WO2019037282A1 - 一种纳米切深高速单点划擦试验装置及其试验方法 - Google Patents

一种纳米切深高速单点划擦试验装置及其试验方法 Download PDF

Info

Publication number
WO2019037282A1
WO2019037282A1 PCT/CN2017/109913 CN2017109913W WO2019037282A1 WO 2019037282 A1 WO2019037282 A1 WO 2019037282A1 CN 2017109913 W CN2017109913 W CN 2017109913W WO 2019037282 A1 WO2019037282 A1 WO 2019037282A1
Authority
WO
WIPO (PCT)
Prior art keywords
test piece
nano
test
scratch
air
Prior art date
Application number
PCT/CN2017/109913
Other languages
English (en)
French (fr)
Inventor
周平
黄宁
康仁科
郭东明
闫英
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to US16/346,760 priority Critical patent/US11313783B2/en
Publication of WO2019037282A1 publication Critical patent/WO2019037282A1/zh

Links

Images

Classifications

    • G01N15/1023
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/40Investigating hardness or rebound hardness
    • G01N3/42Investigating hardness or rebound hardness by performing impressions under a steady load by indentors, e.g. sphere, pyramid
    • G01N3/46Investigating hardness or rebound hardness by performing impressions under a steady load by indentors, e.g. sphere, pyramid the indentors performing a scratching movement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0286Miniature specimen; Testing on microregions of a specimen

Definitions

  • the invention belongs to the field of material testing and ultra-precision processing in mechanical processing, and particularly relates to a nano-cut deep-speed single-point scratching test device and a test method thereof.
  • Ultra-precision grinding can efficiently remove materials with nanometer depth of cut to achieve high shape accuracy and surface quality, and is one of the important processes for precision part processing.
  • the essence of the processing mechanism is the processing process in which a large number of differently shaped abrasive grains on the surface of the abrasive tool participate in cutting together with a depth of cut of nanometers. Therefore, in the research of ultra-precision grinding mechanism, people often design nano-cutting single-point scratch test as an important means to understand the ultra-precision grinding process.
  • the single-point scratch test of different materials has been extensively and intensively studied, but there are still some shortcomings in the existing test equipment and test programs.
  • the most common nano-cut depth single-point scratch test is generally based on atomic force microscopy (Atomic Force Microscope, AFM) or on precision instruments such as nanoindenters.
  • AFM atomic force microscopy
  • the author uses an AFM device to achieve
  • the nano-scratch test of different scratch depths was carried out by field emission scanning electron microscopy to further analyze the transition between the elastoplastic and brittle plastic deformation mechanisms of the scratched specimen during the test.
  • the scratch speed adopted in this test is on the order of ⁇ m/s (5 ⁇ m/s), which is far lower than the grinding speed of the abrasive m/s in the actual grinding process.
  • the critical cutting depth corresponding to the characteristics of chip generation points and brittle plastic transition points is usually within 50 nm (Lee, SH, Analysis of ductile mode and brittle transition of AFM nanomachining of silicon. International). Journal of Machine Tools and Manufacture, 2012.61: p.71-79.), limited by the radius of slewing of the scratching tool used by the single pendulum wiping method, and the residual scratch length within the depth of one hundred nanometers is shorter.
  • Chinese patent CN201610077965.X discloses "a single-grain high-speed continuous scratch tester and its application”. The inventor uses the electric disc to drive the high-speed rotation of the test piece to produce high-speed scratching. The high line speed; combining the linear motion of the single point tool with the circular motion also achieves a high speed single point wipe similar to the actual grinding speed.
  • the problems existing in the scratching method provided by the patent are mainly manifested in two aspects. Firstly, in the high-speed scratching process, the scratch depth can not be accurately controlled to the nanometer level. In the test example, the scratch contour measurement results show that: The depth of the residual scratch is about 20 microns, and the stable cutting depth that the scratching tool can achieve is on the order of micrometers.
  • test method cannot study the characteristics of chip generation points and brittle plastic transition points of micro/submicron radius of curvature abrasive grains and hard and brittle materials under high speed scratching conditions.
  • the nano-cut deep-speed single-point scratch test is an important means to reveal the mechanism of ultra-precision grinding.
  • the process method and test equipment need to be further researched and improved. Firstly, it is necessary to ensure that the scratch length is controllable, that is, under the premise of ensuring sufficient data at different depths of cut, the scratch length can be shortened as much as possible.
  • Chinese patent CN201410324503.4 A method for high-speed scratching of single-grain diamond tip nanometer depth in submicron radius of curvature is disclosed, which uses the combination of flatness of silicon wafer and end face runout of grinding machine to complete sub-micron radius of curvature single-particle diamond tip nanometer depth high-speed stroke Rub test.
  • This patent provides a method for achieving high-speed scratching as a whole, but does not obtain a force signal during the wiping process, and the scratch position is random, and the observation positioning is difficult.
  • the current single-point scratch test method has the following three problems.
  • the single pendulum type wiping method is limited by the slewing radius of the wiping tool and the sampling frequency of the dynamometer, and it is impossible to accurately collect the wiping force signals under different nano-cut depth conditions under the condition of high-speed scratching.
  • the disc-type wiping method is limited by the feeding speed of the wiping tool, and the scratch length cannot be effectively controlled under the high-speed scratching condition, so that the process of searching for the residual contour feature points under the microscope becomes very difficult. .
  • the present invention is to design a nano-cut deep-speed single-point scratch test device and a test method thereof, which can achieve the following purposes:
  • Nano-cutting high-speed single-point scratch test can effectively restore the true ultra-precision grinding state, the specific purpose is: the radius of curvature of the single-point scratching tool is reduced from mm to micro/ Sub-micron order, which can reduce the effective blade radius of abrasive particles during ultra-precision grinding; the cutting depth is controlled at the nanometer level, which can reduce the effective cutting depth of abrasive grains during ultra-precision grinding and ensure that the wiping tool is in The integrity of high-speed scratching; the speed of scratching is increased from ⁇ m/s to m/s, which can reduce the actual processing speed of abrasive grains during ultra-precision grinding;
  • the length of the scratching can be controlled. On the basis of ensuring the clear relationship between the scratching force and the scratching depth and the clear and identifiable characteristics of the scratching residual contour, the length of the scratching is shortened, and the scratching is observed under the microscope after the scratching test. Residual contours, distinguishing features such as elastoplasticity, brittle plastic transition points, and reducing the time of action of single-point tools and workpieces to control wear.
  • a nano-cut deep high-speed single-point scratch test device comprising:
  • test piece clamp is attached to the top end surface of the air floating turntable, and is coaxial with the air floating turntable, and drives the test piece clamp to rotate through the air floating turntable;
  • the test piece clamp is a vacuum suction cup, a magnetic suction cup or a mechanical structure clamp;
  • test piece is attached to the test piece fixture
  • the Z-direction feeding device is attached to the top surface of the worktable and fed along the rotation axis of the air-floating rotary table; the Z-direction feeding device is attached to the top surface of the worktable by a screw connection, and the positioning accuracy is better than 5 ⁇ m. ;
  • the nano motion platform is attached to the Z-direction feeding device through the nano motion platform connecting member;
  • the force sensor is attached to the nano motion platform through the force sensor connector; the force sensor has the functions of measuring the normal force and the tangential force, the normal direction is the Z direction, and the tangential direction is the X direction;
  • a wiping tool attached to the force sensor by a wiping tool connector
  • the test piece is a non-ferrous metal, a ferrous metal or a hard and brittle material, and a micro-convex structure with a length and a height controllable at a position to be scratched of the test piece, and a length L of the micro-convex structure corresponding to the rubbing direction corresponding to the rubbing depth d x satisfies the following formula:
  • v is the scratching speed required for the test, m/s;
  • q is the number of force signal points required for the test in the effective scratching area;
  • f is the sampling frequency set by the force sensor, Hz;
  • the length L y of the micro-convex structure in the radial direction is not less than the feeding step length l y of the wiping tool in the Y direction during the wiping process;
  • the maximum height H of the micro-convex structure along the Z direction is greater than the maximum depth of cut d max required for the test;
  • the Y-section shape of the micro-convex structure is in the shape of an arc or a line, and the radius of the arc or the slope of the line is selected according to the wiping speed, the wiping depth and the wiping length set by the scratch test.
  • the air floating turntable is driven by a servo motor, the servo motor is mounted on a bottom surface of the worktable, and the air floating turntable is connected to the servo motor through a belt; the air floating turntable is an air bearing mechanical air floating turntable; The end face runout amount and the radial runout amount of the air floating turntable are both less than 0.5 ⁇ m; the relative positions of the air float turntable, the test piece clamp and the test piece in the Z direction are fixed.
  • the shape of the test piece is symmetric about the center of the Z-axis, and a micro-convex structure with a length and a height controllable at a position to be scratched of the test piece is fixedly mounted on the air floating turntable through the test piece clamp, and the test piece is The central axis of symmetry coincides with the axis of rotation of the turntable.
  • the shape of the test piece is symmetric about the center of the Z axis and the thickness of the test piece is less than 1 mm, and the length of the test piece on the back side of the test piece (Y direction) is not less than 5 mm, and the width (X direction) is not less than 1 mm, and the height (Z) Orientation)
  • Adsorption/magnetic adsorption causes elastic deformation of the surface of the test piece to form a micro-convex structure with controllable length, width and height.
  • the central axis of symmetry of the test piece coincides with the axis of rotation of the air-floating turntable.
  • the test piece is a block-shaped test piece having an irregular shape, and a micro-convex structure with a length and a height controllable at a position to be scratched is prepared; the test piece is clamped on the end surface of the air-floating turntable through the test piece clamp; To ensure the dynamic balance of the end face of the air-floating turntable in the high-speed rotary motion, an additional weight block is additionally mounted on the test piece clamp, and the center of gravity of the compound block and the center of gravity of the test piece are center-symmetrical with respect to the rotation axis of the air-floating turntable.
  • the wiping tool comprises a single point tool and a fixed point tool fixing material, the material of the single point tool being higher in hardness than the test piece and having a sharp point characteristic of processing a micrometer/submicron radius of curvature, including Diamond, cubic boron nitride (English: Cubic Boron Nitride, abbreviated CBN) or ceramic; the single point tool is bonded to the top end of the mount by bonding, brazing or electroplating.
  • CBN Cubic Boron Nitride
  • the nano-motion platform is a nano-linear displacement platform, and realizes a nano-precision linear displacement in a vertical direction, that is, a Z-direction and a radial direction of the end surface of the air-floating turntable, that is, a Y-direction;
  • the nano-linear displacement platform passes through the nano-motion platform connecting piece Attached to the Z-direction feed device, the Z-direction closed-loop linear motion accuracy is better than 10nm, the Z-direction closed-loop linear motion stroke is not less than 10 ⁇ m, the Y-direction closed-loop linear motion accuracy is better than 100nm, and the Y-direction closed-loop linear motion is not low. At 100 ⁇ m.
  • the nano-motion platform is a nano-bias platform, and realizes a nano-precision linear displacement in a vertical direction, that is, a Z-direction, and realizes a yaw motion around the X-axis, and indirectly adjusts the yaw radius to indirectly in the air-floating table diameter.
  • the direction of the Y direction and the vertical direction that is, the Z direction, the micro feed; the Z-direction closed-loop linear motion accuracy is better than 10 nm, the Z-direction closed-loop motion travel is not less than 10 ⁇ m, and the X-direction closed-loop yaw motion is better than 1 ⁇ rad, X The stroke to the closed-loop yaw is not less than ⁇ 0.5mrad.
  • a test method for a nano-cut deep-speed single-point scratch test device includes the following steps:
  • test piece select the method of clamping the test piece, if the test piece is an axisymmetric shape test piece, then go to step A1, if the test piece is a block shaped test piece with irregular shape, then go to step A2;
  • a micro-convex structure with a length and a height controllable at the position to be scratched of the test piece is fixedly mounted on the air floating turntable through the test piece clamp;
  • a micro-convex structure with length and height controllable at the position to be scratched is prepared, and the test piece is clamped on the end surface of the air-floating turntable through the test piece fixture, and the corresponding fitting is installed.
  • the weight block ensures the dynamic balance of the end surface of the air floating turret in the high-speed rotary motion, and the center of gravity of the compound block and the center of gravity of the test piece are center-symmetrical with respect to the rotation axis of the air-floating turret;
  • a protective film of thickness T is attached to the micro-convex structure of the test piece, and the scratching tool is controlled to move in the radial direction (ie, Y direction) to the negative limit position of the nano-motion platform, and the Z-direction is controlled by the online microscopic observation system.
  • the device is caused to quickly approach the scratching tool to the micro-convex structure of the test piece;
  • step C31 if the force sensor detects that the force signal rises significantly, that is, the wipe tool contacts the protective film adhered to the micro-convex structure of the test piece, and proceeds to step C6; otherwise, the process proceeds to step C32;
  • step C32 if the nano-motion platform steps to its Z-direction negative limit position, go to step C4; otherwise, go to step C2;
  • R is the radius of gyration of the end face of the air-floating turntable where the micro-convex structure is located, m; v is required for the scratch test The wiping speed, m/s; the test piece is clamped on the test piece fixture and the rotary motion is performed according to the set rotation speed n;
  • the nano-motion platform and the Z-direction feed device are controlled to perform an alternate wipe feed strategy, and the alternate wipe feed strategy includes the following feed motion:
  • the control wipe tool feeds the test piece in a stepwise manner in a step size of 10 to 1000 nm, and the step feed is decomposed into a Z-direction negative feed and a Y-direction negative direction. Feeding; if it is a single scratch of the same scratch, go to step D21; if it is multiple scratches of the same scratch, go to step D22;
  • the air-floating turntable drives the test piece to rotate one revolution, and the step of the stepwise feeding of the wiping tool in the Z-direction component f z is not less than that required for the scratch test.
  • the minimum depth of cut d min is not greater than the maximum depth of cut d max required for the scratch test, ie d min ⁇ f z ⁇ d max ; the step of the stepping feed of the wiping tool is on the end face diameter of the air float table
  • the component f y in the Y direction is not less than 10 ⁇ m, so that the scratches distributed in the Y direction and the depth of the depth of the cut are independent of each other and do not interfere with each other;
  • the dwell time satisfies s/n ⁇ t ⁇ (s+1)/n; the step of the stepwise feeding of the wiping tool is not less than the component of the z- direction in the Z-direction test
  • the minimum depth of cut d min is not more than the maximum depth of cut d max required for the scratch test, ie d min ⁇ f z ⁇ d max ; the step of the stepping feed of the wiping tool is on the end face of the air float table
  • the radial direction that is, the component f y of the Y direction is not less than 10 ⁇ m, so that the scratches distributed along the Y direction and having the gradient of the depth of cut are independent of each other and do not interfere with each other;
  • step D3 If the cumulative displacement of the stepwise feed in the Z direction exceeds the maximum depth of cut required for the test, or the nano motion platform is to the negative limit of its Y direction, or the stepped type The cumulative displacement of the feed in the Z direction reaches the negative limit of the Z-direction of the nano-motion platform, and the step-feed is stopped, and the process proceeds to step D31; otherwise, the process proceeds to step D2;
  • step D31 analyzing the force signal collected by the force sensor during the feeding, if the scratching force signal is detected, it indicates that the wiping tool has performed high-speed scratching on the surface of the micro-convex structure of the test piece, and the process proceeds to step D5; otherwise, the process proceeds to step D32. ;
  • step D32 If the nano-motion platform has reached its Y-negative limit, the nano-motion platform moves to its Y To the positive limit, go to step D2; otherwise, go to step D33;
  • step D33 if the nano motion platform has reached its Z-direction negative limit, go to step D4; otherwise, go to step D2;
  • the Z-feed device controls the wiping tool to feed the surface of the test piece, so that the scratching tool further approaches the surface of the test piece.
  • the feed amount of the Z-direction feeding device does not exceed the difference between the Z-direction travel of the nano-motion platform and the positioning accuracy of the Z-feed device, and the movement of the nano-motion platform is controlled to Its Z direction is positive; to step D1;
  • the thickness of the axisymmetric shape test piece described in step A2 is less than 1 mm
  • an elastic film having a length of not less than 5 mm, a width of not less than 1 mm, and a height of not less than 10 ⁇ m is adhered to the back surface of the test piece, and a flat surface is used.
  • the magnetic chuck or the vacuum chuck is used for clamping. During the clamping process, the surface of the test piece is elastically deformed by the vacuum suction/magnetic adsorption by the flat vacuum suction cup/magnetic suction cup surface and the elastic film to form the length, the width and the Highly controllable micro-convex structure.
  • the present invention has the following advantages:
  • the processing speed of the abrasive grains in the ultra-precision grinding process is truly restored.
  • the invention adopts an air bearing mechanical air floating turntable, realizes high speed scratching by high-speed rotary motion with high precision and low end jump, and adopts a micro convex structure on the surface of the scratching test piece and a nano motion platform and a Z-direction feeding device to form a hierarchical precision motion.
  • the system realizes the control of the scratch depth on the nanometer scale.
  • the invention improves the scratching speed from ⁇ m/s to m/s, and truly restores the ultra-precision grinding process.
  • the processing speed of the abrasive grains; the nanometer scale control is realized in the scratching depth, and the high speed scratching of the micro/submicron curvature radius scratching tool is realized in terms of the size of the wiping tool.
  • the length of the scratch can be controlled.
  • the invention constructs a micro convex structure on the surface of the test piece, avoiding the diamond needle tip It leaves a long scratch on the entire surface of the wafer, and provides a wealth of test data in the short scratches, greatly improving the content of effective information in the unit scratch length, which is conducive to subsequent scratch analysis and residue.
  • Figure 1 is a front elevational view of a test apparatus of the present invention.
  • Figure 2 is a plan view of Figure 1.
  • Figure 3 is a schematic illustration of a micro-convex structure of a workpiece.
  • Fig. 4 is a cross-sectional view taken along line A-A of Fig. 3;
  • Figure 5 is a flow chart of the test method of the present invention.
  • a nano-cut deep-speed single-point scratch test device includes:
  • the horizontally placed workbench 2 is fixedly mounted on the top surface of the base 1;
  • the air floating turntable 3 placed vertically is fixedly mounted on the worktable 2;
  • test piece clamp 4 is attached to the top end surface of the air floating turntable 3, and is coaxial with the air floating turntable 3, and drives the test piece clamp 4 to rotate through the air floating turntable 3;
  • the test piece clamp 4 is a vacuum suction cup, a magnetic suction cup or a mechanical Structural fixture
  • test piece 5 is attached to the test piece fixture 4;
  • the Z-direction feeding device 12 is attached to the top surface of the table 2 and fed in the direction of the rotation axis of the air-floating turret 3; the Z-direction feeding device 12 is attached to the top surface of the table 2 by screwing, Positioning accuracy is better than 5 ⁇ m;
  • the nano-motion platform 10 is attached to the Z-direction feeding device 12 through the nano-motion platform connecting member 11;
  • the force sensor 8 is attached to the nano-motion platform 10 through the force sensor connector 9; the force sensor 8 has the functions of measuring the normal force and the tangential force, the normal direction is the Z direction, and the tangential direction is the X direction;
  • the wiping tool 6 is attached to the force sensor 8 by the wiping tool connector 7;
  • the test piece 5 is a non-ferrous metal, a ferrous metal or a hard and brittle material, and a micro-convex structure 14 of length and height is controllable at a position to be scratched of the test piece 5, and the micro-convex structure 14 corresponding to the scratch depth d is scratched.
  • the length of the direction L x satisfies the following formula:
  • v is the scratching speed required for the test, m/s;
  • q is the number of force signal points required for the test in the effective scratching area;
  • f is the sampling frequency set by the force sensor 8, Hz;
  • the length L y of the micro-convex structure 14 in the radial direction is not less than the feed step length l y of the wiping tool 6 in the Y direction during the wiping process;
  • the maximum height H of the micro-convex structure 14 along the Z direction is greater than the maximum depth of cut d max required for the test;
  • the Y-section shape of the micro-convex structure 14 is in the shape of an arc or a line, and the radius of the arc or the slope of the line is selected according to the wiping speed, the wiping depth and the wiping length set by the scratch test.
  • the air float table 3 is driven by a servo motor mounted on the bottom surface of the table 2, and the air float table 3 is connected to the servo motor through a belt; the air float table 3 is an air bearing mechanical air float The turntable 3; the end face runout amount and the radial runout amount of the air floating turntable 3 are both less than 0.5 ⁇ m; the relative positions of the air float turntable 3, the test piece clamp 4 and the test piece 5 in the Z direction are fixed.
  • test piece 5 is symmetric about the center of the Z-axis, and a micro-convex structure 14 of length and height controllable is formed at the position to be scratched of the test piece 5, and is fixedly mounted on the air-floating turntable 3 by the test piece clamp 4,
  • the central axis of symmetry of the test piece 5 coincides with the axis of rotation of the turntable.
  • the shape of the test piece 5 is symmetric about the center of the Z axis and the thickness of the test piece 5 is less than 1 mm, and an elastic film having a length of not less than 5 mm, a width of not less than 1 mm, and a height of not less than 10 ⁇ m is attached to the back surface of the test piece 5.
  • test piece 5 is a block-shaped test piece 5 having an irregular shape, and a micro-convex structure 14 of length and height is controlled at a position to be scratched of the test piece 5; the test piece 5 is clamped by the test piece clamp 4
  • the end surface of the air floating turntable 3 in order to ensure the dynamic balance of the end surface of the air floating turntable 3 in the high speed turning motion, an additional weight block is additionally mounted on the test piece clamp 4, the center of gravity of the compounding block and the center of gravity of the test piece 5 with respect to the air floatation Rotation of turntable 3
  • the axis is centrally symmetrical.
  • the wiping tool 6 comprises a single point tool and a fixed point tool fixing material, the material of the single point tool being higher in hardness than the test piece 5 and having a sharp point characteristic of processing a micrometer/submicron radius of curvature radius. Included in diamond, cubic boron nitride or ceramic; the single point tool is bonded to the top end of the mount by bonding, brazing or electroplating.
  • the nano-motion platform 10 is a nano-linear displacement platform, and realizes nano-precision linear displacement in the vertical direction, that is, the Z-direction and the radial direction of the end surface of the air-floating turntable 3, that is, the Y-direction; the nano-linear displacement platform passes through the nano-motion platform
  • the connecting member 11 is attached to the Z-direction feeding device 12, and the Z-direction closed-loop linear motion precision is better than 10 nm, the Z-direction closed-loop linear motion stroke is not less than 10 ⁇ m, and the Y-direction closed-loop linear motion precision is better than 100 nm, and the Y-direction closed loop straight line
  • the exercise stroke is not less than 100 ⁇ m.
  • the nano-motion platform 10 is a nano-bias platform, realizes nano-precision linear displacement in the vertical direction, ie, Z-direction, and realizes yaw motion around the X-axis, and adjusts the yaw radius indirectly on the air-floating turntable 3 radial direction, that is, Y direction and vertical direction, that is, Z direction to achieve micro-feed; its Z-direction closed-loop linear motion accuracy is better than 10nm, Z-direction closed-loop motion travel is not less than 10 ⁇ m, X-direction closed-loop yaw motion accuracy is better than 1 ⁇ rad The X-direction closed-loop yaw motion stroke is not less than ⁇ 0.5mrad.
  • a test method for a nano-cut deep-speed single-point scratch test device includes the following steps:
  • the test piece 5 is selected, if the test piece 5 is an axisymmetric shape test piece, then go to step A1, if the test piece 5 is an irregular shape block test piece, then go to step A2;
  • step B for the axisymmetric shape test piece, in the test piece 5 to be scratched position to produce a length, height controllable micro convex structure 14, fixed by the test piece clamp 4 on the air floating turntable 3; step B;
  • a micro-convex structure 14 of length and height can be controlled at the position to be scratched of the test piece 5, and the test piece 5 is clamped on the end surface of the air-floating turntable 3 through the test piece holder 4. And installing a corresponding weight block to ensure dynamic balance of the end surface of the air floating turntable 3 in the high-speed rotary motion, the center of gravity of the compound block and the center of gravity of the test piece 5 being center-symmetrical with respect to the rotation axis of the air floating turntable 3;
  • the Z-direction feeding device 12 controls the wiping tool 6 to approach the surface of the test piece 5;
  • the Z-direction feeding device 12 is controlled by the on-line microscopic observation system to rapidly approach the scratching tool 6 toward the micro-convex structure 14 of the test piece 5;
  • step C31 if the force sensor 8 detects that the force signal rises significantly, that is, the wipe tool 6 contacts the protective film adhered to the micro-convex structure 14 of the test piece 5, and proceeds to step C6; otherwise, the process proceeds to step C32;
  • step C32 if the nano-motion platform 10 steps to its Z-direction negative limit position, go to step C4; otherwise, go to step C2;
  • control Z feed device 12 to the test piece 5 direction to a predetermined distance, the distance does not exceed the difference between the travel limit of the nano-motion platform 10Z direction and the Z-direction feed device 12 positioning accuracy; step C1;
  • R is the radius of gyration of the end face of the air-floating turntable 3 where the micro-convex structure 14 is located, m;
  • v is the scratching speed required for the scratch test, m/s;
  • the test piece 5 is clamped on the test piece fixture 4 with the air floatation
  • the turntable 3 performs a rotary motion according to the set rotation speed n;
  • the nano-motion platform 10 and the Z-feed device 12 are controlled to perform an alternate wipe feed strategy, the alternate wipe feed strategy including the following feed motion:
  • the control wiping tool 6 feeds the test piece 5 in a stepwise manner in steps of 10 to 1000 nm, and the stepwise feed is decomposed into a Z-direction negative feed and Y. Feeding in the negative direction; if it is a single scratch of the same scratch, go to step D21; if it is multiple scratches of the same scratch, go to step D22;
  • the scratching tool 6 stepwise feed step length is not less than the designated component f z Z direction rub test
  • the minimum depth of cut d min required and not greater than the maximum depth of cut d max required for the scratch test, ie d min ⁇ f z ⁇ d max ;
  • the step of the stepping feed of the wiping tool 6 is in the gas
  • the radial direction of the surface of the floating table 3, that is, the component f y of the Y direction is not less than 10 ⁇ m, so that the scratches distributed along the Y direction and having the gradient of the depth of cut are independent of each other and do not interfere with each other;
  • the dwell time t until the number of scratches required for the test is reached, and then continues to the test piece 5
  • the stepwise feeding step of the wiping tool 6 is not less than the wiping in the Z-direction component f z
  • the minimum depth of cut d min required for the test is not greater than the maximum depth of cut d max required for the scratch test, ie d min ⁇ f z ⁇ d max
  • the step size of the stepping feed of the wiping tool 6 is The radial direction of the air-floating turntable 3, that is, the component f y of the Y-direction is not less than 10 ⁇ m, so that the scratches distributed along the Y-direction and having a gradient of the depth of cut are independent of each other and do not interfere with each other;
  • step D3 If the cumulative displacement of the stepwise feed in the Z direction exceeds the maximum depth of cut required for the test, or the nano-motion platform 10 rows to its Y-direction negative limit, or the stepping The cumulative displacement of the feed in the Z direction reaches the negative limit of the Z-direction of the nano-motion platform 10, stops the stepwise feed, and proceeds to step D31; otherwise, the process proceeds to step D2;
  • step D31 Analyze the force signal collected by the force sensor 8 during the feeding. If the wiping force signal is detected, it indicates that the wiping tool 6 has been wiped at a high speed on the surface of the micro-convex structure 14 of the test piece 5, and the process proceeds to step D5; otherwise , go to step D32;
  • step D32 if the nano-motion platform 10 has reached its Y-negative limit, the nano-motion platform 10 is moved to its Y-direction positive limit, go to step D2; otherwise, go to step D33;
  • step D33 if the nano-motion platform 10 has reached its Z-direction negative limit, go to step D4; otherwise, go to step D2;
  • the locking mechanism for releasing the Z-feed device 12 is controlled by the Z-feed device 12 to control the wiping tool 6 to feed the surface of the test piece 5, so that the wiping tool 6 is further approached to the surface of the test piece 5.
  • the feed amount of the Z-direction feeding device 12 does not exceed the difference between the positioning of the nano-motion platform 10Z direction and the positioning accuracy of the Z-direction feeding device 12, and the nanometer is controlled.
  • Moving platform 10 moves to its Z-direction positive limit; step D1;
  • the elastic film 13 having a length of not less than 5 mm, a width of not less than 1 mm, and a height of not less than 10 ⁇ m is attached to the back surface of the test piece 5, and has The magnetic suction cup or the vacuum suction cup of the flat surface is clamped, and the surface of the test piece 5 is elastically deformed by vacuum adsorption/magnetic adsorption by the flat vacuum suction cup/magnetic suction cup surface and the elastic film 13 during the clamping process.
  • a micro-convex structure 14 of controllable length, width and height is formed.

Abstract

一种纳米切深高速单点划擦试验装置及其试验方法,试验装置包括工作台(2)、气浮转台(3)、试件夹具(4)、试件(5)、Z向进给装置(12)、纳米运动平台(10)、力传感器(8)和划擦工具(6),试件(5)的待划擦位置制有长度、高度可控的微凸结构(14)。试验装置及其试验方法在划擦速度方面从μm/s提升至m/s,真实地还原了超精密磨削过程中磨粒的加工速度,在高速划擦条件下准确采集不同纳米切深条件下的划擦力信号,划擦力-划擦深度对应关系明确,通过在试件(5)表面构造微凸结构(14),避免了金刚石针尖在整个晶圆表面留下很长划痕,在较短划痕内提供了丰富的试验数据,极大地提高了单位划擦长度内有效信息的含量,有利于后续的划痕分析和残留划痕的特征识别,保证了划擦工具(6)的完整性。

Description

一种纳米切深高速单点划擦试验装置及其试验方法 技术领域
本发明属于机械加工中的材料测试及超精密加工领域,具体涉及一种纳米切深高速单点划擦试验装置及其试验方法。
背景技术
超精密磨削加工可以以纳米级切深高效地去除材料,从而获得较高的形状精度和表面质量,是精密零件加工的重要工艺之一。其加工机理的本质是磨具表面大量形状各异的磨粒以纳米量级的切削深度共同参与切削而实现的加工过程。因此,在超精密磨削机理的研究中,人们常常设计纳米切深单点划擦试验作为理解超精密磨削过程的重要手段。纵观国内外文献,不同材料的单点划擦试验已经得到了广泛和深入的研究,但是现有的试验设备和试验方案仍然存在着一些不足之处。
最常见的纳米切深单点划擦试验一般基于原子力显微镜(英语:Atomic Force Microscope,缩写为AFM)或在纳米压痕仪等精密仪器上进行。在名称为“Analysis of ductile mode and brittle transition of AFM nanomachining of silicon”的文章中(Lee,S.H.,Int.J.Mach.Tools Manuf.,2012,61,71-79),作者采用AFM装置,实现了不同划擦深度的纳米划擦试验,借助场发射扫描电子显微镜进一步观测分析了划擦试件在试验过程中弹塑性和脆塑性变形机理之间的转变。但是该试验所采取的划擦速度为μm/s量级(5μm/s),远远低于实际磨削过程中磨粒m/s量级的磨削速度。
为了实现高速单点划擦试验,尽可能还原真实的加工状态。有学者采用单摆式划擦方法,在名称为“On the effect of crystallographic orientation on ductile material removal in silicon”的文章中(Brian P.O’Connor,Int.J.Precis.Eng.,2005.29(1):p.124-132.),作者O’Connor通过划擦工具的高速回转运动实现切深由浅入深再变浅的高速单点划擦。据文献报道,硬脆材料划擦过程中,切屑产生点和脆塑转变点等特征对应的临界切削深度通常在50nm以内(Lee,S.H.,Analysis of ductile mode and brittle transition of AFM nanomachining of silicon.International  Journal of Machine Tools and Manufacture,2012.61:p.71-79.),受单摆式划擦方法采用的划擦工具回转半径的限制,切深在百纳米量级以内的残留划痕长度较短,受限于测力仪的采样频率(假设最大划擦深度取μm,单摆半径取150mm,会产生长度1095μm的划痕,切深小于100nm的塑性段划痕长度约为28μm,在划擦速度为1m/s的情况下,如果切深每变化10nm采一个数据,采样频率需要达到357kHz),单摆式划擦方法无法在高速(m/s量级)划擦条件下准确采集不同纳米切深条件下的切削力和划擦力信号。
中国专利CN201610077965.X公开了《一种单颗磨粒高速连续划擦试验机及其应用》,发明人基于球盘式划擦方法,利用电主轴带动试件的高速旋转产生高速划擦所需的高线速度;将单点工具的直线运动与圆周运动结合起来,同样实现了与实际磨削速度相仿的高速单点划擦。但是该专利提供的划擦的方法存在的问题主要表现在两个方面:首先,在高速划擦过程中无法准确实现将划擦深度控制在纳米量级,试验例中划擦轮廓测量结果表明:残留划痕的深度约为20微米,划擦工具可以实现的稳定切削深度为微米量级,即使专利中的Z轴设定器的定位精度优于100nm,综合考虑电主轴旋转过程中的端面跳动和待划擦工件的表面轮廓,仍然无法在在高速划擦条件下保证纳米量级切削深度的控制;另一方面,该划擦试验机利用端面跳动和工件表面轮廓的起伏固然可以实现切深渐变的高速划擦,但是对于微米/亚微米曲率半径单点工具,极有可能在划擦过程中遇到较大的工件起伏或端面跳动,磨粒切削深度急剧增加、导致划擦工具崩碎,长时间连续接触也容易导致单点工具磨损。因此,该专利提供的试验方法无法在高速划擦条件下,研究微米/亚微米曲率半径磨粒划擦硬脆材料的切屑产生点和脆塑转变点等特征。
在超精密磨削加工领域,纳米切深高速单点划擦试验是揭示超精密磨削机理的重要手段。要实现这一试验方式,工艺方法和试验设备都有待进一步研究和改进,首先需要保证划擦长度可控,即:在保证不同切深均可以获得足量数据的前提下,尽量缩短划痕长度,减少试验后期在显微镜下寻找观测划痕的难度;此外,为了揭示超精密磨削过程中,磨粒以纳米量级的切削深度进行切削的加工机理,要近似地控制最大划擦深度在百纳米量级,并在长度有限的划痕上实现切深由浅入深再变浅的高速划擦试验过程;最后,还要保证大量的力信号数据点能够和残留划痕轮廓位置实现一一对应。中国专利CN201410324503.4 公开了《一种亚微米曲率半径单颗粒金刚石针尖纳米深度高速划擦方法》,其利用硅片的平面度和磨床的端面跳动的组合偏差,完成亚微米曲率半径单颗粒金刚石针尖纳米深度高速划擦试验。该专利提供了整体上实现高速划擦的方法,但不能获取划擦过程中的力信号,并且划痕位置是随机的,观测定位困难。
综上所述,为了进一步揭示超精密磨削机理,目前的单点划擦试验方法存在以下三点问题。
1)基于AFM或在纳米压痕仪等精密仪器的单点划擦试验受直线划擦运动原理的限制,无法实现实际磨削过程中磨粒m/s量级的划擦速度。
2)单摆式划擦方法受限于划擦工具回转半径以和测力仪的采样频率,无法在高速划擦条件下准确采集不同纳米切深条件下的划擦力信号。
3)球盘式划擦方法受限于划擦工具的进给速度,无法在高速划擦条件下有效地控制划痕长度,使得划擦残留轮廓特征点在显微镜下的寻找过程变得十分困难。
发明内容
为解决现有技术存在的上述问题,本发明要设计一种能够实现以下目的的纳米切深高速单点划擦试验装置及其试验方法:
1)微米/亚微米曲率半径纳米切深高速单点划擦试验能有效地还原真实的超精密磨削状态,具体目的为:单点划擦工具的曲率半径尺度从mm量级降低至微米/亚微米量级,可以还原超精密磨削过程中磨粒的有效刃圆半径;切削深度控制在纳米量级,可以还原超精密磨削过程中磨粒的有效切削深度,并保证划擦工具在高速划擦中的完整性;划擦速度从μm/s提升至m/s,可以还原超精密磨削过程中磨粒的实际加工速度;
2)高速划擦条件下准确采集不同纳米切深条件下的划擦力信号,划擦力-划擦深度对应关系明确;
3)划擦长度可控,在保证划擦力-划擦深度对应关系明确以及划擦残留轮廓特征点清晰可辨的基础上,缩短划擦长度,方便划擦试验后在显微镜下观察划擦残留轮廓,分辨弹塑性、脆塑性转变点等特征,同时减少单点工具和工件作用时间,控制磨损。
为了实现上述目的,本发明的技术方案如下:
一种纳米切深高速单点划擦试验装置,包括:
基座;
水平放置的工作台,固定安装在基座顶面;
竖直放置的气浮转台,固定安装在工作台上;
试件夹具,装接在气浮转台顶部端面,且与气浮转台同轴,通过气浮转台带动试件夹具旋转;所述试件夹具是真空吸盘、磁力吸盘或机械结构夹具;
试件,装接在试件夹具上;
Z向进给装置,装接在工作台顶面,沿气浮转台回转轴线方向进给;所述Z向进给装置通过螺纹连接的方式装接在工作台顶面,其定位精度优于5μm;
纳米运动平台,通过纳米运动平台连接件装接在Z向进给装置上;
力传感器,通过力传感器连接件装接在纳米运动平台上;所述力传感器具有测量法向力和切向力功能,法向即Z向,切向即X向;
划擦工具,通过划擦工具连接件装接在力传感器上;
所述试件为有色金属、黑色金属或硬脆材料,在试件待划擦位置制作长度、高度可控的微凸结构,划擦深度d所对应的微凸结构沿划擦方向的长度Lx满足下式:
Figure PCTCN2017109913-appb-000001
其中,v为试验所需的划擦速度,m/s;q为有效划擦区域内、试验所需的力信号点数;f为力传感器设定的采样频率,Hz;
所述微凸结构沿径向的长度Ly不小于划擦过程中划擦工具沿Y方向的进给步长ly
所述微凸结构沿Z向的最大高度H大于试验所需的最大切削深度dmax
所述微凸结构的Y截面形状呈圆弧状或折线状,根据划擦试验设定的划擦速度、划擦深度以及划擦长度,选取圆弧半径或直线斜率。
进一步地,所述气浮转台采用伺服电机驱动,所述伺服电机安装在工作台底面,所述气浮转台通过皮带与伺服电机连接;所述气浮转台为空气轴承机械气浮转台;所述气浮转台的端面跳动量和径向跳动量均小于0.5μm;所述气浮转台、试件夹具和试件三者在Z方向的相对位置固定。
进一步地,所述试件的形状关于Z轴中心对称,在试件待划擦位置制作长度、高度可控的微凸结构,通过试件夹具固定安装在气浮转台上,所述试件的 中心对称轴与转台回转轴线重合。
进一步地,所述试件的形状关于Z轴中心对称且试件的厚度小于1mm,在试件背面粘贴长度(Y方向)不低于5mm、宽度(X方向)不低于1mm、高度(Z方向)不低于10μm的弹性薄膜,此时,仅采用具有平坦表面的磁力吸盘或真空吸盘进行装夹,在装夹的过程中,借助平坦的真空吸盘/磁力吸盘表面和弹性薄膜,通过真空吸附/磁力吸附作用,使得试件表面产生弹性变形,形成长度、宽度和高度可控的微凸结构,所述试件的中心对称轴与气浮转台回转轴线重合。
进一步地,所述试件为形状不规则的块状试件,在试件待划擦位置制作长度、高度可控的微凸结构;试件通过试件夹具装夹在气浮转台端面;为了确保高速回转运动中气浮转台端面的动态平衡,在试件夹具上额外安装配重物块,所述配种物块的重心和试件的重心关于气浮转台的旋转轴线呈中心对称。
进一步地,所述划擦工具包括单点工具和固定单点工具的固定座,所述单点工具的材料为比试件硬度高且具有加工出微米/亚微米曲率半径尖点特性的材料,包括金刚石、立方氮化硼(英文:Cubic Boron Nitride,缩写CBN)或陶瓷;所述单点工具通过粘接、钎焊或电镀固结在所述固定座的顶端。
进一步地,所述纳米运动平台为纳米直线位移平台,在竖直方向即Z向和气浮转台端面径向方向即Y向上实现纳米精度的直线位移;所述纳米直线位移平台通过纳米运动平台连接件装接在Z向进给装置上,其Z向闭环直线运动精度优于10nm,Z向闭环直线运动行程不低于10μm,Y向闭环直线运动精度优于100nm,Y向闭环直线运动行程不低于100μm。
进一步地,所述纳米运动平台为纳米偏摆平台,在竖直方向即Z向上实现纳米精度的直线位移,并且绕X轴实现偏摆运动,通过调整偏摆半径,间接地在气浮转台径向方向即Y向和竖直方向即Z向实现微量进给;其Z向闭环直线运动精度优于10nm,Z向闭环运动行程不低于10μm,X向闭环偏摆运动精度优于1μrad,X向闭环偏摆运动行程不低于±0.5mrad。
进一步地,一种纳米切深高速单点划擦试验装置的试验方法,包括以下步骤:
A、装夹试件
根据试件形状选择装夹试件的方式,如果试件为轴对称形状试件,则转步骤A1,如果试件为形状不规则的块状试件,则转步骤A2;
A1、对于轴对称形状的试件,在试件待划擦位置制作长度、高度可控的微凸结构,通过试件夹具固定安装在气浮转台上;转步骤B;
A2、对于形状不规则的块状试件,在试件待划擦位置制作长度、高度可控的微凸结构,通过试件夹具将试件装夹在气浮转台端面,并安装相应的配重物块,确保高速回转运动中气浮转台端面的动态平衡,所述配种物块的重心和试件的重心关于气浮转台的旋转轴线呈中心对称;
B、通过Z向进给装置控制划擦工具向试件表面逼近;
旋转气浮转台,使待划擦试件表面的微凸结构位于划擦工具的正下方;
在试件微凸结构上粘贴厚度为T的保护薄膜,并控制划擦工具沿径向方向(即Y向)运动至纳米运动平台的负极限位置,借助在线显微观测系统,控制Z向进给装置使划擦工具快速向试件微凸结构逼近;
C、对刀
C1、打开Z向进给装置的锁止机构,
C2、通过纳米运动平台控制划擦工具沿Z向以小于弹性薄膜厚度T的步长向试件步进;
C31、如果力传感器检测到力信号明显上升,即划擦工具接触到试件微凸结构粘贴的保护薄膜,转步骤C6;否则转步骤C32;
C32、如果纳米运动平台步进至其Z向负极限位置,转步骤C4;否则,转步骤C2;
C4、解除Z向进给装置的锁止机构,控制纳米运动平台抬起至其Z向正极限位置;
C5、控制Z向进给装置向试件方向进给规定距离,所述距离不超过纳米运动平台Z向的行程极限与Z向进给装置定位精度的差值;转步骤C1;
C6、停止纳米运动平台沿Z向的进给,揭下保护薄膜,完成对刀步骤(此时,划擦工具距离试件待划擦位置的距离不超过保护薄膜的厚度T);
D、对试件进行划擦
启动气浮转台,根据以下公式计算并设定气浮转台的转速n,单位为rpm:
Figure PCTCN2017109913-appb-000002
其中,R为微凸结构所在气浮转台端面的回转半径,m;v为划擦试验所需 的划擦速度,m/s;试件装夹在试件夹具上随气浮转台按照设定的转速n做回转运动;
控制纳米运动平台和Z向进给装置实行交替划擦进给策略,所述交替划擦进给策略包括以下进给运动:
D1、打开Z向进给装置的锁止机构;
D2、通过纳米运动平台,控制划擦工具以10~1000nm的步长向试件以步进的方式进给,所述步进式进给分解为Z向负方向的进给和Y向负方向的进给;如果是同一划痕的单次划擦,转步骤D21;如果是同一划痕的多次划擦,转步骤D22;
D21、对于同一划痕的单次划擦,气浮转台带动试件每旋转一周,所述划擦工具步进式进给的步长在Z向的分量fz不小于划擦试验所需的最小切削深度dmin,且不大于划擦试验所需的最大切削深度dmax,即dmin≤fz≤dmax;所述划擦工具步进式进给的步长在气浮转台端面径向即Y向的分量fy不小于10μm,使得沿Y向分布的,且切深渐变的划痕彼此相互独立、互不干扰;转步骤D3;
D22、对于同一划痕的多次划擦,划擦工具步进式进给运动完成一次步进后,停留时间t,直至达到试验所需的划擦次数s,再继续向试件以步进方式进给,所述停留时间满足s/n≤t<(s+1)/n;所述划擦工具步进式进给的步长在Z向的分量fz不小于划擦试验所需的最小切削深度dmin,且不大于划擦试验所需的最大切削深度dmax,即dmin≤fz≤dmax;所述划擦工具步进式进给的步长在气浮转台端面径向即Y向的分量fy不小于10μm,使得沿Y向分布的,且切深渐变的划痕彼此相互独立、互不干扰;
D3、如果所述的步进式进给在Z方向的累计位移超过了试验所需的最大切削深度,或者所述的纳米运动平台行至其Y向负限位,或者所述的步进式进给在Z方向的累计位移达到了纳米运动平台在Z向负限位,停止步进式进给,转步骤D31;否则,转步骤D2;
D31、分析进给期间力传感器采集的力信号,如果检测到划擦力信号,即表明划擦工具在在试件的微凸结构表面进行了高速划擦,转步骤D5;否则,转步骤D32;
D32、如果纳米运动平台已行至其Y向负限位,制纳米运动平台运动至其Y 向正限位,转步骤D2;否则,转步骤D33;
D33、如果纳米运动平台已行至其Z向负限位,转步骤D4;否则,转步骤D2;
D4、解除Z向进给装置的锁止机构,通过所述Z向进给装置控制划擦工具向试件表面进给,使划擦工具进一步逼近试件表面。为了避免逼近过程中划擦工具接触到微凸结构,Z向进给装置的进给量不超过纳米运动平台Z向的行程与Z向进给装置定位精度的差值,控制纳米运动平台移动至其Z向正限位;转步骤D1;
D5、解除Z向进给装置的锁止机构,通过所述Z向进给装置控制划擦工具向上抬起,停止所述气浮转台,完成划擦试验。
进一步地,步骤A2所述的轴对称形状试件如果厚度小于1mm时,在试件背面粘贴长度不低于5mm、宽度不低于1mm、高度不低于10μm的弹性薄膜,采用具有平坦表面的磁力吸盘或真空吸盘进行装夹,在装夹的过程中,借助平坦的真空吸盘/磁力吸盘表面和弹性薄膜,通过真空吸附/磁力吸附作用,使得试件表面产生弹性变形,形成长度、宽度和高度可控的微凸结构。
本发明和背景技术相比,具有以下优点:
1、真实地还原了超精密磨削过程中磨粒的加工速度。本发明选用空气轴承机械气浮转台,利用高精度、低端跳的高速回转运动实现高速划擦,利用划擦试件表面的微凸结构以及纳米运动平台和Z向进给装置组成分级精密运动系统,在纳米尺度上实现了划擦深度可控,与目前的划擦方式相比,本发明在划擦速度方面从μm/s提升至m/s,真实地还原了超精密磨削过程中磨粒的加工速度;在划擦深度方面实现了纳米尺度上的控制,在划擦工具尺寸方面,实现了微米/亚微米曲率半径划擦工具的高速划擦。
2、高速划擦条件下准确采集不同纳米切深条件下的划擦力信号,划擦力-划擦深度对应关系明确。本发明在试件表面构造了微凸结构,相比于钟摆式划擦方法,有效地延长了纳米切深下的划擦长度,与此同时,待划擦区域的微凸结构还实现了划擦的过程中划擦深度渐变。进而在保证划擦力-划擦深度对应关系明确的基础上,准确地采集了足量不同切深对应的划擦力信号。
3、划擦长度可控。本发明在试件表面构造了微凸结构,避免了金刚石针尖 在整个晶圆表面留下很长的划痕,在较短的划痕内提供了丰富的试验数据,极大地提高了单位划擦长度内有效信息的含量,有利于后续的划痕分析和残留划痕的特征识别,同时,通过控制划痕总体长度,保证了划擦工具的完整性。
附图说明
图1是本发明试验装置的主视图。
图2是图1的俯视图。
图3是工件微凸结构的示意图。
图4是图3的A-A剖视图。
图5本发明试验方法的流程图。
图中:1、基座;2、工作台;3、气浮转台;4、试件夹具;5、试件;6、划擦工具;7、划擦工具连接件;8、力传感器;9、力传感器连接件;10、纳米运动平台;11、纳米运动平台连接件;12、Z向进给装置;13、弹性薄膜;14、微凸结构。
具体实施方式
下面结合附图对本发明进行进一步地描述。如图1-4所示,一种纳米切深高速单点划擦试验装置,包括:
基座1;
水平放置的工作台2,固定安装在基座1顶面;
竖直放置的气浮转台3,固定安装在工作台2上;
试件夹具4,装接在气浮转台3顶部端面,且与气浮转台3同轴,通过气浮转台3带动试件夹具4旋转;所述试件夹具4是真空吸盘、磁力吸盘或机械结构夹具;
试件5,装接在试件夹具4上;
Z向进给装置12,装接在工作台2顶面,沿气浮转台3回转轴线方向进给;所述Z向进给装置12通过螺纹连接的方式装接在工作台2顶面,其定位精度优于5μm;
纳米运动平台10,通过纳米运动平台连接件11装接在Z向进给装置12上;
力传感器8,通过力传感器连接件9装接在纳米运动平台10上;所述力传感器8具有测量法向力和切向力功能,法向即Z向,切向即X向;
划擦工具6,通过划擦工具连接件7装接在力传感器8上;
所述试件5为有色金属、黑色金属或硬脆材料,在试件5待划擦位置制作长度、高度可控的微凸结构14,划擦深度d所对应的微凸结构14沿划擦方向的长度Lx满足下式:
Figure PCTCN2017109913-appb-000003
其中,v为试验所需的划擦速度,m/s;q为有效划擦区域内、试验所需的力信号点数;f为力传感器8设定的采样频率,Hz;
所述微凸结构14沿径向的长度Ly不小于划擦过程中划擦工具6沿Y方向的进给步长ly
所述微凸结构14沿Z向的最大高度H大于试验所需的最大切削深度dmax
所述微凸结构14的Y截面形状呈圆弧状或折线状,根据划擦试验设定的划擦速度、划擦深度以及划擦长度,选取圆弧半径或直线斜率。
进一步地,所述气浮转台3采用伺服电机驱动,所述伺服电机安装在工作台2底面,所述气浮转台3通过皮带与伺服电机连接;所述气浮转台3为空气轴承机械气浮转台3;所述气浮转台3的端面跳动量和径向跳动量均小于0.5μm;所述气浮转台3、试件夹具4和试件5三者在Z方向的相对位置固定。
进一步地,所述试件5的形状关于Z轴中心对称,在试件5待划擦位置制作长度、高度可控的微凸结构14,通过试件夹具4固定安装在气浮转台3上,所述试件5的中心对称轴与转台回转轴线重合。
进一步地,所述试件5的形状关于Z轴中心对称且试件5的厚度小于1mm,在试件5背面粘贴长度不低于5mm、宽度不低于1mm、高度不低于10μm的弹性薄膜13,采用具有平坦表面的磁力吸盘或真空吸盘进行装夹,在装夹的过程中,借助平坦的真空吸盘/磁力吸盘表面和弹性薄膜13,通过真空吸附/磁力吸附作用,使得试件5表面产生弹性变形,形成长度、宽度和高度可控的微凸结构14,所述试件5的中心对称轴与气浮转台3回转轴线重合。
进一步地,所述试件5为形状不规则的块状试件5,在试件5待划擦位置制作长度、高度可控的微凸结构14;试件5通过试件夹具4装夹在气浮转台3端面;为了确保高速回转运动中气浮转台3端面的动态平衡,在试件夹具4上额外安装配重物块,所述配种物块的重心和试件5的重心关于气浮转台3的旋转 轴线呈中心对称。
进一步地,所述划擦工具6包括单点工具和固定单点工具的固定座,所述单点工具的材料为比试件5硬度高且具有加工出微米/亚微米曲率半径尖点特性的材料,包括金刚石、立方氮化硼或陶瓷;所述单点工具通过粘接、钎焊或电镀固结在所述固定座的顶端。
进一步地,所述纳米运动平台10为纳米直线位移平台,在竖直方向即Z向和气浮转台3端面径向方向即Y向上实现纳米精度的直线位移;所述纳米直线位移平台通过纳米运动平台连接件11装接在Z向进给装置12上,其Z向闭环直线运动精度优于10nm,Z向闭环直线运动行程不低于10μm,Y向闭环直线运动精度优于100nm,Y向闭环直线运动行程不低于100μm。
进一步地,所述纳米运动平台10为纳米偏摆平台,在竖直方向即Z向上实现纳米精度的直线位移,并且绕X轴实现偏摆运动,通过调整偏摆半径,间接地在气浮转台3径向方向即Y向和竖直方向即Z向实现微量进给;其Z向闭环直线运动精度优于10nm,Z向闭环运动行程不低于10μm,X向闭环偏摆运动精度优于1μrad,X向闭环偏摆运动行程不低于±0.5mrad。
如图1-5所示,一种纳米切深高速单点划擦试验装置的试验方法,包括以下步骤:
B、装夹试件5
根据试件5形状选择装夹试件5的方式,如果试件5为轴对称形状试件,则转步骤A1,如果试件5为形状不规则的块状试件,则转步骤A2;
A1、对于轴对称形状试件,在试件5待划擦位置制作长度、高度可控的微凸结构14,通过试件夹具4固定安装在气浮转台3上;转步骤B;
A2、对于形状不规则的块状试件,在试件5待划擦位置制作长度、高度可控的微凸结构14,通过试件夹具4将试件5装夹在气浮转台3端面,并安装相应的配重物块,确保高速回转运动中气浮转台3端面的动态平衡,所述配种物块的重心和试件5的重心关于气浮转台3的旋转轴线呈中心对称;
B、通过Z向进给装置12控制划擦工具6向试件5表面逼近;
旋转气浮转台3,使待划擦试件5表面的微凸结构14位于划擦工具6的正下方;
在试件5微凸结构14上粘贴厚度为T的保护薄膜,并控制划擦工具6沿径 向方向运动至纳米运动平台10的负极限位置,借助在线显微观测系统,控制Z向进给装置12使划擦工具6快速向试件5微凸结构14逼近;
C、对刀
C1、打开Z向进给装置12的锁止机构,
C2、通过纳米运动平台10控制划擦工具6沿Z向以小于弹性薄膜13厚度T的步长向试件5步进;
C31、如果力传感器8检测到力信号明显上升,即划擦工具6接触到试件5微凸结构14粘贴的保护薄膜,转步骤C6;否则转步骤C32;
C32、如果纳米运动平台10步进至其Z向负极限位置,转步骤C4;否则,转步骤C2;
C4、解除Z向进给装置12的锁止机构,控制纳米运动平台10抬起至其Z向正极限位置;
C5、控制Z向进给装置12向试件5方向进给规定距离,所述距离不超过纳米运动平台10Z向的行程极限与Z向进给装置12定位精度的差值;转步骤C1;
C6、停止纳米运动平台10沿Z向的进给,揭下保护薄膜,完成对刀步骤;
D、对试件5进行划擦
启动气浮转台3,根据以下公式计算并设定气浮转台3的转速n,单位为rpm:
Figure PCTCN2017109913-appb-000004
其中,R为微凸结构14所在气浮转台3端面的回转半径,m;v为划擦试验所需的划擦速度,m/s;试件5装夹在试件夹具4上随气浮转台3按照设定的转速n做回转运动;
控制纳米运动平台10和Z向进给装置12实行交替划擦进给策略,所述交替划擦进给策略包括以下进给运动:
D1、打开Z向进给装置12的锁止机构;
D2、通过纳米运动平台10,控制划擦工具6以10~1000nm的步长向试件5以步进的方式进给,所述步进式进给分解为Z向负方向的进给和Y向负方向的进给;如果是同一划痕的单次划擦,转步骤D21;如果是同一划痕的多次划擦,转步骤D22;
D21、对于同一划痕的单次划擦,气浮转台3带动试件5每旋转一周,所述划擦工具6步进式进给的步长在Z向的分量fz不小于划擦试验所需的最小切削深度dmin,且不大于划擦试验所需的最大切削深度dmax,即dmin≤fz≤dmax;所述划擦工具6步进式进给的步长在气浮转台3端面径向即Y向的分量fy不小于10μm,使得沿Y向分布的,且切深渐变的划痕彼此相互独立、互不干扰;转步骤D3;
D22、对于同一划痕的多次划擦,划擦工具6步进式进给运动完成一次步进后,停留时间t,直至达到试验所需的划擦次数s,再继续向试件5以步进方式进给,所述停留时间满足s/n≤t<(s+1)/n;所述划擦工具6步进式进给的步长在Z向的分量fz不小于划擦试验所需的最小切削深度dmin,且不大于划擦试验所需的最大切削深度dmax,即dmin≤fz≤dmax;所述划擦工具6步进式进给的步长在气浮转台3端面径向即Y向的分量fy不小于10μm,使得沿Y向分布的,且切深渐变的划痕彼此相互独立、互不干扰;
D3、如果所述的步进式进给在Z方向的累计位移超过了试验所需的最大切削深度,或者所述的纳米运动平台10行至其Y向负限位,或者所述的步进式进给在Z方向的累计位移达到了纳米运动平台10在Z向负限位,停止步进式进给,转步骤D31;否则,转步骤D2;
D31、分析进给期间力传感器8采集的力信号,如果检测到划擦力信号,即表明划擦工具6在在试件5的微凸结构14表面进行了高速划擦,转步骤D5;否则,转步骤D32;
D32、如果纳米运动平台10已行至其Y向负限位,制纳米运动平台10运动至其Y向正限位,转步骤D2;否则,转步骤D33;
D33、如果纳米运动平台10已行至其Z向负限位,转步骤D4;否则,转步骤D2;
D4、解除Z向进给装置12的锁止机构,通过所述Z向进给装置12控制划擦工具6向试件5表面进给,使划擦工具6进一步逼近试件5表面。为了避免逼近过程中划擦工具6接触到微凸结构14,Z向进给装置12的进给量不超过纳米运动平台10Z向的行程与Z向进给装置12定位精度的差值,控制纳米运动平台10移动至其Z向正限位;转步骤D1;
D5、解除Z向进给装置12的锁止机构,通过所述Z向进给装置12控制划擦工具6向上抬起,停止所述气浮转台3,完成划擦试验。
进一步地,步骤A2所述的轴对称形状试件5如果厚度小于1mm时,在试件5背面粘贴长度不低于5mm、宽度不低于1mm、高度不低于10μm的弹性薄膜13,采用具有平坦表面的磁力吸盘或真空吸盘进行装夹,在装夹的过程中,借助平坦的真空吸盘/磁力吸盘表面和弹性薄膜13,通过真空吸附/磁力吸附作用,使得试件5表面产生弹性变形,形成长度、宽度和高度可控的微凸结构14。
本发明不局限于本实施例,任何在本发明披露的技术范围内的等同构思或者改变,均列为本发明的保护范围。

Claims (10)

  1. 一种纳米切深高速单点划擦试验装置,其特征在于:包括:
    基座(1);
    水平放置的工作台(2),固定安装在基座(1)顶面;
    竖直放置的气浮转台(3),固定安装在工作台(2)上;
    试件夹具(4),装接在气浮转台(3)顶部端面,且与气浮转台(3)同轴,通过气浮转台(3)带动试件夹具(4)旋转;所述试件夹具(4)是真空吸盘、磁力吸盘或机械结构夹具;
    试件(5),装接在试件夹具(4)上;
    Z向进给装置(12),装接在工作台(2)顶面,沿气浮转台(3)回转轴线方向进给;所述Z向进给装置(12)通过螺纹连接的方式装接在工作台(2)顶面,其定位精度优于5μm;
    纳米运动平台(10),通过纳米运动平台连接件(11)装接在Z向进给装置(12)上;
    力传感器(8),通过力传感器连接件(9)装接在纳米运动平台(10)上;所述力传感器(8)具有测量法向力和切向力功能,法向即Z向,切向即X向;
    划擦工具(6),通过划擦工具连接件(7)装接在力传感器(8)上;
    所述试件(5)为有色金属、黑色金属或硬脆材料,在试件(5)待划擦位置制作长度、高度可控的微凸结构(14),划擦深度d所对应的微凸结构(14)沿划擦方向的长度Lx满足下式:
    Figure PCTCN2017109913-appb-100001
    其中,v为试验所需的划擦速度,m/s;q为有效划擦区域内、试验所需的力信号点数;f为力传感器(8)设定的采样频率,Hz;
    所述微凸结构(14)沿径向的长度Ly不小于划擦过程中划擦工具(6)沿Y方向的进给步长ly
    所述微凸结构(14)沿Z向的最大高度H大于试验所需的最大切削深度dmax
    所述微凸结构(14)的Y截面形状呈圆弧状或折线状,根据划擦试验设定的划擦速度、划擦深度以及划擦长度,选取圆弧半径或直线斜率。
  2. 根据权利要求1所述的一种纳米切深高速单点划擦试验装置,其特征在于:所述气浮转台(3)采用伺服电机驱动,所述伺服电机安装在工作台(2)底面,所述气浮转台(3)通过皮带与伺服电机连接;所述气浮转台(3)为空气轴承机械气浮转台(3);所述气浮转台(3)的端面跳动量和径向跳动量均小于0.5μm;所述气浮转台(3)、试件夹具(4)和试件(5)三者在Z方向的相对位置固定。
  3. 根据权利要求1所述的一种纳米切深高速单点划擦试验装置,其特征在于:所述试件(5)的形状关于Z轴中心对称,在试件(5)待划擦位置制作长度、高度可控的微凸结构(14),通过试件夹具(4)固定安装在气浮转台(3)上,所述试件(5)的中心对称轴与转台回转轴线重合。
  4. 根据权利要求1或3所述的一种纳米切深高速单点划擦试验装置,其特征在于:所述试件(5)的形状关于Z轴中心对称且试件(5)的厚度小于1mm,在试件(5)背面粘贴长度不低于5mm、宽度不低于1mm、高度不低于10μm的弹性薄膜(13),采用具有平坦表面的磁力吸盘或真空吸盘进行装夹,在装夹的过程中,借助平坦的真空吸盘/磁力吸盘表面和弹性薄膜(13),通过真空吸附/磁力吸附作用,使得试件(5)表面产生弹性变形,形成长度、宽度和高度可控的微凸结构(14),所述试件(5)的中心对称轴与气浮转台(3)回转轴线重合。
  5. 根据权利要求1所述的一种纳米切深高速单点划擦试验装置,其特征在于:所述试件(5)为形状不规则的块状试件(5),在试件(5)待划擦位置制作长度、高度可控的微凸结构(14);试件(5)通过试件夹具(4)装夹在气浮转台(3)端面;为了确保高速回转运动中气浮转台(3)端面的动态平衡,在试件夹具(4)上额外安装配重物块,所述配种物块的重心和试件(5)的重心关于气浮转台(3)的旋转轴线呈中心对称。
  6. 根据权利要求1所述的一种纳米切深高速单点划擦试验装置,其特征在于:所述划擦工具(6)包括单点工具和固定单点工具的固定座,所述单点工具的材料为比试件(5)硬度高且具有加工出微米/亚微米曲率半径尖点特性的材料,包括金刚石、立方氮化硼或陶瓷;所述单点工具通过粘接、钎焊或电镀固结在所述固定座的顶端。
  7. 根据权利要求1所述的一种纳米切深高速单点划擦试验装置,其特征在于:所述纳米运动平台(10)为纳米直线位移平台,在竖直方向即Z向和气浮 转台(3)端面径向方向即Y向上实现纳米精度的直线位移;所述纳米直线位移平台通过纳米运动平台连接件(11)装接在Z向进给装置(12)上,其Z向闭环直线运动精度优于10nm,Z向闭环直线运动行程不低于10μm,Y向闭环直线运动精度优于100nm,Y向闭环直线运动行程不低于100μm。
  8. 根据权利要求1所述的一种纳米切深高速单点划擦试验装置,其特征在于:所述纳米运动平台(10)为纳米偏摆平台,在竖直方向即Z向上实现纳米精度的直线位移,并且绕X轴实现偏摆运动,通过调整偏摆半径,间接地在气浮转台(3)径向方向即Y向和竖直方向即Z向实现微量进给;其Z向闭环直线运动精度优于10nm,Z向闭环运动行程不低于10μm,X向闭环偏摆运动精度优于1μrad,X向闭环偏摆运动行程不低于±0.5mrad。
  9. 一种纳米切深高速单点划擦试验装置的试验方法,其特征在于:包括以下步骤:
    A、装夹试件(5)
    根据试件(5)形状选择装夹试件(5)的方式,如果试件(5)为轴对称形状试件,则转步骤A1,如果试件(5)为形状不规则的块状试件,则转步骤A2;
    A1、对于轴对称形状试件,在试件(5)待划擦位置制作长度、高度可控的微凸结构(14),通过试件夹具(4)固定安装在气浮转台(3)上;转步骤B;
    A2、对于形状不规则的块状试件,在试件(5)待划擦位置制作长度、高度可控的微凸结构(14),通过试件夹具(4)将试件(5)装夹在气浮转台(3)端面,并安装相应的配重物块,确保高速回转运动中气浮转台(3)端面的动态平衡,所述配种物块的重心和试件(5)的重心关于气浮转台(3)的旋转轴线呈中心对称;
    B、通过Z向进给装置(12)控制划擦工具(6)向试件(5)表面逼近;
    旋转气浮转台(3),使待划擦试件(5)表面的微凸结构(14)位于划擦工具(6)的正下方;
    在试件(5)微凸结构(14)上粘贴厚度为T的保护薄膜,并控制划擦工具(6)沿径向方向运动至纳米运动平台(10)的负极限位置,借助在线显微观测系统,控制Z向进给装置(12)使划擦工具(6)快速向试件(5)微凸结构(14)逼近;
    C、对刀
    C1、打开Z向进给装置(12)的锁止机构,
    C2、通过纳米运动平台(10)控制划擦工具(6)沿Z向以小于弹性薄膜(13)厚度T的步长向试件(5)步进;
    C31、如果力传感器(8)检测到力信号明显上升,即划擦工具(6)接触到试件(5)微凸结构(14)粘贴的保护薄膜,转步骤C6;否则转步骤C32;
    C32、如果纳米运动平台(10)步进至其Z向负极限位置,转步骤C4;否则,转步骤C2;
    C4、解除Z向进给装置(12)的锁止机构,控制纳米运动平台(10)抬起至其Z向正极限位置;
    C5、控制Z向进给装置(12)向试件(5)方向进给规定距离,所述距离不超过纳米运动平台(10)Z向的行程极限与Z向进给装置(12)定位精度的差值;转步骤C1;
    C6、停止纳米运动平台(10)沿Z向的进给,揭下保护薄膜,完成对刀步骤;
    D、对试件(5)进行划擦
    启动气浮转台(3),根据以下公式计算并设定气浮转台(3)的转速n,单位为rpm:
    Figure PCTCN2017109913-appb-100002
    其中,R为微凸结构(14)所在气浮转台(3)端面的回转半径,m;v为划擦试验所需的划擦速度,m/s;试件(5)装夹在试件夹具(4)上随气浮转台(3)按照设定的转速n做回转运动;
    控制纳米运动平台(10)和Z向进给装置(12)实行交替划擦进给策略,所述交替划擦进给策略包括以下进给运动:
    D1、打开Z向进给装置(12)的锁止机构;
    D2、通过纳米运动平台(10),控制划擦工具(6)以10~1000nm的步长向试件(5)以步进的方式进给,所述步进式进给分解为Z向负方向的进给和Y向负方向的进给;如果是同一划痕的单次划擦,转步骤D21;如果是同一划痕的多次划擦,转步骤D22;
    D21、对于同一划痕的单次划擦,气浮转台(3)带动试件(5)每旋转一周,所述划擦工具(6)步进式进给的步长在Z向的分量fz不小于划擦试验所需的最小切削深度dmin,且不大于划擦试验所需的最大切削深度dmax,即dmin≤fz≤dmax;所述划擦工具(6)步进式进给的步长在气浮转台(3)端面径向即Y向的分量fy不小于10μm,使得沿Y向分布的,且切深渐变的划痕彼此相互独立、互不干扰;转步骤D3;
    D22、对于同一划痕的多次划擦,划擦工具(6)步进式进给运动完成一次步进后,停留时间t,直至达到试验所需的划擦次数s,再继续向试件(5)以步进方式进给,所述停留时间满足s/n≤t<(s+1)/n;所述划擦工具(6)步进式进给的步长在Z向的分量fz不小于划擦试验所需的最小切削深度dmin,且不大于划擦试验所需的最大切削深度dmax,即dmin≤fz≤dmax;所述划擦工具(6)步进式进给的步长在气浮转台(3)端面径向即Y向的分量fy不小于10μm,使得沿Y向分布的,且切深渐变的划痕彼此相互独立、互不干扰;
    D3、如果所述的步进式进给在Z方向的累计位移超过了试验所需的最大切削深度,或者所述的纳米运动平台(10)行至其Y向负限位,或者所述的步进式进给在Z方向的累计位移达到了纳米运动平台(10)在Z向负限位,停止步进式进给,转步骤D31;否则,转步骤D2;
    D31、分析进给期间力传感器(8)采集的力信号,如果检测到划擦力信号,即表明划擦工具(6)在在试件(5)的微凸结构(14)表面进行了高速划擦,转步骤D5;否则,转步骤D32;
    D32、如果纳米运动平台(10)已行至其Y向负限位,制纳米运动平台(10)运动至其Y向正限位,转步骤D2;否则,转步骤D33;
    D33、如果纳米运动平台(10)已行至其Z向负限位,转步骤D4;否则,转步骤D2;
    D4、解除Z向进给装置(12)的锁止机构,通过所述Z向进给装置(12)控制划擦工具(6)向试件(5)表面进给,使划擦工具(6)进一步逼近试件(5)表面;为了避免逼近过程中划擦工具(6)接触到微凸结构(14),Z向进给装置(12)的进给量不超过纳米运动平台(10)Z向的行程与Z向进给装置(12)定位精度的差值,控制纳米运动平台(10)移动至其Z向正限位;转步骤D1;
    D5、解除Z向进给装置(12)的锁止机构,通过所述Z向进给装置(12)控制划擦工具(6)向上抬起,停止所述气浮转台(3),完成划擦试验。
  10. 根据权利要求9所述的一种纳米切深高速单点划擦试验装置的试验方法,其特征在于:步骤A2所述的轴对称形状试件(5)如果厚度小于1mm时,在试件(5)背面粘贴长度不低于5mm、宽度不低于1mm、高度不低于10μm的弹性薄膜(13),采用具有平坦表面的磁力吸盘或真空吸盘进行装夹,在装夹的过程中,借助平坦的真空吸盘/磁力吸盘表面和弹性薄膜(13),通过真空吸附/磁力吸附作用,使得试件(5)表面产生弹性变形,形成长度、宽度和高度可控的微凸结构(14)。
PCT/CN2017/109913 2017-08-21 2017-11-08 一种纳米切深高速单点划擦试验装置及其试验方法 WO2019037282A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/346,760 US11313783B2 (en) 2017-08-21 2017-11-08 Nanometer cutting depth high-speed single-point scratch test device and test method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710718588.8A CN107505248B (zh) 2017-08-21 2017-08-21 一种纳米切深高速单点划擦试验装置及其试验方法
CN201710718588.8 2017-08-21

Publications (1)

Publication Number Publication Date
WO2019037282A1 true WO2019037282A1 (zh) 2019-02-28

Family

ID=60691304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/109913 WO2019037282A1 (zh) 2017-08-21 2017-11-08 一种纳米切深高速单点划擦试验装置及其试验方法

Country Status (3)

Country Link
US (1) US11313783B2 (zh)
CN (1) CN107505248B (zh)
WO (1) WO2019037282A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113109356A (zh) * 2021-04-09 2021-07-13 徐州盛科半导体科技有限公司 一种用于半导体封装缺陷检测的移动平台

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108225962B (zh) * 2018-02-06 2023-12-29 华侨大学 单颗磨粒钟摆式划擦试验装备
CN108982274A (zh) * 2018-09-30 2018-12-11 华侨大学 一种高速单点划擦试验装置及试验方法
CN109307634A (zh) * 2018-10-12 2019-02-05 华南理工大学 一种微纳米刻划硬脆性材料试验装置及其试验方法
CN111307435B (zh) * 2020-03-09 2023-07-28 西南交通大学 一种基于振动解耦的多模式界面摩擦学行为模拟试验台
CN113146360B (zh) * 2021-04-08 2022-04-08 天津大学 Sem在线纳米切削装置的切削力及切削应力测量方法
CN113790988A (zh) * 2021-10-20 2021-12-14 天津大学 基于柔性机构的宏微耦合次摆线微納划痕实验机
CN113899641A (zh) * 2021-11-01 2022-01-07 常德金鹏印务有限公司 一种耐划性检测装置及检测方法
CN114216846B (zh) * 2021-11-19 2024-01-12 南方科技大学 单点划擦实验装置与其进给系统及单点划擦实验方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01138437A (ja) * 1987-11-25 1989-05-31 Nec Corp ひっかき試験機
CN1254154A (zh) * 1998-11-17 2000-05-24 阿尔卑斯电气株式会社 浮起式磁头的冠顶形成方法及冠顶形成装置
US20090145208A1 (en) * 2007-11-27 2009-06-11 Csm Instruments Sa Method for analyzing a scratch test
CN102107391A (zh) * 2009-12-24 2011-06-29 北京天科合达蓝光半导体有限公司 一种SiC单晶晶片的加工方法
CN102564336A (zh) * 2012-02-10 2012-07-11 浙江工业大学 一种硬脆陶瓷材料临界切削深度的检测方法
CN103878392A (zh) * 2014-03-28 2014-06-25 天津大学 基于sem原位在线观测的纳米切削装置
CN104907417A (zh) * 2015-06-30 2015-09-16 哈尔滨理工大学 一种多硬度拼接淬硬钢凸曲面试件及凸模型面加工工艺
CN105021478A (zh) * 2015-07-29 2015-11-04 吉林大学 微型精密原位纳米压痕及刻划测试装置
CN105628611A (zh) * 2016-02-04 2016-06-01 华侨大学 一种单颗磨粒干涉行为测试设备
CN105717002A (zh) * 2016-02-04 2016-06-29 华侨大学 一种单颗磨粒高速连续划擦干涉行为测试机及其应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009049155B4 (de) * 2009-10-12 2017-01-05 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Ermittlung der Kantenrissempfindlichkeit eines Blechmaterials und Vorrichtung zum Herstellen eines Prüflings aus diesem Blechmaterial
US9933346B2 (en) * 2013-06-21 2018-04-03 Massachusetts Materials Technologies Llc Contact mechanic tests using stylus alignment to probe material properties
CN104070422B (zh) * 2014-07-08 2016-05-11 大连理工大学 亚微米曲率半径单颗粒金刚石针尖纳米深度高速划擦方法
PL3391020T3 (pl) * 2015-12-09 2022-04-04 Massachusetts Materials Technologies Llc Pomiar właściwości materiałów w warunkach lokalnego naprężenia rozciągającego za pomocą mechaniki kontaktowej
CN105717041B (zh) * 2016-02-04 2018-04-17 华侨大学 一种互为基准法预修硬脆试件的单颗磨粒连续划擦测试方法
CN105717030B (zh) * 2016-02-04 2018-08-14 华侨大学 一种单颗磨粒高速连续划擦试验机及其应用
CN105628533B (zh) * 2016-02-04 2019-01-01 华侨大学 一种cbn刀具预修黑色金属摩擦副的高速摩擦测试方法
CN105548003B (zh) * 2016-02-04 2019-01-29 华侨大学 金刚石刀具预修有色金属试件的磨粒划擦快停测试方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01138437A (ja) * 1987-11-25 1989-05-31 Nec Corp ひっかき試験機
CN1254154A (zh) * 1998-11-17 2000-05-24 阿尔卑斯电气株式会社 浮起式磁头的冠顶形成方法及冠顶形成装置
US20090145208A1 (en) * 2007-11-27 2009-06-11 Csm Instruments Sa Method for analyzing a scratch test
CN102107391A (zh) * 2009-12-24 2011-06-29 北京天科合达蓝光半导体有限公司 一种SiC单晶晶片的加工方法
CN102564336A (zh) * 2012-02-10 2012-07-11 浙江工业大学 一种硬脆陶瓷材料临界切削深度的检测方法
CN103878392A (zh) * 2014-03-28 2014-06-25 天津大学 基于sem原位在线观测的纳米切削装置
CN104907417A (zh) * 2015-06-30 2015-09-16 哈尔滨理工大学 一种多硬度拼接淬硬钢凸曲面试件及凸模型面加工工艺
CN105021478A (zh) * 2015-07-29 2015-11-04 吉林大学 微型精密原位纳米压痕及刻划测试装置
CN105628611A (zh) * 2016-02-04 2016-06-01 华侨大学 一种单颗磨粒干涉行为测试设备
CN105717002A (zh) * 2016-02-04 2016-06-29 华侨大学 一种单颗磨粒高速连续划擦干涉行为测试机及其应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113109356A (zh) * 2021-04-09 2021-07-13 徐州盛科半导体科技有限公司 一种用于半导体封装缺陷检测的移动平台
CN113109356B (zh) * 2021-04-09 2021-11-23 徐州盛科半导体科技有限公司 一种用于半导体封装缺陷检测的移动平台

Also Published As

Publication number Publication date
US11313783B2 (en) 2022-04-26
CN107505248A (zh) 2017-12-22
US20200056977A1 (en) 2020-02-20
CN107505248B (zh) 2019-07-16

Similar Documents

Publication Publication Date Title
WO2019037282A1 (zh) 一种纳米切深高速单点划擦试验装置及其试验方法
Tönshoff et al. Abrasive machining of silicon
CN107398783B (zh) 一种金属材料表面纳米级形貌加工方法及装置
Aurich et al. Micro grinding with ultra small micro pencil grinding tools using an integrated machine tool
JP2006239813A (ja) 小型多軸複合加工機および加工方法
JP3363587B2 (ja) 脆性材料の加工方法及びその装置
WO2022142158A1 (zh) 金刚石磨抛一体化的加工设备及其加工方法
CN111702555A (zh) 一种车削刀尖高度在机精密调整装置及方法
KR20090091900A (ko) 다이아몬드 바이트 연마장치
CN209640137U (zh) 一种微纳米刻划硬脆性材料试验装置
CN207528173U (zh) 一种金刚石刀具刃口轮廓质量超精密测量装置
WO2024045493A1 (zh) 一种微阵列模具控形柔性抛光方法
CN109307634A (zh) 一种微纳米刻划硬脆性材料试验装置及其试验方法
CN110270725B (zh) 一种高平面度金属表面电化学射流修形加工装置和方法
CN209215143U (zh) 一种高速单点划擦试验装置
CN116619221A (zh) 一种间隙自适应非接触抛光装置及方法
CN215727469U (zh) 一种工程陶瓷临界切厚测定用变深度刻划装置
CN105548003B (zh) 金刚石刀具预修有色金属试件的磨粒划擦快停测试方法
Kang et al. Surface layer damage of silicon wafers sliced by wire saw process
CN113686679A (zh) 一种半导体晶体高速机械刻划试验方法以及试验装置
CN105675491B (zh) 互为基准法预修硬脆试件的单颗磨粒划擦快停测试方法
CN113305655A (zh) 一种金刚石刀具加工装置
CN107806818A (zh) 一种金刚石刀具刃口轮廓质量超精密测量装置
Hu et al. Elastic deformation method for producing workpiece micro-protrusion topography in single-tip scratch test
CN105606531B (zh) Cbn刀具预修黑色金属试件的磨粒划擦快停测试方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17922723

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17922723

Country of ref document: EP

Kind code of ref document: A1