WO2019037360A1 - 基于波前旋转的快速倾斜相位误差补偿方法及装置 - Google Patents

基于波前旋转的快速倾斜相位误差补偿方法及装置 Download PDF

Info

Publication number
WO2019037360A1
WO2019037360A1 PCT/CN2017/118138 CN2017118138W WO2019037360A1 WO 2019037360 A1 WO2019037360 A1 WO 2019037360A1 CN 2017118138 W CN2017118138 W CN 2017118138W WO 2019037360 A1 WO2019037360 A1 WO 2019037360A1
Authority
WO
WIPO (PCT)
Prior art keywords
hologram
phase
original
fourier transform
rotating
Prior art date
Application number
PCT/CN2017/118138
Other languages
English (en)
French (fr)
Inventor
彭翔
邓定南
何文奇
吴禹
刘晓利
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2019037360A1 publication Critical patent/WO2019037360A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/021Interferometers using holographic techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/04Measuring microscopes

Definitions

  • the invention belongs to the technical field of optical imaging correction, and in particular relates to a fast tilt phase error compensation method and device based on wavefront rotation.
  • digital holographic microscopy can obtain quantitative amplitude information and phase information of an object to be measured with a single hologram, and has the advantages of non-contact, no mark, high resolution and low cost.
  • the coaxial digital holographic microstructure is also used for quantitative measurement of cells and micro-optical components because of its high temporal stability and compactness.
  • the characteristic of the coaxial digital holographic microscopy system is that the objective light path and the reference light path pass through the same optical path, so the structure can not only maintain the stability of the system, but also eliminate the secondary introduced in the system due to the use of the microscope objective. Phase error.
  • the coaxial digital holographic micro-measurement system usually adopts an off-axis structure, and there is a certain angle between the object light and the reference light propagation direction.
  • the structure can separate the different diffraction orders of the hologram spectrum well, and solve the twin structure in the coaxial structure.
  • a single hologram can be obtained to obtain accurate phase information of an object.
  • the off-axis structure introduces a tilt phase factor, which causes the tilt angle of the reconstructed phase to have a certain angle, which affects the accuracy of the quantitative phase measurement;
  • the coaxial structure in the coaxial holographic microscopy system cannot eliminate the tilt error introduced by the off-axis structure.
  • the tilt error can only be removed by the numerical compensation method. Therefore, in order to obtain the phase information of the accurate object, the tilt phase error compensation of the reconstructed phase is required.
  • a spectral center shift method is proposed to shift the spectrum of the virtual image to the center of the spectrum in the hologram spectrum, thereby eliminating the off-axis tilt.
  • the accuracy of the center of the spectrum is limited to the whole. Pixels need to be further removed from the residual tilt distribution.
  • the phase template can be obtained from the pre-knowledge of the system or the acquisition of the sample-free hologram.
  • the method needs to know the parameters of the system in advance, or needs to acquire two holograms. Suitable for dynamic measurements.
  • the invention provides a fast tilt phase error compensation method and device based on wavefront rotation, and aims to provide a fast and accurate tilt phase error compensation method in coaxial digital holographic microscopic imaging.
  • the invention provides a fast tilt phase error compensation method based on wavefront rotation, comprising:
  • the original hologram is subjected to phase recovery processing by Fourier transform method in coaxial digital holographic microscopy to obtain the original unfolded phase map.
  • phase recovery process of the rotating hologram is performed by using the Fourier transform method in coaxial digital holographic microscopy to obtain a rotationally expanded phase diagram.
  • the original unwrapped phase map Rotating phase diagram with the rotation Subtracting, a phase map obtained by compensating the original unwrapped phase map is obtained.
  • the original hologram is subjected to phase recovery processing by using Fourier transform method in coaxial digital holographic microscopy to obtain an original unfolded phase map.
  • phase recovery processing is performed on the rotating hologram by using a Fourier transform method in coaxial digital holographic microscopy to obtain a rotationally developed phase diagram.
  • the invention also provides a fast tilt phase error compensation device based on wavefront rotation, comprising:
  • a rotation module for rotating the original hologram 180° clockwise or counterclockwise to obtain a digital reference hologram as a rotating hologram
  • a first processing module configured to perform phase recovery processing on the original hologram by using a Fourier transform method in coaxial digital holographic microscopy to obtain an original unfolded phase map
  • a second processing module configured to perform phase recovery processing on the rotating hologram by using a Fourier transform method in coaxial digital holographic microscopy to obtain a rotationally expanded phase map
  • the first processing module is specifically configured to perform Fourier transform on the original hologram to obtain a spectrum of the original hologram, extract a +1 level spectrum, perform inverse Fourier transform to obtain a wrapped phase, and adopt a de-wrapping algorithm. Get the original unfolded phase map
  • the second processing module is specifically configured to perform Fourier transform on the rotating hologram to obtain a spectrum of the rotating hologram, extract a -1 spectrum, perform inverse Fourier transform to obtain a wrapped phase, and adopt a de-wrapping algorithm. Get a rotated unwrapped phase map
  • the present invention has the beneficial effects that the present invention provides a fast tilt phase error compensation method and device based on wavefront rotation, which only needs to acquire a hologram, and the hologram is clockwise or counterclockwise. Rotating 180°, another hologram is obtained. According to the rotation invariance of the Fourier transform, the unfolding phase of the two hologram restorations before and after the rotation is subtracted, and the phase error caused by the off-axis tilt can be eliminated, and the error is eliminated.
  • the original unwrapped phase diagram of the object to be tested; the method provided by the invention does not need to know the parameter information of the system and the complex spectral center translation operation and a large number of fitting numerical operations in advance, and can quickly and accurately perform digital holographic microscopic imaging.
  • Tilt phase error compensation is suitable for dynamic real-time quantitative phase imaging, especially for quantitative phase measurements of coaxial digital holographic microscopy systems.
  • FIG. 1 is a schematic flow chart of a fast tilt phase error compensation method based on wavefront rotation according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a processing procedure of a fast tilt phase error compensation method based on wavefront rotation according to an embodiment of the present invention
  • FIG. 3(a) is a microlens array hologram obtained by using a coaxial digital holographic microscopy system according to an embodiment of the present invention
  • FIG. 3(b) is a schematic diagram of a spectrum obtained by Fourier transform of FIG. 3a according to an embodiment of the present invention
  • FIG. 3(c) is a schematic diagram showing an unfolded phase distribution obtained by extracting the +1 level spectrum in FIG. 3b according to an embodiment of the present invention
  • Figure 3 (d) is a rotating hologram obtained by rotating the original hologram 180° clockwise or counterclockwise according to an embodiment of the present invention
  • FIG. 3(e) is a schematic diagram of a spectrum obtained by Fourier transform of FIG. 3d according to an embodiment of the present invention
  • FIG. 3(f) is a schematic diagram showing an unfolded phase distribution obtained by extracting the -1 level spectrum in FIG. 3e according to an embodiment of the present invention
  • FIG. 4(a) is a schematic diagram showing a package phase distribution of a microlens array to be tested after compensation according to the method provided by the embodiment of the present invention
  • FIG. 4(b) is a schematic diagram showing the phase distribution recovered by the method according to the embodiment of the present invention, wherein the gray dotted frame corresponds to the compensated phase map, and the white dotted frame corresponds to the increased rotational phase;
  • phase distribution diagram 4(b) is a schematic diagram showing the conversion of the phase distribution diagram 4(b) to the 3D height distribution according to an embodiment of the present invention
  • FIG. 4(d) is a schematic diagram showing a height profile distribution corresponding to the white curve region labeled (1) in FIG. 4(b) according to an embodiment of the present invention
  • FIG. 5 is a schematic block diagram of a fast tilt phase error compensation apparatus based on wavefront rotation according to an embodiment of the present invention.
  • the main implementation idea of the present invention is: firstly, a hologram of an object to be measured is collected by using a coaxial digital holographic microscopic system as an original hologram; then the original hologram is rotated 180° clockwise or counterclockwise to obtain a new one.
  • a hologram as a rotating hologram; extracting a +1 order spectrum from the original hologram to obtain an original unwrapped phase map; extracting a -1 spectrum from the rotating hologram to obtain a rotated unwrapped phase map; and the original unwrapped phase map and the rotated unwrapped phase map Subtraction, that is, the phase map obtained by compensating the original unwrapped phase map.
  • FIG. 1 The following describes in detail a fast tilt phase error compensation method based on wavefront rotation provided by the present invention, as shown in FIG. 1 , which includes:
  • Step S101 collecting a hologram of the object to be tested by using a coaxial digital holographic microscopy system as an original hologram;
  • the present invention utilizes a coaxial digital holographic microscopy system as a system structure, and uses the CCD camera in the coaxial digital holographic microscopy system to acquire a hologram of an object to be measured as an original hologram.
  • Step S102 rotating the original hologram 180° clockwise or counterclockwise to obtain a digital reference hologram as a rotating hologram
  • the present invention only needs to acquire a hologram, and then rotate the hologram 180° clockwise or counterclockwise as the original hologram to obtain another digital reference hologram as a rotating hologram.
  • Step S103 performing phase recovery processing on the original hologram by using a Fourier transform method in coaxial digital holographic microscopy to obtain an original unfolded phase map.
  • Step S104 performing phase recovery processing on the rotating hologram by using a Fourier transform method in coaxial digital holographic microscopy to obtain a rotationally expanded phase diagram.
  • a two-dimensional Fourier transform is performed on the rotating hologram to obtain a spectrum of the rotating hologram, and a -1 spectrum is extracted, an inverse Fourier transform is performed to obtain a wrapped phase, and a rotation-expanded phase map is obtained by a de-wrapping algorithm.
  • Step S105 the original unfolded phase map Rotating phase diagram with the rotation Subtracting, a phase map obtained by compensating the original unwrapped phase map is obtained.
  • the compensated phase map refers to an original unfolded phase map from which the tilt phase error is removed. Since the coaxial digital holographic microscopy system we use is an off-axis structure, the phase distribution of the recovered object introduces a tilt error; whereas the method mentioned in this application, according to the rotation invariance of the Fourier transform, the phase of the hologram recovery before and after the rotation The distribution has the same tilt phase error distribution, so the subtraction can remove the tilt error and get the original phase distribution of the object.
  • the embodiment of the present invention selects a microlens array as the object to be tested, and the corresponding tilt phase error compensation result is shown in FIG. 3(a)-FIG.3(f) and FIG. (a) - Figure 4 (d).
  • Fig. 3(a) is the original hologram of the object to be tested
  • Fig. 3(b) is the spectrum of the original hologram 3(a) subjected to Fourier transform, and the frame is +1 level spectrum
  • d 1 and d 2 is the distance from the center of the spectrum of +1 and -1 to the center of the zero-order spectrum.
  • Figure 3(c) is obtained by extracting +1 from 3(b)
  • the unwrapped phase obtained by spectrum recovery can be seen that the phase recovered before uncompensated has a tilt error
  • Figure 3(d) is a rotating hologram obtained by rotating the original hologram 3(a) clockwise or counterclockwise by 180°
  • (e) is the spectrum of the rotating hologram after Fourier transform.
  • the small frame in the figure is the -1 spectrum
  • d 3 and d 4 are the distances from the center of the -1 and +1 spectrum centers to the center of the zero-order spectrum, respectively
  • (f) is the unwrapped phase obtained by extracting the spectrum recovery of 3(e)-1.
  • phase recovered by the rotating hologram still has tilt error, and we can recover the phase by recovering the original hologram +1 level spectrum.
  • the compensated phase map can be obtained by subtracting the unwrapped phase obtained by the -1 spectrum recovery of the rotating hologram.
  • Figure 4 (a) - Figure 4 (d) illustrates the accuracy of the proposed method
  • Figure 4 (a) is the compensation of the wrapped phase distribution after the compensation method
  • Figure 4 (b) is the use of the proposed method
  • the compensated phase distribution after restoration the gray dotted frame corresponds to the compensated phase map, because the original phase is also rotated because the hologram is rotated, and the white dotted frame corresponds to the increased rotational phase, and the rotational phase can pass the image.
  • the processing method is removed
  • FIG. 4(c) is a phase distribution diagram (b) converted to a 3D height distribution
  • FIG. 4(d) is a height contour distribution corresponding to a white dotted line labeled (1) in FIG. 4(b).
  • the calculated radius of curvature ROC 318um
  • the calculated error range can be seen.
  • the proposed method can eliminate the tilt error and obtain an accurate phase distribution.
  • the invention provides a fast phase error compensation method based on wavefront rotation, which can quickly and accurately perform digital holographic microscopy without knowing the parameter information of the system and the complex spectral center translation operation and a large number of fitting numerical operations.
  • Phase error compensation in imaging is applicable to dynamic real-time quantitative phase imaging, especially for quantitative phase measurements of coaxial digital holographic microscopy systems.
  • the invention also provides a fast tilt phase error compensation device based on wavefront rotation, as shown in FIG. 5, comprising:
  • the acquisition module 201 is configured to collect a hologram of the object to be tested by using a coaxial digital holographic microscopy system as the original hologram;
  • the present invention utilizes a coaxial digital holographic microscopy system as a system structure, and uses the CCD camera in the coaxial digital holographic microscopy system to acquire a hologram of an object to be measured as an original hologram.
  • a rotation module 202 configured to rotate the original hologram 180° clockwise or counterclockwise to obtain a digital reference hologram as a rotating hologram;
  • the present invention only needs to acquire a hologram, and then rotate the hologram 180° clockwise or counterclockwise as the original hologram to obtain another digital reference hologram as a rotating hologram.
  • the first processing module 203 is configured to perform phase recovery processing on the original hologram by using a Fourier transform method in coaxial digital holographic microscopy to obtain an original unfolded phase map.
  • the first processing module 203 is configured to perform a two-dimensional Fourier transform on the original hologram to obtain a spectrum of the original hologram, and extract a +1 level spectrum, and perform inverse Fourier transform to obtain a wrapped phase, and obtain a solution phase.
  • the parcel algorithm gets the original unwrapped phase map
  • a second processing module 204 configured to perform phase recovery processing on the rotating hologram by using a Fourier transform method in coaxial digital holographic microscopy to obtain a rotationally expanded phase diagram
  • the second processing module 204 is configured to perform a two-dimensional Fourier transform on the rotating hologram to obtain a spectrum of the rotating hologram, and extract a -1 frequency spectrum, and perform an inverse Fourier transform to obtain a wrapped phase, and obtain a solution phase. Wrap algorithm to get the rotation of the phase map
  • a compensation module 205 configured to use the original unwrapped phase map Rotating phase diagram with the rotation Subtracting, a phase map obtained by compensating the original unwrapped phase map is obtained.
  • the compensated phase map refers to an original unfolded phase map from which the tilt phase error is removed. Since the coaxial digital holographic microscopy system we use is an off-axis structure, the phase distribution of the recovered object introduces a tilt error; whereas the method mentioned in this application, according to the rotation invariance of the Fourier transform, the phase of the hologram recovery before and after the rotation The distribution has the same tilt phase error distribution, so the subtraction can remove the tilt error and get the original phase distribution of the object.
  • the invention provides a fast tilt phase error compensation device based on wavefront rotation, which can quickly and accurately perform digital holographic display without knowing the parameter information of the system and the complex spectral center translation operation and a large number of fitting numerical operations.
  • Tilt phase error compensation in micro-imaging can be applied to dynamic real-time quantitative phase imaging, especially for quantitative phase measurement of coaxial digital holographic microscopy systems.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Holo Graphy (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

本发明适用于光学成像校正技术领域,提供了一种基于波前旋转的快速倾斜相位误差补偿方法及装置,包括:利用共轴数字全息显微系统采集待测物体的全息图,作为原始全息图;将所述原始全息图顺时针或者逆时针旋转180°,得到一幅数字参考全息图,作为旋转全息图;利用数字全息显微中傅里叶变换法对所述原始全息图进行相位恢复处理,得到原始展开相位图φ1;利用数字全息显微中傅里叶变换法对所述旋转全息图进行相位恢复处理,得到旋转展开相位图φ2;将所述原始展开相位图φ1和所述旋转展开相位图φ2相减,得到对所述原始展开相位图补偿后的相位图;本发明提供的方法实现了快速且准确的共轴数字全息显微成像中的倾斜相位误差补偿。

Description

基于波前旋转的快速倾斜相位误差补偿方法及装置 技术领域
本发明属于光学成像校正技术领域,尤其涉及一种基于波前旋转的快速倾斜相位误差补偿方法及装置。
背景技术
数字全息显微作为一种定量相位测量技术,只需单幅全息图就可以获取待测物体的定量振幅信息和相位信息,具有非接触、无标记、高分辨率、低成本等优点。其中,共轴数字全息显微结构也因为具有较高的时间稳定性和紧凑特性,常应用于对细胞和微光学元件的定量测量。共轴数字全息显微系统的特点是物光光路和参考光光路走过相同的光学路径,因此该结构不仅可以保持系统的稳定性,而且能够消除系统中由于显微物镜的使用引入的二次相位误差。
共轴数字全息显微测量系统通常采用离轴结构,物光和参考光传播方向之间存在一定夹角,该结构可以很好的分离全息图频谱的不同衍射级,解决了同轴结构中孪生像重叠的问题,从而可以实现单幅全息图获取物体准确的相位信息。然而离轴结构会引入倾斜相位因子,造成重建相位有一定角度的倾斜误差,影响定量相位测量的准确性;共轴全息显微系统中的共轴结构不能消除离轴结构引入的倾斜误差,该倾斜误差只能通过数值补偿方法去除,因此为了获得准确物体的相位信息,需要对重建相位进行倾斜相位误差补偿。
为了消除共轴数字全息显微中的离轴倾斜,有人提出频谱中心平移法,在全息图频谱中把虚像的频谱平移到频谱中心,从而消除离轴倾斜,然而频谱中心定位的精度仅限于整像素,需要进一步去除残余倾斜分布。有人提出利用相位模板的数值补偿方法消除离轴倾斜,相位模板可以从系统的预先知识或者采集无样本全息图得到,但是该方法需要预先知道系统的参数,或是需要采集二幅全息图,不适合动态 测量。有人提出利用多项式拟合方法消除离轴倾斜,该方法需要额外的数值拟合计算,增大计算量,易受噪声影响。
因此,我们需要寻找一种快速而且准确的倾斜相位误差补偿的方法。
发明内容
本发明提供一种基于波前旋转的快速倾斜相位误差补偿方法及装置,旨在提供一种快速且准确的共轴数字全息显微成像中的倾斜相位误差补偿方法。
本发明提供了一种基于波前旋转的快速倾斜相位误差补偿方法,包括:
利用共轴数字全息显微系统采集待测物体的全息图,作为原始全息图;
将所述原始全息图顺时针或者逆时针旋转180°,得到一幅数字参考全息图,作为旋转全息图;
利用共轴数字全息显微中傅里叶变换法对所述原始全息图进行相位恢复处理,得到原始展开相位图
Figure PCTCN2017118138-appb-000001
利用共轴数字全息显微中傅里叶变换法对所述旋转全息图进行相位恢复处理,得到旋转展开相位图
Figure PCTCN2017118138-appb-000002
将所述原始展开相位图
Figure PCTCN2017118138-appb-000003
和所述旋转展开相位图
Figure PCTCN2017118138-appb-000004
相减,得到对所述原始展开相位图补偿后的相位图。
进一步地,所述利用共轴数字全息显微中傅里叶变换法对所述原始全息图进行相位恢复处理,得到原始展开相位图
Figure PCTCN2017118138-appb-000005
包括:
对所述原始全息图进行傅立叶变换得到所述原始全息图的频谱,并提取+1级频谱,进行逆傅立叶变换得到包裹相位,通过解包裹算法得到原始展开相位图
Figure PCTCN2017118138-appb-000006
进一步地,所述利用共轴数字全息显微中傅里叶变换法对所述旋转全息图进行相位恢复处理,得到旋转展开相位图
Figure PCTCN2017118138-appb-000007
包括:
对所述旋转全息图进行傅立叶变换得到所述旋转全息图的频谱,并提取-1级频谱,进行逆傅立叶变换得到包裹相位,通过解包裹算法得到旋转展开相位 图
Figure PCTCN2017118138-appb-000008
本发明还提供了一种基于波前旋转的快速倾斜相位误差补偿装置,包括:
采集模块,用于利用共轴数字全息显微系统采集待测物体的全息图,作为原始全息图;
旋转模块,用于将所述原始全息图顺时针或者逆时针旋转180°,得到一幅数字参考全息图,作为旋转全息图;
第一处理模块,用于利用共轴数字全息显微中傅里叶变换法对所述原始全息图进行相位恢复处理,得到原始展开相位图
Figure PCTCN2017118138-appb-000009
第二处理模块,用于利用共轴数字全息显微中傅里叶变换法对所述旋转全息图进行相位恢复处理,得到旋转展开相位图
Figure PCTCN2017118138-appb-000010
补偿模块,用于将所述原始展开相位图
Figure PCTCN2017118138-appb-000011
和所述旋转展开相位图
Figure PCTCN2017118138-appb-000012
相减,得到对所述原始展开相位图补偿后的相位图。
进一步地,所述第一处理模块,具体用于对所述原始全息图进行傅立叶变换得到所述原始全息图的频谱,并提取+1级频谱,进行逆傅立叶变换得到包裹相位,通过解包裹算法得到原始展开相位图
Figure PCTCN2017118138-appb-000013
进一步地,所述第二处理模块,具体用于对所述旋转全息图进行傅立叶变换得到所述旋转全息图的频谱,并提取-1级频谱,进行逆傅立叶变换得到包裹相位,通过解包裹算法得到旋转展开相位图
Figure PCTCN2017118138-appb-000014
本发明与现有技术相比,有益效果在于:本发明提供的一种基于波前旋转的快速倾斜相位误差补偿方法及装置,仅需采集一幅全息图,将该全息图顺时针或者逆时针旋转180°,得到另外一幅全息图,根据傅立叶变换的旋转不变性,将旋转前后两幅全息图恢复的展开相位相减,即可消除离轴倾斜带来的相位误差,得到消除误差后的待测物体的原始展开相位图;本发明提供的方法不需要预先知道系统的参数信息和复杂的频谱中心平移操作以及大量的拟合数值运算,能快速且准确的进行数字全息显微成像中的倾斜相位误差补偿,可适用于动态实时定量相位成像,特别是对于共轴数字全息显微系统的定量相位测量。
附图说明
图1是本发明实施例提供的一种基于波前旋转的快速倾斜相位误差补偿方法的流程示意图;
图2是本发明实施例提供的一种基于波前旋转的快速倾斜相位误差补偿方法的处理过程示意图;
图3(a)是本发明实施例提供的利用共轴数字全息显微系统采集得到的微透镜阵列全息图;
图3(b)是本发明实施例提供的对图3a经过傅里叶变换得到的频谱示意图;
图3(c)是本发明实施例提供的提取图3b中的+1级频谱得到的展开相位分布示意图;
图3(d)是本发明实施例提供的对原始全息图顺时针或者逆时针旋转180°得到的旋转全息图;
图3(e)是本发明实施例提供的对图3d经过傅里叶变换得到的频谱示意图;
图3(f)是本发明实施例提供的提取图3e中的-1级频谱得到的展开相位分布示意图;
图4(a)是本发明实施例提供的方法恢复的补偿后待测微透镜阵列的包裹相位分布示意图;
图4(b)是本发明实施例提供的方法恢复的相位分布示意图,其中,灰色虚线框对应的是补偿后的相位图,白色虚线框对应的是增加的旋转相位;
图4(c)是本发明实施例提供的将相位分布图4(b)转为3D高度分布示意图;
图4(d)是本发明实施例提供的在图4(b)标号为(1)白色曲线区域对应的高度轮廓分布示意图;
图5是本发明实施例提供的一种基于波前旋转的快速倾斜相位误差补偿装置的模块示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明的主要实现思想为:首先利用共轴数字全息显微系统采集得到待测物体的全息图,作为原始全息图;然后对原始全息图顺时针或者逆时针旋转180°,得到一幅新的全息图,作为旋转全息图;对原始全息图提取+1级频谱,得到原始展开相位图;对旋转全息图提取-1级频谱,得到旋转展开相位图;将原始展开相位图和旋转展开相位图相减,即得到对原始展开相位图补偿后的相位图。
下面具体介绍本发明提供的一种基于波前旋转的快速倾斜相位误差补偿方法,如图1所示,包括:
步骤S101,利用共轴数字全息显微系统采集待测物体的全息图,作为原始全息图;
具体地,本发明是利用共轴数字全息显微系统作为系统结构,利用所述共轴数字全息显微系统中的CCD相机采集待测物体的全息图,作为原始全息图。
步骤S102,将所述原始全息图顺时针或者逆时针旋转180°,得到一幅数字参考全息图,作为旋转全息图;
具体地,本发明只需采集一幅全息图,然后将所述全息图作为原始全息图顺时针或逆时针旋转180°,即可得到另一幅数字参考全息图,作为旋转全息图。
步骤S103,利用共轴数字全息显微中傅里叶变换法对所述原始全息图进行相位恢复处理,得到原始展开相位图
Figure PCTCN2017118138-appb-000015
具体地,对所述原始全息图进行二维傅立叶变换得到所述原始全息图的频 谱,并提取+1级频谱,进行逆傅立叶变换得到包裹相位,通过解包裹算法得到原始展开相位图
Figure PCTCN2017118138-appb-000016
具体处理过程如图2所示。
步骤S104,利用共轴数字全息显微中傅里叶变换法对所述旋转全息图进行相位恢复处理,得到旋转展开相位图
Figure PCTCN2017118138-appb-000017
具体地,对所述旋转全息图进行二维傅立叶变换得到所述旋转全息图的频谱,并提取-1级频谱,进行逆傅立叶变换得到包裹相位,通过解包裹算法得到旋转展开相位图
Figure PCTCN2017118138-appb-000018
步骤S105,将所述原始展开相位图
Figure PCTCN2017118138-appb-000019
和所述旋转展开相位图
Figure PCTCN2017118138-appb-000020
相减,得到对所述原始展开相位图补偿后的相位图。
具体地,所述补偿后的相位图,指的是去除了倾斜相位误差的原始展开相位图。由于我们使用的共轴数字全息显微系统是离轴结构,所以恢复的物体相位分布会引入倾斜误差;而本申请提到的方法,根据傅立叶变换的旋转不变性,旋转前后全息图恢复的相位分布具有相同倾斜相位误差分布,所以相减可以把该倾斜误差去掉,得到物体原始的相位分布。
为了测试基于波前旋转的快速相位补偿方法的有效性,本发明实施例选取微透镜阵列作为待测物体,对应的倾斜相位误差补偿结果如图3(a)-图3(f)和图4(a)-图4(d)所示。
图3(a)是待测物体的原始全息图;图3(b)是原始全息图3(a)经过傅立叶变换的频谱,图中用小框框出的是+1级频谱,d 1和d 2分别是+1级和-1级频谱中心到零级频谱中心的距离,这两个值反映了离轴结构中倾斜角度的多少;图3(c)是通过提取3(b)中+1频谱恢复得到的展开相位,可以看出未补偿之前恢复的相位有倾斜误差;图3(d)是对原始全息图3(a)顺时针或者逆时针旋转180°得到的旋转全息图;图3(e)是旋转全息图经过傅立叶变换的频谱,图中小框框出的是-1级频谱,d 3和d 4分别是-1级和+1级频谱中心到零级频谱中心的距离;图3(f)是通过提取3(e)中-1频谱恢复得到的展开相位,可以看出旋转全息图恢复的相位仍有倾斜误差,我们可以通过将原始全息图+1级频谱恢复得到的展开相位减 去旋转全息图-1级频谱恢复得到的展开相位,既可得到补偿后的相位图。
图4(a)-图4(d)说明了所提方法的准确性,图4(a)是利用所提方法所恢复补偿后的包裹相位分布;图4(b)是利用所提方法所恢复的补偿后的相位分布,灰色虚线框对应的是补偿后的相位图,因为对全息图旋转,所以原始相位也旋转了,白色虚线框对应的是增加的旋转相位,该旋转相位可以通过图像处理方法去掉;图4(c)是将相位分布图(b)转为3D高度分布;图4(d)是沿图4(b)标号为(1)的白色虚线所对应的高度轮廓分布,其对应的透镜阵列高度为h=5.62um,透镜阵列的直径D=119um,计算出来的曲率半径ROC=318um,该待测物体出厂值ROC=315um,计算得到的在误差范围之内,可以看出所提方法能够消除倾斜误差,得到准确的相位分布。
本发明提供的一种基于波前旋转的快速相位误差补偿方法,不需要预先知道系统的参数信息和复杂的频谱中心平移操作以及大量的拟合数值运算,能快速且准确的进行数字全息显微成像中的相位误差补偿,可适用于动态实时定量相位成像,特别是对于共轴数字全息显微系统的定量相位测量。
本发明还提供了一种基于波前旋转的快速倾斜相位误差补偿装置,如图5所示,包括:
采集模块201,用于利用共轴数字全息显微系统采集待测物体的全息图,作为原始全息图;
具体地,本发明是利用共轴数字全息显微系统作为系统结构,利用所述共轴数字全息显微系统中的CCD相机采集待测物体的全息图,作为原始全息图。
旋转模块202,用于将所述原始全息图顺时针或者逆时针旋转180°,得到一幅数字参考全息图,作为旋转全息图;
具体地,本发明只需采集一幅全息图,然后将所述全息图作为原始全息图顺时针或逆时针旋转180°,即可得到另一幅数字参考全息图,作为旋转全息图。
第一处理模块203,用于利用共轴数字全息显微中傅里叶变换法对所述原始全息图进行相位恢复处理,得到原始展开相位图
Figure PCTCN2017118138-appb-000021
具体地,所述第一处理模块203,用于对所述原始全息图进行二维傅立叶变换得到所述原始全息图的频谱,并提取+1级频谱,进行逆傅立叶变换得到包裹相位,通过解包裹算法得到原始展开相位图
Figure PCTCN2017118138-appb-000022
第二处理模块204,用于利用共轴数字全息显微中傅里叶变换法对所述旋转全息图进行相位恢复处理,得到旋转展开相位图
Figure PCTCN2017118138-appb-000023
具体地,所述第二处理模块204,用于对所述旋转全息图进行二维傅立叶变换得到所述旋转全息图的频谱,并提取-1级频谱,进行逆傅立叶变换得到包裹相位,通过解包裹算法得到旋转展开相位图
Figure PCTCN2017118138-appb-000024
补偿模块205,用于将所述原始展开相位图
Figure PCTCN2017118138-appb-000025
和所述旋转展开相位图
Figure PCTCN2017118138-appb-000026
相减,得到对所述原始展开相位图补偿后的相位图。
具体地,所述补偿后的相位图,指的是去除了倾斜相位误差的原始展开相位图。由于我们使用的共轴数字全息显微系统是离轴结构,所以恢复的物体相位分布会引入倾斜误差;而本申请提到的方法,根据傅立叶变换的旋转不变性,旋转前后全息图恢复的相位分布具有相同倾斜相位误差分布,所以相减可以把该倾斜误差去掉,得到物体原始的相位分布。
本发明提供的一种基于波前旋转的快速倾斜相位误差补偿装置,不需要预先知道系统的参数信息和复杂的频谱中心平移操作以及大量的拟合数值运算,能快速且准确的进行数字全息显微成像中的倾斜相位误差补偿,可适用于动态实时定量相位成像,特别是对于共轴数字全息显微系统的定量相位测量。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (6)

  1. 一种基于波前旋转的快速倾斜相位误差补偿方法,其特征在于,包括:
    利用共轴数字全息显微系统采集待测物体的全息图,作为原始全息图;
    将所述原始全息图顺时针或者逆时针旋转180°,得到一幅数字参考全息图,作为旋转全息图;
    利用共轴数字全息显微中傅里叶变换法对所述原始全息图进行相位恢复处理,得到原始展开相位图
    Figure PCTCN2017118138-appb-100001
    利用共轴数字全息显微中傅里叶变换法对所述旋转全息图进行相位恢复处理,得到旋转展开相位图
    Figure PCTCN2017118138-appb-100002
    将所述原始展开相位图
    Figure PCTCN2017118138-appb-100003
    和所述旋转展开相位图
    Figure PCTCN2017118138-appb-100004
    相减,得到对所述原始展开相位图补偿后的相位图。
  2. 如权利要求1所述的快速倾斜相位误差补偿方法,其特征在于,所述利用共轴数字全息显微中傅里叶变换法对所述原始全息图进行相位恢复处理,得到原始展开相位图
    Figure PCTCN2017118138-appb-100005
    包括:
    对所述原始全息图进行傅立叶变换得到所述原始全息图的频谱,并提取+1级频谱,进行逆傅立叶变换得到包裹相位,通过解包裹算法得到原始展开相位图
    Figure PCTCN2017118138-appb-100006
  3. 如权利要求1所述的快速倾斜相位误差补偿方法,其特征在于,所述利用共轴数字全息显微中傅里叶变换法对所述旋转全息图进行相位恢复处理,得到旋转展开相位图
    Figure PCTCN2017118138-appb-100007
    包括:
    对所述旋转全息图进行傅立叶变换得到所述旋转全息图的频谱,并提取-1级频谱,进行逆傅立叶变换得到包裹相位,通过解包裹算法得到旋转展开相位图
    Figure PCTCN2017118138-appb-100008
  4. 一种基于波前旋转的快速倾斜相位误差补偿装置,其特征在于,包括:
    采集模块,用于利用共轴数字全息显微系统采集待测物体的全息图,作为 原始全息图;
    旋转模块,用于将所述原始全息图顺时针或者逆时针旋转180°,得到一幅数字参考全息图,作为旋转全息图;
    第一处理模块,用于利用共轴数字全息显微中傅里叶变换法对所述原始全息图进行相位恢复处理,得到原始展开相位图
    Figure PCTCN2017118138-appb-100009
    第二处理模块,用于利用共轴数字全息显微中傅里叶变换法对所述旋转全息图进行相位恢复处理,得到旋转展开相位图
    Figure PCTCN2017118138-appb-100010
    补偿模块,用于将所述原始展开相位图
    Figure PCTCN2017118138-appb-100011
    和所述旋转展开相位图
    Figure PCTCN2017118138-appb-100012
    相减,得到对所述原始展开相位图补偿后的相位图。
  5. 如权利要求4所述的快速倾斜相位误差补偿装置,其特征在于,所述第一处理模块,具体用于对所述原始全息图进行傅立叶变换得到所述原始全息图的频谱,并提取+1级频谱,进行逆傅立叶变换得到包裹相位,通过解包裹算法得到原始展开相位图
    Figure PCTCN2017118138-appb-100013
  6. 如权利要求4所述的快速倾斜相位误差补偿方法装置,其特征在于,所述第二处理模块,具体用于对所述旋转全息图进行傅立叶变换得到所述旋转全息图的频谱,并提取-1级频谱,进行逆傅立叶变换得到包裹相位,通过解包裹算法得到旋转展开相位图
    Figure PCTCN2017118138-appb-100014
PCT/CN2017/118138 2017-08-21 2017-12-23 基于波前旋转的快速倾斜相位误差补偿方法及装置 WO2019037360A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710718025.9 2017-08-21
CN201710718025.9A CN107677201B (zh) 2017-08-21 2017-08-21 基于波前旋转的快速倾斜相位误差补偿方法及装置

Publications (1)

Publication Number Publication Date
WO2019037360A1 true WO2019037360A1 (zh) 2019-02-28

Family

ID=61135424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118138 WO2019037360A1 (zh) 2017-08-21 2017-12-23 基于波前旋转的快速倾斜相位误差补偿方法及装置

Country Status (2)

Country Link
CN (1) CN107677201B (zh)
WO (1) WO2019037360A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109724511A (zh) * 2019-01-29 2019-05-07 嘉应学院 一种数字全息显微的二次相位误差补偿方法及其装置
CN109856942A (zh) * 2019-04-02 2019-06-07 山东大学 一种基于不规则孔径正交多项式拟合的数字全息显微检测高阶像差校正方法
CN110017776B (zh) * 2019-05-17 2020-11-27 山东大学 基于移位和多项式拟合的全息像差绝对校准方法及系统
CN110260780B (zh) * 2019-06-19 2020-12-22 嘉应学院 一种数字全息显微相位误差同时补偿方法及装置
CN110530287B (zh) * 2019-08-26 2021-01-19 西安交通大学 基于条纹级数不准度的解包裹相位误差检测与校正方法
CN111855708B (zh) * 2019-10-16 2021-07-20 中国科学院物理研究所 一种实现光学聚焦和连续扫描的透射电镜系统及方法
CN114001643B (zh) * 2021-09-27 2023-07-25 上海工程技术大学 一种数字全息显微相位畸变补偿方法及装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104345626A (zh) * 2014-11-25 2015-02-11 山东师范大学 一种离轴数字全息波前记录和再现方法及实施装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7157135B2 (en) * 2004-06-09 2007-01-02 Toray Plastics (America), Inc. Co-extruded high refractive index coated embossable film
CN100410624C (zh) * 2006-09-29 2008-08-13 山东师范大学 对称变形场的单光束电子散斑干涉二维检测方法
CN100570628C (zh) * 2008-04-25 2009-12-16 重庆大学 融合小波分析与矩特征的人耳图像识别方法
CN104457611A (zh) * 2014-12-11 2015-03-25 南京师范大学 双波长剪切干涉数字全息显微测量装置及其方法
CN105573093B (zh) * 2015-12-16 2018-06-22 哈尔滨理工大学 基于最小二乘拟合相位型计算全息图编码误差校正方法
CN107036786B (zh) * 2017-04-13 2019-09-03 北京航空航天大学 一种基于数字全息层析的光纤熔接点三维结构检测方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104345626A (zh) * 2014-11-25 2015-02-11 山东师范大学 一种离轴数字全息波前记录和再现方法及实施装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DENG, DINGNAN ET AL.: "Off-axis Tilt Compensation In Common-Path Digital Holographic Microscopy Based on Hologram Rotation", OPTICS LETTERS, vol. 42, no. 24, 15 December 2017 (2017-12-15), pages 5282 - 5285, XP055578736, ISSN: 0146-9592, DOI: https://doi.org/10.1364/OL.42.005282 *
ZHOU, WENJING: "Study on the Key Techniques of Digital Micro-Holography", CHINESE DOCTORAL DISSERTATIONS FULL-TEXT DATABASE BASIC SCIENCE & TECHNOLOGY, 31 January 2009 (2009-01-31), ISSN: 1674-022X *

Also Published As

Publication number Publication date
CN107677201B (zh) 2019-12-31
CN107677201A (zh) 2018-02-09

Similar Documents

Publication Publication Date Title
WO2019037360A1 (zh) 基于波前旋转的快速倾斜相位误差补偿方法及装置
Yu et al. Full-frame, high-speed 3D shape and deformation measurements using stereo-digital image correlation and a single color high-speed camera
EP2597421B1 (en) Stereo distance measurement apparatus and stereo distance measurement method
CN106840027A (zh) 光学自由曲面的像散补偿型干涉检测装置与检测方法
CN101952855A (zh) 从三维场景实时获取视觉信息的方法和照相机
CN109916522B (zh) 一种基于全息图延拓的像差补偿方法及其实现装置
TWI687897B (zh) 用於圖案化晶圓量測之混合相展開系統及方法
CN103292738A (zh) 一种球面面形误差绝对检测方法
CN115775303B (zh) 一种基于深度学习与光照模型的高反光物体三维重建方法
CN107167095A (zh) 基于参考透镜法的数字全息显微相位畸变校正方法
CN105318843B (zh) 一种应用共轭差分法检测柱面镜绝对面形的方法
CN110260780B (zh) 一种数字全息显微相位误差同时补偿方法及装置
Zuo et al. Comparison of digital holography and transport of intensity for quantitative phase contrast imaging
CN114001643A (zh) 一种数字全息显微相位畸变补偿方法及装置
JP5036005B2 (ja) 微小変位計測方法及び装置
EP2739936B1 (fr) Procede de mesure absolue de la planeite des surfaces d'elements optiques
CN106441082A (zh) 一种相位恢复方法及装置
TW201335571A (zh) 同時檢測三維表面輪廓及光學級表面粗糙度的裝置及方法
KR20110089973A (ko) 3차원 빔측정을 통한 광학계의 파면수차 복원방법
Liu et al. A robust phase extraction method for overcoming spectrum overlapping in shearography
Smith et al. Phase retrieval on broadband and under-sampled images for the JWST testbed telescope
US20190376783A1 (en) Physical parameter estimating method, physical parameter estimating device, and electronic apparatus
Zhang et al. Automatic wavefront reconstruction on single interferogram with spatial carrier frequency using Fourier transform
CN111598810A (zh) 旋转光学卫星影像退化信息感知与复原方法及系统
Simova et al. Automated Fourier transform fringe-pattern analysis in holographic moire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17922389

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17922389

Country of ref document: EP

Kind code of ref document: A1