WO2019037725A1 - 低温等离子双电场辅助气相反应合成化合物的方法和装置 - Google Patents

低温等离子双电场辅助气相反应合成化合物的方法和装置 Download PDF

Info

Publication number
WO2019037725A1
WO2019037725A1 PCT/CN2018/101589 CN2018101589W WO2019037725A1 WO 2019037725 A1 WO2019037725 A1 WO 2019037725A1 CN 2018101589 W CN2018101589 W CN 2018101589W WO 2019037725 A1 WO2019037725 A1 WO 2019037725A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric field
corona discharge
gas
discharge electric
negative
Prior art date
Application number
PCT/CN2018/101589
Other languages
English (en)
French (fr)
Inventor
夏亚沈
陈锋
马晓迅
Original Assignee
海加控股有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海加控股有限公司 filed Critical 海加控股有限公司
Publication of WO2019037725A1 publication Critical patent/WO2019037725A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/76Gas phase processes, e.g. by using aerosols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the invention belongs to the technical field of plasma-assisted chemical reactions, and in particular relates to a method and a device for synthesizing organic compounds and inorganic compounds by low-temperature plasma double electric field assisted gas phase reaction.
  • the plasma is a gas molecule that is excited by energy such as heat or electric field to form an assembly of electrons, ions, atoms, radicals, molecules, etc., and the number of positive and negative charges is substantially equal, so it is called plasma.
  • plasma energy state temperature and ion density, it can be divided into high temperature, heat and cold plasma.
  • electrons may have kinetic energy of 5 eV or more, and molecules, radicals, atoms, and the like may be in a range from room temperature to several hundred degrees.
  • Electrons with sufficient energy can be inelastically collided with gas molecules to convert them into active particles such as excited particles, free radicals (or atoms) and ions, which activate the reactants and often make catalyzed reactions that are dynamically difficult to carry out. It is carried out at a lower temperature.
  • Common cold plasma generation techniques include silent discharge, corona discharge, glow discharge, microwave discharge, and radio frequency discharge.
  • the silent discharge and the corona discharge can generate a cold plasma at normal pressure.
  • Corona discharge uses asymmetric electrode discharge to generate high-energy electrons at low temperatures, while silent discharge is a gas discharge with an insulating medium between the electrodes. The insulating medium can avoid spark discharge or arc discharge between the electrodes.
  • the apparatus of the present invention includes a reactor having a plasma region of two different corona discharge electric fields, such as a first electric field and a second electric field connected in series, wherein an alternating current is provided in the first electric field
  • the halo discharge electric field or the positive corona discharge electric field sets a negative corona discharge electric field in the second electric field, that is, strong oxidation occurs under the action of electrons, and then strong reduction and reforming are performed to generate a target product.
  • the corona discharge electric field or alternating positive corona discharge electric field may use various gas molecules, for example CH 4, CO 2, CO, O 2, H 2, H 2 S, H 2 O, SO 2 and NO x (including e.g.
  • the molecules, atoms, ions and/or free radicals of the gas tend to entrain electrons in a large group of electrons that are densely erupted, rapidly aggregate collisions, and are forcedly reduced and reformed into more stable products, for example, Including one or more of the following organics, such as aliphatic hydrocarbons (such as heptane, hexadecane, 18 alkane and 20 alkane), high carbon ether (such as ethylene glycol but dodecyl ether), high alcohol (such as ten) Glycol, tetradecanol), high carbon ester (such as methyl hexadecanate, methyl octadecanoate, dibutyl phthalate, diisooctyl phthalate, methyl oleate, linoleic acid Methyl ester, etc.), lower alcohols (such as CH 3 (OH), C 2 H 5 (OH), etc.) and CO(NH 2 ) 2
  • the invention provides a method for plasma double electric field assisted gas phase reaction, the method comprising the steps of: introducing a reaction gas into a reactor, the reactor containing a corona discharge double electric field, the double electric field comprising a first electric field and a a second electric field, the first electric field is a positive corona discharge electric field, or an alternating corona discharge electric field, or other electric field source that provides sufficient energy to oxidatively decompose the reaction gas molecules into atoms, ions, radicals, etc., the second electric field is Negative corona discharge electric field.
  • the positive corona discharge electric field is a high voltage positive DC corona discharge electric field, and is also preferably a high frequency high voltage positive DC corona discharge electric field.
  • the negative corona discharge electric field is a high voltage negative DC corona discharge electric field, and is also preferably a high frequency high voltage negative DC corona discharge electric field.
  • the invention adopts a non-thermodynamic equilibrium plasma technology, and the gas molecules are excited by the electric field energy to form an assembly of electrons, ions, atoms, radicals and molecules.
  • electrons can have a kinetic energy of about 4 to 6 eV, and electrons with sufficient energy can be inelastically collided with gas molecules to convert them into active particles such as excited particles, radicals (or atoms) and ions.
  • Active particles such as excited particles, radicals (or atoms) and ions.
  • Corona discharge can generate plasma under normal pressure discharge by using an asymmetric electrode.
  • the dielectric barrier discharge can generate repeated electrons and media collisions at a normal pressure or even higher than atmospheric pressure in a slit of an insulating medium to increase current density. Strengthen the electric field strength to cause a fast and efficient chemical reaction.
  • the internal electron velocity of the plasma generated by this method is very fast, the thermodynamic temperature is very high (for example, 11000K), and the gas temperature is close to room temperature, thereby forming a non-equilibrium thermodynamic system, which causes the reaction system to be free from the thermodynamic equilibrium composition law, and maximizes All the reactants are converted into products.
  • the electrons ejected by the electrode have a sufficiently high energy to excite, dissociate and reform the reactant molecules, causing the reaction molecules and ions to fully react in a short time to be converted into products; on the other hand, the reaction gases are maintained.
  • Low temperature, or near room temperature allows low temperature gas molecules to efficiently obtain the thermodynamic energy required for chemical decomposition or synthesis to react quickly, thereby reducing the energy consumption of unnecessary high temperature and high pressure processing.
  • the alternating corona discharge electric field or the positive corona discharge electric field and the negative corona discharge electric field of the present invention are not particularly limited, and any plasma source known in the prior art can be used in the present invention.
  • the main function of the alternating corona discharge electric field or the positive corona discharge electric field is oxidation and reforming to decompose gas molecules into ions and other free radicals, which actually constitutes a strengthened gas oxidation electric field.
  • Any gas molecules and charged particles are forcibly oxidized by the influence of a positive ion field or an alternating electric field.
  • this corona discharge double electric field can reform or envelop high-energy electrons into the decomposed molecules or extra-ions of the ions to produce new particles with different bond energies, making them a storage medium for electrical energy.
  • This corona discharge electric field plasma assisted reaction process technique makes it possible to artificially apply the polarity of a positive or negative electric field to effectively perform a chemical process of strong oxidation or strong reduction.
  • the gas may undergo decomposition or oxidation in the positive half of the alternating corona discharge electric field, and reduction reforming will be performed in the negative lower half band.
  • the polarity of such electric fields alternates rapidly and rapidly at high frequencies. Since the alternating frequency is too high (such as 20 kHz), and some products are recombined for a longer time than the reaction molecules, the oxidatively decomposed particles do not necessarily have time to respond to changes in the negative electric field, even if some particles are present.
  • the negative half-band reduction reforming compound is also immediately decomposed in the immediately subsequent positive polarity band, so that a stable product cannot be obtained, and thus it is impossible to achieve stable product preparation by separately setting an alternating corona discharge electric field. Moreover, a large amount of experimental evidence does show that the total effect of the alternating corona discharge electric field is often close to that of the positive corona discharge electric field.
  • a reactive gas is introduced into the above reactor, first through an alternating corona discharge electric field or a positive corona discharge electric field, and then through a negative corona discharge electric field to eject electrons to supply energy to the gas molecules.
  • CO 2 and electrons are mainly reacted to form CO and O 2 .
  • the corona discharge is performed on the electrode of the negative corona discharge electric field in the negative corona discharge electric field region, releasing a large amount of negative electrons to adhere to the surface of the molecule, and the CO and H 2 gas molecules capture these high-energy electrons to form high-energy electronegative gas ions, such as H - , CO - or H - like ions, these ions will be forced to be re-reduction reforming or other stable compound, such as organic or inorganic compounds, while releasing oxygen, so as to achieve the minimum energy of the system.
  • the reactive gases include, but are not limited to CH 4, the CO 2, CO, O 2, H 2, H 2 S, H 2 O, SO 2 and NO X (NO or comprise e.g. NO 2) at least
  • the source thereof is not particularly limited, for example, it may be from a gas generated by a combustion device, a carbon source energy gas containing methane, or a gas generated by a gas generating device, such as natural gas, coalbed methane, biogas, shale gas, water gas. , coke oven gas, flue gas, car exhaust and so on.
  • the reaction gas is specifically: coalbed methane and water vapor, or shale gas and oxygen or carbon dioxide, or biogas, or coke oven gas, or flue gas and water vapor, or water gas optionally mixed with hydrogen or Syngas.
  • the reaction gas is reformed to obtain a mixed gas, and the content of each component in the product obtained according to the difference of the raw material gas is slightly different, but under normal operating conditions, the reformed mixed gas is condensed and separated by a condenser. It is made into two phases of gas and liquid.
  • the reaction mixture gas mainly containing CO As an example, after the mixed gas obtained by the reforming is separated by condensation, the gas phase is still mainly CO which is reacted in the future, and the main product in the liquid phase is mainly realized by the realization.
  • the strength of the plasma electric field in the reaction device is determined; for example, when the reaction electric field is a strong electric field, it produces organic compounds such as aliphatic hydrocarbons, high carbon ethers, higher alcohols, higher carbon esters; when the reaction electric field is a weak electric field, It mainly produces lower alcohols such as ethanol and methanol.
  • a plurality of dual electric field reactors may be connected in series to further reform the unconverted gas components to synthesize the target product; for example, for more synthetic organic compounds and inorganic compounds, it may be directly in the reactor. Hydrogen or water vapor is added to reform the reaction gas. In this way, almost all of the carbon oxides can be converted into organic compounds step by step. For the same reason, the other target products required are carried out in the same manner, such as directly adding steam, reforming the reaction gas, and the like.
  • the AC-negative double electric field and the positive-negative double electric field may be more widely used, one can reversely install the double electric field of the corona discharge according to the needs of production, forming a negative-positive electric field, which satisfies the gas reduction first, and then Decompose the requirements for reorganization.
  • the first electric field is a negative electric field, in which CO 2 and water vapor are first reduced to produce ethanol, and then in a second positive corona field, ethanol is decomposed into CO and hydrogen, and CO is separated. After that, pure hydrogen is obtained to achieve the purpose of hydrogen production, which is then used to drive a vehicle hydrogen fuel cell or provide a large-scale supply of hydrogen fuel.
  • the apparatus used in the present invention is not particularly limited, and as described above, the alternating corona discharge electric field or the positive corona discharge electric field and the negative corona discharge electric field may be any known devices of the prior art.
  • the dual electric field device of the present invention is as follows:
  • the device has a double electric field of corona discharge, wherein the first electric field is an alternating current corona discharge electric field or a positive corona discharge electric field, or other electric field that provides sufficient energy to oxidize various gas molecules into atoms, ions, radicals, and the like.
  • the source, the second electric field is a negative corona discharge electric field.
  • the first electric field is a positive corona discharge electric field.
  • the positive corona discharge electric field is a high voltage positive DC corona discharge electric field, such as a high frequency high voltage positive DC corona discharge electric field.
  • the negative corona discharge electric field is a high voltage negative DC corona discharge electric field, such as a high frequency high voltage negative DC corona discharge electric field.
  • the positional relationship between the first electric field and the second electric field is not particularly limited.
  • the first electric field may be located at an upper portion of the device or may be located at a lower portion of the device;
  • the second electric field is located in the lower portion of the device or in the upper portion of the device.
  • the gas may first pass through the first electric field, and the product mixture obtained by the first electric field may enter the second electric field, or may first pass through the second electric field, and then the product mixture obtained by the second electric field is re-entered.
  • the first electric field, the different electric field setting sequence can achieve different gas processing purposes.
  • the sequence of the gas through the corona discharge double electric field is set to: first enter the alternating corona discharge electric field or positive corona discharge electric field and then enter the negative corona discharge electric field, that is, alternating current-negative corona double electric field or positive-negative corona
  • the double electric field; or the sequence of the gas passing through the double electric field is set to: first enter the negative corona discharge electric field and then enter the alternating corona discharge electric field or the positive corona discharge electric field, that is, the negative-alternating corona double electric field or the negative-positive corona double electric field.
  • the device has a housing in which a reaction chamber is disposed, wherein at least one of the reaction chambers has an alternating corona discharge electric field or a positive corona discharge electric field, and at least one other reaction chamber has a negative corona discharge electric field at which the corona
  • the center of the discharge electric field is provided with an electrode or a metal rod, an alternating corona discharge electric field source or a positive corona discharge electric field source and a negative corona discharge electric field source are supplied to the electrode or the metal rod; the electrode or the metal rod provides high energy electrons which can be adsorbed to the gas.
  • the housing of the device is grounded.
  • the device has an air inlet and an air outlet, wherein the air inlet is for charging a gas into a reaction chamber of a corona discharge double electric field, and the air outlet is for removing the gas product.
  • a condensing separator in communication with the gas outlet is provided outside the reactor, the condensing separator having a liquid outlet and a gas outlet.
  • the product of the dual electric field device of the present invention is determined by the electric field strength, and when it is a strong electric field, it produces organic compounds such as aliphatic hydrocarbons, high carbon ethers, higher alcohols, higher carbon esters, and inorganic compounds;
  • the electric field is a weak electric field, it mainly produces lower alcohols such as ethanol and methanol.
  • the intensity of the plasma electric field is related to the applied voltage, the distance between the positive and negative electrodes, and whether or not the dielectric medium is added. Therefore, those skilled in the art can adjust the above characteristics in the dual electric field device according to actual production requirements to obtain a strong electric field or a weak electric field to produce different organic or inorganic substances.
  • the following are several specific examples of the strong electric field or the weak electric field according to the present invention.
  • the reaction chamber is a metal cylindrical reaction chamber or a metal tubular reaction chamber; a center electrode or a central metal rod is disposed in the center of the metal cylindrical reaction chamber or the metal tubular reaction chamber, and the metal cylindrical reaction A counter electrode or a relative metal rod is disposed on the outdoor wall of the chamber or the metal tubular reaction chamber.
  • a strong electric field is generated in the double electric field of the corona discharge;
  • a positive electric field in the strong electric field can be used for oxidizing and decomposing gas molecules, and
  • a negative electric field is mainly used for Reduction and recombination into organic compounds, such as aliphatic hydrocarbons, higher carbon ethers, higher alcohols, higher alcohols, etc., can also be used to synthesize inorganic compounds;
  • the center electrode or the central metal bar is connected to a negative electrode of a negative corona discharge electric field source, and the opposite electrode or the opposite metal bar is connected to the negative electrode of the negative corona discharge electric field source to form a strong negative electric field; and/or the center electrode or The central metal rod is connected to the alternating corona discharge electric field source or the positive corona discharge electric field source positive electrode, and the opposite electrode or the opposite metal rod is connected to the alternating corona discharge electric field source or the positive corona discharge electric field source negative electrode to form a strong positive electric field.
  • the reaction chamber is a metal cylindrical reaction chamber or a metal tubular reaction chamber; a center electrode or a central metal rod is disposed at the center of the metal cylindrical reaction chamber or the metal tubular reaction chamber at a distal end (such as the earth)
  • the opposite electrode or the opposite metal rod is disposed, and at this time, a weak electric field is generated in the double electric field of the corona discharge; the weak electric field is used to form an organic compound such as a lower alcohol methanol or ethanol.
  • the center electrode or the central metal rod is connected to a negative electrode of a negative corona discharge electric field source, the opposite electrode or the opposite metal rod is connected to the ground to form a weak negative electric field; and/or the center electrode or the central metal rod and the alternating current
  • the source of the corona discharge electric field or the source of the positive corona discharge electric field is connected, and the opposite electrode or the opposite metal rod is connected to the earth to form a weak positive electric field.
  • the alternating corona discharge electric field or the positive corona discharge electric field and the negative corona discharge electric field are arranged above and below, and the electric field first introduced by the gas is disposed at a lower portion, that is, a lower portion of the device, and an electric field that is introduced after the gas is disposed at an upper portion, that is, the device In the upper part, the air inlet is at the bottom of the device and the air outlet is at the top of the device.
  • a thin layer of insulating medium may be placed between the center electrode or the central metal rod and the outer wall of the metal cylindrical reaction chamber or the metal tubular reaction chamber, and the insulating medium cylinder may be made of materials with different dielectric constants.
  • the insulating medium cylinder may be made of materials with different dielectric constants.
  • a gas nip channel is formed between the thin layer tube of the insulating medium and the outer wall, that is, a discharge structure forming a dielectric barrier (DBD), reinforcing the metal circle
  • DBD dielectric barrier
  • the diameter and the number of the metal cylindrical reaction chamber and the metal tubular reaction chamber are not particularly limited, and may be a conventional choice of those skilled in the art, for example, as shown in FIG.
  • two or more metal cylinders or metal tubes may be used to form the reaction tube; when a plurality of metal cylinders or metal tubes are selected, there is no influence between them, so there is no arrangement thereof. In particular, it is sufficient to make a reasonable selection according to the size of the device.
  • the number of metal cylindrical reaction chambers or metal tubular reaction chambers is one or more, and a plurality of metal cylindrical reaction chambers or metal tubular reaction chambers are arranged to form a cylinder. Or tubular tube group.
  • the diameter of the metal cylinder reaction chamber or the metal tube reaction chamber is not particularly limited, and may be, for example, a metal cylinder or a metal tube having a large diameter (for example, more than 70 mm), or a larger number and a larger diameter. Small (such as 30-70mm) metal cylinder or metal tube; the specific choice also needs to be based on the electric field strength and the amount of gas to be treated;
  • the relative size of the metal cylinder or metal tube diameter also affects the electric field strength within the reaction chamber.
  • a center electrode or a central metal rod is disposed in the center of the metal cylindrical reaction chamber or the metal tubular reaction chamber, and an opposite electrode or a relative metal rod is disposed on the metal cylindrical reaction chamber or the metal tubular reaction chamber wall, if Larger size metal cylinder or metal tube, where the electric field positive and negative poles are larger than the smaller size metal cylinder or metal tube, so the internal electric field strength is smaller than the smaller size metal cylinder or metal tube.
  • a gas filter is disposed between the first electric field and the second electric field, near the air inlet and the air outlet.
  • the gas filter is preferably a material having physical and/or chemical adsorption functions, such as a fiber filter, a packed bed of particles (such as activated carbon or molecular sieve), a packed bed of tourmaline particles (generally having a decomposition of moisture in the air to generate a trace amount of hydrogen). The function of reducing ozone).
  • a baffle is arranged between the upper and lower bottom surfaces of the corona discharge double electric field and the device casing to make the gas passage unique.
  • the number of the center electrodes is one or more, and the electrodes may be, for example, serrated tip electrodes to generate an alternating corona discharge electric field or a positive corona discharge electric field around the electrodes and a negative corona discharge electric field around the electrodes. Double electric field.
  • the electrode is a linear or needle-shaped element with a sharp point at the tip of the electrode.
  • the cusp provides a very high charge area around it.
  • the electrode can be nickel, iron, steel, tungsten, carbon or platinum.
  • the invention is not limited to a particular type of electrode material, any material that can form a corona discharge to produce electrons.
  • the electrodes in the reaction chamber generate electrons by forming an alternating corona discharge electric field or a positive corona discharge electric field or a negative corona discharge electric field at the tip of the electrode.
  • the electrons are generated in the corona of the electrode tip. These electrons are adsorbed on the chemical gas molecules around the tip of the electrode.
  • the metal material of the electrode suitable for the corona discharge electric field it takes about 4 energy to migrate electrons from the surface of the corona electrode. -6eV.
  • the electrode can be of the following materials: steel, nickel, iron, tungsten, carbon or platinum.
  • the electrode material of the present invention is not particularly limited, and any material capable of forming a corona to generate electrons may be used.
  • the electrode may also be coated with a metal catalyst, and available noble metal catalysts are: gold, nickel, ruthenium, cobalt, phosphorus, ruthenium and platinum. Any precious metal catalyst capable of generating electrons can be used.
  • the shape of the electrode may be needle shape or linear. If the electrode has a sharp point, the potential difference of the gas adjacent to the sharp point will be much higher than the other locations around the electrode. Eventually, the resulting high-potential electronegative ions will transfer the charge to the adjacent low-potential region, which will recombine to form gas molecules.
  • the principle and arrangement of the metal rod are the same as the electrode.
  • the metal rod is selected from the group consisting of thin metal rods.
  • Electronegative gas ions can also be generated by other non-thermal or thermal plasma techniques or negative ion sources, including high frequency methods such as radio frequency plasma, microwave plasma inductively coupled plasma, and the like, such as electron beam (EB). Any method that produces an electronegative gas ion having sufficient energy and capable of reacting with a gas can be used in the present invention.
  • EB electron beam
  • the operating conditions of the method and apparatus for plasma assisted gas phase reaction of the present invention are as follows: it can be operated at room temperature under normal pressure, and the reactants are fed into the apparatus in a gaseous form, and the amount of processing gas can be arbitrarily selected, and the power input will be more in the device.
  • the number of discharge metal cylinders or metal tubes and the amount of gas treatment increased, and the voltage may be 3,000 to 300,000 volts, preferably 10,000 to 200,000 volts, for example, 15,000 volts, and the frequency is 15 to 35 kHz, preferably about 20 kHz, 25 kHz, or 35 kHz.
  • the main component of the gas introduced into the dual electric field device is CH 4
  • the methane, oxygen concentration sensor and valve installed in the intake line before the reaction gas enters the dual electric field device. Once the sensor detects that the concentration of methane gas and oxygen in the mixture is close to the explosion limit, the valve will be closed to prevent the methane concentration from burning.
  • the explosion point concentration eliminates any possibility of entering the reactor with an oxygen-containing explosive mixture.
  • the methane and oxygen concentrations are in a safe zone, the gas will pass through the valve into the dual electric field device.
  • the product mixture produced by the dual electric field device contains a larger amount of water vapor than ethanol
  • the product mixture is passed to a condensing separator for gas-liquid separation, and residual methane and other gases that cannot be condensed are recycled.
  • the recovery is involved in reforming, and the liquid containing ethanol and water is separated from the gas and sent to the next stage, such as an atmospheric distillation column for rectification to form a high concentration of ethanol.
  • the aqueous ethanol solution reformed by the apparatus of the present invention can be subjected to rectification to achieve an ethanol concentration of 83% or more, preferably up to 95%.
  • the present invention also provides the use of the above dual electric field device in the preparation of an organic compound or an inorganic compound.
  • the carbon source-containing gas is a main methane-containing energy gas or a gas mixture mainly containing CO and CO 2 , which is reformed into an organic compound.
  • the carbon source-containing gas is, for example, coalbed methane, gas, shale gas, biogas, flue gas, coke oven gas, refinery off-gas, automobile or internal combustion engine exhaust, water gas, syngas, natural gas, and the like.
  • the invention also provides for the use of a dual electric field device in the preparation of hydrogen.
  • the apparatus first reduces CO 2 and water vapor to produce ethanol, then decomposes the ethanol into CO and hydrogen, and after separating the CO, obtains hydrogen.
  • the invention also provides for the use of the dual electric field device in purifying a cleaning gas.
  • the device is used for decontamination, decarbonization, desulfurization and/or denitrification of exhaust gases containing CO, CO 2 , sulfides and/or nitrides.
  • FIG. 1 is a schematic view showing a specific configuration of a device for plasma assisted gas phase reaction according to the present invention.
  • FIG. 2 is a specific process flow diagram of the present invention.
  • FIG. 3 is another specific process flow diagram of the present invention.
  • Gas as used in the specification and claims refers to those gases in which atoms or molecules are capable of capturing additional electrons to form electronegative ions.
  • Other technical and scientific terms of this specification have the general meaning as known in the art.
  • the present invention employs an electrode to provide an alternating corona discharge electric field or a positive corona discharge electric field or a negative corona discharge electric field. It should be understood that the present invention is not limited thereto, and it is also applicable to the present invention if the electrode is capable of generating a plasma discharge to generate electrons in a sufficiently high energy state.
  • FIG. 1 A specific configuration diagram of the apparatus for plasma assisted gas phase reaction according to the present invention is shown in FIG.
  • the reaction gas preferentially passes through a high frequency alternating current corona discharge electric field or a high frequency high voltage positive direct current corona discharge electric field, and is converted into positive ions and free radicals in the electric field, and then passed through a high frequency high voltage negative direct current corona discharge.
  • An electric field is reduced and converted into a product in the electric field.
  • the reactor has a dual electric field of corona discharge, i.e., a high frequency alternating current corona discharge electric field or a high frequency high voltage positive direct current corona discharge electric field and a high frequency high voltage negative direct current corona discharge electric field.
  • the voltage is a high voltage, such as 15,000 volts.
  • the high frequency is a high frequency voltage, such as 25 kHz.
  • the two corona discharge electric fields can provide a sufficiently high energy, such as 5 eV, to convert the gas molecules.
  • Device 117 has an outer casing that can be made of carbon steel, stainless steel, or other suitable materials.
  • Two cylinder or tubular reaction chambers 111 and 118 are disposed within the apparatus 117 formed by the outer casing, wherein the material of the cylindrical or tubular reaction chamber may be made of stainless steel, carbon steel or copper and other metals.
  • the center of each cylinder or tubular reaction chamber is provided with center electrodes 112 and 116, which are needle-like or sawtooth rod electrodes with tips.
  • the center electrode 116 in the first electric field applies a high frequency positive DC voltage (or AC) to form a high frequency, high voltage, positive DC corona discharge electric field (or high frequency alternating current corona discharge electric field).
  • a high frequency negative DC voltage is applied to the center electrode 112 in the second electric field to form a high frequency high voltage negative DC corona discharge electric field.
  • the voltage (strength) is selected to satisfy the condition that the gas delivered to the device can be highly ionized in the metal cylinder or metal tubular reaction chambers 111 and 118.
  • An insulating medium cylinder 122 is disposed between the center electrode and the cylinder to form a dielectric barrier discharge (DBD) in the electric field, which can provide a narrow collision reaction zone to enhance decomposition of all molecules into radicals or ions to form product molecules. Enhance the electric field strength of the plasma assisted reaction process.
  • the material of the insulating medium tube 122 is, for example, glass, ceramic, silicone, polytetrafluoroethylene sheet or the like.
  • the electrode material of the center electrodes 112 and 116 may be steel, tungsten, nickel, copper, silver, iron, carbon or platinum, or any other material that can be used for the electrodes and that generates corona around the electrodes to generate electrons.
  • the electrode can also be coated with a metal catalyst. Available noble metal catalysts are: gold, nickel, ruthenium, cobalt, rhodium and platinum. Any precious metal catalyst capable of generating electrons can be used.
  • a positive corona is formed at the tip end of the center electrode 116 to form a positive corona field discharge, and high energy electrons hit the gas molecules if added.
  • An insulating medium cylinder 122 can form a DBD to enhance the electric field strength to enhance the oxidation reaction.
  • a negative corona is formed at the tip end of the center electrode 112 to form a negative corona field discharge, mainly for the reduction and reforming reaction.
  • the high piezoelectricity is supplied to the center electrodes 112 and 116 through the cable electrode distribution plates 115 and 123 for discharge.
  • Two cylinder or tubular reaction chambers 111 and 118 are connected to the opposite electrodes 120 and 121, respectively.
  • the outer casing 117 of the device is connected to the ground.
  • Gas filters 127, 128, and 129 are provided at the opening 113 at the bottom of the device, the opening 110 at the top of the device, and the communication at the double electric field, respectively, which can be used for a gas filter having the function required to adsorb harmful chemicals and particles. .
  • the gas mixture is fed into the corona discharge double electric field in the device through an opening 113 at the bottom of the device.
  • Some gas molecules can receive and discharge electrons for oxidation and reforming in a high frequency alternating current corona discharge electric field or a high frequency high voltage positive direct current corona discharge electric field.
  • a high frequency, high voltage, negative DC corona discharge electric field gaseous oxides or ions can be reduced and converted again.
  • the product is removed by the opening 110 at the top of the apparatus and by a condenser 133 where the liquid can be discharged through port 125 and the gas can be discharged through port 124.
  • the center electrode 116 is connected to the positive electrode of the positive corona discharge electric field source, and the opposite electrode 120 opposite to the center electrode 116 is disposed on the reaction chamber wall and connected to the negative electrode of the positive corona discharge electric field source.
  • a strong positive electric field is formed within the positive corona discharge electric field.
  • the center electrode 112 is connected to the negative electrode of the negative corona discharge electric field source, and the opposite electrode 121 opposite to the center electrode 112 is disposed on the reaction chamber wall and connected to the positive electrode of the negative corona discharge electric field source, forming a strong negative in the negative corona discharge electric field. electric field.
  • the center electrode 116 is connected to the positive electrode of the positive corona discharge electric field source, and the opposite electrode 120 is grounded to form a weak positive electric field in the positive corona discharge electric field.
  • the center electrode 112 is connected to the negative electrode of the negative corona discharge electric field source, and the opposite electrode 121 is grounded to form a weak negative electric field in the negative corona discharge electric field.
  • the gas of different sources can be reformed, and according to the electric field strength, for example, an organic compound such as an aliphatic hydrocarbon, a high carbon ether, a high carbon alcohol, a high carbon ester, and N 2 , O are formed under a strong electric field.
  • an organic compound such as an aliphatic hydrocarbon, a high carbon ether, a high carbon alcohol, a high carbon ester, and N 2 , O are formed under a strong electric field.
  • An inorganic compound such as H 2 SO 4 or NH 3 ; for example, a lower alcohol is formed under a weak electric field.
  • the flue gas which is composed of nitrogen, carbon oxides (such as carbon dioxide, carbon monoxide), oxygen, water vapor, nitrogen oxides (such as nitrogen monoxide, nitrogen dioxide) and sulfides (such as hydrogen sulfide, sulfur dioxide, inorganic pollutants, etc. accounted for more than 99%; dust, dust and sulfur dioxide content less than 1%) and water vapor into the device, the center electrode 116 and the AC corona discharge electric field in the device or
  • the positive electrode of the positive corona discharge electric field source is connected, and the opposite electrode 120 is grounded to form a weak positive electric field in the alternating corona discharge electric field or the positive corona discharge electric field.
  • the center electrode 112 is connected to the negative electrode of the negative corona discharge electric field source, and the opposite electrode 121 is grounded to form a weak negative electric field in the negative corona discharge electric field.
  • an alternating corona discharge electric field or a positive corona discharge electric field is first passed through a negative corona discharge electric field to provide a high energy electron generating gas reaction.
  • gas molecules can be activated to undergo decomposition and oxidation reactions to generate various components.
  • alternating corona discharge electric field or a positive corona discharge electric field mainly electrons collide with H 2 O vapor to generate OH and H atoms or H 2 , and CO 2 reacts with electrons to form CO and O 2 - , sulfide SO generating electrons plus H 2 is reacted with H 2 O 2 and oxygen gas O 2 SO 4 sulfuric acid liquid, in case of nitrogen oxides NO x decomposition electronics, may form N and O radicals; in a second field subsequent negative corona discharge, high negative electrical corona discharge negative electrode potential, the release of electrons, CO and H 2 gas molecules to capture these energetic electrons formed electrically negative gas ions with high energy, for example, a H -, CO -, or H - like ions, these ions will reforming Reduction to form ethanol and methanol to achieve minimum system energy.
  • N and O radicals form N 2 and O 2 - .
  • the specific reaction is as follows: carbon oxides, nitrogen oxides and sulfides in the flue gas may be combined with added water vapor, and oxygen contained in the flue gas may be in an alternating corona discharge electric field or a positive corona discharge electric field but Not limited to the following main reactions:
  • FIG. 2 A continuous process flow diagram for flue gas and steam reforming is shown in FIG. 2, specifically, flue gas and water vapor enter gas mixer 130, and gas enters reactor 117 through valve 132. After reforming, the ethanol-containing mixture will enter the water-cooled condensing separator 133 for gas-liquid separation, and the gas containing residual carbon oxides and which cannot be condensed will be recycled back to the gas mixer 130 for further reformation, containing ethanol and water. The liquid is separated from the gas and sent to the next stage, and the column of the atmospheric distillation column 134 is subjected to rectification. The volatile component at the top of the rectification column enters the collector 136 to obtain a high concentration ethanol solution of 80 to 95% or industrial alcohol. The high boiling water separated in the column of the rectification column can be sent to the steam heater 135 for reheating to generate steam for recycling.
  • the apparatus of the present invention can purify and recycle industrial exhaust gas including the above-mentioned flue gas, such as refinery off-gas, automobile or internal combustion engine exhaust.
  • the coke oven gas, the water gas and the syngas do not need to add another reaction gas because of the hydrogen source.
  • the dual electric field device of the present invention converts CO and CO 2 in these gases into an organic compound or an inorganic compound by using a hydrogen source, nitrogen.
  • the oxide is converted into an inert gas, and the sulfide is converted into a sulfuric acid droplet which is easy to separate or easily removed, which can clean and purify the environment and turn waste into treasure.
  • the water gas and/or syngas (5% CO 2 , 50% H 2 , 40% CO, 5% N 2 ) are in the dual electric field of the present invention (center)
  • the electrode 116 is connected to the positive electrode of the alternating corona discharge electric field or the positive corona discharge electric field source, and the opposite electrode 120 is grounded to form a weak positive electric field in the alternating corona discharge electric field or the positive corona discharge electric field.
  • the center electrode 112 and the negative corona discharge electric field The negative electrode of the source is connected, the opposite electrode 121 is grounded, and a weak negative electric field is formed in the negative corona discharge electric field.
  • the specific reaction is as follows: wherein the CO 2 in the alternating current corona discharge electric field or the positive corona discharge electric field will have the following main reactions:
  • the continuous process flow chart of water gas and/or syngas reforming is shown in Fig. 3.
  • the reaction gas of the gas includes water vapor, so the liquid product prepared is further subjected to rectification treatment, and the water obtained after the rectification is returned to the system again to realize the recycling of water, and the water gas and/or the treated water gas and/or
  • the reaction feed gas of the syngas does not need to be introduced with water vapor, so the specific procedure is as follows; the water gas and/or syngas enters the gas mixer 130, and the gas enters the reactor 117 through the valve 132.
  • the ethanol-containing mixture will enter the water-cooled condensing separator 133 for gas-liquid separation, and the gas containing residual carbon oxides and which cannot be condensed will be recycled back to the inlet 113 of the reactor 117 or into the gas mixer 130. Participating in reforming, the liquid containing ethanol is separated from the gas. After the water gas and/or syngas is passed into the reactor for a period of time, additional hydrogen may be supplied through the inlet 113 to further convert unreacted water gas and/or syngas gas.
  • the apparatus of the present invention can not only reform exhaust gas such as flue gas, such as water gas and/or syngas, but also reform the main CH 4 -containing carbon such as coal bed gas.
  • Source energy gas The methane in the coalbed methane may interact with the added water vapor and the oxygen contained in the coalbed methane in an alternating corona discharge electric field or a positive corona discharge electric field, but not limited to the following main reactions:
  • the main chemical reaction process is the same as the above-mentioned flue gas, and carbon monoxide and charged hydrogen anion will spontaneously synthesize ethanol and methanol, and emit negative oxygen ions.
  • the apparatus of the present invention can reform and purify any gas source containing a carbon source.
  • a gas source containing a carbon source.
  • coalbed methane, gas, shale gas, biogas, etc. reform the main component CH 4 of these gases; among them, biogas does not need to add other reaction gas, its main components methane and CO 2 can be double Reforming occurs in the electric field.
  • the shale gas reacts with O 2 or CO 2 in an alternating corona discharge electric field or a positive corona discharge electric field as follows:
  • the main components of the biogas, methane and CO 2 undergo the following main reactions in an alternating corona discharge electric field or a positive corona discharge electric field:
  • the present invention provides that when the double electric field in the plasma gas conversion device is a weak electric field, it can be used to prepare ethanol and/or methanol.
  • the apparatus converts a gas containing a carbon source such as CH 4 and/or CO, CO 2 or the like into ethanol and methanol.
  • the positive-negative corona double electric field or the cross-negative corona double electric field device of the present invention can be arranged in series, and the unreacted CH 4 or CO and CO 2 in the product mixture can be introduced into the next dual electric field device. Additional addition of water vapor or hydrogen is optionally continued to further convert the reaction gases to the final product. Such a cyclic conversion can achieve a high gas conversion rate.
  • the methane synthesis gas is converted into CO and H 2 to achieve a conversion rate of 45%, and in the subsequent negative electricity.
  • the conversion rate of syngas to ethanol is up to 90%. If four reactors are connected in series, methane can achieve a conversion of more than 95%.
  • the invention provides that when the double electric field in the plasma gas conversion device is a strong electric field, it can be used for preparing organic compounds such as aliphatic hydrocarbons, high carbon ethers, high carbon alcohols, high carbon esters, and N 2 , O 2 , H 2 .
  • An inorganic compound such as SO 4 or NH 3 .
  • CO and water vapor are introduced into the apparatus, wherein in the reaction chamber 118, the center electrode 116 is connected to the positive electrode of the positive corona discharge electric field source, and the opposite electrode 120 and the positive corona discharge electric field are The negative poles of the source are connected to form a strong positive electric field within the positive corona discharge electric field.
  • the center electrode 112 is connected to the negative electrode of the negative corona discharge electric field source, and the opposite electrode 121 is connected to the positive electrode of the negative corona discharge electric field source, and a strong negative electric field is formed in the negative corona discharge electric field, at this time, CO and water vapor.
  • the main component converted in the reactor is an organic compound of C 7 - C 20 , and the main components include heptane, diethyl phthalate, diisooctyl phthalate and the like.
  • the center electrode 112 is a stainless steel electrode
  • the opposite electrode 121 of the outer wall of the reaction chamber 111 is connected to the positive electrode of the power source, and a steel tube between the positive electrode and the negative electrode is inserted into the reaction chamber 111.
  • a silicone tube on the inner wall and a thin glass tube covering the stainless steel negative electrode (center electrode 112) serve as an insulating medium tube.
  • titanium dioxide particles are filled as a third insulating medium to form a dielectric barrier structure of the slit sandwich.
  • the reaction is carried out to form a C 3 - C 20 organic compound, and the main components include propane, methylbenzyl alcohol, hexadecane, 18-alkane, and the like.

Abstract

本发明提供了一种低温等离子双电场辅助气相反应合成化合物的方法和装置;本发明的方法是利用等离子辅助反应器中的两个不同电极性电晕放电电场以形成等离子双电场,利用电能将气体转化为气体分子、原子、离子和/或自由基,再经重整和还原后得到有机化合物如脂肪烃、高碳醚、高碳醇、高碳酯、低碳醇等等;还可以得到无机化合物如N2、O2、H2SO4、NH3等等。本发明的装置包括设置的具有两个不同电晕放电电场的等离子体区域的反应器,所述电晕放电电场例如是顺次连接的第一电场和第二电场,其中,在第一电场中设置交流电晕放电电场或正电晕放电电场,在第二电场中设置负电晕放电电场,即先在电子作用下发生强氧化,然后再实施强还原和重整,生成目标产品。

Description

低温等离子双电场辅助气相反应合成化合物的方法和装置
本申请要求2017年8月21日提交的美国临时申请US 62605621的优先权,要求2017年10月18日提交的中国申请号为CN 2017109784770的优先权;要求2017年9月7日提交的中国申请号为CN 2017108024578的优先权;要求2017年9月7日提交的中国申请号为CN 2017108024597的优先权;要求2017年9月7日提交的中国申请号为CN 2017108018083的优先权;要求2017年9月7日提交的中国申请号为CN 2017108018079的优先权;要求2017年9月7日提交的中国申请号为CN 2017108017108;其全部内容全文并入本申请中作为参考。
技术领域
本发明属于等离子辅助化学反应技术领域,具体涉及一种低温等离子双电场辅助气相反应合成有机化合物和无机化合物的方法和装置。
背景技术
等离子体是气体分子接受热或电场等能量而激发,形成电子、离子、原子、自由基及分子等组成的集合体,其中的正负电荷数基本相等,故称为等离子体。根据等离子体能量状态、温度和离子密度,可分为高温、热和冷等离子体。在冷等离子体中,电子可具有5eV以上的动能,分子、自由基及原子等可处在从室温至数百度范围内。具有足够能量的电子可与气体分子发生非弹性碰撞使其转化为激发态粒子、自由基(或原子)及离子等活性粒子,使反应物活化,常常能使动力学上较难进行的催化反应在较低温度下进行。
常见的冷等离子体发生技术包括无声放电、电晕放电、辉光放电、微波放电和射频放电等。其中无声放电和电晕放电能够在常压产生冷等离子体。电晕放电利用非对称电极放电,可在低温下产生高能电子,而 无声放电是电极间存在绝缘介质的气体放电,绝缘介质可避免电极间发生火花放电或电弧放电。
目前,冷等离子体技术已成为环境治理、能源开发等领域的前沿热点课题,利用等离子体反应净化空气,脱硫脱硝,转化气体等研究已广泛开展,但是从未见报道涉及上述冷等离子体发生技术的组合,尤其涉及等离子体的电场组合装置及应用。
发明内容
本发明的目的是提供一种更为有效的低温等离子双电场辅助气相反应合成化合物的方法和装置;本发明的方法是利用等离子辅助反应器中的两个不同电极性电晕放电电场以形成等离子双电场,利用电能将气体转化为气体分子、原子、离子和/或自由基,再经重整和还原后得到有机化合物如脂肪烃、高碳醚、高碳醇、高碳酯、低碳醇等等;还可以得到无机化合物如N 2、O 2、H 2SO 4、NH 3等等。本发明的装置包括具有两个不同电晕放电电场的等离子体区域的反应器,所述电晕放电电场例如是顺次连接的第一电场和第二电场,其中,在第一电场中设置交流电晕放电电场或正电晕放电电场,在第二电场中设置负电晕放电电场,即先在电子作用下发生强氧化,然后再实施强还原和重整,生成目标产品。在交流电晕放电电场或正电晕放电电场中可以使用各种气体分子,例如CH 4、CO 2、CO、O 2、H 2、H 2S、H 2O、SO 2和NO x(例如包括NO或NO 2),在此电场内发生氧化或分解以产生各种活性组分,如O 3、H -、H、CH 3和CO,而在随后的负电晕放电电场中,氧化或分解产生的气体的分子、原子、离子和/或自由基在密集喷发的大量电子群中趋于夹带电子运动,迅速聚集碰撞,被强制还原和重整为更为稳定的产品,所述产品例如,可包括以下有机物的一种或多种,如脂肪烃(如庚烷、16烷、18烷和20烷)、高碳醚(如乙二醇但十二烷基醚)、高碳醇(如十二醇、十四醇)、高碳酯(如十六酸甲酯、十八酸甲酯、邻苯二甲酸二丁酯、邻苯二甲酸二异辛酯、油酸甲酯、亚油酸甲酯等)、低碳醇(如CH 3(OH),C 2H 5(OH)等)和CO(NH 2) 2,无机化合物如N 2、O 2、H 2SO 4、NH 3等。
本发明提供一种等离子双电场辅助气相反应的方法,所述方法包括如下步骤:将反应气体通入反应器,所述反应器含有电晕放电双电场,所述双电场包括第一电场和第二电场,所述第一电场是正电晕放电电场,或者交流电晕放电电场,或者其他可提供足够能量将反应气体分子氧化分解为原子、离子、自由基等的电场源,所述第二电场是负电晕放电电场。
优选地,所述正电晕放电电场是高压正直流电晕放电电场,还优选为高频高压正直流电晕放电电场。
优选地,所述负电晕放电电场是高压负直流电晕放电电场,还优选为高频高压负直流电晕放电电场。
本发明采用非热力学平衡等离子体技术,气体分子接受电场能量而激发,形成电子、离子、原子、自由基及分子等组成的集合体。在冷等离子体中,电子可具有大约4~6eV动能,具有足够能量的电子可与气体分子发生非弹性碰撞使其转化为激发态粒子、自由基(或原子)及离子等活性粒子,使反应物活化。电晕放电可利用非对称电极在常压放电下产生等离子体,介质阻挡放电可以在常压甚至高于大气压下,在一个绝缘介质的夹缝中放电产生重复的电子与介质碰撞,增加电流密度,强化电场强度,从而引起快速有效的化学反应。由此方式产生的等离子体内部电子速度很快,热力学温度很高(例如,11000K)而气体温度则接近室温,从而形成非平衡热力学系统,导致反应体系不受热力学平衡组成定律的限制,最大限度地将所有的反应物转化成为产品。一方面,电极喷发的电子具有足够高的能量使反应物分子激发、解离和重整,促使反应分子和离子在短时间内充分反应,转化成产物;另一方面,反应的气体又得以保持低温,或接近室温,可以让低温气体分子有效地获得化学分解或合成所需要的热力学能量迅速反应,从而减少不必要的高温高压加工的能耗。
应该指出,这样的双电场激励反应系统即可以放弃或减少使用催化剂,又使得尽量避免应用高温高压过程设备成为可能。在传统催化工艺当中,人们经常不得不通过高温高压来加热某种复杂的金属催化剂颗粒 以便激活金属催化剂材料表面的电子,从而构造大比表面积的激发态微电场来引导和压缩聚集颗粒表面周围的气体分子以便快速分解和重整。然而,本发明的等离子双电场辅助激励反应技术有可能人为地让所有气体氧化及还原反应在没有催化剂的情况下获得电能量,并在极性强力电磁场空间内达到正或负电磁化而迅速聚集,快速地实施分解和重整。这个方法也同时为反应气体能够在不受任何热力学平衡组成限制的条件下高效地氧化和还原,或分解和重整而达到稳定产品的终点,提供了一个热力学最为优化的选择和工艺机会。
本发明的交流电晕放电电场或正电晕放电电场和负电晕放电电场没有特别限定,任何现有技术已知的等离子源均可用于本发明。
根据本发明,在所述交流电晕放电电场或正电晕放电电场主要功能是氧化和重整反应,以将气体分子分解成离子和其它自由基,这实际上构造了一个强化的气体氧化电场,任何气体分子和带电粒子都会受到正离子场或交变电场的影响而被强制地进行氧化反应。随后在所述负电晕放电电场将负离子和分子还原和转化成新分子,即实际上构造了一个强化的还原电场,使得分子和带电粒子在密集的自由电子群中,获得电子被强制地还原和重整,不同的气体分子和带电粒子可以快速进行还原反应。事实上,这种电晕放电双电场可以重整或包裹高能电子到分解的分子或离子外轨道上,以产生具有不同键能的新粒子,使它们可以成为电能量的存储介质。这种电晕放电电场等离子辅助反应过程技术可以使人为地应用正或负电场的极性来有效地实施强氧化或强还原的化学过程成为可能。
应该指出,当第一个电场是交流电晕放电电场,气体在交流电晕放电电场的正电性的上半波段可发生的分解或氧化,在负的下半波段将进行还原重整。然而,这样的电场的极性是在高频率地交替快速变化的。由于交替频率太高(如20kHz),而有些产品分子重组的时间往往要比反应分子分解时间长,氧化分解的粒子不一定有时间对负极性电场的改变进行响应而还原,即使有部分粒子在负极性的下半波段还原重整成化合物也会立即再次在紧接着的正极性波段分解,从而无法达到稳定的产品, 故无法通过单独设置交流电晕放电电场来实现稳定产品的制备。而且,大量的实验证据也的确显示,交变电晕放电电场的总的效果常常与正电晕放电电场所能达到氧化分解效果相近。
根据本发明,将反应气体通入上述反应器中,先通过交流电晕放电电场或正电晕放电电场,再通过负电晕放电电场以喷发电子以提供能量到气体分子。在交流电晕放电电场或正电晕放电电场区域内提供电子轰击气体分子,从而分解气体分子或让分子失去电子,并在正电晕放电电场的作用下(电子将返流回正电极),化合物会失去氧原子,形成分解的小分子、正离子或自由基达到氧化。具体以CO 2为例,在该区主要是CO 2加电子反应生成CO和O 2。在负电晕放电电场区域内负电晕放电电场的电极进行电晕放电,释放大量负电子黏附于分子表面,CO和H 2气体分子捕获这些高能电子形成高能量的电负性气体离子,例如H -,CO -或H -等负离子,这些负离子将被强制再还原或重整成为另一种稳定的化合物,例如有机化合物或无机化合物,同时释放出氧气,从而达到系统能量最小。
本发明中,所述反应气体包括但不限于CH 4、CO 2、CO、O 2、H 2、H 2S、H 2O、SO 2和NO x(例如包括NO或NO 2)中的至少一种,其来源没有特别的限定,例如其可以来自燃烧装置产生的气体、含有甲烷的碳源能源气、或者气体发生装置产生的气体,例如为天然气、煤层气、沼气、页岩气、水煤气、焦炉煤气、烟道气、汽车尾气等等。
优选地,所述反应气体具体为:煤层气和水蒸气,或页岩气和氧气或二氧化碳,或沼气,或焦炉煤气,或烟道气和水蒸气,或任选与氢气混合的水煤气或合成气。
作为一个实例,以上述的气体为混合气,其在交流电晕放电电场或正电晕放电电场区域内,主要可能发生如下反应:
CO 2+e -====>CO+1/2O 2 -
CO+H 2O+e -====>CO 2+H 2 -
CH 4+H 2O+3e -====>CO+3H 2 -
CH 4+CO 2+2e -====>2CO+2H 2 -
CH 4+1/2O 2+2e -====>CO+2H 2 -
H 2O+e -<====>OH -+H +
2SO 2+2H 2O+3O 2+2e -====>2H 2SO 4+2O 2 -
NO x+x/2e -====>1/2N 2+x/2O 2 -
NO x+e -====>N·+xO·+e -
2H 2S+3O 2+e -====>2SO 2+2H 2O+e -
在负电晕放电电场区域内,主要发生如下反应:
H 2+2e -====>2H -<===>H 2 -
2N·+2O·+e -====>N 2+O 2 -
N 2+3H 2 -====>2NH 3 -
4NO+6H 2O+5e -====>4NH 3+5O 2 -
CO 2+2NH 3+e -====>CO(NH 2) 2+H 2O -
2CO+3H 2 -====>C 2H 5(OH)+O 2 -+5e -
CO+2H 2 -====>CH 3(OH)+2e -
(n+1)H 2 -+nCO====>C nH (2n+2)+n/2O 2+2(n+1)e -
本发明中,反应气体经过重整获得混合气,根据原料气的不同获得的产品中各组分的含量略有差异,但常规操作条件下,该重整后的混合气经冷凝器冷凝后分离成气液两相。
以主要含CO的反应混合气为例,经过重整获得的混合气经冷凝分离后,其中气相仍以未来得及发生反应的CO为主,而液相中的主要产物,主要是由实现所述反应的装置内的等离子电场的强弱决定;例如当反应电场为强电场时,其产生如脂肪烃、高碳醚、高碳醇、高碳酯等有机化合物;当反应电场为弱电场时,其主要产生低碳醇,如乙醇和甲醇。
为了进一步提高转化率,可以将多个双电场反应器串联在一起,进一步重整处理未转化的气体成分,合成目标产物;例如为了更多的合成有机化合物和无机化合物,可以在反应器中直接加入氢气或水蒸气,对反应气体进行重整。如此操作,可以将几乎所有的碳氧化物逐级转化成有机化合物。同理,对于所需的其他目标产物,采用同样的方式进行,如直接加入水蒸气,对反应气体进行重整等等。
尽管对于化学加工,交流-负双电场、正-负双电场可能更广泛使用, 但是人们可以根据生产的需要,逆向安置电晕放电双电场,形成负-正电场,满足先实施气体还原,再分解重整的要求。例如,构造一个负-正双电场,第一个电场是负电场,其中CO 2和水蒸气先还原生成乙醇,然后在第二个正电晕场,将乙醇分解为CO和氢气,在分离CO后,获得纯氢气,从而达到制氢目的,进而用于驱动汽车氢燃料电池或大规模提供氢燃料。
本发明对所用装置不做特别限定,尤其如上所述,交流电晕放电电场或正电晕放电电场和负电晕放电电场可采用现有技术任何已知的装置。
优选,本发明的双电场装置如下所述:
所述装置具有电晕放电双电场,其中,第一电场是交流电晕放电电场或正电晕放电电场,或者其他可提供足够能量将各种气体分子氧化分解为原子、离子、自由基等的电场源,第二电场是负电晕放电电场。
根据本发明,优选所述第一电场是正电晕放电电场。
根据本发明,优选所述正电晕放电电场是高压正直流电晕放电电场,如高频高压正直流电晕放电电场。
根据本发明,优选所述负电晕放电电场是高压负直流电晕放电电场,如高频高压负直流电晕放电电场。
根据本发明,所述第一电场与第二电场设置的位置关系并不特别限定,例如所述第一电场可以位于所述装置的上部,也可以位于所述装置的下部;相应地,所述第二电场位于所述装置的下部,或者位于所述装置的上部。
根据本发明,所述气体可以先通过第一电场,由第一电场处理后得到的产物混合物再进入第二电场,也可先通过第二电场,由第二电场处理后得到的产物混合物再进入第一电场,不同的电场设置顺序可以实现不同的气体加工目的。
优选地,所述气体通过电晕放电双电场的先后顺序设置为:先进入交流电晕放电电场或正电晕放电电场后再进入负电晕放电电场,即交流-负电晕双电场或者正-负电晕双电场;或者所述气体通过双电场的先后顺 序设置为:先进入负电晕放电电场后再进入交流电晕放电电场或正电晕放电电场,即负-交流电晕双电场或者负-正电晕双电场。
优选地,所述装置具有外壳,在装置内设置反应室,其中,至少一个反应室具有交流电晕放电电场或正电晕放电电场,至少另一个反应室具有负电晕放电电场,在所述电晕放电电场中心设置电极或者金属棒,交流电晕放电电场源或正电晕放电电场源和负电晕放电电场源供电给电极或者金属棒;电极或者金属棒提供可吸附到气体的高能电子。
优选地,装置的外壳接地。
优选地,所述装置具有进气口和出气口,其中,进气口用于将气体充入到电晕放电双电场的反应室内,出气口用于移出气体产品。
优选地,在反应器外设置与出气口连通的冷凝分离器,所述冷凝分离器具有液体出口和气体出口。
如前文所述,本发明双电场装置的产物由电场强度所决定,当为强电场时,其产生如脂肪烃、高碳醚、高碳醇、高碳酯等有机化合物以及无机化合物;当反应电场为弱电场时,其主要产生低碳醇,如乙醇和甲醇。而本领域公知,所述等离子电场的强度与外加电压、正负电极远近距离、是否附加介电介质等因素有关。因此本领域技术人员可根据实际生产需求,调整双电场装置中的上述特征,以得到强电场或弱电场从而生产不同有机物或无机物。以下是本发明所述强电场或弱电场的几种具体实例。
作为一个实例,所述反应室为金属圆筒式反应室或金属管式反应室;在金属圆筒式反应室或金属管式反应室中心设置中心电极或者中心金属棒,在金属圆筒式反应室或金属管式反应室外壁上设置相对电极或者相对金属棒,此时电晕放电双电场内产生强电场;所述强电场中的正电场可用于氧化和分解气体分子,负电场主要用于还原和重整合成有机化合物,如脂肪烃、高碳醚、高碳醇、高碳酯等,也可用于合成无机化合物;
优选地,所述中心电极或中心金属棒与负电晕放电电场源负极相连,所述相对电极或者相对金属棒与负电晕放电电场源正极相连,形成强负电场;和/或所述中心电极或中心金属棒与交流电晕放电电场源或正电晕 放电电场源正极相连,所述相对电极或者相对金属棒与交流电晕放电电场源或正电晕放电电场源负极相连,形成强正电场。
作为一个实例,所述反应室为金属圆筒式反应室或金属管式反应室;在金属圆筒式反应室或金属管式反应室中心设置中心电极或者中心金属棒,在远端(如大地)设置相对电极或者相对金属棒,此时电晕放电双电场内产生弱电场;所述弱电场用于形成如低碳醇甲醇或乙醇等的有机化合物。
优选地,所述中心电极或中心金属棒与负电晕放电电场源负极相连,所述相对电极或者相对金属棒与大地相连,形成弱负电场;和/或所述中心电极或中心金属棒与交流电晕放电电场源或正电晕放电电场源正极相连,所述相对电极或者相对金属棒与大地相连,形成弱正电场。
优选地,所述交流电晕放电电场或正电晕放电电场和负电晕放电电场上下设置,气体先通入的电场设置在下部,即装置的下部,气体后通入的电场设置在上部,即装置的上部,进气口在装置的底部,出气口在装置的顶部。
优选地,在中心电极或者中心金属棒与金属圆筒式反应室或金属管式反应室的外壁之间还可以放置绝缘介质薄层筒,所述绝缘介质筒可选用不同介电常数的材质,例如为玻璃、陶瓷、硅胶、木头、竹子等,所述绝缘介质薄层筒与所述外壁之间形成气体夹缝通道,即形成介质阻挡(DBD)(dielectric barrier discharge)的放电构造,增强金属圆筒式反应室和金属管式反应室电场强度,从而强化反应过程。
优选地,所述金属圆筒式反应室和金属管式反应室的直径和数量没有特别的限定,其可以为本领域技术人员的常规选择,例如其可以如图1所示的,采用1个金属圆筒反应室,也可以采用2个以上的金属圆筒或金属管形成反应列管;当选用多个金属圆筒或金属管时,其相互之间没有影响,所以对其排布方式没有特别的限定,根据所述装置的大小进行合理的选择即可。
优选地,在每一电场段,金属圆筒式反应室或金属管式反应室的数量为一个或多个,多个金属圆筒式反应室或金属管式反应室构造排列在 一起形成圆筒或管式列管群。
优选地,所述金属圆筒反应室或金属管反应室的直径没有特别的限定,例如可以为直径较大(如大于70mm)的金属圆筒或金属管,也可以采用数量较多且直径较小(如30-70mm)的金属圆筒或金属管;具体选择还需要根据电场强度以及待处理气体量进行合理的选择;
此外本领域技术人员公知,所述金属圆筒或金属管直径的相对大小也会影响反应室内的电场强度。例如当在金属圆筒式反应室或金属管式反应室中心设置中心电极或者中心金属棒,在金属圆筒式反应室或金属管式反应室外壁上设置相对电极或者相对金属棒时,若选用较大尺寸的金属圆筒或金属管,此时电场正负极距离相比较小尺寸的金属圆筒或金属管的要大,因此其内部电场强度小于选用较小尺寸的金属圆筒或金属管内部形成的电场强度;同样地,还可以通过介质的引入来调整电场强度;原本电场强度较弱的电场中加入绝缘介质层,会极大的增强此电场的电场强度;故本领域技术人员根据金属圆筒式反应室或金属管式反应室的直径、绝缘介质物质的介质常数、外接电源的电压等因素合理的设计所述第一电场和第二电场内的电场强度,继而实现对于不同有机化合物和无机化合物的制备。
优选地,在第一电场和第二电场之间、进气口和出气口附近,安置有气体过滤器。所述气体过滤器优选为具有物理和/或化学吸附功能的材料,例如纤维过滤网、颗粒(如活性炭或分子筛)填充床、电气石颗粒填充床(一般具有分解空气中的水份产生微量氢气还原臭氧的功能)。
优选地,所述电晕放电双电场上下底面与装置外壳之间设置隔板阻挡封闭,以使气体通路唯一。
优选地,所述中心电极的数量为一个或多个,所述电极例如可以为锯齿状尖端电极,以在电极周围产生交流电晕放电电场或正电晕放电电场和在电极周围产生负电晕放电电场的双电场。
在一些实例中,电极为线形或者针形元件,在电极尖端有一个尖点。尖点在其周围提供一个非常高的电荷区域。电极可以是镍、铁、钢、钨、碳或者铂。本发明不局限于特定类型的电极材料,凡是能形成电晕放电 以产生电子的材料均可。
反应室内的电极通过在电极尖端形成交流电晕放电电场或正电晕放电电场或者负电晕放电电场来产生电子。所述电子在电极尖端的电晕中产生。这些电子吸附在电极尖端周围的化学气体分子上,在本发明的双电场装置中,对于适合作为电晕放电电场的装置中电极的金属材料来讲,从电晕电极表面迁移电子大约需要能量4-6eV。电极可以是以下材料:钢、镍、铁、钨、碳或者铂。本发明对电极材料不做任何特别限定,任何材料能够形成电晕以产生电子的材料均可。
所述电极还可以涂覆金属催化剂,可用的贵金属催化剂有:金,镍,铑,钴,磷,铯和铂。任何能够产生电子的贵金属催化剂均可使用。
优选所述电极的形状可以是针形或线性。如果电极具有一尖点,那临近尖点的气体的电势差会比电极周围其他位置高很多。最终,所产生的高电势的电负性离子会将电荷传递到邻近的低电势区域,会重组形成气体分子。
优选所述金属棒的原理和设置情况同电极。
优选所述金属棒选自细金属棒。
其他可使电子具有足够能量并转移给气体的来源也可用于本发明。电负性气体离子也可由其他非热或热等离子体技术或负离子源产生,包括高频率方法,例如射频等离子体,微波等离子体电感耦合等离子体等方法,例如电子束(EB)。任何可产生具有足够能量且能与气体发生反应的电负性气体离子的方法,均可用于本发明。
本发明的等离子辅助气相反应的方法和装置的操作条件如下:可以在常压室温下操作,反应物以气态形式送入所述装置内,处理气量可以任意选择,功率输入将随着装置内多个放电金属圆筒或金属管的数量和气体处理量增加而增加,电压可以是3000~300000伏,优选10000~200000伏,例如15000伏,频率在15~35kHz,优选20kHz、25kHz或35kHz左右。应当理解,上述这些条件是本发明的可以优选的操作条件范围,但能实现本发明方法和目的的关键在于采用等离子电晕放电双电场本身,这些操作条件可通过常规试验确定,而且也并不局限于上述具体描 述。
根据本发明,当通入所述双电场装置的气体的主要组分为CH 4时,需要在气体进入双电场装置前,检测并控制混合气的进入浓度。例如在反应气进入双电场装置前的进气管路加装的甲烷、氧气浓度传感器和阀门,一旦传感器测出甲烷气和氧气在混合物的浓度接近爆炸极限范围,阀门将关闭,避免甲烷浓度达到燃爆点浓度,杜绝含氧爆炸性混合气进入反应器的任何可能性。在甲烷和氧气浓度处于安全区域时,气体将顺利通过阀门进入双电场装置。
在一些实例中,当双电场装置产生的产物混合气除乙醇外还含有较大量水蒸气时,将产物混合气通入冷凝分离器进行气液分离,含有残余甲烷及其他无法冷凝的气体将循环回收参与重整,含有乙醇和水的液体与气体分离,传送到下一工段,例如常压精馏塔进行精馏,以形成高浓度乙醇。
在一个具体实例中,由本发明装置重整得到的乙醇水溶液经过精馏以后可以达到83%以上,优选高达95%的乙醇浓度。
本发明还提供上述双电场装置在制备有机化合物或无机化合物中的应用。
优选地,所述含碳源的气体为主要含甲烷的能源气或者主要含CO、CO 2的气体混合物,将其重整为有机化合物。所述含碳源的气体例如是煤层气、瓦斯气、页岩气、沼气、烟道气、焦炉气、炼油厂废气、汽车或内燃机尾气、水煤气、合成气、天然气等。
本发明还提供双电场装置在制备氢气中的应用。
优选地,所述装置将CO 2和水蒸气先还原生成乙醇,然后将乙醇分解为CO和氢气,在分离CO后,获得氢气。
本发明还提供所述双电场装置在净化清洁气体中的应用。
具体地,所述装置用于含有CO、CO 2、硫化物和/或氮化物的排放废气的净化清洁,除碳、除硫和/或除硝。
此外,基于本发明公开的内容,本领域技术人员显而易见的可得知本发明的方法和装置所带来的其他优点。本发明的其他方案和优点将在 下文的具体实施方案中详细描述。
附图说明
图1为本发明所述的等离子辅助气相反应的装置的一个具体构造示意图。
图2为本发明的一个具体的工艺流程图。
图3为本发明的另一个具体的工艺流程图。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外,应理解,在阅读了本发明所记载的内容之后,可以对本发明作各种改动或修改,这些等价形式同样落于本发明所限定的范围。
本说明书和权利要求中描述的“气体”是指那些其中的原子或者分子能够捕获额外的电子形成电负性离子的气体。本说明书其他技术和科学用语具有本领域所知的普遍的含义。
下文描述了本发明采用电极提供交流电晕放电电场或正电晕放电电场或者负电晕放电电场的实例。应当理解本发明并不局限于此,如果电极能够在足够高的能量状态下产生等离子体放电以生成电子,也可以用于本发明。
在图1中示出了本发明所述的等离子辅助气相反应的装置的一个具体构造示意图。在电晕放电双电场中,反应气体优先通过高频交流电晕放电电场或高频高压正直流电晕放电电场,并在该电场中转化为正离子和自由基,然后通过高频高压负直流电晕放电电场,在该电场中进行还原并转化为产物。
在本发明的装置的一个实施例中,反应器具有电晕放电双电场,即,高频交流电晕放电电场或高频高压正直流电晕放电电场和高频高压负直流电晕放电电场。电压是高电压,例如15000伏特。高频是高频率电压,例如25kHz。在反应器中,在高频交流电晕放电电场或高频高压正直流 电晕放电电场区域中有一个电极或阳极,在高频高压负直流电晕放电电场区域中有一个电极或阴极。两个电晕放电电场可以提供足够高的能量,例如5eV,从而转化所述气体分子。装置117具有可由碳钢、不锈钢或其他适用材料制成的外壳。
两个圆筒或管式反应室111和118设置在由外壳形成的装置117内,其中圆筒或管式反应室的材料可以由不锈钢、碳钢或铜和其他金属制成。每个圆筒或管式反应室的中心设置有中心电极112和116,电极为带有尖端的针状或锯齿棒电极。第一电场中的中心电极116施加高频正直流电压(或AC)以形成高频高压正直流电晕放电电场(或高频交流电晕放电电场)。第二电场中的中心电极112上施加高频负直流电压以形成高频高压负直流电晕放电电场。电压(强度)的选择应满足以下条件:向装置输送的气体可在金属圆筒或金属管式反应室111和118中高度离子化。
在中心电极和筒体之间设置绝缘介质筒122,可以在电场内形成介质阻挡放电(DBD),可提供狭窄的碰撞反应区以强化分解所有的分子成自由基或离子,从而形成产物分子,增强等离子辅助反应过程的电场强度。所述绝缘介质筒122的材质例如为玻璃、陶瓷、硅酮、聚四氟乙烯片等。
中心电极112和116的电极材料可以是钢、钨、镍、铜、银、铁、碳或铂,或其他任何可用于电极,且在电极周围产生电晕进而生成电子的材质。电极还可以涂覆金属催化剂,可用的贵金属催化剂有:金,镍,铑,钴,铯和铂。任何能够产生电子的贵金属催化剂均可使用。
在操作过程中,当中心电极116受交流电晕放电电场或正电晕放电电场源通电时,在中心电极116尖端形成正电晕继而形成正电晕场放电,高能电子击中气体分子,如果添加一个绝缘介质筒122,则可以形成DBD,以加强电场场强以增强氧化反应。当中心电极112受负电晕放电电场源通电时,在中心电极112尖端形成负电晕继而形成负电晕场放电,主要用于还原和重整反应。
高压电通过电缆电极分布板115和123送入中心电极112和116进行放电。两个圆筒或管式反应室111和118分别与相对电极120和121连接。装置的外壳117与地面连接。
在所述装置底部的开口113、所述装置顶部的开口110、以及双电场的连通处分别设置气体过滤器127、128和129,可用于气体过滤器,具有吸附有害化学品和微粒需要的功能。
通过装置底部的开口113将气体混合物送入装置内的电晕放电双电场中。一些气体分子可以在高频交流电晕放电电场或高频高压正直流电晕放电电场中接收放电的电子来氧化和重整。在高频高压负直流电晕放电电场中,气体氧化物或离子可以再次还原和转化。当产品通过装置顶部的开口110移出并通过冷凝器133实现气液分离,其中液体可以通过端口125排出,气体可以通过端口124排出。
在本申请的一个优选方案中,中心电极116与正电晕放电电场源的正极相连,与中心电极116相对的相对电极120设置在反应室外壁上且与正电晕放电电场源的负极相连,在所述正电晕放电电场内形成强正电场。中心电极112与负电晕放电电场源的负极相连,与中心电极112相对的相对电极121设置在反应室外壁上且与负电晕放电电场源的正极相连,在所述负电晕放电电场内形成强负电场。
在本申请的一个优选方案中,中心电极116与正电晕放电电场源的正极相连,相对电极120接地,在所述正电晕放电电场内形成弱正电场。中心电极112与负电晕放电电场源的负极相连,相对电极121接地,在所述负电晕放电电场内形成弱负电场。
利用上述装置,可以对不同来源的气体进行重整处理,且根据电场强弱,例如在强电场下形成如脂肪烃、高碳醚、高碳醇、高碳酯等有机化合物以及N 2、O 2、H 2SO 4、NH 3等无机化合物;例如在弱电场下形成低碳醇。
在本申请的一个优选方案中,将烟道气(其成分为氮气,碳氧化物(如二氧化碳、一氧化碳),氧气,水蒸气,氮氧化物(如一氧化氮、二氧化氮)和硫化物(如硫化氢、二氧化硫),无机污染物等占99%以上;灰尘,粉渣和二氧化硫含量低于1%)和水蒸气通入上述装置中,所述装置中中心电极116与交流电晕放电电场或正电晕放电电场源的正极相连,相对电极120接地,在所述交流电晕放电电场或正电晕放电电场内形成弱 正电场。中心电极112与负电晕放电电场源的负极相连,相对电极121接地,在所述负电晕放电电场内形成弱负电场。
具体地,先通过一个交流电晕放电电场或正电晕放电电场,再通过一个负电晕放电电场以提供高能量电子发生气体反应。在交流电晕放电电场或正电晕放电电场区以提供高能电子或高能正电荷以分解气体分子,气体分子能够被激活发生分解和氧化反应以生成各种组分。具体而言,在交流电晕放电电场或正电晕放电电场中,主要是电子与H 2O蒸汽碰撞生成OH和H原子或H 2,CO 2加电子反应生成CO和O 2 -,硫化物SO 2加电子与H 2O和氧气O 2反应生成H 2SO 4硫酸液体,氮氧化物NO x遇电子分解,可能形成N和O自由基;在第二个后续的负电晕放电电场,高负电位的电负极进行电晕放电,释放电子,CO和H 2气体分子捕获这些高能电子形成高能量的电负性气体离子,例如形成H -,CO -或H -等负离子,这些负离子将重整还原形成乙醇和甲醇,从而达到系统能量最小。而且N和O自由基生成N 2和O 2 -。所述具体反应如下:烟道气内的碳氧化物、氮氧化物和硫化物可与加入的水蒸气,还有烟道气内包括的氧气在交流电晕放电电场或正电晕放电电场可能但不限于发生如下主要反应:
CO+H 2O+e -====>CO 2+H 2 -
2CO 2+e -====>2CO+O 2 -
2SO 2+2H 2O+3O 2+2e -====>2H 2SO 4+2O 2 -
NO x+e -====>N·+xO·+e -
2H 2S+3O 2+e -====>2SO 2+2H 2O+e -
在随后的负电晕放电电场内,主要的化学反应过程是,一氧化碳与带电氢气负离子将自发地合成乙醇和甲醇,并放出负氧离子:
H 2+2e -====>2H -<===>H 2 -
4CO+6H 2 -==>2C 2H 5(OH)+O 2 -+5e -
CO+2H 2 -==>CH 3(OH)+2e -
2N·+2O·+e -====>N 2+O 2 -
烟道气和水蒸汽重整的连续工艺流程图如图2所示,具体地,烟道气和水蒸气进入气体混合器130,气体通过阀门132进入反应器117。经过重 整之后,含乙醇的混合气将进入水冷却冷凝分离器133进行气液分离,含有残余碳氧化物并且无法冷凝的气体将循环回到气体混合器130进一步参与重整,含有乙醇和水的液体与气体分离,传送到下一工段,常压精馏塔134的塔釜进行精馏。精馏塔顶的易挥发组分进入收集器136内可获得80~95%的高浓度乙醇溶液或工业酒精。在精馏塔的塔釜分离出来的高沸点的水可以送往蒸汽加热器135再加热产生蒸汽循环利用。
依照以上原理,本发明的装置可净化回收再利用包括上述烟道气在内的工业燃放废气,例如炼油厂废气、汽车或内燃机尾气。而焦炉气、水煤气和合成气中因含有氢源则不需要额外添加其他反应气,本发明的双电场装置将这些气体中的CO、CO 2利用氢源转化为有机化合物或无机化合物,氮氧化物转化为惰性气体,硫化物转化为易分离或易去除的硫酸液滴等,既可清洁净化环境又可变废为宝。
在本申请的一个优选方案中,所述水煤气和/或合成气(CO 2为5%、H 2为50%,CO为40%,N 2为5%)在本发明的双电场中(中心电极116与交流电晕放电电场或正电晕放电电场源的正极相连,相对电极120接地,在所述交流电晕放电电场或正电晕放电电场内形成弱正电场。中心电极112与负电晕放电电场源的负极相连,相对电极121接地,在所述负电晕放电电场内形成弱负电场)具体反应如下:其中的CO 2在交流电晕放电电场或正电晕放电电场将发生如下主要反应:
2CO 2+e -====>2CO+O 2 -
在负电晕放电电场内,一氧化碳与带电氢气负离子将自发地合成乙醇和甲醇,并放出负氧离子:
H 2+2e -====>2H -<===>H 2 -
4CO+6H 2 -====>2C 2H 5OH+O 2 -+5e -
CO+2H 2 -====>CH 3(OH)+2e -
水煤气和/或合成气重整的连续工艺流程图如图3所示,与图2相比,图2和图3中附图标记相同的代表的装置的含义也相同,区别主要是由于处理烟道气的反应原料气中包括水蒸气,故对于制备得到的液态产品还进一步进行精馏处理,将精馏后得到的水分再次返回到体系中,实现水 的循环利用,而处理水煤气和/或合成气的反应原料气不需要引入水蒸气,故具体流程如下所述;水煤气和/或合成气进入气体混合器130,气体通过阀门132进入反应器117。经过重整之后,含乙醇的混合气将进入水冷却冷凝分离器133进行气液分离,含有残余碳氧化物并且无法冷凝的气体将循环回到反应器117的入口113或进入气体混合器130进一步参与重整,含有乙醇的液体与气体分离收集。在水煤气和/或合成气通入反应器一段时间后,可以通过入口113额外补充氢气,以进一步转化未反应的水煤气和/或合成气气体。
在本申请的一个优选方案中,本发明的装置不但可以重整例如烟道气这样的排放废气,如水煤气和/或合成气等,还可以重整例如煤层气这类主要含CH 4的碳源能源气。煤层气内的甲烷可与加入的水蒸气以及煤层气内包括的氧气在交流电晕放电电场或正电晕放电电场可能但不限于发生如下主要反应:
CH 4+H 2O+3e -====>CO+3H 2 -
CH 4+1/2O 2+2e -====>CO+2H 2 -
CO+H 2O+e -====>CO 2+H 2 -
2CO 2+e -====>2CO+O 2 -
在随后的负电晕放电电场内,主要的化学反应过程与上述烟道气相同,一氧化碳与带电氢气负离子将自发地合成乙醇和甲醇,并放出负氧离子。
H 2+2e -====>2H -<===>H 2 -
4CO+6H 2 -==>2C 2H 5(OH)+O 2 -+5e -
CO+2H 2 -==>CH 3(OH)+2e -
依照以上原理,本发明的装置可以重整净化任何含有碳源的气体能源。例如煤层气、瓦斯气、页岩气、沼气等等,将这些气体中的主要组分CH 4重整;其中,沼气不需要额外添加其他反应气,其主要成分甲烷和CO 2即可在双电场中发生重整。
在本申请的一个优选方案中,所述页岩气与O 2或CO 2在交流电晕放电电场或正电晕放电电场发生如下主要反应:
CH 4+1/2O 2+2e-====>CO+2H 2 -
CH 4+CO 2+2e -====>2CO+2H 2 -
在负电晕放电电场内,主要的化学反应过程是,一氧化碳与带电氢气负离子将自发地合成乙醇和甲醇,并放出负氧离子:
H 2+2e -====>2H -<===>H 2 -
4CO+6H 2 -==>2C 2H 5(OH)+O 2 -+5e -
CO+2H 2 -==>CH 3(OH)+2e -
在本申请的一个优选方案中,所述沼气中的主要组分甲烷和CO 2在交流电晕放电电场或正电晕放电电场发生如下主要反应:
CH 4+CO 2+2e -====>2CO+2H 2 -
在负电晕放电电场内,主要的化学反应过程是,一氧化碳与带电氢气负离子将自发地合成乙醇和甲醇,并放出负氧离子:
H 2+2e -====>2H-<===>H 2 -
4CO+6H 2 -==>2C 2H 5(OH)+O 2 -+5e -
CO+2H 2 -==>CH 3(OH)+2e -
因此,本发明提供所述等离子气体转化装置中的双电场为弱电场时,其可以用于制备乙醇和/或甲醇。具体地,所述装置将含碳源的气体,例如CH 4和/或CO、CO 2等转化为乙醇和甲醇。以上本发明的正-负电晕双电场或是交-负电晕双电场装置可串联设置若干个,可将产物混合气中未反应完全的CH 4或者CO、CO 2通入下一双电场装置中,任选地继续额外添加水蒸气或氢气,以进一步将反应气体转化成最终产物。如此循环转化可达到很高的气体转化率。例如用上述本发明的一个双电场装置重整甲烷,在交流电晕放电电场或正电晕放电电场,甲烷制合成气即转化为CO与H 2可以达到45%的转化率,而在随后的负电晕放电电场,合成气再转化为乙醇的转化率可达90%以上。如果用4个反应装置串联,甲烷可以达到95%以上的转化率。
本发明提供所述等离子气体转化装置中的双电场为强电场时,其可以用于制备如脂肪烃、高碳醚、高碳醇、高碳酯等有机化合物以及N 2、O 2、H 2SO 4、NH 3等无机化合物。
在本申请的一个优选方案中,将CO与水蒸气通入上述装置中,其中,反应室118内,中心电极116与正电晕放电电场源的正极相连,相对电极120与正电晕放电电场源的负极相连,在所述正电晕放电电场内形成强正电场。反应室111内,中心电极112与负电晕放电电场源的负极相连,相对电极121与负电晕放电电场源的正极相连,在所述负电晕放电电场内形成强负电场,此时CO与水蒸气在该反应器内转化的主要成分为C 7-C 20的有机化合物,主要成分包括庚烷、邻苯二甲酸二乙酯、邻苯二甲酸二异辛酯等。
在本申请的一个优选方案中,上述的中心电极112采用不锈钢电极,反应室111的外壁的相对电极121连接电源正极,且在正极和负极之间的钢管内,再插入一个紧靠反应室111内壁的硅胶管和一个包覆不锈钢负极(中心电极112)的细玻璃管作为绝缘介质管。在两个介质管之间,填充二氧化钛颗粒作为第三层绝缘介质,形成细缝夹层的介质阻挡构造。在这样反应器内,进行反应可形成C 3-C 20的有机化合物,主要成分包括丙烷、甲基苯甲醇、16烷、18烷等。
以上,对本发明的实施方式进行了说明。但是,本发明不限定于上述实施方式。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种等离子双电场辅助气相反应的方法,其特征在于,所述方法包括如下步骤:
    将反应气体通入反应器,所述反应器含有电晕放电双电场,所述双电场包括第一电场和第二电场,所述第一电场是正电晕放电电场,或者交流电晕放电电场,或者其他可提供足够能量将反应气体分子氧化分解为原子、离子、自由基等的电场源;所述第二电场为负电晕放电电场。
  2. 根据权利要求1所述的方法,其特征在于,所述正电晕放电电场是高压正直流电晕放电电场,所述负电晕放电电场是高压负直流电晕放电电场;或者,所述正电晕放电电场是高频高压正直流电晕放电电场,所述负电晕放电电场是高频高压负直流电晕放电电场。
  3. 根据权利要求1所述的方法,其特征在于,将反应气体通入上述反应器中,先通过交流电晕放电电场或正电晕放电电场,再通过负电晕放电电场。
    优选地,所述反应气体包括但不限于CH 4、CO 2、CO、O 2、H 2、H 2S、H 2O、SO 2和NO x(例如包括NO或NO 2)中的至少一种;所述反应气体来自燃烧装置产生的气体、含有甲烷的碳源能源气、或者气体发生装置产生的气体,例如为天然气、煤层气、沼气、页岩气、水煤气、焦炉煤气、烟道气、汽车尾气。
    优选地,所述反应气体是包括一氧化碳和/或二氧化碳的气体,例如是烟道气、水煤气、合成气和/或汽车尾气。优选地,所述反应气体具体为:烟道气和水蒸气,或任选与氢气混合的水煤气或合成气。
    优选地,所述反应气体是包括甲烷的能源气体,例如是煤层气、瓦斯气、页岩气、沼气和/或焦炉煤气。优选地,所述反应气体具体为:煤层气和水蒸气,或页岩气和氧气或二氧化碳,或沼气,或焦炉煤气。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,通过调节等离子双电场的电场强度制备得到不同的有机化合物和无机化合物,所述电场强度通过外加电场的电压、电场中心电极和相对电极之间的距离,绝缘介质的加入来调节;
    优选地,所述双电场为强电场时,制备得到如脂肪烃、高碳醚、高碳醇、高碳酯等有机化合物,以及如N 2、O 2、H 2SO 4、NH 3等无机化合物;所述双电场为弱电场时,制备得到如乙醇、甲醇等低碳醇。
  5. 一种双电场装置,其特征在于,所述装置具有电晕放电双电场,其中,第一电场是交流电晕放电电场或正电晕放电电场,或者其他可提供足够能量将各种气体分子氧化分解为原子、离子、自由基等的电场源,第二电场是负电晕放电电场。
  6. 根据权利要求5所述的装置,其特征在于,所述第一电场是正电晕放电电场,优选所述正电晕放电电场是正直流电晕放电电场,还优选为高压正直流电晕放电电场或是高频高压正直流电晕放电电场;所述第二电场是负电晕放电电场,优选所述负电晕放电电场是负直流电晕放电电场,还优选为高压负直流电晕放电电场或是高频高压负直流电晕放电电场。
    优选地,所述第一电场可以位于所述装置的上部,也可以位于所述装置的下部;或者,所述第二电场位于所述装置的下部,或者位于所述装置的上部。
    优选地,气体通过电晕放电双电场的先后顺序设置为:先进入交流电晕放电电场或正电晕放电电场后再进入负电晕放电电场,即交流-负电晕双电场或者正-负电晕双电场;或者气体通过电晕放电双电场的先后顺序设置为:先进入负电晕放电电场后再进入交流电晕放电电场或正电晕放电电场,即负-交流电晕双电场或者负-正电晕双电场。
  7. 根据权利要求5或6所述的装置,其特征在于,所述装置具有外壳,在装置内设置反应室,其中,至少一个反应室内具有交流电晕放电电场或正电晕放电电场,所述至少另一个反应室具有负电晕放电电场,在所述电晕放电电场中心设置电极或者金属棒,交流电晕放电电场源或正电晕放电电场源和负电晕放电电场源供电给电极或者金属棒;电极或者金属棒提供可吸附到气体的高能电子。
    优选地,所述反应室为金属圆筒式反应室或金属管式反应室;在金属圆筒式反应室或金属管式反应室中心设置中心电极或者中心金属棒,在金属圆筒式反应室或金属管式反应室外壁上设置相对电极或者相对金属棒,此时电晕放电双电场内产生强电场;所述强电场中的正电场可用于氧化和分解气体分子,负电场主要用于还原和重整合成有机化合物,如脂肪烃、高碳醚、高碳醇、高碳酯等,也可用于合成无机化合物;
    或者,所述反应室为金属圆筒式反应室或金属管式反应室;在金属圆筒式反应室或金属管式反应室中心设置中心电极或者中心金属棒,在远端(如大地)设 置相对电极或者相对金属棒,此时电晕放电双电场内产生弱电场;所述弱电场用于形成如低碳醇甲醇或乙醇等的有机化合物。
    优选地,在中心电极或者中心金属棒与金属圆筒式反应室或金属管式反应室的外壁之间还可以放置绝缘介质薄层筒,所述绝缘介质筒可选用不同介电常数的材质,例如为玻璃、陶瓷、硅胶、木头、竹子等,所述绝缘介质薄层筒与所述外壁之间形成气体夹缝通道,即形成介质阻挡的放电构造,增强金属圆筒式反应室和金属管式反应室电场强度,从而强化反应过程。
    优选地,所述装置还包括在反应气进入双电场装置前的进气管路加装的甲烷、氧气浓度传感器和阀门;用于测出甲烷气和氧气在混合物的浓度。
    优选地,在反应器外设置与出气口连通的冷凝分离器,所述冷凝分离器具有液体出口和气体出口。
    优选地,在每一电场段,金属圆筒式反应室或金属管式反应室的数量为一个或多个,多个金属圆筒式反应室或金属管式反应室构造排列在一起形成圆筒或管式列管群。
  8. 权利要求5-7任一项所述的双电场装置在制备有机化合物或无机化合物中的应用。
  9. 权利要求5-7任一项所述的双电场装置在制备氢气中的应用。
  10. 权利要求5-7任一项所述的双电场装置在净化清洁气体中的应用。
PCT/CN2018/101589 2017-08-21 2018-08-21 低温等离子双电场辅助气相反应合成化合物的方法和装置 WO2019037725A1 (zh)

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
US201762605621P 2017-08-21 2017-08-21
US62/605,621 2017-08-21
CN201710801807.9 2017-09-07
CN201710802459.7 2017-09-07
CN201710801807 2017-09-07
CN201710801710 2017-09-07
CN201710802457.8 2017-09-07
CN201710802457 2017-09-07
CN201710801808 2017-09-07
CN201710801710.8 2017-09-07
CN201710801808.3 2017-09-07
CN201710802459 2017-09-07
CN201710978477.0 2017-10-18
CN201710978477 2017-10-18

Publications (1)

Publication Number Publication Date
WO2019037725A1 true WO2019037725A1 (zh) 2019-02-28

Family

ID=65438381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/101589 WO2019037725A1 (zh) 2017-08-21 2018-08-21 低温等离子双电场辅助气相反应合成化合物的方法和装置

Country Status (1)

Country Link
WO (1) WO2019037725A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112023608A (zh) * 2020-09-29 2020-12-04 佛山市己阿已磁电设备有限公司 一种高温杀灭病毒的气体净化器
WO2023072901A1 (en) * 2021-10-25 2023-05-04 D-Crbn Bv Sulfur driven carbon monoxide production process

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5427747A (en) * 1994-06-08 1995-06-27 Lockheed Idaho Technologies Company Method and apparatus for producing oxygenates from hydrocarbons
CN101920026A (zh) * 2009-12-31 2010-12-22 周云正 隧道空气消毒净化器
CN105964114A (zh) * 2016-06-08 2016-09-28 黄立维 一种放电等离子体轻烃改性的方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5427747A (en) * 1994-06-08 1995-06-27 Lockheed Idaho Technologies Company Method and apparatus for producing oxygenates from hydrocarbons
CN101920026A (zh) * 2009-12-31 2010-12-22 周云正 隧道空气消毒净化器
CN105964114A (zh) * 2016-06-08 2016-09-28 黄立维 一种放电等离子体轻烃改性的方法和装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112023608A (zh) * 2020-09-29 2020-12-04 佛山市己阿已磁电设备有限公司 一种高温杀灭病毒的气体净化器
WO2023072901A1 (en) * 2021-10-25 2023-05-04 D-Crbn Bv Sulfur driven carbon monoxide production process
BE1029819B1 (nl) * 2021-10-25 2023-08-22 D Crbn Bv Door zwavel gedreven koolmonoxide productieproces

Similar Documents

Publication Publication Date Title
CN109200970B (zh) 低温等离子双电场辅助气相反应合成化合物的装置和应用
US11148116B2 (en) Methods and apparatus for synthesizing compounds by a low temperature plasma dual-electric field aided gas phase reaction
Bogaerts et al. Plasma technology: an emerging technology for energy storage
Zhou et al. Sustainable ammonia production by non-thermal plasmas: Status, mechanisms, and opportunities
CN1195671C (zh) 生产氢气的方法和装置
US7329290B2 (en) Fuel reforming apparatus for producing a carbon-monoxide free reformed fuel gas comprising hydrogen
CN104071747A (zh) 一种等离子体甲烷重整制备合成气的方法
Carreon Plasma catalysis: a brief tutorial
WO2021142919A1 (zh) 一种等离子体固碳系统及固碳方法
WO2009025835A1 (en) Non-thermal plasma synthesis of ammonia
Vadikkeettil et al. Plasma assisted decomposition and reforming of greenhouse gases: A review of current status and emerging trends
Budhraja et al. Plasma reforming for hydrogen production: Pathways, reactors and storage
CN104761431A (zh) 利用等离子体与催化剂协同作用转化煤矿瓦斯制甲醇的方法
Zhu et al. Gaseous phase benzene decomposition by non-thermal plasma coupled with nano titania catalyst
Li et al. Hydrogen production from partial oxidation of methane using an AC rotating gliding arc reactor
US20130043119A1 (en) Electronegative-ion-aided method and apparatus for synthesis of ethanol and organic compounds
AU718307B2 (en) Process and apparatus for converting a greenhouse gas
WO2019037725A1 (zh) 低温等离子双电场辅助气相反应合成化合物的方法和装置
CN113694854B (zh) 一种等离子体氧化合成有机含氧化合物的装置和方法
EP2862619A1 (en) A method of disociation of exhaust gases, in particular of gases containing carbon dioxide (CO2) and a reactor chamber
EP1074535A1 (en) Process for the synthesis of hydrocarbons
CN103796751A (zh) 电负性离子辅助合成乙醇及有机化合物的方法与设备
KR101538211B1 (ko) 글라이딩 아크 플라즈마트론 및 이를 이용한 이산화탄소 저감 시스템
El-Shafie et al. Comprehensive analysis of hydrogen production from various water types using plasma: Water vapour decomposition in the presence of ammonia and novel reaction kinetics analysis
Toko et al. Low-Pressure Methanation of CO2 Using a Plasma–Catalyst System

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18849094

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20.08.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18849094

Country of ref document: EP

Kind code of ref document: A1