WO2019037648A1 - 一种气体分析仪及气体分析方法 - Google Patents

一种气体分析仪及气体分析方法 Download PDF

Info

Publication number
WO2019037648A1
WO2019037648A1 PCT/CN2018/100767 CN2018100767W WO2019037648A1 WO 2019037648 A1 WO2019037648 A1 WO 2019037648A1 CN 2018100767 W CN2018100767 W CN 2018100767W WO 2019037648 A1 WO2019037648 A1 WO 2019037648A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
chamber
light
light source
cavity
Prior art date
Application number
PCT/CN2018/100767
Other languages
English (en)
French (fr)
Inventor
熊友辉
程静伟
易良顺
石平静
何明亮
Original Assignee
湖北锐意自控系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖北锐意自控系统有限公司 filed Critical 湖北锐意自控系统有限公司
Priority to EP18847361.5A priority Critical patent/EP3674689B1/en
Publication of WO2019037648A1 publication Critical patent/WO2019037648A1/zh
Priority to US16/832,020 priority patent/US11079322B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • G01N21/3518Devices using gas filter correlation techniques; Devices using gas pressure modulation techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/37Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using pneumatic detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • G01N2021/3545Disposition for compensating effect of interfering gases

Definitions

  • the invention belongs to the field of gas analysis, and in particular relates to a gas analyzer and a gas analysis method.
  • NDIR non-dispersive infrared scattering
  • flue gas analyzers using single-beam pneumatic infrared gas sensors are also unable to meet the ultra-low range 0- Environmental monitoring requirements of 100mg/m3.
  • SIEMENS, FUJI and ABB have proposed a new flue gas analyzer using a dual-beam pneumatic infrared sensor.
  • NDIR Non-dispersive infrared
  • the "Non-dispersive infrared (NDIR) dual trace gas analyzer and method for determining a concentration of a measurement gas component in a gas mixture by the gas analyzer” proposed by SIEMENS AKTIENGESELLSCHAFT in the patent document US20130043391A1: the gas chamber is a forked double tube
  • the double-chamber structure is bulky, which is not conducive to the miniaturization of the instrument, the process structure is complicated, and the cost is expensive; the sensor adopts a double-layer optical aerodynamic structure (microflow sensor), and the measured airflow flows to the left and right with respect to the emission direction of the light source, and cannot prevent moisture.
  • the infrared light source uses a beam splitter, which causes the signal reflection of infrared light to cause signal loss, and the measurement is inaccurate.
  • the "Non-dispersive infrared gas analyzer" proposed by FUJI ELECTRIC CO.LTD: the air chamber is a single air chamber, no reference, and the sensor adopts a double-layer optical pneumatic structure (micro flow sensor), and the measured air flow is relative to
  • the light source emits in the direction of the front and back, and is easily affected by external environmental factors (light source, temperature, etc.), with large drift and poor stability.
  • the present invention provides a gas analyzer and a gas analysis method, which adopts a half-chamber technology combined with a front-rear flow microfluidic infrared gas detecting device capable of resisting water interference to realize concentration analysis of a measured gas component.
  • the test is accurate and stable, which can meet the needs of low-range test.
  • One aspect of the invention provides a gas analyzer comprising:
  • a partition is disposed along a central axis of the cavity, and the cavity is divided into a reference air chamber and a measuring air chamber;
  • Light source module disposed at one end of the cavity
  • the microfluidic infrared gas detecting device is configured to detect the light intensity emitted by the light source module and pass through the cavity, and is disposed at the other end of the cavity.
  • the partition has the same length as the cavity, and the partition divides the cavity into a reference plenum and a measuring plenum of the same size and shape.
  • the microfluidic infrared gas detecting device comprises a front air chamber, a rear air chamber, a micro flow infrared sensor, and a water regulating device for detecting the light intensity emitted by the light source module and passing through the cavity.
  • the light source module comprises a light source, a motor and a cut sheet.
  • the microfluidic infrared gas detecting device comprises a front air chamber, a rear air chamber, a microfluidic infrared sensor, and a water regulating device for eliminating the influence of moisture.
  • the water regulating device comprises a water regulating valve, a water buffering buffer chamber and a connecting pipe for connecting the water regulating buffer chamber and the front and rear air chambers.
  • the front air chamber, the rear air chamber, and the water regulating device are sequentially disposed along the propagation direction of the light emitted by the light source module.
  • the front air chamber, the rear air chamber, the water control valve, and the water transfer buffer air chamber are sequentially set along the propagation direction of the light emitted by the light source module.
  • the light cutting piece is connected to the cavity through the second mounting seat, the cavity is connected with the second mounting seat by a snap connection, and a plurality of screws and screw holes are added between the second mounting seat and the cavity for assembling. .
  • the first light transmission hole and the second light transmission hole are disposed on the cut light sheet, and the light cut sheet rotates at a constant speed under the driving of the motor, and the light emitted by the light source is periodically and alternately passed through the first light transmission hole.
  • the illumination is in the reference gas chamber, and the light emitted by the light source is irradiated into the measurement gas chamber through the second light transmission hole.
  • the light source module further comprises an optical coupler for determining whether the light at the current moment is irradiated to the reference air chamber or is irradiated to the measuring air chamber.
  • the gas analyzer further comprises a heat dissipating block, the heat dissipating block is in close contact with the light source module, and is used for dissipating heat from the light source module.
  • the gas analyzer further comprises a constant temperature chamber, and the cavity, the light source module and the microfluidic infrared gas detecting device are all placed in the constant temperature chamber.
  • the gas analyzer further comprises a processing unit configured to calculate the concentration of the measured gas according to the detection result and the formula prestored therein
  • the invention provides a gas analysis method comprising the steps of:
  • step S7 The gas to be measured is introduced, and the measured gas concentration is calculated according to the relationship determined in step S6.
  • the present invention also provides a water regulating method, which is applied to a water regulating device including a water regulating valve, a water regulating buffer air chamber, and a gas analyzer for connecting a connecting pipe of the water regulating buffer chamber and the front and rear air chambers, Includes the following steps:
  • step S3 refilling the reference gas containing non-condensed water in the measuring gas chamber, adjusting the position of the water regulating valve, so that the electric signal corresponding to the measuring gas chamber detected by the microfluidic infrared sensor is the same as the signal size in step S2.
  • the content of non-condensed water in the reference gas in step S3 is saturated.
  • the gas analyzer provided by the present invention comprises at least one cavity, and the cavity is divided into a reference air chamber and a measuring air chamber of the same size and shape by providing a partition plate at a central axis of the cavity, thereby overcoming the problem.
  • the prior art adopts a single air chamber to cause large drift, poor measurement stability, and complicated structure of the independent double gas chamber process; the microfluidic infrared gas detecting device adds a water regulating device, and discovers the absorption spectrum of the gaseous water and the measured gas.
  • the overlapping phenomenon using the difference between the absorption spectrum of the gaseous water and the measured gas to the infrared light, thereby adjusting the water regulating valve, changing the flow velocity change after the gas expansion in the gas chamber and the water buffer buffer chamber of the microfluidic infrared gas detecting device, so that The detected infrared spectrum is within the absorption spectrum of the measured gas, and away from the absorption spectrum of the gaseous water, overcoming the problem of moisture interference, and achieving the technical effect of accurate measurement.
  • Embodiment 1 is a schematic view showing the principle of testing of the gas analyzer shown in Embodiment 1;
  • FIG. 2 is a general assembly diagram of a chamber, a light source module, and a light receiving module of the gas analyzer shown in Embodiment 1;
  • Figure 3 is a perspective view of a cavity of the gas analyzer shown in Embodiment 1;
  • Embodiment 4 is an exploded view of a cavity, a light source module, and a light receiving module of the gas analyzer shown in Embodiment 1;
  • FIG. 5 is a general assembly diagram of the gas analyzer shown in Embodiment 1;
  • FIG. 6 is a waveform diagram of a reference gas chamber and a measurement gas chamber output of the gas analysis and analysis method shown in Embodiment 2;
  • FIG. 7 is a waveform diagram of a reference gas chamber and a measurement gas chamber output of the gas analysis and analysis method shown in Embodiment 2;
  • Fig. 8 is a schematic view showing the fitting of the gas analysis method shown in the second embodiment.
  • Light source module 11 Light receiving module 12 Separator 101 Reference gas chamber 10a Measuring gas chamber 10b Light source 110 Motor 111 Cut sheet 112 First light transmission hole 112a Second light transmission hole 112b First mounting seat 111a Second mounting seat 111b flange plate 120 third mount 121 filter 122 microfluid infrared gas detecting device 123 front air chamber 123a rear air chamber 123b micro flow infrared sensor 123c water buffer buffer chamber 123d connecting pipe 123e water regulating valve 123f screw 11a processing Unit 13 Heat sink 114 Thermostatic chamber 14 Optocoupler 115 Mounting position 115a of the optocoupler transmitting end Mounting position 115b of the optocoupler receiving end.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • a gas analyzer includes a cavity 10, a light source module 11, a light receiving module 12, and a processing unit 13. One end of the cavity 10 is connected to the light source module 11, and the other end is connected to the light receiving module 12. Connection, the cavity 10 is divided into two air chambers of the same size and shape by a partition 101 disposed at a central axis position of the cavity 10, that is, the reference air chamber 10a and the measurement air chamber 10b.
  • a partition 101 disposed at a central axis position of the cavity 10, that is, the reference air chamber 10a and the measurement air chamber 10b.
  • the gas chamber 10a and the measurement gas chamber 10b are symmetrically disposed with respect to the separator 101, and the cross sections of the reference gas chamber 10a and the measurement gas chamber 10b are each arranged in a semicircular shape. It should be considered that in practical applications, the cross section is rectangular or other geometric shapes are within the scope of this solution.
  • the partition 101 has the same length as the cavity 10.
  • the partition 101 is connected to the cavity 10 by welding to prevent the light source from leaking.
  • the volume of the entire measuring instrument can be reduced, the cost can be reduced, and the consistency of the reference gas chamber 10a and the measuring gas chamber 10b can be ensured, and the reference gas chamber 10a can be lowered.
  • one cavity 10 can only measure one gas to be measured, and the reference gas chamber 10a of the cavity 10 is filled with a reference gas such as N2 which is not absorbed by the light source.
  • a reference gas such as N2 which is not absorbed by the light source.
  • An intake port and an air outlet are provided in the measuring chamber 10b for the inflow and outflow of the gas to be measured.
  • a plurality of cavities 10 may be provided in the gas analyzer at the same time.
  • only two chambers 10 are provided for illustration.
  • the light source module 11 emits the irradiation light of the absorption wavelength band including the absorption spectrum of the gas to be measured.
  • the light source module 11 includes a light source 110, a motor 111, and a cut sheet 112.
  • the light source 110 and the motor 111 are connected to the cut piece 112 through the first mount 111a.
  • the motor 111 is placed on the motor mount.
  • the light-cut sheet 112 is connected to the cavity 10 through the second mount 111b.
  • the cavity 10 and the second mounting seat 111b are connected by a snap structure.
  • a plurality of between the second mount 111b and the air chamber body 10 are provided.
  • the screw 11a and the screw hole are tightly fitted by the screw 11a and the screw hole.
  • the first mounting seat 111a is opposite to the second mounting seat 111b, and a circular hole having a size and shape matching the cavity 10 is disposed at a corresponding position to ensure that light emitted from the light source 110 is irradiated into the cavity 10.
  • the light-cutting sheet 112 is provided with a first light-transmissive hole 112a and a second light-transmissive hole 112b. The light-cutting sheet 112 is rotated at a constant speed by the motor 111, and the light emitted by the light source 110 is periodically and alternately passed through the first through-hole.
  • the light hole 112a is irradiated into the reference gas chamber 10a and the light emitted from the light source 110 is irradiated into the measurement gas chamber 10b through the second light transmission hole 112b.
  • the motor 111 rotates at a constant speed 10 times a second, so that when the motor 111 rotates, the reference air chamber 10a and the measuring chamber 10b are subjected to 10 times of illumination and 10 times of the light source for one second. Occlusion.
  • the measured gas in the measuring gas chamber 10b absorbs the infrared light emitted from the light source 110, and the reference light N2 does not absorb the infrared light emitted from the light source 110 in the reference gas chamber 10a.
  • the light receiving module 12 receives the light emitted by the light source module 11 and passes through the cavity 10 to the light receiving module 12.
  • the light receiving module 12 includes a flange plate 120, a third mounting seat 121, a filter 122, and a microfluidic infrared gas detecting device 123. .
  • the cavity 10 is connected to the microfluidic infrared gas detecting device 123 through the flange plate 120. Before the cavity 10 and the microfluidic infrared gas detecting device 123, a filter 122 is disposed.
  • the filter 122 can eliminate or reduce scattering and interference. The influence of the components allows infrared light having a characteristic absorption wavelength to pass.
  • the microfluidic infrared gas detecting device 123 is a sensor that can measure the composition and concentration of a specific gas. For example, it can be a SO 2 microfluidic infrared sensor, a NO sensor or other sensor.
  • the microfluidic infrared gas detecting device 123 is an SO 2 sensor, the microfluidic infrared gas detecting device 123 can measure the attenuation of the light intensity in the corresponding absorption band according to the absorption characteristic of the light of the SO 2 , and convert the detection result into an electrical signal. . As shown in FIG.
  • the microfluidic infrared gas detecting device 123 includes a front air chamber 123a, a rear air chamber 123b, a microfluidic infrared sensor 123c, and a water regulating device.
  • the water regulating device is composed of a water regulating valve 123f, a water regulating buffer air chamber 123d, and the like.
  • the connecting pipe 123e connecting the water regulating buffer chamber 123d and the rear air chamber 123b is configured to pass the reference gas and the reference gas containing non-condensed water into the measuring gas chamber in turn, and adjust the water regulating valve 123f so as to contain non-condensed water.
  • the reference gas and the reference gas are identical in size to the electrical signal generated by the microfluidic infrared gas detecting device 123, and the influence of moisture on the measured gas is minimized. Since the rear air chamber 123b and the water transfer buffer air chamber 123d are connected by a connecting pipe 123e, the two can be equivalent to one air chamber.
  • the water regulating valve 123f is a sheet-shaped opaque partition.
  • the water transfer method of this embodiment is as follows:
  • the position of the water regulating valve 123f at the time of performing this step need not be strictly limited, but this embodiment is for subsequent adjustment.
  • the water regulating valve 123f is adjusted to a half-shielding position to the water-conditioning buffer chamber 123d in this step.
  • the reference gas measurement gas discharge chamber 10b in N 2 in a measurement gas chamber 10b is refilled 4 °C of saturated aqueous reference noncondensable gas N 2, adjusting the position of the adjustment valve 123f, so that the infrared sensor microfluidic
  • the size of the electrical signal corresponding to the measurement chamber detected by 123c is the same as the signal size in step S2.
  • the position of the water regulating valve 123f is fixed, and the position of the water regulating valve 123f at this time is the final position after the water transfer, and the gas analyzer after the water adjustment is completed can adapt to various water contents. Measurement of the measured gas.
  • the reference gas N 2 containing saturated non-condensed water at 4 ° C can be obtained by passing the reference gas N 2 through water at 4 ° C.
  • the front and rear air chambers 123a, 123b, the water regulating valve 123f, and the water transfer buffer chamber 123d of the microfluidic infrared gas detecting device 123 are disposed laterally one behind the other in the direction of light propagation, in the front and rear air chambers.
  • the water-adjusting buffer gas chamber is passed through a standard gas containing a characteristic absorption peak of the gas component to be measured, for example, a gas such as standard SO 2 or NO.
  • a filter is disposed between the front air chamber 123a, the rear air chamber 123b, and the buffer air chamber 123d in accordance with the light propagation direction.
  • the gas in the front air chamber 123a When the infrared light is irradiated, the gas in the front air chamber 123a is thermally expanded, and at the same time, the received infrared light is absorbed, so that the gas in the rear air chamber 123b is also thermally expanded, but the gas in the front air chamber 123a is received.
  • the intensity of the light intensity irradiation is larger, the expansion coefficient is larger, and the gas in the front air chamber 123a flows toward the rear air chamber 123b, forming an air flow in the backward direction.
  • the gas detecting device 123 When the microfluidic infrared gas detecting device 123 is not irradiated with the infrared light, the gas slowly returns to the normal state, and the gas in the front air chamber 123a partially flows to the rear air chamber 123b when the light is irradiated by the light signal, when the gas returns to the normal state. At the same time, the pressure of the front air chamber 123a becomes small, and the gas in the rear air chamber 123b flows to the front until the pressures before and after the equalization are equal, so that a reverse air flow is generated, and the flow velocity of the air flow is proportional to the light of the received light signal.
  • the intensity, microfluidic infrared sensor 123c converts the change in the flow velocity into a change in the electrical signal, and the change in the flow velocity is proportional to the change in the electrical signal, so the microfluidic infrared sensor 123c can convert the change in the intensity of the received optical signal into electricity. Signal changes.
  • the absorption spectrum of infrared light by gaseous water is wide, the absorption spectrum of infrared light by SO 2 and NO is narrow.
  • the gas concentration is detected by detecting the attenuation of the intensity of the infrared light absorption spectrum in the corresponding absorption spectrum of the infrared light, thereby reducing the interference of the gaseous water on the gas detection.
  • the microfluidic infrared gas detecting means 123 receives the light from the reference plenum 10a and the measuring plenum 10b for a certain period of time and converts it into an electric signal output.
  • the light source module 11 further includes an optical coupler 115 for determining whether the light at the current moment is irradiated to the reference air chamber 10a of the cavity 10 or the measurement air chamber 10b irradiated to the cavity 10.
  • the optical coupler 115 includes a transmitting end and a receiving end, and the optical coupler transmitting end 115 and the optical coupler receiving end are respectively located at two sides of the cut sheet 112.
  • the upper side of the first mount 111a and the second mount 111b are respectively provided with a mounting position 115a of the optical coupler transmitting end and a mounting position 115b of the optical coupler receiving end.
  • the frequency of the transmission signal of the optical coupler 115 is the same as the rotational frequency of the motor 111.
  • the first light transmission hole 112a When the light emitted by the light source 110 is irradiated to the measurement gas chamber 10b through the second light transmission hole 112b, the first light transmission hole 112a is opposed to the optical coupler 115, and the signal emitted from the emission end of the optical coupler 115 passes through the first light transmission hole. 112a is received by the optocoupler receiving end, the optocoupler receiving end receives the signal, and outputs a high level signal.
  • the light-cutting sheet 112 also rotates.
  • the first light-transmitting hole 112a is offset from the optical coupler 115.
  • the signal transmitted by the transmitter of the coupler 115 is blocked, the receiver of the optocoupler receives no signal, and outputs a low level signal.
  • the optocoupler receiving end sends the output level signal to the processing unit 13, and the processing unit 13 determines whether the current time is irradiated to the reference air chamber 10a of the cavity 10 or the cavity 10 according to the received level.
  • the absorbance of a gas is proportional to the concentration of a gas under the same conditions.
  • the light intensity of the light emitted from the light source 110 can be obtained by the detected light intensity from the reference gas chamber 10a.
  • the light emitted from the light source 110 can be obtained to pass through the detection chamber.
  • the electrical signal is denoised and amplified by the processing unit 13, and the light intensity signals received from the reference gas chamber 10a and the measurement gas chamber 10b are respectively calculated, and the relationship between the concentration of the measured gas and the light intensity ratio is calculated. Measure the concentration of the gas.
  • the relationship between the concentration of the gas to be measured and the ratio of the light intensity is known at the time of shipment, and the method of obtaining the relationship between the two will be described in the second embodiment.
  • the heat dissipation block 114 is disposed at a position close to the light source module 11.
  • the heat sink block 114 is made of a metal having high thermal conductivity and is capable of transmitting heat generated by the light source module 11.
  • a constant temperature chamber 14 is disposed in the gas analyzer, and the constant temperature chamber 14 is made of an aluminum alloy material, the inner wall is provided with foam for heat preservation, and the lower side is provided with a heating plate.
  • the cavity 10, the light source module 11 and the light receiving module 12 are all placed in the thermostatic chamber 14.
  • the temperature of the heating plate is usually controlled by a thermostat controller.
  • the temperature in the constant temperature chamber 14 is changed by no more than 2 ° C, so that the measurement temperature can be kept constant, and the temperature drift of the entire gas analysis instrument can be well suppressed.
  • the gas analyzer also includes a power supply, a display panel or a communication part, which is a conventional design and will not be described herein.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • a gas analysis method for use in the gas analyzer described in the first embodiment includes the following steps:
  • S1 charging a measured gas of a known concentration in the measuring gas chamber 10b, and exemplifying the gas to be measured as SO 2 in this embodiment;
  • multiple sets of P values can be obtained by charging the measured gas of different known concentrations C multiple times.
  • gases of different known concentrations C are gases of known concentration with high precision, and the gases of known concentration generally contain 0% of the maximum scale value of the measurement range (hereinafter referred to as "FS"), and 100% or other concentrations of SO2 gas. It is also possible to set some 15%, 30%, 60% SO2 gas containing the maximum scale value of the measurement range (hereinafter referred to as "FS"). Table 1 below is the experimental data measured during the actual experiment:
  • the waveform diagram of FIG. 6 can be output through the oscilloscope. It can be seen that the waveform output of the reference gas chamber 10b and the measurement gas chamber 10a are substantially uniform, and the difference is small. ;
  • the waveform diagram of FIG. 7 can be output through the oscilloscope, and it can be seen that there is a difference in the waveform output of the reference gas chamber 10b and the measurement gas chamber 10a.
  • step S7 After the instrument leaves the factory, the measured gas is introduced into the actual measurement, and the measured gas concentration is calculated according to the relationship determined in step S6.
  • the gas analysis method provided in this embodiment can accurately measure the concentration of the gas to be measured.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种气体分析仪及气体分析方法,气体分析仪包括:一腔体(10),沿腔体(10)的中心轴线设置隔板(101),将腔体(10)分为参考气室(10a)和测量气室(10b);光源模块(11),设置于腔体(10)的一端;微流红外气体检测装置(123),用于检测光源模块(11)发射并经过腔体(10)的光强,设置于腔体(10)的另一端,微流红外气体检测装置(123)设置由调水阀(123f)和调水缓冲气室(123d)构成的调水装置,克服水分干扰的问题。

Description

一种气体分析仪及气体分析方法 技术领域
本发明属于气体分析领域,尤其涉及一种气体分析仪及气体分析方法。
背景技术
随着环境污染日益严重,全世界在加强对污染物监测及分析,现有技术提出利用非分光红外散射法(NDIR)原理对被测气体进行测量和监控,具体的根据朗博-比尔定律,分析烟气中SO 2、NO、CO 2、CO等成分对红外光具有的吸收特性,确定被测气体的成分浓度。随着环保法律法规的更加严厉,对于SO 2、NO、CO的测量都逐步要求采用超低量程。对于0-100mg/m3的超低量程,要达到长时间漂移2.5%FS的要求,目前国内还缺少可以满足这种要求的NDIR红外气体分析仪器。以往国际上采用单光束气动红外气体传感器(micro-flow微流NDIR或者Luft微音器NDIR)的烟气分析仪,例如Siemens的U23以及FUJI的ZRJ系列,也逐步不能够满足超低量程0-100mg/m3的环保监测要求。
国际上在CEMS监测仪器领域已经有比较成熟的经验,SIEMENS,FUJI和ABB等都提出了新型的采用双光束气动红外传感器的烟气分析仪。例如在专利文献US20130043391A1中SIEMENS AKTIENGESELLSCHAFT提出的“Non-dispersive infrared(NDIR)dual trace gas analyzer and method for determining a concentration of a measurement gas component in a gas mixture by the gas analyzer”:气室为叉形双管双气室结构,体积大,不利于仪器的小型化,工艺结构复杂,造价昂贵;传感器采用双层光气动结构(微流传感器),被测气流相对于光源发射方向左右流动,不能防止水分对被测气体的干扰;另外,红外光源采用了分束器,导致红外光反射会造成信号损失,测量不准确。在专利文献EP0093939A1中,FUJI ELECTRIC CO.LTD提出的“Non-dispersive infrared gas analyzer”:气室为单气室,无参考,传感器采用双层光气动结构(微流传感器),被测气流相对于光源发射方向前后流动,容易受外部环境因素的影响(光源、温度等因素),漂移大、稳定性差。在专利文献EP2551662A1中,ABB TECHNOLOGY AG提出的“Optical gas analysis device with resources to improve the selectivity of gas mixture analyses”:采用隔半气室,缺 陷是采用光气动传感器(微音传感器),被测气流相对于光源发射方向左右流动,无法避免水分对测试的干扰。
发明内容
为解决现有技术缺陷,本发明提出一种气体分析仪及气体分析方法,采用隔半气室技术,结合可抗水干扰的前后流动微流红外气体检测装置,实现对被测气体成分浓度分析,测试准确、稳定,可满足低量程测试需求。
本发明一方面提出一种气体分析仪,包括:
至少一腔体,沿腔体的中心轴线设置隔板,将腔体分为参考气室和测量气室;
光源模块:设置于腔体的一端;
微流红外气体检测装置,用于检测光源模块发射并经过腔体的光强,设置于腔体的另一端。
优选的,隔板与腔体的长度相同,隔板将腔体分隔成大小与形状相同的参考气室和测量气室。
优选的,微流红外气体检测装置包括前气室、后气室、微流红外传感器、调水装置,用于检测光源模块发射并经过腔体的光强。
优选的,光源模块,包括光源、电机、切光片。
优选的,微流红外气体检测装置包括前气室、后气室、微流红外传感器、用于消除水分的影响的调水装置。调水装置包括调水阀、调水缓冲气室及用于连接调水缓冲室与前后气室的连接管道。
优选的,前气室、后气室、调水装置依次沿着光源模块发出的光线的传播方向进行设置。
优选的,前气室、后气室、调水阀、调水缓冲气室依次沿着光源模块发出的光线的传播方向进行设置
优选的,切光片通过第二安装座与腔体相连接,腔体与第二安装座之间通过卡扣连接,第二安装座与腔体之间增加了若干个螺钉和螺孔进行装配。
优选的,切光片上设置了第一透光孔和第二透光孔,切光片在电机的带动下匀速转动,周期性地、交替地将所述光源发出的光通过第一透光孔照射述参考气室内,光源发出的光通过第二透光孔照射到测量气室内。
优选的,光源模块还包括一光耦合器,用于判断当前时刻的光是照射到参考气室,还 是照射到测量气室。
优选的,气体分析仪还包括散热块,散热块紧贴光源模块,用于对光源模块进行散热。
优选的,气体分析仪还包括恒温室,腔体、光源模块及微流红外气体检测装置均放置于恒温室中。
优选的,气体分析仪还包括处理单元,用于根据检测结果及其中预存的公式,计算出被测气体的浓度
另一方面,本发明提供一种气体分析方法,包括以下步骤:
S1:在测量气室内充入已知浓度的被测气体;
S2:在参考气室内充入参考气体;
S3:光源周期、交替照射参考气室和测量气室;
S4:通过微流红外气体检测装置检测参考气室、测量气室信号;
S5:计算参考气室、测量气室输出信号强度比值;
S6:通过差值法/最小二乘法拟合出参考气室、测量气室的信号强度比值和已知被测气体浓度之间的关系;
S7:通入被测气体,依据步骤S6确定的关系式计算被测气体浓度。
再一方面,本发明还提供了一种调水方法,应用于调水装置包括调水阀、调水缓冲气室及用于连接调水缓冲室与前后气室的连接管道的气体分析仪,包括以下步骤:
S1、在前气室、后气室及调水缓冲气室中充入被测气体;
S2、在测量气室中充入参考气体,获取微流红外传感器检测的测量气室对应的电信号大小;
S3、在测量气室中重新充入含非冷凝水的参考气体,调节调水阀的位置,使得微流红外传感器检测的测量气室对应的电信号大小与步骤S2中信号大小相同。
优选的,步骤S3中的参考气体中非冷凝水的含量是饱和的
综上所述,本发明提供的气体分析仪包括至少一腔体,通过在腔体的中心轴线设置隔板,将腔体分为大小与形状都相同的参考气室和测量气室,克服了现有技术采用单气室造成的漂移大、测量稳定性差,及采用独立双气室工艺结构复杂等问题;微流红外气体检测装置增加一调水装置,通过发现气态水与被测气体吸收谱的重叠现象,利用气态水、被测气体对红外光的吸收谱宽窄差异,从而调节调水阀,改变微流红外气体检测装置前后气室、调水缓冲气室内气体膨胀后的流速变化,使得检测到的红外光谱处于被测气体的吸收谱内,同时远离气态水的吸收谱,克服了水分干扰的问题,达到了测量准确的技术效果。
应当理解的是,以上描述是示例性的,并不能限制本发明的范围。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是实施例1示出的气体分析仪的测试原理示意图;
图2是实施例1示出的气体分析仪的腔室及光源模块和光接收模块的总装图;
图3是实施例1示出的气体分析仪的腔体的立体图;
图4是实施例1示出的气体分析仪的腔体及光源模块和光接收模块的分解图;
图5是实施例1示出的气体分析仪的总装图;
图6是实施例2示出的气体分析分析方法参考气室和测量气室输出的波形图;
图7是实施例2示出的气体分析分析方法参考气室和测量气室输出的波形图;
图8是实施例2示出的气体分析方法拟合示意图。
具体实施方式
下面通过实施例,并结合附图对本发明的技术方案作进一步具体的说明。
腔体10  光源模块11  光接收模块12  隔板101  参考气室10a  测量气室10b  光源110  电机111  切光片112  第一透光孔112a  第二透光孔112b  第一安装座111a  第二安装座111b  法兰板120  第三安装座121  滤光片122  微流红外气体检测装置123  前气室123a  后气室123b  微流红外传感器123c  调水缓冲气室123d  连接管道123e  调水阀123f  螺钉11a  处理单元13  散热块114  恒温室14  光耦合器115  光耦合器发射端的安装位115a  光耦合器接收端的安装位115b。
实施例一:
参考图1—5,一种气体分析仪,包括一腔体10、光源模块11、光接收模块12及处理单元13,腔体10的一端与光源模块11相连接,另一端和光接收模块12相连接,通过设置在腔体10中心轴线位置的隔板101将腔体10分为大小与形状都相同的两个气室,即参考气室10a和测量气室10b,在本实施例中,参考气室10a和测量气室10b相对隔板101对称设置,所述参考气室10a和所述测量气室10b的横截面均设置为半圆形。应当考虑到:实际应用时,横截面为矩形或者其他几何形状均在本方案保护范围之内。
隔板101与腔体10的长度相同。隔板101与腔体10通过焊接方式进行连接以防止光源泄露。
通过在一个腔体10里设置隔板结构(隔板101)能够减小整个测量仪器的体积,降低成本,并且能保证参考气室10a和测量气室10b的一致性,降低由于参考气室10a和测量气室10b的不一致带来的检测结果误差。
通常一个腔体10只能测一种被测气体,在腔体10的参考气室10a中充入对光源不吸收的参考气体,如N2。在测量气室10b上设置了进气口和出气口供被测气体流入和流出。为了同时测量多种被测气体,可同时在气体分析仪中设置多个腔体10。在本实施例附图中仅以设置两个腔体10进行举例说明。
光源模块11射出包含被测气体的吸收光谱的吸收波长带的照射光。光源模块11包括光源110、电机111及切光片112。光源110及电机111通过第一安装座111a与切光片112进行连接。电机111被设置于电机安装座上。切光片112通过第二安装座111b与腔体10相连接。
腔体10与第二安装座111b之间通过卡扣结构进行连接,为了防止光源110的径向移动导致的光漂,在第二安装座111b与气室腔体体10之间设置了若干个螺钉11a和螺孔,通过螺钉11a和螺孔进行紧配合。
第一安装座111a与第二安装座111b的位置相对,并且在相对应的位置设置了大小和形状与腔体10相匹配的圆孔,以确保光源110发出的光能照射到腔体10内。切光片112上设置了一第一透光孔112a和一第二透光孔112b,切光片112在电机111的带动下匀速转动,周期、交替的将光源110发出的光通过第一透光孔112a照射到参考气室10a内和将光源110发出的光通过第二透光孔112b照射到测量气室10b内。
比如,电机111以一秒钟转动10次的频率匀速转动,这样,电机111转动的时候,参考气室10a和测量气室10b在1秒钟时间里面,均受到光源的10次照射与10次遮挡。
在测量气室10b内被测气体对光源110发出的红外光进行吸收,在参考气室10a中参考气体N2对光源110发出的红外光不吸收。
光接收模块12接收光源模块11发射并经过腔体10到达光接收模块12的光,光接收模块12包括法兰板120、第三安装座121、滤光片122及微流红外气体检测装置123。
腔体10通过法兰板120与微流红外气体检测装置123相连接,在腔体10和微流红外气体检测装置123之前设置了滤光片122,滤光片122可以消除或减少散射和干扰组分的影响,可以使具有特征吸收波长的红外光通过。
光经腔体10到达微流红外气体检测装置123,并将接收到的光信号转化为电信号。微流红外气体检测装置123是可以测量特定气体的成分和浓度的传感器。比如可以是SO 2微流 红外传感器,NO传感器或其他传感器。当微流红外气体检测装置123是SO 2传感器时微流红外气体检测装置123能根据SO 2的对光的吸收特性来测定在对应吸收波段的光强衰减情况,并且将检测结果转化为电信号。如附图1,微流红外气体检测装置123包括前气室123a、后气室123b、微流红外传感器123c、调水装置,调水装置由调水阀123f、调水缓冲气室123d及用于连接调水缓冲室123d与后气室123b的连接管道123e构成,通过将参考气体、含非冷凝水的参考气体依次分别通入测量气室,通过调节调水阀123f,使得含有非冷凝水的参考气体与参考气体在微流红外气体检测装置123上产生的电信号大小一致,可最大限度消除水分对被测气体的影响。由于后气室123b与调水缓冲气室123d通过连接管道123e连接,二者可以等效为一个气室,在本实施例中,调水阀123f为片状不透光的隔板。
具体的,本实施例的调水方法如下:
S1、在前气室123a、后气室123b及调水缓冲气室123d中充入被测气体SO 2,参考气室10a自开始即被充入参考气体N 2
S2、在测量气室10b中冲入参考气体N 2,获取微流红外传感器123c测量的测量气室对应的电信号大小。由于在执行本步骤时调水阀123f所处的位置对本发明调水的效果影响很小,因此调水阀123f在进行本步骤时所处的位置无需做严格限定,但本实施例为了后续调节方便,将调水阀123f在本步骤中调节至对调水缓冲气室123d的半遮挡位置。
S3、放出测量气室10b中的参考气体N 2,在测量气室10b中重新充入4℃的含饱和非冷凝水的参考气体N 2,调节调水阀123f的位置,使得微流红外传感器123c检测的测量气室对应的电信号大小与步骤S2中信号大小相同。此时,调水完毕,固定调水阀123f的位置,调水阀123f的此时的位置即为最终的调水后的位置,调水完毕后的气体分析仪能够适应各种不同含水量的被测气体的测量。其中,4℃的含饱和非冷凝水的参考气体N 2可通过将参考气体N 2通过4℃的水后得到。
有别于以往专利的,微流红外气体检测装置123的前后气室123a、123b、调水阀123f以及调水缓冲气室123d在光的传播方向上彼此相继地前后横向设置,在前后气室以及调水缓冲气室通入包含可以吸收被测气体组分特征吸收峰的标准气体,例如可充入标准SO 2或者NO等气体。按照光的传播方向,前气室123a、后气室123b、缓冲气室123d之间分别设置滤光片。
在受到红外光照射时前气室123a中的气体受热膨胀,并且同时对接收到的红外光进行吸收,因此后气室123b中的气体也会受热膨胀,但是由于前气室123a的气体受到的光强照射的强度更大,膨胀系数更大,前气室123a中的气体会向后气室123b流动,形成由 前往后方向的气流。当微流红外气体检测装置123没有受到红外光照射时,气体慢慢的恢复正常状态,由于前气室123a中的气体在受到光信号照射时部分流向了后气室123b,当气体恢复正常状态时,前气室123a压强变小,后气室123b中的气体会向前面流动,直至达到前后的压强相等,因此会产生一个反向的气流,气流的流速正比于接收到的光信号的光强度,微流红外传感器123c将气流流速的变化转化为电信号的变化,气流流速的变化正比于电信号的变化,因此微流红外传感器123c能够将接收到的光信号的光强度变化转变为电信号的变化。
由于气态水对红外光的吸收谱较宽,SO 2和NO等气体对红外光的吸收谱较窄。通过检测被测气体对红外光对应吸收谱中,远离气态水对红外光吸收谱的波段的光强衰减情况来进行气体浓度的检测,以此减少气态水对气体检测的干扰。
测试时,微流红外气体检测装置123在一定时间内接收到来自参考气室10a和测量气室10b的光并转换为电信号输出。
请参阅图4,光源模块11还包括一光耦合器115,光耦合器115用于判断当前时刻的光是照射到腔体10的参考气室10a,还是照射到腔体10的测量气室10b内。光耦合器115包括一发射端和一接收端,光耦合器发射端115和光耦合器接收端分别位于切光片112的两侧。第一安装座111a与第二安装座111b的上侧分别设置了光耦合器发射端的安装位115a,和光耦合器接收端的安装位115b。
光耦合器115的发射信号的频率与电机111的转动频率相同。
当光源110发出的光通过第二透光孔112b照射到测量气室10b时,第一透光孔112a与光耦合器115相对,光耦合器115的发射端发射的信号通过第一透光孔112a,并被光耦合器接收端所接收,光耦合器接收端接收到信号,并输出高电平信号。
随着电机111的转动,切光片112也随之转动,当光源110发出的光通过第一透光孔112a照射到参考腔室10a时,第一透光孔112a偏离光耦合器115,光耦合器115的发射端发射的信号被遮挡,光耦合器接收端没有接收到信号,并输出低电平信号。
光耦合器接收端将输出的电平信号发送给处理单元13,处理单元13根据接收到的电平高低判断当前时刻的光是照射到腔体10的参考气室10a,还是照射到腔体10的测量气室10b内。即当前时刻检测到的光强度信号是来自测量气室10b还是来自参考气室10a。
根据朗伯-比尔(Lambert-Beer)定律,在相同的条件下气体的吸光度与气体的浓度成正比率关系。
通过检测到的来自参考气室10a的光强度可以得到从光源110发出的光的光强度,通过检测到的来自测量气室10b的光强度S,可以得到从光源110发出的光通过检测腔室10b被被测气体吸收后的光的光强度R,光强度的比值P=S/R,其正比于被测气体的浓度。
由处理单元13对电信号进行去噪放大处理,分别计算出从参考气室10a和测量气室10b接收到的光强信号,根据被测气体的浓度与光强度比值之间的关系计算出被测气体的浓度。被测气体的浓度与光强度比值之间的关系在出厂时为已知,二者之间的关系的获取方法将在实施例二中进行描述。
请参阅图5,为了减少温度漂移对光源造成的影响,在靠近光源模块11的位置设置了散热块114。散热块114由导热性高的金属制成,能够传递光源模块11发出的热量。
由于气体对红外光源的吸收率受温度影响比较大,在气体分析仪内设置了一个恒温室14,恒温室14采用铝合金材料制作,内壁上设置了泡棉进行保温,下方设置了加热板。腔体10,光源模块11及光接收模块12均放置于恒温室14中。
为了与实际的测试环境保持一致,减少由于环境温度的误差对检测结果造成的影响,通常将加热板的温度采用恒温控制器进行控制。使得恒温室14内的温度变化不超过2℃,能使测量温度保持恒定,可很好的抑制整个气体分析仪器的温度漂移。
当然气体分析仪还包括电源、显示板或通讯部分,此为常规设计,在此不再赘述。
实施例二:
参考图5-8,一种气体分析方法,应用于实施例一中所述的气体分析仪中,包括以下步骤:
S1:在测量气室10b内充入已知浓度的被测气体,在本实施例中以被测气体为SO 2进行举例说明;
S2:在参考气室10a中充入N 2
S3:光源110周期、交替照射参考气室10a和测量气室10b中,已知浓度的被测气体SO 2对光源110发出的光进行吸收,参考气体N 2对光源110发出的光不进行吸收;
S4:通过微流红外气体检测装置123检测参考气室10a、测量气室10b信号,通过微流红外气体检测装置123(例如SO 2微流红外传感器)接收从测量气室10b射出的经过SO2吸收的光的强度S,通过微流红外气体检测装置123(例如SO 2微流红外传感器)接收从参考腔室10a射出的没有经过吸收的光的强度R;
S5:计算参考气室10a、测量气室10b输出信号强度比值P,P=S/R:
具体的,通过多次充入不同已知浓度C的被测气体,可以得到多组P值。
这些不同已知浓度C的被测气体是高精度的已知浓度的气体,这些已知浓度的被测气体一般包含测定范围的最大刻度值(以下称为“FS”。)的0%,以及100%或其他浓度的SO2气体。还可以设置一些包含测定范围的最大刻度值(以下称为“FS”。)的15%,30%,60%浓度的SO2气体,下表1为实际实验过程中测定的实验数据:
表1:
Figure PCTCN2018100767-appb-000001
当参考气室10b通入N2,测量气室10a未通入被测气时,通过示波器可输出如附图6的波形图,可知参考气室10b、测量气室10a波形输出基本一致,差异小;
当参考气室10b通入N2,测量气室10a通入被测气时,通过示波器可输出如附图7的波形图,可知参考气室10b、测量气室10a波形输出有差异。
S6:通过差值法/最小二乘法拟合出参考气室、测量气室的信号强度比值和已知被测气体浓度之间的关系式;
根据表1中的五组已知数据,运用差值法/最小二乘法可拟合出被测气体的浓度C与参考气室10a、测量气室10b输出信号强度比值P之间的关系,见附图8:
C=0.0004P 3-1.4584P 2+15557.2P-529771
S7:仪器出厂后,实际测量时通入被测气体,依据步骤S6确定的关系式计算被测气体浓度。
综上所述,本实施例提供的气体分析方法,可精确测量被测气体的浓度。
本发明中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。

Claims (15)

  1. 一种气体分析仪,其特征在于,包括:
    至少一腔体,沿腔体的中心轴线设置隔板,将腔体分为参考气室和测量气室;
    光源模块,设置于腔体的一端;
    微流红外气体检测装置,用于检测光源模块发射并经过腔体的光强,设置于腔体的另一端。
  2. 根据权利要求1所述的气体分析仪,其特征在于隔板与腔体的长度相同,隔板将腔体分隔成大小与形状相同或者相近的参考气室和测量气室。
  3. 根据权利要求1所述的气体分析仪,其特征在于微流红外气体检测装置包括前气室、后气室、微流红外传感器、用于消除水分的影响的调水装置。
  4. 根据权利要求1所述的气体分析仪,其特征在于光源模块包括光源、电机、切光片。
  5. 根据权利要求3所述的气体分析仪,其特征在于调水装置包括调水阀、调水缓冲气室及用于连接调水缓冲气室与前后气室的连接管道。
  6. 根据权利要求3或5任一权利要求所述的气体分析仪,其特征在于所述前气室、后气室、调水装置依次沿着光源模块发出的光线的传播方向进行设置。
  7. 根据权利要求6所述的气体分析仪,其特征在于前气室、后气室、调水阀、调水缓冲气室依次沿着光源模块发出的光线的传播方向进行设置。
  8. 根据权利要求4所述的气体分析仪,其特征在于切光片通过第二安装座与腔体相连接,腔体与第二安装座之间通过卡扣连接。
  9. 根据权利要求8所述的气体分析仪,其特征在于切光片上设置了第一透光孔和第二透光孔,切光片在电机的带动下匀速转动,周期、交替地将所述光源发出的光通过第一透光孔照射述参考气室内,光源发出的光通过第二透光孔照射到测量气室内。
  10. 根据权利要求4所述的气体分析仪,其特征在于光源模块还包括一光耦合器,用于判断当前时刻的光是照射到参考气室,还是照射到测量气室。
  11. 根据权利要求1所述的气体分析仪,其特征在于还包括散热块,散热块紧贴光源模块,用于对光源模块进行散热。
  12. 根据权利要求11所述的气体分析仪,其特征在于还包括恒温室,腔体、光源模块及微流红外气体检测装置均放置于恒温室中。
  13. 一种气体分析方法,应用于权利要求1-12中任一所述的气体分析仪,其特征在于,包括以下步骤:
    S1:在测量气室内充入已知浓度的被测气体;
    S2:在参考气室内充入参考气体;
    S3:光源周期、交替照射参考气室和测量气室;
    S4:通过微流红外气体检测装置检测参考气室、测量气室信号;
    S5:计算参考气室、测量气室输出信号强度比值;
    S6:拟合出参考气室、测量气室的信号强度比值和已知被测气体浓度之间的关系;
    S7:通入被测气体,依据步骤S6确定的关系计算被测气体浓度。
  14. 一种调水方法,应用于权利要求5或6或7所述的气体分析仪,其特征在于,包括以下步骤:
    S1、在前气室、后气室及调水缓冲室中充入被测气体;
    S2、在测量气室中充入参考气体,获取微流红外传感器检测的测量气室对应的电信号大小;
    S3、在测量气室中重新充入含非冷凝水的参考气体,调节调水阀的位置,使得微流红外传感器检测的测量气室对应的电信号大小与步骤S2中电信号大小相同。
  15. 根据权利要求14所述的调水方法,其特征在于,步骤S3中的参考气体中非冷凝水的含量是饱和的。
PCT/CN2018/100767 2017-08-21 2018-08-16 一种气体分析仪及气体分析方法 WO2019037648A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18847361.5A EP3674689B1 (en) 2017-08-21 2018-08-16 Gas analyzer and gas analyzing method
US16/832,020 US11079322B2 (en) 2017-08-21 2020-03-27 Gas analyzer and gas analyzing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710720122.1A CN107389585B (zh) 2017-08-21 2017-08-21 一种气体分析仪及气体分析方法
CN201710720122.1 2017-08-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/832,020 Continuation US11079322B2 (en) 2017-08-21 2020-03-27 Gas analyzer and gas analyzing method

Publications (1)

Publication Number Publication Date
WO2019037648A1 true WO2019037648A1 (zh) 2019-02-28

Family

ID=60352795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100767 WO2019037648A1 (zh) 2017-08-21 2018-08-16 一种气体分析仪及气体分析方法

Country Status (4)

Country Link
US (1) US11079322B2 (zh)
EP (1) EP3674689B1 (zh)
CN (1) CN107389585B (zh)
WO (1) WO2019037648A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114441717A (zh) * 2022-02-11 2022-05-06 华北电力大学(保定) 一种生物气溶胶快速测量装置及方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107389585B (zh) * 2017-08-21 2019-11-15 湖北锐意自控系统有限公司 一种气体分析仪及气体分析方法
CN107941734A (zh) * 2017-09-20 2018-04-20 国网辽宁省电力有限公司检修分公司 一种具有多功能sf6检测技术的综合分析平台及方法
CN109507140B (zh) * 2018-10-16 2020-04-10 四方光电股份有限公司 一种高精度红外气体传感器及气体分析方法
CN109406532B (zh) * 2018-10-24 2021-01-05 广州海狮软件科技有限公司 一种适用于小管径管材的表面缺陷的低成本视觉检测装置及方法
DE102019120699A1 (de) * 2019-07-31 2021-02-04 Wagner Group Gmbh Gasmessvorrichtung mit Heizeinrichtung
CN113767274A (zh) * 2019-08-23 2021-12-07 西门子股份公司 气体分析仪
CN110806403B (zh) * 2019-11-28 2024-05-10 北京永安多谱检测科技有限公司 一种便携式一体化过氧化物检测装置及其检测方法
CN112033925A (zh) * 2020-09-02 2020-12-04 湖北锐意自控系统有限公司 一种多组分宽量程气体分析仪及气体分析方法
CN112666108B (zh) * 2020-11-27 2023-07-25 广西电网有限责任公司电力科学研究院 一种涉及红外光谱对环保气体热解后混合气体检测方法
CN112816377B (zh) * 2020-12-30 2024-03-15 杭州谱育科技发展有限公司 基于ftir技术的烟气检测方法
CN113567385A (zh) * 2021-07-08 2021-10-29 浙江焜腾红外科技有限公司 激光红外气体传感器
CN113612859B (zh) * 2021-09-18 2023-04-18 中国科学院长春光学精密机械与物理研究所 矿井环境监测系统及其监测方法
CN114136912B (zh) * 2021-12-01 2023-10-20 河南森斯科传感技术有限公司 一种双光可调式红外气体传感器的校准方法
CN116242795B (zh) * 2023-05-12 2023-07-18 山东益来环保科技有限公司 一种紫外烟气分析仪及其使用方法
CN117538277B (zh) * 2023-11-17 2024-08-20 成都汉威智感科技有限公司 多气体多量程自适应调节红外气体传感系统

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2924713A (en) * 1956-01-18 1960-02-09 Beckman Instruments Inc Instruments
EP0093939A1 (de) 1982-04-30 1983-11-16 Fuji Electric Co. Ltd. Nichtdispersiver Infrarot-Gasanalysator
JPS6011122A (ja) * 1983-07-01 1985-01-21 Shimadzu Corp 非分散型赤外分析法における干渉補償方法
CN85105061A (zh) * 1984-07-07 1986-12-31 株式会社堀场制作所 红外气体分析仪
US6166383A (en) * 1997-07-28 2000-12-26 Siemens Ag Non-dispersive infrared gas analyzer
US20080011952A1 (en) * 2004-06-30 2008-01-17 Abb Patent Gmbh Non-Dispersive Infrared Gas Analyzer
CN102590126A (zh) * 2011-12-28 2012-07-18 武汉四方光电科技有限公司 一种长寿命的微流红外so2传感器
CN102809546A (zh) * 2012-08-21 2012-12-05 南京埃森环境技术有限公司 一种低浓度烟气红外分析仪及检测方法
EP2551662A1 (de) 2011-07-29 2013-01-30 ABB Technology AG Optische Gasanalysatoreinrichtung mit Mitteln zum Verbessern der Selektivität bei Gasgemischanalysen
US20130043391A1 (en) 2009-12-22 2013-02-21 Siemens Aktiengesellschaft Non-Dispersive Infrared (NDIR) Dual Trace Gas Analyzer and Method for Determining a Concentration of a Measurement Gas Component in a Gas Mixture by the Gas Analyzer
CN107389585A (zh) * 2017-08-21 2017-11-24 湖北锐意自控系统有限公司 一种气体分析仪及气体分析方法
CN207147966U (zh) * 2017-08-21 2018-03-27 湖北锐意自控系统有限公司 气体分析仪

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5014139B1 (zh) * 1969-08-29 1975-05-26
US3770974A (en) * 1972-06-29 1973-11-06 Mine Safety Appliances Co Non-dispersive infrared fluid analyzer with compensation for absorptive and mechanical effects of ambient conditions
JPH0480642A (ja) * 1990-07-23 1992-03-13 Fuji Electric Co Ltd 赤外線ガス分析計
JP2000002657A (ja) * 1998-06-12 2000-01-07 Horiba Ltd 赤外線ガス分析計における水分干渉補正方法
JP2004061207A (ja) * 2002-07-26 2004-02-26 Shimadzu Corp 赤外線ガス分析計
JP2013096889A (ja) * 2011-11-02 2013-05-20 Fuji Electric Co Ltd 赤外線ガス分析計
CN102980870B (zh) * 2012-12-10 2014-10-29 武汉四方光电科技有限公司 一种高精度微流红外气体传感器及其测量方法
CN104089918A (zh) * 2014-07-03 2014-10-08 中国人民解放军后勤工程学院 一种基于非分光红外法的油气在线检测装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2924713A (en) * 1956-01-18 1960-02-09 Beckman Instruments Inc Instruments
EP0093939A1 (de) 1982-04-30 1983-11-16 Fuji Electric Co. Ltd. Nichtdispersiver Infrarot-Gasanalysator
JPS6011122A (ja) * 1983-07-01 1985-01-21 Shimadzu Corp 非分散型赤外分析法における干渉補償方法
CN85105061A (zh) * 1984-07-07 1986-12-31 株式会社堀场制作所 红外气体分析仪
US6166383A (en) * 1997-07-28 2000-12-26 Siemens Ag Non-dispersive infrared gas analyzer
US20080011952A1 (en) * 2004-06-30 2008-01-17 Abb Patent Gmbh Non-Dispersive Infrared Gas Analyzer
US20130043391A1 (en) 2009-12-22 2013-02-21 Siemens Aktiengesellschaft Non-Dispersive Infrared (NDIR) Dual Trace Gas Analyzer and Method for Determining a Concentration of a Measurement Gas Component in a Gas Mixture by the Gas Analyzer
EP2551662A1 (de) 2011-07-29 2013-01-30 ABB Technology AG Optische Gasanalysatoreinrichtung mit Mitteln zum Verbessern der Selektivität bei Gasgemischanalysen
CN102590126A (zh) * 2011-12-28 2012-07-18 武汉四方光电科技有限公司 一种长寿命的微流红外so2传感器
CN102809546A (zh) * 2012-08-21 2012-12-05 南京埃森环境技术有限公司 一种低浓度烟气红外分析仪及检测方法
CN107389585A (zh) * 2017-08-21 2017-11-24 湖北锐意自控系统有限公司 一种气体分析仪及气体分析方法
CN207147966U (zh) * 2017-08-21 2018-03-27 湖北锐意自控系统有限公司 气体分析仪

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3674689A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114441717A (zh) * 2022-02-11 2022-05-06 华北电力大学(保定) 一种生物气溶胶快速测量装置及方法
CN114441717B (zh) * 2022-02-11 2023-04-21 华北电力大学(保定) 一种生物气溶胶快速测量装置及方法

Also Published As

Publication number Publication date
CN107389585B (zh) 2019-11-15
CN107389585A (zh) 2017-11-24
EP3674689B1 (en) 2023-12-13
EP3674689A1 (en) 2020-07-01
US11079322B2 (en) 2021-08-03
US20200225150A1 (en) 2020-07-16
EP3674689A4 (en) 2021-07-28

Similar Documents

Publication Publication Date Title
WO2019037648A1 (zh) 一种气体分析仪及气体分析方法
US11874199B2 (en) Device and process for determining the size of a leak hole in a sample
JP2016526172A (ja) マルチチャンネル・エアロゾル散乱吸収測定器
CN106596437A (zh) 大气no3自由基浓度在线测量系统和在线测量方法
CN104458636A (zh) 一种具有温度气压自动补偿的co2气体浓度监测装置及方法
US20180188213A1 (en) Photoacoustic gas analyzer
CN108593587A (zh) 一种非分散红外气体传感器
CN111208043A (zh) 一种气溶胶多光学参数吸湿增长因子同步测量系统和方法
WO2022267963A1 (zh) 一种用于复合气体的综合检测装置
US3659452A (en) Laser excited spectrophone
JP2012507734A (ja) ガス分析器
Jing et al. Design and optimization of an integrated MEMS gas chamber with high transmissivity
Song et al. Differential Helmholtz resonant photoacoustic cell for spectroscopy and gas analysis with room-temperature diode lasers
CN207147966U (zh) 气体分析仪
JPS5892843A (ja) 二成分測定用非分散型赤外線分析計
JP2003337119A (ja) 音響的ガスモニタ
CN209264551U (zh) 二氧化氮浓度检测装置
CN208432533U (zh) 一种非分散红外气体传感器
CN206772801U (zh) 一种串联式气体光谱分析双气室
RU186910U1 (ru) Газоанализатор многокомпонентный для селективного измерения концентрации хладонов в системах жизнеобеспечения
Fang et al. Highly sensitive portable laser absorption spectroscopy formaldehyde sensor using compact spherical mirror multi-pass cell
CN209296567U (zh) 一种基于积分球多次反射的气体检测装置
CN206740638U (zh) 一种并联式气体光谱分析双气室
CN202562842U (zh) 利用光声光谱法检测微量水蒸气浓度的装置
CN113959955B (zh) 一种激光在线检测天然气相对密度的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18847361

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018847361

Country of ref document: EP

Effective date: 20200323