WO2019037338A1 - 改善增材制造金属组织与性能的超声微锻造复合装置与增材制造方法 - Google Patents

改善增材制造金属组织与性能的超声微锻造复合装置与增材制造方法 Download PDF

Info

Publication number
WO2019037338A1
WO2019037338A1 PCT/CN2017/115700 CN2017115700W WO2019037338A1 WO 2019037338 A1 WO2019037338 A1 WO 2019037338A1 CN 2017115700 W CN2017115700 W CN 2017115700W WO 2019037338 A1 WO2019037338 A1 WO 2019037338A1
Authority
WO
WIPO (PCT)
Prior art keywords
transducer
ultrasonic
metal
additive manufacturing
improving
Prior art date
Application number
PCT/CN2017/115700
Other languages
English (en)
French (fr)
Inventor
姜风春
陈元平
袁丁
华大成
果春焕
Original Assignee
哈尔滨工程大学
杭州成功超声设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈尔滨工程大学, 杭州成功超声设备有限公司 filed Critical 哈尔滨工程大学
Priority to US16/641,176 priority Critical patent/US11110513B2/en
Publication of WO2019037338A1 publication Critical patent/WO2019037338A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B3/00Methods or apparatus specially adapted for transmitting mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/002Hybrid process, e.g. forging following casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/006Methods for forging, hammering, or pressing; Special equipment or accessories therefor using ultrasonic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/115Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by spraying molten metal, i.e. spray sintering, spray casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • B22F2202/01Use of vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a metal additive manufacturing apparatus, and to a metal additive manufacturing method. Specifically, it is an ultrasonic micro forging composite device and method for improving the microstructure and mechanical properties of an additive manufacturing metal.
  • additive manufacturing technology has been widely used in the fields of foundry sand, biomedical devices, polymer materials, etc.
  • its application in the rapid prototyping manufacturing of metal parts is limited, especially in the use of Some high-energy beam (laser, electron beam, and plasma) additive manufacturing techniques have encountered bottlenecks in the manufacture of large, complex metal structural parts.
  • laser, electron beam, and plasma Some high-energy beam (laser, electron beam, and plasma) additive manufacturing techniques have encountered bottlenecks in the manufacture of large, complex metal structural parts.
  • the metal additive manufacturing process has undergone a complex physical metallurgical process, the material melting, solidification and cooling experienced during the forming of the part are carried out under extremely fast conditions, which inevitably leads to a large gap between the molten pool and the substrate.
  • the temperature gradient which generates thermal stress and residual stress, is prone to microcracking and reduces the toughness of the material.
  • the metal structure inside the material is as-cast, showing a dendritic shape.
  • defects such as cracks, pores, inclusions, poor interlayer bonding, and spheroidization effects are easily formed in the metal deposition layer.
  • Defects in the internal microstructure of the material lead to deterioration of the mechanical properties (such as toughness, strength and fatigue properties) of the metal parts of the additive manufacturing, which is the most important influence on the manufacturing of metal parts, especially large and complex metal parts.
  • the main methods and techniques for solving the microstructure and mechanical properties of additive manufacturing include post-processing technology, ultrasonic interference, ultrasonic impact and rolling rolling technology.
  • Post-treatment technology including hot isostatic pressing and heat treatment technology, all require expensive large equipment, difficult to handle large metal parts, low efficiency and high cost;
  • Ultrasonic interference technology Before the solidification of the metal deposition layer, the ultrasonic energy field acts on the upper end of the high-temperature liquid molten pool from the bottom of the workpiece, crushing the seed crystal in the molten pool, increasing the nucleation rate of the metal structure, thereby achieving grain refinement. purpose.
  • the depth of the ultrasonic energy field due to the limitation of the depth of the ultrasonic energy field, as the height of the metal deposition increases, the refinement of the microstructure of the upper layer of the component is becoming smaller and smaller. Therefore, this method is difficult to apply to the manufacture of large-sized complex metal parts.
  • the deposition efficiency will be greatly affected, and the manufacturing efficiency of additive manufacturing will be reduced;
  • Ultrasonic impact technology The principle is to apply ultrasonic shock to the solid deposited layer to cause plastic deformation and recovery and recrystallization, so as to achieve the effect of refining the grains.
  • the conventional ultrasonic impact device has its horn fixed to the output of the transducer, and the frequency is the same as that of the transducer, reaching the ultrasonic frequency.
  • the impact needle that is in direct contact with the workpiece is not directly connected to the end of the horn and is separate. After the action of the impact needle, the two are separated, so in fact the frequency of the so-called ultrasonic impact technology is far from reaching the ultrasonic high frequency range.
  • the research shows that the actual impact frequency of the impact needle used in the engineering is only a few hundred hertz, and it does not reach the 20KHz range of the ultrasonic shock frequency. Therefore, the effect of the ultrasonic energy field on improving the microstructure of the metal and improving the mechanical properties is still far from being exerted;
  • Rolling rolling technology rolling the metal cladding layer by layer rolling forging, which has obvious effect on improving metallographic structure, but the effect of removing residual stress is not good, and requires large pressure (when the pressure is close to 100KN) At the time, the grain refining effect of the titanium alloy achieves the desired effect). In order to support a large load, the size of the rolling head is large. Therefore, this technique is difficult to apply to thin-walled parts and complicated parts of the inner cavity. Despite this, the rolling rolling method has made some progress in the application research of additive manufacturing because of its low cost and convenient operation. For example, Frank L. Carbone of the United States invented an electron beam additive manufacturing technology and device as early as 2005. The technical route for improving the microstructure and mechanical properties of metal is to adopt the rolling method [1].
  • Publications related to the present invention include:
  • the object of the present invention is to provide an improved additive manufacturing method capable of solving the problems caused by internal residual stress caused by metal additive manufacturing, cracking, internal defects of materials, and poor mechanical properties of parts due to coarse and uneven microstructure inside the material.
  • Ultrasonic micro forging composite device for metal structure and properties It is still another object of the present invention to provide an additive manufacturing method for an ultrasonic micro forging composite device for improving metal structure and properties of additive materials based on the present invention.
  • the ultrasonic micro forging composite device for improving the metal structure and performance of the additive material of the present invention comprises a transducer 11, a pneumatic sliding table 4, a pneumatic sliding table connecting frame 5, a horn 10, a tool head 8 and a roller 6,
  • the transducer 11 is placed in the transducer housing 3, and the transducer housing 3 is provided with a connector 1 and a pipe joint 2, the horn 10 is connected to the transducer 11, and the tool head 8 is connected to the transducer 11.
  • the roller 6 is located between the tool head 8 and the workpiece 7, and the pneumatic slide 4 is connected to the transducer housing 3 and the horn 10 via a pneumatic slide connector 5.
  • the ultrasonic micro forging composite device of the present invention for improving the metal structure and properties of the additive manufacturing material may further comprise:
  • the pneumatic slide connecting frame 5 is connected to the transducer housing 3 and the horn 10 via a fixed snap ring 9.
  • the bottom of the tool head 8 has a limit stop.
  • the transducer 11, the horn 10 and the tool head 8 are all connected by a screw.
  • One of the additive manufacturing methods of the ultrasonic micro forging composite device for improving the metal structure and properties of the additive according to the present invention is that the ultrasonic micro forging process is performed on the surface after each layer is deposited.
  • the second method for the additive manufacturing method of the ultrasonic micro forging composite device for improving the metal structure and performance of the additive according to the present invention is that the ultrasonic micro forging treatment is performed on the surface after two or more layers are deposited.
  • the invention provides an ultrasonic micro forging composite technology and device for improving the metal structure and performance of the additive manufacturing, and solves the crack caused by the internal residual stress of the material prepared in the field of metal additive manufacturing, the internal defects of the material and the coarse internal microstructure of the material. Problems such as poor mechanical properties of parts caused by unevenness and non-uniformity provide new technical support for the promotion and application of metal additive manufacturing technology.
  • the ultrasonic micro forging composite device of the invention mainly comprises: a connector 1, a transducer 11, a pipe joint 2, a transducer housing 3, a pneumatic sliding table 4, a pneumatic sliding table connecting frame 5, a horn 10, a tool head 8, the roller 6 and the fixed snap ring 9;
  • the connector 1 is mainly used for connecting an ultrasonic power source, and transmitting an ultrasonic driving power source electrical signal to the transducer;
  • the transducer 11 is used to convert electrical energy into mechanical energy, that is, ultrasonic waves;
  • the pipe joint 2 is used to connect a pipeline of fluid compressed air, and cools the cooling transducer 11 to ensure stable operation of the transducer for a long time. Because the ultrasonic device is working normally, the transducer will generate a certain amount of heat, and as the working time increases, the heat will accumulate in the transducer housing, so the transducer needs to be cooled, especially for long hours of work.
  • the high power transducer has its cooling system essential.
  • the transducer housing 3 is used for fixing the transducer 11, the connector 1, the pipe joint 2, and protecting the transducer;
  • the fixing retaining ring 9 is used for fixing the ultrasonic device on the pneumatic sliding table connecting frame 5, of course, other fixing manners can also be used, and only one of the arrangement structures is given in the schematic view;
  • the pneumatic slide table 4 is used to provide downward pressure, drive the transducer 11 to work downward, and provide continuous pressure, and hydraulic device can also be used, and the pressure is more stable and reliable;
  • the pneumatic slide table 4 connecting frame is used for connecting the sliding table and the snap ring;
  • the horn 10 is used for amplifying the ultrasonic wave generated by the transducer, amplifying the ultrasonic energy generated by the transducer, that is, amplifying the amplitude of the transducer, and the horn is also called an amplitude modulator, and has the functions of adjusting the amplitude and amplifying the amplitude. ;
  • the tool head 8 is used to apply ultrasonic waves amplified by the horn 10 to the roller 6, as the radiant end of the ultrasonic wave, to generate an amplitude required for the operation at the end face, and to transmit the ultrasonic energy to the roller through the ultrasonic output end 13.
  • the column is then directly applied to the deposited layer of the additive material by the ball;
  • the bottom of the tool head that is, the ultrasonic output end 13 is provided with a groove for the mounting and limiting of the roller, and its size and shape are matched with the roller 6 so that it can freely roll on the workpiece and transmit ultrasonic energy to On the metal deposit layer.
  • the bottom of the tool head has a limit stop to prevent the roller from falling off the tool head during ultrasonic vibration.
  • the roller 6 transmits the ultrasonic energy to the local plastic deformation zone generated by the rolling by the direct action and the contact of the deposition layer while the high-frequency vibration of the metal deposition layer is achieved, and the superposition of the ultrasonic energy field and the mechanical force is improved.
  • connection method of each component is the connection method of each component:
  • the connector 1 and the pipe joint 2 are screwed to the transducer casing;
  • the pneumatic sliding table 4, the pneumatic sliding table connecting frame 5, and the fixed snap ring 9 are fixed by screw connection;
  • the fixing collars 9 are respectively fixed on the transducer housing 3 and the horn 10, and are fastened by screws;
  • the transducer 11 is screwed to the transducer housing 3;
  • the transducer 11, the horn 10 and the tool head 8 are all connected by screws.
  • the ultrasonic micro forging composite technology and device for improving the microstructure and mechanical properties of the additive manufacturing metal according to the present invention is characterized in that the impact needle in the conventional ultrasonic impact device is designed as a roller and the impact head of the roller is maintained. Directly connected with the horn, the small-diameter roller continuously rolls the metal deposition layer in the additive manufacturing, and simultaneously applies the ultrasonic energy to each deposition layer formed in the additive manufacturing process at the ultrasonic frequency, thereby realizing the improvement of the metal microscopic Organization and improvement of component mechanics The purpose of performance.
  • the impact needle is designed as a roller, and the direct connection of the impact head to the horn will greatly increase the impact frequency, and the rolling impact frequency and the ultrasonic frequency are the same (the frequency is 20 kHz).
  • the transducer cooling system uses fluid (compressed air) to cool the high-power transducer to ensure stable operation of the transducer for a long time.
  • the small diameter roller causes the ultrasonic frequency impact to act on the surface of the workpiece while the additive layer is continuously rolled, and the advantages of high ultrasonic impact frequency and mechanical rolling deformation are integrated, and ultrasonic shock and continuous rolling can be realized.
  • the micro-forging composite action greatly improves the efficiency and depth of the composite micro forging.
  • the metal additive manufacturing technology is an additive manufacturing field of various heat sources such as an electron beam, a laser, an arc, a plasma arc, and a direct metal writing manufacturing field;
  • the metal material is any kind of metal material: titanium alloy, alloy steel, high temperature alloy, stainless steel, non-ferrous metal (aluminum alloy, copper alloy, magnesium alloy, etc.), intermetallic compound, metal amorphous alloy, etc.;
  • the metal material may be in the form of wires and powders, as well as various liquid metals used in the Direct Metal Writing process.
  • the material supply mode of the additive manufacturing process may be metal powdering, coaxial powder feeding (filament), side-shaft feeding (wire), direct writing of liquid metal, and the like.
  • the invention improves the metal structure and properties of the additive manufacturing, the plastic deformation of the metal structure caused by ultrasonic impact and rolling rolling, and then the recovery and recrystallization process continuously, thereby causing the refinement and homogenization of the metal structure.
  • the improvement of the defect, the improvement and elimination of the internal residual stress of the material also realize the effective control of the deformation and cracking of the metal parts.
  • the result of the comprehensive action is that the microstructure and mechanical properties of the metal parts are greatly improved and improved.
  • the surface of the metal deposition layer is heated to a recovery temperature to promote the movement and recombination of internal defects (dislocations) of the crystal grains, thereby further achieving the purpose of refining the crystal grains.
  • the high-frequency ultrasonic impact and rolling effect of the roller on the surface of the deposited layer can usually produce a compressive stress layer with a depth of 100-1000 ⁇ m on the surface of the metal deposition layer.
  • the tensile stress on the surface of the deposited layer is transformed into compressive stress, and the uneven stress state is improved to a stress state in which the compressive stress is uniformly distributed.
  • the ultrasonic micro forging composite impact device of the invention designs the impact needle in the conventional ultrasonic impact device as a roller, and the tool head is directly connected with the horn, and each deposition layer formed by the small diameter roller in the additive manufacturing process Continuous rolling to achieve the role of rolling and rolling. At the same time, ultrasonic energy can be directly applied to the deposited layer by small diameter roller impact.
  • This innovative design combines the advantages of high ultrasonic impact frequency and mechanical rolling to produce plastic deformation. It achieves the combined effect of ultrasonic impact and continuous rolling micro forging, greatly improving the efficiency and effective depth of micro forging and eliminating additive.
  • the regular dendritic structure unique to the formed part is produced, and the microstructure of each layer is transformed from an as-cast state to a forged structure, which greatly refines the grain and improves the mechanical properties.
  • the technology and device of the present invention will be widely applied to various types of additive manufacturing equipment and processes, greatly improving the microstructure of the metal and improving the mechanical properties of the parts, and obtaining high-performance metal parts comparable to the performance of the forgings.
  • it is suitable for the forming and manufacturing of large-scale metal components in the aerospace, marine and marine engineering, chemical, nuclear power, transportation and other equipment manufacturing industries, and solves the problems of deformation and cracking of large and complex metal components in these fields.
  • the promotion and application of metal parts manufacturing is of great significance.
  • the organic combination of additive manufacturing technology solves the technical bottleneck of easy control and control in the existing metal additive manufacturing, triggers the innovation and development of metal rapid prototyping and manufacturing technology, and promotes the additive manufacturing technology in advanced metal parts. Promotion and application in the manufacturing field.
  • FIG. 1 is a schematic view showing the structure of an ultrasonic micro forging composite device for improving metal structure and properties of additive materials according to the present invention.
  • FIGS. 2a-2c are schematic structural views of a tool head of the present invention.
  • the ultrasonic micro forging composite device of the present invention for improving the microstructure and mechanical properties of the additive manufacturing metal includes: connector 1, pipe joint 2, transducer housing 3, pneumatic slide 4, pneumatic slide connection Rack 5, roller 6, workpiece 7, tool head 8, fixed snap ring 9, horn 10, transducer 11, connector 1, pipe joint 2 is screwed to the transducer housing 3;
  • the table 4, the pneumatic sliding table connecting frame 5 and the fixed retaining ring 9 are fixed by bolts;
  • the fixed snap ring 9 is fixed to the transducer housing 3 and the horn 10 by bolts respectively;
  • the transducer 11 is fixed by the bolt On the outer casing 3;
  • the transducer 11, the horn 10 and the tool head 8 are all connected by a screw, and the connecting parts in the assembly process need to be tightened to prevent energy loss during the working process.
  • the tool head 8 and the horn 11 are bolted to facilitate different tool heads for different working environments.
  • the bottom of the tool head is provided with a recess 13 for matching the roller so that it can freely roll on the workpiece and transmit ultrasonic waves to the workpiece, the upper portion of the tool head being a flat surface 12.
  • the bottom of the tool head 8 has a limit stop to prevent the roller 6 from coming off the tool head 8 during operation.
  • the surface is subjected to ultrasonic micro forging treatment to improve the structure and properties inside the prepared material.
  • the number of deposited layers can be determined according to the type of deposited metal material, the additive manufacturing process, and the depth of the ultrasonic micro forging. The depth of action is determined by the ultrasonic energy, the pressure provided during the rolling process, and the nature of the material itself.
  • the microstructure of the metal deposition layer after ultrasonic micro forging is refined, even forms a nanocrystalline layer, and the residual tensile stress in the deposited layer is converted into residual compressive stress, and at the same time, defects inside the material can be effectively reduced or eliminated, and To some extent, the roughness of the surface of the deposited layer is improved to provide a better deposition environment for the deposition of the next layer of metal.
  • the entire metal additive manufacturing can be made. The overall metal microstructure and mechanical properties of the parts have been greatly improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Forging (AREA)

Abstract

一种改善增材制造金属组织与性能的超声微锻造复合装置与增材制造方法。包括换能器(11)、气动滑台(4)、气动滑台连接架(5)、变幅杆(10)、工具头(8)和滚柱(6),换能器(11)置于换能器外壳(3)内,换能器外壳(3)上设置接插件(1)和管路接头(2),变幅杆(10)连接于换能器(11)下,工具头(8)连接于换能器(11)下,滚柱(6)位于工具头(8)与工件(7)之间,气动滑台(4)通过气动滑台连接架(5)与换能器外壳(3)和变幅杆(10)连接。该超声微锻造复合装置综合了超声冲击频率高和机械滚压产生变形大的优点,可实现超声冲击和连续滚压微锻造复合作用,实现改善增材制造金属微观组织和提高零部件力学性能的目的。通过与现有增材制造技术的有机结合,解决现有金属增材制造中控形易、控性难的技术瓶颈。

Description

改善增材制造金属组织与性能的超声微锻造复合装置与增材制造方法
交叉引用
本申请引用于2017年08月22日提交的专利名称为“改善增材制造金属组织与性能的超声微锻造复合装置与增材制造方法”的第2017107253368号中国专利申请,其通过引用被全部并入本申请。
技术领域
本发明涉及的是一种金属增材制造装置,本发明也涉及一种金属增材制造方法。具体地说是一种改善增材制造金属微观组织和力学性能的超声微锻造复合装置及方法。
背景技术
目前,增材制造技术已经在铸造砂型、生物医疗器械、高分子材料等领域获得了广泛应用,但是由于该技术本身的特点限制了其在金属零部件快速成形制造领域的应用,尤其在利用现有的高能束(激光、电子束和等离子)增材制造技术制造大型复杂金属结构件时遇到了瓶颈。因为金属的增材制造过程经历了复杂物理冶金过程,零件成形时经历的材料熔化、凝固和冷却都是在极快的条件下进行的,不可避免的导致熔池与基体间处在很大的温度梯度,这样会产生热应力和残余应力,易产生微裂纹降低材料的韧性。同时,材料内部的金属组织为铸态,呈现出树枝状。另外,由于增材制造过程中多种成形工艺因素的影响,在金属沉积层中易形成裂纹、气孔、夹杂、层间结合不良、球化效应等缺陷。材料内部微观组织缺陷导致增材制造金属零部件的力学性能(如韧性、强度和疲劳性能等)劣化,这是影响增材制造技术在金属零部件、特别是大型复杂金属构件制造应用推广的最主要技术瓶颈。因此,如何改善材料内部微观组织、减少材料内部缺陷、提高金属零部件的力学性能,降低和消除增材制造金属零部件内部残余应力防止变形和开裂、实现大型金属构件控形控性增材制造是目前金属增材制造领域一个重要的研究方向。
目前,解决增材制造微观组织和力学性能主要方法和技术有后处理技术、超声干扰、超声冲击和滚压轧制技术。
后处理技术:包括热等静压和热处理技术等,都需要昂贵的大型设备,难以处理大型金属制件,效率太低、成本较高;
超声干扰技术:是在金属沉积层凝固以前,将超声能场从工件的底部作用于上端的高温液态熔池,破碎熔池中籽晶,增加金属组织形核率,从而达到细化晶粒的目的。但是由于超声能场作用深度的限制,随着金属沉积高度的增加,对零部件上端沉积层微观组织的细化作用越来越小。所以,这种方法难以应用于大尺寸复杂金属零部件制造。另外也会大幅影响沉积效率,使增材制造的成形制造效率降低;
超声冲击技术:原理是将超声冲击作用于固态沉积层,使其发生塑性变形和回复再结晶,从而达到细化晶粒的效果。但是传统的超声冲击装置其变幅杆与换能器输出端固定在一起,频率和换能器相同,达到了超声频率。但是和工件直接接触的冲击针并没有和变幅杆端部直接相连,是分体的。冲击针作用后二者分离,所以实际上目前所谓的超声冲击技术频率远远没有达到超声波高频范围。研究表明工程上目前使用的超声冲击装置冲击针实际的冲击频率只有几百赫兹左右,根本没有达到超声波冲击频率的20KHz范围。因此,超声能场在改善金属微观组织和提高力学性能的作用效果也还远远没有发挥出来;
滚压轧制技术:是采用滚轮对金属熔覆层进行逐层的轧制锻造,对改善金相组织有明显效果,但是去除残余应力效果欠佳,并且需要较大的压力(当压力接近100KN时,钛合金晶粒细化效果才达到理想效果)。为了支撑较大的载荷,滚压头尺寸较大。因此,这种技术应用于薄壁件和内腔复杂的零部件时难度较大。尽管如此,滚压轧制方法由于其成本较低、使用操作方便,目前已经在增材制造领域的应用研究取得了一定的进展。例如:美国的Frank L.Carbone早在2005年就发明了一种电子束增材制造技术与装置,其中金属微观组织改善和力学性能提高的技术路线就是采用了滚压轧制的方法[1](技术细节详见美国专利US 2005/0173380A1)。英国克莱菲尔德大学的电弧增材制造处于国际的领先水平,他们也采用了滚动轧制的方式对增材制造的沉积层进行塑性变形处理。其研究结果表明, 层间轧制或者滚压处理能够有效地细化晶粒,减少材料内部的孔隙率,提升材料的硬度和强度等性能,但并不能有效的去除材料内部的残余应力[2-7]。国内华中科技大学开发了等离子束为热源的“智能微铸锻铣复合制造技术”,实现了3D打印锻态等轴细晶化、高均匀致密度、高强韧、形状复杂的金属锻件,大幅提高了制件力学性能和可靠性。该技术的原理也是采用微型轧辊或微型挤压装置对熔积区域作压缩成形与加工,实现改善金属微观组织和力学性能[8,9](详见中国专利CN 101817121A)。
通过对目前现有的几种改善增材制造微观组织和提高金属零部件力学性能的方法分析可以发现,这些方法和技术,能够在一定程度上改善了金属增材制造材料内部微观组织和提高了金属零部件的力学性能,但每种增材制造辅助方法都存在一定局限性,在一定的条件下使用。
与本发明相关的公开文献包括:
[1].Frank L.Carbone.Directed energy net shape method and apparatus:U.S.Patent 20050173380[P].2005-8-11;
[2].Colegrove P A,Coules H E,Fairman J,et al.Journal of Materials Processing Technology,2013,213(10):1782-1791;
[3].Martina F,Colegrove P A,Williams S W,et al.Metallurgical and Materials Transactions A,2015,46(12):6103-6118;
[4].Gu J,Ding J,Williams S W,et al.Journal of Materials Processing Technology,2016,230:26-34;
[5].Gu J,Ding J,Williams S W,et al.Materials Science and Engineering:A,2016,651:18-26;
[6].Donoghue J,Antonysamy A A,Martina F,et al.Materials Characterization,2016,114:103-114;
[7].Martina F,Roy M J,Szost B A,et al.Materials Science and Technology,2016,32(14):1439-1448;
[8].张海鸥,王桂兰.零件与模具的熔积成形复合制造方法及其辅助装置:中国,101817121.A[P].2010-09-01;
[9].张海鸥,王桂兰.零件与模具的熔积成形复合制造方法及其辅助装置:中国,101817121.B[P].2012-03-28;
[10].Vasylyev M A,Chenakin S P,Yatsenko L F.Acta Materialia,2016,103:761-774;
[11].Zhao Y,Zhang Y,Luo Z,et al.Materials Science Forum.2016,850;
[12].Mordyuk B N,Prokopenko G I,Vasylyev M A,et al.Materials Science and Engineering:A,2007,458(1):253-261;
[13].Mordyuk B N,Prokopenko G I.Journal of Sound and Vibration,2007,308(3):855-866;
[14].Suh C M,Song G H,Suh M S,et al.Materials Science and Engineering:A,2007,443(1):101-106;
[15].Petrov Y N,Prokopenko G I,Mordyuk B N,et al.Materials Science and Engineering:C,2016,58:1024-1035;
[16].Vasylyev M A,Chenakin S P,Yatsenko L F.Acta Materialia,2012,60(17):6223-6233;
[17].李勇.高频锻造对激光熔覆层应力场的影响[D].南华大学,2012;
[18].余金水.高频微锻造对激光成形成形304不锈钢试件力学性能的影响[D].南华大学,2012;
[19].戚永爱.基于超声冲击的激光快速成形镍基高温合金强化技术研究[D].南京航空航天大学,2014。
发明内容
本发明的目的在于提供一种能够解决金属增材制造所制备材料内部残余应力引起的开裂、材料内部缺陷以及材料内部微观组织粗大和不均匀导致的零部件力学性能差等问题的改善增材制造金属组织与性能的超声微锻造复合装置。本发明的目的还在于提供一种基于本发明的改善增材制造金属组织与性能的超声微锻造复合装置的增材制造方法。
本发明的改善增材制造金属组织与性能的超声微锻造复合装置包括换能器11、气动滑台4、气动滑台连接架5、变幅杆10、工具头8和滚柱6,所述换能器11置于换能器外壳3内,换能器外壳3上设置接插件1和管路接头2,变幅杆10连接于换能器11下,工具头8连接于换能器11 下,滚柱6位于工具头8与工件7之间,气动滑台4通过气动滑台连接架5与换能器外壳3和变幅杆10连接。
本发明的改善增材制造金属组织与性能的超声微锻造复合装置还可以包括:
1、气动滑台连接架5通过固定卡环9与换能器外壳3和变幅杆10连接。
2、工具头底部设有凹槽13。
3、工具头8底部具有限位挡块。
4、换能器11,变幅杆10及工具头8均通过螺杆连接。
基于本发明的改善增材制造金属组织与性能的超声微锻造复合装置的增材制造方法之一为:每沉积一层后,对表面进行超声微锻造处理。
基于本发明的改善增材制造金属组织与性能的超声微锻造复合装置的增材制造方法之二为:每沉积两层以上后,对表面进行超声微锻造处理。
本发明提出了一种改善增材制造金属组织和性能的超声微锻造复合技术与装置,解决现有金属增材制造领域所制备材料内部残余应力引起的开裂、材料内部缺陷以及材料内部微观组织粗大和不均匀导致的零部件力学性能差等问题,为金属增材制造技术的推广应用提供新的技术支撑。
本发明的超声微锻造复合装置主要包括:接插件1、换能器11、管路接头2、换能器外壳3、气动滑台4、气动滑台连接架5、变幅杆10、工具头8、滚柱6和固定卡环9;
所述接插件1主要用于连接超声波电源,将超声波驱动电源电信号传输到换能器上;
所述换能器11用于将电能转换为机械能也就是超声波;
所述管路接头2用来连接流体压缩空气的管路,对冷却换能器11进行冷却,以保证换能器能够长时间的稳定工作。因超声波设备在正常工作时,换能器会产生一定的热量,而且随着工作时间的增加,热量会累积在换能器外壳内,所以需要对换能器进行冷却,特别是对于长时间工作的大功率换能器其冷却系统是必不可少的。
所述换能器外壳3用于固定换能器11、接插件1、管路接头2,并能保护换能器;
所述固定卡环9用于将超声波设备固定在气动滑台连接架5上,当然也可以用其他的固定方式,示意图中给出的只是其中的一种布置结构;
所述气动滑台4用于提供向下压力,带动换能器11向下工作,并提供持续压力,也可采用液压装置,压力更加稳定可靠;
所述气动滑台4连接架用于连接滑台与卡环;
所述变幅杆10用于放大换能器产生的超声波,将换能器产生的超声波能量放大,也就是放大换能器振幅,变幅杆也叫调幅器,具有调整振幅、放大振幅的功能;
所述工具头8用于将所述变幅杆10放大后的超声波作用于滚柱6,作为超声波的辐射端,在端面产生工作需要的振幅,并且将超声波能量通过超声波输出端13传递到滚柱,再由滚珠直接作用于增材制造的沉积层上;
所述的工具头底部即超声波输出端13设有凹槽用于滚柱的安装和限位,其尺寸和形状和滚柱6匹配,使其可以在工件上自由滚动,并将超声能量传递至金属沉积层上。同时工具头底部具有限位挡块,避免滚柱在超声振动时从工具头脱落。
所述滚柱6在金属沉积层高频振动的同时,通过直接作用和沉积层接触将超声能量传递到滚压产生的局部塑性变形区,由于超声能场和机械力耦合的叠加复合作用实现改善金属微观组织和提高力学性能的目的;
所述各部件的连接方式:
所述的接插件1和管路接头2,通过螺纹固定在换能器外壳上;
所述气动滑台4、气动滑台连接架5、固定卡环9通过螺丝连接固定;
所述固定卡环9分别固定在换能器外壳3和变幅杆10上,用螺丝紧固;
所述换能器11通过螺纹固定在换能器外壳3上;
所述换能器11,变幅杆10及工具头8均通过螺丝连接。
本发明所述的改善增材制造金属微观组织和力学性能的超声微锻造复合技术与装置,其特征在于:把传统的超声冲击装置中的冲击针设计成滚柱,并且保持滚柱的冲击头直接和变幅杆连接,小直径滚柱在增材制造金属沉积层连续滚动的同时,又把超声能量以超声频率直接作用于增材制造过程中形成的每一沉积层,实现了改善金属微观组织和提高零部件力学 性能的目的。
所述的冲击针被设计成滚柱,并且冲击头与变幅杆直接连接将大幅提高冲击频率,实现滚压冲击频率和超声波频率相同(其频率为20kHz)。
所述的换能器冷却系统,采用流体(压缩空气)通过对大功率换能器进行冷却,以保证换能器能够长时间的稳定工作。
所述的小直径滚柱在增材制造沉积层连续滚动的同时,将超声波频率冲击作用于工件表面,综合了超声冲击频率高和机械滚压产生变形大的优点,可以实现超声冲击和连续滚压微锻造复合作用,大大提高复合微锻造的效率和作用深度。
所述的超声和滚压的复合加快了对沉积层的作用效率和速度,提高了增材制造的成形与制造速度,克服了其他增材制造辅助技术的不足。
所述金属增材制造技术为电子束、激光、电弧、等离子弧等各种不同热源的增材制造领域,以及直接金属书写(Direct Metal Writing)制造领域;
所述金属材料为任何种类的金属材料:钛合金、合金钢、高温合金、不锈钢、有色金属(铝合金、铜合金、镁合金等)、金属间化合物、金属非晶态合金等;
所述金属材料的形状可以为丝材和粉体,以及用于直接金属书写(Direct Metal Writing)工艺的各类液态金属。
所述增材制造工艺的材料供给方式可以为金属铺粉、同轴送粉(丝)、旁轴送粉(丝)、液态金属直接书写等。
本发明所述的改善增材制造金属组织和性能,超声冲击和滚压轧制导致的金属组织发生塑性变形、而后又连续发生回复与再结晶过程,从而引起了金属组织的细化、均匀化、缺陷的治愈、材料内部残余应力的改善和消除也实现了金属零部件变形和开裂的有效控制,综合作用的结果是金属零部件的微观组织和力学性能大幅改善和提高。
主要从以下三个方面进行说明本发明作用的原理和机制[10-19]
1.晶粒细化:
(1)超声频冲击作用产生的应力区晶粒发生明显变形,使金属表层局部区域的晶粒细化以及产生纤维组织,使晶界总面积增加,产生晶粒细 化效果;
(2)超声频率冲击,试样表面存在超声波声压(或能场),冲击造成的以位错运动为主的局部塑性变形,并伴随着金属基体缺陷密度的升高。在超声波声压(或能场)的驱动下位错能够短时快速进行滑移及合并,位错合并成为小角度晶界并发展成新的晶界,即动态再结晶过程,从而达到细化晶粒的效果;
(3)由于塑性变形能会产生大量热量,使金属沉积层的表面升温达到回复温度而促使晶粒内部缺陷(位错)的运动和重新组合,从而进一步达到细化晶粒的目的。
2.缺陷治愈:高频冲击在沉积层表面产生强烈的塑性变形,可有效促使气孔等缺陷的愈合和消除;并在塑性变形-动态再结晶过程中得到有效愈合。
3.消除残余应力:从超声波能量输入及超声频率冲击角度来说,滚柱在沉积层表面的高频超声冲击和滚压效果,通常能够在金属沉积层表面产生100~1000μm深度的压应力层,将沉积层表面较为有害的拉应力转变成压应力,并将不均匀应力状态改善为压应力均匀分布的应力状态。
本发明的超声微锻造复合冲击装置,把传统超声冲击装置中的冲击针设计成滚柱,并且工具头直接和变幅杆连接,小直径滚柱在增材制造过程中形成的每一沉积层连续滚动,达到滚压轧制的作用。同时,通过小直径滚柱冲击可以将超声波能量直接作用于沉积层。这种创新设计综合了超声冲击频率高和机械滚压产生塑性变形大的优点,实现了超声冲击与连续滚压微锻造复合作用,大大提高了微锻造的作用效率和有效深度,可消除增材制造成形件特有的规则的枝状结晶组织,使其每一层的微观组织由铸态转变成为锻态组织,大幅细化晶粒和提高力学性能。从而通过逐层叠加制造出组织和性能优化的金属零部件。本发明的技术和装置将广泛应用于各类增材制造设备和工艺,大幅改善金属微观组织和提高零部件的力学性能,获得和锻件性能相媲美的高性能金属零部件。特别是适用于航天航空、船舶与海洋工程、化工、核电、交通运输等装备制造业大型金属构件的成形与制造,解决这些领域中大型复杂金属构件变形、开裂等问题,对增材制造技术在金属零部件制造的推广应用具有重要的意义。通过本发明和现 有增材制造技术的有机结合,解决现有金属增材制造中控形易、控性难的技术瓶颈,引发金属快速成形与制造技术的创新和发展,推动增材制造技术在金属零部件先进制造领域的推广应用。
附图说明
图1为本发明的改善增材制造金属组织与性能的超声微锻造复合装置的结构示意图。
图2a-图2c为本发明的工具头的结构示意图。
具体实施方式
下面结合附图和实施例对本发明的实施方式作进一步详细描述。以下实施例用于说明本发明,但不能用来限制本发明的范围。
下面结合附图举例对本发明做详细描述。
结合图1,本发明的改善增材制造金属微观组织和力学性能的超声微锻造复合装置,包括:接插件1、管路接头2、换能器外壳3、气动滑台4、气动滑台连接架5、滚柱6、工件7、工具头8、固定卡环9、变幅杆10、换能器11,接插件1、管路接头2通过螺纹固定在换能器外壳3上;气动滑台4、气动滑台连接架5与固定卡环9通过螺栓连接固定;固定卡环9用螺栓分别固定在换能器外壳3和变幅杆10上;换能器11通过螺栓固定在换能器外壳3上;换能器11,变幅杆10及工具头8均通过螺杆连接,装配过程中各连接部位需拧紧以防止工作过程中能量的损失。工具头8与变幅杆11通过螺栓连接,能够方便针对不同的工作环境换取不同的工具头。
结合图2a-图2c,工具头底部设有凹槽13,用来匹配滚柱,使其可以在工件上自由滚动,并将超声波传递至工件处,工具头上部为平面12。同时工具头8底部具有限位挡块,避免滚柱6在工作时脱离工具头8。
在金属增材制造过程中,其逐层堆积成形与制造的方式,更适应于超声微锻造复合装置的应用。
对于金属增材制造过程中,每沉积一层或者多层后,对其表面进行超声微锻造处理,用以改善所制备材料内部的组织与性能。所述沉积层数可根据沉积金属材料的种类、增材制造工艺以及超声微锻造所作用深度来确 定;所述作用深度由超声能量,滚压过程中所提供的压力、以及材料本身的性质等来决定。
所述的超声微锻造后的金属沉积层组织发生细化,甚至形成纳米晶层,并且使沉积层中的残余拉应力转变成残余压应力,同时能够有效地减少或者消除材料内部的缺陷,并在一定程度上改善沉积层表面的粗糙度,为下一层金属的沉积提供更好的沉积环境,随着“金属沉积—超声微锻造—金属沉积”过程的进行,可以使得整个金属增材制造零部件整体的金属微观组织和力学性能得以大幅改善。
本发明的实施例是为了示例和描述起见而给出的,而并不是无遗漏的或者将本发明限于所公开的形式。很多修改和变化对于本领域的普通技术人员而言是显而易见的。选择和描述实施例是为了更好说明本发明的原理和实际应用,并且使本领域的普通技术人员能够理解本发明从而设计适于特定用途的带有各种修改的各种实施例。

Claims (8)

  1. 一种改善增材制造金属组织与性能的超声微锻造复合装置,其特征是:包括换能器(11)、气动滑台(4)、气动滑台连接架(5)、变幅杆(10)、工具头(8)和滚柱(6),所述换能器(11)置于换能器外壳(3)内,换能器外壳(3)上设置接插件(1)和管路接头(2),变幅杆(10)连接于换能器(11)下,工具头(8)连接于换能器(11)下,滚柱(6)位于工具头(8)与工件(7)之间,气动滑台(4)通过气动滑台连接架(5)与换能器外壳(3)和变幅杆(10)连接。
  2. 根据权利要求1所述的改善增材制造金属组织与性能的超声微锻造复合装置,其特征是:工具头底部设有凹槽(13)。
  3. 根据权利要求2所述的改善增材制造金属组织与性能的超声微锻造复合装置,其特征是:工具头(8)底部具有限位挡块。
  4. 根据权利要求1、2或3所述的改善增材制造金属组织与性能的超声微锻造复合装置,其特征是:气动滑台连接架(5)通过固定卡环(9)与换能器外壳(3)和变幅杆(10)连接。
  5. 根据权利要求1、2或3所述的改善增材制造金属组织与性能的超声微锻造复合装置,其特征是:换能器(11)、变幅杆(10)及工具头(8)均通过螺杆连接。
  6. 根据权利要求4所述的改善增材制造金属组织与性能的超声微锻造复合装置,其特征是:换能器(11)、变幅杆(10)及工具头(8)均通过螺杆连接。
  7. 一种基于权利要求1的改善增材制造金属组织与性能的超声微锻造复合装置的增材制造方法,其特征是:每沉积一层后,对表面进行超声微锻造处理。
  8. 一种基于权利要求1的改善增材制造金属组织与性能的超声微锻造复合装置的增材制造方法,其特征是:每沉积两层以上后,对表面进行超声微锻造处理。
PCT/CN2017/115700 2017-08-22 2017-12-12 改善增材制造金属组织与性能的超声微锻造复合装置与增材制造方法 WO2019037338A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/641,176 US11110513B2 (en) 2017-08-22 2017-12-12 Combined ultrasonic micro-forging device for improving microstructure and mechanical properties of additive manufactured metal parts, and a related additive manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710725336.8 2017-08-22
CN201710725336.8A CN107470628B (zh) 2017-08-22 2017-08-22 改善增材制造金属组织与性能的超声微锻造复合装置与增材制造方法

Publications (1)

Publication Number Publication Date
WO2019037338A1 true WO2019037338A1 (zh) 2019-02-28

Family

ID=60602096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115700 WO2019037338A1 (zh) 2017-08-22 2017-12-12 改善增材制造金属组织与性能的超声微锻造复合装置与增材制造方法

Country Status (3)

Country Link
US (1) US11110513B2 (zh)
CN (1) CN107470628B (zh)
WO (1) WO2019037338A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112958875A (zh) * 2021-03-19 2021-06-15 南京航空航天大学 一种复合能量冲击消除电弧增材制造残余应力的装置与方法
EP4015114A1 (en) * 2020-12-21 2022-06-22 Hamilton Sundstrand Corporation Powder removal from a printed workpiece
CN115430841A (zh) * 2022-09-29 2022-12-06 哈尔滨工程大学 一种激光熔丝增材制造细化晶粒的方法

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110026649B (zh) * 2018-01-12 2022-03-08 通用电气公司 一种用于增材制造的温度控制系统和方法
CN110193668A (zh) * 2018-02-27 2019-09-03 北京三帝科技股份有限公司 一种激光熔丝增材制造系统
CN109158829A (zh) * 2018-07-31 2019-01-08 清华大学深圳研究生院 一种基于增材工艺成型的金属构件优化方法与成型设备
CN108984984B (zh) * 2018-09-05 2022-08-02 哈尔滨工程大学 一种超声冲击处理对激光选区熔化成形金属构件残余应力影响的分析方法
CN109182698A (zh) * 2018-09-27 2019-01-11 河南理工大学 可实现多轴联动齿轮齿面超声挤压强化装置
CN109434466A (zh) * 2018-12-07 2019-03-08 南昌大学 一种超声微锻强化激光熔丝熔覆层的方法
CN109719459A (zh) * 2019-02-25 2019-05-07 江苏福吉特管业有限公司 一种表面滚压强化装置及用其处理高压锻制渐缩管的方法
CN110193647B (zh) * 2019-07-04 2024-05-10 湖北汽车工业学院 一种电弧增材制造用丝-粉同送的焊枪套筒
CN110744303B (zh) * 2019-10-24 2021-10-15 江南大学 一种电弧增材与锻铣复合加工成形装置及方法
RU2728375C1 (ru) * 2020-01-24 2020-07-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "МИРЭА - Российский технологический университет" Способ и устройство для изготовления изделий из порошков посредством послойного селективного выращивания
CN111363899A (zh) * 2020-04-17 2020-07-03 东南大学 水下超声频微锻造原位强化激光改性层装置和方法
CN111618305B (zh) * 2020-05-12 2022-08-02 哈尔滨工程大学 一种超声冲击锻造装置
CN111659893B (zh) * 2020-05-21 2021-12-21 南京航空航天大学 一种喷射成形同步超声热精轧制备技术
CN111590189B (zh) * 2020-06-10 2023-07-28 南昌大学 一种焊接增材随焊超声冲击装置及操作方法
CN111822505A (zh) * 2020-07-01 2020-10-27 河南科技大学 一种用于板带材的超声波加载装置
CN111842530B (zh) * 2020-07-06 2022-04-26 安徽工程大学 一种高性能线材生产工艺方法及装置
CN111975297B (zh) * 2020-08-14 2023-02-03 中国人民解放军陆军装甲兵学院 一种铜合金表面高能微弧沉积层制备及滚压后处理强化工艺
CN112064017A (zh) * 2020-09-25 2020-12-11 中国石油大学(华东) 一种超声波和微轧制辅助的感应熔覆装置及方法
CN112404457A (zh) * 2020-10-30 2021-02-26 武汉大学深圳研究院 一种异种金属增材制造界面质量调节反馈系统及方法
US20220176449A1 (en) * 2020-12-07 2022-06-09 Divergent Technologies, Inc. Ultrasonic additive manufacturing of box-like parts
CN112705820B (zh) * 2020-12-18 2022-08-02 南京中科煜宸激光技术有限公司 增材制造打印系统用的锤压装置及增材制造打印系统
CN113145861B (zh) * 2021-01-23 2022-10-14 大连理工大学 一种金属构件增材制造同步锤击形性控制装置与方法
CN113020626A (zh) * 2021-02-26 2021-06-25 大连理工大学 一种增材-减材-超声微锻造-五轴联动复合制造装备及其方法
US20220356583A1 (en) * 2021-04-28 2022-11-10 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Post-treatment via ultrasonic consolidation of spray coatings
CN113182530A (zh) * 2021-05-07 2021-07-30 上海理工大学 一种镁合金定向凝固晶或单晶的增材制造方法
CN116713558A (zh) * 2021-05-13 2023-09-08 重庆大学 电弧增材及超声碾压联合制造设备
CN113414413A (zh) * 2021-06-23 2021-09-21 南京工业大学 超声滚压调控激光增材制造沉积组织的方法与系统
CN113714511A (zh) * 2021-09-23 2021-11-30 中南大学 电弧增材铝合金构件的热处理与深冷变形复合工艺方法
CN114310772A (zh) * 2022-02-18 2022-04-12 上海豪承信息技术有限公司 电子设备维修装置
CN114799728B (zh) * 2022-05-19 2023-08-22 南京理工大学 一种三维空间梯度结构铝合金的制备系统及方法
CN115070060A (zh) * 2022-06-09 2022-09-20 山东大学 一种金属零部件增材制造装置及工作方法
CN114932383B (zh) * 2022-06-28 2023-08-04 西安泰金新能科技股份有限公司 一种电解铜箔用无缝阴极辊钛筒的制造方法
CN115194490B (zh) * 2022-09-15 2022-11-22 太原理工大学 一种基于超声振动的平曲面铣削-滚压复合装置
CN116021037A (zh) * 2022-12-26 2023-04-28 山东大学 一种滚珠式超声微锻造辅助增材制造装置
CN116080061A (zh) * 2023-01-09 2023-05-09 南京航空航天大学 一种用于纤维增材制造的层间超声气动压实机构
CN116532910B (zh) * 2023-07-06 2023-09-08 太原理工大学 一种激光辅助超声滚压加工平面工件的装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101130828A (zh) * 2006-08-25 2008-02-27 中国人民解放军装甲兵工程学院 超声深滚和滚光一体化表面强化装置
WO2013105369A1 (ja) * 2012-01-11 2013-07-18 株式会社 豊田自動織機 振動アクチュエータ
DE102012103548A1 (de) * 2012-04-23 2013-10-24 IBG-Automation GmbH Verfahren und Vorrichtung zum Ausrichten eines Werkzeugs sowie Bearbeitungsstation und Messeinrichtung
CN104525944A (zh) * 2014-12-23 2015-04-22 北京理工大学 一种金属材料高能束-超声复合增材制造方法
CN105838863A (zh) * 2016-05-24 2016-08-10 华南理工大学 一种低温辅助超声表面滚压强化装置和加工方法
CN106283038A (zh) * 2016-08-25 2017-01-04 吉林大学 提高焊接接头疲劳性能的超声滚压复合激光重熔方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6519500B1 (en) * 1999-09-16 2003-02-11 Solidica, Inc. Ultrasonic object consolidation
US6814823B1 (en) * 1999-09-16 2004-11-09 Solidica, Inc. Object consolidation through sequential material deposition
US6685365B2 (en) * 2000-12-11 2004-02-03 Solidica, Inc. Consolidated transmission cables, interconnections and connectors
BR0307213A (pt) * 2002-01-25 2005-04-26 Ck Man Ab Máquina de retenção de energia de impacto de forjamento dinâmico
US20050173380A1 (en) * 2004-02-09 2005-08-11 Carbone Frank L. Directed energy net shape method and apparatus
US20070295440A1 (en) * 2006-05-24 2007-12-27 Stucker Brent E Surface roughness reduction for improving bonding in ultrasonic consolidation rapid manufacturing
US8082966B2 (en) * 2010-03-12 2011-12-27 Edison Welding Institute, Inc. System for enhancing sonotrode performance in ultrasonic additive manufacturing applications
CN101817121B (zh) 2010-04-15 2012-03-28 华中科技大学 零件与模具的熔积成形复合制造方法及其辅助装置
US9539736B2 (en) * 2012-08-07 2017-01-10 Palo Alto Research Center Incorporated Mechanical method for producing micro- or nano-scale textures
WO2014107170A1 (en) * 2013-01-07 2014-07-10 Halliburton Energy Services Inc. Ultrasonic impact treatment for useful life improvement of downhole tools
EP2964411A4 (en) * 2013-03-05 2016-10-12 United Technologies Corp PLATFORMS FOR 3D PRINTING
US10556270B2 (en) * 2014-05-01 2020-02-11 United Technologies Corporation Additive manufacturing system for minimizing thermal stresses
CN205826022U (zh) * 2016-07-04 2016-12-21 湖北五岳传感器有限公司 一种双重压力检测且带温度检测的传感器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101130828A (zh) * 2006-08-25 2008-02-27 中国人民解放军装甲兵工程学院 超声深滚和滚光一体化表面强化装置
WO2013105369A1 (ja) * 2012-01-11 2013-07-18 株式会社 豊田自動織機 振動アクチュエータ
DE102012103548A1 (de) * 2012-04-23 2013-10-24 IBG-Automation GmbH Verfahren und Vorrichtung zum Ausrichten eines Werkzeugs sowie Bearbeitungsstation und Messeinrichtung
CN104525944A (zh) * 2014-12-23 2015-04-22 北京理工大学 一种金属材料高能束-超声复合增材制造方法
CN105838863A (zh) * 2016-05-24 2016-08-10 华南理工大学 一种低温辅助超声表面滚压强化装置和加工方法
CN106283038A (zh) * 2016-08-25 2017-01-04 吉林大学 提高焊接接头疲劳性能的超声滚压复合激光重熔方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4015114A1 (en) * 2020-12-21 2022-06-22 Hamilton Sundstrand Corporation Powder removal from a printed workpiece
CN112958875A (zh) * 2021-03-19 2021-06-15 南京航空航天大学 一种复合能量冲击消除电弧增材制造残余应力的装置与方法
CN115430841A (zh) * 2022-09-29 2022-12-06 哈尔滨工程大学 一种激光熔丝增材制造细化晶粒的方法

Also Published As

Publication number Publication date
US11110513B2 (en) 2021-09-07
CN107470628B (zh) 2020-01-07
CN107470628A (zh) 2017-12-15
US20200215614A1 (en) 2020-07-09

Similar Documents

Publication Publication Date Title
WO2019037338A1 (zh) 改善增材制造金属组织与性能的超声微锻造复合装置与增材制造方法
Liu et al. Experimental study on titanium wire drawing with ultrasonic vibration
Krajewski et al. Ultrasonic-vibration assisted arc-welding of aluminum alloys
CN112342366A (zh) 一种改善增材制造金属构件组织和性能的超声冲击与沉积成形集成装置与技术
CN107012305B (zh) 一种结构件连接孔的超声挤压强化方法及装置
Sardar et al. Ultrasonic assisted fabrication of magnesium matrix composites: a review
WO2019119742A1 (zh) 用于改善金属材料性能的高频振动焊接系统及方法
CN104419925A (zh) 一种超声振动辅助激光熔覆复合处理装置
CN113943908A (zh) 一种高频振动滚压强化激光熔覆层的装置及其使用方法
Hatefi et al. Review of non-conventional technologies for assisting ultra-precision single-point diamond turning
Ji et al. Effect of ultrasonic intensity on microstructure and mechanical properties of steel alloy in direct energy deposition-Arc
CN104015244B (zh) 一种激光近净成形Al2O3陶瓷结构件的方法
Ji et al. Improving microstructure and mechanical properties of thin-wall part fabricated by wire arc additive manufacturing assisted with high-intensity ultrasound
Shamanian et al. Friction-stir processing of Al–12% Si alloys: grain refinement, numerical simulation, microstructure evolution, dry sliding wear performance and hardness measurement
Ramulu Surface development by reinforcing nano-composites during friction stir processing–a review
Yaghoubi et al. Investigation on microstructure, mechanical properties and tribological behavior of AlZnMgCu1. 5-T6/zirconia surface nanocomposites developed by FSP
Arab et al. The effect of friction stir processing by stepped tools on the microstructure, mechanical properties and wear behavior of a Mg-Al-Zn alloy
Zhu et al. Study on the precipitation behavior of precipitates of 7075 aluminum alloy friction stir welding joint
Muhammad et al. Progress and trends in ultrasonic vibration assisted friction stir welding
CN110977142B (zh) 一种用于镁-铝合金异质工件连接的冲击搅拌摩擦焊接装置
Zhou et al. Effects of preheating-ultrasonic synergistic on the microstructure and strength-ductility of 24CrNiMoY alloy steel by laser directed energy deposition
US11491569B1 (en) Multidirectional synchronized ultrasonic devices and methods for assisting wire arc additive manufacturing
Fan et al. The application of ultrasound in Joining: Principles, processes and properties
CN103894560A (zh) 一种用于铝合金半连续铸造的超声变幅杆
Pattusamy et al. Effect of tool diameter ratio on the microstructural characteristics of a solid-state processed aluminum based metal matrix composite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17922865

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17922865

Country of ref document: EP

Kind code of ref document: A1