WO2019037170A1 - 亮度补偿数据量的优化方式及设备 - Google Patents

亮度补偿数据量的优化方式及设备 Download PDF

Info

Publication number
WO2019037170A1
WO2019037170A1 PCT/CN2017/102016 CN2017102016W WO2019037170A1 WO 2019037170 A1 WO2019037170 A1 WO 2019037170A1 CN 2017102016 W CN2017102016 W CN 2017102016W WO 2019037170 A1 WO2019037170 A1 WO 2019037170A1
Authority
WO
WIPO (PCT)
Prior art keywords
compensated
brightness
data
compensation data
brightness compensation
Prior art date
Application number
PCT/CN2017/102016
Other languages
English (en)
French (fr)
Inventor
王明良
Original Assignee
惠科股份有限公司
重庆惠科金渝光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠科股份有限公司, 重庆惠科金渝光电科技有限公司 filed Critical 惠科股份有限公司
Priority to US15/580,420 priority Critical patent/US10380975B2/en
Publication of WO2019037170A1 publication Critical patent/WO2019037170A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/10Intensity circuits
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0271Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
    • G09G2320/0276Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping for the purpose of adaptation to the characteristics of a display device, i.e. gamma correction

Definitions

  • the present invention relates to an optimization method and device for brightness compensation data amount, and more particularly to an optimization method and device for brightness compensation data amount by information stored in an external memory.
  • the flat display device has many advantages such as thin body, power saving, no radiation, and has been widely used.
  • the existing flat display devices mainly include a liquid crystal display (LCD) and an organic light emitting display (OLED).
  • the OLED display device has the advantages of self-luminescence, no backlight, high contrast, thin thickness, wide viewing angle, fast response speed, can be used for a flexible panel, wide temperature range, simple structure and simple process. It is considered to be an emerging application technology for next-generation flat panel displays. However, since the luminance of each OLED component in an OLED display may vary due to process or use loss, it is easy to have a mura effect.
  • the brightness compensation (Demura) technology is a technology that eliminates the display Mura and makes the brightness of the picture uniform.
  • the basic principle of the Demura technology is to let the panel display the grayscale image, and use a brightness acquisition device, such as a capacitive coupled device (CCD) to capture a panel to be compensated, and obtain the pixel units in the panel to be compensated.
  • the brightness value is then adjusted to the gray level value or voltage of the pixel unit in the Mura region to be darkened, and the over-bright area is brightened and the over-bright area is darkened to achieve a uniform display effect.
  • Demura equipment generally requires the camera to accurately capture a pixel unit. This has the advantage of obtaining the most accurate value of the position to be compensated (Mura), but it also proposes the resolution and processing power of the Demura camera. High demand, and there is no compensation for the smaller Mura.
  • the Demura algorithm used in the prior art generally estimates the corrected grayscale value based on the gamma value and the target luminance.
  • the deviation of the gamma curve of each pixel point, especially the Mura region is large, and a single calculation is performed according to the unified gamma value or the gamma curve, and the expected compensation effect cannot be achieved.
  • this technology uses the central area of the panel to be compensated as a reference point, and compares the difference between the brightness and the central area of the other to-be-compensated position area of the panel to be compensated, and then calculates according to the standard gamma curve (Gamma2.2 curve).
  • Luminance compensation data including compensation brightness and compensation gray scale value
  • this technology uses the central area of the panel to be compensated as a reference point, and compares the difference between the brightness and the central area of the other to-be-compensated position area of the panel to be compensated, and then calculates according to the standard gamma curve (Gamma2.2 curve).
  • Luminance compensation data including compensation brightness and compensation gray scale value
  • this method is relatively simple and easy, but the premise of calculating the brightness compensation data is that the panel to be compensated is already a standard Gamma2.2 curve, but it is impossible to make a gamma curve for each piece in the actual production process of the panel. To the precise control, and the position of the center point to be compensated (mura) can not be eliminated, it will easily affect the final effect of Demura.
  • the calculation is performed for each area by default, and in order to ensure the Demura effect, the minimum unit of the position area to be compensated cannot be too large (generally 8*8 pixel units), so the brightness compensation data of the entire panel to be compensated is finally obtained.
  • the amount of external memory (Demura flash) will be larger, the internal RAM of the processing IC on the driver board will be larger, and the data transmission time and rate will be limited.
  • an object of the present application is to provide a brightness acquisition device (Demura camera) imaging unit from a single pixel unit to a certain area (eg, 2 ⁇ 2 pixel units), by comprehensively determining the brightness of the larger area. It can reduce the resolution of Demura camera and increase the compensation ability of small Mura.
  • a brightness acquisition device (Demura camera) imaging unit from a single pixel unit to a certain area (eg, 2 ⁇ 2 pixel units)
  • the technical problem solved by the present application is to adopt an optimization method of brightness compensation, in particular to an optimization method for achieving brightness compensation by changing the resolution of the camera.
  • the present application can achieve a reduction in the resolution specifications of the Demura camera and enhance the brightness compensation capability for the small range Mura.
  • the present invention provides an optimization method for brightness compensation, including: providing a brightness acquisition device; and capturing, by the brightness acquisition device, a panel to be compensated as a brightness compensation reference picture, wherein the panel to be compensated has a first resolution,
  • the first resolution is defined by a plurality of first pixel units of a two-dimensional array
  • the brightness acquisition device has a second resolution
  • the second resolution is defined by a plurality of second pixel units of the two-dimensional array
  • the brightness compensation reference picture is composed of a plurality of shooting units, the shooting unit is composed of a plurality of second pixel units, wherein the second pixel unit is larger than the first pixel unit; taking four end points of the shooting units
  • the four second pixel units are the brightness reference, and the plurality of brightness compensation data of the other second pixel units in the shooting unit are obtained through a specific operation manner; and the brightness compensation data is corresponding to each of the shooting units.
  • the first pixel unit performs brightness compensation.
  • the brightness acquiring device is a capacitive coupling component camera.
  • the first resolution is an ultra-high resolution defined by a first pixel unit arranged in a 3840*2160 array.
  • the side lengths of the second pixel unit are each twice that of the first pixel unit.
  • the number of second pixel units defining the second resolution is 1/4 of the number of first pixel units defining the first resolution.
  • the specific operation mode is a linear operation.
  • the present application provides a pre-stage device for brightness compensation, comprising: a panel to be compensated, having a first resolution, the first resolution being defined by a plurality of first pixel units of a two-dimensional array; and a brightness acquisition
  • the device has a second resolution defined by a plurality of second pixel units of the two-dimensional array for capturing the panel to be compensated as a brightness compensation reference picture, and the brightness compensation reference picture is a plurality of shooting units, the shooting unit comprising a plurality of second pixel units; wherein The second pixel unit is larger than the first pixel unit.
  • the brightness acquisition device is a capacitive coupling component camera.
  • an object of the present application is to provide an optimization method for luminance compensation, and more particularly to an optimization method for pre-measuring luminance compensation of a reference point sampling region.
  • the Gamma curve at the center of the panel can be measured and compensated in advance, and the Mura at the center of the panel is eliminated and brought to the standard Gamma 2.2 to achieve the most accurate compensation effect.
  • the present application provides an optimized method for brightness compensation, including: setting a compensation reference sampling area on a panel to be compensated, the panel to be compensated has a first resolution, and the first resolution is determined by a two-dimensional array. a plurality of first pixel unit definitions; providing a brightness acquiring device, wherein the brightness acquiring device captures the compensation reference sampling area as a sampling picture, the sampling picture is composed of a plurality of shooting units, and the shooting units are corresponding
  • the compensation reference sampling area includes a plurality of first pixel units, wherein each of the shooting units can correspond to the plurality of first pixel units; measuring brightness uniformity of all the shooting units in the sampling picture, and selecting a brightness
  • the photographing unit with good uniformity is a sampling photographing unit, and the brightness of the sampling photographing unit is used as a compensation reference value; and the compensation reference value is brought according to a specific operation manner to obtain a compensation reference curve;
  • the brightness acquiring device captures the panel to be compensated as a brightness compensation reference picture, and
  • the compensation reference sampling area is in a central area of the panel to be compensated.
  • the brightness acquiring device is a capacitive coupling component camera.
  • each of the shooting units may correspond to 8 ⁇ 8 first pixel units.
  • the first resolution is an ultra-high resolution defined by a first pixel unit arranged in a 3840*2160 array.
  • the specific operation mode is to estimate the compensation reference curve according to a gamma value and a target brightness.
  • the specific operation mode is a gamma 2.2 curve.
  • the present application provides an apparatus for optimizing brightness compensation, comprising: a panel to be compensated, having a first resolution, the first resolution being defined by a plurality of first pixel units of a two-dimensional array; a brightness acquiring device,
  • the image to be compensated is a picture, the picture is composed of a plurality of shooting units, the shooting unit can correspond to a plurality of first pixel units, and a brightness measuring unit is configured to measure each of the pictures.
  • a brightness uniformity of the shooting unit and taking a brightness reference value a brightness comparing unit for comparing the difference between the brightness of each of the shooting units and the brightness reference value; a calculating unit, according to the brightness and the brightness of each of the shooting units Luminance base Calculating a plurality of brightness compensation data of each of the shooting units; and a brightness compensation unit, increasing or decreasing brightness of each of the first pixel units according to the brightness compensation data, and performing positive direction on each of the first pixel units Or negative brightness compensation.
  • an object of the present application is to provide an optimized manner of brightness compensation data amount, and more particularly to an optimization method of brightness compensation data amount by information stored in an external memory.
  • the information stored in the external memory can be used to determine the difference in brightness between each of the position areas to be compensated and the reference point, and the area of the position to be compensated with less difference is not compensated, thereby reducing the total amount of brightness compensation of Demura.
  • the present application provides an optimized method for the amount of brightness compensation data, including: providing a panel to be compensated, the panel to be compensated having a brightness compensation data memory, storing a plurality of brightness compensation data of the panel to be compensated; and externally connecting a data a processor, the data processor having a plug-in memory, the plug-in memory storing a judgment information for determining whether the brightness compensation data is to be compensated; reading the brightness compensation data by the data processor, and determining according to the The information is divided into a plurality of to-be-compensated data and a plurality of uncompensated data, and the determined plurality of to-be-compensated data and the non-compensated data are stored in the external memory; and the brightness compensation is performed.
  • the data memory reads and stores the to-be-compensated data in the external memory.
  • the brightness compensation data memory compares a reference point brightness of the panel to be compensated with a plurality of positions to be compensated, and calculates and stores corresponding to a plurality of to be compensated according to a specific operation manner. Multiple brightness compensation data for the location.
  • the specific operation mode is a gamma 2.2 curve.
  • the data processor is a timing controller.
  • the determination information determines that the data to be compensated is 1 and determines that the compensation data is not 0.
  • the brightness compensation data memory reads and stores the data determined to be 1 in the external memory.
  • the present application provides an apparatus for optimizing the amount of brightness compensation data, comprising: a panel to be compensated, having a brightness compensation data memory, storing a plurality of brightness compensation data; and a data processor externally connected to the panel to be compensated And reading the brightness compensation data; and storing a judgment information for providing the data processor to determine the brightness compensation data as a plurality of to-be-compensated data and a plurality of non-compensation data; wherein
  • the brightness compensation data memory can read and store the to-be-compensated data in the external memory.
  • the data processor is a timing controller.
  • the device can be used to implement: 1. By comprehensively determining the brightness of a larger pixel unit range, the resolution of the Demura camera can be reduced simultaneously. The compensation capability of the large-to-small-range Mura; 2. Pre-set and measure a sampling area to measure and compensate the Gamma curve in the center of the panel in advance, eliminate the Mura at the center of the panel and make it reach the standard Gamma2.2, reaching the maximum Precise compensation effect; 3.
  • the information of the hanging memory can determine the difference in brightness between each of the position areas to be compensated and the reference point, and the position of the area to be compensated with less difference is not compensated, thereby reducing the function of the total amount of brightness compensation of Demura.
  • FIG. 1A is a schematic diagram of a brightness compensation device according to the present application.
  • FIG. 1B is a schematic diagram of an exemplary shooting unit detecting brightness compensation.
  • Figure 1C is a schematic diagram of an exemplary reference point sampling.
  • FIG. 1D is a schematic diagram of the working principle of the brightness compensation technology.
  • FIG. 1E is a schematic diagram of the calculation principle of the brightness compensation data.
  • FIG. 2 is a schematic diagram of detecting brightness compensation of a shooting unit according to an embodiment of the present application.
  • FIG. 3A is a schematic diagram of a compensation reference sampling area according to an embodiment of the present application.
  • FIG. 3B is a schematic diagram of a sampling and shooting unit according to an embodiment of the present application.
  • FIG. 4A is a schematic structural diagram of an external data processor according to an embodiment of the present application.
  • FIG. 4B is a schematic diagram of data storage of the external storage device according to the embodiment of the present application.
  • FIG. 4C is a schematic diagram of data storage of a brightness compensation data memory according to an embodiment of the present application.
  • the word “comprising” is to be understood to include the component, but does not exclude any other component.
  • “on” means located above or below the target component, and does not mean that it must be on the top based on the direction of gravity.
  • Brightness compensation (Demura) technology is a kind of elimination display Mura, a technology that makes the picture brightness uniform.
  • FIG. 1A is a schematic diagram of a brightness compensation device according to the present application.
  • the basic principle of Demura technology is to display the grayscale image of the panel 1 to be compensated without brightness compensation, and use a brightness acquisition device 2, such as a capacitive coupled device (CCD).
  • the compensation panel 1 is obtained with a brightness compensation reference picture 21 (having a second resolution 20 defined by the second pixel unit 200, as exemplified by an ultra-high resolution of 3840 ⁇ 2160), and the panel to be compensated is obtained.
  • a brightness comparison unit 4, a calculation unit 5, and a brightness compensation unit 6 perform measurement of brightness uniformity on the imaging unit 211 of the brightness compensation reference picture 21, select a reference point of the brightness reference, and further compensate the pixel of the position. Perform brightness comparison, calculate brightness compensation data that needs to be adjusted, and adjust the gray level value or voltage of the pixel unit in the Mura region to be brightened, and make the over dark area brighter and brighter. Dark, achieve uniform display.
  • the brightness compensation data is stored in a brightness compensation data memory 11 of the panel. When the panel power is turned on, the external data processor 12 reads the brightness compensation data in the brightness compensation data memory 11 and stores the data. In the external memory 121 of the data processor 12.
  • the Demura algorithm used in the prior art generally estimates the corrected grayscale value based on the gamma value and the target luminance.
  • the deviation of the gamma curve of each pixel point, especially the Mura region is large, and a single calculation is performed according to the unified gamma value or the gamma curve, and the expected compensation effect cannot be achieved.
  • the Demura device generally requires the camera unit 211 ′ of the brightness compensation reference picture 21 captured by the camera (the brightness acquiring device 2 ) to accurately capture a single pixel unit (ie, the first to be compensated for the panel 1).
  • a pixel unit 100 the advantage is that the most accurate value of the position to be compensated (Mura) can be obtained, but this also imposes high requirements on the resolution and processing capability of the camera, and the smaller Mura causes Undetectable without brightness compensation, lack of compensation.
  • the first resolution 10 of FIG. 1A is an ultra-high resolution (3840*2160).
  • the demura camera (brightness acquisition device 2) is separated by 8 in both horizontal and vertical directions.
  • the one pixel unit 100 is an imaging unit 211 ′, and the brightness compensation data of each of the first pixel units 100 is obtained by mathematical operation using the imaging unit 211 ′ as a reference. Taking the first 8 ⁇ 8 imaging unit 211 in the upper leftmost corner of the luminance compensation reference picture 21 of FIG.
  • the imaging unit 211 takes the second pixel unit 200A′ on the upper left, the second pixel unit 200B′ on the lower left, and the lower right
  • the four pixel units of the two pixel unit 200C′ and the second pixel unit 200D′ of the upper right are the luminance values of the reference point, and according to the luminance values of the four reference points, the second pixel unit corresponding to the 8 ⁇ 8 region is obtained by linear operation.
  • the compensation value of one pixel unit 100 As shown in the figure, the middle circle is the position M to be compensated for uneven brightness, and the brightness compensation data of the position M to be compensated is linearly calculated from the four reference second pixel units 200A' to 200D'.
  • This method can be accurate to the single first pixel unit 100 corresponding to the panel 1 to be compensated, which brings a better brightness compensation effect to the larger compensation position M, but at the same time, the resolution of the brightness acquisition device 2 is also proposed. High demand, at the same time If the compensation position M itself is small, just less than the 8X8 unit, the brightness acquisition device 2 cannot capture it, and this compensation mechanism cannot achieve a good compensation effect.
  • the current technology is based on the central area of the panel 1 to be compensated as the reference point S', as shown in FIG. 1C, by comparing the difference between the brightness of the other M to be compensated and the brightness of the central reference point S of the panel 1 to be compensated, and then according to The specific operation mode f of Fig. 1E is brought into the compensation reference curve C (such as the standard gamma curve Gamma2.2 curve) to calculate the brightness compensation data D (including the compensation brightness D1 and the compensation gray level value D2) to be compensated, to reach the whole block.
  • the brightness of the panel is even.
  • FIG. 1D is a schematic diagram of the working principle of the brightness compensation technology (Demura).
  • the brightness compensation device captures the display condition of the panel 1 to be compensated through the brightness acquiring device 2 as shown in FIG. 1A, and obtains the brightness (L) on the left side of FIG. 1D.
  • Position (H) brightness curve after Demura's analysis and calculation, data compensation is performed on two areas in the curve (position MA to be compensated, position MB to be compensated) (compensation data DA of intermediate curve, compensation data DB), ie
  • the display data of this area (the right graph) will be the sum of the original data (left graph) and the compensation data (middle graph).
  • the compensation data DA of the position MA to be compensated is negative, that is, the display data will be subtracted. Smaller, and the compensation data DB corresponding to the position MB to be compensated will be increased accordingly, so that a uniform brightness can be obtained finally, and the elimination of mura can be realized.
  • this method is relatively simple and easy, but the premise of calculating the brightness compensation data D is that the panel to be compensated 1 is already a standard Gamma 2.2 curve, but the actual production process of the panel is impossible for each piece of gamma.
  • the curve is precisely controlled, and the position M to be compensated at the center point cannot be eliminated (as shown in Fig. 1C), so it is easier to affect the final effect of Demura.
  • the calculation is performed for each shooting unit 211 by default, and in order to ensure the Demura effect, the minimum shooting unit 211 of the position M to be compensated cannot be too large (generally 8*8 first pixel units), so the final block
  • the amount of brightness compensation data D of the panel 1 to be compensated is large, and the capacity of the external memory 121 (Demura flash) is large, and the internal RAM of the processing IC on the driver board is also large, which also brings Limitations on data transfer time and rate.
  • the current minimum brightness compensation shooting unit 211 is 8*8 first pixel units 100, that is, 8 first pixel units are spaced in the horizontal direction and the vertical direction.
  • the brightness compensation data D of each first pixel unit 100 is obtained by a specific operation mode f.
  • the number of the shooting unit 211 of this method is 481*271.
  • the minimum compensation capacity of the brightness compensation memory of the brightness compensation data D is greater than 4.48 Mb.
  • FIG. 2 is a schematic diagram of the detection unit for detecting brightness compensation according to the embodiment of the present application.
  • the technical problem solved by the present application is to adopt an optimized method of achieving brightness compensation by changing the resolution of the camera.
  • the basic pixel unit of the camera minimum photographing unit 211 that is, the second pixel unit 200 of the solid line grid
  • the first pixel unit 100 the camera will integrate this 2X2 size
  • the brightness in the second pixel unit 200 is used as the minimum unit for compensating the calculation, so that the camera only needs to be able to clearly capture the area of the 2 ⁇ 2 first pixel unit, and the resolution can be reduced by 4 times, which greatly reduces the pair.
  • the requirements of the demura camera can have a large cost down effect on equipment costs.
  • this scheme also increases the compensation ability for the smaller range of the position M to be compensated. If the second pixel unit 200A'-200D' of FIG. 1B is used as the reference point, the position M to be compensated will not be detected. It is found that the compensation effect will be poor. With the design idea of the present application, the size of the second pixel unit 200 can be expanded from a single first pixel unit 100 to 2x2 first pixel units 100 to detect the position M to be compensated, thereby making a comparison. Good compensation. In fact, the position M to be compensated is a regional distribution.
  • the present application provides an optimization method for the brightness compensation.
  • the method includes: providing a brightness acquiring device 2; and capturing, by the brightness acquiring device 2, a panel to be compensated 1 as a brightness compensation reference picture 21,
  • the compensation panel 1 has a first resolution 10 defined by a plurality of first pixel units 100 of a two-dimensional array, the brightness acquisition device 2 having a second resolution 20,
  • the second resolution 20 is defined by a plurality of second pixel units 200 of a two-dimensional array, the brightness compensation reference picture 21 being composed of a plurality of imaging units 211, the imaging unit 211 being composed of a plurality of second pixel units 200,
  • the second pixel unit 200 is larger than the first pixel unit 100; the four second pixel units 200A-200D at the four end points of the shooting unit 211 are taken as a brightness reference, and are obtained through a specific operation mode f. a plurality of brightness compensation data D of the other second pixel units 200 in the image capturing unit 211; and brightness compensation for
  • the brightness acquiring device 2 is a capacitive coupling component camera.
  • the first resolution 10 is an ultra-high resolution defined by the first pixel unit 100 arranged in a 3840*2160 array.
  • the side lengths of the second pixel unit 200 are each twice that of the first pixel unit 100.
  • the number of second pixel units 200 defining the second resolution 20 is 1/4 of the number of first pixel units 100 defining the first resolution 10.
  • the specific operation mode f is a linear operation.
  • the present application provides a pre-stage device for brightness compensation, comprising: a panel to be compensated 1 having a first resolution 10 defined by a plurality of first pixel units 100 of a two-dimensional array; And a brightness acquisition device 2 having a second resolution 20 defined by a plurality of second pixel units 200 of the two-dimensional array for capturing the to-be-compensated panel 1 as a brightness compensation reference Screen 21, the brightness compensation reference picture 21 is composed of a plurality of shooting units 211,
  • the photographing unit 211 includes a plurality of second pixel units 200; wherein the second pixel unit 200 is larger than the first pixel unit 100.
  • the brightness acquiring device 2 is a capacitive coupling component camera.
  • the device can reduce the brightness of the second pixel unit 200 expanded to 2x2 first pixel units 100 by comprehensively determining the Demura.
  • the camera resolution also increases the ability to compensate for small ranges of Mura.
  • FIG. 3A and FIG. 3B are schematic diagrams of a compensation reference sampling area and a schematic diagram of a sampling and shooting unit according to an embodiment of the present application.
  • the technical problem solved by the present application is to adopt an optimization method of pre-measuring the brightness compensation of the reference point sampling area.
  • the present invention before applying the brightness compensation, the present invention first takes a relatively large central area on the panel to be compensated 1 as a compensation reference sampling area A to obtain a sampling picture 22 as shown in FIG. 3B.
  • the size of the compensation reference sampling area A can be set according to actual needs. After the shooting, the brightness uniformity of the entire sampling picture 22 area is measured by the brightness measuring unit 3 in FIG.
  • the reference point S' in FIG. 1C may have a problem of mura (that is, the position M to be compensated); and in order to ensure the compensation accuracy, the compensation reference sampling area A is also subjected to luminance sampling, and then according to the compensation reference shown in FIG. 1E.
  • Curve C (such as gamma 2.2 curve)
  • the brightness compensation value of the sampling unit 221 can be calculated, so that the sampling unit 221 truly achieves the perfect target of gamma 2.2. In this way, when the other areas to be compensated of the panel are compensated, the brightness compensation data D calculated directly by gamma 2.2 is accurate, and the compensation effect is also the best.
  • the present application provides an optimized method of brightness compensation, as shown in FIG. 1A, including: setting a compensation reference sampling area A on a panel to be compensated 1, and the panel to be compensated 1 has a first resolution.
  • the first resolution 10 is defined by a plurality of first pixel units 100 of a two-dimensional array; a brightness acquiring device 2 is provided, and the compensation reference sampling area A is captured by the brightness acquiring device 2 as a sampling picture 22
  • the sampling screen 22 is composed of a plurality of shooting units 211, and the shooting units 211 may correspond to the plurality of first pixel units 100 included in the compensation reference sampling area A, wherein each of the shooting units 211 may correspond to a plurality of a pixel unit 100; measuring brightness uniformity of all the shooting units 211 in the sampling screen 22, selecting a shooting unit 211 with good brightness uniformity as a sampling shooting unit 221, and using the sampling unit
  • the brightness of 221 is used as a compensation reference value; the compensation reference value is brought into the compensation reference value according to a specific
  • the compensation reference sampling area A is in a central area of the panel 1 to be compensated.
  • the brightness acquiring device 2 is a capacitive coupling component camera.
  • each of the shooting units 211 may correspond to 8 ⁇ 8 first pixel units 100.
  • the first resolution 10 is an ultra-high resolution defined by the first pixel unit 100 arranged in a 3840*2160 array.
  • the specific operation mode f is to estimate the compensation reference curve C according to the gamma value and the target brightness.
  • the specific operation mode f is a gamma 2.2 curve.
  • the present application provides an optimization device for brightness compensation, comprising: a panel to be compensated 1 having a first resolution 10 defined by a plurality of first pixel units 100 of a two-dimensional array;
  • the brightness acquiring device 2 is configured to capture the panel to be compensated 1 as a sampling screen 22, the sampling screen 22 is composed of a plurality of shooting units 211, and the shooting unit 211 can correspond to a plurality of first pixel units 100;
  • the measuring unit 3 is configured to measure the brightness uniformity of each of the shooting units 211 in the picture and take a sample shooting unit 211;
  • a brightness comparison unit 4 is configured to compare the brightness of each of the shooting units 211 with the sampling a difference of the photographing unit 211;
  • the device can measure and compensate the Gamma curve at the center of the panel by compensating the setting of the reference sampling area A, and eliminate the Mura at the center of the panel. Bring it to the standard Gamma2.2 for the most accurate compensation.
  • FIG. 4A to FIG. 4C are schematic diagrams showing the structure of an external data processor, a data storage diagram of the external memory, and a data storage of the brightness compensation data memory according to the embodiment of the present application.
  • the technical problem solved by the present application is to adopt an optimization method of brightness compensation data amount by information stored in the external memory.
  • the present application stores the judgment information to be compensated in the plug-in memory 121, and represents 1 to be compensated data CD, 0 represents no compensation data ND, and accordingly, the brightness compensation data memory 11 only needs to sequentially store the compensation area.
  • the data to be compensated CD can be used, and the external data processor 12 (such as the timing controller TCON) can correctly match the area to be compensated with the brightness compensation data D according to the set judgment information. For all shooting units that do not require compensation, TCON stores no compensation data ND of 0.
  • the external memory 121 stores a 4*4 brightness compensation data D, which is 1101 in the horizontal direction, which means that the third point in the horizontal direction is no compensation data ND (as shown in FIG. 4C). That is, the compensation value is 0, and the other three points are the data CD to be compensated; if it is 1011 in the vertical direction, that is, the second point is the compensation data ND, and the other three points are the data CD to be compensated.
  • the corresponding brightness compensation memory 11 only needs to store 3*3 of the data CD to be compensated as shown in FIG. 4C, and corresponds to the point where the brightness compensation data D in the external memory 121 is 1.
  • This scheme only needs the existing demura program to judge the difference between the position to be compensated and the reference point.
  • the compensation standard can be determined according to the actual production condition. If the difference is small, it is considered that no compensation is needed, and the corresponding position in the external memory 121 Write 0, if the difference is large, write 1 in the external memory 121. Then, it is only necessary to sequentially store the data of the point to be compensated after the determination in the brightness compensation memory 11.
  • the present application can determine the difference in brightness between each of the position areas to be compensated and the reference point by using the information stored in the external memory, and reduce the position of the position to be compensated with less difference, thereby reducing Demura's Brightness compensates for the total amount of data.
  • the present application provides an optimized manner of the brightness compensation data amount, as shown in FIG. 1A, including: providing a panel 1 to be compensated, the panel to be compensated 1 having a brightness compensation data memory 11 for storing the to-be-compensated a plurality of brightness compensation data D of the panel; externally connected to a data processor 12, the data processor 12 has a plug-in memory 121, and the plug-in memory 121 stores a judgment information for determining whether the brightness compensation data D is to be compensated; The data processor 12 reads the brightness compensation data D, and divides the brightness compensation data D into a plurality of to-be-compensated data CD and a plurality of non-compensation data ND according to the determination information, and the determined A plurality of to-be-compensated data CDs and no-compensation data ND are stored in the external memory 121; and the brightness-compensated data memory 11 reads and stores the to-be-compensated data CDs in the external memory 121.
  • the brightness compensation data memory 11 compares a brightness of a reference point S of the panel to be compensated 1 with a plurality of positions M to be compensated, and calculates and stores a corresponding value according to a specific operation mode f. A plurality of brightness compensation data D at a plurality of positions M to be compensated.
  • the specific operation mode f is a gamma 2.2 curve.
  • the data processor 12 is a timing controller.
  • the determination information determines that the data to be compensated CD is 1 and determines that the data ND is not required to be 0.
  • the brightness compensation data memory 11 reads and stores the data of the plug-in memory 121 that is determined to be 1.
  • the present application provides an apparatus for optimizing the amount of brightness compensation data, comprising: a panel to be compensated 1 having a brightness compensation data memory 11 storing a plurality of brightness compensation data D; a data processor 12 externally connected to the The compensation panel 1 is configured to read the brightness compensation data D; and an external memory 121 is stored with a judgment information for providing the data processor 12 to determine the brightness compensation data D as a plurality of data to be compensated CD and The plurality of compensation data NDs are not required; wherein the brightness compensation data memory 11 can read and store the to-be-compensated data CDs in the external memory 121.
  • the data processor 12 is a timing controller.
  • the device can determine the M area to be compensated and the reference point S (and the sampling unit) by the judgment information stored in the external memory 121.
  • the brightness difference of 221) is such that the difference M to be compensated is not compensated, thereby reducing the function of Demura's brightness compensation total data amount.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Picture Signal Circuits (AREA)

Abstract

一种亮度补偿数据(D)量的优化方式及设备,包括:提供一待补偿面板(1),待补偿面板(1)具有一亮度补偿数据存储器(11),存储待补偿面板(1)的多个亮度补偿数据(D);外接一数据处理器(12),数据处理器(12)具有一外挂存储器(121),外挂存储器(121)存储判断该些亮度补偿数据(D)是否要补偿的一判断信息;以数据处理器(12)读取该些亮度补偿数据(D),并根据判断信息将该些亮度补偿数据(D)区分为多个待补偿数据(CD)以及多个不需补偿数据(ND),并将判断后的多个待补偿数据(CD)和不需补偿数据(ND)存储于外挂存储器(121);以及以亮度补偿数据(D)存储器(11)读取并存储外挂存储器(121)中的该些待补偿数据(CD)。

Description

亮度补偿数据量的优化方式及设备 技术领域
本申请涉及一种亮度补偿数据量的优化方式及设备,特别是涉及一种通过存储于外挂存储器的信息进行的亮度补偿数据量的优化方式及设备。
背景技术
平面显示器件具有机身薄、省电、无辐射等众多优点,得到了广泛的应用。现有的平面显示器件主要包括液晶显示器件(Liquid Crystal Display,LCD)及有机发光二极管显示器件(Organic Light Emitting Display,OLED)。有机发光二极管显示器件由于同时具备自发光,不需背光源、对比度高、厚度薄、视角广、反应速度快、可用于晓曲性面板、使用温度范围广、构造及制程较简单等优异特性,被认为是下一代平面显示器的新兴应用技术。然而,由于OLED显示器中,每一个OLED组件的辉度(luminance)会因为制程或使用上的损耗而有所差异,因此很容易有亮度不均匀(mura effect)的现象。
目前在平面显示面板生产过程中由于生产工艺等原因经常会产生亮度不均匀的待补偿区域(Mura),出现亮点或暗点,导致面板的显示质量降低。亮度补偿(Demura)技术是一种消除显示器Mura,使画面亮度均匀的技术。Demura技术的基本原理是,让面板显示灰阶画面,用一亮度获取装置,如使用电容耦合组件相机(Charge Coupled Device,CCD)拍摄一待补偿面板,获取所述待补偿面板中各像素单元的亮度值,然后调整待补偿位置(Mura)区域的像素单元的灰阶值或者电压,使过暗的区域变亮、过亮的区域变暗,达到均匀的显示效果。
唯,目前Demura设备一般要求相机要可以精准拍摄到一像素单元,这样的好处是可以得到待补偿位置(Mura)的最精确的数值,但是这同时也对Demura相机的分辨率及运算处理能力提出了高要求,而且对较小的Mura会没有补偿能力。
又,在实际生产中应用Demura技术时,不仅要求显示效果好,还要求耗时短。就需要良好且实用的Demura算法。现有技术采用的Demura算法通常是根据伽马(Gamma)值和目标亮度来推算修正后的灰阶值。在OLED显示面板中,各个像素点特别是Mura区域的伽马曲线的偏差很大,根据统一的伽马值或伽马曲线做单次推算,并不能达到预期补偿效果。
但是目前这种技术是以待补偿面板的中心区域为基准点,通过比较待补偿面板其他待补偿位置区域的亮度与中心区域的差异,再根据标准的伽马曲线(Gamma2.2曲线)去计算需要补偿的亮度补偿数据(包括补偿亮度以及补偿灰阶值),达到整块面板的亮度均匀。
目前这种做法比较简便易行,但是计算亮度补偿数据的前提是假定所述待补偿面板已经是标准的Gamma2.2曲线,但面板的实际生产过程中是不可能对每一片的伽马曲线做到精准管控的,且中心点的待补偿位置(mura)一般无法消除,所以会比较容易影响到Demura的最终效果。
同时,默认会针对每块区域都进行计算,且为了确保Demura效果,待补偿位置区域的最小单元不能太大(一般为8*8个像素单元),所以最终整块待补偿面板的亮度补偿数据量就会较大,那么带来的外部存储器(Demura flash)的容量就要较大,驱动板上的处理IC内部RAM也要较大,也会带来数据传输时间和速率上的限制。
发明内容
为了解决上述技术问题,本申请的目的在于提供一种将亮度获取装置(Demura相机)拍摄单元由单个像素单元扩大为一定区域(如2x2个像素单元),通过综合判断这个较大区域的亮度,可减小Demura相机分辨率同时增大小Mura的补偿能力。
本申请解决其技术问题是采用一种亮度补偿的优化方式,特别是涉及一种通过改变相机分辨率达到亮度补偿的优化方式。通过改变相机分辨率,本申请可达到减小Demura相机的分辨率规格要求以及增强对小范围Mura的亮度补偿能力。
本申请的目的及解决其技术问题可采用以下技术措施进一步实现。
本申请提供了一种亮度补偿的优化方式,包括:提供一亮度获取装置;以所述亮度获取装置拍摄一待补偿面板为一亮度补偿参考画面,所述待补偿面板具一第一分辨率,所述第一分辨率由二维阵列的多个第一像素单元定义,所述亮度获取装置具有一第二分辨率,所述第二分辨率由二维阵列的多个第二像素单元定义,所述亮度补偿参考画面由多个拍摄单元组成,所述拍摄单元由多个第二像素单元组成,其中,所述第二像素单元大于所述第一像素单元;采取该些拍摄单元四个端点处的四个第二像素单元为亮度基准,透过一特定运算方式得到所述拍摄单元内其他第二像素单元的多个亮度补偿数据;以及以该些亮度补偿数据对各该拍摄单元对应的所述第一像素单元进行亮度补偿。
在本申请的一实施例中,所述亮度获取装置为电容耦合组件相机。
在本申请的一实施例中,所述第一分辨率为由3840*2160阵列排布的第一像素单元定义而成的超高分辨率。
在本申请的一实施例中,所述第二像素单元的边长各为所述第一像素单元的两倍。
在本申请的一实施例中,定义所述第二分辨率的第二像素单元数量为定义第一分辨率的第一像素单元数量的1/4。
在本申请的一实施例中,所述特定运算方式为线性运算。
本申请的目的及解决其技术问题还可采用以下技术措施进一步实现。
本申请提供了一种亮度补偿的前阶段设备,包括:一待补偿面板,具有一第一分辨率,所述第一分辨率由二维阵列的多个第一像素单元定义;以及一亮度获取装置,具有一第二分辨率,所述第二分辨率由二维阵列的多个第二像素单元定义,用以拍摄所述待补偿面板为一亮度补偿参考画面,所述亮度补偿参考画面由多个拍摄单元组成,所述拍摄单元包括多个第二像素单元;其中, 所述第二像素单元大于所述第一像素单元。
在本申请的上述实施例中,所述亮度获取装置为电容耦合组件相机。
为了解决上述技术问题,本申请的目的在于提供一种亮度补偿的优化方式,特别是涉及一种预先量测基准点取样区域的亮度补偿的优化方式。通过预先量测基准点取样区域可提前量测并补偿面板中心的Gamma曲线,消除面板中心的Mura且使之达到标准的Gamma2.2,达到最精准的补偿效果。
本申请的目的及解决其技术问题可采用以下技术措施进一步实现。
本申请提供了一种亮度补偿的优化方式,包括:于一待补偿面板上设定一补偿基准取样区域,所述待补偿面板具一第一分辨率,所述第一分辨率由二维阵列的多个第一像素单元定义;提供一亮度获取装置,以所述亮度获取装置拍摄所述补偿基准取样区域为一取样画面,所述取样画面由多个拍摄单元组成,该些拍摄单元可对应所述补偿基准取样区域包括的多个第一像素单元,其中,每一个拍摄单元可对应多个第一像素单元;量测所述取样画面中所有所述拍摄单元的亮度均匀性,选择一亮度均匀性佳的所述拍摄单元为一取样拍摄单元,并以所述取样拍摄单元的亮度做为一补偿基准值;根据一特定运算方式带入所述补偿基准值,取得一补偿基准曲线;以所述亮度获取装置拍摄所述待补偿面板为一亮度补偿参考画面,所述亮度补偿参考画面由多个拍摄单元组成;将所述亮度补偿参考画面中的所有拍摄单元的亮度带入所述补偿基准曲线,计算出各该拍摄单元对应的各该第一像素单元的多个亮度补偿数据;以及根据该些亮度补偿数据对各该第一像素单元进行亮度补偿。
在本申请的一实施例中,所述补偿基准取样区域于所述待补偿面板的中心区域。
在本申请的一实施例中,所述亮度获取装置为电容耦合组件相机。
在本申请的一实施例中,所述每一个拍摄单元可对应8x8个第一像素单元。
在本申请的一实施例中,所述第一分辨率为由3840*2160阵列排布的第一像素单元定义而成的超高分辨率。
在本申请的一实施例中,所述特定运算方式为根据伽马值和目标亮度来推算所述补偿基准曲线。
在本申请的一实施例中,所述特定运算方式为伽马2.2曲线。
本申请的目的及解决其技术问题还可采用以下技术措施进一步实现。
本申请提供了一种亮度补偿的优化设备,包括:一待补偿面板,具有一第一分辨率,所述第一分辨率由二维阵列的多个第一像素单元定义;一亮度获取装置,用以拍摄所述待补偿面板为一画面,所述画面由多个拍摄单元组成,所述拍摄单元可对应多个第一像素单元;一亮度量测单元,用以量测所述画面中各该拍摄单元的亮度均匀性并取一亮度基准值;一亮度比较单元,用以比较各该拍摄单元的亮度与所述亮度基准值的差异;一计算单元,根据各该拍摄单元的亮度与所述亮度基 准值的差异计算各该拍摄单元的多个亮度补偿数据;以及一亮度补偿单元,根据该些亮度补偿数据增加或减少各该第一像素单元的亮度,对各该第一像素单元进行正向或负向的亮度补偿。
为了解决上述技术问题,本申请的目的在于提供一种亮度补偿数据量的优化方式,特别是涉及一种通过存储于外挂存储器的信息进行的亮度补偿数据量的优化方式。通过存储于外挂存储器的信息可判断每块待补偿位置区域与基准点的亮度差异大小,将差异较小的待补偿位置区域做不补偿处理,以此来减小Demura的亮度补偿总数据量。
本申请的目的及解决其技术问题可采用以下技术措施进一步实现。
本申请提供了一种亮度补偿数据量的优化方式,包括:提供一待补偿面板,所述待补偿面板具有一亮度补偿数据存储器,存储所述待补偿面板的多个亮度补偿数据;外接一数据处理器,所述数据处理器具有一外挂存储器,所述外挂存储器存储判断该些亮度补偿数据是否要补偿的一判断信息;以所述数据处理器读取该些亮度补偿数据,并根据所述判断信息将该些亮度补偿数据区分为多个待补偿数据以及多个不需补偿数据,并将判断后的多个待补偿数据和不需补偿数据存储于所述外挂存储器;以及以所述亮度补偿数据存储器读取并存储所述外挂存储器中的该些待补偿数据。
在本申请的一实施例中,所述亮度补偿数据存储器以所述待补偿面板的一基准点亮度与多个待补偿位置亮度做比较,并根据特定运算方式计算并存储对应于多个待补偿位置的多个亮度补偿数据。
在本申请的一实施例中,所述特定运算方式为伽马2.2曲线。
在本申请的一实施例中,所述数据处理器为时序控制器。
在本申请的一实施例中,所述判断信息将待补偿数据判断为1,将不需补偿数据判断为0。
在本申请的一实施例中,所述亮度补偿数据存储器读取并存储所述外挂存储器中该些判断为1的数据。
本申请的目的及解决其技术问题还可采用以下技术措施进一步实现。
本申请提供了一种亮度补偿数据量的优化设备,包括:一待补偿面板,具有一亮度补偿数据存储器,存储有多个亮度补偿数据;一数据处理器,外接于所述待补偿面板,用以读取该些亮度补偿数据;以及一外挂存储器,存储有一判断信息,用以提供所述数据处理器判断该些亮度补偿数据为多个待补偿数据与多个不需补偿数据;其中,所述亮度补偿数据存储器可读取并存储所述外挂存储器中的该些待补偿数据。
在本申请的上述实施例中,所述数据处理器为时序控制器。
经过本申请的改进之后,有效克服了前述的装置应用问题,进一步而言,此一装置可用来实现:1.通过综合判断一个较大像素单元范围的亮度,可减小Demura相机分辨率同时增大对小范围Mura的补偿能力;2.通过预先设定并量测一取样区域可提前量测并补偿面板中心的Gamma曲线,消除面板中心的Mura且使之达到标准的Gamma2.2,达到最精准的补偿效果;3.通过存储于外 挂存储器的信息可判断每块待补偿位置区域与基准点的亮度差异大小,将差异较小的待补偿位置区域做不补偿处理,以此来减小Demura的亮度补偿总数据量的功能。
附图说明
图1A是本申请所述亮度补偿设备示意图。
图1B是范例性的拍摄单元侦测亮度补偿示意图。
图1C是范例性的基准点取样示意图。
图1D是亮度补偿技术的工作原理示意图。
图1E是亮度补偿数据的计算原理示意图。
图2是本申请实施例所述的拍摄单元侦测亮度补偿示意图。
图3A是本申请实施例所述的补偿基准取样区域示意图。
图3B是本申请实施例所述的取样拍摄单元示意图。
图4A是本申请实施例所述外接数据处理器的结构示意图。
图4B是本申请实施例所述外挂存储器的数据存储示意图。
图4C是本申请实施例所述亮度补偿数据存储器的数据存储示意图。
具体实施方式
以下各实施例的说明是参考附加的图式,用以例示本申请可用以实施的特定实施例。本申请所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「内」、「外」、「侧面」等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本申请,而非用以限制本申请。
附图和说明被认为在本质上是示出性的,而不是限制性的。在图中,结构相似的单元是以相同标号表示。另外,为了理解和便于描述,附图中示出的每个组件的尺寸和厚度是任意示出的,但是本申请不限于此。
在附图中,为了清晰起见,夸大了层、膜、面板、区域等的厚度。在附图中,为了理解和便于描述,夸大了一些层和区域的厚度。将理解的是,当例如层、膜、区域或基底的组件被称作“在”另一组件“上”时,所述组件可以直接在所述另一组件上,或者也可以存在中间组件。
另外,在说明书中,除非明确地描述为相反的,否则词语“包括”将被理解为意指包括所述组件,但是不排除任何其它组件。此外,在说明书中,“在......上”意指位于目标组件上方或者下方,而不意指必须位于基于重力方向的顶部上。
为更进一步阐述本申请为达成预定申请目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本申请提出的亮度补偿数据量的优化方式及设备,其具体实施方式、结构、特征及其功效,详细说明如后。
目前在平面显示面板生产过程中由于生产工艺等原因经常会产生亮度不均匀的待补偿区域(Mura),出现亮点或暗点,导致面板的显示质量降低。亮度补偿(Demura)技术是一种消除显示器 Mura,使画面亮度均匀的技术。
首先请参阅图1A,图1A为本申请所述亮度补偿设备示意图。如图1A所示,Demura技术的基本原理是,让未经亮度补偿的待补偿面板1显示灰阶画面,用一亮度获取装置2,如使用电容耦合组件相机(Charge Coupled Device,CCD)拍摄所述待补偿面板1得到一亮度补偿参考画面21(具有由第二像素单元200定义而成的第二分辨率20,如图以3840x2160的超高分辨率为例),获取所述待补偿面板1(具有由第一像素单元100定义而成的第一分辨率10,如图以3840x2160的超高分辨率为例)中各第一像素单元100的亮度值,然后依序以一亮度量测单元3、一亮度比较单元4、一计算单元5以及一亮度补偿单元6对所述亮度补偿参考画面21的拍摄单元211进行亮度均匀性的量测、选择亮度参考的基准点进而对待补偿位置的像素进行亮度比较,并计算需要调整的亮度补偿数据以及调整待补偿位置(Mura)区域的像素单元的灰阶值或者电压,使过暗的区域变亮、过亮的区域变暗,达到均匀的显示效果。其中,所述亮度补偿数据会存储于面板的一亮度补偿数据存储器11中,当面板电源启动时,外接的数据处理器12会读取所述亮度补偿数据存储器11中的亮度补偿数据,并存储于所述数据处理器12的外挂存储器121中。
在实际生产中应用Demura技术时,不仅要求显示效果好,还要求耗时短。就需要良好且实用的Demura算法。现有技术采用的Demura算法通常是根据伽马(Gamma)值和目标亮度来推算修正后的灰阶值。在OLED显示面板中,各个像素点特别是Mura区域的伽马曲线的偏差很大,根据统一的伽马值或伽马曲线做单次推算,并不能达到预期补偿效果。
唯,请参考图1B,目前Demura设备一般要求相机(亮度获取装置2)所拍摄的亮度补偿参考画面21的拍摄单元211'要可以精准拍摄到单一个像素单元(亦即待补偿面板1的第一像素单元100),这样的好处是可以得到待补偿位置(Mura)的最精确的数值,但是这同时也对相机的分辨率及运算处理能力提出了高要求,而且对较小的Mura会因侦测不到而没有进行亮度补偿,缺乏补偿能力。
如图1B所示,以图1A的第一分辨率10为超高分辨率(3840*2160)举例,目前demura相机(亮度获取装置2)是在水平和垂直方向上都是以间隔8个第一像素单元100为一个拍摄单元211',将此拍摄单元211'作为基准,通过数学运算再得到各个第一像素单元100的亮度补偿数据。以图1A的亮度补偿参考画面21最左上角的第一个8X8拍摄单元211为例,该拍摄单元211取左上的第二像素单元200A'、左下的第二像素单元200B'、右下的第二像素单元200C'以及右上的第二像素单元200D'四个像素单元为基准点的亮度值,并根据这4个基准点的亮度值,通过线性运算得到8X8区域各个第二像素单元对应的第一像素单元100的补偿值。如图所示,中间的圆圈为亮度不均匀的待补偿位置M,那么这个待补偿位置M的亮度补偿数据就从四个基准第二像素单元200A'~200D'线性计算得来。这种做法可以精准到对应待补偿面板1的单个第一像素单元100,对较大的补偿位置M会带来比较好的亮度补偿效果,但是同时对亮度获取装置2的分辨率也提出了较高要求,同时 假如补偿位置M本身较小,正好小于8X8单元,那么亮度获取装置2就无法捕捉到,这种补偿机制就无法实现很好的补偿效果。
但是目前这种技术是以待补偿面板1的中心区域为基准点S',如图1C所示,通过比较待补偿面板1其他待补偿位置M亮度与中心参考点S亮度的差异,再根据如图1E的特定运算方式f带入补偿基准曲线C(如标准的伽马曲线Gamma2.2曲线)去计算需要补偿的亮度补偿数据D(包括补偿亮度D1以及补偿灰阶值D2),达到整块面板的亮度均匀。
图1D则是亮度补偿技术(Demura)的工作原理示意图,亮度补偿设备如图1A所示透过亮度获取装置2拍摄整个待补偿面板1的显示状况,得到图1D左侧的亮度(L)-位置(H)亮度曲线图,经过Demura的分析计算之后对曲线中的两个区域(待补偿位置MA、待补偿位置MB)做数据补偿(中间曲线图的补偿数据DA、补偿数据DB),即该区域的显示数据(右侧曲线图)将是原始数据(左侧曲线图)与补偿数据(中间曲线图)的相加,待补偿位置MA的补偿数据DA是负数,即显示数据会被减小一些,而对应待补偿位置MB的补偿数据DB会相应增加一些,这样最终可以得到均匀的亮度,实现mura的消除。
目前这种做法比较简便易行,但是计算亮度补偿数据D的前提是假定所述待补偿面板1已经是标准的Gamma2.2曲线,但面板的实际生产过程中是不可能对每一片的伽马曲线做到精准管控的,且中心点的待补偿位置M一般无法消除(如图1C所示),所以会比较容易影响到Demura的最终效果。
同时,默认会针对每个拍摄单元211都进行计算,且为了确保Demura效果,待补偿位置M区域的最小拍摄单元211不能太大(一般为8*8个第一像素单元),所以最终整块待补偿面板1的亮度补偿数据D量就会较大,那么带来的外部存储器121(Demura flash)的容量就要较大,驱动板上的处理IC内部RAM也要较大,也会带来数据传输时间和速率上的限制。以图1A的超高分辨率(3840*2160)举例,目前的最小亮度补偿拍摄单元211是8*8个第一像素单元100,即水平方向和垂直方向上都是间隔8个第一像素单元100取一个补偿点,以此补偿点为基准,在实际应用时通过特定运算方式f得到每个第一像素单元100的亮度补偿数据D,目前这种办法的拍摄单元211数量为481*271,而每个拍摄单元211的亮度补偿数据D为12bit,那么总数据量就是481*271*12=1.49Mb。同时为了满足不同灰阶的补偿需求,一般会取3个不同灰阶的画面作为补偿基准,那么就是481*271*12*3=4.48Mb。也就是说,亮度补偿数据D的亮度补偿存储器最小容量都要大于4.48Mb。
续请参阅图2,图2是本申请实施例所述的拍摄单元侦测亮度补偿示意图。
本申请解决其技术问题是采用一种通过改变相机分辨率达到亮度补偿的优化方式。如图2所示,将相机最小拍摄单元211的基本像素单元(亦即实线格子的第二像素单元200)由如图1B所示的单个第一像素单元100(虚线格子)扩大为2x2个第一像素单元100,相机会综合这个2X2大小 的第二像素单元200内的亮度作为补偿计算的最小单元,这样相机只需要能够清晰捕捉到这个2X2的第一像素单元的区域即可,分辨率可以降为原来的4倍,大大降低了对demura相机的要求,对设备成本可以有很大的cost down效果。
同时这种方案也增大了对范围较小的待补偿位置M的补偿能力,如果以图1B的第二像素单元200A'~200D'做基准点,那么这个待补偿位置M将不会被侦测到,补偿效果就会较差。而用本申请的设计思路,将可以借由将第二像素单元200的大小由单个第一像素单元100扩大为2x2个第一像素单元100以侦测到这个待补偿位置M,从而做出比较好的补偿。实际上,待补偿位置M本身就是一个区域性分布,用高分辨率(像素单元范围小)的相机侦测单个像素单元反而失去了意义,而采用这种模糊化的做法,在一定程度上是对待补偿位置M的更好侦测与判断。通过改变相机分辨率,本申请可达到减小Demura相机的分辨率规格要求以及增强对小范围Mura的亮度补偿能力。
亦即本申请提供了一种亮度补偿的优化方式,请参阅图1A,包括:提供一亮度获取装置2;以所述亮度获取装置2拍摄一待补偿面板1为一亮度补偿参考画面21,所述待补偿面板1具一第一分辨率10,所述第一分辨率10由二维阵列的多个第一像素单元100定义,所述亮度获取装置2具有一第二分辨率20,所述第二分辨率20由二维阵列的多个第二像素单元200定义,所述亮度补偿参考画21面由多个拍摄单元211组成,所述拍摄单元211由多个第二像素单元200组成,其中,所述第二像素单元200大于所述第一像素单元100;采取该些拍摄单元211四个端点处的四个第二像素单元200A~200D为亮度基准,透过一特定运算方式f得到所述拍摄单元211内其他第二像素单元200的多个亮度补偿数据D;以及以该些亮度补偿数据D对各该拍摄单元211对应的所述第一像素单元100进行亮度补偿。
在本申请的一实施例中,所述亮度获取装置2为电容耦合组件相机。
在本申请的一实施例中,所述第一分辨率10为由3840*2160阵列排布的第一像素单元100定义而成的超高分辨率。
在本申请的一实施例中,所述第二像素单元200的边长各为所述第一像素单元100的两倍。
在本申请的一实施例中,定义所述第二分辨率20的第二像素单元200数量为定义第一分辨率10的第一像素单元100数量的1/4。
在本申请的一实施例中,所述特定运算方式f为线性运算。
本申请的目的及解决其技术问题还可采用以下技术措施进一步实现。
本申请提供了一种亮度补偿的前阶段设备,包括:一待补偿面板1,具有一第一分辨率10,所述第一分辨率10由二维阵列的多个第一像素单元100定义;以及一亮度获取装置2,具有一第二分辨率20,所述第二分辨率20由二维阵列的多个第二像素单元200定义,用以拍摄所述待补偿面板1为一亮度补偿参考画面21,所述亮度补偿参考画面21由多个拍摄单元211组成,所述 拍摄单元211包括多个第二像素单元200;其中,所述第二像素单元200大于所述第一像素单元100。
在本申请的上述实施例中,所述亮度获取装置2为电容耦合组件相机。
经过本申请的改进之后,有效克服了前述的装置应用问题,进一步而言,此一装置可通过综合判断这个扩大为2x2个第一像素单元100大小的第二像素单元200的亮度,减小Demura相机分辨率同时增大对小范围Mura的补偿能力。
续请参阅图3A及图3B,图3A及图3B是本申请实施例所述的补偿基准取样区域示意图以及取样拍摄单元示意图。
本申请解决其技术问题是采用一种预先量测基准点取样区域的亮度补偿的优化方式。如图3A所示,本申请在做亮度补偿以前先在待补偿面板1上取一个相对较大的中心区域做为补偿基准取样区域A进行拍摄得到一如图3B所示的取样画面22,这个补偿基准取样区域A的大小可以根据实际需要设定,拍摄后先以图1A中的亮度量测单元3对整个取样画面22区域的亮度均匀性进行量测,如果侦测到有不均匀的情况发生,就认为有mura出现,那么相机需要避开这个有mura的待补偿位置M,而把补偿基准取样区域A的其他相对均匀的拍摄单元211作为当做补偿基准的取样拍摄单元221,这样便解决了图1C中基准点S'可能存在mura(亦即为待补偿位置M)的问题;同时为了保证补偿精度,对补偿基准取样区域A也进行亮度取样,再根据如图1E所示的补偿基准曲线C(如gamma 2.2曲线),便可以计算出取样拍摄单元221的亮度补偿值,使取样拍摄单元221真正做到gamma 2.2的完美目标。这样面板的其他待补偿区域在做补偿的时候,直接以gamma 2.2为目标去计算得到的亮度补偿数据D才是精准无误的,补偿效果也会是最好的。
亦即本申请提供了一种亮度补偿的优化方式,如图1A所示,包括:于一待补偿面板1上设定一补偿基准取样区域A,所述待补偿面板1具一第一分辨率10,所述第一分辨率10由二维阵列的多个第一像素单元100定义;提供一亮度获取装置2,以所述亮度获取装置2拍摄所述补偿基准取样区域A为一取样画面22,所述取样画面22由多个拍摄单元211组成,该些拍摄单元211可对应所述补偿基准取样区域A包括的多个第一像素单元100,其中,每一个拍摄单元211可对应多个第一像素单元100;量测所述取样画面22中所有所述拍摄单元211的亮度均匀性,选择一亮度均匀性佳的所述拍摄单元211为一取样拍摄单元221,并以所述取样拍摄单元221的亮度做为一补偿基准值;根据一特定运算方式f带入所述补偿基准值,取得一补偿基准曲线C;以所述亮度获取装置2拍摄所述待补偿面板1为一亮度补偿参考画面21,所述亮度补偿参考画面21由多个拍摄单元211组成;将所述亮度补偿参考画面21中的所有拍摄单元211的亮度带入所述补偿基准曲线C,计算出各该拍摄单元211对应的各该第一像素单元100的多个亮度补偿数据D;以及根据该些亮度补偿数据D对各该第一像素单元100进行亮度补偿。
在本申请的一实施例中,所述补偿基准取样区域A于所述待补偿面板1的中心区域。
在本申请的一实施例中,所述亮度获取装置2为电容耦合组件相机。
在本申请的一实施例中,所述每一个拍摄单元211可对应8x8个第一像素单元100。
在本申请的一实施例中,所述第一分辨率10为由3840*2160阵列排布的第一像素单元100定义而成的超高分辨率。
在本申请的一实施例中,所述特定运算方式f为根据伽马值和目标亮度来推算所述补偿基准曲线C。
在本申请的一实施例中,所述特定运算方式f为伽马2.2曲线。
本申请的目的及解决其技术问题还可采用以下技术措施进一步实现。
本申请提供了一种亮度补偿的优化设备,包括:一待补偿面板1,具有一第一分辨率10,所述第一分辨率10由二维阵列的多个第一像素单元100定义;一亮度获取装置2,用以拍摄所述待补偿面板1为一取样画面22,所述取样画面22由多个拍摄单元211组成,所述拍摄单元211可对应多个第一像素单元100;一亮度量测单元3,用以量测所述画面中各该拍摄单元211的亮度均匀性并取一取样拍摄单元211;一亮度比较单元4,用以比较各该拍摄单元211的亮度与所述取样拍摄单元211的差异;一计算单元5,根据各该拍摄单元211的亮度与所述取样拍摄单元221的差异计算各该拍摄单元211的多个亮度补偿数据D;以及一亮度补偿单元6,根据该些亮度补偿数据D增加或减少各该对应第一像素单元100的亮度,对各该第一像素单元100进行正向或负向的亮度补偿。
经过本申请的改进之后,有效克服了前述的装置应用问题,进一步而言,此一装置可通过补偿基准取样区域A的设定提前量测并补偿面板中心的Gamma曲线,消除面板中心的Mura且使之达到标准的Gamma2.2,达到最精准的补偿效果。
续请参阅图4A至图4C,图4A至图4C是本申请实施例所述外接数据处理器的结构示意图、外挂存储器的数据存储示意图以及亮度补偿数据存储器的数据存储示意图。
本申请解决其技术问题是采用一种通过存储于外挂存储器的信息进行的亮度补偿数据量的优化方式。本申请在外挂存储器121里面存储是否要补偿的判断信息,并以1代表要待补偿数据CD、0代表不需补偿数据ND,据此,亮度补偿数据存储器11也只需要依次存储确实需要补偿区域的待补偿数据CD即可,外接的数据处理器12(如时序控制器TCON)根据设定的判断信息便可以将待补偿区域与亮度补偿数据D正确地一一对应起来。所有不需要补偿的拍摄单元,TCON会存储不需补偿数据ND为0。
如图4B所示,外挂存储器121存储了一个4*4的亮度补偿数据D,水平方向上若为1101,代表水平方向上第三个点为不需补偿数据ND(如图4C所示),即补偿值是0,其他3个点为待补偿数据CD;而在垂直方向上若为1011,即第2个点为不需补偿数据ND,其他3个点为待补偿数据CD。而对应的亮度补偿存储器11只需要如图4C所示,存储3*3的待补偿数据CD数量即可,分别对应外挂存储器121中亮度补偿数据D为1的点。
这种方案只需要现有的demura程序去判断待补偿位置与基准点的差异,补偿的标准可以根据实际生产状况来决定,如果差异较小,便认为不需要补偿,在外挂存储器121中对应位置写0,如果差异较大,在外挂存储器121中写1。然后只需要将判断后确定要补偿的点的数据依次存储在亮度补偿存储器11中即可。这样数据处理器12的外挂存储器121需要额外的数据量为481*271*1*3=0.37Mb,数据量非常小,对外挂存储器121的要求并不是很高。同时对应亮度补偿存储器11中,也只需要存储待补偿数据CD即可。亮度补偿数据D总量的减小幅度虽然和面板本身的待补偿位置M状况有关,但在实际生产过程中,可以根据面板的实际mura状况分布,来决定量度补偿术据存储器11的容量,且随着面板mura状况的改善,需要的补偿量会越来越小。也就是说,本申请通过存储于外挂存储器的信息可判断每块待补偿位置区域与基准点的亮度差异大小,将差异较小的待补偿位置区域做不补偿处理,以此来减小Demura的亮度补偿总数据量。
亦即本申请提供了一种亮度补偿数据量的优化方式,如图1A所示,包括:提供一待补偿面板1,所述待补偿面板1具有一亮度补偿数据存储器11,存储所述待补偿面板的多个亮度补偿数据D;外接一数据处理器12,所述数据处理器12具有一外挂存储器121,所述外挂存储器121存储判断该些亮度补偿数据D是否要补偿的一判断信息;以所述数据处理器12读取该些亮度补偿数据D,并根据所述判断信息将该些亮度补偿数据D区分为多个待补偿数据CD以及多个不需补偿数据ND,并将判断后的多个待补偿数据CD和不需补偿数据ND存储于所述外挂存储器121;以及以所述亮度补偿数据存储器11读取并存储所述外挂存储器121中的该些待补偿数据CD。
在本申请的一实施例中,所述亮度补偿数据存储器11以所述待补偿面板1的一基准点S亮度与多个待补偿位置M亮度做比较,并根据特定运算方式f计算并存储对应于多个待补偿位置M的多个亮度补偿数据D。
在本申请的一实施例中,所述特定运算方式f为伽马2.2曲线。
在本申请的一实施例中,所述数据处理器12为时序控制器。
在本申请的一实施例中,所述判断信息将待补偿数据CD判断为1,将不需补偿数据ND判断为0。
在本申请的一实施例中,所述亮度补偿数据存储器11读取并存储所述外挂存储器121中该些判断为1的数据。
本申请的目的及解决其技术问题还可采用以下技术措施进一步实现。
本申请提供了一种亮度补偿数据量的优化设备,包括:一待补偿面板1,具有一亮度补偿数据存储器11,存储有多个亮度补偿数据D;一数据处理器12,外接于所述待补偿面板1,用以读取该些亮度补偿数据D;以及一外挂存储器121,存储有一判断信息,用以提供所述数据处理器12判断该些亮度补偿数据D为多个待补偿数据CD与多个不需补偿数据ND;其中,所述亮度补偿数据存储器11可读取并存储所述外挂存储器121中的该些待补偿数据CD。
在本申请的上述实施例中,所述数据处理器12为时序控制器。
经过本申请的改进之后,有效克服了前述的装置应用问题,进一步而言,此一装置可通过存储于外挂存储器121的判断信息判断每块待补偿位置M区域与基准点S(及取样拍摄单元221)的亮度差异大小,将差异较小的待补偿位置M做不补偿处理,以此来减小Demura的亮度补偿总数据量的功能。
“在一些实施例中”及“在各种实施例中”等用语被重复地使用。该用语通常不是指相同的实施例;但它亦可以是指相同的实施例。“包含”、“具有”及“包括”等用词是同义词,除非其前后文意显示出其它意思。
以上所述,仅是本申请的较佳实施例而已,并非对本申请作任何形式上的限制,虽然本申请已以较佳实施例揭露如上,然而并非用以限定本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本申请技术方案的内容,依据本申请的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本申请技术方案的范围内。

Claims (16)

  1. 一种亮度补偿数据量的优化方式,包括:
    提供一待补偿面板,所述待补偿面板具有一亮度补偿数据存储器,存储所述待补偿面板的多个亮度补偿数据;
    外接一数据处理器,所述数据处理器具有一外挂存储器,所述外挂存储器存储判断该些亮度补偿数据是否要补偿的一判断信息;
    以所述数据处理器读取该些亮度补偿数据,并根据所述判断信息将该些亮度补偿数据区分为多个待补偿数据以及多个不需补偿数据,并将判断后的多个待补偿数据和不需补偿数据存储于所述外挂存储器;以及
    以所述亮度补偿数据存储器读取并存储所述外挂存储器中的该些待补偿数据。
  2. 如权利要求1所述的亮度补偿数据量的优化方式,其中,所述亮度补偿数据存储器以所述待补偿面板的一基准点亮度与多个待补偿位置亮度做比较,并根据特定运算方式计算并存储对应于多个待补偿位置的多个亮度补偿数据。
  3. 如权利要求2所述的亮度补偿数据量的优化方式,其中,所述特定运算方式为伽马2.2曲线。
  4. 如权利要求1所述的亮度补偿数据量的优化方式,其中,所述数据处理器为时序控制器。
  5. 如权利要求1所述的亮度补偿数据量的优化方式,其中,所述判断信息将待补偿数据判断为1。
  6. 如权利要求1所述的亮度补偿数据量的优化方式,其中,所述判断信息将不需补偿数据判断为0。
  7. 如权利要求5所述的亮度补偿数据量的优化方式,其中,所述亮度补偿数据存储器读取并存储所述外挂存储器中该些判断为1的数据。
  8. 一种亮度补偿数据量的优化方式,包括:
    提供一待补偿面板,所述待补偿面板具有一亮度补偿数据存储器,所述亮度补偿数据存储器以所述待补偿面板的一基准点亮度与多个待补偿位置亮度做比较,并根据特定运算方式计算并存储对应于多个待补偿位置的多个亮度补偿数据;
    外接一时序控制器,所述时序控制器具有一外挂存储器,所述外挂存储器存储判断该些亮度补偿数据是否要补偿的一判断信息;
    以所述时序控制器读取该些亮度补偿数据,并根据所述判断信息将该些亮度补偿数据区分为多个待补偿数据以及多个不需补偿数据,将待补偿数据判断为1,将不需补偿数据判断为0,并将判断后的多个1/0数据存储于所述外挂存储器;以及
    以所述亮度补偿数据存储器读取并存储所述外挂存储器中该些判断为1的数据。
  9. 如权利要求8所述的亮度补偿数据量的优化方式,其中,所述特定运算方式为伽马2.2曲线。
  10. 一种亮度补偿数据量的优化设备,包括:
    一待补偿面板,具有一亮度补偿数据存储器,存储有多个亮度补偿数据;
    一数据处理器,外接于所述待补偿面板,用以读取该些亮度补偿数据;以及
    一外挂存储器,存储有一判断信息,用以提供所述数据处理器判断该些亮度补偿数据为多个待补偿数据与多个不需补偿数据;
    其中,所述亮度补偿数据存储器可读取并存储所述外挂存储器中的该些待补偿数据。
  11. 如权利要求10所述的亮度补偿数据量的优化设备,其中,所述数据处理器为时序控制器。
  12. 如权利要求10所述的亮度补偿数据量的优化设备,其中,所述亮度补偿数据存储器以所述待补偿面板的一基准点亮度与多个待补偿位置亮度做比较,并根据特定运算方式计算并存储对应于多个待补偿位置的多个亮度补偿数据。
  13. 如权利要求12所述的亮度补偿数据量的优化设备,其中,所述特定运算方式为伽马2.2曲线。
  14. 如权利要求10所述的亮度补偿数据量的优化设备,其中,所述判断信息将待补偿数据判断为1。
  15. 如权利要求10所述的亮度补偿数据量的优化设备,其中,所述判断信息将不需补偿数据判断为0。
  16. 如权利要求14所述的亮度补偿数据量的优化设备,其中,所述亮度补偿数据存储器读取并存储所述外挂存储器中该些判断为1的数据。
PCT/CN2017/102016 2017-08-25 2017-09-18 亮度补偿数据量的优化方式及设备 WO2019037170A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/580,420 US10380975B2 (en) 2017-08-25 2017-09-18 Optimization method and device for brightness compensation data volume

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710744803.1 2017-08-25
CN201710744803.1A CN107358935B (zh) 2017-08-25 2017-08-25 亮度补偿数据量的优化方式及设备

Publications (1)

Publication Number Publication Date
WO2019037170A1 true WO2019037170A1 (zh) 2019-02-28

Family

ID=60289190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/102016 WO2019037170A1 (zh) 2017-08-25 2017-09-18 亮度补偿数据量的优化方式及设备

Country Status (2)

Country Link
CN (1) CN107358935B (zh)
WO (1) WO2019037170A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220172664A1 (en) * 2020-12-02 2022-06-02 Lx Semicon Co., Ltd. Mura Compensation Device and Data Processing Circuit for Mura Compensation

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110225336B (zh) 2019-06-21 2022-08-26 京东方科技集团股份有限公司 评估图像采集精度的方法及装置、电子设备、可读介质
CN112397038B (zh) * 2019-08-13 2022-05-03 群创光电股份有限公司 补偿显示装置的异常像素的亮度的方法
KR20220037018A (ko) * 2020-09-16 2022-03-24 삼성디스플레이 주식회사 표시 장치의 보상 데이터 생성 방법 및 표시 장치의 보상 데이터 생성 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5537154A (en) * 1993-12-18 1996-07-16 Samsung Electronics Co., Ltd. Edge compensation method and apparatus of image signal
CN101354872A (zh) * 2007-06-14 2009-01-28 乐金显示有限公司 可补偿显示缺陷的视频显示设备
CN103854616A (zh) * 2012-12-07 2014-06-11 群康科技(深圳)有限公司 显示面板的串音补偿方法及其显示装置
CN104021773A (zh) * 2014-05-30 2014-09-03 京东方科技集团股份有限公司 一种显示器件的亮度补偿方法、亮度补偿装置及显示器件
CN106297692A (zh) * 2016-08-26 2017-01-04 深圳市华星光电技术有限公司 一种时钟控制器自适应的方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101137856B1 (ko) * 2005-10-25 2012-04-20 엘지디스플레이 주식회사 평판표시장치 및 그 화질제어방법
KR101201314B1 (ko) * 2005-11-16 2012-11-14 엘지디스플레이 주식회사 평판표시장치의 제조방법 및 장치
CN100565630C (zh) * 2006-01-04 2009-12-02 台湾薄膜电晶体液晶显示器产业协会 显示器多角度测量系统与方法
CN101105930A (zh) * 2007-04-16 2008-01-16 凌巨科技股份有限公司 显示器的影像调整方法
CN104992657B (zh) * 2015-07-27 2017-09-22 京东方科技集团股份有限公司 mura补偿模块和方法、显示装置和方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5537154A (en) * 1993-12-18 1996-07-16 Samsung Electronics Co., Ltd. Edge compensation method and apparatus of image signal
CN101354872A (zh) * 2007-06-14 2009-01-28 乐金显示有限公司 可补偿显示缺陷的视频显示设备
CN103854616A (zh) * 2012-12-07 2014-06-11 群康科技(深圳)有限公司 显示面板的串音补偿方法及其显示装置
CN104021773A (zh) * 2014-05-30 2014-09-03 京东方科技集团股份有限公司 一种显示器件的亮度补偿方法、亮度补偿装置及显示器件
CN106297692A (zh) * 2016-08-26 2017-01-04 深圳市华星光电技术有限公司 一种时钟控制器自适应的方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220172664A1 (en) * 2020-12-02 2022-06-02 Lx Semicon Co., Ltd. Mura Compensation Device and Data Processing Circuit for Mura Compensation
US11961445B2 (en) * 2020-12-02 2024-04-16 Lx Semicon Co., Ltd. Mura compensation device and data processing circuit for Mura compensation

Also Published As

Publication number Publication date
CN107358935B (zh) 2019-12-31
CN107358935A (zh) 2017-11-17

Similar Documents

Publication Publication Date Title
WO2019037176A1 (zh) 亮度补偿的优化方式及设备
WO2019037169A1 (zh) 亮度补偿的优化方式及前阶段设备
US10380975B2 (en) Optimization method and device for brightness compensation data volume
WO2019037170A1 (zh) 亮度补偿数据量的优化方式及设备
CN109036271B (zh) 曲面屏弯折区色偏修正的方法、装置、存储介质及终端
CN108538264B (zh) 显示面板的mura补偿方法及装置
WO2019061883A1 (zh) 图像补偿信号生成的方法、结构及修复系统
US11074882B2 (en) Method and device for adjusting grayscale of display panel
US10657905B2 (en) Method and apparatus for compensating for brightness of display device
TWI649735B (zh) 用於電致發光顯示器的電流補償方法與元件
US10636345B2 (en) Method of compensating in display panel, driving unit and display panel
WO2015180371A1 (zh) 显示器件的亮度补偿方法、亮度补偿装置及显示器件
WO2017166348A1 (zh) 消除OLED显示面板Mura的方法
US10540942B2 (en) Optimization method and pre-stage device for brightness compensation
WO2017166347A1 (zh) 消除OLED显示面板Mura的方法
EP3151227A1 (en) Display device brightness compensation method, brightness compensation apparatus, and display device
CN107657916B (zh) 图像补偿信号生成的方法、结构及修复系统
WO2019095481A1 (zh) 液晶显示面板的灰阶补偿数据侦测方法
CN113393811A (zh) 新型亮度不均匀补偿方法、装置和显示面板
TWI525604B (zh) 影像分析和影像顯示的裝置和方法
EP2335236A1 (en) Methods and systems for led backlight white balance
US20200168167A1 (en) Optical compensation method of a display panel and associated system
TWI525592B (zh) 影像分析和影像顯示的裝置和方法
KR20160007825A (ko) 열화 검출 방법 및 표시 패널의 열화 검출 장치
KR102142654B1 (ko) 디스플레이 장치의 화질 검사장치 및 그 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17922735

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17922735

Country of ref document: EP

Kind code of ref document: A1