WO2019037105A1 - 功率控制方法、测距模块及电子装置 - Google Patents

功率控制方法、测距模块及电子装置 Download PDF

Info

Publication number
WO2019037105A1
WO2019037105A1 PCT/CN2017/099119 CN2017099119W WO2019037105A1 WO 2019037105 A1 WO2019037105 A1 WO 2019037105A1 CN 2017099119 W CN2017099119 W CN 2017099119W WO 2019037105 A1 WO2019037105 A1 WO 2019037105A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
ranging module
control method
light
power control
Prior art date
Application number
PCT/CN2017/099119
Other languages
English (en)
French (fr)
Inventor
阙圣峻
杨孟达
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to EP17826118.6A priority Critical patent/EP3467542A4/en
Priority to CN201780001023.6A priority patent/CN109804271B/zh
Priority to KR1020187004057A priority patent/KR102113668B1/ko
Priority to PCT/CN2017/099119 priority patent/WO2019037105A1/zh
Priority to US15/869,046 priority patent/US10754031B2/en
Publication of WO2019037105A1 publication Critical patent/WO2019037105A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4008Means for monitoring or calibrating of parts of a radar system of transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4868Controlling received signal intensity or exposure of sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4911Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4918Controlling received signal intensity, gain or exposure of sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52096Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging related to power management, e.g. saving power or prolonging life of electronic components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4008Means for monitoring or calibrating of parts of a radar system of transmitters
    • G01S7/4013Means for monitoring or calibrating of parts of a radar system of transmitters involving adjustment of the transmitted power

Definitions

  • the present invention relates to a power control method, a ranging module, and an electronic device, and more particularly to a power control method, a distance measuring module, and an electronic device that can balance power saving and eye protection.
  • the optical ranging device can acquire the distance/depth information with respect to the target by using the 3D image sensing system, and thus generate three-dimensional image data by the pitch value or the distance value of each pixel of the 3D image, and the 3D image is also called the distance image. Or depth map. Additional distance dimensions can be used in a variety of applications to get more information about objects in the scene captured by the camera, solving different tasks in the field of industrial sensors.
  • the optical ranging device can be disposed in a smart phone that emits incident light through the light emitting diode and utilizes a plurality of pixel circuits in the pixel array to collect reflected light corresponding to the incident light.
  • the incident light emitted by the light emitting diode is invisible light (such as infrared light).
  • the user may not feel that the light-emitting diode of the optical distance measuring device in the mobile phone is far away from the eyes, causing eye damage.
  • an object of some embodiments of the present application is to provide a power control method, a ranging module, and an electronic device that can balance power saving and eye protection to improve the disadvantages of the prior art.
  • the embodiment of the present application provides a power control method, which is applied to a ranging module, where the ranging module includes a lighting unit, and the power control method is included in a first time, where the lighting unit is The first transmit power emits incident light; receives reflected light corresponding to the incident light; determines a distance of the ranging module from the target according to the reflected light; and adjusts emission of the light emitting unit according to the distance power.
  • the adjusting the transmit power of the lighting unit according to the distance comprises adjusting the transmit power to be greater than the first transmit power when the distance is greater than a specific value.
  • the step of adjusting the transmission power of the light emitting unit includes adjusting the transmission power to be equal to or smaller than the first transmission power when the distance is less than a specific value.
  • the step of determining the distance between the ranging module and the target according to the reflected light includes acquiring an image according to the reflected light, wherein the image includes a plurality of pixels; and obtaining a plurality of pixels corresponding to the plurality of pixels a pixel depth value; and determining a distance of the ranging module from the target according to the plurality of pixel depth values.
  • the step of determining the distance between the ranging module and the target according to the plurality of pixel depth values includes: determining, when the number of pixels corresponding to the plurality of first pixels in the plurality of pixels is greater than a specific number The distance between the ranging module and the target is a first depth value; wherein a pixel depth value corresponding to each first pixel is smaller than the first depth value.
  • the step of determining the distance of the ranging module from the target according to the plurality of pixel depth values includes determining that the distance between the ranging module and the target is a measure of the plurality of pixel depth values.
  • the power control method further includes: acquiring an image according to the reflected light; and performing face recognition on the image to generate an identification result; and adjusting a transmit power of the light emitting unit according to the distance, according to the identifying The result and the distance adjust the transmit power of the lighting unit.
  • adjusting the transmit power of the light emitting unit according to the identification result and the distance includes: when the recognition result indicates that the image includes a face image and the distance is less than a specific value, Transmit power.
  • the first time is less than a certain time interval.
  • the power control method is that, before the first light emitting unit emits the incident light at the first transmitting power, the method further includes receiving the background light; and determining the first transmitting power according to the background light.
  • An embodiment of the present application provides a ranging module, including a light emitting unit that emits incident light at a first transmission power at a first time; a photosensitive unit that receives reflected light corresponding to the incident light; and a processing unit configured to perform the following Step: determining, according to the reflected light, a distance between the ranging module and the target; and adjusting a transmit power of the light emitting unit according to the distance.
  • the embodiment of the present application provides an electronic device, including a ranging module, the ranging module includes a light emitting unit that emits incident light at a first transmission power at a first time, and a photosensitive unit that receives reflected light corresponding to the incident light; And a processing unit, configured to: determine a distance between the ranging module and the target according to the reflected light; and adjust a transmit power of the light emitting unit according to the distance.
  • the embodiment of the present application can adjust the transmitting power of the light emitting unit according to the distance between the distance measuring module and the target and the face recognition result, which can prevent the user's eyes from being damaged by excessive ray energy and achieve power saving. effect.
  • FIG. 1 is a schematic diagram of an electronic device according to an embodiment of the present application.
  • FIG. 2 is a flowchart of a power control method according to an embodiment of the present application.
  • FIG. 1 is a schematic diagram of an electronic device 1 according to an embodiment of the present application.
  • the electronic device 1 can be a smart phone or a tablet computer, and includes a ranging module 10, which can be a Time of Flight (ToF) ranging module, which includes a light emitting unit 12, a photosensitive unit 14, and a processing unit 16.
  • the light emitting unit 12 can be a light emitting diode (LED) for emitting incident light.
  • the light emitting unit 12 can be an invisible light emitting diode (such as an infrared ray (IR) light emitting diode).
  • IR infrared ray
  • the photosensitive unit 14 may include a lens (Lens), a photosensitive pixel array, or the like, which may be used to receive reflected light or Ambient Light corresponding to incident light, and may generate an image IMG according to the reflected light (or background light).
  • the processing unit 16 may include a Digital Signal Processor (DSP), a General Purpose Processor, or an application. Application Processor.
  • DSP Digital Signal Processor
  • the processing unit 16 can determine the distance D between the ranging module 10 and the target TG (not shown in FIG. 1) according to the reflected light, and adjust the transmission power PWR of the light emitting unit 12 according to the distance D.
  • the ranging module 10 can adjust the emission power PWR of the light-emitting unit 12 to prevent the user's eyes from receiving excessive radiation.
  • the energy is damaged while achieving the power saving effect; on the other hand, when the user does not look at the photosensitive unit 14, or when the distance between the user's eyes and the photosensitive unit 14 is large enough, the ranging module 10 can be moderately adjusted.
  • the transmission power PWR of the illumination unit 12 is increased to enhance the intensity of the reflected light and to improve the Signal-to-Noise Ratio (SNR) required for the time-of-flight ranging.
  • SNR Signal-to-Noise Ratio
  • FIG. 2 is a flowchart of a power control method 20 according to an embodiment of the present application.
  • the power control method 20 can be performed by the ranging module 10, as shown in FIG. 2, the power control method 20 includes the following steps:
  • Step 202 the light emitting unit 12 at a first time T 1 to transmit the initial transmission power PWR_0 incident light.
  • Step 204 The photosensitive unit 14 receives the reflected light corresponding to the incident light, and accordingly generates an image IMG.
  • Step 206 The processing unit 16 determines the ranging module 10 and the target TG according to the image IMG.
  • Step 208 The processing unit 16 adjusts the transmission power PWR of the light emitting unit 12 according to the distance D.
  • the ranging module 10 can adjust the transmission power PWR of the light emitting unit 12 according to the distance D to avoid damage to the eyes of the user and achieve a power saving effect.
  • the ranging module 10 emits incident light at a relatively weak initial transmission power PWR_0 prior to the short first time T 1 , wherein the first time T 1 may be less than a specific time interval, at a specific time. The interval can vary depending on actual needs.
  • the photosensitive unit 14 receives the reflected light corresponding to the incident light, and accordingly generates an image IMG (where the image IMG includes a plurality of pixels), and the processing unit 16 determines the ranging module 10 according to the image IMG.
  • the processing unit 16 may obtain a plurality of pixel depth values corresponding to the plurality of pixels in the image IMG according to the reflected light corresponding to the incident light, and determine the ranging module 10 according to the plurality of pixel depth values.
  • the distance D between the targets TG a method of obtaining a plurality of pixel depth values based on reflected light is well known to those skilled in the art, and thus will not be described again.
  • the processing unit 16 may compare the depth between the plurality of pixel depth values and the first depth value Th, where the number of pixels of the plurality of pixels whose pixel depth value is smaller than the first depth value Th is greater than The processing unit 16 may determine that the distance D is the first depth value Th (wherein the plurality of pixels whose pixel depth value is smaller than the first depth value Th may be regarded as a plurality of first pixels). That is, the pixel depth values corresponding to each of the first pixels are smaller than the first depth value Th).
  • the processing unit 16 may determine that the distance D is a statistic of a plurality of pixel depth values. For example, the processing unit 16 may determine that the distance D is a minimum value of the plurality of pixel depth values, or the processing unit 16 may first The plurality of pixel depth values are sorted from large to small, and a plurality of pixel depths of the previous a% are selected (recorded as a plurality of first pixel depths), and the distance D is determined to be a plurality of first pixels. The average of the depth.
  • the percentage a% may be adjusted according to the actual situation, as long as the processing unit 16 determines the distance D between the ranging module 10 and the target TG according to the plurality of pixel depth values, which are all in accordance with the requirements of the present application and belong to the present application. category.
  • the processing unit 16 adjusts the transmit power PWR of the light emitting unit 12 according to the distance D. For example, when the distance D is greater than a specific value d1, the distance D between the ranging module 10 and the target TG is sufficiently far, so the processing unit 16 can adjust the transmission power PWR, that is, adjust the transmission power PWR to make the transmission power.
  • the PWR is greater than the initial transmit power PWR_0; when the distance D is less than a specific value d2, the distance D between the ranging module 10 and the target TG is too close, so the processing unit 16 is adjustable to protect the eyes of the user and save power.
  • the small transmit power PWR that is, the adjusted transmit power PWR, causes the transmit power PWR to be less than the initial transmit power PWR_0.
  • the specific values d1 and d2 may be the same or different, which may be determined according to actual needs.
  • the processing unit 16 may perform face recognition on the image IMG and generate a face recognition result Rst, wherein the face recognition result Rst may represent “including a face image in the image IMG” or “image” Face images are not included in IMG.”
  • the processing unit 16 can adjust the transmission power PWR according to the face recognition result Rst and the distance D. For example, when the face recognition result Rst display image IMG includes a face image and the distance D is less than a specific value d3, the processing unit 16 can adjust the small transmit power PWR (ie, the adjusted transmit power PWR is smaller than the initial transmit power PWR_0).
  • the processing Unit 16 does not adjust the transmit power PWR (ie, adjusted) The transmit power PWR is not greater than the initial transmit power PWR_0).
  • the processing unit 16 may use the adjusted transmit power PWR generated in the previous step 208 as the initial execution of the next power control method 20.
  • the power control method 20 is executed again, and the power control method 20 is executed again, and the power control method 20 is executed repeatedly until the specific stop criterion (Stopping Criterion) is satisfied, and the power control method 20 is stopped.
  • the specific stopping criterion may be that the number of iterations of the power control method 20 is equal to a predetermined number of times, or the signal-to-noise ratio SNR required for the time-of-flight ranging is greater than or equal to a threshold.
  • the processing unit 16 determines the initial transmission power PWR_0 based on the background light.
  • the ranging module 10 can receive the background light (Ambient Light) by the photosensitive unit 14 when the illumination unit 12 has not emitted the incident light for ranging, and obtain the background light intensity according to the background light intensity.
  • the initial transmit power PWR_0 required when the power control method 20 is executed.
  • the present application is not limited to determining the distance D according to a plurality of pixel depth values of a plurality of pixels in the corresponding image IMG, and the ranging module may directly according to the reflected light itself (eg, calculating a phase difference between the reflected light and the incident light). It is also within the scope of this application to directly judge the distance D.
  • the embodiment of the present application can adjust the transmitting power of the light emitting unit according to the distance between the distance measuring module and the target and the face recognition result, which can prevent the user's eyes from being damaged by excessive ray energy. At the same time, the power saving effect is achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Studio Devices (AREA)

Abstract

一种功率控制方法,应用于一测距模块,测距模块包括一发光单元,该功率控制方法包括于第一时间发光单元以第一发射功率发射入射光(202);接收对应于该入射光的反射光(204);根据反射光判断测距模块与目标物的距离(206);以及根据该距离,调整发光单元的发射功率(208)。

Description

功率控制方法、测距模块及电子装置 技术领域
本申请涉及一种功率控制方法、测距模块及电子装置,尤其涉及一种可兼顾省电及护眼的功率控制方法、测距模块及电子装置。
背景技术
光学测距装置可利用3D图像传感系统采集其相对于目标物的距离/深度信息,并因此通过3D图像各个像素的间距值或距离值生成三维图像数据,而3D图像也被称为距离图像或深度图。额外的距离维度可在多种应用中使用,以获取更多有关由相机所捕获的场景中对象的信息,从而解决工业传感器领域中的不同任务。
光学测距装置可设置于智能手机中,其透过发光二极管来发射入射光,并利用像素阵列中的多个像素电路来采集对应于入射光的反射光。一般来说,发光二极管所发射的入射光为不可见光(如红外线)。然而,使用者可能不自觉得将手机中光学测距装置的发光二极管拿离眼睛很进,而造成眼睛伤害。
因此,现有技术实有改进的必要。
发明内容
因此,本申请部分实施例的目的即在于提供一种可兼顾省电及护眼的功率控制方法、测距模块及电子装置,以改善现有技术的缺点。
为了解决上述技术问题,本申请实施例提供了一种功率控制方法,应用于测距模块,所述测距模块包括一发光单元,所述功率控制方法包括于第一时间,所述发光单元以第一发射功率发射入射光;接收对应于所述入射光的反射光;根据所述反射光,判断所述测距模块与目标物的距离;以及根据所述距离,调整所述发光单元的发射功率。
例如,其中根据所述距离,调整所述发光单元的发射功率的步骤包括当所述距离大于一特定值时,调整所述发射功率大于第一发射功率。
例如,根据所述距离,调整所述发光单元的发射功率的步骤包括当所述距离小于一特定值时,调整发射功率等于或小于所述第一发射功率。
例如,根据所述反射光,判断所述测距模块与目标物的距离的步骤包括根据所述反射光,取得影像,其中所述影像包括多个像素;取得对应于所述多个像素的多个像素深度值;以及根据所述多个像素深度值,判断所述测距模块与目标物的距离。
例如,根据所述多个像素深度值,判断所述测距模块与目标物的距离的步骤包括当所述多个像素中对应于多个第一像素的像素个数大于特定个数时,判断所述测距模块与目标物的距离为第一深度值;其中,每一第一像素所对应的像素深度值小于所述第一深度值。
例如,根据所述多个像素深度值,判断所述测距模块与目标物的距离的步骤包括判断测距模块与目标物的所述距离为所述多个像素深度值的计量。
例如,所述功率控制方法还包括根据所述反射光,取得影像;以及对所述影像进行人脸辨识,产生辨识结果;根据所述距离,调整所述发光单元的发射功率包括根据所述辨识结果以及所述距离,调整所述发光单元的发射功率。
例如,根据所述辨识结果以及所述距离,调整所述发光单元的发射功率包括:当所述辨识结果显示所述影像中包括一人脸影像且所述距离小于一特定值时,不调大所述发射功率。
例如,所述第一时间小于一特定时间区间。
例如,功率控制方法,在于第一时间,所述发光单元以第一发射功率发射入射光之前,还包括接收背景光;以及根据所述背景光,决定第一发射功率。
本申请实施例提供了一种测距模块,包括发光单元,于第一时间以第一发射功率发射入射光;感光单元,接收对应于所述入射光的反射光;处理单元,用来执行以下步骤:根据所述反射光,判断所述测距模块与目标物的距离;以及根据所述距离,调整所述发光单元的发射功率。
本申请实施例提供了一种电子装置,包括测距模块,测距模块包括发光单元,于第一时间以第一发射功率发射入射光;感光单元,接收对应于所述入射光的反射光;处理单元,用来执行以下步骤:根据所述反射光,判断所述测距模块与目标物的距离;以及根据所述距离,调整所述发光单元的发射功率。
本申请实施例可根据测距模块与目标物之间的距离以及人脸辨识结果,调整发光单元的发射功率,其可避免使用者的眼睛承受过大的射线能量而受到伤害,同时达到省电效果。
附图说明
图1为本申请实施例一电子装置的示意图;
图2为本申请实施例一功率控制方法的流程图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
请参考图1,图1为本申请实施例一电子装置1的示意图。电子装置1可为智能手机或平板计算机,其包括测距模块10,测距模块10可为飞时(Time of Flight,ToF)测距模块,其包括发光单元12、感光单元14以及处理单元16。发光单元12可为发光二极管(Light Emitting Diode,LED),其用来发射入射光,于一实施例中,发光单元12可为不可见光发光二极管(如红外线(Infrared Ray,IR)发光二极管)。感光单元14可包括镜头(Lens)、感光像素阵列等,其可用来接收对应于入射光的反射光或背景光(Ambient Light),并可根据反射光(或背景光)产生图像IMG。处理单元16可包括数字信号处理器(Digital Signal Processor,DSP)、一般用途处理器(General Purpose Processor)或应用 处理器(Application Processor)。处理单元16可根据反射光,判断测距模块10与目标物TG(图1中未示出)的距离D,并根据距离D,调整发光单元12的发射功率PWR。
如此一来,当使用者面对感光单元14且使用者(的眼睛)靠近感光单元14时,测距模块10可调降发光单元12的发射功率PWR,避免使用者的眼睛承受过大的射线能量而受到伤害,同时达到省电效果;另一方面,当使用者未注视感光单元14时,或当使用者(的眼睛)与感光单元14的距离够大时,测距模块10可适度调升发光单元12的发射功率PWR,以提升反射光强度,增进飞时测距所需的信杂比(Signal-to-Noise Ratio,SNR)。
具体来说,请参考图2,图2为本申请实施例一功率控制方法20的流程图。功率控制方法20可由测距模块10来执行,如图2所示,功率控制方法20包含以下步骤:
步骤202:发光单元12于第一时间T1以初始发射功率PWR_0发射入射光。
步骤204:感光单元14接收对应于入射光的反射光,并据以产生图像IMG。
步骤206:处理单元16根据图像IMG,判断测距模块10与目标物TG之
间的距离D。
步骤208:处理单元16根据距离D,调整发光单元12的发射功率PWR。
当测距模块10执行功率控制方法20时,测距模块10可根据距离D,调整发光单元12的发射功率PWR,以避免使用者的眼睛受到伤害,同时达到省电 效果。详细来说,于步骤202中,测距模块10先于短暂的第一时间T1,以较微弱的初始发射功率PWR_0发射入射光,其中第一时间T1可小于一特定时间区间,特定时间区间可视实际需要而变化。
于步骤204及步骤206中,感光单元14接收对应于入射光的反射光,并据以产生图像IMG(其中图像IMG包括多个像素),而处理单元16根据图像IMG,判断测距模块10与目标物TG之间的距离D。于一实施例中,处理单元16可根据对应于入射光的反射光,取得对应于图像IMG中多个像素的多个像素深度值,并跟据多个像素深度值,判断测距模块10与目标物TG之间的距离D。其中,根据反射光取得多个像素深度值的方法为本领域具通常知识者所公知,故于此不再赘述。
另外,处理单元16根据多个像素深度值,判断测距模块10与目标物TG之间的距离D的方式并未有所限。于一实施例中,处理单元16可比较多个像素深度值与第一深度值Th之间的深度大小,当所述多个像素中其像素深度值小于第一深度值Th的像素个数大于特定个数N时,处理单元16可判断距离D即为第一深度值Th(其中所述多个像素中其像素深度值小于第一深度值Th的多个像素可视为多个第一像素,也就是说,对应于每一个第一像素的像素深度值皆小于第一深度值Th)。于一实施例中,处理单元16可判断距离D为多个像素深度值的统计量,例如,处理单元16可判断距离D为多个像素深度值的一最小值,或处理单元16可先将多个像素深度值由大至小排序,并选取前a%小的多个像素深度(记为多个第一像素深度),并判断距离D为多个第一像素 深度的平均值。其中,百分比a%可视实际状况而有所调整,只要处理单元16根据多个像素深度值判断测距模块10与目标物TG之间的距离D,皆符合本申请的要求而属于本申请的范畴。
于步骤208中,处理单元16根据距离D,调整发光单元12的发射功率PWR。举例来说,当距离D大于一特定值d1时,代表测距模块10与目标物TG之间的距离D够远,因此处理单元16可调大发射功率PWR,即调整发射功率PWR使发射功率PWR大于初始发射功率PWR_0;当距离D小于一特定值d2时,代表测距模块10与目标物TG之间的距离D过近,因此为了保护使用者的眼睛及省电,处理单元16可调小发射功率PWR,即调整发射功率PWR使发射功率PWR小于初始发射功率PWR_0。其中,特定值d1、d2可相同或相异,其可视实际需要而定。
更进一步地,于一实施例中,处理单元16可对图像IMG进行人脸辨识,并产生人脸辨识结果Rst,其中人脸辨识结果Rst可代表「图像IMG中包括人脸影像」或「图像IMG中不包括人脸影像」。在此情形下,处理单元16可根据人脸辨识结果Rst以及距离D,调整发射功率PWR。举例来说,当人脸辨识结果Rst显示图像IMG中包括人脸影像且距离D小于一特定值d3时,处理单元16可调小发射功率PWR(即调整后的发射功率PWR小于初始发射功率PWR_0)或不调整发射功率PWR(即调整后的发射功率PWR等于初始发射功率PWR_0),换句话说,当人脸辨识结果Rst显示图像IMG中包括人脸影像且距离D小于特定值d3时,处理单元16不调大发射功率PWR(即调整后的 发射功率PWR不大于初始发射功率PWR_0)。
另外,于一实施例中,处理单元16完成功率控制方法20的执行后,处理单元16可将于前次执行步骤208所产生的调整后发射功率PWR当作下一次执行功率控制方法20的初始发射功率PWR_0,而再次执行功率控制方法20,如此周而复始地执行功率控制方法20,直到满足特定停止准则(Stopping Criterion),而停止执行功率控制方法20。其中,特定停止准则可为执行功率控制方法20的迭代次数等于一预定次数,或是可为飞时测距所需的信杂比SNR大于或等于一临限值。
除此之外,于测距模块10第一次执行功率控制方法20前,处理单元16根据背景光,决定初始发射功率PWR_0。详细来说,测距模块10可于发光单元12尚未发射用来测距的入射光时,利用感光单元14接收背景光(Ambient Light),取得背景光强度,并根据背景光强度,决定第一次执行功率控制方法20时所需的初始发射功率PWR_0。
需注意的是,前述实施例用以说明本申请之概念,本领域具通常知识者当可据以做不同的修饰,而不限于此。举例来说,本申请不限于根据对应图像IMG中多个像素的多个像素深度值来判断距离D,测距模块可直接根据反射光本身(如计算反射光与入射光之间的相位差),直接判断距离D,亦属于本申请的范畴。
综上所述,本申请实施例可根据测距模块与目标物之间的距离以及人脸辨识结果,调整发光单元的发射功率,其可避免使用者的眼睛承受过大的射线能量而受到伤害,同时达到省电效果。
以上所述仅为本申请的部分实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (21)

  1. 一种功率控制方法,应用于测距模块,所述测距模块包括发光单元,其特征在于,所述功率控制方法包括:
    于第一时间,所述发光单元以第一发射功率发射入射光;
    接收对应于所述入射光的反射光;
    根据所述反射光,判断所述测距模块与目标物的距离;以及
    根据所述距离,调整所述发光单元的发射功率。
  2. 如权利要求1所述的功率控制方法,其特征在于,其中根据所述距离,调整所述发光单元的发射功率的步骤包括:
    当所述距离大于一特定值时,调整发射功率大于所述第一发射功率。
  3. 如权利要求1所述的功率控制方法,其特征在于,根据所述距离,调整所述发光单元的发射功率的步骤包括:
    当所述距离小于一特定值时,调整发射功率等于或小于所述第一发射功率。
  4. 如权利要求1所述的功率控制方法,其特征在于,根据所述反射光,判断所述测距模块与目标物的距离的步骤包括:
    根据所述反射光,取得影像,其中所述影像包括多个像素;
    取得对应于所述多个像素的多个像素深度值;以及
    根据所述多个像素深度值,判断所述测距模块与目标物的距离。
  5. 如权利要求4所述的功率控制方法,其特征在于,根据所述多个像素深度值,判断所述测距模块与目标物的距离的步骤包括:
    当所述多个像素中对应于多个第一像素的像素个数大于特定个数时,判断所述测距模块与目标物的距离为第一深度值;
    其中,每一第一像素所对应的像素深度值小于所述第一深度值。
  6. 如权利要求4所述的功率控制方法,其特征在于,根据所述多个像素深度值,判断所述测距模块与目标物的距离的步骤包括:
    判断所述测距模块与目标物的距离为所述多个像素深度值的统计量。
  7. 如权利要求1所述的功率控制方法,其特征在于,还包括:
    根据所述反射光,取得影像;以及
    对所述影像进行人脸辨识,产生辨识结果;
    根据所述距离,调整所述发光单元的发射功率包括:
    根据所述辨识结果以及所述距离,调整所述发光单元的发射功率。
  8. 如权利要求7所述的功率控制方法,其特征在于,根据所述辨识结果以及所述距离,调整所述发光单元的发射功率包括:
    当所述辨识结果显示所述影像中包括人脸影像且所述距离小于一特定值时,不调大所述发射功率。
  9. 如权利要求1所述的功率控制方法,其特征在于,所述第一时间小于一特定时间区间。
  10. 如权利要求1所述的功率控制方法,其特征在于,在于第一时间,所述发光单元以第一发射功率发射入射光之前,还包括:
    接收背景光;以及
    根据所述背景光,决定第一发射功率。
  11. 一种测距模块,其特征在于,包括:
    发光单元,于第一时间以第一发射功率发射入射光;
    感光单元,接收对应于所述入射光的反射光;以及
    处理单元,用来执行以下步骤:
    根据所述反射光,判断所述测距模块与目标物的距离;以及
    根据所述距离,调整所述发光单元的发射功率。
  12. 如权利要求11所述的测距模块,其特征在于,当所述距离大于一特定值时,所述处理单元调整发射功率大于所述第一发射功率。
  13. 如权利要求11所述的测距模块,其特征在于,当所述距离小于一特定值时,所述处理单元调整发射功率等于或小于所述第一发射功率。
  14. 如权利要求11所述的测距模块,其特征在于,所述感光单元根据所述反射光,取得影像,其中所述影像包括多个像素;所述处理单元取得对应于所述多个像素的多个像素深度值;以及根据所述多个像素深度值,判断所述测距模块与目标物的距离。
  15. 如权利要求14所述的测距模块,其特征在于,当所述多个像素中对应于多个第一像素的像素个数大于特定个数时,所述处理单元判断所述测距模块与目标物的距离为第一深度值;其中,每一第一像素所对应的像素深度值小于所述第一深度值。
  16. 如权利要求14所述的测距模块,其特征在于,所述处理单元还用于判断所述测距模块与目标物的距离为所述多个像素深度值的统计量。
  17. 如权利要求14所述的测距模块,其特征在于,还包括:所述感光单元根据所述反射光,取得影像;所述处理单元对所述影像进行人脸辨识,产生辨识结果;以及所述处理单元根据所述辨识结果以及所述距离,调整所述发光单元的发射功率。
  18. 如权利要求17所述的测距模块,其特征在于,当所述辨识结果显示所述影像中包括人脸影像且所述距离小于一特定值时,所述处理单元不调大所述发射功率。
  19. 如权利要求11所述的测距模块,其特征在于,所述第一时间小于一特定时间区间。
  20. 如权利要求11所述的测距模块,其特征在于,还包括:所述感光单元接收背景光;以及所述处理单元根据所述背景光,决定第一发射功率。
  21. 一种电子装置,其特征在于,包括权利要求11-20中任意一项所述的测距模块。
PCT/CN2017/099119 2017-08-25 2017-08-25 功率控制方法、测距模块及电子装置 WO2019037105A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17826118.6A EP3467542A4 (en) 2017-08-25 2017-08-25 POWER CONTROL METHOD, DISTANCE MEASURING MODULE AND ELECTRONIC DEVICE
CN201780001023.6A CN109804271B (zh) 2017-08-25 2017-08-25 功率控制方法、测距模块及电子装置
KR1020187004057A KR102113668B1 (ko) 2017-08-25 2017-08-25 전력 제어 방법, 거리 측정 모듈 및 전자 장치
PCT/CN2017/099119 WO2019037105A1 (zh) 2017-08-25 2017-08-25 功率控制方法、测距模块及电子装置
US15/869,046 US10754031B2 (en) 2017-08-25 2018-01-12 Power control method, distance measuring module and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/099119 WO2019037105A1 (zh) 2017-08-25 2017-08-25 功率控制方法、测距模块及电子装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/869,046 Continuation US10754031B2 (en) 2017-08-25 2018-01-12 Power control method, distance measuring module and electronic device

Publications (1)

Publication Number Publication Date
WO2019037105A1 true WO2019037105A1 (zh) 2019-02-28

Family

ID=65437127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/099119 WO2019037105A1 (zh) 2017-08-25 2017-08-25 功率控制方法、测距模块及电子装置

Country Status (5)

Country Link
US (1) US10754031B2 (zh)
EP (1) EP3467542A4 (zh)
KR (1) KR102113668B1 (zh)
CN (1) CN109804271B (zh)
WO (1) WO2019037105A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110462438A (zh) * 2019-06-24 2019-11-15 深圳市汇顶科技股份有限公司 结构光投射装置、结构光投射方法及三维测量系统
CN111025277A (zh) * 2019-12-25 2020-04-17 青岛海信电子设备股份有限公司 Uwb测距系统和uwb测距系统的控制方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11510297B2 (en) * 2018-12-24 2022-11-22 Beijing Voyager Technology Co., Ltd. Adaptive power control for pulsed laser diodes
CN110995992B (zh) * 2019-12-04 2021-04-06 深圳传音控股股份有限公司 补光装置、补光装置的控制方法及计算机存储介质
CN113223209A (zh) * 2020-01-20 2021-08-06 深圳绿米联创科技有限公司 门锁控制方法、装置、电子设备及存储介质
CN111751833A (zh) * 2020-06-24 2020-10-09 深圳市汇顶科技股份有限公司 一种打光以及反射光数据获取方法、装置
CN112073708B (zh) * 2020-09-17 2022-08-09 君恒新信息科技(深圳)有限公司 一种tof相机光发射模组的功率控制方法及设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090273770A1 (en) * 2008-04-30 2009-11-05 Honeywell International Inc. Systems and methods for safe laser imaging, detection and ranging (lidar) operation
CN102157040A (zh) * 2011-01-18 2011-08-17 中兴通讯股份有限公司 一种非接触式移动支付设备的通信装置及方法
CN102508256A (zh) * 2011-11-23 2012-06-20 中国科学院微电子研究所 非接触式实时生理信号监测系统
CN103873699A (zh) * 2012-12-10 2014-06-18 深圳富泰宏精密工业有限公司 功率调整系统及方法
CN105765558A (zh) * 2013-09-03 2016-07-13 醒眸行有限公司 低功率眼睛跟踪系统和方法
CN106296716A (zh) * 2016-08-24 2017-01-04 深圳奥比中光科技有限公司 光源的功率调整方法、深度测量方法及装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3338717B2 (ja) * 1993-01-11 2002-10-28 興和株式会社 眼科装置
JP5710109B2 (ja) * 2009-07-10 2015-04-30 日本信号株式会社 光測距装置
WO2014014838A2 (en) * 2012-07-15 2014-01-23 2R1Y Interactive illumination for gesture and/or object recognition
JP6205741B2 (ja) 2013-02-13 2017-10-04 市光工業株式会社 車両用灯具
US10823826B2 (en) * 2016-06-14 2020-11-03 Stmicroelectronics, Inc. Adaptive laser power and ranging limit for time of flight sensor
US20180341009A1 (en) * 2016-06-23 2018-11-29 Apple Inc. Multi-range time of flight sensing
US10114111B2 (en) * 2017-03-28 2018-10-30 Luminar Technologies, Inc. Method for dynamically controlling laser power

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090273770A1 (en) * 2008-04-30 2009-11-05 Honeywell International Inc. Systems and methods for safe laser imaging, detection and ranging (lidar) operation
CN102157040A (zh) * 2011-01-18 2011-08-17 中兴通讯股份有限公司 一种非接触式移动支付设备的通信装置及方法
CN102508256A (zh) * 2011-11-23 2012-06-20 中国科学院微电子研究所 非接触式实时生理信号监测系统
CN103873699A (zh) * 2012-12-10 2014-06-18 深圳富泰宏精密工业有限公司 功率调整系统及方法
CN105765558A (zh) * 2013-09-03 2016-07-13 醒眸行有限公司 低功率眼睛跟踪系统和方法
CN106296716A (zh) * 2016-08-24 2017-01-04 深圳奥比中光科技有限公司 光源的功率调整方法、深度测量方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3467542A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110462438A (zh) * 2019-06-24 2019-11-15 深圳市汇顶科技股份有限公司 结构光投射装置、结构光投射方法及三维测量系统
WO2020257969A1 (zh) * 2019-06-24 2020-12-30 深圳市汇顶科技股份有限公司 结构光投射装置、结构光投射方法及三维测量系统
CN111025277A (zh) * 2019-12-25 2020-04-17 青岛海信电子设备股份有限公司 Uwb测距系统和uwb测距系统的控制方法
CN111025277B (zh) * 2019-12-25 2023-05-30 青岛海信电子设备股份有限公司 Uwb测距系统和uwb测距系统的控制方法

Also Published As

Publication number Publication date
EP3467542A1 (en) 2019-04-10
CN109804271A (zh) 2019-05-24
KR20190033462A (ko) 2019-03-29
KR102113668B1 (ko) 2020-05-22
US10754031B2 (en) 2020-08-25
EP3467542A4 (en) 2019-04-10
CN109804271B (zh) 2021-07-23
US20190064352A1 (en) 2019-02-28

Similar Documents

Publication Publication Date Title
WO2019037105A1 (zh) 功率控制方法、测距模块及电子装置
CN108702437B (zh) 计算深度图的方法、系统、设备和存储介质
WO2020010848A1 (zh) 控制方法、微处理器、计算机可读存储介质及计算机设备
US20210084280A1 (en) Image-Acquisition Method and Image-Capturing Device
US20170059305A1 (en) Active illumination for enhanced depth map generation
WO2018027530A1 (zh) 红外光源的亮度调节方法与装置、光学动捕摄像机
US11258962B2 (en) Electronic device, method, and computer-readable medium for providing bokeh effect in video
CN110895678A (zh) 脸部识别模块及方法
KR20160038460A (ko) 전자 장치와, 그의 제어 방법
KR20200067027A (ko) 복수의 카메라들 또는 깊이 센서 중 적어도 하나를 이용하여 깊이 정보를 획득하는 전자 장치
KR20190122018A (ko) 전자 장치 및 그 깊이 정보 생성 방법
KR102661596B1 (ko) 이미지에 대한 인식 정보, 인식 정보와 관련된 유사 인식 정보, 및 계층 정보를 이용하여 외부 객체에 대한 인식 결과를 제공하는 전자 장치 및 그의 동작 방법
TWI647427B (zh) 物體距離估算方法與電子裝置
US20160073208A1 (en) Acoustic Characterization Based on Sensor Profiling
US20190045100A1 (en) Image processing device, method, and program
US11350040B2 (en) Electronic device for controlling camera on basis of external light, and control method therefor
KR20210046984A (ko) 얼굴 데이터 획득을 위한 방법 및 이를 위한 전자 장치
US11204668B2 (en) Electronic device and method for acquiring biometric information using light of display
US10255687B2 (en) Distance measurement system applicable to different reflecting surfaces and operating method thereof
CN107743628A (zh) Led面发光的结构化光
KR102493028B1 (ko) 가시광선 대역의 빛을 흡수할 수 있는 렌즈를 포함하는 카메라 모듈을 이용하여 적외선에 대응하는 이미지를 획득하는 방법 및 이를 구현한 전자 장치
US11032462B2 (en) Method for adjusting focus based on spread-level of display object and electronic device supporting the same
CN114731362A (zh) 包括相机的电子装置及其方法
TWI535288B (zh) 深度攝影機系統
KR20210017418A (ko) 이동 객체 추적 장치 및 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017826118

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20187004057

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17826118

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE