WO2019037326A1 - 投影仪自动调焦方法及投影仪 - Google Patents

投影仪自动调焦方法及投影仪 Download PDF

Info

Publication number
WO2019037326A1
WO2019037326A1 PCT/CN2017/114732 CN2017114732W WO2019037326A1 WO 2019037326 A1 WO2019037326 A1 WO 2019037326A1 CN 2017114732 W CN2017114732 W CN 2017114732W WO 2019037326 A1 WO2019037326 A1 WO 2019037326A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
projection
projector
distance
current
Prior art date
Application number
PCT/CN2017/114732
Other languages
English (en)
French (fr)
Inventor
罗伟欢
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2019037326A1 publication Critical patent/WO2019037326A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/53Means for automatic focusing, e.g. to compensate thermal effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/36Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals

Definitions

  • the invention belongs to the field of projection technology, and in particular relates to a projector automatic focusing method and a projector.
  • projection technology has been widely used in people's daily life.
  • the use of projection systems can be found everywhere in conferences, teaching or entertainment venues.
  • the projector when refocusing is required, the projector first finds and determines the sharpest focusing parameter of the lens when the clearest projected image is obtained, and then adjusts the lens. Going back to the zero point, the lens is moved from the zero point until the position corresponding to the clearest focusing parameter is stopped, and the auto focus is completed.
  • the lens needs to be moved to a zero point, and then from the zero point. The movement starts until the lens stops to the position corresponding to the sharpest focusing parameter.
  • the focusing method is complicated.
  • the focusing method takes time in the step of moving the lens to the zero point, so that the focusing speed of the projector is slow and the sensitivity is low.
  • the present invention provides a projector automatic focusing method and a projector, which can quickly realize automatic focusing of the projection, and the user experience is good and the method is simple.
  • the invention provides a projector automatic focusing method, the projector comprises a lens movable forward and backward along an optical axis, and a driving motor for driving the lens to move.
  • the automatic focusing method of the projector comprises the following steps:
  • the lens is driven from a current position to the optimal projected position by a drive motor.
  • acquiring the optimal projection position by using an image analysis method comprises the following steps:
  • Focusing is performed from the zero point, and the sharpness of the projected image is synchronously detected until the clearest image is obtained, and the optimal projection position corresponding to the lens when the clearest projected image is obtained is recorded.
  • the zero point is a focus start point or a focus end point of the lens.
  • the zero point is a mechanical zero or an electronic zero or a photoelectric induction zero or an electromagnetic induction zero of the focal length of the lens.
  • acquiring the optimal projection position by using a ranging method includes the following steps:
  • the method further comprises the following steps:
  • One of the two adjacent projection distances that is closer to the current projection distance is equivalent to the current projection distance.
  • the following steps are included:
  • the lens is moved by the drive motor by the moving distance to position the lens at the optimal projection position.
  • the current projection distance is measured by the ranging sensor.
  • the ranging sensor is configured to acquire a vertical distance between the lens and the projection screen, and the method includes at least two, respectively acquiring a first vertical distance and a second vertical distance of the lens and the projection screen, and adjusting the projection.
  • the first vertical distance is equal to the second vertical distance
  • the first vertical distance or the second vertical distance is determined as the current projection distance.
  • the present invention also provides a projector comprising: a lens for emitting light to a projection screen to form a projection image; a driving motor for driving the lens movement; and a distance measuring sensor for measuring the lens to the camera a vertical distance of the projection screen; a memory for storing a correspondence between a projection distance of the pre-established lens to the projection screen and an optimal projection position corresponding to a sharpest projection image of the lens; and a processor, a step of reading the correspondence relationship in the memory and controlling the driving motor, the ranging sensor to perform the above-described projector auto-focusing method; the driving motor and the ranging sensor and the memory respectively Processor connection.
  • the projector automatic focusing method and the projector obtain the optimal projection position of the lens corresponding to the clearest projected image, and then drive the lens to directly move to the most
  • the optimal projection position realizes automatic focusing, and the method directly acquires the optimal projection position of the corresponding lens when the clearest projected image is obtained, thereby eliminating the best conversion by obtaining the optimal projection focusing parameter or focusing focal length.
  • the process of projecting position makes the method simpler and the auto-focusing speed is fast; in addition, after obtaining the optimal projection position, the method directly moves the lens to the optimal projection position to achieve focusing, without adjusting the lens back to zero point. Then move to the optimal projection position to achieve a faster auto-focusing function, so that the projector has a faster auto-focusing speed and higher sensitivity.
  • Embodiment 1 is a flow chart of an automatic focusing method according to Embodiment 1 of a method for automatically focusing a projector according to the present invention
  • FIG. 3 is a schematic diagram of the method for acquiring the optimal projection position by using image analysis method in FIG. 2;
  • FIG. 4 is a flowchart of an automatic focusing method according to Embodiment 2 of a method for automatically focusing a projector according to the present invention
  • step S21 of Embodiment 2 of the projector automatic focusing method according to the present invention is a sub-flowchart of step S21 of Embodiment 2 of the projector automatic focusing method according to the present invention.
  • FIG. 6 is a schematic structural diagram of a method of a sub-flow in FIG. 5;
  • step S22 of the second embodiment of the projector automatic focusing method according to the present invention is a sub-flowchart of step S22 of the second embodiment of the projector automatic focusing method according to the present invention.
  • Figure 8 is a block diagram showing the structure of a projector of the present invention.
  • the present invention provides a projector automatic focusing method.
  • the projector includes a lens that can move back and forth along an optical axis, and a driving motor that drives the lens to move.
  • the projector automatically adjusts focus.
  • the method includes the following steps:
  • Step S11 acquiring an optimal projection position of the lens corresponding to the clearest projected image
  • acquiring the optimal projection position by using an image analysis method includes the following steps:
  • Step S111 adjusting the lens to zero point
  • the zero point is a focus start point or a focus end point of the lens.
  • the zero point is a mechanical zero point or an electronic zero point or a photoelectric induction zero point or an electromagnetic induction zero point of the lens focal length.
  • Step S112 Perform focusing on the zero point, and perform synchronous detection on the sharpness of the projected image until the clearest projected image is obtained, and record an optimal projection position corresponding to the lens when the clearest image is obtained.
  • the image analysis method is specifically:
  • Step S12 driving the lens from a current position to the optimal projection position by a driving motor.
  • the lens After obtaining the optimal projection position of the lens, regardless of the current position nx of the lens, the lens is directly moved from the current position nx to the optimal projection position nbest of the lens to complete the focus.
  • the lens does not need to consume the current position nx to zero o, or the round trip time between the optimal projection position nbest and zero o, the auto focus speed Faster, the user experience is better.
  • step S1 it may be determined whether or not focus adjustment is required. Specifically, when any of the following occurs, it may be determined that refocusing is required: (1) when the projector is powered on; (2) When the projector detects its own vibration or displacement, it can specifically detect whether there is vibration or displacement through the built-in sensor of the projector; (3) When detecting the sharpness of the projected image every predetermined time, it is found that the current projected image is not clear, For example, it is detected every 30 seconds; (4) when the current projection distance is changed by detecting the projection distance every predetermined time.
  • the embodiment is substantially the same as the embodiment, except that the method for obtaining the optimal projection position is different:
  • Step S21 acquiring an optimal projection position of the lens corresponding to the clearest projected image
  • the optimal projection position is obtained by using a ranging method, including the following steps:
  • Step S211 pre-establish a correspondence relationship between a projection distance of the lens to the projection screen and an optimal projection position corresponding to the clearest projection image (the sharpest focus adjustment parameter) of the lens.
  • the corresponding relationship has n positions M corresponding to n clearest focusing parameters: Mbest1, Mbest2, Mbest3, ..., Mbestn-1, Mbestn, and the position corresponding to each of the clearest focusing parameters corresponds to one
  • the vertical distance L of the lens and the projection screen is L1, L2, L3, ..., Ln-1, Ln. Where n is an integer greater than or equal to 2.
  • Step S212 detecting a current projection distance between the lens and the current projection screen at the time of projection.
  • the current projection distance is measured by a distance measuring sensor 61 , which is an infrared ranging sensor or an ultrasonic ranging sensor.
  • the ranging sensor 61 is configured to acquire a vertical distance between the lens 63 of the projector 62 and the projection screen 64.
  • the ranging sensor 61 includes at least two, respectively acquiring the lens 63 and the projection screen.
  • the current projection distance between the lens and the current projection screen when projection is not equal to any one of the vertical distance L of the lens and the projection screen in the corresponding relationship.
  • the following method is used to detect that the obtained current projection distance (actual projection distance) of the lens and the projection screen is Lx, which specifically includes:
  • Step A The analysis results in two adjacent projection distances in the correspondence, and the current projection distance is between the two adjacent projection distances.
  • Step B Comparing and obtaining one of the two adjacent projection distances in the correspondence relationship that is closer to the current projection distance.
  • Step C Equivalently confirming one of the two adjacent projection distances that is closer to the current projection distance as the current projection distance.
  • the vertical distance between the lens and the projection screen in which the current projection distance Lx is located in the correspondence relationship is between L50 and L51; and the current projection distance Lx and the closer distance between the two distances are compared, that is, the Lx is determined.
  • This step makes the projector's auto-focusing method more sensitive and has a better customer experience.
  • Step S213 Acquire an optimal projection position corresponding to the current projection distance according to the correspondence relationship.
  • the current projection distance Lx is obtained as L51, and the optimal projection position corresponding to the current projection distance is Mbest51.
  • Step S22 driving the lens by the driving motor to move from the current position to the optimal projection position.
  • step S22 specifically includes the following steps:
  • Step S221 obtaining a current position Mbestx of the lens
  • Step S223, calculating a moving distance of the lens to be moved according to the lens position difference value
  • Step S224 moving the lens by the driving motor by the moving distance so that the lens is located at the optimal projection position.
  • the lens when the projector is powered on, the lens can be first moved to a position, and the projection distance corresponding to the position is used as the sensing position of the actual distance Lx, and then the aforementioned automatic focusing is performed.
  • the present invention further provides a projector 80 including a lens 81 , a driving motor 82 , a distance measuring sensor 83 , a memory 84 , and a processor 85 .
  • a memory 84 is connected to the processor 85, respectively.
  • the second embodiment of the present invention is combined with the automatic focusing method of the projector as an example:
  • the lens 81 is used to emit light to a projection screen to form a projected image.
  • the drive motor 82 is used to drive the lens 81 to move.
  • the ranging sensor 83 is configured to measure a vertical distance of the lens 81 to the projection screen.
  • the ranging sensor 83 may be an infrared ranging sensor or an ultrasonic ranging sensor, and the type thereof is not limited thereto.
  • the memory 84 is configured to store a correspondence between a projection distance of the lens 81 to the projection screen and an optimal projection position corresponding to the sharpest projection image of the lens 81.
  • the memory 84 may be a separate hardware structure or a functional module integrated in the processor 85, which is feasible.
  • the processor 85 is configured to read the corresponding relationship in the memory 84 and control the driving motor 82 and the ranging sensor 83 to perform the method steps of the second embodiment of the projector auto-focusing method to implement Auto focus.
  • the projector automatic focusing method and the projector achieve the optimal projection position of the lens corresponding to the clearest projected image, and then drive the lens to directly move to the lens by the driving motor.
  • the optimal projection position realizes automatic focusing, and the method directly acquires the optimal projection position of the lens corresponding to the clearest projected image, eliminating the need to obtain the optimal projection focusing parameter or focusing focal length and then converting to corresponding
  • the process of optimal projection position makes the method simpler and the auto-focusing speed is fast; in addition, after obtaining the optimal projection position, the method directly moves the lens to the optimal projection position to achieve focusing, without adjusting the lens back. After the zero point, it moves to the optimal projection position to realize a faster auto-focusing function, so that the projector has a faster auto-focusing speed and higher sensitivity.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)
  • Automatic Focus Adjustment (AREA)
  • Focusing (AREA)

Abstract

一种投影仪(80)及其自动调焦方法,投影仪(80)包括可沿光轴前后移动的镜头(81),驱动镜头(81)移动的驱动马达(82),投影仪(80)自动调焦方法包括如下步骤:S11,获取最清晰投影图像时对应的镜头(81)的最佳投影位置;S12,通过驱动马达(82)驱动镜头(81)从当前位置移动至最佳投影位置。投影仪(80)自动调焦方法及投影仪(80)可快速实现投影的自动调焦,用户体验感好且方法简单。

Description

投影仪自动调焦方法及投影仪 技术领域
本发明属于投影技术领域,具体涉及一种投影仪自动调焦方法及投影仪。
背景技术
目前,投影技术在人们日常生活中得到普遍的应用。无论在会议、教学或是娱乐场所都随处可见投影系统的使用。
相关技术中,家庭、教育用的中小型投影仪,当需要重新调焦时,所述投影仪先查找并确定可获得最清晰投影图像时镜头的最清晰调焦参数,然后将所述镜头调整回到零点,再从所述零点开始移动所述镜头直至停止所述最清晰调焦参数所对应的位置,完成自动调焦。
然而,该调焦方法中,当所述投影仪获得所述镜头的最清晰调焦参数后,不管所述镜头的即时位置在哪里,皆须要将所述镜头移动至零点,再从所述零点开始移动,直至所述镜头停止到所述最清晰调焦参数所对应的位置。一方面使得该调焦方法复杂,另一方面该调焦方法在镜头移动至零点步骤中耗费时间,使得投影仪的调焦速度慢,灵敏度低。
因此,实有必要提供一种新的投影仪自动调焦方法及投影仪以解决上述问题。
发明内容
针对以上现有技术的不足,本发明提出一种投影仪自动调焦方法及投影仪,可快速实现投影的自动调焦,用户体验感好且该方法简单。
本发明提供了一种投影仪自动调焦方法,所述投影仪包括可沿光轴前后移动的镜头,驱动所述镜头移动的驱动马达,该投影仪自动调焦方法包括如下步骤:
获取最清晰投影图像时对应的所述镜头的最佳投影位置;
通过驱动马达驱动所述镜头从当前位置移动至所述最佳投影位置。
优选的,在所述获取最清晰投影图像时对应的所述镜头的最佳投影位置步骤中,采用图像分析法获取所述最佳投影位置,包括如下步骤:
将所述镜头调整至零点;
从所述零点开始进行调焦,并对投影图像的清晰度进行同步检测,直至获得最清晰图像,记录获得所述最清晰投影图像时所述镜头对应的最佳投影位置。
优选的,所述零点为所述镜头的调焦起点或调焦终点。
优选的,所述零点为所述镜头焦距的机械零点或电子零点或光电感应零点或电磁感应零点。
优选的,在所述获取最清晰投影图像时对应的所述镜头的最佳投影位置步骤中,采用测距法获取所述最佳投影位置,包括如下步骤:
预先建立所述镜头至投影屏幕的投影距离与所述镜头的最清晰投影图像所对应的最佳投影位置的对应关系;
检测投影时所述镜头与当前投影屏幕之间的当前投影距离;
根据所述对应关系获取所述当前投影距离对应的所述镜头的最佳投影位置。
优选的,在所述检测投影时所述镜头与当前投影屏幕之间的当前投影距离的步骤中,还包括如下步骤:
分析得出所述对应关系中的两个相邻的所述投影距离,所述当前投影距离位于该两个相邻的所述投影距离之间;
比较得出所述对应关系中的该两个相邻的所述投影距离中与所述当前投影距离更靠近的一个;
将该两个相邻的所述投影距离中的与所述当前投影距离更靠近的一个等同确认为所述当前投影距离。
优选的,在所述通过驱动马达驱动所述镜头移动至所述最佳投影位置的步骤中,包括如下步骤:
获取所述镜头的当前位置;
计算所述镜头的所述当前位置与所述镜头的当前投影距离所对应的最佳投影位置之间的镜头位置差值;
根据所述镜头位置差值计算所述镜头待移动的移动距离;
通过所述驱动马达使所述镜头移动一个所述移动距离,使所述镜头位于所述最佳投影位置。
优选的,在所述检测投影时所述镜头与当前投影屏幕之间的当前投影距离的步骤中,所述当前投影距离通过测距传感器测得。
优选的,所述测距传感器用于获取所述镜头与投影屏幕的垂直距离,其至少包括两个,分别获取所述镜头与投影屏幕的第一垂直距离和第二垂直距离,调节所述投影仪的位置使所述第一垂直距离等于所述第二垂直距离时,所述第一垂直距离或所述第二垂直距离即确定为所述当前投影距离。
本发明还提供了一种投影仪,包括:镜头,用于将光射出至投影屏幕形成投影图像;驱动马达,用于驱动所述镜头移动;测距传感器,用于测取所述镜头至所述投影屏幕的垂直距离;存储器,用于存储预先建立的所述镜头至所述投影屏幕的投影距离与所述镜头的最清晰投影图像所对应的最佳投影位置的对应关系;及处理器,用于读取所述存储器中的所述对应关系并控制所述驱动马达、所述测距传感器执行上述投影仪自动调焦方法的步骤;所述驱动马达和测距传感器及存储器分别与所述处理器连接。
与相关技术相比,本发明的投影仪自动调焦方法及投影仪通过获取最清晰投影图像时对应的所述镜头的最佳投影位置,再通过驱动马达驱动所述镜头直接移动至所述最佳投影位置实现自动调焦,该方法直接获取最清晰投影图像时对应的所述镜头的最佳投影位置,省去了通过获取最佳投影调焦参数或调焦焦距再转换为对应的最佳投影位置的过程,使得该方法更简单,自动调焦速度快;另外,该方法获取最佳投影位置后,直接将镜头移动至该最佳投影位置实现调焦,无需将镜头调整回到零点后再移动至该最佳投影位置,实现更快速的自动调焦功能,从而使得所述投影仪的自动调焦速度快,灵敏度更高。
附图说明
下面结合附图详细说明本发明。通过结合以下附图所作的详细描述,本发明的上述或其他方面的内容将变得更清楚和更容易理解。附图 中:
图1为本发明投影仪自动调焦方法实施例一的自动调焦方法的流程图;
图2为本发明投影仪自动调焦方法实施例一的步骤S11的子流程图;
图3为图2中采用图像分析法获取所述最佳投影位置方法的示意图;
图4为本发明投影仪自动调焦方法实施例二的自动调焦方法的流程图;
图5为本发明投影仪自动调焦方法的实施例二的步骤S21的子流程图;
图6为图5中的一个子流程的方法的结构示意图;
图7为本发明投影仪自动调焦方法的实施例二的步骤S22的子流程图;
图8为本发明投影仪的结构框图。
具体实施方式
下面结合附图详细说明本发明的具体实施方式。
在此记载的具体实施方式/实施例为本发明的特定的具体实施方式,用于说明本发明的构思,均是解释性和示例性的,不应解释为对本发明实施方式及本发明范围的限制。除在此记载的实施例外,本领域技术人员还能够基于本申请权利要求书和说明书所公开的内容采用显而易见的其它技术方案,这些技术方案包括采用对在此记载的实施例的做出任何显而易见的替换和修改的技术方案,都在本发明的保护范围之内。
本发明的投影仪自动调焦方法中,提供以下两种实施例进行说明:
实施例一
请参阅图1和图2,本发明提供了一种投影仪自动调焦方法,所述投影仪包括可沿光轴前后移动的镜头,驱动所述镜头移动的驱动马达,该投影仪自动调焦方法包括如下步骤:
步骤S11、获取最清晰投影图像时对应的所述镜头的最佳投影位置;
具体的,在本步骤S11中,采用图像分析法获取所述最佳投影位置,包括如下步骤:
步骤S111、将所述镜头调整至零点;
本实施方式中,所述零点为所述镜头的调焦起点或调焦终点。具体的,所述零点为所述镜头焦距的机械零点或电子零点或光电感应零点或电磁感应零点。
步骤S112、从所述零点开始进行调焦,并对投影图像的清晰度进行同步检测,直至获得最清晰投影图像,记录获得所述最清晰图像时所述镜头对应的最佳投影位置。
请结合图3所示,本步骤中,采用图像分析法具体为:
在所述镜头的调焦范围(零点O至终点nn)内通过所述驱动马达移动所述镜头,所述镜头每移动至一个当前位置nx,即获得一个对应的投影图像,直至获得零点o至终点nn范围内所有位置的n个投影图像,然后在该n个投影图像中进行对比并确定最清晰的一个所对应的镜头位置,即镜头的最佳投影位置nbest。
步骤S12、通过驱动马达驱动所述镜头从当前位置移动至所述最佳投影位置。
获得所述镜头的最佳投影位置后,无论所述镜头的当前位置nx为何处,均将所述镜头从当前位置nx直接移动至所述镜头的最佳投影位置nbest,完成对焦。
比如,先获取所述投影仪的镜头的当前投影位置;计算所述镜头的所述当前投影位置与所述镜头的当前投影位置所对应的最佳投影位置之间的差值;根据所述差值计算所述镜头待移动的移动距离;通过所述驱动马达使所述镜头移动一个所述移动距离,使所述镜头位于所述最佳投影位置。
由此可知,本实施方式中,相较于现有技术,所述镜头无需要耗费当前位置nx到零点o之间,或最佳投影位置nbest到零点o之间的往返时间,自动调焦速度更快,用户体验效果更好。
本实施方式中,在步骤S1前可对是否需要调焦进行判断,具体来说,当出现以下任一情况时,可判定为需要重新调焦:(1)投影仪开机启动时;(2)投影仪检测到自身的振动或位移时,具体可通过投影仪的内置传感器来感测是否有振动或位移;(3)通过每隔预定时间检测投影图像的清晰度发现当前投影图像不清晰时,例如每隔30秒检测一次;(4)通过每隔预定时间检测投影距离发现当前投影距离发生变化时等。
实施例二
请参图4所示,本实施方式与实施例一大体相同,区别在于获取在获取所述最佳投影位置的方法不同:
步骤S21、获取最清晰投影图像时对应的所述镜头的最佳投影位置;
请结合图5所示,具体的,在本步骤S21中,采用测距法获取所述最佳投影位置,包括如下步骤:
步骤S211、预先建立所述镜头至投影屏幕的投影距离与所述镜头的最清晰投影图像(最清晰调焦参数)所对应的最佳投影位置的对应关系。
本实施方式中,所述对应关系如下表1对应关系表:
表1 对应关系表
序号 镜头和投影屏幕的垂直距离L 最清晰调焦参数所对应的镜头位置M
1 L1 Mbest1
2 L2 Mbest2
3 L3 Mbest3
…… …… ……
n-1 Ln-1 Mbestn-1
n Ln Mbestn
即所述对应关系具有n个最清晰调焦参数所对应的n个位置M:Mbest1、Mbest2、Mbest3、……、Mbestn-1、Mbestn,每一个最清晰调焦参数所对应的位置均对应一个所述镜头和投影屏幕的垂直距离L:L1、L2、L3、……、Ln-1、Ln。其中n为大于或等于2的整数。
步骤S212、检测投影时所述镜头与当前投影屏幕之间的当前投影距离。
请结合图6所示,具体的,所述当前投影距离通过测距传感器测61得,所述测距传感器61为红外测距传感器或超声波测距传感器等。
本实施方式中,所述测距传感器61用于获取所述投影仪62的镜头63与投影屏幕64的垂直距离,所述测距传感器61至少包括两个,分别获取所述镜头63与投影屏幕64的第一垂直距离d1和第二垂直距离d2,调节所述投影仪62的位置使d1=d2时,所述第一垂直距离d1或所述第二垂直距离d2即确定为所述当前投影距离Lx。
本步骤中,更优的,包括另一种情况:即投影时所述镜头与当前投影屏幕之间的当前投影距离不等于所述对应关系中的镜头和投影屏幕的垂直距离L中的任何一个,则按以下方法处理,以检测获得的所述镜头与投影屏幕的当前投影距离(实际投影距离)为Lx为例,具体包括:
步骤A、分析得出所述对应关系中的两个相邻的所述投影距离,所述当前投影距离位于该两个相邻的所述投影距离之间。
步骤B、比较得出所述对应关系中的该两个相邻的所述投影距离中与所述当前投影距离更靠近的一个。
步骤C、将该两个相邻的所述投影距离中的与所述当前投影距离更靠近的一个等同确认为所述当前投影距离。
比如,当前投影距离Lx位于所述对应关系中的所述镜头和投影屏幕的垂直距离为L50和L51之间;再比较当前投影距离Lx和该两个距离之间哪个更近,即判断Lx与L50更近还是Lx与L51更近(假如Lx距离L51更近);则将L51等同认为所述当前投影距离Lx,即认为Lx=L51。该步骤使得所述投影仪自动调焦方法的灵敏度更高,客户体验效果更好。
步骤S213、根据所述对应关系获取所述当前投影距离对应的最佳投影位置。
继续以上述例子说明,此时,根据对应关系,可获得当前投影距离Lx即为L51,则当前投影距离对应的最佳投影位置为Mbest51。
步骤S22、通过驱动马达驱动所述镜头从当前位置移动至所述最佳投影位置。
通过驱动马达控制所述镜头从当前位置移动至投影距离L51对应 的最清晰调焦参数所对应的镜头的最佳投影位置Mbest51,完成对焦。
请结合图7所示,步骤S22具体包括如下步骤:
步骤S221、获取所述镜头的当前位置Mbestx;
步骤S222、计算所述镜头的所述当前位置Mbestx与所述镜头的当前投影距离Lx(此时Lx=L51)所对应的最佳投影位置Mbest51之间的镜头位置差值,即Mbestx-Mbest51;
步骤S223、根据所述镜头位置差值计算所述镜头待移动的移动距离;
步骤S224、通过所述驱动马达使所述镜头移动一个所述移动距离,使所述镜头位于所述最佳投影位置。
本实施方式中,需要注意的是:投影仪开机时,可先控制镜头移动到一个位置,并以该位置对应的投影距离作为实际距离Lx的感测位置,然后进行前述的自动调焦。
请结合参阅图8所示,本发明还提供了一种投影仪80,包括:镜头81、驱动马达82、测距传感器83、存储器84及处理器85,所述驱动马达82、测距传感器83及存储器84分别与所述处理器85连接。结合所述投影仪自动调焦方法的上述实施例二为例:
所述镜头81用于将光射出至投影屏幕形成投影图像。
所述驱动马达82用于驱动所述镜头81移动。
所述测距传感器83用于测取所述镜头81至所述投影屏幕的垂直距离。具体的,本实施方式中,所述测距传感器83可为红外测距传感器或超声波测距传感器,当然其类型并不限于此。
所述存储器84用于存储预先建立的所述镜头81至所述投影屏幕的投影距离与所述镜头81的最清晰投影图像所对应的最佳投影位置的对应关系。
需要说明的是,所述存储器84可以为单独的硬件结构,也可以为集成于所述处理器85中的功能模块,这都是可行的。
所述处理器85用于读取所述存储器84中的所述对应关系并控制所述驱动马达82、所述测距传感器83执行上述投影仪自动调焦方法的实施列二的方法步骤以实现自动调焦。
与相关技术相比,本发明的投影仪自动调焦方法及投影仪通过获取最清晰投影图像时对应的所述镜头的最佳投影位置,再通过驱动马达驱动所述镜头直接移动至镜头的所述最佳投影位置实现自动调焦,该方法直接获取最清晰投影图像时对应的所述镜头的最佳投影位置,省去了通过获取最佳投影调焦参数或调焦焦距再转换为对应的最佳投影位置的过程,使得该方法更简单,自动调焦速度快;另外,该方法获取最佳投影位置后,直接将镜头移动至该最佳投影位置实现调焦,无需将镜头调整回到零点后再移动至该最佳投影位置,实现更快速的自动调焦功能,从而使得所述投影仪的自动调焦速度快,灵敏度更高。
需要说明的是,以上参照附图所描述的各个实施例仅用以说明本发明而非限制本发明的范围,本领域的普通技术人员应当理解,在不脱离本发明的精神和范围的前提下对本发明进行的修改或者等同替换,均应涵盖在本发明的范围之内。此外,除上下文另有所指外,以单数形式出现的词包括复数形式,反之亦然。另外,除非特别说明,那么任何实施例的全部或一部分可结合任何其它实施例的全部或一部分来使用。

Claims (10)

  1. 一种投影仪自动调焦方法,其特征在于,所述投影仪包括可沿光轴前后移动的镜头,驱动所述镜头移动的驱动马达,该投影仪自动调焦方法包括如下步骤:
    获取最清晰投影图像时对应的所述镜头的最佳投影位置;
    通过驱动马达驱动所述镜头从当前位置移动至所述最佳投影位置。
  2. 根据权利要求1所述的投影仪自动调焦方法,其特征在于,在所述获取最清晰投影图像时对应的所述镜头的最佳投影位置步骤中,采用图像分析法获取所述最佳投影位置,包括如下步骤:
    将所述镜头调整至零点;
    从所述零点开始进行调焦,并对投影图像的清晰度进行同步检测,直至获得最清晰图像,记录获得所述最清晰投影图像时所述镜头对应的最佳投影位置。
  3. 根据权利要求2所述的投影仪自动调焦方法,其特征在于,所述零点为所述镜头的调焦起点或调焦终点。
  4. 根据权利要求3所述的投影仪自动调焦方法,其特征在于,所述零点为所述镜头焦距的机械零点或电子零点或光电感应零点或电磁感应零点。
  5. 根据权利要求1所述的投影仪自动调焦方法,其特征在于,在所述获取最清晰投影图像时对应的所述镜头的最佳投影位置步骤中,采用测距法获取所述最佳投影位置,包括如下步骤:
    预先建立所述镜头至投影屏幕的投影距离与所述镜头的最清晰投影图像所对应的最佳投影位置的对应关系;
    检测投影时所述镜头与当前投影屏幕之间的当前投影距离;
    根据所述对应关系获取所述当前投影距离对应的所述镜头的最佳投影位置。
  6. 根据权利要求5所述的投影仪自动调焦方法,其特征在于,在所述检测投影时所述镜头与当前投影屏幕之间的当前投影距离的步骤中,还包括如下步骤:
    分析得出所述对应关系中的两个相邻的所述投影距离,所述当前投 影距离位于该两个相邻的所述投影距离之间;
    比较得出所述对应关系中的该两个相邻的所述投影距离中与所述当前投影距离更靠近的一个;
    将该两个相邻的所述投影距离中的与所述当前投影距离更靠近的一个等同确认为所述当前投影距离。
  7. 根据权利要求6所述的投影仪自动调焦方法,其持征在于,在所述通过驱动马达驱动所述镜头移动至所述最佳投影位置的步骤中,包括如下步骤:
    获取所述镜头的当前位置;
    计算所述镜头的所述当前位置与所述镜头的当前投影距离所对应的最佳投影位置之间的镜头位置差值;
    根据所述镜头位置差值计算所述镜头待移动的移动距离;
    通过所述驱动马达使所述镜头移动一个所述移动距离,使所述镜头位于所述最佳投影位置。
  8. 根据权利要求5所述的投影仪自动调焦方法,其特征在于,在所述检测投影时所述镜头与当前投影屏幕之间的当前投影距离的步骤中,所述当前投影距离通过测距传感器测得。
  9. 根据权利要求8所述的投影仪自动调焦方法,其特征在于,所述测距传感器用于获取所述镜头与投影屏幕的垂直距离,其至少包括两个,分别获取所述镜头与投影屏幕的第一垂直距离和第二垂直距离,调节所述投影仪的位置使所述第一垂直距离等于所述第二垂直距离时,所述第一垂直距离或所述第二垂直距离即确定为所述当前投影距离。
  10. 一种投影仪,其特征在于,包括:
    镜头,用于将光射出至投影屏幕形成投影图像;
    驱动马达,用于驱动所述镜头移动;
    测距传感器,用于测取所述镜头至所述投影屏幕的垂直距离;
    存储器,用于存储预先建立的所述镜头至所述投影屏幕的投影距离与所述镜头的最清晰投影图像所对应的最佳投影位置的对应关系;及
    处理器,用于读取所述存储器中的所述对应关系并控制所述驱动马达和所述测距传感器执行所述权利要求1~9任一项所述的投影仪自动 调焦方法的步骤;
    所述驱动马达、测距传感器及存储器分别与所述处理器连接。
PCT/CN2017/114732 2017-08-21 2017-12-06 投影仪自动调焦方法及投影仪 WO2019037326A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710716797.9A CN109426060A (zh) 2017-08-21 2017-08-21 投影仪自动调焦方法及投影仪
CN201710716797.9 2017-08-21

Publications (1)

Publication Number Publication Date
WO2019037326A1 true WO2019037326A1 (zh) 2019-02-28

Family

ID=65439891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114732 WO2019037326A1 (zh) 2017-08-21 2017-12-06 投影仪自动调焦方法及投影仪

Country Status (2)

Country Link
CN (1) CN109426060A (zh)
WO (1) WO2019037326A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114415459A (zh) * 2022-01-21 2022-04-29 广州瑞格尔电子有限公司 一种投影仪侧投影调整方法和调整装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112799275B (zh) * 2019-11-13 2023-01-06 青岛海信激光显示股份有限公司 一种超短焦投影镜头调焦方法、调焦系统及投影仪
CN110996085A (zh) * 2019-12-26 2020-04-10 成都极米科技股份有限公司 一种投影仪调焦方法、投影仪调焦装置和投影仪
CN111464091B (zh) * 2020-04-08 2021-12-03 成都极米科技股份有限公司 移轴马达的控制方法、控制装置及投影系统
CN111504221A (zh) * 2020-05-15 2020-08-07 苏州精濑光电有限公司 一种网板图像追焦装置及其方法
CN111970500A (zh) * 2020-08-13 2020-11-20 峰米(北京)科技有限公司 用于投影设备的自动距步校准方法及系统
CN112367544A (zh) * 2020-10-31 2021-02-12 上海凝汐智能科技发展有限公司 用于补偿投影机、激光电视投射距离的控制系统及其方法
CN113900346B (zh) * 2021-08-30 2023-08-29 安克创新科技股份有限公司 投影仪的自动对焦方法和投影仪
WO2023087960A1 (zh) * 2021-11-16 2023-05-25 海信视像科技股份有限公司 投影设备及调焦方法
CN114466173A (zh) * 2021-11-16 2022-05-10 海信视像科技股份有限公司 投影设备及自动投入幕布区域的投影显示控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011065186A (ja) * 2010-12-13 2011-03-31 Seiko Epson Corp プロジェクタ、およびプロジェクタの制御方法
CN102591121A (zh) * 2012-02-21 2012-07-18 苏州佳世达光电有限公司 投影机自动对焦方法和使用该方法的投影系统
CN104570568A (zh) * 2014-12-19 2015-04-29 神画科技(深圳)有限公司 投影仪自动调焦方法
KR20150091645A (ko) * 2014-02-03 2015-08-12 엘지전자 주식회사 레이저 프로젝터
CN105842972A (zh) * 2016-04-28 2016-08-10 乐视控股(北京)有限公司 一种调整投影仪的投影焦距的方法及投影仪
CN106154721A (zh) * 2015-04-27 2016-11-23 中兴通讯股份有限公司 一种测距方法、自动调焦方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4105001C2 (de) * 1991-02-19 1995-03-23 Hell Ag Linotype Verfahren und Einrichtung zur Scharfeinstellung eines optischen Abbildungs-Systems
KR100197609B1 (ko) * 1996-07-27 1999-06-15 윤종용 비데오카메라의 줌(zoom)기능 수행방법 및 그 장치
JP3679693B2 (ja) * 2000-07-31 2005-08-03 三洋電機株式会社 オートフォーカスカメラ
US7676146B2 (en) * 2007-03-09 2010-03-09 Eastman Kodak Company Camera using multiple lenses and image sensors to provide improved focusing capability
EP2846187B1 (en) * 2012-11-30 2018-11-14 PIQS Technology (Shenzhen) Limited Projection system with infrared monitoring

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011065186A (ja) * 2010-12-13 2011-03-31 Seiko Epson Corp プロジェクタ、およびプロジェクタの制御方法
CN102591121A (zh) * 2012-02-21 2012-07-18 苏州佳世达光电有限公司 投影机自动对焦方法和使用该方法的投影系统
KR20150091645A (ko) * 2014-02-03 2015-08-12 엘지전자 주식회사 레이저 프로젝터
CN104570568A (zh) * 2014-12-19 2015-04-29 神画科技(深圳)有限公司 投影仪自动调焦方法
CN106154721A (zh) * 2015-04-27 2016-11-23 中兴通讯股份有限公司 一种测距方法、自动调焦方法及装置
CN105842972A (zh) * 2016-04-28 2016-08-10 乐视控股(北京)有限公司 一种调整投影仪的投影焦距的方法及投影仪

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114415459A (zh) * 2022-01-21 2022-04-29 广州瑞格尔电子有限公司 一种投影仪侧投影调整方法和调整装置
CN114415459B (zh) * 2022-01-21 2024-05-14 广州瑞格尔电子有限公司 一种投影仪侧投影调整方法和调整装置

Also Published As

Publication number Publication date
CN109426060A (zh) 2019-03-05

Similar Documents

Publication Publication Date Title
WO2019037326A1 (zh) 投影仪自动调焦方法及投影仪
US6972797B2 (en) Automatic focusing device and the electronic image pickup apparatus using the same
US7499636B2 (en) Method for automatically coordinating flash intensity and camera system as the same
US7164855B2 (en) Optical apparatus
CN109521547A (zh) 一种变步长的自动调焦方法及系统
WO2015180509A1 (zh) 一种图像获取终端和图像获取方法
TWI703400B (zh) 焦距校正方法及投影裝置
TW200416422A (en) Imaging device, focusing method and program
US11204543B2 (en) Projection apparatus and auto-focusing method
TW201140228A (en) Calibration of a lens device
WO2018103299A1 (zh) 一种对焦方法及对焦装置
WO2016197494A1 (zh) 对焦区域调整方法和装置
CN113301314B (zh) 对焦方法、投影仪、成像设备和存储介质
TWI553395B (zh) 相機模組測試系統及方法
CN103324019A (zh) 一种新型投影机自动调焦控制系统
CN102478753B (zh) 投影装置、用于投影装置的光源模块及亮度调整方法
JP2008033116A (ja) プロジェクタ、位置調整装置および位置調整方法
CN103324020A (zh) 一种投影机自动调焦控制系统
WO2019085260A1 (zh) 自动调焦系统、方法以及投影设备
US11392020B2 (en) Autofocus projection apparatus having focal-length fine adjustment, and projection light engines including the same
CN205539678U (zh) 一种红外对焦光学成像系统
TWI588585B (zh) 影像擷取裝置及對焦方法
JP2010066728A5 (zh)
WO2016095235A1 (zh) 投影仪自动调焦方法
CN219202035U (zh) 一种红外成像自动对焦结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17922172

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17922172

Country of ref document: EP

Kind code of ref document: A1