2022-05-10 Samsung Electronics Co., Ltd. Method and apparatus for transmitting reference signal in wireless communication system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106792870B (zh) * 2016-09-30 2019-06-07 北京展讯高科通信技术有限公司 信道探测信号的传输方法及装置
CN108111271B (zh) * 2017-06-16 2023-09-19 中兴通讯股份有限公司 参考信号的信令指示、参考信号的发送方法及装置
CN109391447B (zh) 2017-08-11 2020-10-09 华为技术有限公司 探测参考信号的传输方法、装置及系统
CN109600206B (zh) * 2017-09-30 2021-01-05 华为技术有限公司 信息传输方法、终端设备及网络设备
CN109842474B (zh) * 2017-11-28 2020-11-27 华为技术有限公司 传输指示方法、设备及系统、存储介质
CN110474734B (zh) * 2018-05-11 2022-02-08 华为技术有限公司 通信方法及装置
WO2022061730A1 (en) * 2020-09-25 2022-03-31 Qualcomm Incorporated Sounding reference signal (srs) uplink power control with partial frequency sounding

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080039098A1 (en) * 2006-08-14 2008-02-14 Texas Instruments Incorporated Methods and apparatus to schedule uplink transmissions in wireless communication systems
CN101784116A (zh) * 2009-01-19 2010-07-21 华为技术有限公司 一种探测参考信号资源分配的方法、系统和设备
CN102237926B (zh) * 2010-04-20 2014-03-19 中国移动通信集团公司 发送与接收信道探测参考信号的方法、装置与系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102075298B (zh) * 2009-11-19 2014-04-30 华为技术有限公司 一种用户设备ue发送探测信号的方法、用户设备、基站
CN103220795A (zh) * 2012-01-21 2013-07-24 中兴通讯股份有限公司 下行控制信息的发送方法和基站
WO2013181394A1 (en) * 2012-05-31 2013-12-05 Interdigital Patent Holdings, Inc. Device-to-device (d2d) link adaptation
CN104079373B (zh) * 2013-03-28 2017-11-24 华为技术有限公司 一种确定上行信道状态信息的方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080039098A1 (en) * 2006-08-14 2008-02-14 Texas Instruments Incorporated Methods and apparatus to schedule uplink transmissions in wireless communication systems
CN101784116A (zh) * 2009-01-19 2010-07-21 华为技术有限公司 一种探测参考信号资源分配的方法、系统和设备
CN102237926B (zh) * 2010-04-20 2014-03-19 中国移动通信集团公司 发送与接收信道探测参考信号的方法、装置与系统

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019030413A1 (en) * 2017-08-11 2019-02-14 Telefonaktiebolaget Lm Ericsson (Publ) SRS SIGNAL JUMPING PATTERN BASED ON USER EQUIPMENT BANDWIDTH CONFIGURATION
US11228464B2 (en) 2017-08-11 2022-01-18 Telefonaktiebolaget Lm Ericsson (Publ) SRS hopping pattern based on UE bandwidth configuration
EP3673606A4 (en) * 2017-09-29 2020-08-19 Samsung Electronics Co., Ltd. METHOD AND APPARATUS FOR TRANSMITTING A REFERENCE SIGNAL IN A WIRELESS COMMUNICATION SYSTEM
US11330590B2 (en) 2017-09-29 2022-05-10 Samsung Electronics Co., Ltd. Method and apparatus for transmitting reference signal in wireless communication system
US11856566B2 (en) 2017-09-29 2023-12-26 Samsung Electronics Co., Ltd. Method and apparatus for transmitting reference signal in wireless communication system
WO2021093139A1 (en) 2020-01-03 2021-05-20 Zte Corporation Methods and devices for enhancement on sounding reference signal (srs) transmission signaling
EP4070604A4 (en) * 2020-01-03 2022-11-23 ZTE Corporation METHODS AND DEVICES FOR IMPROVING SOUNDING REFERENCE SIGNAL (SRS) TRANSMISSION SIGNALING
US11916815B2 (en) 2020-01-03 2024-02-27 Zte Corporation Methods and devices for enhancement on sounding reference signal (SRS) transmission signaling

Also Published As

Publication number Publication date
CN105812088A (zh) 2016-07-27

Similar Documents

Publication Publication Date Title
WO2016107286A1 (zh) 探测参考信号srs发送方法、装置及接收方法、装置
US11757680B2 (en) Reference signal sending and receiving methods, device and storage medium
US10440714B2 (en) Frequency domain resource configuration method and apparatus
RU2727795C2 (ru) Сигнализация управления в совместно используемой среде связи
EP3155859B1 (en) Wireless communications over unlicensed radio frequency spectrum
CN105122861B (zh) 小规模小区中的接收方法和用户设备
CN108781431B (zh) 用于针对发现信号传输调度寻呼消息的网络节点、方法和计算机程序产品
JP2020501431A (ja) ページングメッセージを受信する方法及び無線機器
JP6050898B2 (ja) 協調セルのサウンディング参照信号リソース設定方法及び装置
US11343046B2 (en) Method and device for receiving and sending reference signal, and computer-readable storage medium
CN113475137A (zh) 用于新无线电配置的上行链路(ul)的时间资源
TWI640215B (zh) 經由錨定載波的小區存取方法和裝置
US11456904B2 (en) Numerologies for distributing an excess cyclic prefix during orthogonal frequency-division multiplexing
US20160330739A1 (en) Mobile communications network, communications device and methods with nested carrier aggregation
KR20180095495A (ko) 반송파 호핑 방법, 단말기 및 기지국
WO2018081973A1 (zh) 传输信号的方法、终端设备和网络设备
WO2019062647A1 (zh) 探测参考信号的资源分配方法及装置
US20190124650A1 (en) Method and apparatus for sending and receiving control signaling in communications system
US20220200769A1 (en) SRS Transmission Method And Apparatus
US11502801B2 (en) Adaptation of ON/OFF mask for NR with different numerologies
EP3636019B1 (en) Communication device and method for indicating a preference based on the device power consumption or on performance of carriers
WO2016161816A1 (zh) 一种数据传输方法、装置及计算机存储介质
CN109327868B (zh) 小区测量方法及装置、小区切换方法及装置
JP2022516934A (ja) 未ライセンススペクトルにおけるアップリンク送信のためのリソース割り当て
US20220278783A1 (en) Base station, method, program, and recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15874969

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15874969

Country of ref document: EP

Kind code of ref document: A1